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CHAPTER I 

INTRODUCTION 

Background Information 

In recent years the study of the electrical properties of oxide 

systems has grown tremendously1 , 2 , 3 • As yet, however, these systems are 

. 4 
only partially understood. One of the major experimental problems is 

the lack of samples suitable for precise measurements. The variation in 

the available samples has led to significant differences in the experi-

mental parameters associated with defect structure. Since conductivity 

theories for compound materials are still evolving, much use is made of 

the theory developed for the simpler elemental semiconductors such as 

silicon and germanium. 

Stannic oxide (Sn02) has been used commercially for several appli­

cations5'6'7, but a detailed understanding of its electronic processes 

is still lacking in many respects. Reports of electrical measurements 

on stannic oxide have been made by several authors. Most of this work 

has been on thin films 8 ,9 , pressed powders10 , sintered samples11 , 12 and 

natural crystals 13 • Recently, work on the electrical properties of 

14 15 grown single crystals has been reported by Kunkle ; Houston , Marley 

and MacAvoy16 , Morgan and Wright 17 , Nagasawa, Shionoya and Makishima18 , 

and Marley and Dockerty19 • These studies show limited quantitative 

correlation, as might be expected due to differences in the nature and 

number of defects in the samples and to the temperature ranges of in-

1 
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terest to the different groups. 

Stannic oxide has the following properties which increase the diffi,. 

culty of obtaining good experimental data: 

a) Large pure single crystals are not available. 

b) Crystal growth occurs at high temper~tures le~ding to a large 

number of defects. 

c) Chemical bonding is largely, but not completely, ionic. 

d) Stoichiometry at high temperatures is dependent upon tempera­

ture and the partial pressure of oxygen in the ambient atmos­

phere. 

e) The forbidden energy gap is large. 

f) Defect activation energies appear to be comparable to the 

binding energies of the constituent ions. 

As a consequence of these properties, many of the effects studied 

in the past are due to defects contained in the lattice of the particu­

lar sample being studied. 

Scope of the Present Study 

It has been the primary purpose of this study to determine which 

properties are inherent to the material itself and are not dependent 

upon crystal defects. 

Intrinsic behavior predominates at high temperatures when the ac­

tive, permanent defect density may be neglected. Two properties which 

may be conveniently measured at high temperatures are the Seebeck effect 

(thermoelectric power) and electrical conductivity. 

In the absence of defect-controlled conductivity at high tempera­

tures these measurements are sufficient to determine the mobility ratio 



of holes and electrons, the intrinsic thermal band-gap and its varia-

tion with temperature, and the ratio of the effective mass of holes to 

20,21 
that of electrons • At high temperatures thermal formation of de-

3 

fee.ts is possible by either stoichiometric or non-stoichiometric mechan= 

isms, In the non-stoichiometric case evidence of oxygen ion motion is 

available if the conductivity is dependent upon the ambient oxygen pres-

22 sure This dependence could occur in the region of defect formation, 

in which case the activation energy would include the defect formation 

e.nergy, or might manifest itself at lower temperatures by providing a 

different fixed defect structure and a higher conductivity level than 

observed in untreated specimens. 

An attempt has been made to determine the true nature of intrinsic 

electronic behavior of stannic oxide and to correlate this behavior 

with that of other materials having similar properties. 

At lower temperatures the mechanisms controlling the defect struc-

cure have been studied by the use of both crystalline and polyc~ystal-

line samples. In this region the conductivity depends both on the den-

sity of bulk defects resulting from reduction at high temperatures and 

the density of surface acceptor states associated with the chemisorption 

of oxygen, The use of polycrystalline samples made possible studies of 

surface controlled behavior through their larger surface-to-volume 

ratio. 

A model has been developed to explain the importance of past his-

tory of temperature and ambient pressure treatment for determining the 

electrical properties of the ceramic samples in the region of surface 

controlled conductivity. This model has been extended to non-equilib-

rium cases which occur following admission of air to a previously evacu-



4 

ated sample. 

Included also are certain suggestions for furt.her study which 

should extend the understanding of the basic transport mechanisms asso­

ciated with compound semiconductors. 



CHAPTER II 

THEORY OF SEMICONDUCTOR STATISTICS 

General Aspects 

This review of semiconductor statistics is designed only to touch 

upon salient points particularly pertinent to the measurements per= 

formed. The background and theoretical development of these concepts 

are presented in most introductory texts on solid state physics 21 , 23 , 24
0 

In general, according to the band theory of solids, there exist, 

separated by a forbidden energy gap, two bands in which free carriers 

(electrons in the conduction band, and holes in the valance band) are 

mobile and thus may be influenced by external or internal fields. In 

the simplest cases, in which the bands are not degenerate and the den­

sity of states can be approximated by a spherically symmetric parabolic 

function, (N(E) ~ E\), these bands are characterized as having a fixed 

energy and a temperature dependent density of allowed states. The free 

carriers are characterized as having an effective mass and a tempera­

ture dependent mobility. These concepts are the result of appropriate 

averages of complex processes over space, time and energy. 

In addition to these bands there exist impurity or defect levels 

(states) within the forbidden gap which are due to imperfections in the 

crystal.· In these levels the carriers are normally not free to move 

under the influence of external fields, but the presence of the levels 

does affect the equilibrium densities of the mobile carriers. These 

5 



levels are normally classed as donors or acceptors depending upon 

whether they are positively or negatively charged upon ionization21. 

6 

At equilibrium there exists a Fermi energy, EF, such that the den= 

sity of electrons in any state, j, is given by: 

1 (1) 

where: electron density of level j 

Nj state density of level j 

Ej energy of an electron in level j 

k Boltzmann's constant 

and T = absolute temperature. 

This form is appropriate if energy is measured downward on the 

energy level schemes. In the further analysis the conduction band 

energy is taken to be zero. Thus all the energies to be treated in 

this review will be non-negative. For a visual representation the ele= 

ctron energy is plotted as a function of position in order to show the 

relative positions in energy space of all energies involved. Thus, in 

an energy level scheme, the electrons have a lower energy if they are 

in a state lower in the plot and holes have a lower energy if they are 

raised to a higher level. The lowest energy state then occurs when 

levels below the Fermi level are filled with electrons and those above 

are empty. 

For the sake of simplicity, such factors as degeneracy of the 

electron gas, spin degeneracy of the state and the complexities of more 

than one ionization level of the defect are omitted for the present. 

Further details in these matters may be found in Semiconductor Statis­

tics by Blakemore24 • 
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The electron occupation of the level is often approximated by 

Boltzmann statistics when the level lies more than 3kT in energy above 

the Fermi level. In this case: 

(2) 

When the level lies more than 3kT below the Fermi level it is usually 

convenient to speak' of hole (or lack of electron) densities, Pj, since: 

PJ· = Nj - nJ. = Nj (1- 1 ) 
1 + exp (EF - Ej)/kT 

= N, l 
J 1 + exp [- (EF - Ej)/kTJ 

(3) 

which is a much easier form for mathematical manipulation. These forms 

are also correct for calculating the density of free carriers in either 

band provided that the proper density of state term (as given later) is 

used. The appropriate energies are those of the bottom of the conduc~ 

tion band or the top of the valence band in this case. 

Figure 1 represents a simple energy level scheme in which the 

mathematical parameters are associated with the visual representation. 

In this cas~ the densities are given by the Boltzmann approximation to 

the Fermi function. 

Before leaving this introductory section it is to be noted that 

many of the above parameters are temperature dependent. A partial 

23 listing of these dependences are 

2 kT 3/ 2 15 * 312 
Nc,v = 2 ( ~2~ _ ) = 4.82 x 10 (mn,pT) 

h 

where: mn,p = effective mass of the electron, hole. 

(4) 
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* · mn,p = -e£feeiti:v,e .. mass. of. ele.etra~-,--hole, · divided by 
· the true electron· mass 

h = Pla..nk' s · constant 

(5) 

where·a and E80 are· constants. 

Rela:tienship of Electrical Conductivity and 

Seebeck:-Coefficient to· ·the Fermi ~.ne;-gy 
'• 

Since this study is .primarily related to the measurement of ~lec­

trical conductivity and thermoelectric power (Seebeck effect), the de-

· pendence of these properties upon the Fermi energy must he understood. 

As there are .two sets of free carriers the eff.ect. :'of each type will_ be 

analyzed and then summed in. the. appropriate ma,nner' to give the desired 

re lat ions for comparison to expe-r:l,Inent. 

The total electrica-1 conductivity, er, is .composed· o'f two .compon-

ents, that due to electrons, crn, and. that due to holes, S"p• · Thes.·e two 

conductivities are t:he products 'of the respectiv-e carrier densities 

· their_ mobilities, µ,n and l,l,p, and the electronic charge· e.. The mooili-­

ties are the average velocftles per unit field s-trength of the free 

. c~rriers. This property is· tempeJ;"ature dependent and, for the case of 

simple lattice scattering, is pr-oportional to r-3/2. 

·-including the dependence of the.carrier densities up-on the Fermi 

energy.'one obt.ains: 
! 

and er (measured} = ~ + crp. 

(6) 

(7) 



The thermoelectric power for electrons is- related to the Fermi 

level and in non.,degenerate cases is given by20: 

10 

2k (8) 
e 

in the case of simple lattice scattering. The term on the right is oue 

the scattering. mechanism and varies from this value to twice this value 

for several simple models. 

Asimilar relation holds for holes and is given by20: 

'(9) 

It is to be noted that these differ in sign and cannot be added quite 

so simply as the conductivities. 

Upon application of the temperature gradient necessary for the 

measurement of this property the thermoelectric fields induce current 

flows which require the weighted sum20 , 

·· crQ +crQ Q = .. n .n_ · p p, 
crn + crp 

. (10) 

for the total (or measul:'ed) thermoelectric power. 

Single Donor Level Case 

In many simple cases it is possible to calculate directly the 

Fermi ~nergy which will in turn give the desired values for the. experi= 

mental properties as seen in the previous section. 

The simplest of all cases is the one in which a single donor level 

lies near the conduction band24 • At low temperatures all the electl:'ons 

particip:ating in the conduction process arise from the donor level and 
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the valence band ts completely filled so that the- number of holes is 

negligible. Thus O'p = 0 so·a = O'n and Q = Qn• 

One may determine the position of the Fermi level in non=degenerate 

cases by solving simultaneousl-y- the charge- neutrality equation, 

(11) 

the equation giving the density of conduction electrons' 

(12) 

and the equation giving the density of electrons in the donor level, 

1 
na = Na "l + e'xp (EP ~ Ea)./kT 

· in which the use of Fermi statistics has been employed. 

and 

The solution for EFis readily seen to be: 

Ea kT · . 
EF = 2 +- 2 ln (Ne/Na) 

Upon proper substitution one finds: 

1/2 
a = e [Ne Na} µri exp (- Ect/kTJ 

which are the d.esired results. 

( 13) 

(14) 

- ( 15) 

( 16) 

At higher temperatures the donor level is completely exhausted and 

if Eg >> Ea no intrinsic electrons will contribute to the conductivityo 

This temperature region is termed the exhaustion regianand the cbnduc-

tivity is given by: 

( 17) 

and the Fermi energy and thermoelectric power are given by: 



. ·. 12 

(18) 

· At s·ti 11 higher temperatures, significant numbers of electrons are 

thermally excited completely across the· forbidden en~·rgy gap, When 

this density becomes· much larger than the ..ds0nor density the sample is 

said to be int:t:ins±c. In this case the number of free holes is very 

nearly equal to the· number of conduction· ~lectrons. Thus the. set· of 

equations: 

n = p 

completely defines the system. 

The solution for the Fermi level is: 

E E 
~F - ., ,g + kT ln N /N = g + 2_ kT ln. mn , 

-T 2 c v T 4 111p 

where use is made of the relations for Ne and Nv• 

This gives for the electrical conductivity: 

The thermo-electric power is given by: 

Q = anQn: +:-O'EQE !JiinQn + ~EQE 
c Qn+ Qp = - ·. 

O'n + O'p IJ,n + iJ,p c + l 

.. k 1 E 2(c 1) 3 ln ~} [ c - g .+ - + ' ;: -- 1 2kT (c 1) 4 e c+ + .~ 

where c.is the ratio of electron.mobility to hole mobility. 

Thus even such a simple model as that assuming a single donor 

(19) 

(20) 

(21) 

(22) 

( 23) 

(24) 
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level gives three limiting regions of conductivity. Assuming that the 

pre-exponential temperature terms cancel, as in the case of simple 

lattice scattering, an Arrhenius plot (ln cr vs 1/T) will show _three 

slopes, one of which ts· related to Ectf 2, another of zero slope, and the 

third related to Eg/2. 

Similar, but more complex changes, occur in plots of the thermo-

electric power which is also normally plotted against 1/T. 

As an example of this behavior, the thermoelectric power has been 

calculated and plotted (Figure 2) in three regions for a simple two~ 

donor-level model. For this calculation the following parameters have 

been used: 

Eg = 2 eV, Edl = 0.4 eV, Ndl = 1016/cm3 , 

mn =~=mo, Ed2 = 0.8 eV, Nd2 = 1018 /cm3 , 

f-Ln/µ.p = 10. 

As the temperature is changed, the thermoelectric power must move 

along one curve, then move to another. As the behavior in the transi-

tion region is unknown, it should be possible in certain cases for the 

slope to approach z.ero or even change sign. It is for this reason that 

care must be used in interpreting these curves over short temperature 

regions. 

Heavily Compensated Donor Case 

Real samples have many defects, and it is nearly impossible to 

produce a real sample which follows single donor level statistics. In 

general there may be several donor levels and several acceptor levels. 

The solution of such systems is very complex but they may often be 
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i' 

solved by graphical means. by following the outline given by Shockley23 0 

Blakemore24 gives a solution to the cai;e of a dominating donor 

level.and several low .. lying acceptor levels. The behavior associated 

with this model may qualitatively be applied to more complicated sys-

terns. This solution· is. based on the following relations: 

1) Na> ~ Na · (25) 

2) Cl'p = p = Pa = 0 (26) 

3) n + na = Na - ~ Na• (27) 

His result for a heavily compensated semiconductor, including the· 

spin degeneracy factor, ~' gives: 

. ' (28) 

(!J = Cl' = eµnNc ~ 
Nd .. Na 

exp Ea/kT (29) .. n Na 

and 

E k Nd Na .. -2k Q= Q = .::....!! + ln .. (30) -·-n eT ·e Na .· e 

when n <<Na< Na• 

Due to the complexities of the solution, which includes an appro~ 

ximate.Fermi distribution function, and the restrictions upon validity, 

it is wise to consult the original workfor details and for solutions 

not restricted to this limitingcase. 

General Aspects of a Variable Defect Density 

The concepts just discussed are applicable to many semiconducting 

materials. However, these results are appropriate only to· systems in 
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which the defect density is constant with respect to all variableso 

There are several mechanisms by which the defect concentrati<m can 

vary wlth space, time or treatment. A ~pace· :variation is commonly asso,. 

ciated with the surface, at which intrinsic levels may ~xist23 (due to 

a discontinuity in the nature of the system) and where there·may be 

other levels arising from local chemical reactions 25• Of particular 

interest in the latter case ·are levels with a ti~e variation .of ,.density 

following the change of any parameter which affects the equilibrium 

chemisorption density. 

The bulk density may va·ry with temperature alone if the major de= 

feet is an equilibrium thermal defect26 • Also possible are bulk re= 

actions in which the defect density is in equilibrium with the compo= 

sition'and pressure of the surroundings. Such reactions are commonly 
.. 

used for changimg the nature· of a. mat:.erial as in the reducti.on of ,oxides 

· . . - - 27 by a vacuum heat treatment • 

In addition the very act of measuring a- property, such as electri'.". 

cal conductivity, may affect the defect structure due to interactions 

w!th the measuring ~ieldo 

It is normally expected that processes o·cµrring in the bulk would 

· predominate at higher temperatures. Effects associated with the sur= 

face are normally expected at lower temperatures although these are 

only rough criteria as the energies involved in the different processes 

vary c~nsiderably from material to material. 

Only in certain restricted cases have the effects of variable de= 

feet density been adequately treated. Some of these are included in 

the following sections. 
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Va1siable Defect Density at the Surface 

In the study of semicon.ductors and insulat·ors the surface is espe= 

cially important~ for he:re the material may chemically react with the 

surrounding§o It is also at the surface that a discontinuity of the 

lattice potential occurs. 

Surface state£ which arise from this discontin~ity may be te.rmed 

intrinsic surface states 23 • Another important class of surface states 

arising from interaction with the. ambient atmosphere are chem.isorption 

states 25 • In either case it is possible for the surface to be charged2.3, 

and as a consequence the charge neutrality condition is valid only when 

averages are taken over the whole sample and not at ea,ch point a,s was 

assumed previously in equation 11. 

The common effect of surface charge is to create a space charge 

region near the surface23 • When this exists, bands and other levels 

within the sample are curved and do not He everywhere equidistant from 

the Fermi energy. As a conseque,nce the occupation of a state depends 

upon its distance f~om the surface. When a suitable model can be found 

for calculating the band curvature, it is possible to average in an 

appropriate manner so that theory and experiment will agree23 • More 

often the effect of a space charga region is neglected or included in 

another term relating the bulk density of carriers to the measured para~ 

meters. 

Quantitative calculations of the space charge region have been 

h 29 ,30 ,31 
given by several aut ors These are norm.ally based on models 

which unfortunately do not have general applicab:Uity. In work on 

single crystals it is oft.en possible to neglect the effects of a space 

charge region since it usually comprises only a minor fraction of a : 
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large sample in geometrical extent. In. thin films and pelycrystalline 

ceramic ni.aterials, however, this region may play a particula·rly impor= 

tan;t role. 

In this study the effects of a space charge region have been only 

.· qualitatively included and no account has been: taken of possible spatial 

variations of conduction electron densities. Thi·s is .tantamount :to 

treating.the surface acceptor levels associated with chemiso:i:-ped oxygen 

as if they are equally distributed throughout the bulk and assuming 

that the other effect of a space charge region is to reduce the ·~ffec~ 

tive cross ... sectional area of the sample. 

Chemisorption Trgnsients 

The·oxygen chemisorbed·acceptor model has been used by se:veral 

investigators 25 , 3z ,33 of oxides to explain their results. Quantitative 

calculathm,s of transi,ents have till now been; less than· satisfactol;'.y. 

To de·termine the· dynamics of a curr.ent transient due to forination 

of chemisorption sites upon a change of ambient, it is ne,c.essary to 

know the conduc·tion: mechanism applicable to the ·sample,·. the nature of 

the chemisorption sites, and the rate of fo.rmation of these sites. 

The following. model is applicable to heavily compensated semicon­

. ductors ( Le. n << N.a < Nd) upon which chemisorbed gas states exist; as 

filled acceptor levels. For .stannic oxi<ie it is believed that ,oxygen 

is the.active component of the ambient forming acceptor centers upon 

. chemiserption. 

Si:nce the semiconductor in question is heavily compensated, ·the 

current for a fixed temperature and applied voltage is given by: 



which :is easily obtained from equation 29 ~ where Nd and Na are donor 

and acceptor densities and· C, a . ...constant. including other material and 
I' 

geometric parameters. ·• In the limiting- case where' n << N, ~ Nd 

In another limiting case in which n << Na << Nd the current· is 

si:ven by~ 

and 
Ill 

1/i ~ c:; N a 
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02) 

(33) 

(34) 

To proceed further .it is necessary to re-interpret Na as being 

composed of three components: - a fixed bulk concentration, an initial 

surface concentration,' and a surface concentration which varies with 

time. 'By defining x as· the s-urface-to .. vdume· ratio, q0 a;s the '{nitial 

surface density -of acc-epto.rs,. q(t) as. the time dependent d'ensity of 

accep.tc;:,r.s, one 'o:bt.ains: 

(35) 

At this p·oint one needs to know the correct relation f'or chemi-

s-orption rate, q(t). · In many cases it is found. that the· chemisorpt;io'? 

34 process obeys an Elovich rat-e law - Le. 

). t + ti q(t -·= A ln --- (36) 

i 
ti 

I 
I: .. ,, 

wheret: is time and t' a constant. As. yet this relationship do.es not 

hav'e a !'unique theoretical basis so care needs to be- taken in the :i,nter~ 

pretat·1on' af the constants involved. 

Inserting this relation into Equations 32 ~nd 34 --yields 
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i(t) ~ C .. Cr [ N * + A ln ( t + t 1 )} 
a · ti 

(37) 

t + ti ( ) ~ a - b ln · n << Na ~ Nd 
.: .. t I 

and 

1 . ~. cm·[' Na + x A ln t + t I} T'(t'j" . t I 

(38) 

~ c + d. ln. ( t 1, t.') . • (.n << :Na << Nd) 

T.he intermediate case can also be easily developed but is less 

useful for simple comparison with experimental data. 

Care must be. taken in using·. these relations to insure tha,t only 

one d.onor level i$ active during the process and that the electron 

occupatlion of the levels h essentially in "equilibrium" with ·the- :vary-

ing accept·or density. 

In·. s·ummary, the current should be proportional to ln( t + t •.); when 

the sample is ve"J;y closely compensated. In.this.case the' Fermi level 

lies: somewhat below ·the active· donor level. .The currene s·hottld be 

invers·ely prop-ort:ional to. ln( t + t') when the, surface is rela:t'ively 
t· . 

clean a·nd the acceptor density is se,mewhat lower than the· donor· qem~ity. 

When this dependence occurs the Fermi level lies above the active cloner 

level. 

Self-Activated Conductivity 

At constant temperature theHelmholu free energy is a minimum for 

the equilibrium state. This free· energy is give.rt by: 

F = U - TS 
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where U is the internal energy, T the absolute temperature and S the 

entropy. Since the entropy is a measure of the disorder there will 

always be some deviation from perfection in all crystalline s)rstems at 

any finite temperature. 

In certain cases the crystalline lattice may not be in equilibrium 

and still be 11 stable 11 in that the times involved in reaching the equi-

librium state are very large. In other cases these times are short, 

and as the temperature of the system is changed a 11 new 11 set of defects 

is formed. If these defects are electrically active, then each temper-

ature requires new values for the donor (or acceptor) density. G.onse-

quently, the previous discuss ion of. the .tempe,ra.ture.,.dep·endence of con-

ductivity is not complete as it has required that the defect cohcentra-

tion remain constant. 

The term "self-activated-conductivity" (SAC) has been coined to 

26 
specify the case in which the defects. are equilibrium thermal defects • 

The following analysis of SAC is extracted from the work of 

Vinetskii and Kholodar26 and is only intended to exhibit the method of 

solution and to quote the results. 

Consideration of the case restricted to Frenkel defects in a bin-

ary crystal in which only one sublattice is active greatly simplifies 

the c.alculations. In this case the defect is formed by the motion of 

an atom or ion from its lattice position to an interstitial posit1on. 

This results in a donor and an acceptor state. (The vacancy is a donor 

if the active element is the anion sublattice.) This type of defect 

leads to the f~llowing energy scheme: 
! 



E = 0 c . 
==--------------~-=----- Ea 
·,c,/"·-·m,("·....--·--------...,------- Ed 
~~~~~~~~~~~~Ev= E~ 

where Ee, Ea, Ed, and Ev are the energies of the conduction band, the 

acceptor level, the donor level, and the valence band. If the donor 
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and acceptor levels are not interacting, then the grand cannonical en-

semble probability of state, P, is given by: 

Nd! Na! 
n.ct!(Nd - nd)! _ na!(Na. ~ na)! 

(39) 

where: - Ne = density of states in the conduction band, 

Nv = density of states in the valence band, 

Nd_ = density of donors, 

Na = density of acceptors, 

N = density of lattice sites (if a vacancy is a d9nor), 

N• = density of interstitial sites, 

n .- density of conduction electrons, 

p = density of free -h.oles, 

nd = density of electrons in the donor level, 

na = density of electrons in the acceptor level, 

w = energy of formation of a Frenkel defect, 

'k = the Boltzmann constant, 

and T = the absolute temperature. 

The stoichiometry condition·requtres that the number of donors be 

the same as the number of acceptors. A further simplification is ob= 

tained by letting the number of lattice sites and interstitial sites be 
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equaL The most probable state is found by maximizing the probability of 

state which is most conveniently done by maximizing its logarithm. (ob~ 

tained by Stirlingis approximation) with respect ton, nd, na, and Nd, 

utilizing the charge neutrality condition: 

(40) 

This gives, with some ma.nipula'tion, the following system of 

equat,ions: 

(41) 

(42) 

(43) 

(44) 

Elimination of n8 , nd, Nd and: p from equations 40, 41, 42, 43 and 

44 gives the following equation for n: 

n + N exp [- W/2kT] [ n(n + Ne exp C- ~d/kT]) ,' }~ 

Ne exp C= E /kTJ (n + Ne exp [- E8 /kTJ) 
, a 

(45) 

At this point it is readily noticed that if the defect formation 

energy is extremely large the second terms on the right and on the left 

are very smallo This gives for n the expected relation: 

{46) 



. 24 

which· is the result obtained earlier for intrinsic conductivity. 

If the f ormati·on energy of defects is small, then these tw:o te;rms 

are large and·the first term on either side may be neglected. In this 

case: 

. (47) 

Oonsidering two other cases when only one term on each side is 

dominant gives: 

n= 1z (N Ne)· exp C- (W + Ed)/2kTJ · (48) 

and 
2 · 1/3 

n = (N Ne) exp C- (2W + Ed)/3kTJ. (49) 

In these latter three cases the number of-conduction electrons, n, 

is'greater than the intrinsic value given in equation 46. It is to be 

further noted that if a material exhibits both- intrinsic conductivity 

and SAC, then the intrinsic conductivity.must occur at a lower tempera-

ture than SACo The order in which the three cases of SAC occur is.de-

pendent upon the densities and energies -involved. 

Vinetskii and Kholodar26 also treat the case of·a frozen donor de-

feet~ of density N0 in addition to the above system. This·yields six 

relations for n of which only two· are not given. above. They are i 

n= (50) 

and 

(51) 

·which a~e identical to relations for a donor level not involving ther-
,. 

mal production of de(ects. 

As a consequence several different activation energies may be cal-
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culated from an Arrhenius plot of electrical conductivity. It is then 

necessary to ascertain which region of conductivity is prevalent (or 

even if the region is a transiti,on regi0n) if the calculated activation 

energy is to be correctly interpreted. 

Oxygen Pressure Dependence of Conductivity 

Electrical col'!ductivity is known to vary with the partial pressure 

of oxygen in many metal oxides. This phenomena is normally associated 

with the formation of defects and a good general treatment is given by 

, . . 35 
Kroger and Vink • The analysis reviewed here is that of Keva~e22 and 

is restricted to pure metal oxides. 

In this treatment the only source of conduction electrons is the 

ionization of oxygen·vacancies. It is further assumed that the only 

carriers are electrons- and that they have only one conduction stateo 

As a consequence the only reactions to be considered are 

(52) 

V o "-- v·. + 
A -;, A e (53) 

and 

(54) 

where e is a conduction electron, VA, VA' v;._· are un-ionized, singly 

ionized, or doubly ionized oxygen vacancies, o="" the oxygen ion in the 

lattice and \(02)g an oxygen atom in the ambient gas. 

If the law of mass action leads to relations involving concentra-

· tions of the above quantities and equilibrium constants, they are: 

(S5) 
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·(56) 

and 

(57) 

where C J denotes conce·ntration and P is the oxygen partial pres,.sureo 

The charge neutrality equation 

(58) 

is used W'ith equations 55, 56 and 57 to solve explicitly for the den= 

s ity ·of conduc tlon electrons ( [ e= J = n). 

- 22 
The solution as taken from Kevane rs paper is given, in figur·e 3. 

It is to be noted that in the high-pressure region [e=J a P~ 116 while 

h l [ =] p" = 1/4 h in t-e ow pressure region e O! • Int e transition region, 

which is slow changing, it is possible to obtain a good fit of C e=J ot 

p 1/ 5 .· over six orders of magnitude of change in oxygen pressure. As a 

consequence it is possible to experimentally observe any power depen= 

dence between these two-limiting values and. still be concerned with the 

oxygen vacancy mechanism. Unfortunately, other mechanisms of defect 

fol:Illation predict rather similar behavior and consequently it is 

practically impossible td uniquely identify the actual defect mechanism 

of conductivity as a function-of oxygen pressure. 

By considering· the lin:iiti-ng cases, i.e~ [e-J 0t P"" l/ 6 ~nd [e=] ot 

p= 114 , it is possible to extract a temperature dependence of conduc= 

tivity •t constant pressure. For this calculation: it is necessary to 
I 
' 

obtain 1the temperature dependence of K2 and K3 • 

following: 

and 

· 22 . 
Kevane gives the 

c (59) 
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( 60)) 

where· eV 2 is the ~econd. ionizati,on energy of the vacancy, K20 a con= 

stant 9 and eVfi the ene-rgy necessary to form a doubly ionized oxygen 

vacancy? 

Consequently, for the higher pressure region 

(61) 

eV =eV 
( fi 2)]· n ~ --e~p [ = v P ~ cons to (62) 

2kT 

As indicated in Figure 3, these pressures are relative and the 

actual pressure required to be in either region depends upon K2 .and .rs o 

Since K2 ., and IS are temperature dependent, the temperature dependence 

of conductivity at const~ntpressure is more complicated in the inter= 

mediate region, 

Field Induced Transients 

It is to be noted that any electrical field exerts a for,ce on all 

charged particles, and, as a consequence, electrical conductivity may 

also re5Jult from. i©nic motiono In certain ionic materials such as the 

alkali halides tha conduction is due entirely to ions4 o In other sub= 

stances conductivity may be a mi.xture of electronic and ionic conduc= 

tion. Some materials, eogo Mgo36 , conduct at different tem)Peratures 

by either i@nic or electronic mechanisms. 

Ionic conductivity is similar to electronic conductivity in that 

there is an intrinsic conductivity at high temperatures and an extrin= 

sic ionic conductivity.at. low temperatures4 o Studies made on mixed 
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conductors normally.include galvanic cell.measurements by which trans= 

port numben fo:!:' specific current carriers are determined36 , 37 • (The 

transport number for species Hi 11 is defined as the ratio of the conduc= 

tivity due to species 1:1 11 to the total conductivity.) 

It is to be expected that all conductors whose bonding: is partially 

ilQlnic €\Xhibit some ionic conductivity, and. as a consequence the effects 

of ionic conduction must be taken into consideration if there7f's any 

evidence of ionic motion. Treatments of ionic conductivity and the 

determination of transport numbers have been given by Vest38 , Kingery4, 

Mitoff36 and Wagner37 • 

Of interest, at this point, is a more subtle.aspect of ionic con= 

ductivity which can occur even- if the transport number for i·ons is very 

small. By consider"tng an electronic conductor with a small contribution 

due to ions, one may easily calculate that the ra-te at which ions of · 

species ic:ross a unit plane perpendicular to the field is: 

dN. .. ].· l 
--=--dt 

v 
L 

where V h the applied potential, qi the valence state of the ionic 

(63) 

species, L.the length of the sample and cr1 the conductivity due to the 

ionic species. For a unit field and an ionic conductivity (cr1 ) of 10=6 

(0 cmr1 this equation implies that around 1012 ions/second cross a 

unit (1 cm.2) plane perpendicular to the field. In semiconductor sta= 

ti.sties this number is too large to be neglected. 

If the electrodes cannot accept and replace via an electrolysis 

reaction the ions att.he required rate they.are termed blocking or par= 

tially blocking electrodes. In this case, there develops a concentra= 

tion gradient of the mobile ionic species which induces a diffusion 
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curremt in the opposite direction. If the applied field is small enou.ghp 

a steady state condition will be reached for blocking electrodes with a 

concentration gradient g,iven by 

-- -dN =S;! E(x) 
dx kT ··D(x)' 

(64) 

_.::,.. 

where E(x) is the electric field vector and D(x) the diffusion constant 

of the ionic specieso This gradient must now be considered as a defect 

level in calculating the desired electrical properties. The solution is -difficult due to the dependence of E(x) upon the externally ap:pHed 

field, the density of conduction electrons (n), ionic species (N):, and 

+ all other charges in the material (P, Nd, N;) ••• ). 

At even higher v,oltages ddN may become so large that the material . x 

38 is no longer stable and decomposition occurs 

In view of the lack of a satisfactory solution to this problem it 

iB advisable to reduce it to a minimum when-making experimental measure-

men ts. This may be accomplished by the us.a of low D. C. fields wh i,ch 

should not greatly perturb the sample, or the use of A.C. or pulsed 

DoG; measurements which do not allow enough time for the ionic motion' 

to occur. 

As this mechanism gives rise to a field dependence of conduc_q.vt_ty 

it may easily bemistaken for space charge conduction. In view of the 

present state of the theoretical treatment of both cases care mu:st be 

taken to avoid making the incorrect identification. 



CHAPTER III 

EXPERIMENTAL DETAILS 

Sample Description and Properties 

Expe!'imental measur~ents were taken on three types of samples: 

single crystals, poroue ceramics, and dense ceramics. The methods were 

initially restricted ;to those which would be applicable to the s,ingle 

crystals since the analysis of polycrystalline ceramic specimens is 

complicated by t;,J,le po·ssible pre,i;.ence of additional conduction mechan~ 

ismso 

The single crystals were grown by the flux growth techniq4e re= 

ported by Kunkle39 • They were grov1n, from a cuprous oxide melt in a 

platinum crucible at a temperc1,turearound 1225°C. After a period of 

one week, crystals in the fcqrro. of needles, platelets, and rods v1ere re= 

moved from the cooled melt with hot hydrochloric acid. The measure~ 

· ments were re$tricted · to the rod .. shaped crystals. which wi 11 now be de= 

scribed. 

The rods formed a parallelopiped with the long axis along the C= 

direction. The cross·s~ction is square in shape. Typically the side 

of· this; square was \ mm v1hile the rod length was 2 to· 3 mm. 

After selection on· the basis of freedom from visible flaws, the 

ends of the rod were ground flat on silicon carbide pa.per taking. care 

not to damage the longitudinal faces. Followingcleaningwith aqua 

regia, organic solvents and distiilledwater,they had a nominal resis= 

31 
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tance ~f 1012 'ohms at room temperature. 

Tb.e two types of ceramic samples we:['.e prepared by H. E. Matthews40 

by. a pressing and firing·. procedure des.cribed in· his M.S. Thesis. 

The dense ceramic specimens were doped. wi.th· O. 7% ZnO· in a bas.e of 

reagent grade Sn02• After. pre·ssing· to· 10,000 psi and firing at 1460°C 

f·or 4, houl;'s their density was 6.4 gm/cm3 which is roughly 90% ·of crys­

tal density ( 7 .o gm/cm3). The gra'in dze res·ulting fr·om this si.riter1ng 

process is around 5; microns. The resultant ceramic· pellets were .very 

hard ·an<l strong with a white color. 

the porous ·or pure·ceramic specimens were pressed from reagent 

grade Sn02 and fired at-- 1245°C f·or 16 hou.r.s. They had ·a density of 4.4 

· grn/cm.3 · and were somewhat .weaker as they chipped easily.·· Their grain 

size was around 2 microns. Again, the samp.l:es were ·white in, color. 

As fired the samples were disks 1/2 inch. in diameter and.l/8 lnch 

thick. Samples approximately 4 nun x 2. nun. X· 2 mm-were· cut .from these 

disks with a carborundum saw. After cleaning in the samemanner'.as the 

single .·crystals, they were very resistive .(around. 1013 ·ohms) at r-oom 

. temperature. 

Experimental Require~en:ts 

The size and resistance of the samples, as well as the desired 

range of measurements, impose severe restricti ·ons upon, the design a.'nd 

c,onstructi·on of the· sample· holder. Electrically the sample holder. must 
! . 

have a ~ery high leakage resistance(:::: 1014.n). In.additfon,the·con= 

struction materials must be capable of wt:t:hstanding. high- tempetatures 

at high and low ·pressures. There must be prov·isions for making. ele= 

ctrical contact to the sample and. temperature measurement at the points 



.·.33 

of contact. 

In addition the sample needs· to .be. enclosed i,n a vacuum tight 

chamber in-which the pressure and.constitution of the atmosphere may be 

varied. .As s.tannic oxide is a pho.toconductor, the. nmp~e must· be 

shie.ld.ed at· all 't'imes from ex·traneous light s.ources. 
I 

T~e temperature of the· sample needs to· be variable, and a furna.ce 

or heater is necessary for. this purpose. The conduc:tivity measurements 

should -be taken with- no tempera:t.ure gradient across the· sample; whereas 

the thermoelectric· power meas·urement requires a temp'erature d·ifference 

of app·roxlmately l0°C·acr,oss the sample. This requires either ·a· movea= 

ble fu.rn;ace or a furnace constructed.with two·or more separately con .. 

trolled hea:ting· elements. 

Due to the difficult;y of meeting these requiremen~ts lt waS d·ecided 

to measure the sample resista:nce w1:th the tW'·o=probe method: instead of 

. the· more desireable four~probe method. ·· The rest1lting de'sign consists 

of·a sample holder which. can be inserted into a 1 1/4 11 diameter ceramic 

tube. The electrical leads are all led out through.the vacuum flange 

·on, which. the sample holde:t:' i$ mounted. The ceramic tube W'hich houses 
:. ; 

the sample, is conne.cted. to an atmosphere control sy~tem and· is sur-

· rounded by a moveable tube furnace. 

Atmosphere Control S.ystem. and Sample C}\aniber 

, ·Figure 4 is a block diagram of the sample chamber and atmosphere 

controL system. By manipulating. the gas inlet valves and'the · valve to 

the diffuslon pump any pressure down to ie-7 torr. could be maintained 

· at lower temperatures. At .high- temperatu,res (- 1200°C) the low pressure 

limit was only l0""5;torr due to,outgassing and/or diffusion through.the 
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chamber wallso 

:Pressure readings .from10~4 torr to 760 torr were obtained with 

the Alphatron vacuum gauge, while lower pressures were obtained from 

the built-in pressure indicator associated with the Vacion pump. The 

diffusion pump was added after the system was designed due to the large 

gas load at high tempera t1,1re13. 

All vacuum seals in the main chamber are Con--Flat 2 3/411 O.D. 

flange~ except for the ceramic=to=metal seal which.connects the alum-

ina sample chamber to the remainder of the system. For this seal a 

Con=F,lat flange was machined to accept the ceramic tube, which was then 

glued into place with Varian Torr Seal vacuum epoxy. As this· Joint must 

be maintained at a temperature.below 100°C, it was necessary to place 

the sample and the heater sotne distance away. 

Prior to installation of the ceramic chamber the system could be 

',. =9 
evacuated to the 10 torr range as indicated by the Vacion pump con-

trol unit. To reach this pressure.it is necessary to valve off the 

Alphatron gauge head and the diffusion pump as well as heat the chamber 

thoroughly for outgassing purposes. 

Sample Holders 

Two different two.;.probe sample holders were constructed; one of 

quartz and the other of high purity alumina' ceramic. As both were simi-

lar, only the ceramic sample holder will be described. 

Figure 5,is a detail sketch of t;he platinum and ceramic components 

of this holder. The platinum contact plates are held to the ends of 

the two=hole alumina capillary by the lead wires. The upper alumina 

capillary is spring loaded and·presses·the contact.plates against the 
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sampleo The larger alumina tube serves to hold.the two capillaries in 

alignment while the long·. capillary to· the side serves to sqpport the 

leads to the bottom of the sample. 

The method of. supporting. the ceramic comp·oneri-ts is shown, in figure 

60 Where necessary the brass is glued.to the ceramic with Torr Seal 

epoxyo The vacuum seal is accomplished by gluing the ceramic capillary 

into the stainless steel flange. The lead wires are sealed to the· cer= 

amlc with TGrr Seal ep.oxy in such-a manne-r that.the only electrical 

leakage path. is through alumina. 
' 

During the course ·of the· study current transients were .noticed. 

Consequemtly. it was felt. that four .. probe measurements were r:iecessary to 

determine 'vthether. the; re.si,stance changes were due to the con·tacts · or 

were truly a; bulk- ·effec,t. Because of small size of the single crystals 

it was decided to· restrict the four-probe measurements ·to the larger 

ceramic spec1mens~ 'The resulting.four.;.probe sample holder is depicted 

: in figures 7 and· 8. lt:.is designed for conductivi-ty measurements on 

samples approximately 1/2 inch long and. 1/8 inch on the side and is con= 

structed of alumina ceramic and'platinum. The· vacuum seal is again ac= 

complished with Torr Seal epoxy. 

Electrical·Circuitry 

Earlier it was noted. that four l~ads 1Aere attached >to the. sample. 

On either end were one platinum and one platirtum:..10%.rhodium lead at= 

tached to a common platinum contact. By attaching a reference j~nction 

and a Sargent model SR recorder to either pair the temperature of.that 

end of the specimen could be determ'ined. By attaching an electrom.eter 

and a battery in series w'iththe sample via the platinum leads the cur= 
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rent could be measured thus giving the·resistance •. Upon removal of the 

battery and switching. the electrometer to the voltage range the electro= 

·· meter ~ould read th~ thermoelectric voltage across the samples. Thus 

all the necessary parameters- could he readily measured. 

The ·circuit. diagram, figure 9, indicates the switching· network· 

. used to connect the. desired wires to the mea·suring apparatus~ The · 

switches used in this circuit are Shallcross Series 4·whic;:h.have an in-

1 . i ·1 h. 1·012 r, d . .. . 1 · su at on, res stance greater t an · · .• ~ an . a contact res1s-ta0nce ess 

than 2. x 10-.,.3 o. The theitlnocouple connections were made with Le-eds and 

Northrup quick disconnect thermocouple connect·ors. All other comrec= 

tions used Amphenol series 82 connectors. Though not shown,inthe 

drawing this d:reui:t: is c:ompletely shielded. 

Table 1 indicates the functions of thef.ive switches· involved in 

this circuit. It must -be noted. that in addition- to·. correct settings of 

these switches the Keithley 610 B electrom.eter must be· in,the cQrrect 

·· range and mode (i.e., current or voltage). The purpose of the circuit 

composed.ef R1 , R2 , s3 , s4 , and s5 is to improve the accuracy of·measur= 

ing f1.T needed for the· thermoelectric power measurements. It. is used to 

· electrically subtract· a portion. of the thermocouple, v·oltage·-s'o tha:t the 

two temperatures may be read on. the most sensitive ( 1. 25: MV) scale of 

· the Sargent recorder. This circuit is· :not calibrated. so, the difference 

voltage was read directly and conver:ted ·to a temperature difference by 

means C:,f · thermocouple tables. · This differential temperature should .-be 

I 
accurate to within, 1°Ca 

As· is apparent, the sample may -be grounded: to the case or through 

the thermocouple lead. The provision for removing the thermocoupl~ 

while measuring currents is due to the IR voltage drop in the thermo-
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Switch Number 
1 
2 
3 
4 
5 

Function 
Sample Selector 
Battery Voltage 
Bucking Voltage 
Bucking Power 
Recorder Shorting 

Stepwise Readout for Conductivity and Thermopower 
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Settings 
6Position 
5 Position 

on - off 
on - off 

TC - short 

Reading. Number Reading Switch Number and Position 

l 
2 
3 
4 
5 
6 
7 
8 

9 

10 

1 2 3 
Top Temp. a Na b 
Top Temp. w Bucking a Na a 
Bottom Temp. b Na b 
Bottom Temp. w Bucking b Na a 
Fwd. Thermal Voltage c a Na 

. Reverse Thermal Voltage d a Na 
Reverse Current d .b,c,d,e Na 
Fwd. Current c b,c,d,e Na 

(Readout Order 1,2,4,5,6,7,8) 

Continuous Monitor of Current and Temperature 

Fwd. Current Bottom ·e b,c,d,e b 
Temp. 

Rev~rse Current Top f b,c,d,e b 
Temp. 

Table I. Switch Information for High Temperature 
Conductivity and Thermopower Apparatus 

4 5 
Na a 
c a 
Na a 
c a 
Na b 
Na b 
Na b 
Na b 

Na a 

Na a 
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couple lead which introduces an error in the· thermocouple voltage when 

~6 . 
111argeir currents (> 10 amps) are flowing. 

The lead resistance must be taken into account when the sample re.~ 

· sistance is low. Consequently, the sample contacts were pressed toget~. 

her and the lead resistance measured as a function of temperature in 

· order that this correction could be made. At this same time meas1.1re~ 

ment of temperature as indicated by both thermocouples was made in or-

der to evaluate the possibility of error due to different couples. This 

q.ifference voltage corresponded to less than 0.2 degrees in all temper~ 

ature ranges. 

Doe to slightly different wiring of the quartz sample holder it 

was used for making s•ome low frequency .(10 and 100 cps) A.C. conductiv= 

. ity measurements in.accordance with the schematic figure 10. Fot' this 

measurement the Keithley 610B electrometer was used as a unity gain am~ 

· plifier. The electrometer amplifier has a freq1.1ency response from () to 

200 cps but the circuit is effectively limited· to measurements of sample 

4 
resistance less than 10 0 due to RC. time effects. 

In.order to reduce the sample voltage fo:i;.- some measurements, the 

sample holder and electrometer were connected according to figure 11. 

In this mode of ·operation the sample resistance (Rx) is given by: 

R x . ( 65) 

where RL is the lead resistance, Vk the voltage read'.. on the electrometer, 

V the applied voltage, and R5 the series current limiting resistor. 

Measul;'ements taken in this manner were limited to higher temperatures. 

Normally the sample voltage was less than 0.1 volts when this circuit 

was used .• 
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The four=probe measurement required a somewhat different:measuring 

technique. As the observations of transients was desired, a four chan= 

nel recorder was used to, simultaneously plot the current, ,the. thermo= 

couple voltage and the·two;probe·voltages. The block diagram of this 

circuit is shown in figure 12. 

In the absence of bulk resistance changes, the difference in the· 

probe voltages divided by the current reading· should be c·onstant. By 

feeding the two probe voltages into the differential input of the MoseQ 

ley X=Y recorder on the Y axis and the applied curre:nt· into. the X axis 

as indicated in figure 13, one obtains a straight line passing through 

the origin if the bulk resistance is constant. 

General Experimental Procedures 

As the samples upon· vihich, the measurements were made are· very :i:-e= 

sistive at.low temperatures, itwas necessary to insure that no surface 

contamlnarits were affecting the measurements. 

In. general the samples were· cleaned of cutting oils, fingerprln,ts · 

and other:contaminants by the following- procedure: 

• a) 3 washes in acetone. in ultras·onic cleaner 

b) 2 washes in methanol in. ultrasonic cleaner 

c) 2 washes in distilled water in ultrasonic cleaner 

d) Boiling for 15,minutes in aqua regia 

e) l rinse in distilled .water 

f) Boiling for 15:. minutes in hydrochloric acid 

g) 4 rinses in distilled water in ultrasonlc cleaner 

h) 2 rinses in' methanol in.ultrasonic cleaner 

After this cleaning.procedure special care was taken, to-prevent further 
·' 



...._
1
_

1 
_sa_m_p_le_. ___ 

1
__. R 

:q, ~ 

Bottery Box 

I I 
·,i,-, 
11'¢' 

Keithley 
Electrometer 

(amps) 

Keithley 
Electrometer 

(volts) 

Moseley Recorder Model 2S 
adapted to plot 4 channels 
on a time base 

t c. 
Reference 
Junction 

Keithley 
Electrometer . 

(volts) 

Figure 12. Schematic Diagram of Electrical Circuitry 
Used with Eour Probe Sample Holder 

48 



. eattery · Box · 
; 2, 4, $, 22. 45? 

and 90 V 

l<eithtey 
: Eteotromtter 

!111 I . 
(volts) 

Keithley 
e:tectrometer · 

#2 
(volte) 

Moseley x·y ~ecQrder 
Model es 

Sample· 

Keithley 
Electrometer 

w63 

(amp$) 

Y (Current} 

Figuria 13. · Schematic Diagram for Observing Field 
Dependence with Four Probe Sample I 

Holder 

49 



C'ontamination of the samples until they were installed in the sample 

holder. 
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It is to be expected, t,hat water remains upon the surfaces, after 

this cleaning. As a consequence the samples we·re heated· to around 400° 

C.ina vacuum of 2 microns or less £.or a period of two to four hours. 

In order to obtain reproducible starting· conditions the samples were 

then heated to l000°C in clry air which leaves the samples in a highly 

resistive state. 

In an attempt to improve contact to the sample, end portions were 

plated with platinum bright; however, no significant differe·nces from 

simple pressed contacts were observed, 

For measur.ement of electrical conductivity and thermopower th~ 

sample temperature was allowed to change slowly. Several checks, were 

made by reversing or·reducing the rate of change of temperature to de~ 

termine if the samples were near equilibrium. 

The conductivity and thermopower were normally taken on subsequent 

days in order that the conductivity could be measured without a temper­

ature gradient across the sample. Occasionally the c0nduCtivi.t:r was 

measur~dwith a temperature gradient a.nd,no significant difference was 

noted for larger measuring fields. 

In measuring the conductivity of the porous ceramic as a ft1nction 

of pressure the sample was maintained· overnight at the desired tempera.,;, 

ture. Depending upon the temperature a thirty minute to four hour 

period was allowed for the sample to reach equilibrium after a pressure 

change. 

At the lower temperatures (less than 500°C) the fixing treatment 

is quite· important and this da;.ta :w.ill>i:ie,,s.upplted wttli the 'results.·, .. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

Introduction to Experimental Re.sults 

The experimen~al results will be presented in three major s-ctions 

which are distinguished only by exp.erimental details. In the first · 

section are presented data taken at temperatures from 500°Cto ll00°C. 

In this region both electrical conductivity and thermoelectric power 

were evaluated. In the second section the data presented were taken at 

lower temperatures (20°C to 500°C). In the final section are presented 

data associated with current transients following application of an 

electric field and with variation of resistance with the applied field 

strength. 

In the analysis it will be assumed that the effective mass of the 

free elections is 0.2 m0 and that they may be characterized by a lattice 

scattering mobility (µn) which ;is 100 cm2/volt..;sec at room temperature. 

These parameters have been evaluated by several authors but weight has 

been givento the results of Marley and Dockerty19. 

In, addition it will be assumed that the conduction band is not de= 

generate and that the densi,.ty of states is derived from the standard 

parabolic energy relation as described earlier. 

High Temperature Results 

The majority of the electrical conductivity data was taken,by a 

51 
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two probe technique with the apparatus described eal;'lier. At tempera-

tures above 700°C this data was taken with an applied potential of 100 

MVor less due to the appearance of field induced transients at higher 

applied potential "alues. Bdow 700°C, in air, the sample resistance 

was large enough to require the use of larger fields which did on o~ 

cast.on result, in .t.ransient values of the cu.r.rent. : In ·these cases it was. 

attempted to evaluate the current prior to the onset of the field.in~ 

duced changes. 

The sample heater was positioned to reduce the temperature differa 

ential across the sample to a minimum. By following this procedure the 

conductivities measured in both directions agreed in value, which was 

not always the case with higher fields at the high temperatures. 

Figures 14 and 15 exhibit the temperature dependence of the e1e-

ctrical conductivity of single crystal G-25 (0.65 mm x 0.65 mm x. 1.5 mm) 

in an. air atmosphere of 140 torr. The conductivity er is obtained from 

the experimentally determined resistance, R, through the relation GT= 

L/(AR), where Land A are the geometrical length and cross-sectional 

area of the sample. This slightly reduced pressure was maintained by 

allowing dry air flow into the system. and pumping at slow rates. 

Figure 16 presents thermoelectric power data taken the following 

day under indentical conditions except that a temperature gradient of 

10 to 20°C was developed across the sample by moving the heater to an 

· off~cerrter position. The Seebeck coefficient Q is the ratio of the 

thermal voltage to the temperature differential across which it is de­

veloped. Here use is made of the conventional sign convention20 • 

In both cases the specimen was maintained over~night at th€ high 

temperature, and the measurements taken as the temperature slowly de-
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creased after reducing,.the heater power •. This ra·te was from 60 to 100° 

C/hr. The effect of making the measurements during a.temperature change 

was periodically checked by increasing the heater power and attempting 

to observe an hysteresis effect. In the high temperature :region no 

effects of this nature were observed. 

In the following three figures (figures 17, 18 and ,19) are plotted 

similar data on G-25 taken at a reduced pressure; again these data were 

taken with a dy~amic gas flow. 

Figure 20 presents conductivity data on. the same sample taken by 

means of a low frequency A.C. technique at atmospheric pressure. The 

deviation of the 10 cps and the 100 cps data h believed to lie in cal­

ibration of the meters used in making the measurement. At lower temp­

eratures this curve deviates from the D.C. data due to RC time constants 

but the high temperature region agrees quite well with the equivalent 

D.C. measurements. 

Figures 21, 22 and 23 give the dependence of the electrical con­

ductivity and thermoelectric power of a dense (doped 0.7% AnO) ceramic 

specimen S-14 ( 1.19 mm x 1. 90 mm x 3 .95 mm). In this case the data are 

taken at atmospheric pressure i,n static air. 

Similar data for a pure ceramic S-15 (1.99 mm x 2.50 mm x 3.01 mm) 

under dynamic air flow at 180 torr are presented in figures 24, 25 and 

26. 

The concluding conductivity curve of this section is presented in 

figures 27 an<:! 28. The measurement technique used in this case was the 

four-pi::obe technique with a potential of 10 to 100 MV across the po­

tentiaL probes. This sample was a dense ceramic specimen 4P2 an<( the 

data taken under a dynamic air flow at 480 torr. 

The data at higher temperatures were analyzed on the basis of an 
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intrinsic model with µn and mn given by: 

3/2 
µ0 = 100 (300/T) 2 (cm /volt=sec) 

69 

(66) 

(67) 

In addition it was assumed that the temperature dependence of the ener= 

gy gap is given by 
I 

E = E = Q'T, g go 

where or and Ego are constants. 

These data are tabulated in Table II. In addition this table 

lists results on two. other single cyrstals, G=9 and G"'21. 

(68) 

In calculating the values for this table the effective energy gap 

at T= 0 (Eg 0 ) was calculated from 

E = m2 olncr 
go ol/kT 

wh:lch. h readily obtained from equations 5 and 23. 

Then the mobility ratio (µ. /p, :::i c) was ca'lculated from 
n p 

=2 oeQ. = 
ol/T 

(c = 1) 
(d + 1) Ego 

(69) 

. (70) 

which is obtained by differentiating equation 24 using the relation 

given in equation 5 fq1r Eg. 

Since the conduction is taken to be intrinsic, one can estimate QI 

utilizing equations 5 and 23: 



Q 1 Q -olncr -oeQ E µn ~ E Fi 
a og a ol/kT ol/T go µp OI 1Di1 g gure 

1250°K 1250°K 103/T = 0 103/T = 0 300°K 
(O.cm)- 1 (µV/deg) (1,1,V/deg) (eV) (eV/deg) (eV) 

G-25 - c 2.5 x 10-2 -825 6.60 555 2.05 1.73 4.10 11.8 15.7 x 10-4 1.65 3.63 14,15,16 
140 Torr 
G-25 c 8.o x 10-2 -710 6.9o 410 1.93 1.40 3.86 6.3 11.0 x 10-4 o.2s 3.35 17,18,19 
10-9 Torr 
G-25 - c 5.0 x 10-2 2.03 4.06 20 
AC 
G-21 c 1.0 x 10-l -700 6.95- 460 2.00 1.57 4.00 7.0 17.2 x 10-4 0.41 3.48 
760 Torr 2 -
G-9 c 2.4 x 10- 6.70 2.00 1.53 4.00 16.2 x 10-4 3.51 
200 Torr 2 

.G-9 c 3.2 x 10- -685 7.16 575 2.10 1.57 4.20 6.9 18.0 x 10-4 1.57 3.66 
260 Torr 
G· .. ·9··· · c 3.6 x 10-2 -690 7.26 250 2.10 · 1.37 4.20 4.8 18.4 x 10-4 ,0.02 3.65 
13 x 10-3 Torr 

. . 

-------------------------------------------------------------------------------------------------------- .------------------
Crystal mean 4.96x 10-2 -722 6.93* 450* 2.03* 1.53* 4.06 7.3 17.1 x 10-4 0.79 3.55 
Calculated from crystal mean values with* 4.06 7.5 17.0 x 10-4 0.30 3.55 

---------------------------------------------------------------------------------------------------------------------------8-15 1.0 x 10-2 -600 5.6o 100 1.87 0.80 3.74 2.5 11.8 x 10-4 3.65 3.39 24,25,26 
180 Torr 
S-14 1.1 x 10-2 -750 7.48 800 2.00 1.60 4.00 9.0. 19.3 x 10-4 9.78 3.42 21,22,23 
760 Torr 
4P2 2.5 x 10-2 6.48 2,00 4.00 15.4 x 10-4 3.54 27 ,28 

Single Crystals G-9, G-21 and G-25 
Pure Ceramic (porous) S-15 
Doped Ceramic (dense) · S-14 and 4P2 

Table II. Summary of High Temperature Results and Intrinsic Analysis 

"'J 
0 
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Taking µ.n = 100 (300/T)312 and-~mp = 1 obtains from equation· 71: 

(72) 

* * The assumption that~~= 1 introduces but little error in the 

calculated value of ot for reasonable values of this product • 

. The ratio ~/~ can now be calculated from the 103 /T intercept of 

the thermoelectric power with the re lat ion (from equations 5 and 24): 

Q = -k/e · JJ.n • IJip_ ( ..:!. + ·2 ·J· +:3/4 In m /m. 
· ·' + · 2k · · P n IJ.n µp 

(73) 

Other methods which use the magnitudes of a and Q at a finite tem-

perature result in values quite comparable to those obtained in this 

more direct: .manner. 

For the. single crystals the derivation fr·om sample to sample is 

small for the measurements and.the calculated values of E' and~. go 

There is a somewha.t larger deviation in the relative mobilities, but . 

these values are very sensitive to small inaccuracies in the thermoele-

ctric power measurements. The obtained values tor the effective mass. 

ratio ·center around unity and may be interpreted to signify that ;th~re . 
I : '·., ·:• 

is no great disparity between the two masses. This calculated para­

meter :ls again highly dependent upon the magnitude and slope of the 

thermo7lectt1c power. 

It might be pointed out at this time that the dense ceramics be-

have quite similarly to the crystals although there are signiUcant 

deviations in the case of the porous ceramic. 
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The values obtained from this analysis are in r-eas·onah1e: agreement 

with previously reported vdues. A more· direct compal;."ison will be pre-

serited inthe,concluding· chapter. 

Other mechanisms due to defe.ct formation- have- been considerec( but 

the lack of an oxygen ·pressure dependence in the- s1ngle crys·tals and 

dense ceramtcs does not' appe·ar to be cons,is·tent w-ith thi's · posis;i6-ility. 

The stoichiometric the·rmal defect model26 is not conS'idered Hkel.Y s·ince 

the intrinsic model yields a g.ood. explanation for the· experimental re-

sults. 

Between 500 and .700°0 :the. conductivity curves break slowly i;nto a 
. ."!~ '· . 

shallower .slope. as other ··cortduc:tivity mechani·sms come' into play. The 

existence -of· the negative thermoelectric p-ow:er indicates conduction by 

electrons, but- their sources. have not been uniquely,.tderttifi'ed. Be.;. 

cause ,of the· experimental. difficulty in, obtaining. thermoelectric .power 

values for the region where it is assured that hole conduction is com-

pletely negligible, no accurate check of the.values of mn and k· has 
n 

been possible. However, the results indicate plausible consistency 

with the values given earlier. 

As mentioned earlier, a: variation of conductivity with ambient pre-

ssure may be r~adily explained by a thermal defect mechanism in which 

stoichiometry is not maintained. Since the conductivity of the s.pnples 

below 700°0 variedwith·treatment, it was originally felt thatthe,high 

tempera1ture· conductivity might be .controlled by.a thermal defect mecha...­
ii 
I 

nism in!,~tead ·of intrinsic behavior.,:· and, . as a :consequence, a direct_ e-

valuation of this phenot'nenon was atten,.pted. 

At' temperatures above- l000 9 C: the·conduc:tivity of all samples d~d 

· show a sl:i,ght variable behavior. However, the single crystals artd'the 
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doped .ceramics after reaching a steady state condition yielded no con= 

sistent pressure dependence.. The de-rise ceramic specimen. used in the 

fourc:.probe sample holder showed essentially no change in conductivity 

at 10.50°C over a pressure range of.five orders of magnitude. C:onse= 

quently, it is felt.that the changes noted at high temperatures are not 

due to an oxygen vacancy mechanism even though, after various pressure 

treatments at high temperatures, differences show up readily at lower 

temperatures, tending to higher conductivity with reduced:pressure. 

The small changes noted at high temperatures may be associated with the 

contacts. 

The·porous ceramic specimen S-15differed from the others in that 

fr,om the conductivity slope the. activation energy measured in the high 

temperature region was s-OII1ewhat smaller. In addition it showed·a de= 

finite depende'nce of oon:ductivity upon ambient oxygen pressure ( figure 

29). This effect appeared in air and o:x;ygen but was greatly dit!!-inished 

in nitrogen. Between 700°C andll00°C the conductivity appeared to be 

related to the oxygen pressure by: 

-1/n 
cr Of P, 4.9<n<5.5 

where P is the oxygen press4re and n a constant which varies with 

(74) 

temperature. Conductivity isobars from this s-ame data are presented in 

figure 30. This figure indicates a change in conductivity magnitude 

but no change· in activation energy with a change in pressure. The 

activarion energy from.this plot (!lJ:) is 2.1 eV which agrees well 

with other data but is somewhat higher than that measured on this 

sample at a constant pressure of 180 torr. 

When an analysis based on an oxygen vacancy mechanism was tried, 
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it yielded values of 8.eV for the energy required to form a doubly ion-

ized vacancy, and 5.5 eV for the energy of forma:ti-on of a singly :1:onized 

vacancy. These values seem to be much too large if this mechanism is 

to predominate over intrinsic conductivity. 

The calculation described requires the elimination of [VA], [V.AJ 

and [VJ/] from equations 55 through 58, resulting in: 

(75) 

which is linear in (K2/K3 ) and K2• Inserting experimental va,lues of n 

and P allows ready calculation of (K2/~3 ) and K2 from any pair of points 

at each temperature. Averaging over several pairs resulted in the best 

values for these constants. Since both K2·,and ~3 are of.the form C exp 

.;E/kT (equations 59. and 60), Arrhen:i,us plots of K2 and (~2/~3 ) give the 

a.pproximate value of the associated energies. 

:Because the effect was not _noted in the remaining samples, the ana= 

lysis was not pursued. The sample ~n qu.estion is quite porous and- the 

effect could well be related to this fact. For example, if the total 

conduct;ion is affected. by pi!>re- cond:u.cti:on.,:, .it should. increa:Se with a 

cleaner-surface (i.e., lower pressure)._ Due to the nature of the· two-

. probe experime-ntal method, the possib"ility that the· changes noted with 

this sample are due to contacts has also not been eliminated. 

Even· though intrinsic conductivity appears to be dominant at the 

highe-r temperatures, it should be emphasized once again that thermal 

produci:ian of defects does occur as evidenced by th~.:i::eduction :of all 

samples at high temperatures and :!;'educed pressure. Figures 31 and 32 

indicate the difference in behavior of the doped ceramic saJl!.ple S-14 as 

treated for one week at 700°C under a pressure of 10.;.3 torr from that 
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·observed with at:mosphe:dc pressu.re.meiasuremerits· (vide figur.es 22. and ·23), 
. -

In. thi~ case, a·s in the others.,· the room temperature conductivity is in-

· creas~? by several orders of·magriitude. 'l'his phenomenon is accompanied 

by the appearance of gray color thrdughout the ceramic specimens. The 
,.,;_,,;· 

·. samples regain their initial properti~s after -being .heated to l000°C in 

air at atmospheric pressure for a few hours. 

Low Temperature Measurements 

Between room temperature and 500°C mea,su:i:-emerits of thermoelectric 

power were not possible on,non.:.reduced samples due to their high resis= 

·tance •. The Single crystal conductivity data in this region.are, of 

course, primarily dependent upon the previous high temperature treat-

· ment. .'Of particular interest for. this section is the variation in, the 

pr·operties of the non-reduced ceramics following low temperature=pres-

sure treatments. There seemed to be both a slOW' mechanism and a fast 

mechan:l.sm changing the·conductivity betW'een 200 and .500°C. These were 

. exhibited~ in conductivity overshoots and undershoots as the tempe:i:-ature 

was increased or decreased. This phenomenon,is believed to be related 

to the long times associated with reaching. a chemlsorption equilibrium 

f.ollowing a change in external parameters. 

Figure 33 is typical of the behavior Just noted. In this case a 

dense ceramic specimen was held at· about 44Q°C•overnight in air and the 

current measured with a ·two volt potential drop across the sample while 

thet~perature was allowed to decrease. After tracing-the conductivity 
··.·. 

upon cooling· the heater power was then. increased. to return. the.sample 

to its orig:1.-nal temperature. The· resulting curve. shows a hysteresis 

effect near the high temperature fixing· ·point. The phenomenon ts re-
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producible in a qualitative manner but seems to vary with fixing time, 

temperature, and rate .of temperature change. It was also noted.that by 

keeping somewhat below the original fixing temperature the conductivity 

is reproducible upon· heating and cooling. 

Figure 34 relates the variability of the conductivity following 

the low temperature treatment. rn this case the treatments were in.a 

vacuum ( 10= 7 torr) following. a high .temperature air treatment. The 

sample was successively fixed for short periods at higher and.higher 

temperatures, At fixing temperatures above300°C the system seemed to 

·. stabilize with reproducible conductivity slopes and values until dras= 

tic reduction (see figure 31) occurred at. 700°C. 

On a compensated model (equation 29) the curve fixed at 114°C in= 

dicateB a donor level at 0.4 eV. The 227°Ccurve indicates a donor 

level around 0.2 eV. The higher temperature curves indicate even shal= 

lower donor levels coming into play. 

These changes upon low temperature treatments implied a surface 

mechanism, in which the conductivity of a closely compensated·semicon= 

ductor may be changed quite drastically by a slight change in surface 

acceptor density. 

If this is true and the surface acceptor states are associated 

· with chemisorbed oxygen, then the conductivity should also change fol= 

lowing a change of· ambient from vacuum to air. This prov,es to be·. the 

case but the high temperature design di,d not allow accurate measure= 

ments at room temperature. Some difficulty was alsoexperienced·at 

higher temperatures since the speci,men temperature fluctuated upon 

change of ambient in this region. 

Figure 35 gives the room temperature change of conductivity of a 
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dense ceramic as taken by another member* of ·this research- group in an-

other :apparatus. · In -th.is case the· curve agrees with the theory -for a 

closely comper,,sated semiconductor given.in Chapter II in,that i vs ln 

(t + t.') gives a straight line dependence. 

· Figure 36. shows both. the current ancl inverse current of a dense 

ceramic at 219°C as a function of log t. In.neither case does a well-

defined lbiear dependence occur, perhaps since in, this case there was 

some 'temperature change associated with the pressure cha'nge. 

In the following. curve (fig1,1re 37) taken at 396°C the inverse cur-

·rent appears linear with ln(t + tr) as predicted by the previously de-

-scribed theory for a .less. highly compensated semiconductor. Again, the 

·- temperat-ure change hinders an. accurate analysis of the data. 

ln<order to insure that the phenomenon is not associated with the 

contacts a dense ceramic specimen was used for this measurement at 380° 

c·in, the four-probe sample holder (figure 38). In-this case· the inverse 

dependence seemed to hold for short times and then. a break occurred 

folfowed by a region in which the direct dependence occurred. This is 

the expected order if the materia 1 is becoming·_ more highly cotnpensa ted 

with time. 

In c.onclusion, this section· indicates that surfa-ce controlled be-

havior via a chemisorptiow mechanism- is affect!ing the conductivlty. The 

measurements here are only preliminary and no quan:titat:i,ve ana·lysis has 

been a~tempted. Some experimental difficulties have been, noted- and a 

I 

follow~ng section·l'lill include designs for reducing.these probl-ems. 

While t;:he data indicates that the theory presented earlier may be cor-

rect, it is by no means conclusive. A more detailed study of 'this be~ 

*H. E. Matthews 
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havior is being given the atte:ritlon of ·other members of thi-s g,roup. 
I 

Time and Field Dependence of Conductivity 

This concluding.portion of the presentation of experimental results 

is devo·ted to current. transients following .. the .application: of. the ex .. 

ternal field and to the dependence sof. sample current ·on fielc;l strength. 

Figure 39 shows the current v,oltage relationship on a porous cer ... 
' 

amic spec"imen af 438°C :in dry air in. a two pro:be sample· holder. In 

this case platinum paint electrodes were f.ired onto the end$ of the sam-

·pie. 

-Figure 40 is a tracing of the time-base recorder plot of tempera .. 

. ture, current and probe potentials fr·oni.- ground. in a four.;.probe sample 

holder of a dense ceramic.specimen. Thi.s data was taken.at 416°C with 

a 90 volt potential applied to the sample. 

Figure 41 gives the apparent resistance as a function. of time in 

the four.;.probe sam.ple holder fallowing. the application of a 90 volt po .. 

· tential at 416°c: to a den.se ceramic sample. It is to be noted :that the 

center( .... 1/3 sample length) resistance remains constant while the end-

to-end resistance changes significantly. 

Figure 42 gives the apparent resistance is a function of applied 

potential on the· same sample. Again·the change in center resistarice is 

- muc;:h, less than the change in end.;.to...;end.resistance. 

F~gure 43 1.s a direct plot from. the rec-order of the temperature, 

current- for a ·90 volt-potential, and the two probe voltages all as a 

function of time for the same saqiple at 720°C. It is tobe noted that 

there is a rapidchange-in,end-to-endcurrent while the probe voltages 

remain. reas-onably constant. In ad~ition only about-15 volts appears 
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across: the center probes while the geometrical relationship of the probe 
i 

placement predicts around 30 volts. . 
. , I ! 

iigure 44 shows the r~sistances calc-t~lated from figure 43• as a 

function. of time •. Again the majority of the, resistance change occurs 

at the. ends of the sample. 

The end-·t~en<;l a.nd .center resistances of this sample at 720°C as a 

function: of applied potential are given in figure 45. A slight varia­

tion· of centel:' re,sistance · is apparent but is much smaller· than. the vari-

.ation ~f end~to-end resistance. 

The next.series· of figures (figure 46 through figure 51) indicates 

the current as a function of t:j:me f.or a porous sample with p-latinum 

. pa:l,nt electrodes at various temperatures with different applied poten-, 

tials •. For·each temperature a separate figure appears· with curV'.'6s at 

each of :several applied poten;tials •. The :complexity of .the tr~nsients 

increa·ses w.ith both. the:· t:~pe,rature and applied potential. The lower 

v:oltages <lo 'not 'produce transients i.t:ntil ·higher temperatures are re~chedo 

The four..;prob~ data ·.SU$gests that' th~ origin of the transients_iis ! . 
I 

conrrected with the e,1e;ctrodes. The, incr.eas:i,ng (w-ith time) nature of · 

the transients is not J;it,ted by ion.;c condi.lction with blocking 'ele~~ 

. _ · - 38 
trodes • 

• ' -1 . 

The otigin,a'.i.s believed .. to, li.e;,.i,n imperfect .cQntacts making 

necessary high curl.".ent: densities at• a few points on .the contact. s.µrface 
. ' . ~ . 

region and/~r irt ele.ctrolysis reac.tions at the electrodes. The'.· small · . . . . :, . : :, 

changes in c~rit~r resistivity in the follr.;;probe ·sample holder indicate 
- I - ,_ = . ; 

that· :fiel:d.;;induced defect produc:t'i.on ,occurs·· primarily:af · the ele,ctrodes. 

No long tent da.ta was taken 'to ascertain whether this damage can even-

tually penetrate to the center of the specimeno 

Similar transients occurred in.all specimens, and, asa consequenc~ 
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· an· c~nductivity measurements at high. temperatures· were taken with low , 
' 

fields ( 10 to.100 MV). This· made it n.ecessary to take great care to 

. eliminate thermal voltages which are of similar magnitude. This was 

accomplished by adjusting the heater so that no temperature different-

ial appeared across the sample. In addition the meters were zeroed 

·while in contact with the sample but with no -external applietl field. 

This procedure eliminates all transient effects due to contacts 

which are-apparent at the higher fields. The relatively gooda~reement 

of the conductivity data taken in· thefour .. probe sample holder indicates 

· that the values of conductivity reported in this study are not greatly 
... 

in· error even, though a small amount of spreading· resistance due to non-

unif'orm contacts may still be· present. 

Summary of Results 

At high temperatures the activation energy as determined by an 

Arrhenius plot of conductivity is in the ·order of 2 eV. Below> 700°C 

the slope of the. conductivity plots slowly changes to a smaller value 

which· ·Corresponds to less. than, 1 eV at room temperature. The nature of 

this rower p·ortion is highly fl;xing. pressure dependent tending to lower 

' 
v·alues. of energy as. the pressure is decreased. 

On·the porous ceramic sample above 700°C a direct· dependertce of 

electrical c·onductivity upon amibient pressure. was noted. 

P:rolonged heat. treatment in a vacuum :of 10-3 torr or less at: tern­
! 

peratures greater·than 700°C'tended.to- reduce the samples, leaving them 

in a h~gh conductivity state at room temperature. 'In-the ceramic 

materials this effect .. is accompanied by a change in color from whit~ to 

·· grey. The change in· conductivity level is reflected in a reduction in 
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the magnitude of the thermoelectric power which always indicates that 
I, 

electrons are the main current carriers. 

At temperatures below 500°C·there is a conductivity change in the 

polycrystalline specimens following a change in pressure. This aJ?pears 

to be associated with chemisorbed oxygen. At the higher end of this 

· range~, reciprocal of the current shows a proportionali~y to log( t + t 1) 

while at room temperature the currently is proportional to. log(t + tr). 

At all temperatures above· 200°C. it was possible to observe cu.rrent 

transients fo,llowing the. application· of an electric field. ·· The ~agni= 

tude and complexity of ·these transients increased both with temperature 

and field strength. The. application of platinum paint 'to' the contacts 

did not significantly alter the nature of these transients. At the 

highest temperatur~s (ll00°C) reached in this study, a potential 0f 2 

·volts was sufficient to induce this transient behavior, and as a con= 

. sequence, measurements of electrical conductivity were take·n with ap-

plied fields varying from 10 to, 100 MV. With these fields no. trans-

ients were noted. Observation of the transients with a four.,probe tech= 

nique ·ona doped ceramic indicated that most of the end-to~end resis-

tance change occurred at the ends of the·sample and not in.the bulk. 



CHAPTER V 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER. STUDY 

Conclusions 

In th~ temperature region. studied· the e lee tricaL behavior· was con-

trolled by several different mechanisms. The measur.ements and calcula-

tions may be logically divided into three groups dependent upon the in-

formation they yielded. The first group was utilized to identify the 

mechanism and to determine which experimental parameters were important~ 

Once the mechanism had been, identified, measurements were taken to< veri-

fy that the measurement process had no derogatory effect~ And finally 

specific experimental data were employed to evaluate parameters associ-

atedwith eachmechanism. 

Single crystals, porous ceramics and dense ceramics were used in 

this study for comparison: purposes and for study of different mechanisms 

which :were dependent upon sample structure. 

FromlOOO to 1400°K the experimental data for the dense ceramics 

and single crystals may be fitted• to the intrinsic model with the 

following average param~ters: 

and 

(76) 

. 3/2 2 . 
µ.n = 100 (300/T) (cm /volt-sec), (77) 

E = 4.05 - 16.5 x ~o-4 T (eV). 
g 
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\. 
4ccording-:to this. .modeL the .electron ... to~hole mobility rs.-:tio· is 

,, . 
I 

found :to be of the order .. of 7. ·. In .addition· the effective. mass ratio 

was estimated ·to be near unity. · As no direct correlation between: oxygen 

., pres·sure and electrical conductivity could be ascertained at the·se tem ... 

pera·tures and pressures· fr·om 10-3 torr- to atmospheric,· it is felt that 

. any press,ure dependent defect.- mecha-nism produces ·only a small portion 

, of the ·observed~-high temperatur.e.behavior. Minor devia·tions in:magni-

-tude of electrical co-nduct:f.\Tity at. this point are believed to be>th1e to 

· imperfect electrical contact with the sa,mples. 

Since neither intrinsic behavior nor hole c-onductiorr has be·en pre~ 

· .viously reported,· no direct comparis,on betw,een the parameters derived 

on the bas,:f.s of this model and other electrical stud·ie-s is posSible. 

HoY1ever, the · optical energy gap near room temperature has beert e:va lua-

tedby other workers. Though.the optical gap and the thermal gap are 

not identical, a clegree of correlation should exist between thermally 

observed gaps and.those·due to indirect·optical transitions. Summit, 

, . 41 
Marley, and Borrelli have rep<;>rted direct optical gaps of 3 .S-7 eV and 

3 .93 eV for light- polarized parallel and .. perpendicular to the c axis.-· 

They afso•note indirect optical gaps at.3.4 eVand 3.7-eV. - Reddaway 

and Wright42 indicate the poss:i.bility of an· indirect- transition at ~.55 

eV. and a direct gap from 3.65 to 4.05 eV. Kohnke.l.3, has obs·erved on 
i 

·,_natural crystals short wavelength·optical cutoff. energy given by 3.7 -

4 6-x 10: T (eV) near room temperature. These values are it\. reasonable 

agreement with-the roomtemperat1,\re thermal gap value of 3.,55 eV given 

, here. :Note, the· expression Eg = E80 --otr is· in J;"eality a truncated 

· series expansion. Consequently, studies in different temperature re= 

gions may well yield different:results for both OI and E80• 
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~ince no hole mobilities have been previously noted, the mobility 
I 
I,, 

ratio 1 (µ, /µ = 7) has no direct comparison but appears reasonable. In 
, n p 

,general, one expects the hole mass to be larger than the electronmasso 

Arai43 has found this to be the case in thin films by optical means, 

reporting a hole effective. mass of0.82 m0 • In the present study the 

calculations were so sensitive to small differences in measured quanti= 

ties that it was impossible to obtain a unique value for this parametero 

However, all indications point to similar effective masses for the holes 

and the electrons. 

The porous ceramic specimen S=l5 behaved somewhat differently in 

the high temperature range, and the,nature of its conductionmechanism 

has nOt been established. This sample exhibited a pressure dependent 

conductivity at all temperatures above 600°C. 

At temperatures above 700°C a reversible thermal production of de= 

fee.ts dependent up-on oxygen pressure is noted for all samples. Al= 

though this mechanism does not control the conductivity above 700°C, 

the changes induced by it are readily apparent at lower temperatures 

where both the activation energy and the magnitude, of the electrical 

conduc1tivity are affected. . This mechanism is further supported by re= 

versibleweight ... loss measurements obt;ained by another member of this 

research group.* 

Upon extreme reduction the samples appear degenerate at room tern= 

peratu:re. This may be related to a donor level at 0.15 eV noted by 
i • , ·. . 19 

Marley and Dockerty which merges with the conduction band as its den= 
I 

i 

sity is increased. 
I 

The non=reduced polycrystalline samples at temperatures below 500° 

*J. Tunheim 
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appeat to be· closely compensated with at least a; portion. of the .,compen~, 
!i . l 

sat.foti. being. associated with oxygen ·chemisorbed upon the surface. The 

conductivity level is controlled by the. degree of. compensation and the 

Ar:rhenius slope is related to the activation energy· of.the principal 

donor level.·.· In this connection, the ·model has been expanded to ex-

· ;plain the transients in ccmductivity which occur upon a ra·pid · change of 

ambient, providing qualitative evidence that the model is applicableo 

· In' addition, transient effects following ·the. application of. an :ex-· 

terna 1 ·field have been noted. and. presented. · EVidenee has heen present-., 

ed' that t:h&s;e · trrans:ients are to be associated with the contacts. 

Suggestions for Further Study 

Throughout the course of tbis study effects such a:s transients a~d. 

non-reproducibi;lity·haV'e been apparent. ·on the single crystals avail~ 

able it has been impossible to.separate bulk .effects from contact 

·· effect·s at higher applied fields. 

It would seem. advisable .todnvestigate the transients· more closely 

and make an .attempt to verify their origin. Such a study has be·en com­

. plet-ed' by Blumenthal and·Pinz44 in CeO, and similar techniques. should 

· be applicable in.stannic oxide. Use of multi-probe techniques await 

the availability of. larger crystals, however. 

The .availab.Uity of large·r samples would also allow measurements 

of. the; Hall· eff.ec.t. The ,information. available from these measurements 

should;·:make · possible the· determinat.ion · of such. parameters as mobilities 

andef!fect:Lve masses with a greater precision.than·possible at.this 

point. 

The pressure dependent:thermal defect.mechanism needs substantia~ 
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tion=tprobably through a series of weight loss measurements and four-
1 . 

probe!conductivity measurements as a function'of ambient pressure. 

As ceramic specimens of.· sufficient size fer the above mentioned 

measur.ements are available, it may be sugg.ested that these samples be. 

used. It is to l:>e noted that a pure ceramic specimen'in this stuc;ly de-

viated strongly :tn several ways from.the .single cry1:1tals. · The dense 

ceramics deviated to a lesser degree but it.s-hould be rememb'eredthat 

they are quite heavily· doped. 

Measurements · on ce·ramic specimens shoulg; of course, be treated 

with care as the,se materials may be affected by pore. structur.e, grain 

. beundary condiidons, and n.eck or. intergranular problems. In.addition 

, stannic oxide is known. to be anisot·ropic, and the effects of, pelyc:tyst-

allinity will completely obscure these directional effects. From a 

practical point of view, ceramic mate·rials are ·easily fabricated -and it 

is· possible that future technology w.:Lll utilize them more a_nd. more f::re-

quently for elecfrical uses thus making.a knowledge of their special 

properties a valuable asset. 

As evidenced by data taken on the dense ·ceramic specimens, the 

high. temperature ·region ,is remarkab1y similar. to· that of single cry= 

stah;, however, an:e cannot be cert,ain !_ priori that this will be the 

· case. , In light of both the similarities and the differences noted be= 

tween J:he single cyrstals and the ceramic materials, it would be advis=' 

able·to continu~·to.study the-two.types in,conjunction. 

This stt1dy has investigated to a small degree the conductivity 

I 
changes due to·an ambient.pressure .change at.temperatures lower than 

400°C. As noted earlier, the high temperature requirements made com-. 

promise necessary, in, the final design. As a· consequence, during ambient 
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changes the sample temperature drifted by s·everal degrees. This effect 

· made impossible a cotnpletely, satisfac.tory, comparison betw·een theory and 

· experiment, and .it ·is .suggested that an apparatus be constructed with 

only this measurement in mind. At, pre-sent other researchers in this 

.laboratory are.·working with such an apparatus. Their high temperature 

· limit is around 150°C which now appears to be .too'· low fot' a:· comprehen= 

sive .set· of data. 

Figure 52 is a design of a sample holder for this measurement which 

fits int.o, the pres·ent sample chambe.r. It is de.signed for guarded cir= 

cuitry and has the sample mounted flat between.two heat sink electrodes. 

By back filling to around·· 10=1 torr of helium and allowing temperature 

equilibrium to be reached prior to admiss.ion·of air, the short term 

.temperature transients should be greatly reduced. The addition of a 

furnace controlle·r would prevent· long· term. drifts thus allowing. the 

trans:[ents to be ·observed over a period of several days. 

This design should be applicable to temperatures up to .S00°C as 

the electrodes in the high temperature region are readily removed. for • 

cleani:ng. The construction of a sample chamber to,maintain temperatures 

,below ambient may also be warranted at some time in the future. 

· The possibility of. ionic motion or diffusion- in these materials 

has been noted in this study and in others. Measurement of. the dielec= 

tric· c~nstant as a function.of frequency at various temperatures will 

indicate to .some degree whether .this· exi'sts and at what .temperature. it 

occurs. Unfortunately the low frequency behavior associated with ionic 

motion, is quite similar to that· associated with grain boundary effects. 

Thus th:i'.:s measurement to be valid must be restricted to,, single crystals. 

The determination,of ionic motion by measurement of transport numbers 
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using the galvanic cell method does not seem warranted at pr~sent as it 

is believed that the ionic currents are very small compared to the.ele= 

ctranic current. 

The origin .of the transients has tentatively been assigned.to .the 

contact region of the samples and do.es not appear with low fields. The 

DoC• measurements described above may be taken with, low applied fields 

with the electric;.a.l circuitry depicted in figure 53. With this circt:lit 

and careful technique both two.,prabe and four-probe measurements may be 

taken with little fear of transient problems. 

The circuit is designed for constant current measurements. Use of 

the correct battery voltage and current limiting. resistor will pl;'ovide 

currents accurate to within 1%. This method reduces the electrometer 

requirement from three to one, by proper location of the groun1• As 

given ;i.n the schematic, this circuit should be capable of measuring 

9 resistances from 1 to 10 ohms. Slight modifi<::ations of probe posi= 

tions would allow its use for Hall~effect measurements. 
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