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PREFACE

The serious student of mathematics generally studies
a systematic development of the real number system either
as an advanced undergraduate or beginning’graduate student.
The usual approach is to develop the natural numbers from
the Peano axioms, the integers as eqhivalence classes of
ordered pairs of natural numbers, ﬁhe rational numbers as
equivalence clgsses of ordered pairs of ihtegers; and the
real numbers as equivalence classes of Cauchy seéuences of
rational numbe:%s°

.The.priﬁafy purpose of this study is to develop
another type of numberbsystemp the p-adic numbers, frém
the rational nﬁmbers in a manner éuite simiiar to that used
in developing ﬁhe'reals from the rationals. A few of the
more important;proPerties of the p-adic numbers are then
investigatéd,

It ié believed that Theorem 8 of Chapter II may con-
stitute an addition to the previously knoﬁh results con-
cerning soluti?ns of the congruénce xn;a mgd.m. it is

possible, also, that the proof of Theorem 8 of Chapter III

concerning the representatign of a p-adic number as a



power series may be driginal with this study.
, il . : 3
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with this study, and I wish to express my appﬁeciation to
them. I am deéply indebted to my coﬁmittee’membérs, Drs.
H. S. Mendenhall, Milton E. Berg; Gerald K. Goff;“Vernon
Troxel, and Norman E. Wilson for their advice and assis-
tance in thié_study and in planning thebpre;eéﬁisite
academic progrém° Particularly, I wish to thank Dr. Goff
who'as thesis édviser followéd this study from its in-
ception and maée many helpful suggestionsn Special thanks
are due also t§ Miss Mattie Sue cOopéf; Reference Librarién
at Tennessee TgéhnqlogicalbUniyersity; for her help in
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CHAPTER I
INTRODUCTION

The p-adic numbers were discovered by Kurt Hensel (5)
near the end of the last century. Seventy years later, how-
ever, the average mathematician has probably never heard of
them. This undoubtedly can‘be attributed largely to the
fact that they have been ﬁentioned so infrequently in
mathematical literature., While it is true that their primary
importance has been in the fields of algebraic number theory
and algebraic geometry, it is felt by this writer that there
is adequate justification for their study by mathematicians
in othér‘fields as well., This investigation waﬁ prompted by
this beliéf, and it makes an effort to present the basic
theory of p-adic numbers to a wide mathematical audience. As
far as most of the study is concerned, however, the pre-
requisite mathematical preparation of the reader would have
to be'comparable to that of the advanced undergraduate or be~

ginning graduate student.
Organization of Study

Most of Chapter II is devoted to a consideration of the



arithmetic of congruence classes modulo m with considerable
emphasis being placed on‘the éase where m is a prime number.
Through this study of modulaf arithmetic, some of the basic
results of elementary numbef theory are established in a
very simple manner. A consideration of division modulo m
paves the way for the introduction of Hensel's p-adic numbers,
albeit in a manner muth different from that empioyed by Hensei.
Much of Chapter II could be understood by the high school
senior or the college freshman who is reasonably proficient
in mathematics, and it is hoped that an investigation of
this chapter might help arouse in him the spirit of dis~-
covery.

Chapter III constitutes the main body of the study.
It is concerned first with a detailed digcussion of valua-
tion theory. The p~adic numbers are then introduced as a
comﬁletion of the rational field with respect to a p-adic
metric derived from the p-adic valuation of the rational
field. The close parallel which exists between the p-adic
completion of the field of rational numbers and the real
completion of the same field is carefully emphasized.
Finally, it is established that there are only two basic
types of completions of the rational field.

Chapter IV concludes the study with an investigation

of a few of the most important properties of p-adi¢ numbers,



It establishes that the p-adic fields are not isomorphic to
the field of real numbers, but it does point out some in-

teresting points of éimilarity between the p-adic/fields and
the real field. Fihally, Chapter IV suggests directions for

further feadingvand research,
Need for Study

Today's mathematics student studies a systematic develop-
ment of the rea# number system either as an advanced under-
graduate or as % beginning graduate student. In the course
of this development he encounters the field of real numbers
as a completion of the field of rational numbers. Since
there is only obe other possible type of completion of the
rational field, a p-adic completion, it seems to the wfiter
that it should éécéive at least passing attention during any
such study. Thé literature regarding thé dévelopment of the
p-adic numbers is, however, quite limited. It is hoped
that this study%may help alleviate this. situation by col-

lecting in one volume the essentials for understanding

p-adic numbers.j



CHAPTER II
MODULAR ARITHMETIC

Early in life the child is introduced.to modular arith-
‘metic in the forﬁ of arithmetic on the clock. He learns |
‘that on the ordinary clock 9+4=l,‘6+8=2, and so on. In this
arithmetic all multiples of 12 are "thrown away““and it is
only the remainder in which he is interested, unless the
remainder is 0, in which case he adds 12. For this arith-
metic a base twelve numeration system wbuld bé pafticularly
advantageous since‘the sum of two numbers on the clock would
then be the last digit'of the ordinary sum except in the
case of 0 as a last digit. If the "12" on the clock were
replaced by "O"Vand base 12 numerals were used, then in all
cases the sum of two numbers in the clock arithmetic would
be given by the_last digit of their ordinary sum.

Since the reader is undoubtedly much more familiar with
base ten than with any other base, a few examples in modulo

10 arithmetic should serve to clarify the above ideas..

Ordinary Arithmetic Modulo 10 Arithmetic
3+5=8 3+45=8
9+6=15 9+6=5
23+37=60 23+37=3+7=0



Hereafter modulo 10 arithmetic will be called simply
l0-arithmetic and "modulo m arithmetic" will be shortened
to "m-arithmetic."” If m is.a prime number, p, then the cor-
responding modular arithmetic will be referred to as
p-arithmetic; and this notation will be used only if p is a
prime number.

The complete addition and multiplication tables for

l0-arithmetic are as follows:

Addition Table Multiplication Table
+10111213141516/71819 +101112}3141516171819
oloj1]2]3/4]5]6{7]8]9 olojojolojojojololo]o
1]112i3l415i6]7{8]9]0 1jol1]2{3]4|5|6]|7{8]9
2(213[al5(6]718l9l0]1 -~ 2joj2l4al68i0]2]4l6]8
31314]516(718]9j0j1l2 3{0]3|6(9]2]5i8114]7
4lalslef7]8l9iol1]2]3 alofa|sl2]elol4a|s|2]6
s5|s5]6{7]|8}9]loj1}23]4 5]0]5|0(5/015}0]5]0{5
6l6]7(8]9l0]11213]4]5 6l0|6|2[8lal0]6(2i8]4
717{8]olof1]2]3]4a]5]6 7j0l7]4]|1]8|5[2{9[6}3
gislolol1i2{3]a]5]6]7 glojg|elal2]ols]6|a|2
9joloj1l2]3ial5]6]7i8 9lojolsl7lels5]al3[2]1

It is readily apparent that the.sum of two positive integers
modulo 10 is just the units digit of their ordinary sum and
that the produc# of two positive integers, modulo 10, is
just the units digit of their ordinary product.

Hence if S= {o, 1, 2, 3, 4, 5, 6, 7, 8, 9} ,and if "+"
be the operatioﬁ defined by the above table then:

(1) aes, bes=atbes

(2)VVa,b,c €S, a+(b+c)=(at+b)+c

(3) Yaes, at0=a



(4) Ya€S,3b€ S such that a+b=0

(5) 'rla:,bes,, atb=b+a |

Properties (1), (3), (4), and (5) are immediately
apparent from an inspection of the addition table. Pfoperty
(2)0_the associative property, is a direct consequence of
the corresponding property of ordinary addition. Thus S
forms a commutative or Abelian group with respect to the
operation of addition, It is eéually apparént that S does
not form a group with respect to multiplication since the
identity element for multiplication is 1 and since there
exists no element a€ S such that 5.a=l. However, the svstem
(S;+,~) does inherit the additional properties from ordinary
arithmetic that:

(6) va,b,c €S, a- (boc)=(aob)oc‘

(7) va,b€S, ab=b-a

(8) Va,b;c eST, a- (b+c)=a-btact.
Conseéuently, (S;+,°) is a commutative ring with unity.

Since only the last digit of a number is of significance
in lO—arithmetic; the numbers of l0-arithmetic are defined
to be the elements of the set {0, 1; 2, 3 4;, 5; 6; 7; 8;
9} . More generally, the numbers of m-arithmetic are de-
fined to be the elements of the set {0; 1, 2; o e o 4
(m-1) } .

The addition and multiplication tables for 7-arithmetic



are reproduced beiow in order to explore the contrast be-~
tween the multiplication table in lO-arithmetic and the

multiplication table of 7-arithmetic.

Addition Table Multiplication Table
+10111213141546 .1011)121314415}6
0j01112]314{5}|6 01010}010j01}0}0
1{112]3}{4]516]0 1j0i1i2i3{41}516
212131415]1610]1 2101214161315
313]41516}0}1}2 3]013}6]2{51114
4141516}1011]1213 4101411512163
5151610]1112]314 510i513j116i41}2
616101112131415 6]0}61514131211

An examination of\these tables reveals immediately that
the set T={O, 1, 2, 3, 4,\5; 6} forms an Abelian or com-
mutative group with respect to addition, and that the set
T- {0} forms a commutative group with respect to multipli-
cation., The distributivity of multiplication over addition
is inherited from ordinary arithmetic. Hence the set T with
the two operatidns of addition and multipliéation is a field.

The set S= {0, 1, 2, 3, 4, 5, 6, 7,_8,’9} with the
operations of‘addition and multiplication modula 10 failed
to be a field for lack of multiplicative inverses for all
non-zero elemenﬁs of S. This lack of multiplicative
inverses is very closely connected with the fact that S
has zero divisors in l0-arithmetic. For example, 5-2=0.

The presence of zero divisors in 10 arithmetic



together with their absence in 7-arithmetic suggests the
following theorem.

Theorem 1. If a and b are numbers in p-arithmetic such
that a-b=0 then a=0 or b=0.

Proof: ac°b=0 in p-arithmetic if and only if there exists
an integer k such that a*b=k°p in ordinary arithmetic. Since
P is a prime number a-b=k-<p if and only if a is a multiple
of p or b is a multiple of p. Both a and b are elements of
the.set"{o,”l, 2; °o o e p-l} , and consequently néither
can be a multiple of p unless it be 0°p. Thus if a<b=0 in
p—-arithmetic then necessarily a=0 or b=0.

Dynkin and Uspenskii (4) seek to convey graphically an
appreciation of the process of multiplication in m-arith-
metic through the use of arrow diagrams. In these diagrams
the numbers of m-arithmetic are represented by points and
the result of multiplying b by a is indicated by an arrow
ieading from b to a-b. Such multiplication diagrams yiéld
rather readily certain facts which are not immediately
apparent from an inspection of the multiplication table.

The diagrams for multiplication by 3 (Pigure 1) and by

5 (Figure 2) in 7-arithmetic appear below. 4
. 3 2
O Q A /
814

Figure 1 ; Figure 2



The diagram for multiplication by 2 in 7-arithmetic
which is reprodﬁced next has a somewhat different appearance.
2 6
YO IVATNEVAN
lte——24 3&-———n5
In spite of thewapparent differences in the above
diagrams, it is important to note that every number is at
the tip of exactly one arrow and at the tail of exactly one
arrow, This phenomenon is described by saying that the
diagramswéoﬁglééwa éf&les where a cycle is defined to be a .
sequence of numbers {Xn}?r;l connected: by arrows from.
‘Xn to xn+1' (n=17°°°, k-1}, with a ?inal aArrow léading from
Xk to Xlo If k=1 there is just one;arrow which leads from
.Xl to itself. Not all multiplication diagrams in m-arith-

metic consist of cycles as evidenced by the following diagram

depicting multiplication by 2 in l0O-arithmetic.
. ' o 7 .

. o
5 — (0 [ T '\i————. 9
o~

The diagrams which have been constructed above suggest
that in m-arithmetic a multiplication diagram illustrating
‘ multiplication by a non-zero element in the arithmetic will

consist of cycles if m is a prime number. The following
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sequence of thepremsthich occur as problems in Dynkin and
Uspenskii (4) establishes this ¢onjecture,

Theorem 2, If a is a non-zero number in p-arithmetic, then
in the diagram for multiplication by a, no number has two
arrows leading to it.

Proof: Suppose b€ p-arithmetic and that two arrows lead to
b. Then there ‘exist distinct numbers ‘x;ye p-arithmetic such
that ax=b and ay=b; hence ax=ay. Therefore ax=ay=0 and thus
a(x-y)=0. Theérem 1 together with the fact that a=0 implies
that x-y=0, bu; this is impossible if ¥ and y are distinect.
Thus there exists no number b in p—aritﬁmetic which has two
arrows léadingito it,

Theorem 3. Let a and be be numbers in p-arithmetic with a=0.
Then every equétion of the forﬁ ax=b has a unique solution.
Proof: If the equation ax=b has a solution; then it i§
necessarily uhique since otherﬁiSe in the diagram for multi-
plication by a,.there would be two arrows leading to b in
violation of Tﬁeorem 2. To establish the existence of a
solution, it sﬁffices4tév1et‘x assume each of the values O,
l; 2; co, p—liand'cohéider thé prodﬁcts a°x. >As:§vraﬁges
over the set T='{O; l; ° ° °; p—l} , a?x”mﬁ%t also take on
all the valuesiip T. 1If this were not the case;.;herebwould

exist c €T such that for x. e T and xze T, xjf , 8x_=¢C

1 2 1
and ax2=c, but this is impossible by Theorem 2. Thus it
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must be concluded that ax=b has a unique solution,

Theorem 4. Let a be an arbitrary non-zerc number in p-arith-

metic. Then the diagram for multipliqation by a consists of

cycles and all the cycles (except the zero-cycle) have the

same length.

Broof: It is obvious that since a-0=0 then the numbers

{o,aod} conétitute a cycle, If b=0 then one mu§t-examine

the sequence {P' ab, a2b° . °} . Either all the elements

of this set are different or else there must be numbers which

are repeated. The former alternative is impossible since all

the numbers in this sequence are numbers in p-arithmetic

which contains only p elements._ 1f a™b is the first number

in the sequence which is a repeét of some previous number,

then an°b=b'for if anob=ai°b»with ig<n then-ao(aimlob)=

al.b=a- (a®1.b) where an;lobiaislgb. ?hus two distinct

arrows go to aiob which by Theorem 2 is imposs.j.bleo Hence

the numbers {b, a<b, a®:b, - - -,a"*b} constitute a cycle.
To éhow tﬁat‘all non-zero cycles have’the same . length,

it will be sufficient to show that they all have the same

length as the cycle containing 1. If b#0 and if {1, a, 52,

oty an} "is the cycle containing 1, then the set

{.b, ab, azb} . - *, an°b)' is also a cycle since

an-b=1°b=b ﬁnd if ai°b=b, then ai=i which implies that i is a

2

multiple of n. Hence {b,a°b,a °b,° -~ °,an°b} is a cycle
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containing b and having-the‘same length asbthe 1=cyc1é,'
Since b was an arbitrary non=-zero number,'it_may be céhcluded
ﬁhat all of these cycles have ﬁhe same length°

The following basic‘theorem-of.elementary number thébry
is an immediate conséquence of Theorem 4.
Theorem 5. (Fermat's Theorem) If p is a prime and p}a then
p | @11y, |
Proof:s Since the diagram for multiplication by a consists"
of cycles and since by the previous theorem all these cycles
have the same length, s, then the number of ¢yzles not con=
taining zero is n=(p=1)/s; Thus as=1==#($3)n=1n=L::#apm1=1.‘
Therefore aP~l-1=0 and p i (aP-1-1),

By Theorem 3 if a#0 then every squation of the form
ax=1 has a unique solution in p-arithmetic. Thus Theorem 3
insures that every non-zerc number in p-arithmetic has a
unique mﬁltiplicative inverse.

Basic to the following theorem is the observation that
1l and p=-1 are ﬁultiplicative self-inverses in p;arithmetic
and that 1 and p-=1 are additivé inverses.,
Theorem 6. (Wilson‘s Theorém) If p is a prime number then
(p-1):+1 is divisible by p. |
Proof: The theprem is immediately apparent if p=2; it(may
therefore be assumed that p» 2. Then (p=1)!=1:2¢ o o o (p=1)

and in this product 1 and p~l1 are multiplicative self-inverses.
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The product 2-3"' . '(p—?)#l since the multiplicative in-
verse of each element in the set S='(2, 3, ° e, (p-2))
is also in S, and'the product 2:3° ° ° (p-2) may be written
as the,proﬁuct of (p-3)/2,factor§ each of which is a.number
in p-arithmetic multiplied by its multiplicative inverséo
Cohsequently, (p~1) :=1°(p-1) or‘(p-1)2+1=(p-1)+1=0_and it
follows that (p-l1l):+1 is divisible by p.
Theorem 7. (cbnve:se of Wilson's Theorem). If m divides
(m=1):+1 , then m is a prime number.
Prcof: Ifm i; not prime, then there exists d, 144d<m such
that dlm. Also d | (m-1)! since it is one of the factors in
the product (m-~l)!. Hence d l {m=1) ! +1 since d| m and
m | (m-1):41 . Therefore d | [(m=-1}!+l~(m-1}:], but this
implies that d| 1 which is impossible Qince l¢d., Con-
sequently, if m | (m-1)!+1 , then ﬁ must be a prime number.
In S-arithmetic 1%=1 and 42=1, but there is no number
in 5-arithmetic satisfying.the equation x2=2° It is there-
fore obvious that in m-arithmetic the equation x™=a may or
may not have solutions. One is naturally interested in
knowing when ghis equation has solutions apd in the number
of solutions it has if any do exist. Most number theory
texts contain partial answers to these questions. As far as
the writer has been able to determine, however, the following

theorem is an addition to the list of partial answers.
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Theorem 8. If xM=a has solutions in m-arithmetic, then the
number of solutions divides f(m) where f{m) denotes Euler's
g-function, |
To facilitate the proof of the theorem, certain standard

theorems of number theory will be employed. These theorems
are stated below without proof, but, in each case, the
source of a proof is cited. |

Theorem 9. Long (7). The linear congruence axsb mod m is
solvable if and only if d| b where d=(a,m). If there are any
solutions, then there are precisely d incongruent soclutions.
Theorem 10. Niven and Zuckerman {(11}. If p is a prime and.
(a,p)=1, then the congruence x"= a mod p has (n, p-1) soiu-
tions or no solutions according as alp-1Y/ (n,p-1 £1 mod p
or a(p"l)/(n, p-1}%1 mod p.

Theorem 11, Long (7). Let f(x) be a polynqmi&l with inte-
gral coefficients, let p be a prime, and let & 22 be an im-
‘tegero Then, xois a soluticn of f(x)E 0 mod p if and only
if |

-1
Xo=rty P
where r is a solution of f(x)2 0 mod pdnland yo is a

solution of

£4x) vpe’ (1) =
c,‘._1+y {r) =0 mod p.

Theorem 12, Chinese Remainder Theorem. Long (7)° If
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(mi.mj)=l for i + j then the system

X=c mod m
1 1

XsSCc. med m
2

r
is solvable with a unique solution modulo m where m=]][ m, o
i=1

Theorem 13. Long (7). Let £(x)= }_L_ c

xk where ¢_,c ,°°°,
k=0 X o 1

cr; are integers. If a=b mod m, then £{a) =f(b) mod m.

Since the number of solutions of the equation x"=a in

m~-arithmetic is the same as the number of incongruent solu-
'tions of x"=a mod m, the latter nOtatioﬁ will be employed
in proving Theorem 8 in order to facilita\.te the use of the
preceding theorems.

Proof of Theorem 8. Two cases will be considered.

Case I. If 1m=pk where p is a prime and k is a natural num-
‘ber, the prloof will be by induction on k.

(a) If k=1, if (a,p)=1l, and if xnsa mod p has solutions,
they 'are (n,p-1) in number by Theorém 10. How-
ever, #{p)=p~1 and therefore the number . of ‘solu-
tions divides $(p). If (a,p) ;1 only' one sclu-
tion exists, xOEO mod p. Therefore, if ana
mod p has solutions, their number divides ¢(p).

' k
i{b) -Assume : that ._if,u;xn_=_ka;zmod__p .has solutions, then the
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‘nunlber 65' solutions dividebs ¢(pk), k=1>,, 2,"._ ° 'f' e ji°
(c_) . By The&rgm 11 *0 will. be a solution of xngy a mod
~pi+1 if and 6n1j if | |
o }_x0¥r+yo§k
whe;e r is_a sbiution of
@A) xP=a mod pitl

and y, is a s;)lution of

(B) r=a j?wnr“ 129 moa .
pl

' Thus xpaa.mod pjﬂ" has ’solut;‘pns J.f and only if both (A) .
_ahd (B) have: goigtiéng., Now by Theorem 9, “if‘ {B) has solu-
tions, it wiill have e}it’,hef p" iricongrue‘mfi: sblutiohs or on_é‘
solution. By (b), if (A) hés,- solui“:viox.xs, thelr number will
divid? ¢(pj)=pj71(pfl),. Let $0 be the.number of»solutiohs
of (A) and. let Nivba‘ﬁhe.numbe: of so‘l}butv»_io_ns of xP=a mod

» Pj+l,‘if solﬁtions gkistf‘ Theﬁ $1=N0‘Qr N1=p¢No depending
upon whether (B) has one o‘r- p solutions. However, sihce
¢(pj+l)=p¢(pjj and since NO‘ ﬂ(pj); in eitherbcase

v, | g(eitly. . .

| Koo
Case II. (m—_——TTp. i)- .
B i=1 "%

 Clearly in this case x; is a solution of x"ma mod m
'if and only if Xq is a solt.itién' of x"z a mod pi°-‘ i for each

i. In fact, if k i=1l,* ‘,°,”k are solutions of‘the con-

&

io
gruences x'=a mod P

i, the Chinese Remainder Theorem |
i ' :
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. guarantees a unique solution, xo, of the system x=x_  mod
i

4 o

P, i, i=1, - - -,k, and by Theorem 13 xonga mod p,

i for
every i; hence xOnEa mod m. Thus every combination of

i

= a mod p. , i=1,
i

solutions of the congruences X A S

yields a distinct solution of x'=a mod m. Therefore, if

Ni denotes the number of solutions of xnaa mod m, then

X K e

N= TTN_° Hence, since Nil ﬂ(p_o( i) and since ¢(m)=.,T¢(Pi 1y,
i=1 1 1 i=1

it follows that N l¢(m).

M~Adic Numbers

Addition, subtraction, and multiplication in elementary
arithmetic can generally be performed in a straightforward
manner with near-complete confidence at every step. This
may not be the case with division, however, for in this
operation there is quite often a certain amount of guesswork
involved. For example, 1241-+ 17=73, but, as division is
customarily performed, one might not see immediately that
the ten's digit in the quotient is 7; a moderate amount of
trial and error might be involved. This trial and error
may be eliminated, however, by performiné the division in
the following manner:

(1) Calculate the multiplicative inverse of the unit's

digit of the divisor in l10-arithmetic. In the

example under consideration, 7"1=3 since 7-3=1.



(2)

(3)

(4)

(5)

18

For the sake of convenience, this multiplicative'l’

inverse may be recorded as a superécript,of the

divisor.

Obtain the unit's digit of the quotient by multi-

” ylying the inverse thainéd in thé pfévious step

by the unit's digit of the dividend. In dividing
1241 by 17, all the information obtained'thus far
is contained in the following array.

3

_1241[;73

Multiply the divisor by the‘dnit‘s digit of the

" quotient and subtract’the'product from the divi-

dend as in ordinary arithmetic. The continuation.

of the above array wduld then appear as

.,
1241 | 173

51
119

Obtéin the ten's digit of the quotient by’multi-
plying,in lo—arithmetic; the laét digit of the
remainder obﬁainéd in'(3) by the inverse obtained
in (1). The examplé of (3) then becomes

73

1241 |113
—~51
119

Multiply the divisor by the ten's digit obtained
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in (4)'and subtrdct from the remainder obtained l»
in (3). The continuation of the example then

appears as

73
1241 |17
51

and, since the remainder in this step is zero, the
division process is completé.
To hélp illustrate this method of division, threebadAi—
tional examples follow. | |

32 256

47
1952 le1. : 1378 153/ 1363 |53
122 318 203
183 . 106 116
183 106 116

The reader may have‘obéerved by now ﬁhaﬁ’the Process
of diQision may not always be as‘eésy‘as it was in the
.aBOVewexamﬁlés. »lf, for example, the divisor is 34, the
method is not even applibable since 4 has no multiplicative
inQerSe ih 10-arithmetic. ‘One“might, of course), divide the
divisor and dividend by 2 sovas to obtain a divisor of 17
whoéé last digit has 3 as a multiplicative inverse. He
would haQe té use the usual méthod of dividing by 2, EOWf
ever, since 2 itself has noﬂmultipliéative-iﬁverse in

i10-arithmetic.
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Another difficulty which might be encountered is that
the divisor may not divide into the dividend an integral
number of times. Thig is illustrated by the next example.

71

13137
3
-2

21

This array indicates that the next step is to subtract 21
from 1, or more precisely, 210 from 10 leaving a remainder
of -200. It is perhaés not too surprising that 13 is in-
deed equal to 3.71+(-200).

The previous example is now continued by actually per-
forming the succeeding subtractions and divisions; In this
extended array -2 is written as -10+8 using the notation 18

-66671
13 |3’
3
1
21

is
18
Ts
18
is

If 134+3= ,,.66671 then this qdotient must obviously
be a “different kind of number." The plausibility of
..+.66671 as the quotient of 13+ 3 might be enhanced some-

what if ...66671 x 3=13. The following array indicates
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that this appears to be true in a certain sense.

ees66671
x 3
LI I 1 00013

The new kind of number whichzwas encounterqd in the
above problem will be called é 10-adic numbgr. More
generally, if m is used as a base, then a number with an
infinite number.of'digits to the left of the decimal will be
called an m-adic number.

If h is a whole number with base ten representation
akak_l-=-a2al , then one could associate n with the 10-
adic number °"°°°akak¥1”'azal' thereby obtaining a one-~-
to-one correspondence between the whole numbers and a certain
subset of the 10-adic¢ numbers. Any whole number greater
than 1 couléwbe used as the base, but there is some ad-
vantage in using a prime base. There could, for example,
"be no difficulty encountered in dividing one integer by
anothér using ﬁhe above method if both were expressed in
‘the prime base p, since multiplicative inverses always exist
in p~arithmetic. Dynkin and Uspenskii (4) give an added
reason for considering a prime base by showiné that there
exists a non-zero l0-adic number with no multiplicative in-
verse.

A prime base, p, is used almost exclusively in the

following chapter and the associated p~adic numbers are
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developed as a completion of the rational field. Following
theilr development is a brief discussion of some of their

most important properties.



CHAPTER IXI

VALUATIONS

P

Thevreal numbers are often developed from the rational
numbers through the use of Cauchy sequence of rationals.
Such, for example, is thé method used in The Number System
by Thurston (12). Ih questipns concerning cpnvergence of
these sequences, the metric, @, defined by d(a,b)=|é-b! is
employed. One of the primary objectives of this chapter
is to show that one cam employ a different metric and obtain
an entirely different completion of the rational field.
Valuations are introduced as a first step in this endeavor.
Definition 1. A valuation of a field, F, 1s a function ﬁ
from F to the real figld; R, such that the following prop-
erties hold,

(1) vagF, f(a)20 and g(a)=0 if and only if a=0.

(2) vaeF, and vbeF, ¢(ab)=¢(a)-¢(h). |

(3) (Triangle inequality) va&F and ¥weF, f(a+b)

<@ (a) +§ (b) . |
The following additional properties of a valuation

follow rather easily from the above definition.

23
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(1) g(¥)=1
(2) waeF, p(-a)= $(a)
(3) waeF and ybeF, |f(a)- @) < ¢ (a?p).

(4) wvaeF and yb ¢F, b#0, ¢(2____ g(a)
b/ ¢(b)

Hereafter this paper will bé concérned solely with
valuations of the rational'field, Q. It will be established
that every valuation of the field, Q, is one of the following
four types of valuations.

(1) Absolute value (denoted»hereafter bytl).

(2) ||¢ where & is a real number such that 0<€ & s],

(3) The trivial valuation §:Q—R such that ¢ (0)=0 and

g(a)=1 if a#0.
. (4) A p-adic valuation which will be defined below.

The reader will be able to agree easily that (1) and
(3) are indeed valuations of Q. Both (2) and (4) will be
investigated in this paper.

It is readily apparent that lf‘possesses properties
(1) and (2) of Definition 1. That ya¢Q and VYb€Q, la+bl°<‘.-
|af’ + \bris perhaps not quite as clear unless a=0 or b=0,
but can be established through the following sequence of

observations under the assumption that i1al ¢ |bl #0.

|a+b|°‘s (la\ + lbl)q

[Ib! (.}_L +1)]

"Il )
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<|bl™ ( jaj  +1
Ibl

<|b|™ [{_@Lqﬂ]
| Liml
=\b_\°" (Eﬁ +1)

L b1
=1a1%+ 16~

It should be observed that the assumption jal<|bl #0
is not really restricti&e since there is complete symmetry
in a and b and if a=0 or b=0, the inequality |a+bf§lafx +|bT¥
holds trivially. Hencel?(is a valuation of Q.

An important preliminary to the definition of a p-adic
valuation is the observation that if p iéﬁé fixed prime and
q is a nonzero rational number, then there exist integers
n, a, and b such that p}a, ptb, and q=p”:_a . The expres-
sion pn-g,will be called a p—representatioz of q.

Altiough a p-representation of g is not unigue without

further restrictions on a and b, the intéger n in any
p-representation of q will be unique.
Definitipn 2" If p is a given prime number and & is a fixed
real number such that 0<&«<1l, the function ¢p:Q-—->R defined
as follows will be called a p~adic valuation of Q.

(1) 4, (0)=0

(2) 1f g#0, ﬂé(q)=e? where n is the exponent of p in

a p-representation of q.

It is apparent that the function ¢p of the preceding
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definition has the first property stipulated by Definition 1.

If either g=0 or r=0 it is equally apparent that |

g (qr)=§ (q)~¢ (r) and that § (q+r)£¢ (q)+ # (r). If both

P p P P P P

- a and b are non-zero rational numbers with p-representations

q=p"°a and r=pm'g .‘then g-r=p"*™M.ac . Furthermore, p fac
b d _ ' bd

and p {bd. Therefore, ﬁp(q'r)=o¢“+m=ogn 'o(m=¢p(q)°¢-p(r).v If

¢p (q)#¢p(r) it may be assumed without loss of generality that

¢p (q) < ¢p (r) or equivalently that nd>m, then q+r=gnadrg'"bc
. bd

=p" p" "ad+be and since p diviﬁes neither bd nor (p" ™ad+bc),
¢1(:q+r)=:gl=¢p(r)=max [¢1()q), ¢r(’r)] . If ﬁp(q)=¢p(r)=°‘n then
¢p(q+r)= otk. kan, if qb-r; if g=-r, ¢p(q+r)=0. In any event,
the above results may be summarized in the inequality
¢p (q+r) ¢ max [ﬂ‘p(q). ¢p(r)] , which in turn implies the
triangle inequality. Thus it has been shown that ﬁp is a
valuation of Q.
Definition 3. A valuation ﬁ for which #(q+r) ¢ max [lf(q) ,ﬁ(r)]
is gaid to be a non-Archimedian valuation.

A complete description of all possible valuations of
the rational field Q is contained in the following theorem
which is taken with some modification from Number Theory by
Borevich and Shafarevich (2).
Theorem 1. (Ostrowski's Thgorem). Every non-trivial valuation
of the field of rational numbers is of the form | ldwith

0K $ 1 or is a p-adic valuation for some prime number, p.
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Proof: If f is a non-trivial valuation of the field Q, then
for every natural number, n, ﬂ(n)s 1 or else there exists
a nétura]_. number m>» 1 such that {6(1‘1\) >1.

If the iatter case holds, there must exist a feél number,
X, 0<x<]l such that

| #m)=m

since in all cases |

f(n)=F(1+1+-+ +1) € F(1) +F (1) +- - - +f (1) =n,

Any arbitrary natural number N may be represented as a

polynomial in m with integral coefficients as follows.

N=a +a_m+a m>+ --+a__ m< L
0 1 2 k-1

X
with O ¢a ¢ m-1 for 0¢ i k-1 and m"-1¢ Nem .
1 v

Thus
- = 204 (k=1)
‘¢(N)s¢(a0)+¢(al)m +¢(a2)m Fooet ¢(ak_l)m

and since ¢(a_) sais m-1, 0¢i¢k-1
i _ :

g(N) & (m=1) (14> m2™ e -+m.(k"1)°‘)

= (m—l)n&“‘-l
-1
< (m-l)!ﬁf:___

ﬁx-l

=(m=1)m"" (k-1)0¢

-1

< (m—l)m“ Nﬁ( =CN.°<
me1

 where C is a constant independent of N. If t is any natural

number, then



28

[ () ] E=g(nt) g ot
whence ¢ () < en
and upon letting t—00 it folleows that
gang n=.
On the other hand since mk”ls, N<mk thefe exists an

integer b with 04 bg mk-mk‘ such that N--mk-»b. Consequently,

g () = (mK-b) 2 # (") -4 (b)

= [ﬂ (m)] k~¢ (b)
(o §
But P(b) €b ¢ (mk-emk"l)“ . Hence

g 2 m®Ke @kon

= ot [mk(l-%)]‘°<
= [1--1% K
m

2 [i-a-L )]"‘u°<

-4

= Cquwhere Cl ig independent

of N,

CQnsequéntly, if t is an arbitrary natural number,

o] s=pwr=c ¥°* ana ganz Ve n .

By letting t tend to infinity it follows that
B(N) 2 N%,
Therefore ¢(n)=N°‘ for every natural number, N.

For any rational number, q, there exist natural

N
numbers N. and N such that g= —:E—l-» .
1 2 N,
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&
Hence f(q) =é(m.l) =AM N1 . q.
A,) gw,) nX

Consequently, if there is one natural number, m, such that
¢(m) >1 then ¢=| Idfor some A with 04€],

There remains now the case in which ¢(n) €1 for every
natural number n. In this case there must exist some prime
number p such that ¢(p)<~1’for if ¢(p)=1 for every prime
number, p, then ¢(n)=1 for every non-zero integer and hence
for every non-zero rational number. This would, however,
contradict the assumption that ¢ is‘n'on--triviala

If there also exists a prime gp with $(g)< 1 then

integers k and d may be found such that

[#e)] “<1/2 ana [$0)] < 12,

Since (pqud)

rpk+sqd=l. Hence

=1 there exist integers r and s such that

1=¢ (1)=f (rp"+sq%) < p(x) ¢ (pk> (51§ (aD
£ 1:9(p5)+1- 9 (qd) < 1/2+1/2=1
This contradiction points out that there can be only one
prime; p; for which $(p) <1 and that $(q)=1 for evefy other
prime number, q. As a result @(n)=1 for every integer, n,
such that (n,p)=1. Therefore; if r is any non-zero raﬁienal

m
number with p-representation r=p then

o o
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piry=p ™ - L) =p)™. Lol
¢ (p) 1

and @ is thus a p-adic valuation of Q. It has consejuently
been established that every valuation of Q is of the form
||°‘with 0 ¢1 or is else a p-adic valuation for some prime,

<
Metrics

Definition 4. A metric on a set, S, is a function d:SxS—3R
with the following propertieso-

{a) vxeS and wyeS, d(x,y) 20 and é(x,y)=0 if and only

if x=y.
(b) w¥xeS and ¥y e S, di{x,y)=d(y.x).
(c) (Triangle inequality) vx&S,vy €S, and ‘Yzeg,
d(x,z) ¢d(x,y)+d(y.2z).

Theorem 2. Any valuation of a field, F, induces a metric
on F,
Proof: Let @ be a valuation of the field F and define
d¢:FxF--—)R as follows: v(x,y)veFxF, d¢(x,y)=¢(x-y). That
d¢ has properties (a) and (b) of Definition 4 is immediately
apparent, Property {(c) £ollows rather easily since:
ag (x,2) = (x=z) =g [ (x=y)+{y-2)& ¢ (x~y)+§ (y=2)=ay (x,y) +dg (v, 2)
Consequently, d is a metric on FxF,

p

If § is a non-Archimedean valuation, then the associated

metric, d¢, has the property that d¢ (x,2) & max_[d¢ (x,y) ,d¢(y,z)].
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Such a metric will be said to have the ultra~metric property

and will be called a non-Archimedean metric.
P-adic Numbers

Definition 5. A sequence (xn} of elements of a field, F,

is said to converge to the element aé€ F in the metric, 4,

if and only if for every real €>0 there exists a positive

integer N, such that for all n>N, d(x ,a)< €. That {xn'}

converges to a will be denoted by {xn @ or by lim xn=a°
n—>C0

Definition 6. A sequence {x&}_is called a Cauchy sequence

with respect to the metric, d, if and only if for every real

€% 0 there exists a positive integef, N, such that

d(xm,xnke whenever m» N and n3» N.

Definition 7. A field F is said to be Complete with respect

to the metric, d, if and only if every Cauchy seéuence‘in F

converges.in the metric, d, to an element of F.

Theorem 2. A sequence gxn\ converges in the metric, d, to

at most one limit.

Proof: If {xn}-;r and {xn‘}-—;s with r¥s then if €=1/3d(r,s)

there exist Nl and N2 such that for all n>N1 d(xh,r)(&

and for }all ny Nzxd(xn,s)ge . Therefore, if n>max (Nl'NZ)

then d(xn,r)+d(xn,é)< 2€ =2/3 d(;,s).. But d(;,s)ﬁ;d(xn,r)

+d(x ,s)42/3 d(r,s) which is impossible. Consequently,
. n .
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{x } converges to at most one limit.
n

It is a well known fact that the rational field, Q,
is not complete with respect to the absolute value metric.

This is established for example, in The Structure of the

Real Number System by Cohen and Ehrlich (3). The following

example from Borevich and Shafarevich (2) shows that it is
also possible to construct Cauchy sequences of rational
numbers with respect to a p-adic metric which do not converge
to a rational number. This is accomplished by inductively
constructing solutions to the congruences

<2

= 2 mod 7V.

/
If n=1 the congruence has the solution
X =3 mod 7,
0

Assuming now that xk is a solution to
xzz 2 mod 7k
where k is an arbitrary positive integer, a solution to

x2§ 2 mod 7k+l

may be constructed by observing that any solution, x , of
k

the latter congruence must also be a solution of
2
X =2 mod 7 .
This suggests that one look for solutions of the form
k

X =X +t*7
k k-1

Then the task is to find t satisfying the following



congruences.
2 k 2 k1
x =(x +te7 ) =E:2 mod 7
k k-1 :
2 k 2_2k k+1
X +2x t*7 4+t 7 =2 mod 7
k-1 k-1
2 k k+1
X ~242% t*7 =0 mod 7
- - k=1
2 k
M+ = ; -2 =M°
2xk—lt 0 mod 7 with xk_ 7
2x t2-M mod 7.
k-
2 " 2
Since x =2 mod 7" it follows that x, ;22 mod 7. Hence,
(2xk_l,7)=1 and there exists an integer, t, such that
t-2x E—M mod 7.
k-1

| +t°7k is a solution. of

Ther , =
erefore xk xk—l

2
X =22 mod 7k+l

and a seguence {k } has been ¢onstructed inductively such
n

that

2 +
x =2 moa 7™
and n

x mod 7n .
n n-1

X

il

2 + '
Thus, in the 7-adic metric, d(xn ,2)% O?Wiq——eo as n——>0

and if m € n, d(x ,x )¢ qmd-l. Consequently, {x } is a Cauchy
v m n : 'n
seguence converging to \VZ, and Q is not complete in the

7-adic metric.

The previous example prompts one to attempt an embedding
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of the rational field, Q, in a field which is complete in
the p-adic metric, This can be accomplished through the
following steps which differ very little from the usual
steps in completing the rational field.

Let the set of all Cauchy sequences of Q (with respect
to the p-adic metric, § ) be denoted by Q', and define addi-

p .
tion and multiplication in Q' as follows: if X = {x } and
n

= {y } then X+y= {x +y and R-y= {x vy } .
n n n

Theorem 3, If (x }e Q' then {¢ (x )} is bounded in R.
n n

Proof: There exists N such that for all m, n> N,

¢ (x)¢(x)<¢ (x -=x ) <1l. Hence for a fixed n, > N
P m n 0

Qi {x )41+¢ (x, ) for every m>N. Therefore, for every n,
m 0

¢ (X )4max(¢ (X J ¢ (X Y, = s . (x),1+4 (x )} and
P n P no
{@3 (X )} is bounded in R.

Theorem 4. If %= {xn] €Q' and §={yn}eQ“ then x+y €Q° and

£-veqQ'.

Proof: xe Q' implies that for evéfy € > 0 there exists Nl

such that m, n > N implies that g (y -y )< € while y€Q'
, 1 P m n 2

implies that for every € > 0 there exists N2 such that m, n>N2

implies that § (y ~y ) . € . Therefore if m, n>»max(N ,N )
P m'n 2 - 1 2

then

g [(x+y )-(x+y )] =¢ [(x -x )+y -y )]
% m m n n p m n m n
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$f (x x )4 (y y)
P m D 'p om0

<L+ £ =€,
T T2
Hence X+y €Q'. |

In considering the product X'y let B']; be an -uppér bound
of {ﬂ (x )] ~and let 82 be an upper bound of {v (Y ) .

Since ¥ 60' there ex!.st N and N such t‘hat [ (xm-x ) ¢ £

1 2 mon " 9p
- | o 72

if m, nP>N and ¢ (y -y ) ¢ __e_ if m, n>N Thus if
‘ 1. P m'M 28, 2
m, n»max (N ,N ) then ‘
‘ 1 2_

Xy -x )= Xy X >y -x
¢ (Y xy ¢ [y RACER myn R

5 fp [xm(ym y ) (xm x )y ]
4P (x )P (y -y )+ (e -x )f (y )
pmpmn p ™ n poan

«<B' & + € B
-1 znl - 2B 2

St 6.
R .
Thérefor_e.. .i‘v,f iGQ" and §‘§Q' then i-;lQ".
A relation, R, 1- now doﬂnéd‘on Q'x%Q" as follows:
.if x= (x '}EQ' and y= {y }eQ‘. ny if and only i.! for every
€>0 there exiata N auch that £ox- all n> N. ﬁ (x -y )<£

The relation. R. posseasee the followmg propertiea.
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(1) (Refle:tlve) For every XxeQ', ;R;.
(2) (Symmetric) If‘xay then'ny.
(3) (Transitive) If ny and yR; then ;R;.
The first two properties are immediate consequences of the
definition of R. To eatablish}thevttansitive property let
¢ be an arbitrary positiVe'real number; then there exist

N and N such that if n> N .¢ (x -y )¢ € and if n > N
1 2 1 p n n 2

¢ (y -z Yee . Hence. if n>max (N ,N ), then¢ (x ~z ) ¢
l 2. p " n

max [¢ (x ,y ), ¢ (y ¥ ] )]<€ and it follows that sz. The

p
relation, R. is therefore an equivalence relation on Q' XQ'
Deflnltlon 8. p—adlc number is an equlvalence class with
respect to the equlvalence relatlon, R, deflned above.

If the set of p- adic numbers is denoted by Q then from

p
the deflnltxon of a p-adic number it follows that Q - is the

P
factor set Q'/R. _
Definition Qg If {xhlgof the equivalenca.clasé in.Qp

containihg {xn] is denoted by (!3) .

Definition 10, If och_}’ and p'_eQ,' let {x } .be a sequence in
| P P n |

o and let ‘y } be a sequence in p &t+pg and B are then

’ n o . ' .

defined by the equatiohs:
a d+"= X
(a) A {n'*'yn}

(b) & p = {’%'?n



There arises immediately the natural question of whether
the sum and product just defined are independent of the
choice of sequences chosen to represent & and p. This can
be answered in the affirmative by taking other representatives

{xn'} and {y '} of stand g cespectively. Then, if €>0 there
0t C

exists N such that if n>N, (x =x* )_€_ and (y -y* )¢ € .
. ¢Pn n<2 ¢pynyn<2

Therefore, if n®» N

¢p [ (xn.{.yn)_ (X'n"'Y'n)] =95]_:) [(Xn"x.n) +(yn-y.n)]
< oy ! [ T
N ¢P (}‘n x n) ’¢p(y n y Il)

¢Et+E =€,
‘2 2 -

Hence {xn+y!3 =§x'n+y'n} , and addition in Q is well-
P

deflned.
By Theorem 3, {ﬂ (y )} and {¢ (x' )} are bounded in R.
P n P n

Let Bl and B respectively be upper bounds of {# (y )}
2 P n

and {¢ (x'n)} . Then, for €>0, there exists N such that
P

for every n > N, (x -x' ) € and g (y -y' ). _€ .
d M fp <2 ¢P n n <3p
1 2

Consequently,
Xy =x'y' )=f (xy -x'y+x'y-x'"y')
§ Gy -xtoy' = lxy exty ety oyt

$P (x =x' ) B (y )+ (x' )P (y -y
P n n P n P n P n
é€ B + €B =¢.
2B 1 2B 2

1 2

57

‘)
n
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Thus {x =x' yv' , and myltiplication in Q is well-
{nyn} { n' n} ? p
defined.
As direct consequences of the preceding definitions, it
follows that addition and multiplication in Q are both
S
commutative and associative and that multiplication is
distributive with respect to addition. Furthermore, {O}
and {l} are respectively additive and multiplicative
identities in Qp. Since ¢p(r)ﬂ¢P(—r) for every r €Q, it
follows that if {xn]is Cauchy in the pradic metric, d , then
_ p
~-x } is also Cauchy in d . Therefore if {x then
{ n} , Cauchy o h { ﬁ}ng the
(“Xn3 er and {xﬁ} + {—xﬁk = T0J. Consequently, if it can
be shown that Q contains a multiplicative inverse for each
p
element {X'} ] TUT, then it will have been established that
n '
Q 1is itself a field. This is accomplished in the three

b
succeeding theorems.

Theorem 5. If {x '} €Q' but {x 1¢i0'§ ., then there exists a
———— n n.
real number, k, and a natural number, N, such that
§ (x ) zk for all n>N.
p n
Proof: Assume, to the contrary, that for every real number,
k, and for every N there exists s >N such that § (x) < k.
P
Since {x } ¢ Q' then for an arbitrary €>0 there exists Nl
n S
such that if m,n>N_ then § (x -x:V¢¢&. Thus if N=N_,
1l p m n 1
X =X )¢€ for every m>»N_ . But, since (x )-0 (x ) <
Po b, YR Py ) Py %
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$ (x +x )<e then @# (x e f (x ) +é<k+€ for all m» N. As both
p M s P o m P S

k and € are completely arbitary, this would require that
{xl}eio}‘ contrary to the stated hypothesis. The

existence of k and N such that ¢p (xn) 2k for every n>N is
thus established. |

Theorem 6. If{x }¢Q and [x1# {0} then the sequence } v

such that y =0 if xn=0 and y = 1 if x #0 is a Cauchy
n x . '

n n

sequence in the p-adic metric.

Proof: Since {"i—} # {0}, then by Theorem 5 there exist X,
Proof n ' _

N such that for every n>Nl, $ (x )2k. Also, since {x }
1 ' ‘ n

p n
is a Cauchy sequence, then for any €>0 there exists N such
v | 5
: 2
that for allm, n>N , § (x -x )¢<€-k . Therefore, if
-2 p M n

Nr-max(Nl,N ) and m, n»N then

2
P = . —.;-]-;.;
¢p(ym y) '¢P(._j - - )

]
1

m Xn

=I¢Q(*n6xm)

¢p (x ) ¢p (xn)

< EP..(.x_n.:.}f..“ll

2 —d
£k =

e €

x2
and it follows that {yn} is a Cauchy sequence.
The two preceding theorems yield the following as an

immediate result.
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Theorem 7. If ?E;}g Q and ?;ﬂ}# ?6? then there exists
g 'Y n

(v oy muen wmee 3} - {37} = 1

Proof: Let {y‘}be the sequence defined in Theorem 6.
n

Since there exist k and N, by Theorem 5, such that for all

n>N, § (x )2k, then for all n>N, y = _1_ and x y =1.
b ¥n y 7 ot _

Thu; {XA} :gyg} =§xney:} = {1} .

By identifying the rational number r with the Cauchy

saquence {r]'=={r, r, r,-o-} one establishes an ismorphism

between the rational field, Q, and that subset of Q consist-
p.
ing of all equivalence classes of the form (f}where ré€on.

Since ra’ p-adic number is an equivalence class in

Q , it may be represented by any sequence in the eguivalence
p

class. Probably the most useful representation is described
in the following theorem.
Theorem 8., Every p=adic number may be represented by

n .
- . i
o Ey } where k is a non-negative integer and y =:E; ap
n ' n | 0 1
l=
with 0€a & p for every i. (Note: This is equiyalent to
i
saying that every p-adic number may be represented by a
oo . o0 ]
power series Z a,pl where E aipl is the p-adic limit
i=m 1 i1=m 4 i
of the sequence of partial suyms S:a,p }.)
Ci=m T
Proof: Long (7) proves on page 17 that every positive in-

teger, X, can be uniquely represented in the form

m .

i
x= 2 b p where 04b <p, i=0, 1, - - -, m. If {Y-} ke
i=o 1 i | n
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i = £ bp' for nem and Loppt
defined by Y& 2 ip or n€m an yn_ ;E: iP
i=0 i=0
n i :
+ E - 0-p” for n>m, then x is the p-adic limit of
i=m+
(o) .
l ]
{y } , and x may be represented by x= 2> _ a p with
n i

0

i=0

a,=b , i=0, 1, ¢ *, m and ai=0 for i »>m. The required
1 1

representation is therefore possible for non-negative
integers.
If z is a negative integer, then z=-x where

i
R= E b p . Since z+x=0, it follows that
; i

z=(p~b )+Z (p=b ~l)p = Z c.p ., O¢cep.
0 i=1 1 i=0 1 i
Anyinteger may therefore be represented by a sequence{yg}
e i

n_ - i
where y = 2_ a.p or by a power series ;E: a p with
n i=0 1 i=0 i

0¢a¢p for every i.
lv

A rational number r= —§~u where a and b are integers
with b >0 and such that ptb, may thus be represented by a
=2] .
_ i i
quotient :E: a.p //;f: b.pl where a, and b are integers
1=0 1 i=0 i 3 i

with OSai<p. Osb «p, and b #0. Since b0=l=0, there exists
i 0

an integer, xo, with Oéx{.p, such that box =a mod p

0] 0] 0
and one may write )
Y S a i-x + - Db *
2 2P X, ‘?n—-._ iP
_ 4 oi=1 ] i=0 °
r—xo- ; R ‘
o0 . .
1 1 n 1
In this representation, :E: a.p -x 2. b.p is an
1=0 i 0 i=0 i

integer since it is the difference of two integers.



=]
i i )
Furthermore, p is a factor of-z ap -x E b_pl since
c— - i

since p |(a -b x ). Thus,
0O 00

= 1=0 , mD&C. .
r=X ,ip SE—— AR A %

Similarly

oo n
i :
Z c.p -xl =0b P
r=x +p [ x + 130 __ - el }
n i
, b p
o0
E:: i
- a.p
=x +x p+p2 i=0 = .
0 1 n i
i=0 bip!
Continuing inductively one may write
+ P
r=x +x p+x p2+°°°+x P ' %""""‘W"“""’"—‘Sl :
01 2 - b.p'
1=

Thus r is the p-adic limit of the sequence,{y } where
pr.

If r is a rational number of the form r=p.’k a where

‘b
pta and pib then by the above result pXr is the p-adic
: n :
limit of a sequence {y } where y = E a pl, 0Oca < p.
" n §5 4 i

. -k
Therefore r is the p-adic limit of the sequence {? yn}
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:p*%y%. Congequently, any rational number, ¥, may be

represented in p-adic form as
o0

r~Z P

1=m

Finally, consider on arbitrary p-adic number o(:(x;].

Since {x } is a Cauchy sequence, then for every €>0 there
n I

exists N such that for allm, n>N , § (x -x )¢ €. Since
1 1 P m n

xm and Xn are rational numbers, there exist natural numbers,

N2 and N , and non~negative integers a, and b with O<a <p
3 i i

and 0¢b < p such that for every s> N and for every t>N3

¢(x-z ap)-’-eandﬁ(x—ibp). Now

i L 3 i
- b ) - 5T,
At § P T Zp Byp g max [¢P (x,~ = ap’)

t J
( - ’ ( - B b )
%o Cn ) ﬁ? “n Eé% 3 ]

if s, t, m, n>»max (Nl'NZ'NB)' and this requires that a =b
1 3

for every i. If this is not the case, then let r be the

first index for which araﬁb . whence (a =b ,p)=1 and
r r Y

r+l ‘

r t
¢ _b p +(a -.b p E LN _b p = Cc> (). Thl]
p [(ar .r) { I,.‘+-l) | ' (at t) ] ®

r+l

. ' S i t -
if e<c, it is not possible for ¢ ( Z T a,p - E b.pa) to
} | Pli=k ¢ j=n

be less than € unless ai=b_ for every i. Therefore,
i
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i
and may be represented by p"k{yn} or by a.p where k

1=m

n .
. 1
is a non=negative integer and y =§’ aip with O0<a ¢ p.
n ,

i=0 - i
The representation of a p-adic pumber as an infinite
00 i
series, 2:: a p , is entirely analogous to the representa-
i=m i oo '
tion of a real number in the form ;E: b 10”1, Both series
i=m i

are automatigcally convergent in the Cauchy sense, but con-
vergent in different metrics.
Definition 11. If a p-adic pumber is represented by an

(2,)
‘ 1
infinite series Z aip with Osaigp, it is said to be

i=m
written in canonical form,

Both the real numbers and the p-adic numbers are devel-
oped as equivalence classes of Cauchy sequences of rational
numbers. There is no difference at all in the method of
development except that the absolute value metric is used
in the development of the reals, and a p-adic metric is
used in the development of the pradic numbers, Moreover,
Ostréwski'g theorem implies tha£ there are no other types
of completions of the rational field since every valuation
of the rational field is either a pradic valuation or is
of the fgrmlluwith 0<% sl., It is, in fact, rather easy
to establish that a sequence converges with respect tolle(

'if and only if it converges with respect to I1. similarly,

one may establish that the p-adic limit of a sequence is
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‘independent of the choice of o O‘<0<<1, in the definition
of the p-adic metric.

Although the types of completions of the rational field
are rather severely limited, the number of completions is
still infinite. This assertion will be established in the
concluding chapter by showing that if p and q are primes
with p#q then Qp is not lsomorphic to Qy and that no Q is

isomorphic to R,



CHAPTER IV
' THE P-ADIC FIELDS

For a given primé number, p, the'p-adic field Op was
deve1§ped in the iast chapter as the completion of the
rational field. Q, with respect to a p-adic metric. No
‘observation was made, however, regarding the completeness
of Qp itself, Before one can make any meaningful state-'
ment concerning the completeness of Qp. he must} of course,
havg a metric defined on prQp. The natural extension of
the p-adic‘megric on QxQ to prop is contained in the
following definition. | | |
Definition 1. If %eQ  and geQ . let {x,}ex and {yn'}e,e-
The function d;prQ‘-———-'-)R defined by d(e’(,p‘-= lim ¢éxn-yn)

p n—o0o
will be called a p-adic metric on Qp.

Since the function, 4, is defined on ordered pairs of
equivalence clasaés,‘it should in no way depend upon the
representatives of‘the equivéience classes,’ To show that
4 is well-defined, one has only to consider other represent-
atives, {xn] and {y n} of o and grespectively.

Since

¢p (x -y n)=¢p(x p~Xn ¥ Y Y oY )

46
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’C‘ vz b a3 P {1 S , weiy ¥ .
£ mas [¢p(xn n) Ap(Xn Yn) ¢p<yn ]
and
)
X - = X X' A" eyt by -~
h ) ¢p( e SR AR

Z « I ] - 1 L.

< max [¢p(xn x n),dp(x n~Y n)'¢p(yn Yn)l :
it follows that

lim ¢ (xé—yé)s lim § (x -y,)

n—o° P n—ooco P n
and

lim (x -y J¢ lim (x'=y')

n..,gq-pp n yn n-—-»o0 '¢p n y1'1
because

lim X -x )= lim ~y )=0
g, (x x ) P, v,
n-300 n-s 0O

Thus the function, d, is independent of the choice of re-
presentatives of the equivalence c¢lasses. Obviously,
d(o(.,B ) 20 and d(o(,ﬁ )=0 only if o(:ﬁ; also, d(o(,ﬁ)

==d(/9 ,X). To establish the triangle inequality, let o,

p .‘)(er and let {xn'}eo(, {yn}ep . andgzn}e'f; since
¢p'(xn-zn) < ¢p (x =y,) +¢p (y -z )
for every n, then by taking limits as n—00 one obtains
dle . ¥)éd(eX, @) +d(g. 7).
Consequently, d is indeed a metric on)Q xQ . Furthermore,
on that subfield of Qp which is isomorphicpto Q, d corres~-

ponds to the original p-adic metric which was defined on

0xQ in the previous chapter.
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Theorem 1, Q 1is complete with respect to the metric d of
the precedingpde-finit_ion,
Proof: Let{o(n} be a Cauchy sequence in Q. If€>0 there
exists N such that 4(o, o<n)< € for every m, n>N. Let
m be represented by gxi (m)} and 0;1 be represented by
{xi(n)} where the superscripts, (m) and (n), are simply
identification labels rather than exponents.

Since {xi (m)} is a Cauchy sequence in Q for every m,

there exists an intéger jn such  that for every i >jn'

¢P (xi (m)-—_x (n,‘) e L. . Let Y denote the sequence

J
(2) " @w)" Ty
{x.(l) X . RERRS'S o e e and 1et {X° n} be the
Ji 32 Jn In

equivalence class determined by the “constant sequence

{xjgm KW } Then

n jn Jn

my\ .. (n) {(n) |
dlee ,1x. = lim (x., "=-x., ) 1l .
(n { In } j—>oo¢P J In < n

) _m)_(( (n) T (m)
g (x. ' -x] )-d({x‘ } . {x.
P In  Im- In I | -
| frd({sznj.} ,een) +d(o<n.o<m)+d(c><m,{jm

(Lo taled o) + 1
n m

Hence

Therefore, given €20, by requiring that N be large enough

so that for every n, m>N, _1_, _€ , d{s , X)) ¢ 3
' : n 3 m n 3

RS

RIS



and _1_ . _E€ . one has
mol ) (w)
1 m
¢ CIS
in jm

Thus ¥/ is a Cauchy segquence in Q. The equivalence class

JCE .
containing ¥ will be denoted by Y .
If €>0, then, since ¥ is a Cauchy sequence, there

exists N such that for every n>N, ﬁf (x ),- (N))

-mwﬁT-' N
Thus d.(#, {xj' }) = lim # (x}m) (g)) < _ém, and, there-
N 2

n—so0 P “m Iy

o ) ) )
o1 5T+

<é+e=
2 2

< -£_ -
2

fore,

d("\/0<)<d

whenever n > max [N, m_2“m]° Consequently, -"7 = llmo< , and
n—»00 n
Q is complete.
p
Since the number of primes is infinite, one may quite
naturally ask if this implies that the number of comple-
tions of the rational field is infinite. The theorem
which follows gives an affirmative answer.
Theorem 2. If p and g are distinct primes, then Q is
: ' p
not isomorphic to Qq.
Proof: If-Qp were isomorphic to Qq their additive

identities would have to correspond, The additive

identity of Q may be represented by {x } where x =pn,
P n n
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but if g#p then ¢q(xn%6§m¢é(pn)mla Hence {Xn} is not a
representative Qf the additive identity of Qp, and, con-
sequently, Qp is not isomorphic to Qq°

Using exactly the same. type of argument as above, one
obtains . |
Theorem 3. The real field is not isomorphic to Qp for any
prime, p.

In the previbus chapter it was established that every
p—-adic number could be represented as an infinite series,

o0 . R :
E' aipl, just as every real number may be represented

i=m
as a convergent series Of powers of 10. The aﬁalogy ex—

tends much farther than this, however, as evidenced by the
following theorem from Bachman (1).

Theorem 4. A p-adic number, @ , is a rational number if
and only if its canonical expansion is periodic.

Proof: Suppose the canonical expansion of & is periodic;
then & may be written as

m m+1 _mtk
(=4 .=amp +am+1p +ooe +am+kp

m+k+2

+blpm+k+l+b2p . m+k+]

> +b
5P

+b pm+k+j+1+ .. .pm+k+2]

do oo
m

= + LI
P (am am+lp am
+pm+k+l(bl+b2p+ea.+bjpj-l)

+pmtk+]+1 (b #b_p- - +bjp3'1)
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+o - )
m+k+1 j 27
—pTa+p” B (14p74p 4e )
where
=a +a P+---+a pk
- m m+L m+k
and
B=b_+b, p+.°°+b pJ -1
172 )
Consequently,
o =pMa+p™tktly 1 |
1-pJ

Thus o¢ is the sum o,f\ two rational numbers and is therefore
rational. & |

Conversely, if Otls a non-zero rational number, one
may write & =pnp whefepa% with a and b integers such

that pta and ptb. There then exists, by the Euler-Fermat

theorem, an integer j such that pJEI mod b. Thus

p = a = agEj-l)
b b(pl-1)

where b | (pJ-"l) « Hence

oc-p B-p Tjti ‘

where t is an J.nteger? Furthermore t 20 ‘if and ohly if
01>0

o -
Let an integer, k, be chosen such that OSt/.p if

x 20 or —pk+1 <t¢0 if 0(40.,' Since (pk+l -1) =1, there
exists by Theorem 9 of Chapter II, a unique solution

(mod pr-1) of



&%
B

pk"’”lox -t mod (pl-1).

Choose a solution, B, such that

0<Bepl-2 if 20 and 1¢B<p -1 if x<O0.

1

+ j , .
Since pk B=-t mod (pj -1), there exists an integer A such

j . k+1
that t=A (pj-l)-'BpkH . Furthermore, 0£2£A<p whether
%20 or &0, for if 20 then

k k+1

oa (p?-1) - ¢ p
and
04B ¢ pj-z.

Whence
1

: 3 +
AfpI-1) 2A(pI-1)-Bp" 20
And it follows that A20. Also

i j + k+1
a(pl-1)-(p7-2)p" ¢ p

f 1 1
apd-1)¢ [(p'-2341] p*"

a(p’-1) < (pi-1)pk*!

and hence A ¢ pk+l=

In a similar manner one can establish that if X<0, it

is still true that 0$%A< pk+l. Consequently,

o =pn A(pj"-l)‘ __Bpk+l
pi-1
where 0<€ A <pk+1, 04B¢ pj--le Thus

154 =pnA+p

r_ 3
where A = ZO aipl and B= bip .
1= =
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X , j—1
n Y i ntktl 2 i &2 mj
Hence o=p a p tp Z:Ob-p E p
L
i=0 % 1= -

n n+l +r
Te) A= a + +e e n
r OP QlP fTarP

+pn+_k+l j'l’l)

b_+b p+...4b P
( 01 j~l
n+k+j+1 c e
1p j (b0+blp+ +bj

poRHRH2IHL
P (bo blp j

+--o

R ¢! n+l
X=a p+a;o

+b0pn 'lTk +1 '+b p

¥

ntk+q+2
¥ +
*b)p

+n * o +a pn+r
r

nik+2 n+k+j

...+bj-1p

I A +k+27
+b0pn+k+3+l n J

toeso,

0--"'b.v
A

Consequently, if o is rational, its canonical p-adic re-
presentation is periodic.

The student of analysis learns early that if a series
oo ,

of real numbers, : U , converges then Y-—3)0 as n—>09.
- n=l n n '

He generally learns, also, by studying the harmonic series

0o 1

z 1 that the converse is npot necessarily true. In

n=l n '

this regard the p~adic numbers furnish a very interesting
contrast.

o0
Theorem 4. A p-adic series E U converges if and only
S &
if U0 as n—0Q,
n o)
Proof: Suppose first that Z Un converges. Then there
_ n=1
exists Nk such that for every m>1:‘1k and for all r 20,
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P\ =R k

s (mi Un)<L )

Thus if r=0, ¢ (U), 1 for every m>N, . Hence U—m0 in
p m &= k n

k o0
the p-adic metric whenever E U converges.
n=1 n

On the other hand if U5*~ao in the p-adic metric, then
for any arbitrary €>Othere exists N such that for every

m>N, § (Um)<€ . Consequently, for every r 20,
P - '

m+y
¢ (Z Un)ﬁMa'x I:‘tp.(um)"Qsp(umﬂ)'.”'¢ © )]46

P\ n=m P mir
ana El U converges by the Cauchy criterion for conver-
n= n

gence in metric spaces.
Summary and Conclusions

In this study the p-adic numbers have been investi-
gated as distinct entities which were worthy of study in
their own‘right, They were developed as a completion of
the field of ratiopal numbers, and it was established that
there was no other completion exéepting the field of real‘
numbers. This study has not investigated any of the appli-
cations of pradic numbers. Any study of their applications,
however, is likely to lead direetly to their relationship
to the theory of numbers and, in partigu1ar, to the theory
of congruences. Borevich and.Sﬁafargvich (2) perhaps

summarize the primary applipations of the p-adic numbers
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when they:assert that in questions of divisibility the
p-adic numbers are just as important as are the real num-
bers in questions of siéea

During the course of this study, many interesting
avenues for further investigation have arisen. There have
appeared questions concerning the geometry_éf p~-adic num-
bers, possible topologies of the p~adic numbers, algebra
and analysis in the p-adic fields, and possible orderings
of the p-adic numbers.

In regard to the latter question, Cohen and Ehrlich (3)
prove that: "Any complete Archimedean ordered field is iso;
moxrphic to the ordered field of real numbers." This, of
course, rules out an Archimedean ordering:of the p-adic
fields.

Mahler (9) in 1940 published a rather extensive article
concerning a geometrical representation of p-adic numbers.
Under his representation scheme a p-adic integer would
correspond to a certain infinite set of points {zA}in the
upper half of the ?omplex plane., To the reader who is in-
terested in the geometry of numbers, Mahlér's article might

serve as a foundatiqn for very fruitful work.
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