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PREFACE 

The serious student of mathematics generally studies 

a systematic development of the real number system either 

as an advanced undergraduate or beginning graduate studento 

The usual approach is to develop the natural numbers from 

the Peano axio~s, tpe integers as equivalence classes of 

ordered pairs of natural numbers, the rational numbers as 

equivalence classes of ordered pairs of ihtegers, and the 

real numbers as equivalence classes of Cauchy sequences of 

rational numberso 
\ 

The primary purpose of this study is to develop 

another type of number systemg the. p-adic numbers, from 

the rational numbers in a manner quite similar to that used 

in developing the reals from the rationals .. A few pf the· 

more important properties of the p-adic numbers are then 

investigated .. 

It is believed that Theorem 8 of Chapter II may con-

stitute an addition tQ the previously known results·con-

cerning solutic;>ns of the congru~mce xnaa mod m. It is 

possible, also, that the proof of Theorem 8 of Chapter III 
. 1. 

concerning the'representation of a p-adic number as a 
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power series may be original with thi~ study. 
·l 
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Troxel, and Norman E. Wilson for their advice and assis~ 
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academic programo Particularly, I wish to thank Dr. Goff 

who as thesis adviser followed this study from its in-
ception and made many helpful suggestionso Special thanks 

are due also to Miss Mattie Sue Cooper, Referenpe Librarian 
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' I 

securing reference mate~ial, to Orion Miller who typed the 

original manuscript, and to Mr~o C~therine Owens who typed 

tne final version. Finally, ·I wish ;to express my very 

deep appreciat,:Lon to my wife, Anna, and to my sons, 

Richard, Jr., Robert, Michael, and Stephen. Neither this 

study nor the ~ork leading to it would have been possible 

without their help and understanding. 

iv 



TABLE OP CONTENTS 

Chapter Page 

I. INTRODUCTION. • • • • .. .. .. • • • • • .. .. .. .. 1 

Organization of the Study • .. • • • 1 
Neeq for Study. • .. • .. • • • .. • • .. • 3 

IIo MODULAR ARITHMETIC . • • .. • .. • 4 

M-adic Numbers. • .. • • 0 • .. .. .. • • • Q 17 

III. VALUATIONS • • • • .. .. • • .. • • .. 23 

Metrics .. • 0 • • 'o • • .. • 30 
P-adic Numbers. • • .. • 0 0 • • • 31 

IV. THE P-ADIC FIELDS. .. • 0 • • 0 • • • • • 0 .. 46 

Summary and Conclusions • 0 • .. • .. • 0 0 54 

BIBLIOGRAPHY. 0 • • 0 • • • • • .. • 0 • • • .. • • • • " 56 

v 



CHAPTER I 

INTRODUCTION 

The p-adic numbers were discovered by Kurt Hensel (5) 

near the end of the last century. Seventy years later, how­

ever, the ave:i:~ge mathematician has probably never heard of 

them. This undoubtedly can be attributed largely to the 

fact that they have been mentioned so infrequently in 

mathematical literature. While it is true that their prima:y 

importance has been in the fields of algebraic number theory 

and algebraic geometry, it is felt by this writer that there 

is adequate justification for their study by mathematicians 

in other fields as well. This investigation waa prompted by 

this belief, and it makes an effort to present the basic 

theory of p-adic numbers to a wide mathematical audienceg As 

far as most of the study is concerned, however, the pre­

requisite mathematical preparation of the reader would have 

to be comparable to that of the advanced undergraduate or be­

ginning graduate student. 

Organization of Study 

Most of Chapter II is devoted to a consideration of the 

1 
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arithmetic of congruence classes modulo in with considerable 

emphasis being placed on the case where mis a prime number. 

Through this study of moduiar arithmetic, some of the basic 

results of elementary number theory are established in a 

very simple mannero A consideration of division modulo m 

paves the way for the introduction of Hansel's p-adic numbers, 

albeit in a manner mueh different from that employed by Hensel. 

Much of Chapter II could be understood by the high school 

senior or the college freshman who is reasonably proficient 

in mathematics, and it is hoped that an investigation of 

this chapter might help arouse in him the spirit of dis­

coveryo 

Chapter III constitutes the main body of the study. 

It is concerned first with a detailed discussion of valua­

tion theoryo The p-adic numbers are then introduced as a 

completion of the rational field with respect to a p-adic 

metric derived from the p-adic valuation of the rational 

field. The close parallel which exists between the p-adio 

completion of the field of rational numbers and the real 

completion of the same field is carefully emphasized. 

Finally, it is established that there are only two basic 

types of completions of the rational field. 

Chapter IV concludes the study with an investigation 

of a few of the most important properties of p-adio numbers. 
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It e,tablishes ~hat the p-adic fields are pot isomorphic to 

the field of re~l numbers, but it does point out some in­

terea;sti~g Wint• 0£ s':i.milarity between the p-adic fields and 

the real fi.eld. Fini;lll,y, Chapter IV suggests directions for 

furt~er rea~ing and research. 

Need for Stu<ry 

Today's ma~hentatics student stuc;iies a systematic develop­

ment of the ~,al number system either as an advanced under-

graquate or as a beginni~g graduate student. In the course 
. . I 

of this deveiopJnent · he encoull,ters the field;. of real numbers 

as a completion of the field of rational numbE:1)rs. Since· 

there is only one .. other possible type of ·. completion of' the 
. . 

ratio~a;I. field,'• p-adic completion, it seE:tms to the wt:i.ter 

that :i,t should i;~c:eivij ~t least passing attention durirtcf any 

such st~dYr Th• liter~ture regarding the d~velopmen~ of the 

p-adic numpera is, howev,r, qQite limited. It is hoped 
I 

that this st1.1dy'.may h,lp alleviate this.situation by col-

lec:ting in one ~lume the essentials for understanding 

p""!'adic nunibers. 



CHAPTER II 

MODULAR ARITHMETIC 

Early in life.the child is introduced to modular arith­

metic in the form of arithmetic on the clock. He learns 

that on the ordinary clock 9+4=1, 6+8=2, and so onv In this 

arithmetic all multiples of 12 are "thrown away" and it is 

only the remainder in which he is interested, unless the 

remainder is O, in which case he adds 12. For this arith­

·metic a base twelve numeration system would be particularly 

advantageous since the sum of two numbers on the clock would 

then be the last digit of the ordinary sum except in the 

case of Oas a last digit. If the "12" on the clock were 

replaced by "0" and base 12 numerals were used, then in all 

cases the sum of two numbers in the clock arithmetic would 

be given by the last digit of their ordinary sum. 

Since the reader is undoubtedly much more familiar with 

base ten than with any other base, a few examples in modulo 

10 arithmetic should serve to clarify the above ideas. 

Ordinary Arithmetic 

3+5=8 

9+6=15 

23+37=60 

4 

Modulo 10 Arithmetic 

3+5=8 

9+6==5 

23+37=3+7=0 
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Hereafter modulo 10 arithmetic will be called simply 

10-arithmetic and "modulo m arithmetic" will be shortened 

to 11m-arithmetic. 11 If mis a prime number,p 0 then the cor-

responding modular arithmetic will be referred to as 

p-arithmetic, and this notation will be used only if pis a 

prime numbero 

The complete addition and multiplication tables for 

10-arithmetic are as follows: 

Addition Table Multiplication Table 

+ 0 1 2 3 4 5 6 7 8 9 • 0 1 2 3 4 5 6 7 8 9 
0 0 l 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 
1 1 2 .3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 
2 2 3 4 5 6 7 8 9 0 1 2 0 2 4 6 8 0 2 4 6 8 
3 3 4 5 6 7 8 9 0 1 2 3 0 3 6 9 2 5 8 1 4 7 
4 4 5 6 7 8 9 0 1 2 3 4 0 4 8 2 6 0 4 8 2 6 
5 5 6 7 8 9 0 1 2 3 4 5 0 5 0 5 0 5 0 5 0 5 
6 6 7 8 9 0 1 2 3 4 5 6 0 6 2 8 4 0 6 2 8 4 
7 7 8 9 0 1 2 3 4 5 6 7 0 7 4 1 8 5 2 9 6 3 
8 8 9 0 1 2 3 4 5 6 7 8 0 8 6 4 2 0 8 6 4 2 
9 9 0 1 2 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 2 1 

It is readily apparent that the.sum of two positive integers 

modulo 10 is just the units digit of their ordinary sum.and 

that the product of two positive integers, modulo 10, is 

just the units digit of their ordinary product. 

Renee if S= {o, 1, 2, 3, 4, 5, 6, 7, 8, 9), and if 11 + 11 

be the operation defined by the above table then: 

( l) a ~ s , p E s ==* a +b ~ s 

( 2) '\fa , b, c E S , a+ (b+c) = ( a +b) +c 

(3) Va€ S, · a+O=a 



(4) Va ES, 3b E: S such that a+b=O 

(5) VaQb E So a+b=b+a 

6 

Properties (1), (3), (4), and (5) are immediately 

apparent from an inspection of the addition table .. Property 

(2)o the associative property, is a direct consequence of 

the corresponding property of ordinary additiono Thus S 

forms a commutative or Abelian group with respect to the 

operation of addition .. It is equally apparent that S does 

not form a group with respect to multiplication since the 

identity element for multiplication is 1 and since th.ere 

exists no element a~ S such that 5 ~ a=l. However o the system 

(S,+,•) does inherit the additional properties f~om ordinary 

arithmetic that: 

( 6 ) v a , b u c E S , a O (b O c ) = { a O b} o c 

(7) Va,bE S 0 a 0 b=b 0 a 

(8) Va 0 b,c ES, a 0 (b+c)=a 0 b+c1°.Co 

Consequently, (S,+,•) is a commutative ring with unity. 

Since only the last digit of a number is of significance 

in 10-arithmetic, the numbers of 10-arithmetic are defined 

to be the elements of the set { O, 1, 2, 3, 4, 5, 6, 7, a, 

9} .. More generally, the numbers of m-arithmetic are de-

fined to be the elements of the set { 0, 1, 2, o .. • , 

(m-1) } • 

The addition and multiplication tables for 7-arithmetic 
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are reproduced below in order to explore the contrast be-

tween the multiplication table in 10-arithmetic and the 

multiplication table of 7-arithmetico 

Addition Table 
I 

~ultiplication Table 

+ 0 1 2 4 5 6 3 • 0 1 2 3 4 5 6 
0 0 l 2 3 4 5 6 0 0 0 0 0 0 () 0 
1 1 2 3 4 5 6 0 1 0 1 2 3 4 5 6 
2 2 3 4 5 6 0 1 2 0 2 4 6 1 3 5 
3 3 4 5 6 0 1 2 3 0 3 6 2 5 1 4 
4 4 5 6 0 1 2 3 4 0 4 1 5 2 6 3 
5 5 6 0 1 2 3 4 5 0 5 3 1 6 4 2 
6 6 0 1 2 3 4 5 6 0 6 5 4 3 ,2 1 

An examination of these tables reveals immediately that 

the set T=,o, 1., 2, 3, 4, 5, 6} forms ·an Abelian or com­

mutative group with respect to addition, and that the set 

T- { o} forms a commutative group with respect to multipli-

cation. The distributivity of multiplication over addition 

is inherited from ordinary arithmetic. Hence the set T with 

the two operations of addition and multiplication is a tielq. 

The set S= {o, 1, 2, 3, 4, 5, 6, 7, 8, 9} with the 

operations of addition and multiplication modulo 10 failed 

to be a field f6r lack of multiplicative inverses for all 

non-zero elements of s. This lack of multiplicative 

inverses is very closely connected with the fact that S 

has zero divisors in 10-arithmetic. For example, 5•2=0. 
,. 

The presence of zero divis~rs in 10 arithmetic 
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together with their absence in 7-arithmetic suggests the 

following theoremo 

Theorem lo If a and bare numb~rs in p-arithmetic such 

that a 0 b=O·then a=O or b=O. 

Proof: a·b=O in p-arithmetic if and only if there exists 

an integer k such that a·b=k·p in ordinary arithmetic. Since 

pis a prime number a•b=k•p if and only if a is a multiple 

of p orb is a multiple of p. Both a and bare elements of 

the set {o,. l, 2# 0 . 0 ·• p-1), and consequently neither 

can be a multiple of p unless it be O·p. Thus if a·b=O in 

p-arithmetic then necessarily a=O or b=O. 

Dynkin and Uspenskii (4) seek to convey graphically an 

appreciation of the process of multiplication in m-arith-

metic through the use of arrow diagrams. In these diagrams 

the numbers of m-arithmet:,i.c are represented by points and 

the result of multiplying b by a is indicated by an arrow 

leading from b to a .. b. such multiplicati<>n diagrams yield 

rather readily certain facts which are not immediately 

apparent from an inspection of the multiplica~ion table .. 

The diagrams for multiplication by 3 (Figure l} and by 

5 (Figure 2}' in ?-arithmetic 
3 2 

;·:-+·\ 
1\ /~6 

s+-~ 
Figure 1 

appear below. 

Figure 2 
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The diagram for multiplication by 2 in 7-arithmetic 

which is reproduced next has a somewhat different appearanceo 

06 

I\ 3·( . .5 

In spit~ of the apparent differences in the above 

diagrams, it is important to note that every number is at 

the tip of exactly one arrow and at the tai~ of exactly one 

alt'.rowo This phe;nomen9n is d~scribed· by saying that t.he 
·,, '\•",."'' ,. '\ 

~iagrams con.sist of cycles where a cycle is defined to be a .. 

sequence of numbers { X } k 1 conne<::~d:.by arrows .. from 
. n _n= 

x to x 
·n 

I (n=l, 000
, k-1), wi,th a final arrow leading from 

n+1 I 

If k=l there is just one arrow which leads trom X to X,, 
k 1 

x1 to itselfo. Not all multiplication diagrialms in m-arith.­

metic consist of cycles as evidenced by the following diagram 

depicting multiplication by 2 in 

s,--(0 

3 

The diagrams which have. been constructed above suggest 

t'H,at in m-ari"thmetic a multiplication di,gram tllustratin.g 

multiplication by a non-zero element in the arithmetic will 

consist of cycles if mis a prime numbero The following 
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sequenc~ of theprems-'.which occur a-s ptoblems in Dynkin and 
\ 

Uspenskii (4) e~tablishes this conjectureo 

Theorem 2o If a is a non-zero number in p-arithmetic, then 

in the diagram for multiplication by a, no number has two 

arrows leading to ito 

Proof; Sl.lppos~ b E p-arithmetic and that two arrows lead to 

b. Then there exist distinct numbers x,y€p-arithmetic such 

that ax=b and ay=b: hence ax=ay.. Therefor.e ax-ay=O and thus 

a(x~y)=O. The<;>rem 1 together with the fact that a=O implies 

that x-y=O, b1:1t this is impos~ible if-~ and y are distinct .. 

Thus there exi,sts no numbtlr bin p-arithmetic which has two 

arrows leading'to it .. 

Theorem_3o tiet a and be :be numbers in p-arithmetic with ia1=0 .. 

' 
Then every equation of the form ax=b has a unique solutiono 

Proof: If the.~u,tion ax=b has a solution, then. it .is 
. . .. 

necessarily unique since otherwise in tlte diagram for multi-

plication .by a, there would be two arrows l~ading to b :i,n 

violation of Theorem 2. To establish the existence of a 

solution, it suf'fices -te> let x ass1:1me each Qf the values O, 

As·x _ranges 
........ ..,-:-....... 

. . p-1} I a~ic'mtist also tak~-on 

all the values JI) 'l\ _ If this were not the case; ~here would 

exist c ET such that. for x1 e. T and_ x2 E 'J9, x t' x: , ax =c 
. l 2 1 · 

anq ax2=c, but,_thi, is imposs~ble by Theorem 2o Thus it,, 
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must be concluded that ax=b has a unique solutiono 

Theorem 4. Let a .be an arbitrary non-zero number in p-arith-

metic.. Then the diagram for mu.ltiplication by a consists of 
• 

cycles and all the cycles (except the zero-cycle) have the 

same length.-

Proof: It is obvious that since a•O=O then the nutnbers 

{o,a•O} con$titute a cycle .. If b=O fhen one must. examine 

the sequence \b., ab, a2b• .. 0 } .. Either all the elements 

of this set are different or else there must be numbers which 

are ~epeat:ed. The former alternative is impossible since all 

the numbers in this sequence are numbers in p-arithmet.ic 

which contains only p elements. If an°b is the first number 

in the s:equence ,rhich is a repeat of ~ome pre1rioa:s number o 

then an°b•b fox- if an°b=ai 0 b with i (n then a 0 (ai-lob)= . - . 

a10b=a 0 (an-1.bf where an..:.l 0 b:#=ai-l~b. Thus two distinct. 
I 

.arrows go to a10b which by Theorem 2 .ts impossible.. Hence 

the numbers {b1 a•b, a2 ·b, 0 .. • ,an•b} constitute a cycle .. 

To show that all non-zero cycles have the same.• length, 
' 

it will be sufficient to show ,that they all have the same 

length as the cycle containing 1. If b+O and if {1, 2 
a, a , 

• • 0 , an} ··is the cycle containing 1, then the set 
2 . ' 

ab, a b, • • ·, an•b) is also a cycle since 

an•b=l·b~b and if ai•b=b, then ai=l which implies that i is a 

multiple of n. llf;!nce {b,a 0 b,a20b, 0 0 0 ,an°b) is a cycle 
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containing band having the same length as the l=cycle., 

Since b was an arbitrary non-zero number, · it may be concluded 

that all of these cycles have the same length., 

The following basic theorem of elementary number theory 

is an immediate consequence of Theorem 4., 

Theqre,m So (Fermat's Theorem) If pis a prime and pta then 

P I cap-1_1> Q 

~roq:(~ Since the diagram for multiplication by a consists 

of cycles and since by the previous theorem all these cy,cles 

have the same length, s, then the number of ~ycles not con= 

taining zero is n=(p-1)/so 

By Theorem 3 if a+o then every equa1tion of the folC'ffl 

ax=l ha:s a unique solution in p-arithmetico Thue Theorem 3 

insures t.hat every non-zero number in p·~aitithrnetic has a 

unique multiplicative inverse .. 

Basic to the following theorem is the observation that 

land p-1 are multiplicative self-inverses in p-arithmetic 

and that 1 and p-1 are additive inverses. 

a'P!:!orerq 6., (Wilson's Theorem) If.pis a prime number then 

(p-1)!+1 is divisible by Po 

Proof·~ 'l'he theorem is immediately apparent if p=2 r it may 

therefore be assumed that p) 2o Then (p=l>"!=lo2o O O D (p-1) 

and in this product 1 and p-1 are multiplicative sell-inverses., 



The product 2·3• • • •(p-2)=1 since the multiplicative in-

verse of each· element in the set S= { 2. 3 I O • ~ , (p-2)) 

is also in S, and the product 2·3· • •(p-2) may be written 

as the. product of (p-3)/2,,factors each of which is a number 

in p-arithmetic multiplied by its multiplicative inverse. 

Consequently, (p-1) !=l• (p-1) or (p-l)!+l=(p~l)+l=O and it 

follows that (p-1)!+1 is divisible by p. 

Thj!orem 7o (Converse of Wilson's Theorem). If m divides 

(m-1) ! +l , the.n m is a prime numbero 

13 

Proof g If m is not prime, then there exists d, 1 <. d < m such 

that dlmo Also d I (m-1)! since it is one of the factors in 

the product (m-1)!. Hence d I (m-1)!+1 since d I m and 

m I (m-1) ! +l Therefore d I [(m-l)!+l-(m-1)~], but this 

implies that d I 1 which is impossible since 1 (. do i1:!on-

.sequentl;Y, if m I (m-1)!+1 , then m must be a prime nu,mbero 

In s-arithmetic 12=1 and 42=1,. but ther~ is no m.1mber 

in 5-arithmetic sa·tisfying. the. equation x2=2. It is there­

fore obvious that in m-arithmetic the equation xn=a may or 

may not have solutionso One is naturally interested in 

knowing when this equation has solutions and in the number 
' 

of solutions it has if any do exist. Most number theory 

texts contain partial answers to these questionso As far as 

the writer has been able to determine, however, the following 

theorem is an addition to the list of partial answers. 



Theorem a. If xn=a has solutions in m-arithmetic, then the 

number of solutions divides /J(m) where /J(m) denotes Euler's 

/J-function. 

14 

'l'o facilitate the proof of the theorem, certain standard 

theorems of number theory will be employed. These theorems 

are stated below without proof, but, in each case, the 

source of a proof is cited •. 

TheoreJ!!. 9o Long (7)o 'The linear congruence ax=ib mod mis 

solvable if and only if d I b where. d= (a. m) o If there aire any 

solutions, then there are precisely .d incongruent solutions. 

Theoum lOo Niven and Zuckerman (11) o If p is a prime and. 

(a,p)=l, then the congruence xns a mod p has Cno p-1) sclu-~ 

tions or no solutions according as a Cp-1)/ (n.p-l; .·. 5 1 mod p 

or a (p-1) I (n, p-1) •-1 mod p. 

Theorem 11. Long (7). Let f Cx> be a polynomial with int.-e.-. , 

gral coefficients, let p be a prime; and let Of~;;; be en in·~ 

teger. 

if 

Then, xis a solution of f(x)EO mod p if and only 
0 

Cl-1 
where r is a solution of·f(x)i:O mod p and y is a 

0 

solution of 

!hl+yf ' (:i:') ii! 0 'mod p. 
0<-1 p 

Theorem 12. Chinese Remainder Theorem. Long (7)o If 



x:sx:: mod m 
l 1 

xs.c mod m 
2 2 

x5c mod m 
r r 

r 
is solvable with a unique solution modulo m where m=TT 

i=l 

Theorem l3o Long (7). 

c are integerso If a Eb mod m, then f (a)= f (b) mod mo 
n 

m ... 
1 

Since the number of solutions of the equation xn=a in 

m-arithmet'ic is the same as the number of incongruent solu­

tions of xn= a mod m, the latter nota.tion will be employed 

in proving Theorem 8 in order to facilitate the use of the 

preceding theoremso 

Proof of Theorem 80 Two cases will be consideredo 

Case I. k If m=p wi:,.ere pis a prime and k is a natural num-

15 

her, the proof will be by induction on k. 

n 
(a) If k=l, if (a,p)=l, and if x ea mod p has solutions, 

they are (n,p-1) in' number by Theorem lOo How­

ever, - (p) =p-1 and therefore the number. of ·:solu-

tions divides -(p)o . If (a,p) =l onlV one solu­
n 

tion exists, x 5 0 mod Po Therefore, if x = a 0 ·. 

mod p has solutions, their number divides ,cp)o 
k 

(b)nAs:sume,that.if·:Xn::-a,;modp ,has solutions, then the 
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. . . .. . .· .. -.: _:.·',,:; 

.• . . . . 

· 11uml>er Of sol ut 1011, · <I iv ides f u,k l , k~l • a , · · • • , j . 
. . •, . 

(c). By Theorem 11 XQ will l>4;1 • $Olution of xns a inOd 

pl+l it and. Oril,y if . 

.. . . . . '.k ·. J(o:t;:r+yop 
wh~re r is ·a solution of 

· .· (A). x"• a mod pj +l. 

· a~d Yo ts ~ solution of· 

(B) ·. rn:a+yn~n-lao ~C,- p. ·.· 
pl ·. · .... · .. ·· . . 

. Thus x"• a mocl pj +l ha~ sc,1uttons if ancl only if bo1:h. (A) 
. . . .·. . ' 

and (1) havt ~ol~ti.<>~e. ·.· · •QW. by Theorem 9, Jf (B) has solu-

. tions, it will ha~e •itbet. p incongtuent solution$ o~ o~e . . . . . . . ' . . . 

1;;olution. By (b)~ iJ (A.) n,s SQl~tions, tbeir numb"~ will 

dividt -(pjl==pj:-J (p•U .o. · ti.,t: , 0 be. tht numb•t o.f solutions 

of ·.· (A) ~md. le~ :w1 · be t'he _ raqmb.eJ Pf ,c>l.~t!cms · qt •n •,. m:>d 
. ., .· . 

pj +l,, if :solutiona exii!lto.• . 'l,'l\efl N' =N . or N ==p 0N depend.ing . . . •. ·1 0 .. l o. · 
· upon whet~ei- (B) ha$ one c;n:• p eoltiticms. However, since . . . . 

-(pj+l)_~p-(pj). and sinpe lio I fCpj) ~ in either c.ase 

. ~1-. I ,. <Pj + 1 > • . . .. · .. 
. f' . . k . 

Case ;J:I, .·· (m=Tfp.JOC !)_·· •. · 
..• i=l'···,... . 

Clt~rly: in tni-. <J~a• •o iii a aolutio.-i of xne a. mod m 
' . . . 

if anq only lf xQ i.~ a, $0.lutton of xn$ a mod' J\ Qt ;,, for each 
.. 

.i. • ln ,~Qt f ~, xi I tliOJ.., • 

. grue_}tcelil ,_xn_Ji ~ m94 p °' i, . . . i· 

" 0 , ··1t are solutions of the con-
= • ;. . •. .. •• .,. <'. • • • 



. guarantees a unique solution, x0 , of the system x:xi mod 

pi°"i, i=l, • .• •,k, and by Theorem 13 x0n&a mod p1°'ifor 

every i; hence x0 nea mod m. Thus every combination of 
o( i 

solutions of the congr~ences xns a mod p. , i=.l, • • • 'k 
l. 

yields a distinct solution of xns a mod m. Therf!fore,· if 

17 

Ni denotes the number of solutions of xn = a mod m, tien 
k . . ~· 

N= lTN O Hence, since NO I ¢(pc(. i) and since ~ (m) = rr, (p, 1 ) I 

i=l i l. i i=l l. 

it follows that NI ~(m). 

M-Adic Numbers 

Addition, subtraction, and multiplication in elementary 

arithmetic can generally be performed in a straightforward 

manner with near-complete confidence at every step. This 

may not be the case with division, however, for in this 

operation there is quite often a certain amount of guesswork 

involved. For example, 1241+ 17=73, but, as division is 

customarily performed, one might not see immediately that 

the ten's digit in the quotient is 7; a moderate amount of 

trial and error might be involved. This trial and error 

may be eliminated, however, by performing the division in 

the following manner: 

(1) Calculate the multiplicative inverse of the unit's 

digit of the divisor in 10-arithmetic. In the 

example under consideration, 7-1=3 since 7·3=1. 
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For the sake of convenience, this multiplicative 

inverse may be recorded as a superscript of the 

divisor. 

(2) Obtain the unit's digit of the quotient by multi-

plying the inverse obtained in the previous step 

by the unit's digit:. of the dividendo In dividing 

1241 by 17, all the information obtained thus far 

is contained.in the following arrayo 

3 
124"11113 . 

(3) Multiply the divisor by the unit's digit of the 

quotient and sub.tract the product from the divi-

denct as in o:rdi~ary arithmetico The continuation 

of the above array would then appeaic as 

(4) Obtain the ten'a digit of the quotient by multi­

plying,in 10-arithmetic, the last digit of the 

remainder obtained in (3) by the inverse obtained 

in ( l) • The examplfi! of .( 3) then pecomes 

73 . 
1241 I 113 

si 
119 

(5) Multiply the divisor by the ten's digit obtained 
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. . ' . 

in (4) and subtrclct from the remainder obtained · 

in (3) •. The cor1tinuation of the example then 

appears as 

and, since the :r:emainder in this step is zero, the 

division process is complete. 

To help illustrate this method of division, three addi-

tional examples follow •. 

32 . l 
1952 161 

122 
183 

ill -

26 . · . 7 
1378 l,,53 
. 318 
106 
106 
. .... 

· 47 . . . -7 
1363 I.E. 

203 
. U.6 
116 
. : .. 

The reader.may have obeetved l)y now that tne p~ocess 

of division may not always be as easy as U; waia in the 

abave ... e.xamples. ·if, fot example~ the d.iVi$or :ts 34, t.he 

method is qot even applicable since 4 has ho tnudLtip!iaative 

inverse i·n 10-arithmetic. ·on,e··'lnight. of cbursE;··· divide the 

divisor and dividend by 2 so as to t0bt.ain ~ diva.sot bf 17 

whose last digit ha$ 3 as a nu,flti$.3ilioative inverseq ~­

would have to use the usual method of dividing by 2, how-

ever; since 2 itself has i'lo muitiJl!cative.j.riverse in 

10-arithmetic. 
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Another difficulty which might be encountered is that 

the divisor may not divide into the dividend an integral 

number of times. Thie is illustrated by the next example. 

71 
1.3 13 7 

..J. 
l 
ll 

This ar;ay indicates.that the next step is.to subtract 21 

from l, or more precis1,aly, 210 fr~m 10 leaving a remainder 

of -200. It is perhaps not too surprising that 13 is in-

deed equal to 3.71+(-200). 

The previous example is now continued by actually per-

forming the succeeding subtractions and divisions. In this 

extended array -2 is written as -10+8 using the notation Ia 

for -10+8. 

• •• 66671 7 
· 13· U:. 

_J. 
l 

ll. 
Ie 
ll 

Ia 
_a 
18 

If 13 + 3= ••• 66671 then this quotient mus·t obviously 

be a "different kind of number." The plausibility of 

••• 66671 as the quotient of 13 + 3 might be enhanced some-

what if ••• 66671 x 3=13. 'l'he following array indicates 



tha~ this appears to be true in a certain sense • 

••• 66671 
X. 3 
••• 00013 

The ·new kinci of numbet which'was encounter~~ in the 

above problem will be called a 10-adic number. MO.re 

generally, if mis used as a base, then a number with an 

21 

infinite number <>f digits to the left of the decimal will be 

called an m-adic number. 

If n is a whole number with base ten representation 

akak_1···a2a1 , then one could associate n with the 10-

adic number ••• oooakak~l·~·a2a1, thereby obtaining a one­

to-one correspondence between the whole numbers and a certain 

subset of the 10-adic numbers • Any whole.number .greater 
.., 

than 1 could be used as the base, but there is some ad-

vantage in using a prime base.. There could, for example, 

· be no difficulty .encountered in dividing one integer by 

another using the above method if both were expressed in 
i' 

the prime base p, since multiplicative inverses always exist 

in p-arithmetic. Dynkin and Uspenskii (4) give an added 

reason for considering a prime base by showing that there 

exists a non-iero 10-adic number with no multiplicative in-

verse • 

. A prime base, p, is used almost exclusively in the 

following chapter and the associated p-adic numbers are 
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developed as a completion of the rational field. Following 

their development is a brief discussion of some of their 

most important properties. 



CHAPTER Ill 

VALUATIONS 

The real numbers are often developed from the rational 

numbers through the use of Cauchy sequence of rationals. 

Such, £.or example, is the method used in~ Number System 

by ThW'!stop (12). in questions concerning convergence of 

these sequences, the metric, d, defined by d(a,b)=la-bl is 

employed. One of the primary objectives of this chapter 

is to show that one cam employ a different metric and obtain 

an entirely different completion of the rational field. 

Valuations are introduced as a first step in this endeavor. 

Definition l. A valuation of a field, F, is a function 6 
from F to the real field, R, such that t,he following prop­

erties hold. 

(1) Ya, F, ~ (a) ~ O and - (a) •0 if and only if a=O. 

(2)· va ~F, 1nd Vb& F, -(ab)=~(a)·-(b). 

(3) (Trtangle inequi!lity) vacF c;1nd VbEF, ~(a+b) 

~ - ( a ) +- (b) • 

The following additional properties of a valuation 

follow rather easily from the above definition. 

23 
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(1) jS (±1) =l 

(2) ¥1~ F', ~(-a)= ,(a) 

(3) ¥1 E F and yb' FI 1;ca)- fl (b)I ~ , (a±i>). 

(4) ya 6 F and yb fl F, b=#=O, 

Hereafter this paper ,will be concerned solely with 

valuations. of the rational field, Q. It will be established 

that every valuation of the field, Q, is one of the following 

four types of valuations. 

(1) 

(2) 

(3) 

Absolute value (denoted hereafter by I I ) • 
oc 

11 where .Cl< is a real number Sllch that o c. a< ~l. 

The trivial valuation -:Q--.R such that -(0)=0 and 

,S(a)=l if a+o. 

(4) A p-adic valuation which will be defined below. 

The reader will be able to agree easily that (1) and 

(3) are indeed valuations of Q. Both (2) ·and (4) will be 

investigated in this paper. 

°' It is readily apparent that II possesses properties 

(1) and (2) of Definition 1. 
Q( 

That ~Q and Vb~ Q, &a+bl · ~ 

0( -1a1 + \bl is perhaps not quite as clear unless a=O or b=O, 

but can be established through the following sequence of 

observations under the assumption that 1a1 , lbl +o. 

, a +bl• S ( I a I + I b \ ) C( 

=['bl ( ~ +l )]°' 
= lbl°' f ..JAL_ +l) -\ lbl . 



~ I bl°' 1::\ +1 l 
~lbl« m~: f +1] 

o(., 

=\bl .,~ +1; 
lbl~ 

=lalo< + lbl°< 

It should be observed that the assumption tal~lbl +o 
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is qot really festrictive since ~here is complete symmetry 
~ o( 0( 

in a and b and if a=O or b=O, the inequality la+bl ~ fal +lbl 
a( 

holds trivially. Hencel I is a valuation of Oo 

An importa;nt preliminary to the definition of a p-.adic 

valuatio;n is the pbservat:j.on that if p is,>a fixed p;rime and 

q is a nonzero ratio;nal number, then there exist integers 

n, a, and b such t~at Pta, Ptb, and q=pnQ--2..- o The expres­
• b 

sion pn.a will l:>e called a p .. representation of qo 
b 

Although a p-.representation of q is not unique without 

further restrictions on a pnd b, the integer n in any 

p-repres.entation of q will be unique. 

Definition 2. If pis a given prime number and o( is a fixed 
' • I 

real number such that O~o<<l, the function -P:Q~R defined 

as follows will be calleci a p-adic Vqluation of Oo 

tl) /p (0) =O 

(2) If q=#=O, Ip (q);:;Q(n where ;n is the exponent of p in 

a ~-represe~tation of q •. 

It is apparent that the function¢ of the preceding 
p 
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definition has the first property stipulated by Definition i. 

If either q=O or r=O it is equally apparent that 

P (qr)=-p(q)·'/J (r) and that ,P(q+r) f. - (q)+, (r). If both 
p . p . p p 

· a and bare non-zero rational numbers with p-representations 

q•pn. !L and r,,,pm.£ , 1 then q• r=~-tm·.1.£ • Furthermore, p tac 
b d . ~ 

and .P fbd. Therefore, A (q•r) = O(n-ttn=acn •et.m=, (q) • - (r). If . p . . p p . 

-P(q):#=- (r) it.may l>e assumed without loss of generality that p 

~ (q) <. ~ (r) or equivalently that n > m, then q+r=pnad+p~c 
p p . . bd 

=pm pn-mad+bc and since p divides neither~ nor (pn-mad+bc), 
bd . 

jll(q+r)=~m=- (r)=max [-(q), -(r)]. If~ (q)=~(r)= ctn then 
p p p p p p 

-- (q+r)= cc.k, k ~ n, if q+-r1 if q=-r, ~ (q+r)=O. In any event, p p . 

the above reaulta may be summarized in the inequality 

- (q+r) $ max [- (q), f (r)] , whiQh in turn implies the p p p . 

triangle inequality. Thus it has been shown that /J ia a 
p 

valuation of Q. 

Definition ~ •. A valuation , for which Jd(q+r) ' max c,(q),~(rij 

is said to be a non-Archimedian valuation. 

A complete description of all possible valuations of 

the rational field Q is contained in the following theorem 

which is taken with some modification from Numbtr Theory bf 

Borevich and Shafarevich (2). 
'· 

'l'heorem 1. (Ostrowski'& Theorem). Every non-trivial valuation 
ot 

of the field of rational numbers is of the form I I with 

O< cc d l or is a p-adic valuation for some prime number, p. 
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PrQQf: .If¢ is a non-trivial valuation of the field Q, then 

for every natural number, n, rJ (n) :S 1 o): else thc~re exists 

a natural number m > 1 such that ¢ (m) ) 1. 

If the latter case holds, there must exist a real number, 

o<, O<:ocsl such that 
Qt 

rJ(m)=m 

since in all cases 

¢ (n) =¢ {1+1+ 0 • • +l) $, (1) +rf (1) +• • • +~ (1) =n .. 

Any arbitrary natural number N may be represented as a 

polynomial in m with integral co~f£icients as follows. 

N=a +a m+a m2 +00 •+a mk-l 
0 1 2 k~l 

k k 
O .ca , m-1 for O ~ i ~ k-1 and m -1 ~ N<.m • ,.. i -with 

Thus 

¢(N) ~ ¢(a0 )+.(6(a )m~ +¢(a )m2 cx+. ••+ ,(ak )m(k-l)CX 
. . 1 2 -1 

and since "(a ) , a. S m-1, O 5 ii k-1 
V i 1 . . 

¢ (N) S (m.:.l) (1 +m~ +m20C. +• • • +m (k~l) Q() 

= (m-l)mke>t_l 
mcc.-1 

<. (m-l)mk~ 
mc:ic.-1 

=(m-lJ..mot (k-l)CX · . m 
m~-1 

< (m-l)mti<. ~ ::cNoc 
- Cl(. N 

m-1 

where C is a constant independent of N. If tis any natural 

number, then 



whence 

(¢ (N) 1 t;:;, (~t) 'CNtoi. 

¢(N) '~N~ 
and upqp letting t.....+00 ~tt f~l+ows that 

rl o(. • 
,i (N) ~ N . • 

On the other hand since mk"'"l' N <. mk there ~xists an 
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k k,-1 k 
integer b with O <. b $ m -m su9q. that N::::m -.b. Consequently, 

k' 
/6(N)::;~(mk-.b) ~¢(m >-¢(b) 

,1, Q( k k-1 0(. 
But ,.. (b) $ b S (m "'lffl ) ~ 

r [t4 (m)] k,..~ (b) 

= moc.~ ... ~ (b) 

Hence 

,1. tx k k k-1 Q( 
y(N) ~ m ~<m -m ) 

:=; m°'k-(mk (1-i>]o( 
= [1~ (1-!>oc] m°'k 

oc. 
a [1,- p.-! >] N~ 

= c1N oc wher;e c is independent 
1 

CGnsequently, if tis an arbitrary nat~ral number, 

~(N)} t=-(Nt)=G/~t~ and ~(N)~ ~ 1N°' ~ 

By lettin~ t tend to infinity it follows that 

,fl(N) ?. Noc • 

T)'leref9re ¢ (n) =N °' for every nat;.ul!al number r N. 

For any r~tiona,l number, q, t;.here e~ist natural 

±Nl 
numb~rs N1 and N2 sqch that q~ ~ • 
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Consequently, if there is one natural number, m, such that 
C( 

¢(m)>l then 1=11 for some QC.with O(O(flo 

There remains now the case :in which ¢ (n) ~ 1 for every 

natural number no In this case there must exi~t some prime 

number p such that i(p) <. l for if ~(p)=;l for every prime 

number, p, then ¢(n)=l for every ~on-zero integer and hence 

for every non-zero rational numl)ero Tnis would, however, 

contradict the assumption that - is non-trivialo 

If there alJQ exists a prime q+~ with ~{q)<. 1 then 

integers k and d may be found such that 

[~ (p)} k < 1/2 anQ. [¢ (q)] d < 1/2 o 

Since (pk,qd)=l there exist integers rands such that 

k d rp +sq =1. Hence 

l=(/, (1) :;:~ (rpk+sqd) S ~ (r) ~(pk)+~ (s) ~ (qd) 

'l~-(pk)+lo~(qd) ,( 1/2+1/2=1 

This contradiction point~ out that there c~n be c;mly one 

prime, l?, for whiqh ~ (p) <.. 1 and that <f, (q) =1 for every other 

prime number, q. As a result -(n)=l fo~ every integer, n, 

such that (n,p)=l. Therefore, if r is any non-zero rational 

number with p-rep~esentation r;:,:pm A then 
b 
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and '/J is thus a p-adic valuation of Q. It has consequently 

been established that every valuation of O is of the form 

I lex with 0(0< S.l or is else a p-adic valuation for some pr.ime; 

Metrics 

Definition 4. A metric on a set, S, is a function d:SxS--+R 

with the following properties. 
• 

(a) vx, S and VyiS, d(x,y) ~ O and d(x,y)=O if and only 

if x=y. 

(b) VXf.S and Vy ES, d(xty)=d(y.x). 

(c) (Triangle inequality) vx, S,yy ES, and 'lizES, 

d(x,z) ~d(x,y)+d(y,z). 

Theorem 2. Any valuation of a field, F, induces a metric 

on F. 

Proof: Let - be a valuation of the field F and define 

That 

d- has properties (a) and (b) of Definition 4 is immediately 

apparent. Property (c) follows rather easily since: 

d- (x, z) =- (x-z) =I [ (x-y)+{y-•3' ~ (x-y) +~ (y-z) =d- (x, y) +d, (y, z). 

Consequently, d, is a metric on FxF. 

If - is a non-Archimedean valuation, then the associated 

metric, d-, has the property that d~(x,z)t~ax[d-(x,y),d-(y,z~. 
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Such a metric wili Qe said to have the ultra~metric prpperty 

and will be ~alled a non-A~chi~edean metri~. 

P-adio Numbers 

Definiti9n s .. A sequence {xn} of e;iilements of a :t;ield, F, 

is 1;1aid to cc;>nverge to the element a E F in t'h.e metric, d, 

if and only if fo~ every realE>O there ~¥ists a pcsitive 

integer N, such that for all n ;?> ~' d (xn ,a)~ e . 'l'hat pc n) 

cQnverges to a will be denoted by {xn}...-a or by ~!~n;:::ao 

Definition 6~ __ A sequence {xn) ,is called a Cau.chy sequence 

with respect to the metric, d, i£ and only if for every real 

€> O there exists a positive integer, N, such that 

d (xm,Xp.)'-' wh~never m > N and n )t N. 

Definition 7. A tield Fis said to be complete with respect 

to the metric, d, if and only if every Cauchy sequence in F 

oonve~gel$ in tq.e met:r:i,o', d, to an element of F. 

Theorem 2" 

at most on~ limit. 

Proof: 

rx 1 converges in the;ii metric, d, to 
"\ n \ 

there exist N1 and N such that for all n l> N d (x , r) (. 6 
2 . 1 n 

' 

and for all n> ~2 d(xn,s)~e.. Therefore, if n>max (N1 ,N2 ) 

then d(xn,r)+d(xn,s)( 2E. =2/3 d(r,s). But d(~,1:t)~d(xn,r) 

+d(x ,s) (. 2/3 d(r,s) which is impossible. Consequently, 
n 
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{xn} converges to at most one limit. 

It is a well known fact that the rational field, Q, 

is not complete with respect to the absolute value metrico 

This is establisheq for example, in The Structure of the 

Real Number System by Cohen and Ehrlich (3). The following 

example from Bo:revich and Shafarevich (2) shows tpat it is 

also possible to construqt Catiel:ly sequences of rational 

numbers with respect to a p-adic metric which do not converge 

to a rational number. This is accomplished by inductively 

constructing sQlutions to the congruences 

x2 :: 2 mod 7n. 

lf n=l the congruepce has tqe solution 

x - 3 mod 7o 0 :c 

Assuming now that x is a solution to 
k-l 

where k is an arbitra~y positive integer, a solution to 

x 2 = 2 mQd 7k+l 

may be constructed ~Y observi~g that any solution, x, of 
k 

the latter co~gruence must also be~ solution of 

2 k 
x· ::; 2 mod 7 

This suggests that one look for so~utions of t~e torm 

X =iX +t• 7k 
k k,.,.1 

Then the t~~k is to find t s~tisfying the £oll9Wing 
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congrµenqes~ 

2 k 2 k+l 
x = (x +t • 7 ) ~ 2 mod 7 

k k-1 

2 k 2 2k k+l 
x +2,x t ~ 7 +t 7 5 4 mod 7 

k~l k-~ . 
2 k k+l 

x ~2+2x t·7:i:Omod7 .. 
k-1 . k"1"1 

2 k 
M+2xk_1ts O mod 7 w;i.th x -2 =M· 7 

k-1 

2x t5.-M mod 7. 
k-1 

Since x:_1 =2 mod 7k it follows th.at x!-.i ::2 mod 7. Hence, 

(2xk_1 ,7)=l apd theFe exists an integer, t, such that 

t · 2xk-l = -M m<;>d 7. 

k 
Therefore, xk=xk_1+t•7 is a solution of 

x2 = 2 mod 7k+l 

and a sequence {xn} has been ponstructed inductively such 

that 

and 
:,c; 2;: 2 mod 7n+l 

n 

x = x moc;t 7n 
n- ~-\ 

. . 2 n+l 
Thus, in the 7,.,..~d1c metr,1.c, d (x , 2 )~ O< 11 .. >0 as n~oO . n 

an if m ..... n, "' x ,x _ cc. • Consequent y, x d . ~ ~c )< m+l 1 { 1 
m n · n 

is a Cauchy 

sequence converging to '\/'!, an(l q is not complete in the 

7-adi,c met:i:-ic. 

The previous example prompts one to attempt an embedding 
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of the rational field, Qq in a field which is complete in 

the p-adic ~etric. This can be accomplished through the 

following steps which diff~r very little from the usual 

steps in completing the ratipnal field. 

Let the set of all Cauchy sequences of Q (with res~ect 

to the p-adic metric, ~) be denoted by Q', and define addi­
p 

tion and multiplication in Q' as follows: if x and 

Theorem 3. If f x n} E Q' then {¢ p (x n)} is pounded in R. 

Proof: Ther~ exists N such that for all IT!, n > N. 

¢ (:x; ) -¢ (x ) '5: ¢ (x -x ) <. 1. Henqe for a fixed n 0 > N 
pm pn pmn 

rjJ (x ) <. 1 +¢ (x ) for every m > N. Therefore, for every no 
p m p no 

¢ {x ) f max ( ¢ (x ) , ¢ (x ) , • • • , ¢ (x ) , 1 +¢ (x ) ) and 
P n P 1 P 2 P n P no 
{ ~ (x ) } is bounded in R. 

p n 

Theorem 4. If ~= {xn 1 eQ' and y={rn}eQ' then x+y ,0° and 

x•yEQ'. 
...;,.....' 

Proof: 
,,, x Ea Q' implies that for every E > o there exists N 

. 1 

such that m., n > N ;i.mpl;i.~s that ¢ (y -y ) <. __,!__ while ye Q' 
l p m n 2 

implies that for every e > O 1;:here exists N Sl!lch t:hat m, n > N 
2 2 

implies that ¢ (y -y ) ~ £ • Therefore· if m, n > max (N ,N ) 
p IT! n ""'2 · 1 2 

then 

¢ ( (x +y ) - (x +y ) ] 
P m m ~ n 

= ¢ ((x -x )+(y -ya 
p m n m n 



Hence x,ty ( Q • • 

f: I (x -x ) +- (y -,y ) 
p m n ·p m n 

c..J...+ ...€.. =€. 
2 2 
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In considering tbe product x·y l•t B be an upper bound 
1 .. 

of {-p (xn)) and let B 2 be an upper betund. of r-p (y n)} • 

Since x E o• there exist N and N ,such that " be -x ) < ..L 
· . l 2 .. P m n ·.. 2B 

if m, n ~ N and - (y •y ) ( -'- if m, n > N • 'l'hua .if 
l. P bl n 28 2 . . 1 

m, n > max (N , N L then 
1 2· 

rJ (X Y •X y ) -- [ X y •X y ,t,c y .. X Y ]· 
p mm nn p ... mm mn mn nn 

·. JI&- [x (y •y )+(x •x )y } 
p.·mmn mnn· . 

.c.B • ...L. + L J 
1 28 28 2 

i 2 

• ..f... +.L .,. 
2 2 

- - ~ -The,:efore, if x , Q • and y a Q • tl1t1n x• y • Q • • 

A relation, It, i• now d.-fined on o•xo• •• follows: 

2 

if x• pc.,1 E Q' and y• {Yn}• Q•, xRy if and only it for every 
E >O tbere exiasta N auch that for all n>N, - he -y )<.E. 

. . . . P n n 
The relation, a, poaaeaaea the follQwing propei:ti••· 



(1) 

. (2) 

...... 
(Reflexive)•. For. ,verr· x E QI' x:ax •.. 

... .. - ... 
(Sy•ett- ic) Xf xRy t}len y;Rx. . . 

., .,. ,,.. -
(3) (Ttansitivel If xijy and yRz then zRz. 

The f!rst two proper~iee are !Jiillledii:lte c;:onsequenoes of the 

definition of~· '.i'O establish the transitive prpperty let 
. . . 

E be an arbitrary posit.ive t:~al numbElr, then there exist· 

N . and N · such that if n > N. , f (x -y ) <. , and if n > N 
l . 2 ·.. · .. 1· p. n n · .. ·.· 2 

¢ (y ,.;.z )<.E • Hence, if n )max (N ,N ), then - (x -z ) 'E. 
·pnn .. · 12 n . . ·. . .· • .·. . P · .. n 

max [- (x , y ), - (.y , z ) },E and it follows that. iRi. The 
.. P n n P n. n . . . . . . 

relation, R, is t:l\erefc.>re an equivalence re;llation on Q'XQ'. 

Definition ft, A ~-adic number is an equivalence class with 

respect tQ tlle equivalence relation, R, defined al:Jc>ve. 
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If the set of p-adic nu:mbeJ;'s is denoted by Q then from 
p 

the definition ot a p~a<U.c number it follows that. Q is the 
p 

factor set Q '/R. 

pe·g,j.nition fl.fl. It f>'nl•Q • . the equivalence .Cli\&el · in QP 

· oontai.ning · l x ) ia cSenoteC, ·by.•·· -111:\. _·. • 
l n . . · · .. · \ 'Y 

Def;!.pi;tion J;g. :r::e oc•o and~lO let rx 1· be a 11,quence in 
. . . . P .. P \ n 

c<. and let ~f n) be a sequence in p , CA.+ {J and ex·~ are then 

defined 'by the eq"atic>nss 

(a) C( + ~. == {xn+v,J 

(b) · ex • ~ ~ rx~, ~ 1·. ·. 
1 . n .. 



There arises immediately the natural question of whether 

the sum a11d product just defined are independent of the 

choice· of sequences chosen to represent ex and {J. This can 

be anowerod in the i:\ffirmative by taking other 1:epresentatives 

{ xn '} and \ yn '} of o< and 13 .cespectivcly. Then, if E >O there 

exists N such that if n > N, - (x -x• )<__§,- and ~p(y -y' )< f . 
P n n 2 n n 2 

'l1hex:efore, if n > N 

¢ [ (x +y >'- (x ' +y' ) ] =¢ [ (x ~x' ) + (y -y' ) ] 
p n n n n p n n n n 

~ , (X -XI ,..., (y I -y I ) 

p n n p n n 

·(.i+i =Ci. 
2 2 · 

Hence rx +y , = rx I +y I } 

l n nl 1 ni n 
, and addition in Q is well· 

p 

defined. 

By Theorem 3, {-p(yn>) and \~p(x'n>} are bounded in R. 

Let B1 and B2 respectively be upper bounds of {-p (yn)} 

9 Then, for E>O, there exists N ·such that 

for every n > N, I (x -x' ) < _j_ and , (y -y' ) <. ..€._ 
p n n 2B p n n 2B 

Consequently, 
l 2 

- (x y -x I y I ) -- (x y -x I y +x I y -x I y I ) 
p n n n n p n n n n ~ n b n 
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E - (x -x' ) /J (y ) +- (x' ) - (y -y' ) 
p n n p n p n p n n 

'B +EB =€. ~28 1 28 2 
l 2 



'l'hus {xny n} = ~x•:y 'n} , and ml,lltiJ;>lication in op is well .. 

clefined. 
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As direct consequences of the preeeding definitions, it 

follows that adqition ~nd muitiplication in Q are both 
p 

commutative and asspciative and that multiplication is 

distributive with r~speot to addition. Fqrtbermore, {O} 

and {l) are resp~ctively additive and multiplicative 

identities in QP. Since rJ. (r)=nt (-r) ;for every rEQ, it 
' ~ ~ . 

follows that if {xn)~s Cauchy in the p~a~jc metric, d, then 
p 

{-xn1 is ~lso Cauqhy in dp. Therefore if {xn)~QP then 

~-xn} eQP 1:tnd ,xn) + ~-xnl = 'fOT· Consequently, i:e it can 

be shown that Q contains a multiplicative inverse for each 
p 

element {Xn) =f: ror, then it w;i.11 haye beep established that 

Q is itself a field. This is accomplished in the three 
p 

succeeding theorems. 

Theorem 5. ;r:f {;gn1 E:Q' but ~xn)t \01 , then there exists a 

real numbe~, k, and a natural nu~ber, N, such that 

¢ (x )~k for all n>N. 
p n 

P,:::oof: Asst,1me, to the contra~y, that for every real number, 

k, an<;! fc:>r every N there exists s >N such that ~ (xs) <. ko 
p 

Since {~nl £ Q' the!l :eor an arb~trary £>0 there exists N1 

such tnat if m, n > N1. then r/J (x -x:- l (.E • Thus if N=N1 , 
p m .n 

~ (x -x )(E for every m > N • But, sipce ¢ (x )-, (x ) ~ 
P ~ s 1 p m p s 



¢ (x .,.x )<€ thep ~ (x ) <. ¢ (x ) +E,k+~ for ~l~ m > N. As l;>oth 
pll' s Pm p s 

k a~~ E. qr~ c9mp],.etety arbi 1-:1\\+Y, this would ;require that 
I , 

{ ~J ~ \OT cqntrary tp tlle stated hypothe~is. The 

exi$tenqe Qf k apcl N such that ¢'!' (xn) ~ k for every n > N is 

thus established. 

Theorem 6. 

such that y =O if x =O and y = 1 
n n n ~ 

if x =l=O is a Cauchy 
n n 

seg;u~nQf;! in ~h(j! p-ad:i,c metric. 

Proof: Since {xnJ :# fol, the:p by Theorem 5 there exist k, 

N such th<r"t fe;,r evei,ry n > N I ¢ (x ) ~ k. Also, s;i.nce rx } 
1 1 p n \ n 

is a C~u~hy se~u~nce, tpen fqr flny E >O there exists ~ such 
2 2 

that for allm, n>N f ~ (x ... x )(~·k. Ther~fore, i~ 
. 2 p m ~ 

N=max(N ,N) and m, 
1 2 

n > 151 then 

Y T""y = - ..... --·· ~ ( ) , ( , 1 .i· . J m n p ·x ·· · · :P ... m Xn 

and it fo:t,low~ that (vn) is. a Cauchy sequence. 

The tw9 preceding theorems yield the following as an 
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'.!'.!J.eor,~m. 7. If txn} € Qp and \x n} :f, {O} then tp.ere exists 

{YJ f.Q p such th~t'. \x;n} •'{Y~1 = { 1} 

Proof: Let, {Yn1be the sequence defined in Theorem (:>. 

Since there exist k and N, by Theorem 5, such ~hat for all 

n >N, 

Thus 

¢ (x )~k, then for all n>N, y = 
p n n 

f;}. ~ =~xn·Y~ = rJ. 
and x y =1. 

n n 

By identify:i,ng the rational numbeir r with the Ca'-'chy 

s,2:quence { r} = { r, r, r, · · ·} one establishes an ismorphism 

between the rational fielq, Q, and t,hµt supset o~ Q consist= 
p 

ing of all equivalence classes of the for.ll'l '{rlwhere r E Q. 

Since ta p-adic n1,1mber is an equivalence class in 

Q, it may be represented by any seq;uence in the equivalence 
p 

class. Probably the most usef~l represent~tion is de~cribed 

in the following theorem. 

Theorem 80 Every p~adi~ number may be rep~esented by 

where 
n . 

k is a non-negative int~~~r and y =L a.P1 
n . 0 1 

1= 

with O ~ a 4 p for every ,i. 
i 

(Note: This is equivalent to 

saying that. every p-,adic number may be repre~ented by a 
00 o,,O 

power series 2:, a .Pi ~he:r;e ~ 
i=m 1 i=m 

i a.p is the p-adic limit 
1 

of the sequence of partial s~ms r:_a,pi .) n . } 

. 1 i=m 
Proof: Long (7) proves on page 17 that every positive in= 

teger, x, can be UI\:i,q~ely represent~d in the form 
m i 

x=~ b.P where 0 "b . < p, i=O, l, . . . m • If \Yn1 is 
i=O 1 ;L 



n i 
defined by y = 'L. b,p for n~ m and y = 

n i=O i n 

i 
b.p 

1 

n i 
+ i=~+i O·p fo:i;- n > m, thep x is the p-.adic limit of 

00 

fyn} , and x may be represented by x;= ,L 
l i=O 

i 
a,p with 

1 
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a.=b., i=O, 1, · • ·, m and a.=O for ;i. >m. The ;required 
1 1 1 

re~resentation is therefore possible for non-neg~tive 

integers. 

If z is a negativ~ integer, then z=-x where 

x= ~ i 
~ b,P. Since z+x=O, it follows that 
i=O ;i. 

00 . 00 · 
z= (p-b ) + L (p-,b .... 1)!/= L q ,p 1, O*-c;: <. p. 

O i=l 1 i=O 1 i 

Anyinteger may therefore be represented by q sequence\Yn) 
~ i 

power series ~ a p with 
1:.:0 i 

...n... .i, 
where yn= f;o aip or by a 

O ~a.< p for every i. 
1 

a A rational number r= ~· where a a~d b al;"e integers 

with b > Q an(} such thc;tt p+b, may ~hus be represented by a 
co 

q uotient ·~ a pi/~ b pi where a. and b are inteaers 
i=O i f;o i ~ i ~ 

with O, a <.P, Os.b ~P, and b :f:O. Since b =l=O, there exists 
i i O O . 

an integer, x 0 , with O 6- x 0 <, p, such that b x = a mod p 
O O O 

and one may write 
OO i ~ i ~ ~~p -xo • . b,p 

~1'=1 ~ 1=0 1 r=x ++-=.;;.:1:-....-...,.,..-.-....-__,...-,-""'-_,...,._...,..._ 
0 . ~n I b,pi • 

£.-i=O 1 

00 

In this representation, ~ 
1=0 

a ,pi -.x i::; b,p i 
;L O 1=0 1 

integer s;i.~ce it is the d~fference o; two integers. 

is an 
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. n . 00 

E'urthermo~~. p is a factor of ~ 
i=O 

1 ~ 1 a,p -x b,P since 
1 0 i=O 1 

since p I (a-bx). Thus, 
O O O ex, , 

~~:i.pl. 
i=O r:;::x0 +p I 9 

n i 
~ bip 
;J..-0 

Similqrly 

00 n 

L i 
P.P -x 

r- +p ( x + 
1 
z:i 
i=ObiP ) i=Q 1 

,I 

O l n i 

~ 
b .P 

+= ; 

QO 

~ d.p i 2 l.=Q l. 
;::x +x p,t,p • 

0 l n 
};).p:i. fio l. 

Cont;i..nu:i,ng inductive).y one may wr:i,te 

~ n+l 
r=~ +x p+~ p +000 +x p · 

0 1 2 n 
r.· ... 

to 
~bus ~ i~ the p-c;1¢tic limit gf the seqU,ence { y n} where 

y = ~ Xi;Pi• 
n i~O 

... k 
If~ is a rattonal nµmber of ~h~ form r=p a -b 

pfa and pfb then by tqe above re~ult pkr ;s the p-adic 
i ' 

where 



ConRequent.ly, any rational number, r, may be 

~eprese:oted in :p-adic form as 
00 i a.p. 

1 r=L 
i=m 

Finally f cc;>nsiqe:i:- on a~b;i,ti;-ary p-adic num:Oer o(;=~. 

Since { x n1 isi a 

exists N such 
].. I 

Cauchy aequence, then for every €>0 there 

that for all m, n > N , ~ (x ... x )<. £ • Since 
1 p m n 

xm and ~:n are rc;1tional numpers, there ex:j.~t natural numbers, 

N ~md N I and non~negative integers a. apd b with O~a < p 
2 3 J. i i 

and O~b <. p such that. for evel;'y S>N and :t;or every t>N 
i 2 3 

¢ 
s 

i) ~ E aqd /J. (x .,,. r_ b.p~) (x - ~ ~.P . . Now 
p n i=k J. p m j=h J 

s t s ¢ i b,pj ) °' max [¢p i 
( z. ~.P ,.. ~ (~ ... ~ a, p ) I 

J n p i:;::k l. j=h i=k J. 

Pp (xm -xn), 
, (~ 

t 
j l - ~ h.P) 

p m J 

if R, t, m; n > max (N ,N ,N ) , and this requires that a =b 
~ l ~ 3 . . . i i 

for ever~ i. Jf this ia not the cijse, then let r be the 

firE!t index for whi~h ar#b, whence (a ~b ,p)=l and 
r r r 

¢ [<a -b )pr+(a -b )pr+l+p•+(at-b )pt)= c>O. 
p r r · r+l ;+l .. t 

( 
s . 

if c<c, it is ~ot pqssible for~ ~ a,p1
-

p i=k 1. 

~ };) .p::, to t ') 
j=n J 

be lesfl than t u~:J.ess a i :;:bi fo~ every i. There:f;o~e, 
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i 
a,p 

1 
where~ 

n . 
is a non:;;1'~~fltiv~ :i,.nt~ge~ ~nd y =~ a ,p1 with O ~ a ~ po 

n i~o 1 :i,. 

~he repre~ent~tion of a p~aqic ~umber as a~ infinite 
00 . 
~ J, 

series, '- a p, is entirely analogou~ to the repres~nta-
i=m i ,@S2,, 

tion of P real, numbe~ in t;.he fo:i::-m ~ b,•10-i. Both s~ries 
l.=m i 

c;lJ:!e automati~qll,y qopve:r;r~ent ii,n 1;:he Cau~hy ~eijse,. but con-

lf a p-adic pu~b~r is repre~ented by an 
00 i 
,:::-- a p with O ti! a .<.P, :i. -1- is said to be ~ i J, ~ 

writt~n in canonical for~~ 

Both t;.he real numbers aQ~ the p-aqtc numb~rs are devel~. 

oped as equivalen~e ¢l~sse~ of Cauchy sequenc~s pf rational 

nu$~rs. Tllere·ia ~o diff,rence at all :i,n·~h~ Jn,~hod of 

developJne~t ex~ept ~hat the apsolute va~µe metric is used 

uaed ~n the development qf the p~~9i~ n~mbers, ~oreover, 

of the r-tional fielQ is ~ither a p~ad~p v~~9ation o~ is 
Cf . 

qf the f9rmll with O<.oe,1. It i13, in (i\l~t, ratner easy 

to ,stablish that a sequen~e converge~ with ~espeqt tollc,c 

if ~p~ only if it cq~~erges with res~ect to I I. Similarly, 

one may estqblish that ~he p-~dic 1imit;. o~ a sequ~nce is 
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independent of the choice of 0<, 0<~~1t in the definition 

of the p-adic metric. 

Although the types of completions of the rational field 

a.re rather severely limited, the number of completions is 

still infinite. This assertion will be established in the 

concluding cha.pt er by showing that if p a.nd q a.re primes 

with p*q then Qp is not isomorphic to Qg_ and tha.t no QP is 

isomorphic to .R. 



CHAPTER IV 

THE P-ADIC FIELDS 

For a given prime number, p,' the p-adic field Q was 
p 

developed in the last chapter as the completion of the 

rational field, Q, with respect to a p-adic metric. No 

observation was made, however, regarding the completeness 

of Q itself, Before one can make any meaningful state­
p 

ment concerning the completeness of Qp, he must, of course, 

have a metric defined on Q xQ. The natural extension of 
p p 

the p-adic metric on QxQ to Q xQ is contained in the 
p· p 

following definition. 

Definition 1. If ~EOP and ~,op. let \xn)'C< and \Yn)fifiJ• 
The function d:Q xQ ,R defined by d(ot,A~= lim ~(xn-y) 

. P P r n_.oo p n 
will be called a p-adic metric on Q. 

p 

Since the function, d, is defined on ordered pairs of 

equivalence classes, it should in no way depend upon the 

representatives of the equivalence clas.ses. • To show that 

dis well-defined, one has only to consider other represent-
I I 

atives, {xn} and {Y n1 of 0( andprespectively. 

Since 
I I I I 

111 . (x -y ) =~ (x -x +x -y +y -y ) 
fp n n p · n n n n n n 

46 
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[¢ (x 1 -x ),¢ (x -y ),¢ (y -y• J] 
p n n p n p p n n 

and 

~ (x -y )=~ (x ~x' +x' •y' +y'-y) 
p n n p p n n n n n 

:i.t :follQws that 

and 

because 

lim I (x~ ... y~)~ lim, (x -'./) 
n...+OO P n-.~ p· n n 

lim - (;>< -¥ J~ lim ¢ (x' -.y') 
n -+00 · p n n n -...(l)O · p n n 

li~ ¢ (x -,x 1 )= lim ¢ (y -y 1 )=0 
p n n p n n 

.n~cx> n .... oo 

Thus the fqnctiop, d, is tnqependent of the choiqe of re-

presentative$ of th~ equivalence ~lasses. Obviously, 

d(O(,(J) c:O and d(o<,,S )=9 only if o(;:.:~; also, d(ol,fJ) 

=d Cf1, 0<). T~·: elli;:.a:Plish the t;riangle inequality, let 0(, 

p ,1',ap and let {xn},oc, {Yn}EP I and~zn)ei; since 

; · (x -z ) S , (x -r-y ) +¢ (y ... z ) 
pnn pnn pnn 

for every n, then by ta~ing limits as n--+OO one obtAins 

Con~equ~ptly, dis indee4 a metr~~ on Q xQ. furth~rmore, 
p p 

on that subfield of Q which is isomorphic to Q, d corres­
P 

ponds to the o;rig~Qal p-,ad;i.c metric wh;i.ch was defined on 

QxQ in the previous chapter. 
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Theorem 1, Q is complete with respect to the metric d of 
p 

the precec:ling definition. 

Proof: Let f ec,n1 be a Cauchf E;,equence in Op. If E. > 0 there 

ell;ists N such that d ( °'m, O< ) ( E for every m, n > N. 
I n Let 

r (m)} 
by 1xi and O<n b~ represented by c<m be rep~esented 

( (n)} 
lll;i. . wh~re t}le superscripts, (m) and (n) , are siml)lY 

id,imtif ication labels ~ather than exponents. 

Sinc;,e { xi (ml} is a Cauchy sequence in Q for every m, 
.. • 

the~e ~xists an int:eger jn $UCh that for every i > jn, 

'/J (>1;i (IJl) -x {~) ) ( -!,..,. • Let -I depote the sequence 

{ : ~l) ~ (~) , ~~ ·x ~n) n •• ·} and let {ll;jn (n)} be the 
Ji J2 Jn 

equivalence c;Lass determined by th~ ''''constant sequence 

{ x~n) ,x~n.) , • 0 • ,x~P) , • • '}. Then 
Jn Jn Jn 

d ~ , x. = 1 im 7' (x. -x . ) < ....L ~ ~ (n)} )' J. (n) (n) . 

n ' Jn j_.oo p J Jn n 

Hence 

, be ~n) .,.X ~m))=d (r X ~n)) ::- , f XJ~mm)}) 
P Jn Jm ·---· X Jn . l 

(.-1-. + d(9<n' O(m) + ~ 
n m 

Therefore, given E. ~O, by fequiring that N be large. enough 

so that for every n, m >N, ..1:,..... <. __.,s_ , d ( O' , ex ) < 
n . 3 m n 3 



and _J_ ( ..,s_, one has 
m 3 

~ (x ~n) -xJ~m) )<. € • 
P Jn m 

Thus --I is a Cauchy sequence in Oo The equivalence class 

containing y will 'be denoted by ':t . 
If ~>Q, then, since~ ia a Cauchy seq~e~ce, there 

exists N such that for every n > N, Ip <xJ,i) ... x ~N)) i<. _.!,._ • 

(
- (i) ·) (m) (N) n JN 2 

Thus d -./, f xj } = l;im rJ cxj -~. > < L and, there-
\ N m-.)00 P m \a 2 

fore, 

d(~O(n) ~ d(1. {xJ:1})+d (\x~:l} • O(n) 

~d (=t, fr})+ ! 
c:....L + -L = ~ 

2 2 

whenever n > ltlaX [ N, +] . 
I 

Q is complete. 
p 

Consequently, 1 :;;:: lim ~ , and 
n-+a:> n 
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Since the number of p~imes is infinite, one may quite 

naturally ask if this im~l;ies that the number of c~mple-

tions of the rational £iel4 is infinite. The ~heorem 

which follows gives an affirma~ive answer. 

Theorem 2. If p and q a;re disitinct primes, t'ben Q is 
p 

not isomorphic to Q. 
q 

Proof: If Q were isomorphic to Q their additive 
p q 

identiti~s would have to correspond9 The adpitive 

identity of QP may be represented by {xn) 
n 

whe1:e x =p, 
n 



but if q:f:p then 'Pq(xn-0)=-~(pn)=l. f{ence {xn} is not a 

repr~sentative qf the additive identity of Q, and, con~ 
p 

sequently, Q is not i~omorphic to Q. 
p q 
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U$ing exactly the same type of argument as above, one 

obtains 

Theorem 3. The real, field is not isomorphic to Q fo:i;:- any p 

prime, p. 

In the preyious chapter it was establisQed that every 

p-adic number·cou,ld be representecl as an infinite series, 
00 

~ J.=m 
a.pi, just as every real number may be'represented 

1 

as a convergent series of powers of 10. The analogy ex-

t~nds much farther than this, howeve~, as evidenced by the 

following theorem from Bachman (1). 

· Theorem 4. A p-adic number, O< , i.s a rational number if 

and only if.its canonical expans:i,on is periodic. 

Proof: Supfose the canonical expansion of ()(is periodic; 

then oc may be written as 

m m+l . m+k 
Q( ==amp +am+l P + ••• +am+kP 

+b1pm+k+l+b Pm+k+2+ ••• +b .pm+k+j 
2 J ' 

+b Pm+k+~+l+ •••• ·+b.pm+k+2j 
1 J 

+· •• 

=pm(a +a· p+···+a pk) 
m m+l m+k 

+pm+k+l,(Ql+?2P+···+bjpj-l) 

+pm+lt+j+l (bl.+b2p+· •• +bjpj-1) 



where 

and 

m m+k+l ~ 2j ::;:p A+p B(l+p +p +•oo) 

k ~=a +a P+••o+a p 
m m+l m+l< 

- j-1 ;e ..... b1+b p+· " .. +b .P ~ 
' 2 J 

Consequently, 

c:x =pAlA+pm+k +18, __ 1 __ 
1-pj 

Sl 

Tl'lus ex is the sum of two rational numbeJ;"s and is therefore 

rationalo /'"·, 

conversely, if qi(. is a non-zero rational number, one 
t-' 

may write 0( =pnp wher~_13-: with a and b inte<1ers Sl.JCb 

that pfa and pf)). 'l'he;re then exists, by the Eul,er .... Fermat 

theorem, an integer j such that pj S 1 mod ho Thus 

where b f (pj -l) ~ Hence 

where t is an integer, Furthermore t i? 0 'i:f afld only if 

k+l 
Let an integer, k, be chosen such that O ~ t ~ p if 

0( ?:.0 or -pk+l ~ t <. 0 if 0<<.0.. Since (pk+l ,pj-1) =l, there 

exists by 'l.'!1-~9_;-e,~9 of Chapter II, a unique solution 

(mod pj ~1) of 
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Choose a solution, B, such that 

0 $ B ~pj-2 if oe~O and lSB~pj-1 if ()(<Oo 

Since pk+lB = -t mod (pj -1) , there exists an integ~r A such 

that 
j k+l k+l 

t=A (p -1) -Bp · .. Furthermore, O ~ A , p whether 

<X?: o or C(( O, for if 0( ~o then 

O~A(pj-1)-B~+l <. p k+l 

and 

Whence 

j 
O~B f p ... ~. 

And it follows that A~ 0.. Also 

. . k+l k+l 
A(pJ-1)-(pJ~2)p 'p. 

A (pj-1)<. [ (pj-2) +l] pk+l 

j . k+l 
A(p -1)' (pJ-l)p 

and hence A < pk+l. 

In a $!Jimi;i.aJ; manner one can establish that if 0(<.0, it 

is still true that O $A< pk+l. Conseq1,1ently, 

0( =pn A(pj.,.1)-Bpk+l 
I p~-1 

where O ~A< pk+l, O ~ B ~ pj-1. Thus 

0( =pnA+pn+k+lB. 1, 
. 1-pJ 

j-1 . 
and Be; ?=o bip1

• 



He'3ce 

or 

n 
O(::;:p 

+ ••• 

+· •.. 
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. j-1 ( ~ i n_t-k.+,~ ~ . i t mj a :p +p 'Q .p P 
i 1= 1 . _ 

pr~sent~tion is pezrio4iq. 

The st~d~n~ pf ~naly~~s learns e~~~Y ~l\a~ if a s~ries 

of real ~Uimber~,. r u I conve~ges then Q~O ~s n~OO. 
n:;::1 n '1 

ae generqlly leiill;'.'ns, alEJc:;>, by fti.i~ying tll, harmonic serie~ 

& In 
n 

th~s re~ard the p~a~ic numbers (urni~q a v~~Y interesting 

J\ p-a<iiq series u converges if and only 
n 

00 

~. U~ converges. 
n=1 

Tl\~n there 
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(m+r J /, L Un ~l • 
P n=m ' k 

Thus ;if r=O, ~ (Um) J l for every m :;:i,,Nk. Hence U~O ~n 
P i-tlt '°° n 

the p-aQic metr;i.p whe~~ver ~ u conve~ges. 
n;:l n 

On the other hand it u ~o in 1;.\'le p .. ad;i,c ~etr ic, then 
~ 

for any arQi,t.ra:i:f E1'0there exii;ts N such that for every 

m > N, ¢ (U ) <. E • Consequ~ntly, ~o-,: every r a: O, 
p ~ -, 

¢ (>+r U ),~;x [- (U >,¢ (U ), • • • ,- (U )]<.€ 
p n~ n p m p m+ l ,l:' rqr+r 

co 
ana ~ u c9nverge~ by ~pe Cauchy c~tterion for conver­

n=l n 
gence in m~t:r; ic s_paces. 

$umm~ry aqQ CPnclusions 

In this s~u4y ~he p-adiq ~um~ers have ~een investi~ 

gate4 as disti,nct enti~ie$ which we:r;e \f{Qrtby of s~udy in 

their own ri~ht, They w~re develo~ed ~s a completio~ of 

the field 9f ratiopal "umbe~~. and it was es~abJis~ed ihat 

there ~~s no o~l;ler qQmp~etion excepting the fiel4 of real 

cations of p,-adic nqml)efs. Any &Jtqdy o( thei~ c,ippl;i,catj,.ons, 

howeve:r;, is likely to lead c:lir,~tly to their relati.or\sn~p 

to the theo:py of numl;>ers and, in p~rt~~ul~:i:, to the theory 

of congruences. Bofev~ch and Sh,~arevich (2) per~a~s 
I 

summarize the pri~ary arplip~tions of ~he p-~dic numbers 
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when they assert that in qu,estions of divisibility the 

p-adic numbers are just as important as a~e tbe real num-

bers in questions of size. 

During the course of this study, maQr interesting 

avenues for further investigation have arisen. There have 

appeared questions concerning the geometry of p-adic num-

bers, possible topologies of the p-adic numbers, algebra 

and analysis in the p-adic fields, and possible orderings 

of the p-adic numbers. 

In regard to the latter question, Cohen and Ehrlich (3) 

prove that: "Any complete Archimedean ordered field is iso-

morphic to the ordered field of real numbers." This, of 

course, rules out an Archimedean ordering of the p-adic 

fields. 

Mahler (9) in 1940 published a rather extensive article 

concerning a geometrical representation of p-adic number~. 

Under his representation scheme a p-ac;lic inte9er would·· · 

correspond to a'· certain infinite set of points { zn} in the 

upper half of the complex plane. To the reader who is in-
l 

terested in the geometry of nul'(lbers, Mahler's article might 

serve as a foundation fo:r:: very fruitful work. 
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