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PREFACE

This dissertation is based on the assumption that certain items
are kept as inventory for a finite period of time. The primary objec-
tive of this dissertation is to develop and present the application of
dynamic programming for determining optimal decision rules for the
finite period inventory problem in which the parameters involved may
vary from period-to-period. Assumptions in this investigation are
described as follows., The procurement lead time may be probabilistic
or deterministic and may vary from period-to-period depending upon the
period when the order is made, and the source of supply. The procure-
ment system may involve several suppliers, each with different charac-
teristics. Several types of items may be kept as inventory in a
warehouse which has a limited space. Seasonal variations may affect
the quantity available from each supplier. Demands, which may be
deterministic or probabilistic, may vary over the study periods. Costs
associated in this investigation may also vary from period-to-period.

At the beginning of each period, the optimal amount for each type
of item to be ordered can be determined based upon a minimum expected
total system cost for all remaining periods. For the case where the
orders are instantly fulfilled or the case where both demands and
procurement lead time are deterministic, the decision can be made based
on inventory on hand at the time of making the decision. Otherwise,

the decision is made based on the inventory on hand plus the
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outstanding order at that period, assuming that the demand is
backlogged.

Chapter II discusses deterministic demand and deterministic pro=-
curement lead time systems. The case where demands are probabilistic
and the item is immediately fulfilled is considered in Chapter III.
Chapter IV presents the problem with probabilistic demands and deter-
ministic lead time. The investigation is extended to the case in which
procurement lead time is probabilistic for probabilistic demands in
Chapter V.
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NOMENCLATURE

English Symbols

Chyy holding cost per unit per period of item type No, i in

1}

period k.

Ciy, = item cost per unit of item type No. i, when the order is
made in period k.

@iik = 1tem cost per unit of item type No. i, where the order

made previously will arrive at period k.

e

Coyy = fixed ordering cost when the order for item type No.

is made at period k.

f-de

@bik = fixed ordering cost when the order for item type No.
is made previously, and the order will arrive at period
kﬂ

Cs,, = shortage cost per unit shortage per period for the
shortage of item type No. i in periocd k.

. procurement lead time when the order is made in period k.

i
11

- minimum procurement lead time when the order is made in

i

period k.
N = number of type ofitems in the system.
P = number of planning periocds.
Pik(rik) = probability that demand for item type No. i in period k
will be 1,y
P(ri:Kﬁk) = probability that sum of demand for item type No. i from

period K to period k will be ry.



1k

3

tk

probability that procurement lead time for the order made
in period k will be L,

probability that the order made in period k will arrive
after the order made in period k+1 by L periods.

demand of item type No. 1 in the period k.

minimum demand of item type No. i in the period k.
available supply of item type No. 1 for the order made in
veriod k.

available supply of item type i for the order made
previously that will arrive in period k.

inventory on hand plus the outstanding order of item type
No. i at the beginning of period k.

a volume of an item type No. i.

warehouse space.

warehouse space available for the addition of item types
No. 1 to No, 1.

inventory level of item type No. 1 at the beginning of
period k.,

amount of item type No. 1 to be ordered in the period k.
amount of item type No. i ordered previously that will

arrive in the period k.

Greek Symbols

Py (Zgy)

Ty (2

i

il

item cost plus fixed cost of ordering 2,, in period k

Coyp + Ciyy ° 2y,

item cost plus fixed cost of ordering 7ﬂk,

~

Coyp + Chy * Zyxo



Section Number

The first digit of the section number indicates the chapter number,

the last digit corresponds tc the number of section in the chapter.

Equation Number

The first digit of the equation number indicates the chapter
number, the second digit corresponds to the number of section in the
chapter, and the last number indicates the number of equation in the

section.
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CHAPTER I
INTRODUCTION

Many inventory models have been developed under a steady-state
condition9 where the parameters are assumed to be unchanged over an
infinite period. These models elaborate on the static inventory problem.
The decision criteria are based upon the minimization of a total system
cost, relying on expected value in the.long'run° Optimal decision rules
usually can be determined in a simple formula, such as the square root
formula, often called the "Wilson formula®.

Such work mentioned above is discussed in many texts which usually
consider only the Single-Item Single-Source problem in which several
assumptions are utilized; Banks (5) presents a solution to a static
problem in which several types of items are stocked in limited warehouse
space and in which several sources of supply are available. It can be
said that inventory theory involving static problems has been nearly
fully developed. However, not too many results have been obtained for
the dynamic inventory problem.

An inventory problem is considered as "dynamic" when parameters
change from period-to-period, or when the time-value of money, usually
called the ""discounted cost', is involved in the problem. More compli-
cated situations exist when inventory is considered to be kept in only
a given finite period in which decisions cannot be based upon the mini=-

mization of costs in a long rum.



The finite period dynamic inventory problem is most likely to be
>und in job shop situations. Here, a certain quantity of items may be
mufactured or purchased and are retained as inventory in order to
itisfy demand during a finite period of time. After a given period of
.me, those items remaining in inventory may be considered valueless
.nce orders for that particular job are not likely to be recgived in
te near future.

One of the pioneering works in dynamic inventory theory is by
row, Harris, and Marschak (1), Models in which there is a discount
st are considered. It is assumed that ordering cost includes fixed
dering cost and linear itém cost; holding cost is linear; and penalty
st due to shortage is considered as a constant when demand exceeds
e stock avallable. Optimal policy is based on the expected total
scounted cost in the long run by assuming an infinite time period.
eir results indicate that the optimal policy can be so defined that

inventory on hand, x, is less than or equal to a given quantity, s,
der S-x; otherwise do not order.

Bowman and Fetter (8) have introduced an application of linear
ogramming to the simple dynamic inventory problem where inventory
rryiﬁg charge and production costs are to be minimized for a firm
zing a seasonal demand pattern. In the model, demands are considered
terministic and lead time is assumed to be zero. No stockouts are
lowed, and production costs are assumed to be linear without a set up
st.

Wagner and Whitin (17) have presented an algorithm for solving a
1amic inventory problem which considers deterministic demands for a

1gle item with assumptions that shortage cost is infinite and item



cost per unit in N periods is constant. Allowing linear holding

charges and set up costs to vary over N periods, they show that the
optimal ordering policy is to allow stock to fall to zero in period of
order., Their results indicate the possibility of eliminating the neces-
sity of having data for the full N periods.

For a one-stage inventory model, Karlin (9) found that when the sum
of expected holding cost and shortage cost is convex, increasing and
vanishing at zero, a simple decision rule can be determined. For the
model with linear order cost function assuming no set up cost, the
optimal decision for a given inventory on hand, x, is given by ys so
that if x is less than ys, order up to ys3; otherwise do not order. For
a model with assumed linear item cost and with a set up cost, the opti-
mal decision is given by S,s so that if x is less than or equal to s,
order up to S; otherwise do not order.

Karlin (10) discusses the case where the demands that arise in
successive periods are independent and identically known distributions
of demand occur in each period. Assuming ordering costs to be linear,
holding costs and shortage co;ts to be convex, and there is a discount
cost, if the marginal expected penalty exceeds the marginal cost of
ordering thé optimal policy for the infinite time horizontal is charac-
terized by a single critical number, X: if x is less than ;9 order up
to X; otherwise do not order. When the model includes set up cost and
assumes linearity in holding costs and shortage costs providing demand
distribution is a Poiya frequency function, the optimal policy for the
period k is characterized by s, Sy so that if x, is less than s,
order up to S, 3 otherwise do not order.

Scarf (14) considered Karlin's work and found that when the holding



cost and shortage cost are convex, the optimal policy will always be of
the S, s type without any additional conditions such as are required by
Karlin. The policy in period k can be defined by S.,s, so that if x,
inventory on hand, is less than s,, order up to S;; make no order
otherwise.

An extended version of the classical dynamic inventory model with
emphasis on the varying nature of the demand distribution has been con-
sidered by Karlin (11). The demand in each period is assumed to be an
observation of a random variable with a known distribution function.
These random variables are postulated to be independent but not neces-
sarily identically distributed from period-to-period. Under the
assumption that  the purchase cost is linear and other cost functions
are convex, it is proved that the optimal policy possesses a simple
form such that in each period whether or not to place an order is de-
termined by comparing the stock level with a single critical number.
This critical number may vary in successive periods. A similar result
can also be obtained for the backlogged problem with constant procure-
ment lead time.

Iglehart and Karlin (16) have considered a dynamic inventory model
with stochastic demands in which the distributions of demand in succes-
sive periods are not identical, but, in general, are correlated. It is
assumed that at each period there is a finite number of demand states
i=1, 2, 2¢.4 ky, and for each demand state there is a density function
D, (x) such that the demand state in a given period indicates which
demand density holds in that period. The demand state can change from
period-to-period, obeying a Markov transition law. Assuming a linear

purchasing cost, and that holding cost and shortage cost are



convex-increasing and vanishing at the origin, the optimal policy is
characterized by k critical numbers X;, Xz, ...y X, corresponding to
demand densities Dy (x), Dy(x), ..., D (x) so that for a known demand
state, i, at the beginning of decision period if inventory on hand, x,
is less than E,, order up to il; do not order otherwise.

Karlin and Scarf (12) investigate the constant time lag problem in
a dynamic inventory model. It is proved that when a backogged condi-
tion is assumed, an optimal decision can be based upon the sum of inven-
tory on hand and the outstanding orders at the time the decision is
made. Furthermore, if shortage cost and holding cost are convex
increasing and ordering cost is linear, the optimal policy for a
backlogged problem can be characterized by a critical value X so that
if the sum of inventory on hand and the outstanding orders, U, is less
than x, order U - X; otherwise do not order. For the case where demand
exceeds the available is considered as loss of sale, if all the cost
functions are linear and there is a one period lag in delivery, the
optimal policy Z*(x) has the following property: Z*(x) >0, if x is
less than X; otherwise Z*(x) = 0.

Scarf (13) extended the single-item, single-source model to a
stochastic procurement lead time problem in which excess demands are
backlogged. With the assumption that at most one outstanding order is
permitted, the recursive model can be simplified. An optimal ordering
policy at each period would then be based on amount of stock on hand
and at most one outstanding order to be delivered at some specific time
in the future.

Iglehart (14) has considered a problem of a firm which produces a

single commodity and which must make a production decision and a



capital decision at periodic intervals of time. The firm is assumed to
have the necessary capital required to produce a product which is to be
held in inventory. The cost of product is assumed to be convex and is
a function of both capital and the quantity to be produced at each
period. Holding cost and shortage cost are assumed to be convex,
Demands and capital depreciation are distributed independently from
period-to-period. The optimal production and capital decision were
obtained for an N period problem.

The prior works discussed above have generally involved a single-
item, single-source dynamic inventory problem. The emphasis in most of
the works is in defining the qualitative characteristics of optimal
policy for particular assumptions. It may be pointed out that the
characteristics are restricted under the particular assumptions and may
not be easily determined quantitatively. However, these characteristics
give an indication of the optimal point for each period which may be
useful in reducing the amount of calculation. Some work has been ex-
tended to a probabilistic procurement lead time problem under the
restriction that it is not possible to order whenever there is an out-
standing order at the time of making a decision.

The contribution of this investigation may be considered in several
ways. The case where lead times are probabilistic is considered and the
procedure for determining optimal policy is presented under the assump=-
tion that an order can be made any time regardless of whether there is
or is not an outstanding order. Algorithms presented for determining
optimal policy are not restricted to the single-item, single-source
problem. Throughout the investigation the problem in which there is a

warehouse restriction is considered.
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Progress in inventory theory is shown in Figure 1. In the figure,
previous works and contributions of this investigation as well as works
which have not been done are summarized in a simple fashion.

For the single-item, single-source system where procurement lead
time is deterministic, the analysis presented here is likely to be the
same as in prior works with the exception that a warehouse restriction
is included. It is the purpose of this part to formulate the basic
concepts necessary to an understanding of the more complicated problems.
It should be noticed that the algorithms presented here are given
quantitatively in general, and no attempt has been made to give qualita=-
tive characteristics of the optimal policies.

Dynamic programming is very useful when one is involved in a
multi-stage decision process, as in the problems in this investigation.
Dynamic programming, as pointed out by Bellman and Dreyfus (6), is
based on the Principle of Optimality, which states that an optimal
policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an coptimal poliecy
with regard to the state resulting from the first decision. Although
dynamic programming and the principle of optimality will be used
throughout this dissertation, it will not be discussed here since it is
available in many texts. It should be noted that throughout this
thesis the word "period k' means the period where there are k periods
remaining.

The recurrence relation employed in the primary solution can be

defined in a simple manner as follows:

Xy = Xy jxsr ¥ By = Ty pens
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Figure 1.

Summary of Development in Inventory Theory



where X;, is an inventory level at period k for item i, ?&k is an amount
to be arrived_at period k, and r,, is the demand in period k.

When Uy, inventory on hand plus outstanding orders at period k, is
to be used as the criterion for making a decision, the recurrence rela-

tion can be defined as follows:
Upe = Upgxe1 + Bqx = Ty st

where 2y, is an amount to be ordered at period k.

Four classifications of cost elements are considered in this thesis:
a fixed ordering cost, to be charged when an order is made; an item cost
depending on the number of items purchased or produced; a carrying cost
depending on the stock on hand; and a shortage cost proportional to the
excess of demand over available stock during the period. These four
cost elements may vary from period-to-period. Throughout this thesis it
is assumed that both fixed ordering cost and item cost are the costs at
the period when the order is made, It 1s also assumed that carrying
cost is proportional to the size of the stock of inventory at the begin-
ning of each period.

Both deterministic and probabilistic demands are considered. For =a
probabilistic case, it is assumed that the demand distributions of each
period are independent and not necessarily identical.

Usually when deménd exceeds the available supply, two possibilities
are considered. First, the excess demand is deferred to a later period
and stock level is assumed to be either negative or positive. The
second possibility is to consider excess demands as a loss or the extra
supply can be immediately obtéined from some other source with a

penalty cost. In the latter, the stock level in the system alwa?s
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will be positive. Throughout this thesis the fprmer condition, which is
usually referred to as the "backlogged problem™, is assumed.

Limited warehouse space may be considered as one of the serious
limitations in practical inventory problems. Optimization methods for
the case in which a warehouse restriction exists differ from those in
cases in which no restriction is applied, especially for the cases
where several types of items are considered. In this regard the analy-
sis of particular inventory models is restricted under the assumption
that there is no chance of inventory exceeding a warehouse restriction,

Availability of supply from each source in each period is consid-
ered here. This gives a restriction that the amount to be ordered at
each period cannot be greater than the availability.

Procurement lead time can be considered as deterministic or prob-
abilistic. In deterministic cases, it may be considered as constant
throughout the planning period for a simple problem. However, in some
practical problems, procurement lead time for each order made at each
period may be considered deterministic but not necessarily constant.

In a probabilistic procurement lead time case, several assumptions
may be assumed. This investigation will rely on the assumption that
procurement lead time for an order being made in any period is indepen-
dent of other orders regardless of whether ordering at other pericds
will be made or not. It is also assumed that the difference of
arrival time for each two successive ordering period is distributed
independently from arrival time. The important assumption in the in-
vestigation is that an order made at each period from a particular
source will not arrive before those orders made previously from the

source, For the probabilistic case, this means that if a probability
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for procurgment lead time ILy4+; at an immediately previous perilod is
Be+1(Igs1), a probability B, (L) of the lead time when the order is made
in period k being L, will be less than or equal to Egiz Bo+1(L7).

Let Py +1(Ly) be a probability that lead time for—the order made in
period k+1 will be L, and Ek(Lg) be a probability that the difference
of lead time for the orders made in beriod k and k+1 will be Iz, Assume
that P4y (Ly) and ;k(Lg) are known. Then the probability that lead time
for the order made in period k will be L, ﬁk(L), will be the sum of the
joint probability of lead time in period k+l, Ly, and the difference of
lead time, Lz, so that Iy + Ly = L+ 1,

Then, ﬁ;(L)

§k+1(L+ l) ° Ek(o) + §k+1(L) ° Ek(l) + ® o0

+ §k+1(0) ° ;k(L‘l'l)

I+1 = Ll
> Be1(L)  P(L+1-L") € > By (L),
L’=0 L'=0

Thus, if ﬁé(L) and P, (Lz), for 1 < k < P-1, are known, P, (L) for

all values of k can be determined.



CHAPTER 1I

DETERMINISTIC DEMAND AND DETERMINISTIC

PROCUREMENT LEAD TIME SYSTEM

This chapter considers the deterministic demand and deterministic
procurement lead time problem, Other general assumptions are as pre-
viously described in Chapter I. Deterministic lead time considered in
this chapter includes either the case where an order is instantly
fulfilled or where there is a finite value for lead time at each period.

At the beginning of each period, the inventory on hand can be
determined and can be used as a basis for determining the optimal
decision. By comparing:thé,total system cost for the whole remaining
periods for different amounts to be ordered, the optimal ordering
policy can be determined. If a particular amount is ordered, the total
system cost for any period will be the sum of an item cost, a fixed
ordering éost, a shortage cost and carrying cost for the period, and
the minimum total system cost in the next period, presuming the optimal
decision will be made at that period.

Let ?&k be an amount ordered which will arrive at the beginning of
period k. Since demands and arrival times can be determined in advance,
the analysis for both the immediately fulfilled and deterministic lead
time cases will be the same. By letting lead time equal zero, the
latter case will be reduced to the former case.

Let QZk be an amount ordered to arrive at the beginning of period
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ko The order is made at the beginning of period k for the immediately
fulfilled case, but for the case where there is a procurement lead time,
L, the order for Z,, is made L periods in advance. Note also that the
ordering cost, which is the sum of item cost and fixed ordering cost,

is a cost incurred at the beginning of the period of ordering. Thus,
letting @bik and @;k be fixed ordering cost and item cost for the

order which arrives at period k, the following relations are obtained:

Pey(Zyy) = Cogy +Ciyy ° 2y,

Dy (Zyye) = Cogy +Tayy = Ty,
and T (2,,) = 329k+Lk(7ﬂ,k+1m),
where Coyy = @bi9k+1m

Ciyp = Cly yelis
and
S = 3'1 gk+ Lk

Considering lead time as deterministic but not constant, at
period k, there is some possibility that orders made previously at
different periods will arrive at the same time as at this period;
Qﬂk(ﬁak) can be determined by employling the following dynamic pro=

gramming technique so that:

Ty (Zyy) = Min Py e+ Ly (Zy s Ly)

subject to :2__Z19k+L5 = ?ask?
J

where =Ly = ky for all j.

The maximum available supply at period k, ?ﬂk9 is the sum of

supply available in those previous periods such that, if ordered, will
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arrive at period k, or
Sk ::%;:819k+L53

where ' j=Ly =k, for all j.
2.1 SINGLE-ITEM SINGLE-SOURCE SYSTEM

This section considers the case in which only one type of item and
only one source of supply are available., The analysis is as follows:
Consider period 1, and for a given X;;, assume that an amount ?al
is ordered for this period. The decision made for this period affects
the system cost only in this first period.
The total system cost is the sum of:
(1) item cost plus fixed cost of ordering Z;,, which is
T (%),
(2) shortage cost in the period 1, which is
Csyy ° Max(ryq = X349 = %91 ,0), and
(3) carrying cost in period 1, which is
Chyy ° Max(Xy; +Z11,50)
Thus, the total controllable syste@ cost, @(Xllgzll)
= B (Z1) + Csyy © Max(ryy = Xyq = Zyq,0) +Chyy o Max(Xyq +Z4,0).
(2-1-1)
Let £*y(X;,) be the minimum controllable system cost for period 1,
resulting from ordering an optimal amount Zy; =271 (Xy;) for a given

X317« Therefore,

£*, (Xy,) = Min{bxxllgﬁgl)}a (2-1-2)
%,
where 0<%, < Min{@l 1 ,%—L ~Xiy o (2-1-3)
1
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Consider period 2 and for a given value Xpp, assume that an amount
7wz is ordered for this period. The decision made for this period
affects the total system cost for periods 2 and 1.
The total system cost is the sum of:
(1) item cost plus fixed cost of ordering Zp, which is
(2) shortage cost in period 2, which is
Csyp * Max(ryp ~ Xym = Z4n,0),

(3) carrying cost in period 2, which is
Chyp * Max(Xys + 235, and

(4) optimal controllable cosﬁ presuming an optimal
decision is made for the period 1, which is
% (Xyp +Z5 - T12)e

Thus, the total controllable system cost, C(Xy3Z)

= Q’mmm) + CS]_E ° MaX(I"Jz - X]B - ZEQO)

+ Chys © Max(Xys + 212,0) + £* (Xpp + Zoz = 190 ). (2-1=l)
Let £*3(Xy;) be a minimum -controllable system cost for period 2,
resulting from ordering an optimal amount of Zpy = Z*p (X)) for a

given Xyp. Therefore,

£*5(Xgp) = Min{tfxmgﬁﬁ)}s (2-1=5)
712 -
where 0 < %, < Min{¥,, % X} - (2-1-6)

Next, consider in general period p, where 2<p<P.

@’(le§’2’1p) = %p('zlp) + Cslp ° Max(rlpwxlp»71p5,0)

* Chyp * Max(Xyp+Z)5,0) + P (Xyp+Zporp)e  (2-1-7)

It follows then that
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£o (K p) = %in{@(xlpgzlp)}, (2-1-8)
1p
where 0< ’Z’lp < Min{gl s %— - xlp}a (2-1-9)
Example
planning period, P =5
wa:ehouse space, W =5 cubic units
volume of an item, vy = 1 cubic unit
procurement lead time, L, = 2 (for all k)
initial inventory, X5 =5 units
k=1 © k=2 k=3 =l =5
Ty - unit b 5 5
rye = unit ' 3 4 | 2 1* o
Coyy = $/order 0.00 0.00 0.00
T,y = $/unit 0,50 0.60 0,50
Csyy, = $/unit/period 2,00 2.00 .. 1.50
Chyy = #/unit/period 1.00 0,90 1.00

*difference between demand and arrival from order previous to
planning period.
Sclutions

Consider periocd 1. Note that the order made at period 3 arrives
at this period. Using (2-1-1) to (2-1-3), for Xy = O3

£*, (0)

Min -
= 0<% < Min(u,_s_wo){’cvn (Zy) + (2)Max(3-0-%y,0) + (1)Max(o+2“mo)}
1



[0.0+6+0] 6.0
0.5+4+1 565
= Min|l.0+2+2| = Min|5.0
1.5+0+3 4.5
2.0+ 0+ 4 6.0 |

For other values of Xy, using (2-1-1) to (2-1=3), f*;(Xy ) and

2% 4(Xy) can be determined.

£ (=) = 8,05Z*p(=kt)
f*,(=2) = 7,05Z%,(-3)
1% (=2) = 6,0;%*(-2)
£*, (1) = 5.0;2Z%,(~1)
£%,(0) = 4.5;2%»(0)

i

fl

i

= 4,5, where Zu(0) = 3,

The results are summarized belows

L
L
L
L

3

£* (1) = 4,058 n(1) =
£4,(2) = 3.5;2(2) =
£*1(3) = 3,0;2%5(3) =
£4, (1) = 4.0;Zp(4) =

7%, (5) = 5.032%(5)

[}

OD

Consider period 2, and note that the order made at period L

arrives at this period. Using (2~1-4) to (2-1~6), for Xy = O

f*5(0)

~ Min
T 0<%, < Min(5,5-0
1

r— —
0,0+ 8+0,0+ 8,0

16,0

0.6+6+0,9+7,0 14.5
1.2+4+1,8+6,0 12.0

= Mo, 8ioeo,745.0| = MR1s
2.4b+0+3.6+4.5 10.5

2,0+ 0+L4,5+4,0 LELL5

+ f*l (O+2‘19==1+)]

= 10.5; where Z*,40) = L,

For other values of Xy, using (2-1=4) to (2-1-6), £*;(Xy)

Z*(Xyn) can be determined.

£*5(0) = 10.5; Z*5(0)

1]

43

f"g(l) 909; Z‘*jz(l)

4,(2) = 9,33 T (2)

it

it

i

The results are summarized below:

L
3

£*5(3) = 8.735 T*(3) =
£, (L) = 8,15 Zlh) =
= 8.5; %%ESS) =

£%5(5)

)[50'12(’2“12) + (2)Max(4=0-235,0) + (L)Max(0+Z;5,0)

and

L7
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Consider period 3. The order made at period 5 arrives at this
period; therefore, this period will be the last stage.

The juventory level at the beginning of period 3, Xju = X« ry=-ris

Using (2-1-7) to (2-1-9), #*,(2)

= Min @ (Zis) + (1.5) Max(2-2-Z;,0) + (1) Max(2-Z,,0)
0<%, <Min (5,5-2)
1

+ 5 (2+42,-2)}

0.0+ 0+2+10.5) [12.5]
0.5+0+3%+ 9.9 13.4

= Min 1.040+k4+ 9.3 = Min 1,3 | = 12.5; where Z*13(2) = 0.
1.5+0+5+ 8,7 6502

Therefore, the decision is: make no order at period 5. The
result is Xy = O3 then order 4 units at period 4. This yields X;1 =03
then order 3 units at period 3., The minimum total system cost when an

optimal decision is made at period 5 is $12.50,
2,2 MULTI-ITEM SINGLE-SOURCE FOR MIXABLE ITEMS

This section is an extension of Section 2.1y several types of
items are to be carried and they can be mixed together in the warehouse,
There continues to be only one source of supply as in Section 2.1, and
other assumptions remain the same as before. The analysis is as
followss

Assume that there are N types of items in the system, and consider
period 1, For a given set of Xy31,X315 cooy Xy13 assume that an order
of the amount 7&1 is made only for item type No. 1 for this period.

The total system cost when a decision is made for this period affects

the system cost in period 1, which is the sum of:
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(1) ditem cost plus fixed cost of ordering 7&1? which is
1(211),

(2) shortage cost due to the shortage of item type
No. 1 in period 1, which is
Csyy ° Max(ryy = %31 = Zy1,0),

(2) carrying cost in carrying item type No. 1 in period
1, which is ChysMax(Xyq +7Z;1,0),

(4) total shortage cost due to the shortage of item

types No, 2 to No. N in period 1, which is

N
> Csyy ° Max(ry; -X,;,0), and
i=2

(5) total carrying cost in carrying item types No., 2

to No. N in period 1, which is
N

> Chyy » Max(X,,,0).

i=2

Thus, the total controllable cost, C(Uyy,Us1s coos Uyyiiy)
= wil(?ll) + Csn ‘MaX(I‘:”_‘ﬁXll '-21190)
+ Chyy ° Max(Xyy + Zy1,0) + K(Xy1 X215 oooy Xy1ls (2-2-1)

where K(Xy3,Xz15 oo0oq Xy1)
S

= G501 Max(ry, =%X;,) + Ch“Max(XH,O)}o (2-2-2)
§=2

Note that for a given set of X31,Xs15 ocoy Xy13 the space available

for the additional items to be ordered in the period K will be

N
W= % 1vi o Max(X,,,0).

In order to apply the principle of optimality to this problem, let

Wy ; the space available for the additional item type No. 1, increase in
N
increments of w1 from O, ¥;42Vi,y ocses CViy ooay O W==%;£vﬁ° Max(X,4,0).
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Then, let f11(Xy14Xz15 soos Xy1/wy) be the minimum total cost when

a decision is made for period 1 when only item type No. 1 is being con-

sidered, resulting from ordering an optimal amount of 2&1 =

Z*11 (%11 ,%215 oeoy Xy1) for a given set of X33 ¢Xp1y ceoy and wy.

Therefore fll(xll,lea cooy XNl/wl) = Min '(T(Xll,le, co00g XN]_%%]_]_)’

11

where 0 <%, < Min(%,, %L - Min(¥X,;,0)).
1

(2-0-3)

(2-2=4)

For w; = O, and X7, < O; the restriction of 211 in (2-2-4) becomes

0<% <Min(B1, X1 )
For w = O, and X;; > 0; (2-2-3) becomes
Ty1 (X33 5X015 ooy Xy1/0) = TUKyy,Xo1s ooes x.,l?,:o)°
- For wy = vy £ v1(By; +Min(%y,,0));5 (2-2-4) becomes
0<%, <1 - Min(X;,,0).
Then, f11(Xy14Xp15 ecos Xy1/Vy)
£11(X119%X315 0oy Xy1/0), }

= Min{
C(X114X214 e0oy Xyp3l=Min(X,,,0)

In general, for wy =Cv; <n (3'11 + Min(¥X;,,0));
f11(Xy15%¥215 ocoy Xy1/Cvy)

£11 (Xy15%z15 ooy X1 /0w ),
o= Mingy .

(X119X31, 0oy XN1;C=Min(X11,O))

FOI;" W‘l = CV]_ > V1(’S’11 + Min(xllso))
Let 6'\‘;”1 < vl(gll + Min(X_n,O) < (§+1)V19
then "3’11 < (a"" l) "'Min(xll 90)9

and ?;11 _>_ a—Min(Xn,O)o

(2=2-5)

(2=2-6)

(2=2=7)

(2-2-8)

Therefore, using (2-2-3) and (2-2-4), £11 (X1 ,Xp15 coos Xy1/Cvy)

f11 (Xll 3Xg19 cooy XNI/E'Vl)a
= Min ‘ }o

(X171 9X215 ecoy XN13311)

(9=2-9)
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For a given set of X33 4Xz149 o0oy Xy1, consider that orders are
made for item types No, 1 and No. 2, and that item type No. 2 is
ordered first in the amount of Z,;. Let w, the space available for

the additional +item types No. 1 and No. 2, increase from O through

the value of w; +mvy (m=0,1,..) until W=2> v, Max(X,,,0). After Z,
is ordered, an optimal amount of item typelgio 1 is ordered for a
given set of Xyy4%27 +%315 o000y Xy1, and for an available space of
w2-=v2Max(E;1-kMin(le,O),O), Therefore, the total system cost is the
sum ofs
(1) item cost plus fixed cost of ordering Zsq, which is
P51 (251), and
(2) minimum total cost when a decision is made for period
1 when only item type No. 1 is considered, resulting
from ordering an optimal amount of 211 for a given
set of Xy1.Xp1 + 221, ooy Xy1 and for the space
available wa = vaMax(Zgq +Min(Xg, ,0),0), which is
F11(Xy15%01 +Za1y o-ey Xy1/Wa = vaMax(Zpy + Min(Xpq,0),0),
Thus, the total cost, C(Xy1,X14 oeoy Xy138m1) = Pgy(Zar)
+ Fy3(Xyq o Xa1 +Zary ooy Xy1/Ws = voMax(Zpy +Min(X5,,0),0). (2-2-10)
Theny, let fu1(X11,X515 eeos Xy1/we) be the minimum totai cost when
a decision is made for period 1 when item types Ne. 1 and No. 2 are
considered and item type No. 2 is considered first, resulting from
ordering an optimal amount of Zpy=Z*%;(Xy1,Xa1s o0., Xy1) and presuming
optimal amount of 211 will be ordered later, for a given set of
Xi1:X575 o000y Xyy and wyz. Therefore,
fa1 (X115Xa1y coey Xyy/we) = gin{alelaxﬁls coog Xwiﬁ?él)}
1

2
(p=2-11)
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where 0 < Zp; < Min(S,,, gf - Min(Xzy,0), (2-0-12)

In general, item types No. 1 to No. n C?SIySN) are considered and
item type No. n being considered first. The space available for the
additional items of types No. 1 to No. n, w,, increase from O through
the value of wy—y +mv (m=0,1, ...) mmilme%ﬁide&LJﬂo Then, it
follows that T(Xy1,Xp1s ooes, XNI;Z;I) = E&l(?i:%

+ faeqg1(&iny eoey Xuyp # 201, eeoy Xy1/vWy = v, Max(%y, +Min(X,,,0),)),
(2-2-13)

and f,,(X115Xp1s oo, le/wn)==Min{CKx11,x21,.oun, Xngz;l)}’ (2-2-14)
nl

Wher"e O S zlnl S Min(gnl, "_g'n' el Min(xnlgo))u (2"2"‘15)
n
By letting n=N, and let
N
%1 (X33 5X81y ceoy Xy1) = fy1 (Xy19Xa1y soey Xyi/We > vy Max(X,;,0)).
=1

£*3 (%31 5X319 ecey Xy1) 13 obtained as a partial-optimization for this
stage.
Consider period 2 and for a given set of Xi5.X3z, ooy Xyg, assume
‘that an order is made only for item type No. 1 #n the amount of Z; 5 at
bthis period. The decision made for this period affects the total system
cost for periods 2 and 1.
The total system cost is the sum of:
(1) item cost plus fixed cost of ordering Z;z, which is
B12(212),
(2) shortage cost due to the shortage of item type No. 1
in period 23 which is Ceys ® Max(rys =X12 = 212,0),
(2) carrying cost in carrying item type No. 1 in period 2,
whiéh is Chyp Max(Xy 5+ 7 5,0),

(4) shortage cost due to the shortage of items type No. 2



23

to No. N in period 2, which is

N
CSiza Max(ria -X12,0)9
j=0 !
(5) total carrying cost of item types No. 2 to No. N in
N
period 2, which is > Chyz Max(X,2,0), and
' 1=2

(6) minimum total cost, presuming an optimal decision is
made in period 1, which is
% (X12+Z12 - P12,y Xoz =Pozy cooy Xyz =~ Iya)
= G(Xy5+Z15, Xooy ceoy Xyz)e
Thus, the total system cost, C(Xy2,Xzps oo, XyziZiz) = Pro(Zhg)
+ Csyp ° Max(ry5 = X135 =2152,0) + Chyp * Max(Xy 5 +Z75,0)
+ K(Xg2,Xapy soey Xyz) + G(Xy5+Z10, Xozy ooos Xyz2)s (2-2-16)

where K(X229X329 20 0g XN2)

N .
= > {csig * Max(ry;z -~ X,5,0) + Chyp ° Max(Xiz,O)}o (2-2-17)
1=2

Note that for a given set of X;., Xzz25 o000y Xy, the space avail-

able for the additional items ordered in the period 2 is

N
W v, ° Max(X;5,0).
i=

As before, let wy,; the space available for the additional item
type No. 1, increase in increments vy from O, v44 2V¥iy coog GViy ooo LO

N
W vy ¢ Max(X;5,0). Then, let £12(X3z,Xzzy co.y Xyz/Wy) be the

=l
minimum total cost when a decision is made for period 2 when only item
type No. 1 is considered, resulting from ordering an optimal amount of
Ziz = T 5 (Xy0,Xa3, ooy Xya/wy ), presuming an optimal decision is made
in period 1, for a given set of X15,X335 ocooy Xyz and ws.

Therefore f15(Xy5,X225 oo0y Xyz/w)

a2 Min{@(xlg.,ngs co0og XNg‘;Z‘lg)}g (2@2'18)
12
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where 0<% 2 <Min(8,, {r-“l - Min(X,;5,0)). (2-2-19)
1

For w, =0, and X,, <03 the restriction of Z;5 in (3-2-19) becomes
0<%, < Min(B,, |X2]). (2=2-20)
for wy =0, and X;5 >0; (2-2-18) becomes f12(X;,,Xz2y o0y Xy42/0)
= T(Xy5,X22s ooy Xy230)5 (2~-0-21)
For wy =Cwvy <v1 (815, Min(Xy,,0)), T12(X15,Xz2y oee, Xy2/Cvy)

flz(xlz,xzz, so00g XNz/(C“l)Vl),

- Min{ } (2-2-22)

T(X12,X02y oo0y Xyp;C=Min(X;5,0))

For w=Cvy >vy (85 +Min(Xy,,0)); let Cvy <vy (85 +Min(X,5,0)) <
(C+1)wvy, then f15(X32,Xp2, ooy Xy2/Cvy)

f12(X104X22, ooy Xy2/Cv1),
= Miny }, (2-2-23)
(X12,%225 ssoy Xy23312)

As in previous discussions, if item types No. 1 to No. n
(2<n<N) are considered and item type No. n is considered first, for a
given set okaIé,ng,'oo;, Xné,'.oo, an and for w,, it follows that
C(Xygy ooy Xpzy eooy Xy23Zpa) = Pr2(Zys)

+ foe1, 2(an, coey Xua+Zpny ooy Xya/wy - v, Max(Zz +Min(X,5,0),0)),

(2-2-2k)
and fp5(X15y coey Xppy osey Xyz/Wy)
= Min{@(Xla’ sooy Xpzy coey xNQ;Z;Z)} (2-2-25)
7!12
where 0< 'Z’nstin('gnza %”Min(xng.)O))o (2-2-26)

n

By letting n"'—"N, and let f*Z(X].g?XBZS s00qg XNE)

N
= fNQ(XIB"XEB? 000 g XNZ/W - E Vi MaX(Xizso))o

i=1
F*5(X10,X02, cooy XNQ) is obtained as a partial-optimization for this

stage.



25

Consider in general period p, where K+1<p<P,
Using previocus developments it follows that
CXypsXaps ooy XypiZip) = Prp(Zyp)
+ Coyp « Max(ryp = Xyp - Z530) # Chyp e Max(X; p + 21 p,0)
+ K(XapyXaps cooy Xyp) + G(Xyp+21p, Xaps oe0s Xyp), (2-2-27)

where ' K(Xgpqxapé cooy Xyp)

N
= {cs,p ° Max(ryp =X 5,0) + Chyy * Max(x,p,o)},
i=2

al’ld G(XIP"'E’lp’ sz, eoag XNP)
= f*p-l (x1p+21p—r1p, X2p-r2p, ce oy pr""er)o

Therefore, f3p(X1p,Xaps eeey Xyp/vp)

= Min{@"(xlp,xep, ceey pr;%’Np)}, (2-2-28)
%o
. W- .
where 0<% p g Min(B;y, ;—1— - Min(¥;p,0)). (2-2-29)

For w; =0, and X;p < 0; the restriction of Zyp in (2-2-29) becomes
0 < Zhp < Min(Syp, [X1p])e (2-2-30)
For w=0, and X > 0; (2-2-28) becomes f1p(Xyp,Xap, «oo;5 Xyp/0)
= T(XypsXapy eoos Xypi0). (2-2-31)
For w =Cvy < vy (Byp + Min(X;,0)), it follows that
f1p(Xy1pyXaps oeey Xyp/Cvy)

flp(x1psxap9 soey XNp/(C_l)vl) } (2-2-32)
. 9 e

= Min{v
a’(xlp,Xap, oao, XNP;C-Min(le,O))

and for Wy =Cv1 > V1(§1p+Min(X1p,O)), flp(xlp9x2p, o004 XNP/GV]_)

f1p(XipsXapy ooy Xyp/Cvidyy
P P }, (2-2-33)

E(le,xap, s00y pr;g‘lp)
wnere Gvy < vi (Byp + Min(X,5,0) > (C+ vy, (2-2-34)

Again, using previous development, if item types No. 1 to No. n
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ﬂ25115DD are considered and item type No. n is considered first, it
follows that C(XypyXap, «oy XnpiZap) = Pup(Z,

+ fn‘”].’(xlp’ ©09gq xnp+2‘np, oc‘as XNp/Wn —V’nMaX(’an+Min(xnp90).,0))?

(2-2-35)
and fap(Xipy ooey Xppy ooey Xyp/Wp)
= ¥in{0hp, ceey Xapy veey XupiZap) s (2-2-36)
np ‘
where - 0<gZp < Min(E;P, = - Min(X,p,0)). (2-2-37)

n

By letting n=N, and let

(leaxzps °°°y Np)" Np(xlp)xzp’ ) Np/w ZviMaX(xipso))
i=1

£*(X1psXaps +oey Xyp) 1s obtained as a partial-optimization for this
stage.
And if p=P, f*p(X;p,Xop, +-o, XnP) is the final optimization to

the problem,

Example
planning period, P=4
warehouse space, W =5 cublic units
number of types of items, N =3
lead time, L = 2 periods
a volume of an item v, = 1.5 cubic units

vz = 1.0 cubic umit
vz = 0.5 cubic unit

initial inventory, . Xy = 2
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. A
Ty =unit

i=1 i=2 1=3
k=l k=2 k=3 k=l k=l k=0 k=3 k=l k=1 k=2 k=3 ks=k

3 2 101 1 o0

3 1 1* 1* 2 1 O* i* 1 O Oo* 1%

Coyy ~dollars/order 1.5 1.5 2,0 2.0 1.5 2.0
Ci,y~dollars/unit 2.0 1.8 1.5 2.0 1.0 1.2
Csyy~dollars/unit/period 4.0 4.0 3.0 3.2 3.0 3.0
Ghskmdollérs/unit/?eriod 1.0 1.2 2,0 2.0 1.0 1.0

*difference between demand and arrival from orders previous to

planning period,

Solution:

Consider period 1 with the value of w, being O, 1.5, 3.0, L4.5.

Minimum

Maximum

Minimum

Maximum

Minimum

Maximum

of

of

of

of

of

of

Xy, = X34 -T14 = 13 = 12

2-1-1-1= -1,

= Xyg =Py =13 ~T12 +%2

[l

-

- .
1

fl

2-1=1=-1+2 =1,
-1 < X4 <1,

X21 = Xp4 =T34 =T33 = Ta2

i}

lel=0=1= =1,
Xpy = Xg4 - Tga =Tgg = Paz + g2 +'3’21

1-1=0=1+1+1= 1,

]

-1 SXBI slo

by
Xa1 = X34 =Ty = P33 =T33

0=1=0<=0 = =1,

Xa1 X34 =Tg4 =T33 = P32 + 852 + %5

0-1=-0=0+0+1 = O,

it

-1 < X3y < 0.



For Xy1 = =1, X3 = =1, X5y = O3

Using (2-2-2), K(-1,0) = (3)(2+1)+0+(3)(1+0)+0 = 12,
By + Min(X,,0) = 3-1=2
°°. E = 20

Using (2-2-1) to (2-2-3), and (2-2-5), fy3(=1,-1,0/0)

i

Min [@11 (’le ) + (Ll')MaX(I“l]_ +1 m‘z’lg_ 70)
OS_Z]_']_ SMin(B,l)

+ (L)Max(=1+7Z;,,0) + K(ul,o):l,'

0.0+ (4)Max(3 +1=0,0) + (1)Max(=1+0,0) + 12,]

3.5+ (4)Max(3+1~21,0) + (L)Max(-1+1,0) + 12,

28,0

= Min ?705] = 27,5; where Z*;;(~1,-1,0/0) = 1,

Using (2-2-7); f11(-1,-1,0/1.5)

f11(=1,-1,0/0),

- Min[ 11(2)-+(4)Max(3-+l«-2,o)’+(l)Max(m1-+2,O)-+K(a19o),]
2765

= Min o 5] = 26,53 where 2*11(w13m190/1°5) = 2,

Using (2-2-8); f3;1(-1,-1,0/3)

[

" [fu(»ls—»l?O/l,B), ]
in
1 (3) + (4)Max(3 +1 =3,0) + (1)Max(-1 + 3,0) + K(-1,0)

t_6 o
= Min[25°5] = 25.55 where 2‘11(-l,=1,0) = I,

Using (2=2-9); f1,(=1,-1,0/4.5)
£33 (=1,=1,0/3),
= Min[@’ :]
11 (3) + (4)Max(Z +1=32,0) + (1)Max(~1+3,0) +K{=1,0)
= 25,5; where 2*11(~1,-1,O/4°5) = 5,
For other sets of X;;.,X31,X47 and for a given wy, the values of

fiq (X117 9%21 sX51/ W) and Z¥y9 (Xy1 Xy X1 /W ) can be determined. The

28
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results are summarized in Table I,
The next step is to determine fgy(Xy3 X3y .Xg1/w ). The values of
wp will be wy +mvy (m=0,1,...) which are 0,1,1.5,2,2.5,%,3.5,4,4.5, and

50

Minimum of Xgl X24 = Yog = Ypa = Igo

= “’lo

Maximum of X21 X24 = T'gg = PTgza = Izg + ’ggg

i}

-1 € X3; € 0.
The regions of X;4 and X3y will remain the same; they ares

=1 <X,

A

1
-1 < X5, < O,
For Xyy = <1,X3; = «l, Xa; = O3
Using (2-2<10) to (2-2-12), fay(=1,-1,0/0)

Min [qrgl (%o1) + £11 (1,1 + %y ,0/0=(1)Max( =1 + Zay ,0)) |
0% %5 $Min(1,1)

Min[

3,5 + £33(=1,0,0/0)

Min[

3,5 + 24,5

il

ti

O + ‘f11(-=l,“ls,0/0),]

O+ 27.5, 27,5

Joma

28,0

£

:] = 27053 where 2‘7*@1 = O?) ?*11 = 1,

For X33 = -1, Xg1 = =1, X3 = O, and for the other values of wg,
as well as for the other set of X3, Xz34 X53 for a given wy, the values
of fa1(Xyyy Xay, Xay) and Z* 5, (X1, Xgqs Xg3/we) can be determined.
The results are summarized in Table II.

The last calculation for the first stage is to determine the values
of £*y(Xyy, X015 X37). Since there are only three types of items in

this systemy it is not necessary to determine the value of



TABLE I

OPTTHAL POLICY AND MINIMUM COST WHEN ONLY ITEM TYPE NO, 1 TS CONSIDERED IN THE FIRST STAGE FERIOD,
10 (Zygs Xpqy Xyp/wg) AD 23 (Xy 4, Xpe Xyp/wy)

Xyy=1 . %440 . BERSThi
¥ Xp=1 %90 Xp1=1 pq=-1 Xp1=0 Xp1=1 Xp=t 0 Xyy0 Xp1=1
Xyy=1 X3;=0 Xy =—1 Xy1=0 Xj=—1 X;1=0 x31=-1 X310 Xy j=1 Ky3=0 X i=-T X 1=0 Ky =1 X;3=0 Xy j==1 X 1=0 X, j==1 X340
£, 30.5 27,5 27.5 24,5 25.5 22,5 27.0 24.0° 24,0 21.0 22.0 19.0 24.0 21.0 21.0 18,0 19,0 16,0
0
%:1 | 1 1 1 1 1 0 ) 0 0 0 0 0 0 0 0 0 0
£, 20,5 26,5 2645 2325 .24.5 21,5 27.0 24,0 24,0 21.0 22,0 19,0 24.0 21,0 21.0 18.0 19.0 16,0
1.5 : ' -
2 2 2 2 2 2 -0 0 0 0 0 0 0 0 0 0 0 -0
£, 28.5 25,5 25.5 22,5 23.5 20,5 26.5 23,5 23.5 20,5 21.5 , 18,5 23.5 20,5 20,5 17.5
3.0 ) * *
%:1 3 3 3 3003 3 2 2 2 2 2 2 2 2 2 2
£, 28,5 25.5 25.5 22.5 25.5 225 22.5 19.5 '
4.5 #* * o o® * * * * * #* *
zT1 3 3703 3

*Not feasible.

0%



OPTTMAL POLICY AND NINIMUM COST WHEN ITEM TYPES NO. 1_AND 2 ARE CONSIDERED IN THE
FIRST STAGE PERIOD, f21(x11, Xo1s X31/w2) AND 221(x11, Xpq1 X31/w2)

TABLE II

X

=1

X

=0

X

1 11 11
¥ X911 %1=0 Xoq=1 X310 Xoq=1 %54=0
K= K3q=0 Kyg==t Kpp=0 Kpy=mi Xpy=0 Xoj==1 K120 Xy ==1 X,;=0 X, y==1 X =0

£,y 30,5  27.5 27.5 24,5 27.0 24,0 24.0 21.0 24,0 21.0 21.0 18.0

0 2?1 1 1 1 1 0 0 0 0 0 0 0 0
Z3, o o 0 0 0 0 0 o 0 0 0 0
£,y 30.5 2715 27.5  24.5 27.0 24.0 24,0 21.0 24,0 21.0 21.0  18.0

1 3, 1 1 1 1 0 0 0 0 0 0 0 0
%5 0 0 0 0 0 0 0 0 0 0 0 0
£, 29:5 26,5 26.5 235 27.0 24,0 24,0 21.0 24.0 21.0 21.0 18.0

1.5 2?1 2 2 2 2 o 0 o o o 0 0 o
2. 0 0 0 0 0 0 0 0 0 0 0 0
£y, 29.5 26,5 26,5 - 23,5 2.0 24.0 24.0 21,0 24,0 21.0 21.0 18.0

2 271 2 2 2 2° 0 0 0 0 0 0 0 0
2;1 0 0 0 0 0 0 0 0 0 0 0 0
£, 29.5 26.5 26.5 23.5 27.0 24.0 24.0 21.0 24.0 21.0 21.0 18,0

2,5 i?1 2 2 2 2 0 0 0 0 0 0 0 0
2, 0 0 0 0 0 0 0 o o o 0 0
£, 28,5 25.5 25.5 22,5 26,5 23.5 23.5 20,5 23,5 20.5 20,5 17.5

3 E:1 3 3 3 3 2 2 2 2 2 2 2 2
%5, 0 0 0 0 0 0 0 0 0 0 0 0
£,y 28.5  25.5 25.5 22,5 26.5 23.5 23,5 20.5 23.5 20,5 20.5 17.5

3.5 7, 3 3 3 3 2 2 2 2 2 2 2 2
%;1 0 0 0 0 0 0 0 0 0 0 0 0
£,y . 28,5 25,5 25.5 22.5 26,5  23.5 23.5 20.5

4 Z3, 3 3 3 3 2 2 2 2 * * . *
Eod 0 o o o o o 0 0
f,y . 28,5 25.5 25.5 22,5 25.5 22.5 22,5 195

4.5 7y, 3 30003 3003 30003 300ox * . *
%, 0 0 0 0 0 0 0 -0
£,y 28,5 25.5 25,5 22,5 25,5 22,5 22,5  19.5

5 7 3 33 3003 3003 ER *oox o
%, 0 0 0 0 0 0 0 0

*Not feasible.
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fq1 (X1 9X51 4Xg1/wa) for all values of w. For each set of

X531 9X51 Xa1 the value of £*; (X117 ¢X37 X351 ) can be determined directly

from fgy (Xyq4Xpq 9Xay /W - :§ v, Max(X;,,0)).
i=1

Minimum value of X3, = =1,
Maximum value of X537 = =1 + O
= =],
The regions of Xy4,X37 will remain the same;.they are:

-1

IA

iA

-1 < X5 < 0.

In

For X33 = =1, X371 = -1, X3, = =13
Using (2-2-13) to (2-2-15); £*, (-1, -1, -1)

fsl(”la “19 ’19/5)

H

Min ﬁgﬁzﬂ)+fm(qﬁ»%a4+zn/5mh5)
0< %31 <Min(1,11) '
Max(Za +Min(Xyy ,00) |

0  + fay(-1, =1, -1/5),
Min[? ]o
0.5 + fgq (-1, -1, 0/5)

0O + 28,5
Min[
2.5 + 25,5

£

] = 28; where Z*¥zy = 1, 2%, = O, and Z*;; = 3.

i

For other set of Xii1,Xz14Xay; the values of £*;(Xyq,Xpy,%s;) can
be determined. Results are summarized in Table III.
Coﬁsider period 2. This is the last stage of this problem. The
regions necessary for the calculations are as follows:
12 = O,
0<X3 21,
X3z = =1,
For Xy3 = 0y X33 = 0, X3z = -1

Using (2-2-17),

32



TABLE ITT

33

OPTIMAL POLICY AND MINIMUM COST WHEN ONLY ITEM TYFE
NO, 1 IS CONSIDERED IN THE SECOND STAGE PERIOD

Xy ==
Xyq="1 Xy =0 X14=1

Xyq==1 X5,=0 X5q="1 X54=0 Xpq=""1 X54=0

£, 28.0 25.0 25,0 22,0 23,0 20,0
7, 3 3 3 3 3 3
2:1 0 0 0 0 0 0
E§1 1 1 1 1 1 1

TABLE TV

OPTIMAL POLICY AND MINIMUM COST WHEN ITEM TYPES NO. 1 AND 2
ARE CONSIDERED IN THE SECOND STAGE PERIOD

W, X15=0y Xpp=0y Xyo==1  X;p=0y Kyp=T, Xyp==1
O-less than 3 f12 38,2 34.0
7 0
Zy, 0
e
Z,, 3 3
%
?@1 0 0
* 1
31 1
3-4.5 ;2 33.7 3125
12 L L
z, 3 :
221 0 0
> 1 1

[a%]
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K(0,-1) = (3.2)(1) + 0 + (3)(1) + 0 = 6.2.

2 +0=2

Sz + Min(X;3,0)
6:20

Using (2-2-16) and (2-2-21), f,5(0,0,-1/0)

it

(4)Max(1-0,0) + (1.2)Max(0+0,0) + 6.2+ F* (-1, -1, ~1)

b+6,2+28 = 38,2; where Z%,5,=0, 2%y =3, Z%;, =0, and Z*;, = 1.

%

Using (2-2-22), £,,(0,0, =1/1.5)

f15(0, 0, =1/0),

Min| ]

Py 2(1) + (4)Max(0,0) + (1.2)Max(1,0) + 6.2 + 25)

]

i

38,2 v
Minr ] = 35,7; where Z*1p =1, 2%y =3, 2%, =0, and T*sy =1,
35,2

and f,5(0, 0, =1/3)
f12(0, 0, = 1/1.5),

MinLﬁ ]
12(2) + (W)Max(-1, 0) + (1.2)Max(2, 0) + 6.2 + 20

i

il

25,7 ‘
Min[ :l = 3%,7; where ’Z*l?, = 2, 'Z*ll = 3, 'Z'tzl = 09 and 'Z*Ql = 1.
3%.7

Using (2-2-23), f;5(0,0, =1/4.5)

1}

33.7; where 2%y = 2, 2%y = 3, 2%, = 0, and 2%, = 1.

For other sets of X35, X335 Xap and other values of wy, the values
of f12(X13, Xoz, X35) can be determined. The results are summarized in
Table IV,

Since there are only two types of items, types No. 1 and
No. 2, are available for this period, the next step, which is the last
step, is to determine the value of f*3;(Xyz, Xszs Xzs). The value of
£*5(X12, X22, X32) can be determined directly from
foz(Xiz, Xpz, Xgp/W - jf::v,Max(X§29O)o The only set necessary for

i=1
calculaticn in this stage is X35 = Oy X3z = 0, X35 = =1,
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Using (2-2-24) to (2-2-26), £*3(0, 0, ~1) = f5,(0, 0, - 1/5)

= Min l:%z(zzz) + £1200, 0+ 70z, = 1/5 « (1)Max(Z,, +M111(X22,O)))]
0<Z s < Min(1,5)
0+ 33.7
= Min[ ] = 33,73 where 2¥pp =1, 2*15=1, %% =3, 2%z, =0, and
b+ 21.5

’Z*a‘l = 1o
Thus, the optimal policy for the problem is determined. By ordering
Trop =1, Z¥15=1, B*yy =3, ¥, = 0, and Z*;, = 1; the optimal total

system cost is $35.50.
2.% MULTI-ITEM SINGLE-SOURCE FOR THE NON-MIXABLE ITEMS

This section considers the case of Section 2.2 in which several
types of items cannot be mixed together and the space for each type is
allocated at the beginning of the planning period. Inventorying
chemical items would be a case in which this specific restriction is
necessary.

The analysis begins by considering that each item type is kept in
a specific given space as previously considered in the single-=item
singlewsqurce system. Thus, for item type No. 1, the analysis in
Section 2.1 may be used to determine f*p(O) for the selected value of
w (O<w<W), Let G (w) = f"P(O)9 for available space w.

Consider that only item type No. 1 is stored in the warehouse. TFor
a given total space W, let wy, the space which is to be allocated to
item type No. 1, increase with an increment vy from O through the
values Vi, 2V, eosy Wo Gy(w) is the minimum cost for space w
occupied only by item type No. 1. Note G (w)=G;(Cvy) for
Cvy Sw< (C+1)vy o

Next, consider that only item types No. 1 and No, 2 are stored in
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the warehouse. Let wp, the space which is to be allocated to item
types No. 1 _and_No° 2, increase from O through the values
wy +mve(m=0, 1, o00)e
Let Fo(wy) be the minimum expected cost when only item types
No. 1 and No. 2 are stored in wy unit space, resulting from the optimal

allocation of the given space to the two types of items.

Fg(Wg) = Min[Gg(VQZ) + G]_(Wg =VQZ)] . (2*3“’1)
Z
where 0<iZ<« .:}’2.. (2=3-2)
3

Again, for w between adjacent values wp <w< w'p of the set
wgy Fa(w) = Falwg),

In general, consider only item types No. 1 to No. n in the ware-
house. Let w,, the space allocated to items types No. 1 to No. n,
increase from O through the values wy-1 +mv,(m=0, 1, ...). The

following relation is obtained:

Folwy) = Min[G, (v,2) + Fpuq (wy =v,2)], (2-3-3)
VA
where 0<Z< %‘-; (2-3-44)

Letting n=N, fy(W) can be determined and is the final optimiza-
tion to the problem.
fExample
planning period, P = 2 periods
warehouse space, W = 3 cubic units
number of types of itemy N = 2
a volume of an item, ¥y = 1 cubic unit
vy = 1 cublic unit

(for all k)

]
(@]

procurement lead time, Ly =



i=1 f=2

=1 k=2 k=1 k=2
Syx-unit 3 3 3 3
ry,-unit 1 2 2 1
Co,y~dollars/order 2.00 3.00 3.00 2,00
Ci,-dollars/unit 1.00 1.50 1.50 1.00
Csy\ -dollars/unit/period 5.00 6.00 8.00 7.00.
Chyy~dollars/unit /period 0.50 0,50 0.50 0.50

Solution:

37

Employing the procedure of Section 2.1, for each type of item and

for each given value of w,, G,(w,) can be determined. The results are

summarized as follows:

[}

G, (0)

Gy (1)

il

Gy (2)

G, (3)

[t}

Gz (0)

G5 (1)

Gy (2)

i

G2(3) =
Using (2-3-1) and (2-3-2)
6, (0) + & (3), ]
Gp(1) + Gy (2),

Fp(3) = Min =
G5 (2) + G (1),

G (3) + G, (0),

21
14
10

9
27
16

10

2005 2%y =
503 z*iz =
.503 Z*qp =
.50 Z* . =
:505 Z*zp =
o505 Z*35 =

005 Z*5p =

7.503 &¥pq =

°
v

Min

(27,50 + 9
16.50 + 10
10,00 + 14

7.50 + 21

.50 |
050
.50

.00

27,00

27.00
= Min

28.50

ok ,50|
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The optimal decision is: allocate 1 cubic unit of space to item
type No. 1 and 2 cubic units to item type No. 2. By ordering 1 and 2
units of types No. 1 and No. 2, respectively, the minimum total

system cost is $24.50.
2.4 SINGLE-ITEM MULTI-SOURCE SYSTEM

This section considers the case in which there is only one type of
item but several sources of supply available in the system. Other
assumptions are the same as previously used in the chapter.

Assume that there are J sources of supply which can supply the
items for the period k.

Let 0, (%, ) be the item cost plus fixed ordering cost when
lek items of type No. 1 (in this model, it is assumed that only a
single type of item in the system) are ordered from source No. j, with
this amount arriving at the beginning of period k.

And let T1jx be the available supply of item type No. 1, from
source No. j, in which the order made from this source will arrive at
period k.

The total amount available which will arrive at this period will be
SE,.
J=1

Let qﬁgk(flk) be a minimum cost when 2, is ordered from sources

No. 1 to No. j.
Then, P*y3,(Zy)
P e (Zh)

i1 (Zy, )5 where Zy; <844

Min T (7 00)
OﬁzlijMin(g‘mw’Zn)[ T

it

it

+ @*1$3=1?k<7&k = ﬂjk>]9

3
where 'Zu < j>; gwlko
=1
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Increasing j until j=J, and letting @), (Z),) = P, 5 (2, ),
QQQ(ZEk) becomes a minimum item cost plus fixed ordering cost function
for a given value of %), . Using this ¥, (%,,) in Section 2.1, the sys=

tem will be reduced to a simple Single-~Item and Single-Source system.
2.5 MULTI-ITEM MULTI-SOURCE SYSTEM FOR THE MIXABLE ITEMS

It is assumed in this section that several types of items are to
be carried, and several sources of supply are available in the system
described previously in this chapter.

Assume that there are N types of items and J sources of supply
which c¢an supply the items in the period k.

For a particular item type No. i, foilowing the discussion in
Section 2.k4:

¢*1 1k (71k) = fﬁz lk(zlk )s

where 7&k < 3}1k9
and @‘*1 sk (’Z‘ik) = Min [EDJ (?’ )
02y e <Min(®,y, Ty L toxtoas

+ T, 94w19k(71k =2 5 )]\»

o
where 2’” < Z - 3’, 3o
J =3

As in Section 2.4, letting ¥, (Z;,) = T* 5, (%), B, (Z,,) can be
used in Section 2.2. Then, the system is reduced to the multi-item

single~source system.
2.6 MULTI-ITEM MULTI-SOURCE SYSTEM FOR THE NON-MIXABLE ITEMS

Consider the case in Section 2.3 in which the several types of

t1tems cannot be mixed together for the mulii-item multi-source problem.
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Employing the discussion in Section 2.3, the system may be reduced,
first, to a single-item multi-source. Thus, for item type No. i, the
procedure discussed in Section 2.3 may be used to determine Gt(w) which
is f*p(0) for a selected value of w. Then, the procedure to allocate

space to each type of item is the same as in Section 2.3.



CHAPTER III
PROBABILISTIC DEMAND AND IMMEDIATE FULFILLED SYSTEM

Differing from the oné in the previous chapter, the case when
demands are probabilistic is considered in this chapter. The problems
ére restricted‘to the case of immediate fulfill or zero lead time,

As in Chapter II, the optimal decisions for this chapter are based

on the amount of inventory on hand at the beginning of each period.
3,1 Single Item Single Source System

This section considers the case in which only one type of item and
only one source of supply are available. The analysis is as follows:

Consider period 1, and for a given Xy, assume that an amount Zy is
ordered in this period. The decision made at this period affects the
system cost only in this first period.

The expected total controllable cost is the sum of:

(1) item cost plus fixed cost of ordering Zy, which is

Pn(Zy),

(2) expected shortage cost in the period 1, which is

Csp > (ry =Xn = Zn) P(ry), and

ry >Xp +2Zp
(3) carrying cost in period 1, which is
Chy ° Max(Xy + Zpn,0).

Thus, the expected total controllable cost, C(Xus3Zn)



= (P]j_(Zu) + Csn E (fu = Xn = Zn)Pﬂ(I“n)

rn>Xnt+ 2y

+ Ch]l s Max(Xy + Zu,O);
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(3=1-1)

Let £*;(Xp) be a minimum expected total controllable cost for period 1,

resulting from ordering an optimal amount of Zy = Z*y (Xy) for a given

Xna

Therefore, f*;(Xy) = Min{atxngzn)}?

where

Zy

0< 2y < Min{Sn, Wo- xu}o
: : v,

(2-1=2)

(3=1=3)

Consider period 2 and for a given value Xy, assume that an amount

24z is ordered in this period.

the system cost for periods 2 and 1.

The expected total controllable cost is the sum of:

(1)

(2)

(3)

(&)

item cost plus fixed cost of ordering Zy, which

is ¢E£ZxQ;

expected shortage cost in period 2, which is

Csyp E (I"g =Xip = le)sz(Iﬂ‘]g)g

I“]z> X]_a + Z]z

carrying cost in period 2, which is

Chie » Max(Xp + Z35,0), and

expected optimal controllable cost presuming an

optimal decision is made in the period 1, which is

_;_ £*, (Xj[a + Ziz = 12)Pilre).

I"l,gzo

Thus, the expected total controllable cost, C(Xm3 Ziz)

g (P]z (Zp) + GS]Q Z (P]B - X}B = Z]B) Pla(rjz)

+ Chys ° Max(Xp + Zy,0) +%f*l(xp + Zyp = 112)Pi(rm).

rip > X + Zp

The decision made at this period affects

(z=1-hk)
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Let f*3(Xp) be a minimum expected controllable cost for period 2,

resulting from ordering an optimal amount of Zp = Z*32 (X33) for a

given Xp .

Therefore, £*3(Xp) = Min{atxm; Z]g)}-9 (3=1-5)
Zyp o

where 0 < &p < Min {s,a, W = xm}. (3=1-6)

Vy
Next, consider in general period p,

where 2 < p £ P.

%‘(X1P;Z1p) = q)lp(zlp) + Cslp > (l”lpaxlp=zlp>P1p(r1p>
rip>Xip*tép

+ Chlp @ MaX(xlp + Z1p90)

+ Z ¥ -1 (le + le - rlp)Plp(rlp)" (3“’1“7)
I"lpzo p

It follows then that

£* (X1p) = Min{@'(xlp‘;zlp)}s (3-1-8)
b Z1p
where 0 < le < Min{slp, W o= le}a (3-1-9)
Vi .
Example
ﬁlanning period, P =3
warehouse space, W =75 cubic units

1 cubic unit

H

volume of an itemy, W

initial inventory, X = 4 units

i



k=1 k=0 k=3
available of supply, slk - unit 3 5 b
item cost, Ci - §/unit 0.50 0.60 0,50
fixed ordering cost, Co,, - $/order 0.50 0.50 0.50
shortage cost, Cslk - $/unit/period 6.00 6.00 6.00
carrying cost, Chlk - ﬁ/unit/pefiod 1,00 0.90 1.00

oy 0 1 2 3 b

Pu(ry) .20 .25 230 25 .00

Pnﬂrwi .10 .20 .35 .20 .15

Py rys) .55 45 .00 .00 .00

Solution:.

Consider period 1. Using (3-1-1) to (3-1-3), for Xy = =1}

£*, (1)

Min

0<Zp< Mln(3,§+1)[¢u(zu)+(6) ZE (rot+le Zu)Pu(rn)
> 1+ 2y

H

+(1) - Max(-1+ 23,0) |

0.0+ 6, {(1)(.20) +(2)(.25) + (3)(.30) + (4)(.29}+ (1)(0)
- Min [F-0+ 6. [(1)(.25) + (2)(.30) + (3)(.25)} +(1)(0)
1.5+6. {(1)(.30) + (2)(.25)} +(1)(1)
2.0+ 6. {(1)(.25)} +.(1)(2)
[16.60]
10.60
= Min 7.30| = 5.50, where Z*n(=1) =
5.50

For other values of Xy, using (3-1-1) to (3-1=3), £*;(Xy) and

Z*n(Xn ) can be determined. The results are summarized below:

44
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£*%,(0) = 4,50 5 Z*5(0) = 2
£%1(1) = 4.50 5 Z2*p(1) = 1 or 2
£%,(2) = 4.00 3 Z*p(2) =1
£%,(3) = 3,00 3 2*p(3) = 0
% (4) = 4,00 5 Z*n(k) = 0O
£%,(5) = 5,00 ;3 2*x(5) = 0O,

Consider period 2. Using (3-1-4) to (3=1-6), for X = 3,

*5(3)

Min
0<Zp< Min(Sé«-B){%z (Zpp) + (6) » > (riz = 3 - Z12) Py (r32)
1

E[‘]a >3 +Z12

i

+ (0.9)Max (3 + 295,0) + > f*1(3+zw~rw)Pm(rm)}
ri >0 '

0.0+ 6.(1)(.15) + (.9X(3) + (3.0)(.10) + (4.0)(.20) + (4.5)(.35) |
+ (4.5)(.20) + (5.5)(.15) ,

[}

Min|l.1L+0 _ + (.9)(4) + (4.0)(.10) + (3.0)(.20) + (4,0)(.35)

| v (4.5)(.20) + (4.5)(.15) |

1.7+0 + (L9)(5) + (5.0)(.10) + (4.0)(.20) + (4.,0)(.35)
+ (4.,0)(.20) + (4.5)(.15) .

r-8‘,00

= Min| 8.68| = 8.00; where Z*1p(3) = 0.

10.03

For other values of Xjp, using (3=1-4) to (3=1-6), £*;(X) and

Z*;(Xyo) can be determined. The results are summarized belows

£*5(4)

B

7058 H Z*jz (L") 0

i3

f*5(5) = 8.33 Z*m’(B) 0.

H
it

Consider period 3. This period is a last stage and the initial
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inventory is known equal 4. Therefore, only the values of f*3(4) and
Z*y (B) will be determined. Using (3=1=7) to (3=1-9), for Xi =4,
£ (4)

Min

0 S ,Zn _<_ Min(l{-s%—l{-)[@m(Zﬁ) + 6. I‘;]:.;Z>£;3 (I“jg - b - ZE)PB (1”‘13)

H

* L Max(h + 23,00+ T 24 (bt gy -r P ()|

[o + 0+ (L)(4) + (7.58)(.55) + (8°oo)(.45),]
= Min °
1+ 0+ (1)(5) + (8.33)(.55) + (7.58)(.45)

i

11.77 '
Min[ 1 = 11,77, where 2*i (k) = 0,
13.99 '

Thus, the optimal decision at the period 3 is do not order amd the

minimum expected total system cost is $11.77.
3,2 MULTI~ITEM SINGLE-SQURCE SYSTEM FOR THE MIXABLE ITEMS

This section is an extension of Section 3.l; several types of
items are to be carried and they can be mixed together in the warehouse.
There continues to be only one source of supply as in Section 3.1, and
other assumptions remain the same as before. The analysis is as
follows: Assume that there are N types of items in the system, and
consider period 1. For a given set of Xn;Xm, o..y X413 assume that an
order of the amount Z; is made only for item type No. 1 at this pericd.
A decision made at this period affects the system cost in peried 1, and
the expected total system cost is the sum ofs

(1) item cost plus fixed cost of ordering Zp, which is -

@u(zu)s
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(2) expected shortage cost due to the shortage of item

type No. 1 in period 1, which is

: Csn%u(rn - Xll = Zn)Pn (Fﬂl)g

(3) carrying cost in carrying item type No. 1 in period 1,
which is’ Chn MaX(Xn + Zﬂ90)9
'(4)"expectéd total shortage cost due to the shortages of

 item types No, 2 to No. N in period 1, which is

Ty > Xy

chu. :(Pn - Xg) Pu (ry), and

(5)‘.tpta1\carryingbcost in carrying item types No. 2 to

No. N in period 1, which is
o - |

E Ch£1 L4 Max(xu 9O)°

1=

Thus, the expected total controllable cost, CUpsUg gy ooy Uyp3Zn)

= (p]]_(Z]j_) + Con E (I’n = Xp = Zn)Pﬂ(I“u)

rn > Xn + Zn
+ Chp » Max(Xy + Zy,0) + K(Xp,Xs g 000y Xy1)s (3-2-1)

Where K(Xugxa9 ooy XNI)

N .
= S CSH E . (ru = x“)Pu (rﬂ) + Ghn ° MEX(X.H', O)o (3"’2“’2)
=2 X '

LT > Xy
Note that for a given set of Xu,X3, o005 Xy15 the space available

for the additional items to be ordered in the pericd K will be

N : ’
W - z Vi e Max(xﬂ',o)o
i=1

In order to‘apply the principal of optimality to this problem, let
wy , the space available for the additional items type No. 1, increase

in increments of w; from O,
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. N
V192V1, 6o00g CV]_, ceog to W “Z\Ti ° MaX(XM,O)o
i=1
Then, let fu(Xp,Xay eoe, Xy1/W) be the minimum expected total cost
when a decision is made in period 1 when only item type No. 1 is being
considered, resulting from ordering an optimal amount of Zy =
Z*n(Xn,Xa14 sooy Xy1) for a given set of Xy, Xors 000y and wyo

Therefore, fu(Xy, Xays coes Xyr/wy) = Min C(Xp,Xz1, ooy Xy13%n)

Zy
(3-2-3)
where 0 < Zn  Min(Sy, 2 - Min(Xp,0)). (z-2-4)
B D= ]
For wv; = O,‘ and Xy < O; the restriction of Zp in (3-2-4) becomes
0 5 Z]_]_ S Min(s'ﬂ_g ‘Xul)o (3“"2"5)
For wy = 0, and Xp > 05 (3-2-3) becomes
F(XpoXgy s ooy Xy1/0)
= TXnyXany  oooy Xy130)e (3=2-6)
For wy = v; < v1(Sy + Min(Xp,0)); (3=2=4) becomes

0 <%y <1 = Min(Xyp,0).
Then, fu(Xn,Xgl, csog XN]_/V]_)
T (XnyXayy cooy Xy1/0),
= Min{

. }o (3-2-7)
T(XnoXa1s oooy Xy13l = Min(Xy,0)

In general, for w3 = Cv; < vy (Sy + Min(Xy,0)),

fn(le9XQ13 ooy XNI/CVI)

= Min+<. (3=2=8)

fn (XnyXa1s ooey Xy1/Cvild, }
T(XpyXeys eoos Xy13C = Min(Xu,0))

For w; = Cvy > w1 (Sy + Min(Xy,0));
let Cvy < vy (Sy + Min(Xp,0) < (T + 1L)vy,

then Sy < (C + 1) = Min(Xy,0),



and 8y > C - Min(¥y,0).
_Therefore,'ﬁsing (3=2-3) and (3-2=4),
'_ Xy Xp1y eoey Xg1/Cvy)d
fn(Xn,Xal, cooy XNl/Eﬁl),
}, (3-2-9)

= Min{
eKXn,Xgl, eocy an3sn)

For a given set of XnyX31, .. Xy1, consider that orders are made
only for item types No. 1 and No., 2, and that item type No. 2 is ordered
first in the amount of Zz,. Let wy;, the space available for the addi-
tional item types No. 1 and No. 2, increase from O through the values of
wp +myy(m=0, 1, o.) until W = liviMax(Xn,O)° After Zy; is ordered, an
optimal amount of item type No. 1 is ordered for a given set of
Xn9Xsy +2314 000y Xy1y and for an available space of
wg==v2Max(Zgl-rMin(Xgl,O),O)o Therefore, the expected total cost is the
.sum of:

(1) item‘cost plus fixed coét of ordering Z21; which is

Pp1(%z,), and
(2) minimum expected totél cost-when.a deéision is made
| in periesd 1 when only ltem type No, 1 is considered,
resulting from ordering én optimal amount of Zy for
a given set of XH9XQ1‘;Z21? cooy Xy1 and for the space
available wp = vaMax(Zgy + Min(Xp,,0),0), which is
falXuyXo1 + Zoy s ooy Xy1/Wp = va Max(Zg, + Min(Xy,,0),0)).
Thus, the eipected total cost, @Kxﬁ9x219 coog Xngzal
= ©21(Z21) + £n(Xn,Xa1 +Zo1, eovy Xny/vp = vaMax(Zay +Min(X51,0),0)).
| (3-2-10)
Then, let fa;(Xy,Xz15 ooy Xy1/wz) be the minimum expected total

cost when a decision is made in period 1 when item types No. 1 and No. 2
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are considered and item type No. 2 is considered first, resulting from
ordering and optimal amount of Zz; =2*3;(XyuoXsyy ece, Xy1) and pre-
sumingloptimal amount of 2y will be ordefed later, for a given set of
XnyX31, o.o,lxnlland Wo o Theref“ore3
£21 (XpyXa1y oeoy Xyy/ia) = 'I‘Z’Iin{@'(xn,xan voes xm;zﬂ)}, (3-2-11)
. 31

where 0 < Zy; < Min(Sgy, ‘;’?« - Min(Xz;,0)). (2=2-12)
R NSNS , 2

In general, item t;;ir’pe.s'No° 1 to No. n (2 < n < N) are considered
and ifem fype No. nvbeing‘considered first. The space available for
the additional items of types Nbobl to No. n, w,, increase from O
through the values of Wpey mv,(m=0y 1, oo.) wntil W wi%leax(xu.,o)o
Then, it »fol}low'é that ”d(xmle, ooy Xy13%g1)
= wnl(znl)

o151 Xy coey Xpa ¥ Zp1y eoogXy1 /Wy = vy Max(Zy; +Min(X;;,0),0)),

(3-2-13)
and f,1(Xn,Xp1s coeos XNl/wn)=Min{C'(Xn9X3” cooy xm;znl)}, (3-2-14)
Z,,
where 0 < Zy1 < Min(S,1, %& - Min(X,;,0)). (3-2-15)
n

By letting n

N, and letting £*;(XnsXa1, coos Xy1)

= f,u(xn,xal, ooy Xy1/W-= i%vi Max(Xy 50)) £*1 (Xppy X1 0oy Ky1) is
obtained as a partial-optimization for this stage.

COnéider.period 2 and for a given set of XpXazy oo, Xya, assume
that an order is made only for item type No. 1 in the amount of Zyp at
this period.. The decision made in this period affects the expected
Systgm cost,er‘periodé'2’an&}1o7 »

The eXpecﬁed'ﬁotal system cost is the sum of:



(1) dtem cost plus fixed cost of ordering Zp, which is
Pyz (Zy ) ;:
(2)  expected shortage4coét due to the shortage of item

type No. 1 in period 2, which is

Cspp (ryp = Xy = Zpp) Pip (22),

2 .

big P> > X]a + ij

(3) darinhg cost in carrying item type No. 1 in period
- 2, which is Chys Max(Xys + Zy5,0),

(4) expected shortage cost due to the shortages of item

types No., 2 to No. N in the period 2, which is

> S (re - %) P (rp),

i=2 r12> Xi2
(5) total carrying cost of carrying item types No. 2 to

No. N in the period 2, which is

Chyp Max(X;,0), and
=2

(6) minimum expected total cost, presuming an optimal

decision is made in period 1, which is

pa

ao.> f* x +Z =’1f° X :ar N-X-I-)
o >0 Tyz >O{ 1( 12 13 29 422 229 9

) »rNa)%l__P@ (r@)}

= G(Xp +Zy35Xa2, ?°°9"XN2)°

Thus, the expected total system cost, C(Xis Xpzs cooy Xyzilim)

it

Prg(Zys)

CS];a W%(rm "X]B = 212) P]2 (]1’12) * Chlg MaX(X.je + Zgz.;Q)

+ K(X2390329 vocog XNB) + G(X:iz + Z]z‘)XEQ'?‘ coog XNQ) .I’

+

where, K(Xzz3Xazy oooy Xyz)
N
=2 Csy 2 J%ﬁ,;mﬁ(x»g3 ~Xg)Pp(re) + Chp Max(Xg,0).

51

(3-2-16)

(3-2-17)
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Note that for a given set of Xy, Xz, .0y Xy2, the available
space for the additional items tb be ordered in the period 2 is
W "i":l . Max(Xig,'O);
i=1 .
As before, let wy,, the space available for the additional item
type No. 1, increase in increments v, from O, vy ,2¥3, cco CViy coey tO
N ,
w - Z‘Vi - @ MaX(Xg,O)o
i=1
Then, let fi(Xyp4Xs2y soo, Xya/wy) be the minimum expected total
cost when a decision is made in period 2 where only item type No. 1 is
considered, resulting from ordering an optimal amount of Zy; =
yASE & N S XNa/wh), presuming an optimal decision is made in
period 1, for a given set of Xy, X35, c0oy Xyz2 and wso
Therefore, fip(XypoXozy ooy Xys/Wp) = Min{@'(xm9X22? ooos ){Nzgzw)}9
dyp
(3-2-18)

where 0 € 2y < Min(Sy, %’4— = Min(Xy5,0)). (3-0-19)

For wy 0, and Xy < O; the restriction of Zy in (3-2-19) becomes

i}

0 < Zp < Min(Sy, [%e ). ‘ (3-2-20)

For w; = 0, and Xjp > 0; (3=2-18) becomes

f1o (Xiz yXp2s ooy Xya/0) = CXy sXams ooos Ky230)s (3=2-21)
For w; = Cvy < vy {8y Min(Xyp,0)); |

f12(X1p5Xn2s oooy xns/cvi)

f1o(X13 X025 e0oy Xya/(C=1)vy),
' }o. (3-2-22)

= }Min ‘[ .
T(XypeXapy eo0y Xy23C = Min(Xy2,0))
For w = Cv; > vy (Syp + Min(X;5,0))5

let Cvy < v (S + Min(¥X;,0)) < (C + 1wy,

then f12 (X2 (Xp35 0oy Xya/Cvy)
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f12 (X123X25 «oey Xya/Cvp),
= Min{ : },

o (3-2-23)
T(Xiz9X22y cooy Xyo3Se)

As in previous discussions, if item types No. 1 to No. n (2 <n<N)
are cqnsidered and item type No. n is considered first, for a given set
of XE 9X22 ’. fcn,‘ xnz, voog XNE and. an it fOllOWS that

E(XE, °oaag xngt, 6009 XNQ;ZE\Q)

= (pjg(zla)

+ fn—1,2(x129 cooy xnz + Zne'; veoy XNE/Wn “vnMaX(Zn‘? +Min(x5230)90))9
L ‘ (3-2-24)

and fna(xlz9 ecog xna., too0g xNg/wn')

= Min{a’(x:[g, caoog xna, ccog XNZ/ZHZ)}9 (3"?“25)

b/
where .0 < %,5 < Min (8,5, %& - Min(X,3,0)). (3-2-26)
. n

By letting n = N, and letting

f*a(xp9x239 co0og XNB)

= sz(x]g9xgz, LR XNz/w = i%viMaX(Xﬁz,O))a

£*,(X1og X225 o00g Xyz) is obtained a partialmdptimization
for this stage.
Congider in general period.p9 where KQ-l <p<P.
Using previous developments, it follows that

E(X1p9 sz’ 6 004g pr;le)

i

(p]_p(zlp)

+

»CSlp fp>xlp+zlp (rl'p-=X1p = le)PIP(Tlp) + Ch‘lp MaX(X1p+Z1p9O)

+

K(Xgp$x‘3p9 acog XNP) + G(X1p+Z1p9 XQP? caog XNP)9 (3==2m27)

Where K(XQP9X3p-3 eocog XNP)

N
.::> CS - -
i=2 "1p rip>Xip

(rlp g xip)Pﬁp(rip) + ChlpMaX(Xip.BO)
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and, G(Xyp+ZipsXaps +oes Xnp)

>

coo £* ‘
r1p>ﬁ er>O p_l(X1p+Z1p=r1p,Xgp=r2p, coog XNPHI‘NP)

S
P,(r,p).
ip*H1p
i=1

Therefore, flp(xlpgxapa so0g pr/Wp)

= Min '
le{e,(xlp9X2p’ ceoyg XNP;ZNP)} . (3‘“2-’?8)
where 0 < Zyp < Min(S1p, %f - Min(¥;,0)). (3-2-29)
For wy = 0, and le < 05 the restriction of Zyp in (3-2<29) becomes

0 < Eap < Min(Syp, [Xap)). ,(3“2“30)
For w, = 0, and X > 0; (5-2-28) becomes
£1p(X1psXaps eooy Xnp/0) = CXyp,Xapy coey Xyp30). (3-2-31)
For w; = Cvy < v1(81p + Min(X3,0))5 it follows that
f1p(X1psXaps +ees Xyp/Cva)

flp(x1p9x2p9 ev oy XNP/(Cﬁ’l)V1)9 }

= Min{ 5 (3=0-32)
TX  , X , s00y X 3C-Min(X ,0))

and for wy = Cvy > vy (Syp+Min(Xyp,0));

flp(xlpgxgpg ooo.’ XNP/CVj_)
flp(le,sz, oeagq pr/an_)

= Min{ } (3-2-33)
E’(le,xgp, cooq XNp‘,fslp)o

where G < V1(31p=+Min(X1p90) >{C+1)w - (3-2-34)

Again, using previous development, if item +types Nec. 1 to No. n
(2<n<N) are conéidered and item type No. n is considered first, it
follows that
C(XypsXaps ooy XnpiZap) = PaplZyy)

+ foo1 p(Xips eees Xap+ Zapy eoes Xyp/wy = VaMax(Zyp+ Min(X,5,0),0))

(3-2-35)
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and9 fnp(xlp, °°,°9 an’ °o00g9g pr/wn)

= Min{‘a’(x1p9 o009 xnp’ 60 0g XNP;an)} <3“’?*‘36)
an
where 0 < Zyp < Min(S,p, %f « Min(X,p,0)). (3=2-37)

By letting n=N, and let

£* (X1 psXapy «-o5 Xyp) = fyp(hapsXop, oo, XNP/W"’% vy Max (X, ,0))
f*p(le.,Xgp9 0o o XNP) is obtained as a partial-optimization for this
stage. ' .

And if p=P, f*P(le,sz, eooy XyP) is the final optimization to

the problem.
3.3 MULTI-ITEM SINGLE~SOURCE SYSTEM FOR THE NON-MIXABLE ITEMS

This section considers the case for the specific assumption in
Section 2.3 when demands are probabilistic and orders are immediately
fulfilled. ZEmploying the discussion in Section 2.3, the system can be
reduced, first, to single~item single-source. Thus, for item type No.
1, one can use the development in Section 3.1 to determine G,(w), which
is f*P(O) for the selected value of w., And then the procedure to

allocate space to each type of item will be the same as in Section 2.3.
2.4 SINGLE-ITEM MULTI-SOURCE SYSTEM

This section considers the case in which there is only one type of
item but several sources of supply available in the system., Other
assumptions are the same as previously used in the chapter.

Assume that there are J sources of supply which can supply the item
for the period k. Let @ljk(zljk) be the item cost plus fixed cost of

ordering item type No. 1 in the amount of Z,;,, from source No. j in
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period k. And let S;j, be the available supply of item type No. 1,
from source No. j, in perlod K
Thus, the total amount avallable in period k will be E Sijke
J=1

Let @*,;,(Z);) be a minimum cost when 4,, is ordered from sources

No. 1 to No. j. Then, it follows that

¢*11k(zlk) = ¢11k(zlk)a
Where Zlk s Sllk°

And that

Min

%, (Zyy ) = (@, v (Zy 40 )
LIk 1k OSZIJ_k 5Min (Sleﬁzlk)[ 1k 1ik

. + Py, 510k By =21 )],
d
where Z), <ZS“/R.
3=l :
Increasing j until j = J, and letting ©,,(Z;,) to be

* 3k (210 )y @1 (2, ) becomes a minimum ordering cost function for a
given value of Z;,. Using this ©,,(Z;,) in Section 3.1, the system is

reduced to a simple Single-Item Single-Source system.
3,5 MULTI-ITEM MULTI-SOURCE SYSTEM FOR THE MIXABLE ITEMS

It is assumed in this section that several types of items are to
be carried, and several sources of supply are available in the system
described previously in this chapter.

Assume that there are N types of items and J sources of supply
which can supply the items in the periodbkn

For a particular item type No. i, following the discussion in
Section 3.khs |

P* 1 (Zyy ) = wi%k(zlk)w

where
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Zyx < 8yqpe

And @*y 4y (245 ) = Min [Py 3 (B4 4
0< g <Min (Syy, Zyy)

* 0= (B = 2y ) ]y

where
J
Zyy £ ;Si ik e
J o=

As in Section 3.4, let @ (Zy, ) = P* 33 (24 )y P (2, ) can be used
in Section 3.2. Then the system is reduced to the Multi-Item Single-

Source system.
3.6 MULTI-ITEM MULTI-SOURCE SYSTEM FOR NON-MIXABLE ITEMS

Different from Section 3.3, this section considers the case of
multi-item multi-source. Employing the development in Section 2.3, the
system can be reduced, first, to single-—item.multi—sourceo Thus, for
item type No. i, one can use the development in Section 3.4 to determine
G,(w), which is £*p(0) for the selected value of w., And then the pro-
cedure to allocate space to each type of item is the same as in Section

2030



CHAPTER IV

PROBABILISTIC DEMAND AND DETERMINISTIC

PROCUREMENT LEAD TIME SYSTEM

In this chapter, extension of Chapter III, the case in which there
is procurement lead time for the order made in each period will be con-
sidered. Procurement lead time being considered in this chapter is
assumed to be deterministic, but not necessarily constant.

As already mentioned in Chapter I, assume that the excess demands
in any period are allowed for deferring to a later period, and that an
order made in any period will not arrive before those orders made
previously. In this case, the decision being made at each period will
be based on the amount of inventory at the beginning of the period plus
the outstanding orders. A minimum expected total controllable cost for
each period can also be determined by employing a minimum expected total
controllable cost pre—determined in a previously calculated stage, using

the following recurrence relations:
Upe = Up eer + 2y xe1 = Ty ps1e
,1 SINGLE-ITEM SINGLE-~SOURCE SYSTEM

This section considers the case whereih only a single type of item
snd only a single source of supply are available. The analysis is as

follows:

58
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Consider period K,
where K-Lg > 1
and K-1-1y, <1

This means that any order made after period K will arrive after the
beginning of period 1.

For a'giveﬁ Uy, assume that an amount Z;K is ordered in this
period and arrives Ly periods létér; Therefore, a.decision made at
this period affects fhe system cost in periods K-LK, K-Ig-1, cooy 1o
The system cost from pefiod K'fo period K-ILyg +1 will‘be "uncontrollable
cost', the system cost which is not affectéd by the decision made in
this period.,

The expected tofal controllable cost is the sum of:

(1) item cost plus fixed cost of ordering Z,g, which is

(le(ZlK)s
(2) total expected controllable shortage cost in periods

K-Lg, K=Ig=1, o0o, 1, which is

f{Csm ST (ry =Uyg = Zyg)P(r Kk)} and

r >U1K+ ZlK

(3) total expected controllable carrying cost in periods

KeIygy, K-LKk=-1, cc0oy 1, which is

S ony - T (e g e PG )

T <Uig+ 4K
Note that sum of demands in determining the carrying cost will not
include the demand in period.kn. Thus, the expected total controllable
cost, @tUlK;ZIK)

('le(ZlK) + £{Cslk : (I“]_ = UIK Z]_K)P(rl K k)

ry >hK+24,x
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+ Chyg > (UiK~+ZlKomrl)P(r13K9ke+1)}a

ri <Ug+7K
(4=1-1)
Let £*k(U;k) be a minimum expected total controllable cost for period K,
resulting from ordering an optimal amount ZIK:=Z*1K(UiK) for a given

U;k- Therefore,

£k (Uig) = Min{@TUiK321K>}9 (4=-1-2)
4K
W K
Whel"e OSZIKSMin{SlK‘) ;;‘:EUIK + E _]gik}c (L{'SI”B)
k=KeLg+l

Consider period K+1 and for a given U59K+19 assume that an amount
Z19K+1 is ordered at this period and arrives Lgy,; periods later. Then,
"controllable™ periods are the periods K+ 1 =1ILgtyy K=LK+1y 000y and 1o
Note that, in this assumption, the order at period K+ 1 could not
arrive after the order made at period K arrives.

For the first case, when the order made at period K+ 1 arrives
before the order made at period K, Ly:; 1s less than or equal to Ig.
The total expected controllable cost, presuming the optimal policy at
period K, is the sum of:

(1) item cost plus fixed cost of ordering 519K+19

which is @1,K+1(Z1,K+1)9

(2) total expected shortage cost from the period when

an order made at period K+ 1 arrives to one period

before an order made at period K arrives, which is

K+l=- .1 .
i{cslk > (ry =Ty ge1 =21 ,Ke2 E

k=K=Lg41 ry > Uy JK+1 + 2y JK+1

P(ry sKHL, 1) |y

(3) total expected carrying cost from the period when
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an order made at period K+ 1 arrives to one period

before an order made at period K arrives, which is

K+l-L +1[
:EE::%: Chie = (Uy ge1+Zy Kar =120

k=K-Igsr = 11 <0y JK+1+21 Ken

P(r,:K+1,k+ 1)},

and
(4) expected optimal controllable cost presuming an

optimal decision is made at period K, which is

;%;%g: k(U ke + By JK+1 = T Ke1 JP(ry K )

For the seqond case, when the order made at the period K+ 1 arrives
at the same time the order made at the period K arrives, Ig;y is equal
to g+ 1. The total expected controllable cost, presuming the optimal
policy at period K, is the sum of:

(1) item cost plus fixed cost of ordering 219K+19 which

is ¢1,K+1(Z1,K+1)9 and

(2) expected optimal controllable cost presuming an

optimal decision is made at period K, which is

EE::: f*K(Ul Ker * 29 JK¥1 = ry K+¢)P(r1 K+1)

Thus, for both cases, expected total controllable cost,

C(Uy Ke13%1,Ke2) = Py Ka1 (Zy K

K+1-

R 6 Cslk > (I"1 esd U]..,K‘O"l + Z]_?K,!_l )P(I“l :K+ lsk)
k=K-Lp+1 ry > Uy yK+1+dy Ken ’

+ Chlk > (U19K+1 + Z1 9K+1 = Iy )P(T12K+ 191{"' 1)}

ry <Up Ke1 + %y Ken

M + Zy ey - Ty ogeq )PCE (4-1-k)
r1$K+1f k(U ke + %y Ky = 71K JPUon K )

where O = 1j for Lysr <Ig
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= 05 for Iygyr = Ig+ 1,

Let f*K+1(Ui3K+1) be a minimum expected total controllable cost for
perlod K+1, resulting from ordering an optimal amount of Z13K+1 =

Z*19K+1(U1,K+1) for a given Uy Ky;. Therefore,

f*K+1(U19K+1) = Min {@(U19K+13Z19K+1)}9

Z1‘,K+1
W K+1
where OSZ]_ 9K+1 SMin{Sl 9K+1.) :“'r"'-’ Ul 9K+1 + ‘ Elk}o (1'""“1“’5)
: 1 k=K+LK+l+2 :

Next, consider, in general, period p, where K+1l<p<P,

6(Ulpgzlp) = (plp(z'lp)

p-lp
+0 S {bslk > (rlusUlp-=le)P(r1:p3k)
k=p'”Lp_1 I‘l >U1p+ le

+ Chyy : (U1p+le“’r'1)P(T13P9k+l)}

Q1751 (Uyp+ By =7y )Py ), (4=1-6)
Tp
where & = 15 for Ly < Lp_l

i

0; for Lp Lp.; + 1.

It follows then that

£ro(Uyp) = Win{C(U 3%, )}, (4-1-7)
le
| ; W £ )
where 02 pgMin8p, = = Uy + > Iyyfe (4-1-8)
1 kzmep‘i'l
Example
planning period, P=5
warehouse space, W =5 cubic units

a volume of an item, W 1 cubic unit

1]
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procurement lead time, L, = 2 periods (for all k)

S

initial inventory, Uy = 4 units
le==1 k=2 ke le=b k=5
Sy -unit 3 5 b
Co,x~dollars/order 0.50 0.50 0.50
Ciy,-dollars/unit 0.50 0.60 0.50
Cs;, =dollars/unit/period 6.00 6.00 6.00
Ch,, ~dollars/unit/period 1.00 0.90 1.00
Ty 0 1 2 3 b
Pyq (791 ) .20 «25 .30 .25 .00
Pyp(ryg) .10 .20 235 .20 .15
Pya(rys) .55 45 Nelo .00 .00
Pi4(rya) 30 40 30 .00 .00
Pig(ris) 50 .00 .00 .00

050.

olutions:

Using the data given above, the necessary values of P(r;:K,k) can

be determined as shown in Table V.

Consider period 3,

£25(1)

Min

Using (4-1-1) to (4=1=3), for U5 = 13

1
0<Zy3 SMin(},gmld-O)[(Pls(Zlg) + E {Cslk
1 k=1

> (g =1 =Zy5)

P(r1§39k)

+ Chy, > (L4 2Zy5=1)°

it <1+Z13

P(m;%lﬁl)}]o



TABLE V

CUMULATIVE PROBABILITY OF DEMANDS FROM
PERIODS k TO K, P(r1zK,k)

P(r,:3,2) .055 .155 .283 .267 .173 .067 .000 .000 .00O
P(r1:3,1) 011 045 112 .184 ,225 .,208 .136 .063 .016
P(r,:4,3)  +165 .355' .345 .135 ,000 .000 .000 .000 .00O
P(r124,2) 017 069 .163 .240 .244 .169 .078 .020 .000
P(r,:5,4) 150 .350 .350 .150 .000 .000 .00O .00O .00

P(r,:5,3) .083 .260 .350 .240 .067 .000 .000 .000 .000




= Mn [@g(Zg) + Coy Sy -1-%5)P(r:3,1)
0<2y5<3" ry 21+ 4y,

+ Chyq : (1+Zl3 =1 )P(I‘12392)}

re <1+ 24
0.0+ (6){(1)(.112) + (2)(L184) + (3)(.225) + (4)(.208) + (5)(.126) |
+ (6)(.063) + (7)(.016)} + (1) {(1)(.055)},
1.0+ (6){(1)(.184) + (2)(.225) + (3)(.208) + (4)(.136) + (5) (.063)

+ (6)(.016)T+ (L){(1)(L.155) + (2)(.055) ],

1.5+ (6){(1)(.225) + (2)(.208) + (3)(.136) + (4)(.063) + (5)(.016)}

= Min

+ (L)1) (.282) + (2)(.155) + (3)(.055) },
2.0+ (6){(1)(.225) + (2)(.208) + (3)(.126) + (4)(,016)}
+ ({(1)(.267) + (2)(.283) + (3)(.155) + (4)(.055) ],

18.997
14,543
10,544
| 7.916

Min = 7.9165 where Z*;3(1) = 3.

1]

For other values of Uy4,f*3(Uy5) and Z*,5(0y3) can be determined.
The results are summarized below:

£*5(2)

#

6.311; Z*%,5(2) = 3 f*, (L) = 5.211; 2*,,(4) = 1

£*,(3)

5.8115 Z*153(3) = 2 £4,(5) = 4,311; 2*53(5) = 0.
Consider period 4. Using (4-1-6) to (4~1-8), for Uy, = 33

£*,(3)

= Min [@14(Z14) + §§:CSak > (i -3-BP(n kK

05214_<_,Min(5,§_~3+0) k=2 Ty >3+ 2y,
1

+Chyy 2 (3+ 244 =1y JP(ry sl k1)

Ty <3+ Zyy

+ Z *3(3+ 2y, = I“14>P14<I°14)]°

Y34 >0
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= Min [@14(Z14,)"'Csla : (ry =3 = Zy4)P(ry :4,2)

0<%, <(5,2) ry 23+ 2y,

+ Chlg : (3+Zl4=r1 )P(r13493)

ry >3+,

+ Z__ f*3(3 + Z14 = I"14)P14(r14)]o

Ma >0

0.0+ (6){(1) (.24 + (2)(.169) + (3)(.078) + (4)(.020)}
+ (W G245) + (2) (255) + (2)(.165)) + (.30)(5.811)
+ (1) (6.311) + (.3)(7.916),

1.2+ (6){(1)(.169) + (2)(.078) + (3)(.020)} + (.9){(1) (.135)

= Min|  +(2)(345) + (3)(.355) + (1) (L165)} + (.3)(5.311)
+ (L 4)(5.811) + (.3)(6.311),

1.7+ (6){(1)(.078) + (2)(.020)} + (.9){(2)(.135) + (3)(.345)
+ (1) (.355) + (5)(.165)} + (.3) (4.311) + (L4)(5.311)
+(.3)(5.811).

13.413 /
= Min{11.516 | = 8.184: where Z* ,(4) = 2,
| 8.18%

For other values of Uya, £*4(Uy4) and 2*,,4(Uy4) can be determined.
The results are shown below:
f*4(L+) 70584 H Z*14(L+)

648k 5 Z*,,(5)

1

[}
[}

£*,(5)

it

OO

[t}

Consider period 5, which is the last stage. Using (4-1-6) to
(4-1-8); £*5(h)

= Min [(915(Z15)+CS-13 E (I"l '=L{'=Z15)P(I"125$3)

0<Zyg <Min(h,1) ry >+ 2,5

+ Chla E (Lf-+ Z-ls = Iy )P(I"1359L+)

ry <L§'+Z-15
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+V:E:::: f*4(4"+215‘=r15)P15(r15)]°
rg >0
Z;+(6)(o)-+(1){(1)(015)-+(2)(,35)-+(3)(055)-+(4)(.15)]
+ (.5)(7.584) + (,5)(8.184),
1+ (6)(0) + (W{(2)(.15) + (3)(.35) + (4)(.35) + (5)(.15)}

+ (.5)(6.485) + (.5)(7.584),

Min

]

10.384

= Min[ ] = 10.%843 where Z*,5(4) = O.

11.534

Therefore, the bptimal policy in peridd 5 is do not meke an order.

The minimum expected total cost is $10.384.
4,2 MULTI-ITEM SINGLE-SOURCE SYSTEM FOR THE MIXABLE ITEMS

In this section, an extension of Section 4.1, several types of
items are to be carried and they can be mixed together in the ware-
house., There continues to be only one source of supply as in Section
4,1, and other assumptions remain the same as before. The analysis is
as follows.

Assume that there.are N types of items in the system, and consider
period K,

where K = Iy >1,
and K - 1 - Ig-3 > L.

This means that if an order is made at period K; the order will
arrive before the beginning of period 1. But if an order is made at
the period K-1, the order will not arrive before the beginning of
period 1.

For a given set of Ujg,Usk; o0y Uyk, assume that an order of the

amount ZIK is made only for item type No. 1 at this period. The



68

expected total cqntrollable cost will include those expected system
costs in periods K;-LK, Kely=1y c00y 1y which is the sum of:
(1) item éosf'plus fixed cost of ordering Z,g, which is
(2K, -
(2) total expectéd COntrollable‘gost due to shortage of

item type No. 1, which is

K“Lf ST
2 Cslk I‘Lﬂ_——-ﬁ (I‘]_ ""UlK"’ZlK)P(rl;K7k)9

17 UK+ 4
(%) total expected controllable cost in carrying item

type No. 1, which is
K-L; j;_____—__-
= Ohu Sy (ke G R ),

(4) total expected controllable shortage cost due to

shortages of item types No. 2 to No. N, which is

N K-L :
:E:: ZE::Csik‘ i (ry = U,g)P(r, 35K,k), and
i=0 k=1 ry > Uik

(5) total expected controllable carrying cost in

carrying item types No. 2 to No. Ny which is

N_ K=L -
> > Chyy ;EZ;%:: (U -y )P(ry 3Kk + 1)
i=2 k=1 1= 1K

Thus, the expected total .controllable cost, C(UK, UsK, oos UygiZik)

= Py g(Zyg(Zyg)

KmLK ' v
* F{Cslk %K (ry = UyK = Zyg)P(ry 5K, k)

+ Chl 2 (U1K+ZIK“;I‘1 )P(I‘l §K9k+l)}
I <U1K+ Z]-K ) : :
* KK(UQKs UsKy eoes UNK)9 v-"”‘,‘.-‘ o (4-2-1)

where Kg(UsK, Usky eos9 Uyg)
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N K-Ix
E {Csik E (l”i - UiK)P(Pi ,K k)
122 k=1 ry
+ Chyy E (Uyg =7 )P(ry 5K,k + 1) (4=2-2)
I‘i <U1K

Note that for a given set of Ujx, Uzgy ...y Uyk, the space avail-

able for the addition items to be ordered in period K will be

N K
W = § vy o° MaX(UiK - E .I:,'ik-"?‘,Q),a )
i1 =K-Lg+1

In order to apply the principle of optimality to this problem, let
wy o the space available for the additional items type No. 1, increase

in increments of vy from Oy ¥14 2Viy csey CViy <00 tO

N K
W ""Zvi Max(Uyg - Z: Eyy+0)e
i=1

ki= K-Ig+1
Then let 1k (Uigs UsKy eoe UNK/wl) be the minimum expected total
controllable costgwh¢n %vd§¢ision>is made in period K where only item
type No. 1 is‘being COnsiaered, resulting from ordering an optimal
amount of Zyx = Z*1Kk(Uhig, Usgy coos Uyk) for a given set of

UKy UsKy, ooy Uyk and wy . Therefore,

fiI{(Ule UzKy oooy UNK/WI) = Min @(Ul}{s UaKy 2o UNK?'ZIK)%) (4-2-3)

&1k
K
where O0<Z;x <Min(S;x, 2 - Min(Uyg ~ E i 0))e (h2-k)
V1 l=K-Lg+1
K
For w; = 0, and Uyy - E iy < 05 -the restriction of Z;k
k:K—LK+l ‘
in (4-2-4) becomes
K
O _<_ ZlKSMin(SlKS Z cl;lk""Unk)‘o ()+"=2'°5)
k:KnLK’!"l
K

For wy =0, and U;g = E Tie 2 05 (4-2-3)
k:KmLK+1
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becomes flK(UlK’ UzK, °eocg UNK/O) = a’(UlK’ UZK? eoog UNK;O)O (4“2"’6)

: K
For vy = v < vl(SlK+Mi_n(U1K - E 5005
’ | k=Klg+l
(4-2-L) becomes
K
0 < Zyg € 1-Min(Gg -~ > Z1xs0)).
k=K=Lg+1
Then, fLK(Ule UsKs ooy UNK/Vl
£1K(U1Ks UsKy +oey Uyk/0),
= Min K }, (k-2-7)
(Tagy Uzgs oeey UNK31"Min(U1K'k§=K,,%1 Z130))
K
In general, for w, = Cvy <v1(Syy + Min(hg - > Ti1ps0)), .
szaLK‘i'l
f1k(Uig, UsKy ooy UyK/Cvy)
flK(UlK, UQK, L XY UnK/CV]_)’
= Min K }o (4-2-8)
T(uk, %K,”,,ngmmnﬂmeg T130)).
k=K-Lg+1
For wy = Cvy > v (S;g+Min(Uy - E yes0))s .
k=K=Ly+1
_ K
Let Cv; < vy (Syg+Min(Ug - > T3x50)) < (C+llwy
- k=K-Ig*l
then, §;K < (C+1) - Min(Uyg - > Typs0)y
=KLy +1
: i K
and S > € - Min(Ug - > EXTRNO N
k=K-Lyg+1

Therefore, using (4-2-32) and (4=2-4); £1K(UyK; UgKs eeo5 Uyg/Cvy)
f1K(ThKs UaKs o-ey Uyk/Cvy),
= Min . (4-2-9)
C(Tky Uggy ooy UygiSig)
For a given set of UjK, Uggy .. Uyk, consider that orders are

made for item typesg No. 1 and No. 2, and that item type No. 2 is

ordered first in the amount of Zzg. Let wy, the space available for the
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additional item types No., 1 and No. 2, increase from O through the
N

. o
values of wy +mva(m=0, 1, ...) until W - E v, Max(Uyx - E Py 50)e
1=1 kK-Tyrl

After Zgyg is ordered, an optimal amount of item type No. 1 is ordered
for a given set of Uy, UgK+ ZzK, --.9 Uygs; and for an available space
: K

of wy - vy Max(Zpg +Min(Ugg - > - r2,50,0). Therefore, the
S : k:KmLK+1

expected total controllable cost is the sum of:
(1) item cost plus fixed cost of ordering ZzK, which is
@2K<ZEK)9
(2) minimum expected total controllable cost when a
decision is made in period K when only item type
No. 1 is considered, resulting from ordering an
optimal amount of Zg for a given set of

UiKs UsK + Zpgy --04 UyK, and for a space

K

Wa = Va Max(Zpg + Min(Upg - > T2y5050),
k:KwLK+l

Which is f1K<U1K., U2K+Z2K, 0009 UNK/WE =V2
K

Max(Zog +Min(UpK = > Toy 40,0).
=K=Lg+1

Thus, the expected total controllable cost, C(U;g, UK, ooo, Uyk/22K)

= sz(ZgK)
+ g (Ui, UpK + 22Ky ooy Uyk/Wa = vaMax(Zpg + Min(Upy - E Loy s050),
k=K=LK+l

(4-2-10)
Then, let fag(Uik, Usk, +c.s Uyk/wa) be the minimum expected total
controllable cost when a decision is made in period K when item types
No. 1 and No. 2 are considered and item type No. 2 is considered first,
resulting from ordering an optimal amount of Zgyx =

Z*2x(Uigy Uggy «ooy Uyk) presuming optimal amount of ZyK will be



ordered later, for a given set of Ujk, Upg, 0.0, Uyg and wso

Therefore, fag(Uiks, UoKy ceoy UyK/wg) = Min{t’(UlK, UsKs ooos UNK/ZEK)}.,

Zag
(4-2-11)
. ‘ S : K
where O < Zpg < Min(Szg, ‘E“ - Min(Upg - E Tap 50). . (h-2-12)
k=K-Lg+1

In general, item types No. 1 to No. n (2<n<N) are considered and
item type No. n being considered first. The space available for the

additional item types No. 1 to No. n, increase from O through the values

N K
of Wyoy +mvy (m=0, 1, ...) until W - > viMax(UiKsz Ty s0)e
$=1 =K-Lg+1

Then, it follows that C(Uyk, UaKs soes Uyg/Zax) = Pak(Zak)

* fn-l‘,K(Ule coey UngK+Zpgy eooy Uyg/Wp =¥y

K
Max(Z,x + Min(U, g - E raK»0),0), (4-2-13)
k=K-LK+l
and fag(Uiky UsKy ccoy Uyg/Wp) = Min{?f(UlK., UsKy o005 UnK/an)}.,
Zog

_ , (4=2=14)

where 0< Z,x <Min(S,k, %& - Min(Uyg - 12- Lngs0)e (4-2-15)
. n

k=K-Lg+1

By letting n=N, and let f*.(Uyg, Usg, ooos Uyg) =
. _

an(U1K5 Ung oo og UNK/W == S V! Max(Uﬂk == S £ﬂk 90)
I=1 k=K-Lg+1

t*x(Uigs UsKy ooy Uyg) is obtained as a partial-optimization for this
stage. |

Consider period K+1, for a given set of Up K415 Uz Ke1y coes
Uy,K+15 @ssume that an order is made only for item type No. 1 in the
amount of Z19K+1.at this periodo " The decision made in this period
affects those expected system costs in periods K+L=LgK4;; K-Lgsis oooq
and 1.

The expected total controllablé cost in the sum of:

(1) item cost plus fixed cost of ordering Z; K+i1, which



(2)

(3)

(L)

(5)

is ¢1,K+1(Z19K+1)9

total expected controllable shortage cost due to the
shortage of item type No. 1, during the periods from
the period when the order made in period K+ 1 arrives
to one period before the order made in period K

arrives, which is
K-Ligyy

Cspy > (r1=U1 gK+1=Z1 K41
k=K-Lg+1 r1 > Uy K+ + %1 ,K+1 v

P(P1§K+l,k), whgre.é =13 for Ly, + 1 <Ig = O
otherwise.

total ekxpected controllable carrying cost in carrying
item type No. 1, dﬁring the periods from the period
when the order made in period K+1 arrives to one

period before the order made in period K arrives, which is

K-LK+3
Z Chlk_ > (ry = U1,K+ nZlaK*'l)'
k=K~Lyyq ry > U K1 + 41 K1

P(ry ;K+1, k;l),

total expected controllable shortage cost due fo the
shortages of item types No. 2 to Noo.N?> during the
periods from the period when the order made in the
period K+1 arrives to one period before the order made

in period K arrives, which is
N K==L
5 > iti Csy > (ry = Uy g1 )P(ry iK1,k
i=2 k=K-Lg+l ri:>UisK+1 ‘
total expected controllable carrying cost in carrying
item. types No. 2 to No. n, during the periods from the

period where the order made in period K+l arrives to

one period before the order made in the period K

13



74

arrives, which is

N K—LK
5LLC}111¢ Z*(Ux K41 = T )t
122 k=K-Lg+l 1<0; Ko

P(r, ;K+1, k+1), and
(6) minimum expected total controllable cost, presuming

an optimal decision is made at period K, which is

coo Z f*K(UigK-H. +Z19K+1 =1 ,K+1 9

ry,K+1 20
N

U59K+1"ra,K+19 seoy UN,K+1"TN9K+1);[E P(r19K+1)°

I ,K+1.?.'O

= G(Ul‘)K+19 coey UN,K+1)°

Thus, the expected total controllable cost,

6(U19K+19 Uz K41y ooy UN9K+1;Z19K+1) = @1 g41(Z Ker)

Ku%fff ' 3
+0 {Cs1k > (ry =T ga1 = Zy g1 )P(ry 5K+1,Kk)
kEK-LK""l - I > Ul 9K_*_]_ + Zl ’K+1
+ Chy, > (U59K+1‘*213K+1"P1)P(T1§K+1ak*1)

ry <y JK+1 +2y K+

+ K(Uz K415 Us K415 ooy UN3K+1) + G(Uy K41y ooy Uy Kea) (4-2-16)

where K(Ug K+19 Uy JK¥+19 ccooy Uy K+1)
N

=0 RK-Tx+1 ry >0, Kot

+m%k:E:::::(UiKn”rJPﬁiﬁﬂ.m1)}(méqj)

1 K+

Note that for a given set of U59K+1, U59K+1, PN Uh9K+19

the space available for the additional items to be ordered in period

K+1
K+1 1sW=S Vi"MaX(Ui K+1 “: Tyg0)e
l k2K=LK+1+2

As bvefore, let wy, the space available for the additional item

type No. 1, increase in increments vy from O
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' X K+l
Vi 21, eeey CVi, eoe to W =2 v, Max(Uy g4 = > Ty 50D
i=1 K-K-Igss +2

Then, let f1’K+1(Ui’K+1, Uz K1y ooo9 Uﬁ9K+1/w1) be the minimum expected
total controllable coét when = decision is made in period K+ 1 when only
item type No. 1 is considered, resulting from ordering an optimal amount
of Zy K41= Z*17K+1(U1,K+19 Us K415 eoes UN9K+1)9 presuming an optimal
decision is made in period K, for a given set of U19K+1, U59K+1$ coag
UN,K+1 and wy .

Therefore, f1 K+1 (U1 K+1s Uz K41y cooy Uy Ke1/Wi)

= Min {@l(Ul,K.‘.l, U25K+19 so0g UN$K+1;Z1 3K+1 )}9 (4’*2*’18)
Z19K+1
y K+l
where 0<Zy K+ SMIn(Sy K41, —= = Min(l K+1—§ Ty s0) )
i 9 =
k:KnLK+1‘+?
(be2-19)
K+l
For wy = 0, and U19K+1 - E ry < 0¢ the restriction
k=Kely 4 +2
Zy K+ in (4-2-19) becomes
K+1 7
OSZ19K+1 SMin(Sl .)K’f'l) E : ;_l:“‘_, - U19K+1)o (L[-.:?;—?O)
k:KmLK-i'l +2
K+l
For w =0, and Uy g1 = E Lo > 0, (42-18) becomes
szwLK+1 +2

Ty K41 (U Ke1s Ua Kery ooy Uy, K41/0)

= @(U19K+1 9 U29K+1‘3 soag UN9K+1 ;O (4“”?-‘21)
K+l
For wy =Cvy < vy (Sy Kaq + Min(Uy w41 “E‘ Pres0)0,
= 9 9 P F,
sz==LK+1+2

£1 K41 (Uy K15 Uz, K41y cooy Uy K+1/Cv1)
El.’K"’l(Ul?K""l‘) U29K+]_9 coog UN?K-FI/(CEI)VI)?

K+1

'E(U19K+19 Uz, K+19 cco9 UN9K+1§ C‘“Min(U19K+1“.:E::::::::.Elkso))
L k=KLK+1 +2

(h=2-22)
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K+1 '
For hﬁz:Cv13>v1(819K+1 + Min(U19K+1 - E Elk,o));
kZKwLK+1+?
_ K+l - '
let Cvy £v1 (8 K+ +Min(U19K+l - E 71 50)) < (C+l)vy,
k=K-Ijg 43 +2

then f1,K41 (U K15 Us,Ke1s ooy Uy K41/Cva)

(42=23)

1, k41 (U1 K415 Uz K#1y ooy Uy k1/Cvi),
= Min } °

E(U19K+19 Ué,K+1a secy UN?K+13819K+1)

As in previous discussions, if item types No. 1 to No. n (2<n<N)
are conslidered and item type No. n is considered first, for a given set
of U&3K+1, sooyg Un,K+19 ooeg Uy,g41 and for wy, it follows that

ClU K1y ooey Un,Ke1s eeoy Un,K+138n K+1) = @n,K+1(Zn9K+1)

* fpe1, K1 (Ta K1y ooy Un Ker + B Kery eoes Uy Ke1/Wa = vy Max(Zy kan

K+1
+ Min(Un,K+1 ~§ Tny,0)50)),
ka“LK+1 +2
(4=p-2k)
and fn9K+1(U1,K+19 °ooy Un,K+19 eoog UN?K+1/Wn)
= Min {8(U1?K+19 °eoy Un9K+19 soog UN9K+1§Zn9K+1)}s (4-2-25)
Zn9K+1
w K+l
where O < Zn9K+1:;Min(sn,K+1? ;& = Min(Un,K+1 - Qak?o)>
B k=KeLgpq +2
(bep=26)

By letting n:N9 and let f*K+1(U13K+1., U29K+19 coog UN3K+1)
N K+1
= fN?K+1(U19K+19 @0 0g UN9K+1/W o Vi Ma.}{(Uﬁ?K_'_l = E ;I;ﬁk ?O))
i=1 k=K=Lg4y +2
f*K+1(UE3K+19 Ué?K+1$ esog UQ$K+1) is obtained as a partial-
optimization for this stage.

Consider, in general, period p, where

K+1<p<P,
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Using the previous developments, it foilows that
CVip,y Uapy coos Unpiap) = PrplZip)

+ 6 {Cslk S (rl =U1p=Z1p)P(1f°1gp9k)

k:“’KwLle ™M > Ulp + le

+ Chy, > (U1P+le=r1)P(r1;p9k+l)}

+ K(Usp, Ugps oooy Uyp) + G(Uip + Zyp, Uspy ooy Uyp), (b=p=27)
where & = 1 5 for Lp+1<Ly,
= 0 3 otherwise

and K(Uap, Uapy ccoy Uyp)

N p-
R {eore === Gy - U, p)PGry 30,80)
>U1p

1=2  ke=p-Lg.y T,
+ Chyy > (Uipari)P(r!;p9k+l)},
ry <U1p
and G(Upp+Zipy Uppy woey Uyp) o

= ooo: * b N N
Z"’]_p>0 er>o {f p_,]_(Ulp + le“'rlps 0o0og JNP":er) :!-,;L P(rip)}o
1=

Therefore flp(U1p9 ng9 coog UNp/Wl)

= Min {'Eﬁ‘(Ulp9 Uspy ooy Uwp;zlp)}s (4~2-28)
Zyp .
where 0<Zyp<Min(Sip, == - Min(Uip = > x;,,0)). (4-2-29)
71 k=p-Lp+1
j
For wy = 0, and Uyp = > i < 0; the restriction of Z;, in
k=p~Lp+l
(4-2=29) becomes
p
0<Zip<Min(Sip, 2 Fipe = Jiplo (k-2-320)
k:mep+1 ’

For wy = 0, and Uyp = >  py, 2> 05 (4-2-28) becomes
k_:p—Lp""‘l
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f15(Tipy Uzps oovy Unp/0) = TV, Uapy ooey UypiOlo (4-2-31)

p
For wy = Cvy vy (Syp+Min(thp -~ > r;,,0)); it follows that
k=p-Lp+l

flp(Ulpg U2p9 soo0g UNp/CV]_)

f1p(lipy Uzps s00y Uyy/(C=1)vi),

- Min{ P D }o (h—p-32)
CUyp, Uzpy oooy Uyps C-Min(Uyp = > ris0))

k:anp+l

and for Wy :CVI >V1(Slp+Min(U1p - :; Elk 90))3

k=p=Lp+l
flp(U1p3 ngs osog UNP/CV-J_

£10(Uyny Unny ooy Uyyg/Cvy)
PRy ER PP }a (4-0-3%3)

= Min{
a‘(Ulp, U2p9 ooo9 UNP;SIP)

, p :
where Cvy <v1(Syp+Min(th, = > 150)) <(C+1)vyo (b=2-34)
k:anp+l
Again, using previous developments, if item types No. 1 to No. n

U?SrygN) are considered and item type No. n is considered first, it

(Z,.)

follows that C(Uip, Uppy o0y Uy ap{Zap

piZap) = ¢

+ Tae,p(Uipy eoey Unp+ 2y coey Uyp/y = vy Max(Zyp+

3
Min(Upp = > £4%50),00) (b=2-35)
k=p=Lp+l

and fnp(U1P9 °00g Unp9 ocog UNp/wn)

= Min{G(Ulp.) 000y Uﬁp’ °c00g UNP; an>} (“‘"?”36)
Z
LYY
w p
where 0<Zyp<Min(Syp, =& = Min(Upp - > £450)). (4=2-37)
Vn k:pr_p'i'l

By letting n=N, and let £* (Uyp, Upps ooey Uyp) =

N p
pr(U1p9 ng, ooog UNP/W - E Vi MaX(Uipmk 1 23!@30)
- %ﬁp_ 7

i=1

£*0(Uips Uzpy ooy Uwp) is obtained as a partial-optimization for this
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stage.
And if p=P, f*p(U;p; Ugpy o.., UyP) is the final optimization to

the problem.
4,2 MULTI-ITEM SiNGLE—SQURCE SYSTEM FOR THE NON-MIXABLE ITEMS

This section considers the case for the specific assumption in
Section 2.3 when demands are probabilistic and procurement lead times
are deterministic. Employing the discussion in Section 2.3, the system
can be reduced, first, to single-item single=-source. Thus, for item
type No. i one can use the development in Section 4.1 to determine
G, (w), which is r*p(0) for the selected value of w. And then the pro=-
cedure to allocate space to each type of item will be the same as in

Section 2.3.
4.4 SINGLE-ITEM MULTI-SOURCE SYSTEM

This section considers the case in which several sources of supply
are available for a single type of item. It is assumed that for any
particular source, the order made at any period will not arrive before
orders made in any previous period from that same source,; and that each
period order must be made from only one source.

For simplicity of discussion, assume that there are two sources of
supply available at each period. Assume alsc that for the periods
after P=2, orders made from these two sources arrive after the beginning
of period 1. The system is shown in Figure 2.

The analysis starts .from period P=2., Since an order can be made
from either source No. 1 or No. 2 at each period, in order to apply the

principle of optimality, one would consider each particular given
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situation in which the sources will be chosen at period P-=2 and P-1.

For illustration, consider the alternative that at period P-1,
source No, 1 is chosen; and at period P-2 source, No. 2 is chosen.,

Let ﬁ,k be the inventory on hand plus outstanding orders (from'
both sources) at period k less the order made at period k+l, the only
previcus order that may ovérlap to the order made at this period. As
before, Z;,y is the amount ordered from scurce j at pericd k. Then,
%lk = 61’k+1 + Zy 42,y = T1,p+1 (where j is either 1 or 2) and
Ure ﬂﬁu * Dy ey

For the case being considered, for a given set of ﬁisp_g and
ZlgP#lgl if an order of the amount lepwgsz is made the total expected
controllable cost is the sum of:

(1) item cost plus fixed cost for ordering Zy ,P-2,2 5

which is wl,ansg(ZI,Paz,g),
(2) expected shortage cost in periocds 1 and 2, which

2
is E cslkj_r_l_ Max(I‘l = Uy ‘)P_g = 6 ° Zl 9P°131 =219Pn29290)'
k=1

P(ry:P=2,k), and
(3) expected carrying cost in pericds 1 and 2, which is

2
:E::Chlkzz::MaX(ﬁ1,sz*'5° Zy ,Pe1 1 + 21 ,Pap 2 = T1,50)
k=1

L |

P(ry sP=2,k+1),

(g
§

where = 0, for k=2
= 19 fOI‘ k:ﬁlo
Therefore, total expected controllable cost, EKQHSP&39 Zl,Pulwig

leP~252) = ¢E,Pu292(Z1,P~292)

2
+ ;_i{031k°:ZZ;MaX(P1" 1,Pe2= 0% ,Peay1 = %y Pez 250)P(r:P=2,k)
R o= Iy
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+ Chyy > Max (D, ,P-2+8% Puy 1 +Zy poa n-ri,0)P(ry 3P”25k+1>}
I ) ’

(boh-1)

Let wa2,2(61,Pu1, lepﬁlgl) be the minimum expected total con-
trollable cost when a decision is made in period P=2 where the order is
made from source No. 2, assuming an order was made from source No. 1 in
period P-1, resulting from ordering an optimal amcunt of lepw292 for a

given set of 61,P~29 Z1,P-1,1o Therefore

me292(61,P=29 Zy,p=1,1) = Min [61619P=29 Z1,P=1913519P=2$2)]a
Z1,Pn2,2
(b=bi-2)

P-2
. W :E::
where Oszlap_a‘)gSMln(SI’ngszs “;‘:ﬂﬁl?pnz ='Z1 ?Pﬂ'l?l + < 3 £lk)°

(h-lz)

For other combinations of sources that could be chosen in periods
P=1 and P-2, for each given set of ﬁlspugv Zlapmlsﬂ’ |
fpmggJ(61’P=g, Zy ,P-1,y) can be determined.

Let f‘p_g/J(ﬁlgL% Zl,Pnl,J) be the minimum expected total con=
trolliable cost when a decision is made in period P=2, assuming the order
was made from source No. J in period P-1, resuliing from ordering an
optimal amount of lepc,;a?J from the optimal source for a given set of
fﬁgpaQ% 219P“193° Therefore

02y by % pr, ) = Min[tp oy B oy B P )] (Bt
J

5 P - q = e
where ji° is source to be considered in period P-2,

Then f*sz/J<619P‘2’ lepﬁlﬁJ) can be used in determining the
optimal policy in the next stage.
Consider period P-1l; assume again for illustration purposes that

at period P source No. 2 is chosen and at period P-=1 source No. 1 is
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chosen.

For a given set of 619P_19 Zypay 1f an order of the amount
Ziap“lal is made from source No. 1 the total controllable cost is the
sum of:

(1) item cost plus fixed cost for ordering Zlapwlgla which

is @1, Per,1(Z, oz 0 ),
(2) expected shortage cost in periods 3 and 4, which is

L
chlk ;’ Max(rl = Uq P-=1 “Z]_PQ-,O)P(I’]_ P-1 k)
k“} I‘1

(3) expected carrying cost in periods 3 and 4, which is

> > Max(By poy + Zypy < £y ,0)P(ry sP1 k1), and
= -

(4) minimum expected total controllable cost presuming an
optimal decision is made at period P=2, which is
;§:;Eé *poa /1 (ﬁl,Pml + Zypa =1 ,Pery Zy Pe1,1)

Py par(ry poy)e

Thus, the total expected controllable cost, @Tﬁl ,P=15 Zype; &y Pl 1)

= Py poa 1(Z19P='1 1) +Z{Csik§ Max (g =% Py = Zypz s 0)P(xy  P=1k)
k=3 ry

+ Chy, E Max (0, Pt +Zypp = 11 ,0)P(ry :Pw1,9k+1)}
Iy

+ N ,
:EZ::: *puz /1 (Uy ,py + 4 Pg =Ty Pels Z19P91?1>P19P=1(f19Pm1)°

rl,Pwl
(h=li=5)
And wal,zcﬁl,Pw15Z1P2> Mln [@*({} Pors Zypas Ba,Pur 1)]
2y Pnl o1
(4-Lia§)

. W -
where O0<Zy poy 1 <Min($; poysis T P =Z%1Ps ‘“"E Tyglde (4=b-7)
k=5



84

For other combinations of sources that could be chosen in period P
and P=1, for a given set of elap_,l9 Z1py, fpm195(%Hﬁpm19Z19Pw193) can
be determined.

And for a given source to be chosen in period Py if follows that

f*Pw1/5<ﬁi,P-1s Z,py) = ?%n[fpmlsjl({ngwla Z19Pm195)]

where j’ are the sources to be considered in period P=1, (4=l-8)

Consider period P for a given source to be chosen in this period,
let fPJ(Ulp) be a minimum expected controllable cost when a decision is
made in period P where thé order is made from source J for a given

value of U;p, it follows that fp;(Uyp) = Min l}plpj(zlpj)

Z1P;
+ 3t 4 (Gp-1ip, Zp YPyp(rsp) | (4-bi=9)
ryp
W P
where OSZj-PJ SMin(Slpj‘) ";i" o= U}_P +* E Elk)" (L“@L}“lO)

k=5
Let EC; be the expected lost during period P=1Lp to P=L;p+l for

the source that L;p >:_I,'P9 where
£"JP = Mﬁ:n[LsP:lo
J

Thﬂl:ﬁP(U1P)9 the minimum expected cost when a decision is made in
period P where all sources are considered for a given value of UyP,

becomes

£*p(Uyp) = Mj':n[fpg(UiP> + Ecj] . (helia11)
3

Employing procedure developed above, for the case of more than two
sources, at each period for k<P f*k/j(/[}m9 Zlﬁk-193> can be determined.
For k=P, employing the procedure from (4=4=9) to (4=k-11), the

final optimization for the system can be found.
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Example
planning period, P=27
warehouse space, W= % cublc units
number: of sources, J =2
a volume of an itemy, vy = 1 cubic unit
initial inventory, Uyp = 2 units
j=1 j=2
k=5 k=6 =7 k=5 k=6 k=7
Syp=unit 3 2 2 1 2 1
Coﬁkwdollars/brder 0.50 0.50 0.50 0.60 0.60 0,60
Cidk-dollars/unit 2.00 3,00 2,00 3,00 3,00 2,00
k=1 k=2 k= k=
Cs,, ~dollars/unit/period 5,00 6.00 6.00 5.00
Ch,y ~dollars/uit/period 2,00 2,00 2,00 2,00
Pyl )
ry, k=1 k=2 k= k=4 k=5 k=6 k=7
0 o5 6 o2 03 .5 .3 o
1 5 4 -5 o3 o5 o7 6
2 ) oO eo oL" eO no 00
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R 2 1
Period Number

SOURCE NO. 1

Period Number
SOURCE NO. 2

Solution:
Using the given data, the necessary values of P(r;:K,k) can be
determined as shown in Table VI.
Consider period 5, for the alternative that at period 6 source
No. 1 is chosen and at period 5 source No. 2 is chosen.
For Oy = 0, Zyeq = 0 using (4=l4-1) to (k-i-3)
0 € Zysp <Min(1,3-0-0+0) = 1, and
fsg(ozgg :
0.0+ [ (5){(1)(.055) + (2)(.153) + (3)(.251) + (4)(.267)
+ (5)(.182) + (6)(.071) + (7)(.012)]
+ [6){(1)(.093) + (2)(.213) + (3)(.289) + (4) (.245) + (5)(.118)
+ (6)(.024) ],
3,6+ [(5){(1)(.153) + (2)(L251) + (3)(.267) + (4)(.182)
+ (5)C.071) + (6)(.012)} + (2){(1)(.018)}]
+ [(6){(1)(.213) + (2)(.289) + (3)(.245) + (4)(.118)
+ (5)(.25)} + (2){(1)(.03%0)}]

= Min

#




TABLE VI

CUMULATIVE PROBABILITY OF DEMANDS FROM PERIOD.k TO K, P(r,:K,k)

87

P(r1:K,k)
K=5 K=6 K=7
) k=1 k=2 k=3 k=3 k=4 k=5 k=4, k=5
0 .009 .018 .030 .009 2045 5150 .018 .060
1 055 2093 135 2061 195 -500 105 290
2 153 213 .265 175 2315 .350 243 440
3 251 289 .305 276 305 .000 2311 .210
4 267 2245 .205 .276 2140 000 2239 .000
5 .182 .118 060 2161 000 000 084 .000
6 071 .024 000 042 000 000 .000 000
7 012 .000 .000 000 .000 000 .000 000




88

[360610
= Min
29.159

] = 29.159; where, Z¥*;g5 = l.

For other sets of 615 and Zygy, and for other alternatives,
fgj(ﬁlsazlgj) can be determined as above. The results are summarized
in Table VII.

For the given alternative that source No. 1 is chosen at period 6

wdfm1@5=oszm1=o;uﬁpg(m#$)f%ﬁ(mo)a@y{&y(oﬁ]

31.733 | J
[ J = 29,1593 where the best policy is to order 1 unit from
29.159

source No. 2.

= Min

For other sets of ﬁﬁs and Zygy, and for other alternatives that
source No., 2 is chosen at period 6, f*s/J(ﬁis9Z185) can be determined.
The results-are summarized in Table VIII,

Consider period 6, for the alternative that at period 7 source
No. 2 is chosen and at period 6 source No. 1 is chosen. For Uis = 1,
Zyyp =03 using (4-4-5) to (L4-L=7), oszlslsMin(Q,;_1=o+o)9 and
fs4 (0,0) :

0.0 + [(6)[(1)(.175) + (2)(.276) + (3)(.276) + (4)(.161)
+ (5)(.0k2} + (2){(1)(.05)]]
+ (5){(1)(.315) + (2)(.205) + (3)(.140)} + (2){(1)(.15)}]
+ (o3)ef*s 1 (1,00 + (7).f%g /1 (0,0),
3.5 + [(6){(1)(.175) + (2)(.276) + (3)(.276) + (4)(.161)
+ (5)(L042)) + (2){(1)(.045)1]
= Min + [ G315) + (2)(L305) + (3)(.140)Y + (2){(L)(.15)3]
+ (3).8% 1 (1,1) + (.7).8% 1 (051D,
6.5 + [(B){(1)(.175) + (2)(.276) + (3)(.276) + (4)(.161)
o+ (5)Gok2)Y + (2){(1)(L.045)1]
+ [ (1)(.315) + (2)(.305) + (3)(.120)} + (2){(1)(.25)}]

+ (3)t*s 1 (1,2) + (07)oT%s 11 (0,2)



TABLE VIT

OPTIMAL PCLICY AND MINIMUM COST FOR THE FIRST STAGE
DECISION IN FIRST STAGE FERIOD

Source No. 1 at period 6 . Source No. 1 at period 6
Source No. 1 at periecd 5 Source No. 2 at periocd 5
U,l5 Z61 f51(U,Z) Orderr U15 Zy61 f51(U9Z) Order
0 0 31,733 2 0 0 29.159 1

1 28,312 2 1 25,001 1
2 26,312 1 2 18.080 1
[ 0 22,580 2 1 0 19.997 1
[ 20,580 1 1 16 .676 [
2 18,080 0 2 18.080 0
2 0 15.576 [ 2 0 13,390 [
1 13,076 0 1 13,076 0
3 0 9.790 0 3 0 9.790 0
Source No. 2 at period 6 Source No. 2 at period 6
Source No., 1 at period 5 Soutce No. 2 at period 5
U15 Zigo f5,l(U,Z) Order U;s Z,6o f51(U,,Z) Order
0 0 52.308 2 0 0 50,034 1
1 37.299 2 1 34,716 1
2 25,030 1 2 22,834 1
1 0 37.299 2 1 O 34,716 1
[ 25.020 1 1 22,834 1
2 15,814 0 2 15.814 0
2 0 25,020 1 2 0 22,834 i
1 15.814 0 1 15.814 0
3 0 15.814 0 3 0] 15,814 0
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TABLE VIIT

OPTIMAL POLICY AND MINIMUM COST FOR THE SECOND
STAGE DECISION IN FIRST STAGE PERIOD

Source No. 1 at period 6 » Source No. 2 at period 6

P4Y N n N
‘ S _
U15 Z61 f5/1 (U,Z) Source# Order U Zy6o f5/2(U,Z) Source# Order

15
0 0  29.159 2 1 0 0 50.034 2 1
1 25,001 2 1 1 34,716 p) 1
2 18.080 2 1 2 28.834 2 1
10 19.997 2 itiTqn 10 34.716 2 1
1 16.676 2 1 1 22,834 p) 1
2 18.080 - 0 2 15,814 - 0
2 0 13.390 2 1 2 0 22,834 2 1
1 13.676 - 0 1 15,814 - 0
30 9.790 - 0. 30 15.814 - 0

" # Source to be chosen.



91

48,146
= Min 47.748‘ = 46.324;‘order 2 units,
L6, 30k : |

For other sets of 616 and Zlvj, and for other alternatives,
fs,(fﬁs,zlv,) can be determined. The results are summarized in
Table IX.

For the given alternative that source No., 1 is chosen at period 7
and for 616 = 1,217, = O3 using (4-4-8),

fo n (1,0) = Min[fg,’ (1,0)
6 /1 5 ['53 ]

39,299
Min{ ] = 21,928,
21.928
The decision is to choose source No. 2 in period 6 and order
2 units.
For other sets of 616 and Zypy, and for the other alternatives
that source No. 2 is chosen at period 7; f*e/5(6159Z155) can be deter=-
mined. The results are summarized in Table X.
Consider the last stage, period 7. Employing (4-4-9) and (4=4-10),
T,y (2)

' 0.0 + (Lh)f*s 11(2,0) + (.6)f*g 14 (1,0), u 30,365
= Mln[ ] = Mln[ :l
2.5 + ()f*e 1 (2,1) + (L6)5% 4 (1,1) 26.246

1§

26,2465 order 1 unit.
The same manner, f,(2) can be determined which is equal to
28.181, by ordering 1 unit from source No. 2 at périod 7.
The final optimization, then, can be determined by employing
(b-bo11)s

EC, = (5){(1)(.311) + (2)(.239) + (2)(.084)} + (2){(1)(.290) + (2)(.060)}

6.025.

1t
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TABLE IX

OPTIMAL POLICY AND MINIMUM COST FOR THE FIRST STAGE
DECISION IN THE SECOND STAGE PERIOD

Source No. 1 at period 7 Source No. 1 at period 7
Source No. 1 at period 6 Source No. 2 at period 6
A . A 0 _ A A 2) o
Usg -2y f61(U,Z) rder Ui 2y £.,(U, )rder
1 0 39.299 2 1 0 31,928 2
1 28.020 1 1 28.528 1
2 0 28,020 1 2 0 28,528 1
"1 17.334 0 1 24,928 0
Source No. 2 at period 7. = Source No. 2 at period 7
Source No. 1.at period 6 : Source No. 2 at period 6
A Sy 5 R : )
Uig 2472 £:,(U,2) Order Uig 2472 £¢,(U,2) Order
1 0 46,324 2 1 0 38.953 2
1 _”32;5454:,‘“13, : 1 33.053 1
2 0 32,545 - 17 2 0  33.053 1
1 21.634 0 1 29,228 0
TABLE X
OPTIMAL POLICY AND MINIMUM COST FOR THE FIRST STAGE
DECISION IN THE SECOND STAGE PERIOD
Source No. 1 at period 7 Source No. 2 at period 7
K n v A A
Usg z171 ”f6/1(U,Z) Source# Order U, . z172 fG/Z(U,z) Source# Order
1 0 31.928 2 2 1 0 38.953 2 2
1 28.020 2 1 1 32,545 2 1
2 0 28.020 2 1 2 0 32.545 2 1
1 174334 - 0 1 21,634 - 0
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6.246 + 6.025
Therefore, f*,(0) :[2 ] = 28.181.
28.181

Then, the optimal policy in period 7 is to choose source No. 2 and

order 1 unit.
4,5 MULTI-ITEM MULTI-SOURCE SYSTEM FOR THE NON-MIXABLE ITEMS

This section considers the case of multi-item multi-source.
Employing the development in Section 2.3, the system can be reduced,
first, to the single-item multi-source. Thus, for item type No. i,
one can use the development in Section 4.4 to determine G, (w), which
is £*p(0) for the selected value of w. And then the procedure to

allocate space to each type of item is the same as in Se¢tion 2.3,



CHAPTER V

DETERMINISTIC OR PROBABILISTIC DEMAND AND
PROBABILISTIC PROCUREMENT LEAD TIME

SYSTEM

This chapter considers the problem in which demands are either
deterministic or probabilistic but the procurement lead times are .
probabilistic. Other assumptlons remain the same as in previous
chapters.

The analysis in this chapter is based on probabilistic problen.
However, for the deterministic demands case, this analysis can also be
applied by substitufihguthg:probabilify of demands for those deter-
ministic values by one and for those remaining by zero. Models in
this chépter can be.consideréd as the general models for those in the
previous chapters.
| The assumption for procurement lead time as discussed on pages
10 and 11 in Chapter Iis ﬁsed in this chapter. A principle‘of dynamic
programuing cén be applied and optimal policy for each period can be
determiﬁed by employing therecurrence relation and basic ideas dis-

cussed in Chapter IV.
5.1 SINGLE-ITEM SINGLE-SOURCE SYSTEM

This section concerns the system in which only one type of item is

carried and only one source of supply is available.

94
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Consider period K,
where K- Ly 21,
and K~-1-Lyx, > 1.

This means that there is a chance that the order made before or at
period K will arrive before or at the beginning of period 1, but there
is no chance that the order made after period K will arrive before the
beginning of period 1.

For a given U;k, assume that an amount %,k is ordered at this
period. This amount will arrive next Ly periods or later. Therefore,
a decision made at this perilod affects the expected total system cost
in periods K=~1lg, K=Lg=-1, ..., and 1. Then, the expected total
"controllable cost™ is the sum of the expected cost in periods
K-Ipgy, KoLp=~1; .., and 1.

The expected total "controllable cost™ is the sum of:

(1) item cdst plus fixed ordering cost of ordering

71K, which 1is @ k(2,1 ,

(2) total expected bontrollable shortage cost, which

is

ZPK(L) 2 _Ceu ST (ny - Uyg - B )P(rs K, m)}
L=0 ry >Ug + Z1K

and '

(3) total expected controllable carrying cost, which is

K~1 K-L
E Bx (L) E Chy, ° :E (g * Zyg - 1 )P(ry 3K k+1)
L=0 k=1 ry < UlK + 41K

Thus, the expected total controllable cost, @(UIK;ZIK)

= 0, k(2,g) +Z B (1) Z Corg * > j:jj (ry = Uy - Zyg)P(ry 5K, k)
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¥ Chyg + > (Uyig + By - 71 Py 5K, k) |
ry <UKk+4K
(5-1-1)
Let f*K(UlK) be a minimum expected total controllable cost for period K,

resulting from ordering an optimal amount of ZIK:=Z*1K(UiK) for a given

U;gk. Therefore,

*g(Uyg) = Min{U(UlK;ZlK)} (5-1-2)
ZIK ‘
W K
where 0<%y g <Min($ g, — - Uy + © r . 3
" kKoLl TPk
and 6=0, for Ly = O

1 otherwise. (5-1-3)
Consider period K+1 and for a given Ui,K+1, assume that an amount
Z19K+1 is ordered in this period and arrives next Ly., periods or
later. Note that the order at period K+ 1 cannot arrive after the
order made at period K arrives. -The expected total controllable cost
when a decision is made at this period affects the expected cost in
periods K+ 1 = L4, K-ALK+1, eeey and 1.
The expected total "controllable cost" is the sum of
(1) item cost plus fixed cost of ordering Z; K+;, which
is q)l,K-fvl(Z:L,Kﬂ)a
(2) total expected controllable shortage cost, during
periods from the period when Zl,K+1 arrives to a

period before Z;K arrives, which is

K _ K-L
> Pra (L)Z P (L+1) Coyp >
L=0 L'>0 k=Max[K-L-L",0] r1>0 K1 +Z1 ke

(I']_—Ul ’K+1 - Zl ’K+1 )P(I‘]_ ;K+lsk+l) ’

(%) total expected controllable carrying cost, during
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periods from the périod where Zi,K+1 arrives to a

period before 7,k arrives, which is

ZPK+1(L)§ Py (L +1)>

k=Max[K-L-L’,0]

Chyy 2>

r1<th ,K+1+2; K41

(Ui,K+1'*Zl,K+1-r1)P(r1;K+lk+2),
(4) minimum expected total controllable cost, presuming

an optimal decision is made at period K, which is

:E:::::::f'K(Ui JKar + By K -1y K+1)P(r1 K+1)

r1,K+12 0

Thus, the expected total controllable cost, @TU&3K+1;Z1,K+1)

= Py g4 (21 K1)

ZK__PKH(L)ZPK(L +1)> | {Cslk >

L"" k= MaX[K—L—L O] ™ >U1 9K+1 +Zl ’K+1

(r1-Ui,K+1"Zl,K+1)P(r1§K+lak+1)

+ Chyy >
r1<U; , K+1+%1,K+1

(U1,K+1+Z1,K+1“‘r1)P(r13K+lak+2)}
+ ZE:::::; £4g(U1 k41 + Z1,Kh = 1,k )P(ry ke ) (5-1-4)
ry K+120
Let £*g4y (Up K+1) be the minimum expected total controllable cost for
period K+1, resulting from ordering an optimal amount of Z1,K+1

= Z'19K+1(Ui,K+1) for a given Uy K41. Therefore,

£*g+1 (B K41) = Min {C’(Ul JK+13%1 K41 )} (5-1-5)
Z1,,K+1
W K+1
where - 0 € Z1 g1 < Min($ g4, e U1,K+1‘*:E::::::: Lig)e
k=K+z-Lyg 1

(5-1-6)



Next, consider, in general, period

@(Uipgzlp) = @1p(zlp)

p=-L
_1(L'+1))>
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p where K+1<p<P,

L=0 k=Max(p-1-L",0)

-1 _
» > Pp(LSTE,
L"™>0

+

I‘l >U1 p+Zl p
P(ry;p,ktl)

Chy, > (Uy o1 p=T1 )

Iy <U1 p+Z1 P

P(rl;p,k+?)}

+ > (U + Zyp - r1p)P(r1p). (5-1-7)
r1p20 |
It follows that £* (Uhp) = Min{?f(Ulp;zlp)}, (5-1-8)
Zyp
W p
where 0 < Zyp < Min(S,p, o= Uip+ L1 )~ (5-1-9)
' 1 k=P‘ép+1
Example
“pléﬁning period, "P=5
warehouse space, W =5 cubic units
a volume of an item, #1 = 1 cubic unit
initial inventory, Uyg = 4 units
k=1 k=2 k=3 k=l k=5
Slkﬂulli.t 3 5 Ll'
Co,y ~dollars/order 0.50 0.50 0.50
Ciy~dollars/unit 0,50 0.60 0.50
Csyy~dollars/unit/period 6.00 6.00 6.00
Chy, -dollars/unit/period  1.00 0.90 1.00
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I‘lk 0 1 2 3 4
Py(ryy) .20 .25 .30 .25 .00
Py2(r3) .10 .20 .35 .20 .15
Pya(ris) .55 45 .00 .00 .00
Py4(ris) .30 .40 .30 .00 .00
Pyg(rig) .50 .50 .00 .00 .00

L 0 1 2 3
B (L) .00 .00 .60 4o
CP(L) .50 .50 .00 .00
P4 (L) 00 ko .60 .00
P,(L) .00 .00 .60  .ho

Solutions .
Using the data given aboﬁe, the necessary values of P(r,:K,k) and
?}(L) can be determined as shown in Table XI and Table XII, respectively.
It is obvious that:
3 -1 > 1,
and 2 -1y <1,
Therefore, the first period to be considered is period 3. Using
(5-1-1) to (5-1-3) for wmg = 1
£*5(1)
= Min

052135Min(39§'1+0)[@13(Zla)-
1

e =L
+ Zpa(L) i Cslk § (rl‘l-zla)P(I‘]_:B,k)
L=0 k=1



100

TABLE XTI

CUMULATIVE PROBABILITY OF DEMANDS FROM PERIOD k TO K, P(r1sK,k)

r, 0 1 2 3 4 5 6 7 8 9 10
P(r1:3,2) .~ .055 .155 .283 .267 .173 .067 .000 ,0OO ,0OO .OOO .OOO
P(r1:3,1) .011..045 .112°.184 .225 .208 .136 .063 .016 .000 .000
P(£1:4,3) 165 .355 .345..135 .000 .0C0 .000 .000 .000 .000 ,000
P(r,:4,2) 017 ;069’.163 .240 .244 .169 078 .020 .000 .000 .000
P(r :4,1) .b03 .018 .055 .114 .175 .207 .191 .136 .OT1 .025 .005
P(r1:5,4) .150 .350 .350».150 .000 .000 ,000 ,000 .000 .00O ,000
P(r,35,3) 1,083 .260 .350 .240 .067 .000 ,00C 00O .000 .000 .000
P(r,15,2) .008 .043 .1i6 202 .242 ,206 .124 049 .010 .000 .000

TABLE XTI

PROBABILITY OF PROCUREMENT LEAD TIME, ﬁk(L)

L 0 1 2 3
?Z(L) .00 .00

53(L) .00 .12 .38

§4(L) .00 .30 .50 .20
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+ Chy, > (142 5-14 )P(r1:3,k+1)}:‘

I <l+2|13

= Min I:q)]_s(zla )
QSZ13§;‘

+ B + B2} {eenn S (ry =12y 4 )P(ry :3,1)

= Min

+Chyy > (1+2q5-15 P(r :3,2)}

™ <1+Z1 a

+ 53(1){CS]_2 E .(.1’1-1-213)3(1'1=3,2)

o.o+(.

+(

1.0+(.

+(

1.5+(.

+(

2.,0+(.

+(

12){(6){ (6){(1)(.067) }+(.9[(3)(.45)+(1)(.55)}}.

12142 5

+ ChlajE: B (1-¥ZQ3F-r1)P(r1:3,3)}].
. ri<l+Zy5 - :

5I{(6)£(1)(.112)+(2) (.184)+(3)(.225)+(4) (.208)
+(5)(.136)+(6) (.063)+(7) (.016) }+(1){(1)(.055) 1}

.12){(6){(1)(.283)+(2)(.267)+(3)(.173)+(4)(.067)}

+(.9{(1)(.55)1],
5){(6){(1)(.184)+(2)(.225)+(3) (.208)+(4)(.136)
+(5)(.063)+(6) (.016) J+(1){(1)(.155)+(2)(.055) }}

L12){(6){(1)(.267)+(2) (.173)+(3) (.067) }

+({CE5)+(2) (L5501,
5){(6){(1)(.225)+(2)(.2o8)+(3)(.136)+(4)(.o63) ,
+(5)(.016) }+(1){(1)(.282)+(2)(.155)+(3)(.055) }}

12)£(6)F(1) (L173)+(2) (L067) (.9 [ (2) (L45)+(3) (L5513,

5){(6){(1)(.208)+(2)(.136)+(3)(.o63)+(4)(.016)}
+(1){(1)(.267)+(2)(.283)+(3)(.155)+(4)(.055) }}




10.727

8.525
6.518 = 5,292 ; where Z*ls(l) = 3.

50292

= Min

For other values of Ujz, £*3(Uy5) and Z*;,(U;5) can be determined.

The results are summarized below:

£*,(2) = 4.647; 2*,,(2) = 3 £*a(4) = 3,147 2%5(4) = 1
£%,(3) = 4,147; Z2*,(3) = 2 £*5(5) = 2.147; 2*%,,(5) = 0O,
Consider period 4. Using (5-1-6) to (5-1-8), for Uy, = 3;
£*,(3)
= Min [@14(Z14)
0<Z; 4 <Min(5,5-3+0)
1
jf:" - 4-1,
+ STB, (L) B, (L41)S (e (r1-3-210)
L=0 L'>0 k=Max[4-L-L",1] Ty >34T,

+ Chyy > (3+Zy,-ry )P(n :Li-,k+1)}
r1<Ztli,

+ :EZ::: f*3(3+214—r14)P14(r14)},

r1420

= Min [@14(Z14.)
0<%, .22

- &= 2
+ P4(l){Ps(1)5{:{Cslk§£::::::(r1—3-214)P(r1:4,k)
=3

Ty >34y 4

+ Chy, :E (3+Zl4-r1)P(r1:4,k+1)}

+ ;3(2)25:{Qslk S (ry=3-Zy 4 )P(ry sb,k)
k=2

r1>3+214

+ Chlk E (B'PZ]_;L"’I’]_ )P(r’l :Lh,k"'l)}}

11 <Btly 4
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= 2 v
+ .]54(2){}?3(2)7{05“( S (r1—3-214)P(r1:4,k)
k=2

Ty >34Zy 4

+ Chy, E (3+Zl4-r1)P(r1:4,k+l)}

1 <Btdy
+ B(2)>_{cs,, > (g =32 4 )P (y t 1 )
k=1 r1>3+Zl4

+ Chyy E (3429 4 -1y )P(ry :4,k+1)}}

- 1
+ '154(3){133(1)}:{05lk > (ry =3=Zy 4 )P(xy sl k)
k=1

ry>23+0,

+ Ch1k:(3+214-—r1 )P(r1:1+,k+1)}

ry<3+2, 4

+ EB(Z)t{CSIk E (r1—3+Zl4)P(I°1:l+,k)
k=1

13421 4

+ Chy) :(3+214nr1 )P(ry s b k+l )}}

r1<3+2y4

+ Zf*3(3+zl4—r14)P]_4(r14 )]o

r1420

= Min ]:@14(214)
0<Zy 422

+ Ba(2)B5 (2)+5, (3)B5 (145, (3)P, (2){Ceyy > _ (£ =5+ 4 )P(ry 1k, 1)
ry 2344y 4

o+ Chll—_2(3+zl4'°r1 )P(r’lth,Z)}

r1<3+s 4

+ 54(1);3(2)"'54(2);3(1)”'54(2);3 (2){0513 _S_ (r1u3+Zl4)P(r1:Lh,2)

ry>5+Zy 4

+ Chlz Z (3+Z14"1"1 )P(I’l 24,3)}

ry<3+ly 4



+ By (L)P5 (1045 (1P (2){Cs15 > (ry =342y 4 )P(zy :4,3)
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+ Chyy > <ymrﬁmwﬁam}

r1<3+Zy4

+§f*a (3+2y =114 )P4 (14 )].

= Min

5.0+ (.50 (6){ (1) (. 175)+(2) (.207)+(3) (. 191)+(4) (. 136)
+(5)(.071)+(6)(.025)+(7)(.005)}
+(1){(1)(.163)+(2) (L069)+(3) (.017)}}
+(.68){(6){ (1) (.2bi)+(2)(.169)+(3) (.078)+(4)(.020)}
+(.9{(1) (345)+(2)(.355)+(3) (.165)}}
+(.20){(6)(0)+(1){(1) (.3)+(2) (.1)+(2)(.3)}}
+(.3) (4. 247)+ (1) (5.647)+(.3) (5.292),

1,1+(.5o){(6){(1)(.207)+(2)(.191)+(3)(.136)+(4)(.o71)
+(5)(.025)+(6)(.005)] |
+(1){(1)(,24o)+(2)(;163)+(3)(,069)+(4)(;017)}}
+(.68){(6)1(1)(.169)+(2)(.078)+(3)(.020)}
(L 135)4(2) (. 345)+(3)(.355)+ (1) (.165) 1)
+(.30){(6)(0)+(1){(2)(.3)+(3) (LH)+(4)(.3)}}
+(.3)(3,147)+ (L 4) (4.147)+(.3) (L.647),

1.7+(,50){(6){(1)(.191)+(2)(.136)+(3)(,071)+(4)(.025)
| +(5)(.008) J+(1) [ (1) (. 2k)+(2)( .240)
+(3)(.163)+(4)(.069)+(5) (.017)}}
+(.68)1(6)1(1)(.078)+(2)(.020) }
+((2)(.135)+(3) (. 345)+(4) (.355)+(5) (. 165)})
+(.30){ (6)(0)+(1)[ (3 (.3)+(1) (L)+(5)(.3)}} -

—aat

L +(3)(2.287)+ (B (3.147)+(.3) (k. 147). d.
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16.687
= Min|12.511|= 11.621; where Z*,,(3) = 2.
11,621

For other values of Uj,, the values of f*;(U;,) and 2*,,(U0;,) can

be determined. The results are summarized below:

£*, (4)

i

11.021; Z*4(4) =1

i}

il

£*,(5) 9.921: 2*14(5) = 0.

Consider peribd 5, which is the last stage. Using (5-2-6) to
(5-2-8),
£rs (k)

. Min
- OSZ155Min(4,1)[#55(Z15)

- - 5L
+ iﬁs (L)Z§4(L'+l)> { :(1"1-4—215)5’(1‘1 :5,k)
L=0 L'>0 . k=Max[5-L—L' 1] Ty SH4Zy g

* Chu: (4+2Zy g -1y JP(ry :5,k+l)}

zz:::f*4(4+z15'r15)P15(P15)]

'[‘15>O

= Min ':(‘PIB(le)
OSZI s<l

- = .3 '
+ Ps(2){P4(1)2?‘{031kf57“"‘(rl-AwZIE)P(rl:s,k)
k=3 Py >h+Zy g

+ Chy, E (4+Zy g=14 )P(r1:5,k+l)}}

+ Ps(B){P4(l)Z{CSIk E (ry=4=2,5)P(ry :5,k)

+Z15

+ Chy, E (4tZy g=1q )P(1q :5,k+1)}}

ry <L!'+ ZI I3



*,ZE:::f*4(4+Z15"rIE)Pls(rls)]°

r15>0

[0+(.3){(6)(0)+(1){ (1) (.5)+(2) (.35)+(3)(.35)+(4) (.15)}]

+(.2){(6){(1)(.206)+(2) (L1284)+(3) (L049)+(4) (.010) }
+(.9){(1)(.240)+(2) (.350)+(3) (.260)+(%)(.083)}}

+(.5)(11,021)+(.5)(11.621),

1+(.3){(6)(0)+(1){(2)(.15)+(3)(.35)+(4) (.35)+(5)(.15)}}

(.2){(6){(1)(;124)+(2)(.049)+(3)(.010)}+(,9){(1)(.067)
+(2) (.240)+(3)(.350)+(4)(.260)+(5)(.083)}}

+(.5)(9.921)+(.5)(11.021),

13.315
= Min | = 13.215; Z*,5(4) = 0.
E3°363

Therefore, the optimal policy in period 5 is do not make an order.

The minimum expected total controllable cost is $13.315.
- 5,2 MULTI-ITEM SINGLE-SOURCE SYSTEM‘FQR THE MIXABLE ITEMS

This section is‘an exfénsion of Section 5.1; several types of
items are to be carried and they can be mixed‘together in the warehouse.
There continues to be only one source of supply as in Section 5.1, and
other assumptions remain the same as before. The analysis is as
follows.

Assume that there are N types of items in the system, and consider
veriod K,
where K - EK =1,
and K-1-= EK > 1.

This means that there 1s a chance that the order made before or at
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period K will arrive before or at the beginning of period 1, but there

is no chance that the order made after period K will arrive before the

beginning of period 1.

For a given set of Ujg, Upg, e.., Uyg; assume that an order of the

amount &,, is made only for item type No. 1 at this period.

The

expected total controllable cost will include those expected system

costsin periods K-_I-._.K, K—»_I_.K -1,

(1)

(2)

(3)

(%)

(5)

item cost plus fixed cost of ordering Z;x, which is

(‘le(ZlK) ’

total expected controllable cost due to shortage of

item type No. 1, which is

ZP (L) LCslk > (ry "'U1K"Z1K)P(I’1 ;K k+l)}

=1 r>Ug+K

total expected controllable cost in carrying ltem

type No. 1, which is

K-1 K-L
ZP (L)Y Ch,, *> (Uy g+2y k=3 IP(ry 5K, k+1)
k=1 ry<Uik+d1 K

total expected controllable shortage cost due to

shortages of item types No., 2 to No. N, which is

i_ gp (L)QL_LCS,,c 5_ (ry=Ux)P(r, 3K, k) and

i=2 L=0

total expected controllable carrying cost in

carrying item types-No. 2 to No., N, which is
K=L

Z ZP (L)Zc:h“e > (Ug-r, )P(r, 5K, k+1).,

ry<U;g

Thus, the expected total controllable cost, C(UlK, UsKy ovoq

ooeg and 1, which is the sum of:

UnK;‘ZlK)
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= (‘le(ZlK)
K l
P (L) {Cslk E (rln’UlK—le)P(rl ,K k)
Lu—- I'1>U1K+Z]_K
+ Chyy, o > (T g+2Zy g-ry JP(ry 5K, k+1)
ry<UyK+Z: K
+ Ke(Ugk, UsKy ooy Uygds | (5-2-1)

where KK(UéKe UsKy eeey Uyg)

N K-l KL : )
=2 2 B (L2 _{0eyy + S (ry=Uy)P(r, 3K, k)
i=2 L=0 k=1 ri>U1K .
+ ChikZ(UiK“ri )P(r, 3K, k+1). (5=2=2)
. I‘1<U1K

Note that for a given set of Uy, Uggs oo.y Uyg; the space avail-

able for the additional items to be ordered in period K will be

N K ‘
W - Zvi *Max(U,g - > Lyy50)e
i=1 sz“£K+l

In order to apply the principle of optimality to this problem, let

Wy, the space available for the additional item type No. 1, increase in

N
increments of vy from O, vi, 2V1y oe0y C¥yy oos to W = E Vs
i=1
K
Max(U,g = > Lyxs0)e
k:K—£K+l

Let flK(UiK, UsKs ecoy UNK/Wl) be the minimum expected total
controllable cost when a decision is made in period K where only item
type No. 1 is belng considered, resulting from ordering an optimal
amount of ZyK = Z*1gk(Uigs UsK; 00y Uyg) for a given set of

Uygs UsKs ooy Uyk and wy o -
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Therefore, f1K(Uig, UsgKy ooey Uyg/Wi) = Min T(Uyk, Usks ooey Uyg3Z1K),

241K
(5-2-3)
w K
where O < Zyg < Min(8g, =+ - Min(Uyx - > L1500 (5=2-4)
71 k=K-L +1
. K
For wy = 0, and Uy - E ry, < 05 the restriction of Z;g in
o k‘:K-LAI{'*'l
(5-2-4) becomes
0 < Zk <Min(S1k, 2 7y - TiK)e (5-2-5)
, ' 'k=K-_I_._.K+l
. K
For wy = 0, and Ujg - E ' Ty, > 0; (5-2-3) becomes
k=KL +1
f1g(Uygs Usky eoey Oyg/0) = TUyg, Uagy ooy UyK3O0De (5-2-6)
v : _ K
For wvy = v € vy (8¢ + Min(Uyg - E T1y50)); (5-2-4) becomes
k:K—}_AK"'l
K
0 5 Z]_K S l-Min(Ule E £1k90))o
k:K—EK'l'l
Then, f1K(U1Ky UsKy ooey UyK/¥1)
flK(UlKa UpKy eooy UNK/O)s '
= Min v K }a (5-2-7)
(UlKa UsKy ocey UNK;l'Min(UlK ’:ﬁlk’o))
sz—_EKé-l
K
In general, for w; = Cvy; < vy(Sx + Min(Uyg - :E T1490))3
. k=K~£‘I{+l

f1xk(TK, UaKy ooy Uyg/Cvy)

f1K(U1K9 Usgy oess UNK/CVI)S .
= Min{ X : } (5-2-8)

C(Uyky UaKs eoey Uygs C - Min(U;g ":Elk‘)o))
: k:K—_I:K'i'l
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K

Cvy > vy (8;x + Min(Uyg - E L1x50)); let
k=K-L, +1

For wy

K

vy (81K + Min(Uyg = > £y 50)) < (C+1)vy, then
k=Ku£K+l

CV1

In

K

k:Kf£K+l

K
S > C - Min(Uyg - > L1507
k=K—£K+l
Therefore, using (5-2-3) and (5-2-4),
£1K(U1Ks Uggy ooos UNK/Cvl)
£1K(U1Ky Uk +oos Uyg/Cvy)

= Min ° (5_2-9)
C(Ug, UzKy «e-s UykiSik)

For a given set of Uy, UsKy ocooy UNK; consider that orders are
made for item types No. 1 and No. 2, and item type No. 2 is ordered
first in‘the amount.of Z3k. Let wy, the space available for the
additional item types No. 1 and No. 2, increase from O th;ough the
values of wy +mva(m=0, 1, oo.) until W =£V1 Max(Ujg =2 Pyps0)e

: i=1 k:Kn£K+l
After Zpg is ordered, an optimal amount of item type No. 1 is ordered
for a given set of Uyg, Usk + ZgKy o-..5 Uyk, and for an available

K
space of wy = vaoMax(Zpg + Min(Upg - :E ggk,O),O)a Therefore, the
k:Km£K+l

expected total controllable cost is the sum of:
(1) item cost plus fixed cost of ordering Z,k, which is
q)QK(ZQK)‘>
(2) minimum expected total controllable cost when a

decision is made in period K when only item type



fred
=]
2

No., 1 is considered, resulting from ordering an
optimal amount of Zyg for a given set of Uyg,

Uk + Zog, 00;9 Uy, and for a space

wg - vaMax(Zyg + Min(Ugg - %  I'2,0),0),
a - k=K~Ly +1
which is £1x(Uig, Uek + ZpK, ooy Uyg/ws = Vg
K .

Max(Zsg + Min(Upg - > Tap 0),0).
k=K-Ly +1

Thus, the expected total controllable cost, C(Uygs UsKy o-oy Uyk/ZzK)

= Pag (Zzg)
o _ ' K
+ Pig(UK, Upg + Zogs eooy Uyk/Wp = vaMax(Zag + Min(Upg - > T2y 50)50)
k=K-Ly +1

(5-2-10)
Then, let fax(UyK, UzKy e»0, Uyg/wWz) be the minimum expected total
controllable cost when a decision is made in period K where item types
No. 1 and No. 2 are considered and item type No. 2 is coﬁsidered first,
resulting from ordering an optimal amount of Zgg =
Z*3k(Uyks UsKy o0y Uyg) Presuming optimal amount of Z,x is ordered

later, for a given set of Ujg, Upk, .., Uyg and wg. Therefore,

fak(Uigs Usgs coos Uyg/Wo) = Min{@tUiK9 UsKs oooq UNK/ZQK)}?

Zok
(5-2=11)
K
where O < Zpx < Min(Sk, :—’“Z« - Min(Upg = > Ty 500 ) (5-2-12)
k=K-L +1

In general, item types No. 1 to No. n 025115PD are considered and
item type No. n is considered first. The space available for the addi-
tional item types No. 1 to No. n, increase from O through the values of

_ K
ww1+m%(mzo,L_“e)mmﬂ_W=§%medem§ Ly 50)e Theng
=1 kam£K+l
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1t follows that C(Uyk, Usgs sees Uyg/ZnK)

= Qan(ZnK)
+ fn;l,K(UlKa eovy Unk * ZpKy soey UNK/Wn“'VnMaX(ZnK +
K
Min(U,g - > raKs0),0). (5-2-13)
k:K—Iﬂ('l'l'

mm:ﬁde,%m uqlmdw);MmﬁﬂmK,%m cooy Wwﬂm%,

Zyx
‘ (5-2-14)
‘ ' o ‘ w = o K ‘
where 0 < Z,x < Min(Syk, -;: - Min(U,x - kEK LK 1£nk,0) (5-2-15)
s e R g : =R=Ls +1. . i

By letting n=N, and let £* (Uik, Usks +e0y Uyg) =

fyk(Uiks Uaky ooey UNK/__W ’.ivtMaX('UiK "Z: i -I;H(’O))

| A=l k:K-_I:;K*-l
£*)(U1Ky Usgy eooy Uyg) isvébtaiﬁed as a"partiél-optimization for this
stage. o |
_Cohsider ﬁériode+l,5fqr_a giveh set of U1,K+1, Ué,K+1, soay
UN,K+1; assume that an qrdef is.made only for item type No. 1 in the
amount of Zl,K+1 at this period. The decision made in this period
affects those expected system costs in periods K+L=Lgy1y K=Igsyy ooy
and 1,
The expected total controllable cost is the sum of:
(1) item cost plus fixed cost of ordering Zy K41, which
is @1,K+1(Z1,K+i),
(2) totél expected cohtrollable shortage cost due to the
shdrtag;e,o_f» item type No. 1, during periods from"
- the périod when thé order madé in period K+ 1 arrives
to one périod beforé fhe 6rder_made in period K

arrives, which is



(3)

(4)

(5)

11

iP’s‘

l(LfEZlPK(L +1)Z> sy >

L=O k=Max[K-L-L°,0]  r1>U; g41+%; K+

(rl-Ui,K+1“Z1,K+1)P(T1§K9k+l)s
total expected controllable carrying cost in carrying
item type No. 1, during periods from when the order
made in period K+1 arrives to one period before the

order made in period K arrives, which is

K-L
LPKH (L)ZPK(L +1) > Chyp >

L=0 k=Max[K-L-L’,0] r1<Ui,K+1+leK+1

(Uy k41 +Z0 K1 =72 )P (11 3K, k+2),

total expected'controllable shortage cost due to the

shortage of item types No, 2 to No. N, during periods

‘from when the order made in period K+l arrives to one

period before the order made in period K arrives,

which is

‘/E f: PK+1(L)Z PK(L 41) =
i=2 L=0 k=Max[K~L-L’,0]
Csyy EE (ry=Up g4, )PCry 3K kel),
Uy | K+1

total expected controllable carrying cost in carrying
item types No. 2 to No. N, during periods from the
period where the order made in period K+1 arrives to

one period before the order made in period K arrives,

which is
N K _ _ K-L
Z ZPK+1 (L)ZPK(L ‘+1>
i=2 L=0 L0 k=Max[K~L-L",0]

1k:§E:::::l(U1 JK41™ ~ry )P(ry 5K k+2),

1 S K+1
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(6) minimum expected total controllable cost, presuming

‘an optimal decision is made at perlod K3 which 1%

:2, :> ---:> {f*(Ui K+1 * Z, K+1-r1 JK#Ly eecy
r1>0r2>0 >0

R |
| UN,K+1‘rN;K+1);EEP(r}’K+1)} =G (U, kn + % ,Ke1y

Ua,K_‘,l’ LI Y UN,K+1)'
Thus, the expected7total‘éontrollablefcost,

axUl,K+i’.U2,K+1,bo--} UNvK+1;Zl,K+1) = q)1F,K+1(Z1,K+1)

S KL :
-»jE:PK+1(L)§ PK(L 1) > {ﬁs
L=0 -Max[K—L—L ,0] r1 >0y K41 +21 K41

(ri°U1K+1'Z1K+1)P(r1§K9k+1)

+ Chyy > (U141 Z1Ke1-71)
r1<Ui g4y td1K+1

P(rl;K,k+2)}’
+ KK+1(Ué,K+1, Us K+19 eeey UN,K+1)
+ G(Up ka1 + 21 K415 U K41s =y Ui,K+1)9 - (5-2-16)

where KK+1(U2,K+1? UB,K+1? seoy UN,K+1)‘

N
=2 PK+1(Li§::PK(L +1)ES {Cs
i=2

L=0 k=Max[K-L-L",0] ry>Uy 41 (ry=Uy ga1)

P(ry jK,ke1) + Chyy > (U) g vy B(ry 3K, k+2)} (5-2-17)

ry<Uy, K+1
Note fhat,for_a given set of Ui,K+17 Ué,K+1, soey UN,K+13 the

space available for the additional items ordered in the period K+1 is
K+1 B

N o ’
W - E lv1 ~MaX(U1,K+1 ‘:Ez:::::::ZE:kaO)-
g =] . o

kK-l 2
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As before, let wy, the space available for the additional item

type No. 1, increase in increments vy from O, vy, 2Vi, ecey CViy cco

N K+1
to W - § viMax(Ui’KH- > Lixs0). Let fl,Kﬂ(Ul,Kﬂ,
i=1 -

k=KeLy g +2
U95K+1, RPN Uh’K+1/w1)vbe ﬁhe minimum expected total contrcllable cost
when a decision is made‘in'period'K+l when only item type No. 1 is
considered, resulting from érdéring:an optimal amount of Zl,K+1 =
Z*l,K+1(Ui,K+1, Uz K19 =9 UN;K+29 presuming an optimal decision is
made in period K, for a given set of Ui,K;l, UQ’K+1,‘..,? UN,K+1 and wy .

Therefore, f1 ke1(Uy Koty Up Ke1s +eey Uy g1/wn)

= Min . » | ' :
ZI’K"_I{’C‘(U]. ;,K’l"l’ U2 ,K+1’ eo0eg UN,K'."I’ZI,K"'I )} (5_2_18)
‘ ' y K+1
where O < Zy k41 < Min(8y ka1, o= - Min(Uh k> ~ 114,00,
o k=K-Igs 72
' (5-2-19)
K+1

For wvy, = 0, and U1,K+1 - T < 05 the restriction of

k=K-Lyy1+2

Z, K41 in (5-2-19) becomes

K+1

0% km £ Min(31?K+1a§ Iy - Uy K+1)o - (5-2-20)
. k:K—EK+1+2

K+1
For w; = 0, and U gy =~ > » Ty > 03 (5-2-18) becomes
k=K~ +2 ‘
“K+1

f1,k+1 (U1 K415 Uz K415 woos Uy, K42/0)

= a(Ul’K+1, UE,K'H-’ esoy UN’K+1;O)° (5*2"’21)
' K+l ’
For vy = Cn < V1(51,K+1 * Min(Ul,K+1 - E: :.I_"u .0);

f1,K+1(U1,K+1’ Ué’K+1’ ARER) UN,K+1/CV1)



[
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[

£1,ke1 (B0 Kars> Uo,Ka1s vy Uy gan/(C-1Iwp),

<4 Min . K+l . v }o
C(Up ,Ke1y Uz, K#1y ooy Uy Kan3C-Min(Up g4y - > I1x+0))
k=K—H{+1 +2
(5-2-22)
K+1
For wp = Cvy > v1 (8 g4y + Min(Up g4 - > 1y s0)3
sz—an‘K+1 +2
_ K+1 -
let Cvy < w1 (8 gar + Min(Th g4 - > Iy »0)) < (C + L)vy,

then fl,K+1(U1,K+1, Ua,K+1, seey UN,K+1/CV1)
f1,K+1(U1,'K+1a Uz K1y eoos UN,K+1/EV1)~9-

= Min{k : . (5-2-23)
a(Ul,K+1s Ua,K+1, L ERE) UN,K+1351,K+1)

As in previous discussions, if item types No. 1 to No. n (2<n<N)
are considered and item type No. n is considered first, for a given set
of Uy K41y oy Uﬁ’,Kﬂa .";; ‘U"’K"'l and for w,, it follows that
T( U1,>K+1:,' _."_,.v'.‘-," Uﬁv;..K,,;i{ﬁ,: (...—.",',:.,UN "K"Fl ,; 2, ,'.K+1 ). = f(pn,K+1 ('Zn,K+1)

* fae1 K41 (00 Kaas ooy Uy Kea * Zp ke ooy Uy Ker/Wp=voMax(Zy g4

K+ ,
+ Min(Uy g, - > Tpy»0),0)), - (5-2-24)

k:Kc—vEK_H_ +2

and fn’K+1(U1,K+1, e ey Un,K+1, co ey UN,K+1/Wn)

= Min {U(Ul,,Kﬂ, sooy Up Ke1s ooey UN,K+1;Zn,K+1)}9_ ‘ _ (5-2-25)
Zn,K+1 ‘ - ; : :
. - o K+1
where 0 < Z, kq < Min(S, k41, = - MIn(U, g - > Tags0))e
~'n K=K Ly 1 +2
(5-2-26)

By letting n = N, and let f*k41(Uy K41y Uz K#1y ooy Un K1)

N K+1
= Iy, K41 (U1 K41y evvy Uy ke /W - > vMex(Uy g4y - S T ri.0))e
_ i=1 1<=K-£K+1 +2
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* +1(U1’K+1, UQ,K.H, cauy UN,K-H-) is obtained as a partial-
optimization for this stage.

Consider in general period p, where K+1 € p < P,

—— o

Using the previous developments, it follows C(Uip, Usp, ceoy U

Npg
le) = (*Plp(z ) }
pe=liel
s (L)ZPp_l(L S S S— AN
L=0 k=Max[p-L-L’,0] " r1>U1p+zlp
P(ry3p,k+l) + Chlk:(U1p+Z1p‘I'1 )P(I’1 ,P,k"'?)
. I'1<U1p+Z1p
+ Kp(Uzp, Uap’ ot’»o, UNp) ‘+ G(Ulp + le, Uap‘) ooo?. UNp)’ (5“’2‘“27)
where K (Uzp, Uaps seoy UNp)

= Z{cs k:wi-u >p<r, 1D, k+1) + Ch1k5__(Uip—r, )P(r, ,p,k+2>}
Uip r <U1p
and G(Uyp + Zy1p, Uapy «eey Uyp)
=>- o°o> {f*p_l (Ulp +Z1p - rlp’ ocog Ulp"rlp) TI-P(rip)}o
r1p>0 ryp~0 i=1

Therefore, f1p(Uip, Uspy osey UNp/wl) = Ma:n{t’(ulp, Uzps o9 UNp;ZIP)}9

%
b
(5-2-28)
1%
where O < Zyp £ l"I:l.n(Slp - M:Ln(Ulp > L1 50)) (5-2-29)
k=-'p-=_l_gp+l
D
For vy = 0, and Ulp -> Zyx < 03 the restriction of
k:p—ép+l
Zyp in (5-2-29) becomes
P o
0<Zp g Min(S 5, > 1y, = Uip). (5-2=30)
k-—-p—_L_p-l-l
For wy = O, and Uyp - > i > 03 (5-2-28) becomes

£1p(Uipy Uapy eoey Uyp/0) = TAUip, Upy, veey UypsO)e (5-2-31)
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b
For wy = Cvy £ vy (81p + Min(Uyp T1x50)), it follows
k=p=£p+l

that £1p(Uhp, Uzpy oeey Uyp/Cvp)

flp(U]_p, Uap, ce oy UNp/(C“’l)v1).’

= Min{ o } (5-2-32)
E(Ulp, Uzp, LY UNp; C—Min(Ulp i —Z_ _Illlf ,o))
k:p—£@+l
. ‘ P
And for Wy = CV1 > vy (Slp + Min(Ulp - S _ L1y ,O));
. k=p—£.p+l

f1p(U1p’ U2p9 co ey UNp/Cvl)

f19(T1 5y Uapy «eey Uyp/Bv )y
P o } (5-2-33)

= Min{
%(Ulpa.Uep)'o-ea Unp§s1p)

= - . p =
where Cvy < V1(51p + Min(Uip -5 T1450)) < (C+1)v,. (5-2-34)
o _ k:p—.l_:p’ﬂ-l

Again using previous developments, if item types No. 1 to No. n

(2<n<N) are considered and item type No. n is considered first, it

follows that T(Uip, Upp, ooy UypsZap) = Pop(Zap)
+ fn_l"p(Ulp, vooy Unp + an, vocgqg UNP/Wn ‘*VnMaX(an +

o , _
Min(Uyp = > I4,0),0)), (5-2-35)
kzp=l.-_T+l

and fnp(Ulp, noo, Unp, ooo, UNp/‘Mn)

= Ig:‘i.n{C(U‘lp, veesy Uppy ooey Uyps an)}, (5-2-36)
ap

D
where O < Z,p < Min(S,, ‘—;’-n - Min(Upp = ST 1py,0)). (5-2-37)
n

k::p-a_L_P‘Fl

By letting n=N, and let £*,(Uip, Uppy ooes Uyp)

N

P
= pr(Ulp, Uap, coeg UNp/w Ld % 'V_,‘ Ma]{(Uip - kE L l 211{ 90))
i= :pm_p'l'

N
f*p(U1ps Uzpy ceoy Uyp) = fypUip; Uzpy cooy U'Np/w - S. - v,
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P
Max(Uyp = > Lyg+0)) f*p(Ulp,I%p9 coss Uyp) is obtained as a
kzpfgp+l
partial-optimization of this stage.
And if p=P, f*p(Uip, Usp, ooy Uyp) is the final optimization of

the problem.

Example
planning period, P=5h
warehouse space, W =5 cubic uwnits
number of type of items, N =2
a volume of an item, v, = 1 cubic unit
v = 1 cubic unit
initial inventory, Uyg = 3 units
Upg = O unit
i=1 i=2
k=1 k=2 k= k=t k=1 k=2 k=3 k=h
Syp=unit 3 5 2 1
Co,e~dollars/order 0.50 0.50 0.50 0,50
Ci;y=dollars/unit , 0.50 0,60 0.70 0,70
Csy-dollars/unit/period 6.00 6.00 6.00 10.0 9.00 9.00

Chik—dollars/unit/period 1.00 0.90 1.00 1.00 1.00 1.00
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Pik<r1k)

r k=1 k=2 k= k=4 k=1 k=2 k=3 k=h

0 .20 .10  ,55 .30 .00 L4O .30 .00
1 .25 .20 .45 40 .50 .60 .70 .60

2 .30 +35 .00 .30 ..50 .00 00 40

L .00 .15 .00 .00 .00 .00 .00 .00

L 0 1 2 3

Pg(L) .00 .00 .60 .40

P, (L) «50 «50 .00 .00

o

2(L) .00 .40 60 .00

Po(L) .00 .00 .60 .40

Solution:

Using the given data, the necessary values of P(rizK,k) and ﬁk(L)
can be determined as shown in Table XIII and Table XIV, respectively.

It is obvioﬁs that:

3-Ly >1

and, 2 -Ly <1,

Therefore, the first period to be considered is period 3.

Using (5-2-1), (5-252), and (5-2-6), for Uz = 1, Usy = =23

f15(1,=2/0)

2 -~L '
= Z§3(L) {051k z (I'i""l'“'zla)P<I‘1 :391()
L=0 k=1 -

e P1l+2y o



CUMULATIVE PROBABILITY OF DEMANDS FROM PERIOD k TO K, P(r,:K,k)

TABLE XITT
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i=1 =2
K=4 K=3 K=
r, kel k=2 kel k=2 k3 kel ke2 kel k2 ke3
o .011 .055 .003 .017 .165 .000  .120 .000  .000  ,000
1 .045 .155 .018  .069 .355 .060 .460 .000  .0T2  .180
2 .112  .283  .055 163  .345  .290 420  .036  .324  .540
3 .184  .267 114 .240 . 135 440 .000  .198 436 .280
4 2225 .73 .175  .244  .000  .210  .000 .380  .168  .000
5 .208 .067 .207 .169 .000 ,000 .000 .302  .000  .000
6 .136 .000 .191 .078 .000 .000 .000 .084  .000  .000
7 .063 .000 .136  .020 .000 .000 .000 .000 .000  .000
8 .016 = .000 .O71 ~ .000 ~ .000 .000 .000 000 ,000  .000
9 .000 .000 .025  .000 .000 - .000  .000  .000  .000  ,000
10,000 000 ~005 000 000 ~ .000 000 .000 .000  .00O
TABIE XIV

'PROBABILITY OF PROCUREMENT LEAD TIME, P, (L)

L 0 1 2 3
P,(L) .Q0 .00

§3(L) .00 .12 .38

54(L) .00 .30 .50 .20
P.(L) .00 .00 .60 40
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+ Chlkz (1+Z5-1 )P(r1:§,k+l)}

ry <1+Zy 5
C+ K(-2)
= 0,0+(.5){(6){(1)(.112)+(2)(.184)+(3) (.225)+(4)(.208)
+(5)(.136)+(6)(.063)+(7)(.016) }+(1){(1)(.055) }}
+(.12){(6){(1)(.283)+(2) (.267)+(3)(.173)+(4)(.067)}
+(.9){(1)(.55)}}+27.564
38.289.

1

For the values of wy = 1, 2, and 3, by using (5-2-8),
f15(1,-2/w;) can be determined. The results, determined by the computer,

are as shown in Annex I-3.

Since w; = 4>vy (S;5 +Min % . I1.+0)), applying (5-2-9), then
K=3-Lptl

F1a(1,-2/4) = f;;(l,—z/a).
For thé other«séts of Uiay Uss; fls(Uis,‘Uéa/wl) éan be determined,
The resulté, determined by the computer; are as shown in Annex I=-3,
The last calculation for the first stage is to determine
%53 (Uyg, Usg)s Since there are only two types of items in the system
Foa(U1a, Ués/wg)‘for‘all.values of ws are not necessary; For each set

of Uiy Usay £%5(U1g, Usg) can be determined directly from

2 b, .
Toa(Uiay Ups/uWz), where wy = W = E vy * Max(U13 - E Ty s0)e
i=1 k=K=Lg+1l

Using (5~2-10) to (5-2=12), for Uiz = 1, Usy = =23

£%5(1,~2) = fgq(1,=2/4)

= Min
oszgagMin(z,g-Min(-z-o,o))[@za(zga) + £35(1,=2+Z55 /4=(1)Max(Zy,+
_ 1 _
Min(-2~0,0)))]



[0.0 + £15(1,-2/4), 32,963 |
= Min|l.2 + £,5(1,-1/4), |= Min 28.083

1.9 + £,.(1,0/8) | 90,703

= 22,70%; wheré'Z*13(1,52)=3,vénd-Z*23(l,-2)=é.

For other sets Of.Uia,.ﬁéag £%,(Uy 5, Ups) can be determined. The
resuits, deférmiﬁed by thétcémﬁﬁter,'are as shown in Annex I3,

Consider.perioa 4; The”first calculation for this stage is to
determine f;,(Uyga, Usa/wg).

Using (6-2-16), (6-2-17), and (6-2-21), for Ujs = 3, Ugy = O;

£1.(3,0/0)

it _ o
i P4(L)Z: Pa(L ‘+1) > {CslkZ(rl-B)P(rl b k)
k=Max(4~L-L",1) 7y >3

+ Chy, > (3-7; )P(ry ik k+l)}
rn<3

+ K(0) + G(3,0) = 73.961; where Z*;,4(3,0) = O.

For other valuesbof Wy, by using (5-2—2?), f14(3,0/wy) can be
determined. - The results, determined byvthe computer, are as shown in
Annex I=3,

For other sets of Ui4, Ungs £14(U4y Usy/wy) can be determined.
The results, determined by thé computer, are as shown in Annex I-3.

The last calculatioﬁ for this problem is to determine £*,(3,0)
which can be determined directly frém £24(3,0/2).,

Using (5-2-25) and (5=-2-26)3; £*,(3,0) = £2,(3,0/2)

Min [}ppq, ( Zg 4 )
0<Zz s Min(1,2+1)

1 + £14(3,0 + 234/2-(1)Max(zz4+Min(o-1,o),o))]

03,(0) ) + £1,(3,0/2),
Min

1

Paa (1) + £1,(3/1/2)
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0.0 + 70,11k
= Min = 54.289; where Z*,,(3,0) = 1, and Z*,,(3,0) = 1,
1.2 + 53.189
The optimal policy in period 4 is then order 1 unit for both

jtems No. 1 and No. 2.
53 MULTI-ITEM SINGLE-SOURCE SYSTEM FOR THE NON-MIXABLE ITEMS

This section considers the case for the specific assumption in
Section 2.3 when demands and procurement lead times are probabilistic.
Employing the discussion in Section 2.3, the system can be reduced to
single-item Singlé—source. Thus, for item type No. i, one can use the
development in Section 5.1 to determine G,(w), which is £*p(0) for the
selected value of w; And then the procedure to allocate space to each

type of items will be the same as in Section 2.3,
5.4 SINGLE-ITEM MULTI-SQURCE SYSTEM

This section éonsiders the problem in Section 4.4 when lead time
is probabilistic., For simplicity purposes, the case that two sources
are available at each period and the system shown in Figure 3 are
considered,

As in Section 4.k, for illustration, consider the alternative
that at period P-1 source No, 1 is chosen and at period P=2 source
No. 2 is chosen. For a given set of ﬁl,ngazl,Pnl,l if an order of
the amount Zl,P—Z,a is made, the total expected controllable cost is
the sum of:

(1) item cost plus fixed cost for ordering Z19p“2,2,

which is @1’P_2,23 (Zl,,Pae,z)9

(2) total expected shortage cost during the period 1
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to P“l‘Lﬂ’Pwly which is

P-1-~ Mg%(éd,p_l) %4

= - JiCslk ﬂ%}Max(rl = Vg Pegp =~ 012y Py 51
k=1

- 6221,P_2,2.9O)P(r‘1 :P—29k) e 6354},

where values of both &; and 85 are varied for 0 and

1, and
P-l-k _ P-1~k
63 =0 ° E P1$Pu1(L) + (1‘~51)(1 - E
L=0 L=0

.ﬁl ’Pwl (L)),

P2~ P-2-k
By = 8 * > P poa(l) + (1-8)(1 -3

L=0 L=0
-P-z 9P_2 (L) ) 9
(3) total expected carrying cost during the period 1 to

Pml—El Par s wWhich is
2
P.l-Max(L
- EX(AJ,P-l)

= | . {Chlk 'EE:MaX(fﬁ,P_Q + Z1,P-1,1 -
k=1 1

Z, ,p-2,3 - Ty ,0)P(ry :P=2,k+1) ° &g o 64}9
Thus, the total expected system COSt,>C(€H9ngszl’P~191:Z1’P‘2,3)

= ¢E,P=2,2(21,Pn2,2)
P-1-Max(Ly p.)

+*

[{Cslk tE::MaX(rl'" 1,P=2 - 6dzl,Pml,l -
k=1 1
5221,P—292,O)P(rlzpw2,k)

+ Chlk 'E Max(ﬁl,sz + 51Z1 ’Pwla-l + 5221’Pa2,2-=1‘1 90)
Ty

P(r1:P=2,k+l)}
63 64]4 (S”L{'ml)

Let fp_, » (ﬁg,p_l,zlspalel) be the minimum expected total. system
9 C
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cost when a decision is made in period P-2 where the order is made
from source No. 2, assuming the order was made from source No. 1 in
period P-1, resulting from ordering an optimal amount of lepsg,g for a

given set of fﬁ’p_é,zlap_l,l. Therefore,

fpsz,z(ei,P-Zazl,P-1,1) = Min [6161,P-2,Z1,P_1,1=Z1,P-a,2)1$

Zl,P-z,z
(5-4-2)
here O < 2 < Min(s LA 7
where U < 4 P-z,2 < M10l5 P2, 2, v l,p=2 = “1,P-1,1
P~
+ > Tig-
k=P-Max(Ly p.1) (5-4-3)

J

For other combinations of sources that could be chosen in period
P-1 and P-2, for each given set of ﬁl’p_z, Zl,P—l,J’
fpwz7j(fhspng; Zl’p_l,J) can be determined.

Let f*p_g/ﬂ(ﬁliP-Q’ leP_l’J)‘be the minimum expected total system
cost when évdécisidﬁ:is'méaé"in”périd& P-Q,bassuming the order was made
from source No. j in period ?ul,.resulting from Qrdering an optimal
amount of Zi’P_g’J frbm the optimal source fof a given set of
fH9P_29 Zl,P—l,Ja f*P;é/j(ﬁl,P—Qo Zl,P—lsj) =
?%ﬁ[fp_g’Ji(fH’P_zj Zl,P-l,J)Js (5-l=-4)
where j’ is source to be considered in period'PmQ.

Thgn, f*P_g/J(ﬁl’P_g, lep-l,ﬂ) can be used in determining the
optimal policy in next stage.

Consider period P-1, assume again for illustration purposes that
at period P source No. 2 is chosen and at period P-l source No. 1 is
chosen.

For a giﬁen set of ﬁl’p_l, Zypy, if an order of the amount

Zlanlgl is made from source No. 1 the total controllable system cost
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is the sum of:
(1) item cost plus fixed cost for ordering Z p-i,1;
Which is (P]_,P_.i ,1 (Zl ,P—l ’1 ),
(2) total expected shortage cost during periods

P-—Max(gj’p_l) to P = Lyp, which is
J
P-Lop

{Cslk °§ Max(r; - 1,P-1 -
. r ‘

k:P-MaX(_L_J ,P—l)
O 2%py -~ & 5 ,P=1,1 ,0)P(ry :P-—-l,k)},

where values of both 6, and & are varied for O and

1, and
Pk _ : Pk
b = O - 2 PB9P(L) +(1-8)0 -2 Py, p(L))
. L=O L:O
P-1-k _ P-1-k
54 = 62 ° E‘v Pl P—I(L) + (1“‘62)(1 - E 'P' (L))g
=y ’ T=5— "1,P=

(3) total expected carrying cost during periods P-1-Ip_,

to P-L,p, which is

P-Lop

{Chlk,°:z::Max(Ui,P~1 + O Zpa ¥ 6aZ1,P--1,1“'K’130)
kzp“l*Lu,P-l Ty

P(I‘l :P-l.,k"‘l)éa 64}, and
(4) total minimum expected total controllable cost pre-

suming an optimal decision is made at period P-2,

which is
ry,pa1 f*P-?/l(ﬁiaP“l + Bypa = 1 P-15 % Pe1,1)

Py poi(ry pa ).

Thus, the total expected system cost, @KUi,p_l, legzzlep_l’l)

= CF’1,P-—1,1(Z1,P—1,1)



P-Lop |

* E- v [{Cs1k * E Max(r; - 1,P-1“‘5121Pa - 5221,P—1,190)

=P-1-L ™ .
keP-1-L, p_,

P(r,:P-1,k)

+Chyy E MaX(ﬁi,P—l + 81Z1ps + 8321 ,poy,1-71,0)
|

P(I']_ 3P=~1,k+1)}63 64

+ E f*p_2 1 (ﬁl,P—l + Zype = r1,Pe1y Z1,Pe1,1)P1 Pe1 (1 par)s
r1, P-1
?

(5-4-5)
And fP-1,2(ﬁl,P—17 Zype) = Min [ﬁxﬁlapul7Z1P2:Z1,P_1’1)]5 (5-4-6)
% P-1,1
W P-1
where O < Zl,P-1,1 < Min(Sl,p_l,l, = - 1] puqg = Z1Pz + gik),
Vi 2 - .
: , k=Pulopt+l

(5-4-7)
For other combinations of sources that could be chosen in period P
and P-1, for a given set of ﬁlsp_l,lej, fP_l,J(€H’P—17ZIQP—1,J) can be
determined.
And for a given source to be chosen in period P, it follows that

f*Psl/J(fﬁ,P-la Zypy) = ?%n[fP-l,j’(ﬁl,P—la Zi,P—l,J)]a where j’ are the

sources to be considered in period P-1, _ (5-4-8)
Consider period P, with a given source to be chosen in this period,

if one lets pr(UlP) be a minimum expected controllable cost when a

decision is made in period P where the Qrder is made from source j for a

given value of Upp, fpy(Uyp) = Min [91P5(Z1P3)
| Z1py

+
;g;:f*Pal/J(UIP"r1P9 ZlPJ)PlP(rIP)]

(5=L49)
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where 0 < %py £ Min(SlPJ, ;: - Up +‘i . £1k)° (5-4=10)
k=5

Let EC, be the expected lost during periods P-Lp to P-L,p+l for

the source"that £JP > &P’ where

| ].':-P = M]';;n[gjp].

Then, f*P(UiP), the minimum expected cost when a decision is made
in pefiod P where all sources are ¢dnsidered for a givén value of Uyp,

becomes

*p(Uyp) = Mizn[pr(U1P) + ECJ]. (5-4-11)
it

Employing procedure developed above, for the case of more than two
sources, at each period for k<P one can determine f*k/J(ﬁlk9 Zy =110
which is the minimum expected total controllable cost, assuming the
order made from source j in period k, when an optimal éource and amount
is chosen in period k for a given set of ﬁlk, Zl,k_l,ﬂ.

For k=P, employing the procedure from (5-4-9) to (5-4-11), the

final optimization of the system can be found.

Example
planning period, P = 7
warehouse Bpacey W = 3 cubic units
numbef,of sources, J =2

1 cubic unit

a volume of an item, v;

initial.inventory, Uynr = 2 mits
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j=1

j=2
k=5 =6 k=7 k=5 k=6 k=7
Sye-wnit 3 2 o 1 2 1
Cojk—dollars/order‘ "~ 0.50 0.50 0.50 0.60 0.60 0.60
Ciy,-dollars/order 2.00 3,00 2.00 3,00 3.00 2,00
k=1 k=2 k= k=l
Csyy —dollars/unif/period 5.00 6.00 6.00 5.00
Chyy-dollars/unit/period 2.00 2.00 2.00 2.00
j=1 j=2
L=kt I=5 1=3 L=k
o i?-js(_L), .3 o o7 .2 -8‘
P, (L) .5 .5 b .6
By, (1) 6 b .5 .5
Py (ryy)
Ty =1 k=2 k=3 k=l k=5 k=6 k=7
O 05 06 a2 -3 95 03 oL|'
1 +D _ A 5 3 o5 o7 .6
o 0 .0 3 b .0 .0 .0
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Period Number

SOURCE NO. 1

Solution:

Period Number

SOURCE NO. 2

Using the given data, the necessary values of P(r;:K,k) can be

determined as.shown in Table XV,

Consider period 5. For the alternative that at period 6 source

No. 1 is chosen and at period 5 source No. 2 is chosen.

Using (5-4-1) to (5-4-3), for 615 = 0y Zye1 = O3

fg(0,0)

= Min|3.6 + [(5){(1)(.153)+(2)(.251)+(3)(.267)+(4)(.182)

b.o + L5 {(1)(.055)+(2)(.153)+(3) (.251)+(4) (.267)

0 € Zy5p < Min(1,3-0-0+0) = 1, and
1

+(5)(.182)+(6) (.071)+(7) (.012)}(1)(1)]
+ [6){(1)(.093) + (2)(,213)+(3)(.289)+(4) (L245)+(5)(.118)
+(6)(.021) 1 (.5) (.2)+(.5)(.8)+(.5) (.2)+(.5)(.8) 11,

+(5)(.071)+(6)(.012) }+(2){(1)(.018) }{(1)(1)}]
+ [(6)(1)(.213)+(2)(.289)+(3) (.245)+(4) (.118)

+(5)(.024) 3+(2){(1)(.030) H (.5) (.2)+(.5)(.2)}
+ (6 (1)(.093)+(2)(.213)+(3)(.289)+(4) (,245)

+(5)(.118)+(6)(.024)3{(.5)(.8)+(.5)(.8)}

132




CUMULATIVE PROBABILITY OF DEMANDS FROM PERIOD k TO K, P(r,:K,k)

TABLE XV

133

.000

P(r1:K,k)
=5 K=6 K=T7
1‘1 k=1 k=2 k=3 k=3 k=4 k=5 k=4 k=5
0 .009 .018 .030 .009 .045 .150 .018 .060
1 055 .093 .135 .061 .195 +500 .105 .290
2 .153 .213 .265 175 «315 .350 0243 «440
3 «251 .289 «305 276 .305 .000 31 .210
4 267 .245 .205 .276 .140 .000 .239 .000
5 .182 .118 .060 .161 .000 .000 .084 .000
6 071 .024 .000 .042 .000 . 000 .000 .000
7 ,012 .000 .000 .000 .000 .000 .000
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36,610
= Min] ] = 34-115; where Z*152 = 1,
34,115 ¢

For otheriéets of ﬁls, Zhgy and for other alternatives,
fsj(ﬁis, Zyg) can be detér@ined. The results, determined by the
computer, are as shown in Annex II-3.

For the given alternative that source No., 1 is chosen at period 6
and for Dig = 0, Zye1 = O using (5-h-);
36.600

]

= 34,115; where the best policy is to order 1 unit from source No. 2.

f*s 11 (0,0) = Min[fsjl(0,0)} = Min f
i’ -34,115

For other sets of ﬁis, Z1g7 and for other alternatives that source
No., 2 will be chosen at period 6, the values of f*s/g(ﬁﬁs, led) can be
determined. The results, determined by the computer, are as shown in
Annex II-3,

Consider period 6 and for the élternative that at period 7 source
No, 2 is chosen and at period 6 source No., 1 is chosen. Using (5-4=5)

0, it follows that

It

‘to (5"4"7), fOI‘ U16=1’ 21172

0 < Zygy < Min(2,3-1-0+0), and
il

fg1(0,0)
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0.0 + [(6){(1)(,175)4(2)(,276)+(3) (.276)+(4) (. 161) |
+(5)(L0h2) J+(2){ (1) (L.ok5) 31(1)
+(5){ (1) (.315)4(2) (.305)+(3) (L140)}
+(2){(1)(.15)31{(.5)+(.5)}
+(.3).£%5 1 (1,0)+(.7).£*g 1, (0,0),
13.5 + [(6){(1)(L.175)+(2)(.276)+(3) (.276)+(4) (.161)
+(5)(.0k2) }+(2){(1)(.o45)31(1)
= Mir + [){(2)(L315)+(2) (.305)+(2) (,140)}
+(2){ (1) (.15)}1{(.5)+(.5)}
+ (L3) % /4 (1,1) + (,7),f*5/1(o,1)
6.5 + [(6){(1)(.175)+(2)(.276)+(3)(.276)+(4) (.161)
+(5)(Lo42)Y + (2){ (1) (.045)3](1)
+ [(5){ () (.315)+(2) (,305)+(3) (. 140) }
+2){ W (19)11((.5)(.5)}
+(3).f*5 4 (1,2) # (L7).f%s 11 (0.2)

50,831
= Min {49.5%2] = 47.146; order 2 units.
47,146
For other sets of 616, 2175 and for other alternatives;
fgd(6159 Z17J) can be determined. The results, determined by the
computer, are as shown in Annex II-3,
For the given alternative that source No. 1 is chosen at period 7

and for Oyg = 1, Zyyy = O, using (5-4-8);
fs/1(1,0)=:[§%n fsjz(l,O)]

L4o.121
:Min[ ] = 31,975,
31.975
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The decision is to choose the scurce No. 2 in pericd 6 and order 2
mits,

For other sets of 616; Z17y and for the other alternatives that
source No. 2 is chosen at period 7, f*s/d(ﬁle,zlgj) can be determined.
The results, determined by the computer, are as shown in Annex II-3,

Consider the last stage, period 7. Employing (6-3-9) and (6-3-10);
£y (0)

[0.0 + (Lb)f*g 1(2,0) + (L6)F*5 1 (1,0), 29.525

Min = Min

2.5 + (b)f*s 1 (2,1) + (L6)5%g 1 (1,1) 27.700

[
H

27.700; order 2 units.

it

The same manner, f2(0) is 31,485, by ordering 2 units from source
No. 2 at period 7.
The final optimization, then, can be determined by employing
(5=4-11);
EC, = (B){(1)(.311)+(2)(.239)+(2)(.084)}

+ (2){(1)(.290)+(2)(.060)}

i

6.025,

27.700 + 6,025

Therefore f*,(0) = [ ] = 31,485,

21.485

Then, the optimal policy in period 7 is to choose source No, 2 and

order 2 units. The minimum expected cost is 21.485.
5.5 MULTI-ITEM MULTI-SOURCE SYSTEM FOR THE NON-MIXABLE ITEMS

Different from Section 5.3, this section considers the case of
multi-item multi-source. Employing the development in Section 2.3, the

system can be reduced, first, to the single item multi-source. Thus,
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for item type No. i, one can use the development in section 5.4 to
determine G,(w), which is f*p(0) for the selected value of w. And
then the procedure to allocate space to each type of item is the same

ag in Section 2.3.



CHAPTER VI
SUMMARY AND CONCLUSION

The procedure for choosing optimal decisions for finite period
inventory problems have been obtained through the application of
dynamic programming and the principle of optimality. Single-item
single-source, muiti—item single-source, single-item multi-source, and
multi-item multi-source systems have been considered in the various
chapters,

In Chapter II, cases concerning deterministic demands and deter=-
ministic procurement lead time were considered. The analysis in the
chapter provided a basis for the chapters that followed. Multi-item
single-source and multi-item multi-source models were developed for the
two special cases of mixing and non—miking inventory.

Chapter III was devoted to the case of probabilistic demands with
zero lead time. In both Chapter II and III the decision could be made
based on the inventory on hand at each decision stage.

In Chapter IV, the case of probabilistic demands and deterministic
lead time was introduced. .The demands wére considered as being inde-
pendent and not necessarily identical with excess demands being
deferred to a later period. Orders made in any period from a particu-
lar source were assumed not to arrive before those orders made pre-

viously from the same source.

138



139

In Chapter V a probabilistic lead time case was developed for the
probabilistic demands problem. It was assumed that probability of lead
time for the order made in any period was independent from other periods
regardless of whether the order is made at other pericds. It was found
that the decision for the problems in Chapter IV and V was based on the
amount of inventory on hand plus outstanding orders at that decision
stage. |

Examples were given for illustrative purposes for the key basic
sections. Examples for other sections which were not given can be
illustrated by following the key basic sections, substituting the
proper cost functions developed for the particular model as necessary.

In the appendixes, there are computer programmings for those
algorithms in Chapter V. Since the multi-item multi-source system is
the most general for the others, the programs developed may be applied
to the femaining chapters.,

A general conclusion from this dissertation is that dynamic pro=
gramming provides.a feasible means for solutions of finite period
inventory problems under the warehouse restriction. To determine a
partial optimization at each stage, the partial optimization at the
previous stage.must be employed through the recurrence relation. It
should be stated that a recurrence relation is one of the most impor-
tant keys for solving multi-stage decision problems such as finite
veriod inventory problems.

Much effort must be put forth in determining a proper basis for
making a decision. A proper basis means the basic parameters on which
the recurrence relation for that particular problem may be based. A

basis for one problem may not be applied to the others. Net only must
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a proper basis be ¢hosen and a recurrence relation be developed, but
the proper cost function for the problem must also be determined.
Dynamic programming; applied to multi-stage decision problems such
as in this dissertation, is not a means that will reduce the calcula-
tion to nothing. ‘But the procedure does eliminate much unnecessary
computation by employing the partial optimization at each stage.
Availability of high speed electronic computers will continue to make
this technique applicable to large pfoblems.
Thus, this investigation presents a unified hierarchy of finite
period inventory systems togethef with decision algorithms for wvaria-
tions of each system. The techniques developed in this dissertation
may involve much initial effort in solving real world problems, but it
is believed that the additional effort will yield a high return for
some problems, especially for those that consider high total inventory
value,
The following recommendations~afe suggested for further studies
and investigation:.
a. Derive models representing the theoretical distributions
for demands and procurement lead time. This may lead to
a simpler calculation.

b. Determine optimal policies for systems subject to other
restrictiops, i.e., limited capital, or the combination
of restrictions such as the restricted warehouse and
limited capital.

¢. Study the sensitivity of optimal policies related to

parameter changes such as cost coefficients.

d. Study and sensitivity of using a finite period model
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rather than an infinite period model for the medium
interval planning period.

Extend Chapter'IV and V to the case in which the items
éan be mixea fof the multi-item multi-source system.
Determine the gqualitative characteristics of the
decision policies for the models developed here,
similar to thé characteristics determined for the
single-item single-source not restricted models dis-

cussed in several publications.
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APPENDIX A

SOLUTION OF PROBABILISTIC DEMANDS AND LEAD TIME AND MULTI-TTEM

SINGLE SOURCE PROBLEM BY IBM 7040

The computer program presented in this appendix will process the
probabilistio demand and lead time model for the Multi-Item Single-
Source problem discussed in Section 5.2. The maximum dimension for
this program is provided for the example at the end of Section 5.2,

The program may be applied to the larger problems by changing the
limiting dimensionbstatements and rewriting some of the format state-
ments along with appropriate modifications of input data. The expected
costs are oomputéd ahd the optimal policies are determined by utilizing
the analysis in Section 5.2, Written in FORTRAN IV, the program is as
in Annex I-1.

The program can be applied to the deterministic problems as well
by replacing the appropriate probabilities with zero or one. For those
Single~Item Single~Source problems, by changing the number of items ()

to 1, this program can also be applied.
Input Data

Input is via standard punch cards. For the illustrated problem
there are 21 input cards, each of which is explained below:
Card No. 1 :+ N, The symbol N refers 1to the number of items. The

value is placed in column 2.
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Card No. 2

IP. The symbol IP is analogous to P as used in
Section 5.2. The value is placed in column 2.

Card No. 3

X3

W, The symbol W refers to warchouse space as used in
Section 5.2. The value is placed in columns 1 to 6.

Card No. 4

.0

v(I). The'symbol V(I) is analogous to v, as used in

Section 5.2, The first value is vy the last one is Voo

»

Card No. 5 : TUINI(I). The symbol IUINI(I) is analogous to U,p as

used in Section 5.2. The first valve is U, , and the

14

last one is U,,.

24

Card No. 6 IS(K,I). The symbol IS(K,I) is analogous to Siy @8

uged in Section 5.2, Bach value 6ccupies columns
space. Starting from column 2, first three values
are the values for i=1 and k=3 to 4, respectively.
The last three values are the values for i=2,

Card No. 7 : CO(X,I). The symbol CO(X,I) is analogous to Co., &8

k
used in Section 5.2, Bach value occupies 6 column
spaces. Starting from column 1, first two values
‘are the values for i=1 and k=3 to 4, respectively.
The last two values are the values for i=2.

Card No. 8 : CI(K,I). The symbol CI(K,I) is analogous to Ci;y as
used in Section 5.2. Each value occupies 6 column
spaces. Starting from column 1, first two values are
the values for i=1 and k=3 to 4, respectivély. The
last two values are the values for i=2.

Card No. 9 : CS(K,I). The symbol CS(X,I) is analogous to Cs;y @8
used iﬁ Section 5.2. Bach value occupies 6 column

spaces. Starting from column 1, first three values



Card No. 10

Card No. 11-18

Card No. 19

Card No. 20-21

The input

the data card.

OQutput is

output massage

3
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are the values for i=1 and k=2 to 3, respectively.
The last three values are the values for i=Z2.
CH(K,I). The symbol CH(K,I) is analogous to Chy, as
used in Section 5.2. Rach value occupies 6 column
spaces. Starting from column 1, first three values
are the values for i=1 and k=1 to 3, respectively.
The last three values are the values for i=2,
PP(IR,K,I). The symbol PP(IR,K,I) is analogous to
Pik(rik) as used in Section 5.2. Card No. 11 to 14
represent the values for i=1 and k=1 to 4, respec-
tively. Card No. 15 to 18 represent i=2, Bach card
has 5 vaiues for 4ik = 0 to 4 and each value occupies
6 column spaces.

PL(L,4). The symbol PL(L,4) is analogous to §4(L) as
used in Section 5.2. Rach value occupies 6 column
spaces. This card has four values for L=0 to 3,
respectively.

PDL(L,K). The symbol PDL(L,K) is analogous to fk(L)
as used in Section 5.2. Each value occupies 6

column spaces. First card is for k=2 and the second

card for k=3. Hach card has four values for L=0 to 3.

data are displayed in Annex I~2 as they appeared on

Qutput

via the standard print feature of the computer. The

symbols, heading the columns in Annex I-3, are explained
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U(I,X)

w(1)

MIN,COST

ORDER

PRE, SPACE
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The symbol U(I,K) is analogous to U;) @s used in
Section 5.2,

The symbol W(1) is analogous to W, as used in

Section 5.2.

The symbol MIN.COST is analogous to f1k<U1k’U2k/W1)
as used in Section 5.2, for the table under the policy
when only item 1 is considered., The symbol is
analogous to f;<U1k’U2k) as used in Section 5.2, for
the table under the policy when item 1 and 2 are
considered.

The symbol ORDER is analogous to Z;k(U1k,U2k) as used
in Section 5.2.

The symbol PRE.SPACE, as appeared on the head of last
cblﬁﬁn in the table under the policy when items 1 and
2 are considered, refers to the space which is left
for item 1 after item 2 has been ordered. The
optimal order for item 1 can be found by using the
table for the policy when only item 1 is considered
for the given:

U, =0

1k 1k
U2k = U2k + ORDER
and, w, = PRE.SPACE .

1

The values at the left hand of the above equations
are the values to be used for reading the values in
the table under the policy when only item 1 is

considered. The values on the right hand of above
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equations can be read from the table under the policy

when items 1 and 2 are considered.
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ANNEX I-1

IBM 7040 PROGRAM

$1D B-0001 TeRAENGKHUM . 2523-40031
$J0OB - T« RAENGKHUM 2523-40031
$IBJOB NAMEPR MAP

$IBFTC

DIMENSION CO(552)9CI(592)5CS(592)sCH(552)sIUMAX(592),
1IUMAB(592) s IUMIB(592) s IRMIN(592)s1S(552)sLMIN(5) 5
2PL(535)9sPDL{535)sPP(53552) 9P (155592)sLLMAX(5)sVI(2)s
3IUINI(2)sISS(2)9sIRMAX(592) sIW(2)sWAM(555) sF{55545)
4FFOP{595) s IUMIN(592) s LLMAX(5)sCOST(5) s IUX(2) sFOP(545)

FORMAT(T2)

FORMAT (F6463)

FORMAT(2F6,3)

FORMAT (412)

FORMET(212)

FORMAT (4F6.3)

FORMAT(6F663)

FORMAT(5F6.3)

FORMAT (X s 6HRESULT s X » IZ;X F6 39X912)

FORMAT(1H1,10X»18HRESULTS FOR PERIODs»12//)

FORMAT (10X 3 7HPOLICY WHEN ONLY ITEM 1 IS CONSIDEREDY//)
14X s BHMIN-COSTs3X s SHORDER) =~ :
13 FORMAT(10Xs4HU(L1ssI192H) »2Xs4HU(2991152H) 93X 4HW (1) s
14 FORMAT(12Xs125TXsI1295XsFbe394XsF64395X912) E o
15 FORMAT(21Xs12s5XsF6e394XsF66395Xs12)

16 FORMAT(28XsF6e334XsF64335X912)
17 FORMAT(1H1,10Xy32HWHEN ITEM 1 AND 2 ARE CONSIDERED//)
18 FORMAT(10Xs4HU(1ssI192H) s2Xs4HU(2s51192H) Xy -

18HMINCOST 94X s SHORDER 92X s SHPRE«SPACE) | :
1S FORMAT(12Xs12s7Xs12s5XsF6e356X21295X9F6,463)
2C FORMAT(ZlX,IZ95X9F6 396Xs1295XsF663)

READ(551) N

READ(54+1) IP

READ(54+2) W o

READ(5+3}) (V(I})sI=1s2)

READ(5s5) (TUINI(I)s1=152)

READ(594) ((IS(Ksl)sK=394)s1=192)

READ(596) ((CO(KsI)sK=394)31=152)

READ(596) ((CI(KsI)oeK=394)4s]21s2)

READ(5s7) {((CS{KsI)sK=133)y1=1,2)

READ(5s7) ((CH(Ksl)sK=193)51x=152) .

READ(558) (((PP(IRsKsI)sIR=145)sK=1s4)s1=1,52)

READ(546) (PL(Ls4)sbl=144)

READ(5+6) ((PDL(LsK)sL=1s4)3sK=293)

DO 26 ITEM=1sN :

DO 25 KXx=1,IP
22 SUM=0,

[R=1

N—OO~JOD P WwN -

=



23

24

27

25
26
905
907

908

909

" 910
911

912

913

914

9lé

917

918

IN=IR-1
SUM=SUM+PP({IRsKXsITEM)
IF(SUMeGT404)GO TO 24
IR=IR+1 '
GO TO 23

IR= IR+1 _
SUM=SUM+PP (IRsKX s ITEM)
IF{SUMeLT40e999) GO TO 24
IRMIN(KXs ITEM)=IN ‘
IRMAX (KX ITEM)=IR~-1
CONTINUE ' '
CONTINUE

IXX=1IP

IXX=IXX-1

[2=1xX+1

SUMZ=

DO 911 IL=1,IXX

IX=1

SUM1=OQ

I1=1L+2-1X

PLOILoIXX)=PL{ILsIXX)+PL(L1I2)#*PDL(IXsIXX)

SUM1=SUML+PDL(IXsIXX)
IF(SUMleEQele) GO TO 910
IX=IX+1 ' :
GO TO 909 :
SUM2= 5UM2+PL(IL-IXX)-
CONTINUE

IF(SUM24GT40e) GO TO'907
KMIN=IXX+1 R
KI=KMIN

SUMPL=0.

Lx=1

LN=LX-1

SUMPL=SUMPL+PL (LXsKI)
IF(SUMPLeGT40s) GO TO 914
LX=LX+1 '

GO TO 913

LX=LX+1

SUMPL=SUMPL+PL (LXsKI)

[IF(SUMPLeGE«Qe999) GO TO 916

IF(LXeLTeKI) GO TO 914
LMAX(KI ) =LX~-1 :
LMIN(KI)=LN .
IF(KI«EQeIP) GO TO 919
SUMDL =0,

Lx=1
SUMDL=SUMDL+PDL(LXsKI)
[F{SUMDLeGE«0e999) GO TO 918
LX=LX+1

GO TO 917
LLMAX(KI)=LX-1
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916

922

920

921

923
924

725

726

925
92¢

927
80U

KI=KI+1

GO TO" 912

K=1IpP
IUMAX(Ks1)=IUINI(1)
IUMIMN(K91)=IUINI(1)
IF(NsEQel) GO TO 922
TUMAX (K2)=TUINI(2)
TUMIN(K92)=IUINI(2)
IUMIB{K»2)=TUMIN(K»2)
WW=0.

KX=K~LMIN(K)+1
KXX=MINO(KXsK) -

DO 921 IX=1sN

ISUM=0

DO 920 IK=KXXsK
ISUM=TSUM+IRMIN(IKsIX)

ISSEIX)=TUMIN(K»IX)=~1SUM
ID=ISS(IX) ,
WW=V(IX)*AMAXO(IDsQ)+WW
CONTINUE

WX=W-WW

IFINsEQal) GO TO 725
UMIN=AMINO(ISS(2)+0)

IF(WXeNEeOs) GO TO 923

WA=04~UMIN TR

GO TO 924

WA=W) /V(2)=-UMIN

IWA=INT (WA) : :
IUMAB(K92)=TUMAX (Ks2)+MINU(IS(Ks2)sIWA)
IF(KeEQeKMIN) GO TO 927 :
K=K=-1 :
ITUMIN(KsLl)=IUMIN(K+1s1)~IRMAX(K+1s1}
IF(NJ.EQsl) GO TO 726
IUMIN(K92)=TUMIB(K+192)—IRMAX (K+152)
TUMAX(K$2)=TUMAB(K+192)~IRMIN(K+152)
IUMIB(Ks2)=TUMINI(K»2)
UMIN=AMINO(ISS(1)s0)

IF{WXeNE«Cos) GO TO 925

WA=04=UMIN :

GO TO 926

WA=WX/V(1)~-UMIN

IWA=INT (WA)
IB=TUMAX(K+1s1)+MINO(IS(K+1s1)sIWA)
[TUMAX (Ko 1)=MINO(INT(W)sIB)

GO TO 922 :

K=KMIN

IRSX=MAXO(IRSX»s1)

DO .809 INDEX=1sN

DO B08 KI=1l,K

DO 807 IR=1sIRSX

P(IRsKISINDEX)=0.
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807
808

809,

81U

801

802
803

804

806

805

100

108

109

110

111

CONTINUE

CONTINUE

CONTINUE

IRSX=0

DO 805 INDEX=1,N
IRX=IRMAX (K s INDEX)+1

DO 801 IR=1sIRX
P(IRsKsINDEX)=PP(IRsK» INDEX)

CONTINUE , _
IRM =IRMAX(K»sINDEX)+1
KY=K-1

DO 804 KI=1,KY
KIT=K=KI

[RX=TRMAX{(KII»INDEX)+1

DO 803 IR1=1sIRX

DO 802 IR2=1sIRM

IRSUM=IRI1+IRZ2~1

CONST=P{IRSUMsKIIsINDEX)
PROD=PP(IR1sKII s INDEX)*P{IR2sKII+1sINDEX)
PIRSUMsKITs» INDEX)=CONST+PROD

CONT INUE

CONTINUE
IRX=IRMAX(KIT»INDEX)+1
IRM =IRM +IRX~1
CONTINUE
IF{IRM.LTsIRSX) GO TO 806
IRSX=IRM

IRSMX=IRSX~-1

CONTINUE :
IF{NsEQel) GO TO 102
WRITE(6911) K
WRITE(6s12)

WRITE(6913) KsK

[TEM=2 '
IU=SIUMIB(KsITEM)

12=0

TESH=0.

L=LMIN(K)

IF(K«NESKMIN) GO TO 205
KX=1

SSHC=0,

IR=0

ES=0.

EH=0.

HC=0e
IF((IU+IZ)eLEe«Q) GO TO 112

152

EH= EH+(FLOAT(IU)+FLOAT(IZ)—FPOAT(IR))*P(IR+1;KX+191TEM)

IR=IR+1

I[F(IR, GT IRSMX) GO TO 113
IFEIR NE.(IU+IZ))»GO TO 111
HC=CH(KXs ITEM) #*EH -



116
112

113

114

118

205

206

207

101

102
103

104

105
106

107

IR= IR+1

ES= ES+(FLOAT(IR)—FLOAT(IU)—FLOAT(IZ))*P(IR+19KX91TEM)

IR=IR+1
IF (IReLEeIRSMX) GO TO 112
SC=CS(KXsITEM)*ES
SSHC=SSHC+HC*+5C
IF(KXeEQs(K=L)) GO TO 114
KX=KX+1 B - :

GO TO 110

IF(KeNEW-KMIN) GO TO 207
ESSHC=SSHC

TESH= TESH+ESSHC*PL(L+1,K)
IF(LsEQWs(K=1)) GO TO 115
IF({LJEQe.LMAX(K)) GO TO 115
L=L+1 ‘ o :
IF(KeNESKMIN). GO TO 205

GO TO 109 S
LL=0 . L o
ESSHC=0., : Lo
KX=K=-L-LL"" -
SSHC=0, o e
IF(KXeGEel) GO TO 110
KX=1 S

GO TO 110

ESSHC= ESSHC+SSHC*PDL(LL+2,K 1)
LL=LL+1

IF(LL.GE«LLMAX(K 1)), GO.TO.118
GO TO 206 . _ .
IF(I15MeEQes ) GO TO 9
IUuy=1u+3 ' ) o
COST(IUY)=TESH

Iu=Tu+l

IF(IUeLEs IUMAB(KsITEM)) GO TO 108

TUX(1)=1UMIN(K»1)
IUX(2)=0 . -
IF(N.EQsl) GO TO 104
IUX(2)=IUMIB(K»2)
TU=TUX(1)

FMIN=04

1Z2=0

SW=0,

DO 107 ITEM=1sN

IF(LMIN(K) «FQeQ) GO TO 106

K1=K-LMIN(K)+1

ISR=0

DO 105 KK= K19K :
ISR=ISR+IRMIN(KKITEM)

CONTINUE

IW(ITEM)=IUX(ITEM)—ISR

SW= SW+V(ITEM)*AMAXO(IW(ITEM)90)”

CONTLNUE
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WAZW-SW

402

400

129

127
117

404

405
600

601
602

401
604

718
119
120

IF(NsEQel) GO TO 402
IY=IUX(2)+3

IYY=IUX(1)
WAMOCIYYsIY)=WA
IF(WA.LT«0s)} GO TO 124

ITEM=1

IF(NsEQal) GO TO 400
WX=0,

GO TO 108

WX=WA

GO TO 108 .
IF{IZsNE.O}) GO TO 127"
0C=0,

GO TO 117

OC=CO(KsITEM)
TOC=0C+FLOAT(IZ)#CI(KsITEM)
ITuy=TuUx(2)+3

EF=0a )
IF{KsEQ«KMIN) GO TO 602
11=1UX(1)+1Z |
IF(N.EQel) GO TO 404
IX2=TUX(2)+3 -
TJ1=1RMIN(Ks2)+1
IJ2=IRMAX(Ks2)+1

DO €01 IR2=1J1s1J2

SUMF=0.

IJ3=IRMIN(K»1)+1
[J4=TRMAX(Ks1)+1

DO 600 IR1l= IJ3’IJ4
IY1l=11-IR1+1

IF(NeEQel) GO TO 405
IY2=1X2-IR2+1

SUMF = SUMF+FOP(IY191Y2)*PP(IRl,K,l)
GO TO 600
EF=EF+FFOP(IY14K~ l)*PP(IRl’Kbl)
CONTINUE

IF(NeEQsl) GO TO 602

EF= EF+SUMF*PP(IR2,K92)
CONTINUE

ECO0S1=0.

IF(NeEQel) GOTO 401
ECOST=COST(IUY)
TC=TOC+ECOST+EF+TESH
IF(IZ+EQe0) GO TO 718
IF(TCeGEeFMIN) GO TO 120
1Z0P=12

GO TO 119

1ZoP=0

FMIN=TC
IF((IZ+1)eGTWIS(KSITEM)) GO TO 125
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121
122

403

125

450

451

128

126

124

130

132,

151
131
133

IF(WXeNEaOs) GO TO 121

WV:O °

GO T0122

WV=WX/VIITEM)
WXY=WV~AMINO(IW(ITEM) s0)
FIZ=FLOAT(IZ)+1.

IF(FIZ+GTeWXY) GO TO 125

12=12+1

GO TO 108 :

WRITE(699) IUX(1)sFMINsIZOP
IYY=1UX(1)

FFOP(IYYsK)=FMIN

GO TO 124 ‘

IF(N«SQsl) GO TO 403

IY=IUX(2)+3

IWXX=INT(WX)+1

IYY=1UX(1l) |

FOIYYsIY:sIWXX)=FMIN
IF(IUX(2)sNEeIUMIB(Ks2)) GO TO 450
IF(WXeNEeOo) GO TO 451
WRITE(6,14)IUX(1)’IUX(2),WXsF(IYY IYsTWXX)s1Z0OP
GO TO 128

IF(WXsNEoOs) GO TO 451
WRITE(G,IS)IUX(Z)9WX9F(IYY,IY,IWXX),IZOP
GO TO 128
WRITE(G6s16)IWXsF{IYYsIYsIWXX)sIZOP
WX=WX+1le , .

IF(WXsLEsWA) GO TO 120
IF{IUX{2)eFEQsIUMAB(K2)) GO TO 124
IUX(2)=1UX(2)+1 :

GO TO 104

IF(IUX{1)6sEQoe IUMAX(K,l))GO TO 130_
IUX(1)=TUX(1)+1 :

GO TO 103

IFI{NsEQsl) GO TO 150

WRITE(6s17)

WRITE(6+18) KsK

ITEM=2

ISR=0 ¥

IF(LMIN(K).EO 0) GO TO 151
Kl=K~LMIN(K)+1

DO 132 KK=K1lskK
ISR=ISR+IRMIN(KK s ITEM)

CONTINUE '

IUX(1)=TUMIN(Ks1)
IUX(2)=TUMIN(K»2)

IW2=1UX{(2)-1ISR

IY=IUX(2)+3

IYY=TUX(1)

VWASWAMOIYY S 1Y)

[F(WAeLTs0s) GO TO 141
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134
135

136
137

138

1365

140

142
143

141

150U

999

IF (WAWNE.Oe) GO TO134
WV';QQ )

GO TO 135

WV=WA/V(ITEM)
WXY=WV~-AMINO(IW2+0)
IZMAX=MINO(IS(KaITEM)’INT(WXY))_
FMIN=O0,

12=0

OC:Os

GO TO 137

OC=CO(KsITEM)
TOC=0C+FLOAT(IZ)*CI(KsITEM)
IU=T1Z+IUX(2)+3
[2S=TZ+MINO(IW2+0)

WX=WA~-VIITEM)*AMAXO(12550)

WXX=WX+1e

TWXX=INT (WXX)

TC=F({IYYsIUs IWXX)+TOC

IF(1ZsEQs0) GO TO 138
IF(TCeGToFMIN) GO TO 139

FOPLIYYsIY) =TC

FMIN=TC

120P=12

PREW=WX :

IF(1Z+GEsI1ZMAX) GO TO.140

12=1;+1 -

GO TO 136 . ' .
IF(IUX(2)eNEsIUMIN(Ks2)) GO TO 142
WRITE(6519) IUX(1)sIUX(2)sFOP(IYYsIY)sIZOPyPREW
GO TO 143 :

WRITE(6520) IUX(2)sFOP(IYYsIY)sIZOP,PREW
IFIIUX(2) «FQeIUMAX(K»2)) GO TO 141
TUX(2)=TIUX(2)+1 .

GO TO 133 :
IF(IUX(1)«EQeIUMAX(K>1)) GO TO 150
TUX(1)=TUX(1)+1 ' -

GO TO 131

IF(KEQsIP) GO TO 999

K=K+1

GO TO 800

CALL EXIT

END
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0,000
- 04400
04300
0.000
0.000
04000
0000

-1.000

04500
0,600
6000
0,900
04280
0,200
0,650
0¢400
04500
04600
Ue700
04600
0,300
0,000
04400

06500
0700
66000
1,000
0300
04350
0,000
04300
0500
04000
04000
04400
06500
04600
06600

04500
04700
10,000
1,000
04250
0,200
0,000
0.000
0.000
0,000
0,000
0,000
0,200
04400
- 0,000

ANNEX -2

INPUT DATA

9.000.90000
1.000 1.000
0,000
04150
0,000
0,000
0,000
0.000
0.000
0.000
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ANNEX I-3
OUTPUT
RESULTS FOR PERIOD 3

POLICY WHEN ONLY ITEM 1 1S CONSIDERED

Ul(ls3) U(2s3) Wily? MIN.COST  ORDER

1 -2 0,000 384289 0
1.000 360101 1

2.000 344092 2

3,000 32,963 3

4,000 326963 3

-1 04000 - 320209 0

1% U000 30.021 1

2,000  28.012 2

3,000 26883 3

44000 260,883 3

-0 - 0.,000 264129 0

1,000 | 236941 1

24,000 21.932 2

3,000  20.803 3

44000 7. 200803 3

1 0,000 200275 0

1.000 18,087 1

26000 16078 "2

» 3,000 146949 3

2 04000 156531 "0

1.000 136343 1

\ 2,000 11334 2
2 -2 0,000 © 356101 )
' 1,000 334592 1

2,000 326463 2

3,000 320219 3

-1 04000 29,021 0
1,000 27512 1

2,000 266383 2

' . 3,000 260139 3

-0 0.000° 226941 0

. 14000 2164732 1

2,000 20303 2

3,000 . 206059 3

1 : 04000 17087 0

: © 7 14000 - 15,578 1

¢ 24000 146449 2

2 0,000 - 12343 0

: 1.000 ~ 104834 1

3 =2 0,000 = 324592 0
“ 14000 316963 1
2.000  31.719 2

-1 - 04U0C 264512 0



159

1,000 250883 1
2000 254639 2
-0 0,000 200432 0
1,000 19.803 1
24000 194559 2
1 0,000 144578 0
, 1,000 13949 1
‘ 2 0,000 9834 0.
4 S =2 04000 304963 0
' 14000 306963 0
-1 0,000 244883 0
1000 244883 0
-0 0,000 18803 0
A 1,000 184803 0
1 0,000 12949 0
5 -2 0.000 304219 . 0
=1 - 0,000 244139 0
-0 0,000 184059 0
POLICY WHEN ITEM 1 AND 2 ARE CONSIDERED
1(193) U(2s3) MINSCOST ORDER - PRE.SPACE
-1 -2 224703 2 . 44000
~1 . 164849 2 3.000
: -0 - 13.234 2 24000
2 =2 214959 2 3,000
-1 16¢349: 2 26000
, -0 124734 2 1,000
3 . -2 214459 2 2.000
‘ -1 15.849 2 1.000 °
-0 o 110734 2 "OQOOO
4 =2 206703 2 1.000
’ -1 144849 2 ~0e000
5 -2 " 194959 2 -0+000
-1 194259 1 -0.000
-0 " 184059 0 ~0+000
FESULTS FOR PERIOD 4 -
POLICY WHEN ONLY ITEM 1 IS CONSIDERED
Ulls4) Ul2s4)  W(1) MINSCOST ORDER
3 0 0,000 = 73.961 0
: 1.000 71.046 1
2,000 706114 2
1 0,000 554609 0
1.000 534189 1
24900 534189 1

'POLICY WHEN ITEM 1 AND 2 ARE CONSIDERED
CU(1s4)  U(254) MINeCOST  ORDER PRESPACE
3 0 544389 1 . 24000



APPENDIX B

SOLUTION OF PROBABILISTIC DEMANDS AND LEAD TIME AND SINGLE

ITEM MULTI-3CURCE PROBLEM BY IBM 7040

The computer program presented in this appendix will process the
probabilistic demands and lead time model for the Single=Item Multi-
Source problem which was discussed in Section 5.4. The maximum
dimension for this program is provided for the example at the end of
Section 5.4. The progfam may be applied to the larger problems by
changing the limiting dimension statements and rewriting some of the
format statements along with appropriate modifications of input data.
The expected césts aré computed and the optimal policies are determined
by utilizing the analysis in Section 5.4. Written in FORTRAN IV, the

program is as in Annex II-1.
Input Data

Input is via standard punch cards. For the illustrated problem
there are 24 input cards, each of which is explained below:
Card No. 1 : IP, The symbol IP ig analogous to P as used in

Section 5.4. The value is placed in column 2.

Card No. 2 : W. The symbol W refers to wareshouse space as used in
Section 5.4. The value is placed in columns 1 to 6.
Card No. 3 : V. The symbol V is analogous to v, as used in

1

Section 5.4. The value is placed in columns 1 to 6.
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Card No. 4

Card No. 5

Card No. 6

Card No. 7

Jard No. 8

Card No. 9

Card No. 10-16

.

(23
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IUINI. The symbol TIUINT is analogous to U17 as used
in Section 5.4. The value is placed in column 2.
I15(k,J). The symbol IS(K,J) is analogous to S 28
used in Section 5.4. HFach value occupies two columns.
Starting from column 2, first three values are the
values for j=1 and k=5 to 7, respectively. The last
three values are the values for j=2.

co(X,J). The symbol CO(K,J) is analogous to Cojk as
used in Section 5.4. REach value occupies three
columns. Starting from column 1, first three values
are the values for j=1 and k=5 to 7, respectively.

The last three values are the values for j=2.

CI(K,J). The symbol CI(X,J) is analogous o Cigk as
used in Section 5.4. Hach value occupies six columns.
Starting from column 1, first three values are the
values for Jj=1 and k=5 to T, respectively. The last
three values are the values for j=2.

¢s3(K). The symbol CS(X) is analogous to Cs,, as

used in Section 5.4. Kach value occupies six columns.
The values are for k=1 to 4, respectively.
CH(K). The symbol CH(K) is analogous to Ch1k as

used in Section 5.4. Zach value occupiles six columns.
The'values are for k=1 to 4, respectively.

PP(IR,K). The symbol PP(IR,K) is analogous to
P1k(r1k) as used in Section 5.4. The cards will
represent the values for k=1 to 7, respectively.

Each card has three values for r1k=O to 2.



Card No. 17-22 ¢ PL(L,K,J). The symbol PL(L,K,J) is analogous to
ﬁjk(L) as used in Section 5.4. The first three cards
represent the values for j=1 and k=5 to 7, respec-
tively. The last three cards represent the values
for j=2. EBach card has three values for L=3 to 5.

The input data are displayed in Annex IT-2 as they appeared on

data cards.
Output

Output is via the standard print feature of the computer. The
output massage symbols, heading the columns in Annex II-3, are

explained below:

A

U(1,K) : The symbol U(1,K) is analogous to U,, as used in

1k
Section 5.4.

Z(1,K,J) The symbol Z(1,K,J) is analogous to Z,, . used in

1k

.

Section 5.4.

MIN.COST

.0

A
The symbol MIN.COST is analogous to ka(U1k,quj) as

used in Section 5.4 for the policy which is based on
the combination of sources to be chosen at reriod

before and at the considering period. The symbol

* A
is analogous to fk/j(U1k’

Z1kj) for the policy which
ig based on the source to be chosen at the pericd
before the considering period.

ORDER ¢ The symbol ORDER is analogous to Z Z as

* (U )
%5 91% %1k 5

used in Section 5.4.

SOURCE

.

The symbol SOURCE to be chosen for that particular

optimal policy.
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ANNEX II-1

IBM 7040 PROGRAM

$ID l B-0001 T«RAENGKHUM S 2523-40031

$JOB
$1BJOB NAMEPR
$IBFTC

MAP

T« RAENGKHUM _ 2523-40031

DIMENSION CPL(79732)sPL(75752)sIRMAX(T7)sPP(1057)

ILMINCT792) s LMAX(T792) s IUMIN(792) s IZMIN(T752) s IRMIN(T7) s
2CS(7)sCOUT92)sCI(T92)sF(55592)91Z0P(55592)sFF(5+592)
3IUMAX(7’2)oP(lO97)915(7,2)9CH(7)9I£MAX(792) '

= COoOWMPsWN -

—

112+X7))

FORMAT(I2) .

FORMAT(F6+3)

FORMAT(612)

FORMAT(6F643)

FORMAT(4F643)

FORMAT(3F643)

FORMAT(1H1,15Xs18HRESULTS FOR PERIODsI2)
FORMAT(2(15Xs 17HORDER FROM SOURCEsI2sXs9HAT PERIOD»

12 FORMAT (15X e4HU{Ll 9o I1ls1H) 93X s4HZ (19 sIlylHssIleylH)s3X,
18HMIN«COST 93X 9s5HORDER)

12 FORMAT(16Xs1299Xs1297X9F6e3s5X912)

14 FORMET(15Xs22HPOLICY WHEN SOURCE NOssI2sXs
119HIS CHOSEN AT PERIOD,12)

15 FORMAT(15X94HU(lQQIlQlH)93X94HZ(1’91191H991191H)93X9
18HMINCOST +3X s 5HORDER 93X s 6HSOURCE)

17 FORMAT(15X+28HTHE FINAL.POLICY IS TO ORDER9129X9
117HITEMS FROM SOURCEsI2/15X>»
233HTHE MINIMUM EXPECTED COST WILL BEsXsF6e3)

READ(551)
READ(552)
READ(552)
READ(551)
READ(553)
READ(554)
READ(554)
READ(555)
READ(555)
READ(556)
READ(556)

DO 425 KX=

SUM=0,
IR=1
423 IN=IR~-1

IP

W

vV

IUINI

((IS(KsJ)sK=5sT)sd= 1’2)
((CO(Ksd)sK=53sT)sd=192)
((CI(Ksd)sK=59T7)9d=192)
(CS(K) sK=194)

(CH(K) sK=194)
((PP{IRsK)sIR=193)sK=157)
(C(PL(LsKsJ)sL=395)9K=597)9d=12)
1.,1P

SUM=SUM+PP (IR sKX)
IF(SUMdGToOo) GO TO 424

IR=IR+1
GO TO 423
424 IR=IR+1
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SUM=SUM+PP (IR sKX)
IF(SUMsLTe04999) GO TO 424
IRMIN(KX)=IN '
IRMAX (KX)=IR-1

425 CONTINUE
DO 454 IX=1s2
KI=5

450 SUMPL=0,
LX=1 =

451 LN=LX
SUMPL=SUMPL+PL(LXsKIsIX)
IF(SUMPLeGTs0e) GO TO 452
LX=LX+1
GO TO 451

452 LX=LX+1
SUMPL=SUMPL+PL(LXsKIsIX)
IF(SUMPLeGE«0s999) GO TO 453
IF(LXeLTeKI) GO TO 452

453 LMAX(KIsIX)=LX
LMIN(KIsIX)=LN
IF(KIeEQeIP) GO TO 454
KlI=KI+1 '
GO TO 450

454 CONTINUE
DO 475 IX=1,2 |
IUMIN(6sIX)=IUINI-IRMAX(7)
IUMAX (6 IX)=TUINI=-IRMIN(7)
IZMIN(691X)=0
WX=W/V
IWA=SINT (WX)-TUINI
IZMAX(éoIX)—MINO(15(7,IX)QIWA)

475 CONTINUE
DO 476 TX=1,2 |
TUMIN(S s IX)=IUMIN(6sIX)+IZMIN(6sIX)~IRMAX (&)
IUMAX (59 IX)=IUMAX (69 IX)+IZMAX(6 s IX)~-IRMIN(6)
IZMIN(5,1IX)=0
WX=W/V
IWASINT (WX)~IUMIN(6sIX)
IZMAX(59IX)-MINO(15(6,IX)9IWA)

476 CONTINUE
DO 902 K=5,47
DO 901 IX=1,2
SUM=0,
DO 900 L=1s7
CPLLsKsIX)=SUM+PLI(LsKy»IX)
SUM=CPL(LsKsIX)

900 CONTINUE

901 CONTINUE

902 CONTINUE
K=5

800 IRSX=MAXO(IRSX»1)



807
808

801

802
803

804

806

51C
515

51
5C

511
512

513
514

517

DO 808 KI=1sK

DO 807 IR=1sIRSX
P(IRsKI)=0,
CONTINUE
CONTINUE"

IRSX=0
IRX=IRMAX(K)+1
DO 801 IR=1sIRX
P{IRsK)=PP (IRsK)

CONTINUE
IRM=IRMAX(K)+1
KY=K=-1 .

DO 804 KI=1sKY
KIT=K~KI

IRX=IRMAX(KII)+1
DO 803 IR1=1sIRX
DO 802 IR2=1sIRM
IRSUM=IR1+IR2-1

CONST=P(IRSUMsKIT)
PIIRSUMsKIT)=CONSTH+PP({IR1sKII)*P({IR2sKII+1)

CONTINUE
CONTINUE
IRX=IRMAX(KII)+1

IRM  =IRM +IRX-1

CONTINUE
IF(IRMeLT 4 IRSX)
IRSX=IRM
IRSMX=IRSX~1
WRITE(6,10) K

IF(KeEQeIP) GO TO 350

KXY=1
IX1=]

IF(KeEQe5) GO TO 50
IF(IX1eNEs1) GO TO 51

KXY=KXX+1 .
IF(KeNES(IP~11})

GO T0511

KXX=K+2-MAXO (LMAX (K+2

I1X2=1
KT=K+1

WRITE(6911) IX1 KT s IX2sK
WRITE(6512) KsKTsIX1

TUX=TUMIN(KsIX1)
1Z1=1ZMIN(K»IX1)
122=0

IFL{TUX+IZ1)aGTWLINT(W)) GO
IJ=K~-LMIN(KsIX2)+1 :

ISUM\!=0
DO516 1JX=1JsK

1SUMJ=TSUMJ+IRMIN(IJX)

GO- TO 806

GO TO 50
KXX=IP-LMIN(IPsIX1)

s1) s LMAX(K+242))
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516

100

651
652

650

110

111

116
112

113

214

204
205

CONTINUE

WA=W/V- FLOAT(IUX)—FLOAT(IZl)+FLOAT(ISUMJ)
[ZM=MINO{IS(KsIX2)»INT(WA))
IF{KeEQsIP) GO TO 214
PETC=0.

KX=KXY

I=1

IND1=2-1

[J=K=-KX+1
CPL1=CPLITJsK+19IX1)

11=1 4

IND2=2~11

IK=K~=-KX

CPL2=CPL{IKsKsIX2)
IU=TUX+IND1*IZ1+IND2%12Z2
IR=0 ' ‘

£S=0,

EH=0,

HC=0,

IF((IU+IZ)eLEsO} GO TO 112

EH= EH+(FLOAT(IU)+FLOAT(IZ)—FLOAT(IR))*P(IR+1,KX+1)

IR=IF+1
IF{IReGTeIRSMX)} GO TO 113
IF(IReNEs(IU+IZ}) GO TO 111
HC=CH(KX) *¥EH
IR=IR+1
ES= ES+(FLOAT(IR)-FLOAT(IU)—FLOAT(IZ))*P(IR+19KX)
IR=IR+1
IF(IReLEsIRSMX) GO TO 112
SC=CS(KX)#ES
SSHC=HC+SC
IF{KeEQeIP) GO TO 353
ULT1l= FLOAT(INDl)*CPLl+(l.—FLOAT(INDl))*(l.-CPLl)
ULT2=FLOAT(IND2)#CPL2+(1le~FLOAT(IND2))#(1le=CPL2)
PETC=PETC+SSHC* ULT1* ULTZ
II=11+1
IF(IleLEe2) GO TO 650
I=I+1
IF(I.LE-Z) GO TO 652
KX=KX+1
IF(KXeLE«KXX) GO TO 651
IF(IZ2eNE O) GO TO 204
0C=0,
GO TC 205
OC=CO(K»IX2)}
TOC=0C+CI(KsIX2)*FLOAT(IZZ)
EF=Ca
IF(KeEQe5) GO TO 212
IRX=IRMIN(K)+1
IRY=IRMAX{K)+1
DO 300 IR=IRX»sIRY
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-300

212
213

206
207
208

215
217

211

230
755
752

- 750

751

753

754

IUY=TUX+1Z21~1

EF=EF+FF{JUY+1+122+1s1X2)%PP(IR»K)

CONTINUE
IF(KeNE«IP) G

R+1

TEC=TOC+EC+EF -

GO TO 213
TEC=TOC+PETC+
IF(IZ2eEQeQ)
IF{TECsGE«FMI
1Z0=122

GO TO 207
120=0
FMIN=TEC
122=122+1
IF(1Z24GTaIZM
IF(KeNE«IP) G
GO TC 214
IF(KeEQeIP) G

WRITE(6913) IUXsIZ1sFMINSIZO
FOTUX+191Z21+1»
[ZOP (IUX+191Z21+191X2)=120

1Z1=121+1

IF(IZ14LE. IZMAX(K9IX1))GO TO514

IUX=TUX+1
IF({IUXeLEsIUM
[X2=IX2+1

"IF{IX2eLEe2)

KT=K+1

WRITE(6514) 1
WRITE(6915) K
IUX=TUMIN(K I
IXX=INT(W)~-IU
IZ1=1ZMIN(K>sI

IF(F(IUX+1sIZ1+191)eGToF(IUX+1s121+142))
FEOIUX+1sI1Z1+19IX1)=F(IUX+19121+1,1)

1ZB=1Z0P{TUX+
I5S80=1
GO T0O 751

FFOIUX+1sIZ1+1, IXl)—F(IUX+]9IZl+192)

1Z2B=1Z0P(1UX+
[550=2

WRITE(6916) IUXoIZlvFF(IUX+19121+191X1)9IZB,ISSO
IXM=MINC(IZMAX(KsIX1) s IXX)

IF(IZ1eEQeIXM
[Z1=121+1
GO TO 752

IF(IUXeEQs TUMAXI(K Y IXl))GO 10 154

IUX=TUX+1

GO TO 755
IX1=IX1+1
IF(IX1lelEW2)

0 TO 212
EF
GO TO 206

N) GO TO 208

) GO TO 215

O TO 100
O TO 216

IX2)=FMIN

AX(K;IXl))

GO TO0512

X1 KT
sKTseIX1
X1y

X

X1)

1,1Z21+1s1)

1,121+152)

) GO TO 753

GO TO515

GO TO513

GO TO 750
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35C

220

353
351
352

216

218

219

999

K=K+1

GO TO 800
LM=MINO(LMINCIP 1) sLMIN{IPs2))
IX2=1}

EC=0,

122=0

IFI(LMIN(IPsIX2)eEQeLM) GO TO 352
KXX=IP=LMIN(IPsIX2)+1

KXY=IP~LM

IU=IUINI ,

DO 351 KX=KXXsKXY

GO TO 110

EC=EC+SSHC

CONTINUE

IUX=TUINI

1Z1=0

GO TO517

IF(IX2.EQe1) GO TO 218
IF(FMINSGEWSFOP) GO TO 219
FOP=FMIN -
IOR=1Xx2

128=120

IX2=1X2+1 :
IF{IX2eLEe2) GO TO 220
WRITE(6917) I1ZB»IORsFOP
CALL EXIT

END
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04500
3.000
6000
24000
0e5(C0
0400
Ve500
Uez00
0e500
Us700
0.600
0e300
0500
0.600
0,800
0600
04500

04500
24000
6000
2000
0000
0000
0«300
06400
0000
0.000

04700
06500
04400
04000
06000
0,000

ANNEX II-2

INPUT DATA

04600 04600 04600
34000 3,000 24000
5,000 - —
24000
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ANNEX T11-3
OUTPUT
RESULTS FOR PERIOD 5

ORPER FROM SOURCE 1 AT PERIOD 6
ORDER FROM SOURCE 1 AT PERIOD 5

U(1s5)  Z(1ls6s1)  MIN.COST  ORDER
0 0 364600 0
0 1 284765 0
0 2 21,807 0
1 0 25,849 0
1 1 18,891 0
1 2 144029 0
2 0 164389 0
2 1 11.527. -0
3 0 94929 o~

ORDER FROM SOQOURCE 1 AT PERIOD 6
ORDER FROM SQURCE 2 AT PERIOD 5

U(l95)  Z(1s691) MINeCOST  ORDE
0 0 344115 1
0 1 26,826 1
0 2 214240 1
1 0 234993 1
1 1 18,407 1
1 2 144029 0
2 0 16,086 1
2 1 11527 0
3 0 94929 0
POLICY WHEN SOURCE NOs 1 IS CHOSEN AT PERIOD 6
U(1s5)  Z(1s651)  MIN.COST  ORDER  SOURCE
0 . 0 344115 1 2
0 1 264826 1 2
0 2 214240 1 2
1 0 234993 1 2
1 1 184407 1 2
1 2 144029 0 1
2 0 164086 1 2
2 1 11.527 0 2
3. 0 9929 0 1

ORDER FROM SOURCE 2 AT PERIOD 6
ORDER FROM SOURCE 1 AT PERIOD 5

Ulls5) Z(1s6s2) MINesCOST ORDER
0 0 364600 0
0 1 254849 0
0 2 16+389 0
1 0 254849 0
1 1 0

16,389
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1 2 94929 0
2 0 164389 0
2 1 94929 0
3 0 94929 0
ORDER FROM SOURCE 2 AT PERIOD 6
ORDER FROM SOURCE 2 AT PERIOD 5
U(1s5)  Z(1s652)  MIN.COST = ORDER
0 0 344115 1
0 1 234993 1
0 2 16.086 1
1 0 234993 1
1 1 16,086 1
1 2 9.929 0
2 0 16,086 1
2 1 94929 0
3 0 94929 0
POLICY WHEN SOURCE NO« 2 IS CHOSEN AT-PERIOD 6
U1s5)  Z{1s652)  MIN.COST  ORDER - SOURCE
0 0 344115 1 2
0 1 234993 1 2
0 2 164,086 1 2
1 0 234993 1 2
1 1 16086, 1 2
1 2 94929 0 1
2 0 164086 1 2
2 1 94929 0 1
3 0 94929 0 1

RESULTS FOR PERIOD 6

ORDER FROM SOURCE 1 AT PERIOD 7
ORDER FROM SOURCE 1 AT PERIOD &

Ulls6) Z{1s7s1) MINsCOST ORDER
1 : 0 . . 40.121 2
1 1 . 314329 1
2 0 1294290 1
2 1 " 21.632 . 0

ORDER FROM SOURCE 1 AT PERIOD 7
ORDER FRCM SOURCE 2 AT PERICD 6

U(ls6) Z(1s7s1) MIN.COST ORDER
1 0o 314975 2
1 1 27.688 1.
2 0 254917 1
2 1 21,632 0
POLICY WHEN SOURCE NOe 1 IS CHOSEN AT PERIOD 7
"Ul1ls6) Z(1s7s1) MIN.COST ORDER SOURCE
1 0 316975 2 2
1 1 27.688 1 2
2 0o . 254917 1 2
2 1 214632 0 1



ORDER FROM SOURCE
ORDER FROM SOURCE
U(lsb) 2(1s792)

1 0
1 1
2- 0
2 ‘ 1

ORDER FROM SOURCE

ORDER FROM SOURCE"

NN

AT PERIOD 7
AT PERIOD 6

MIN.COST
476146
44593
434343
31557

AT PERIOD 7
AT PERIOD 6

RESULTS FOR PERTOD 7

THE FINAL POLICY IS TO ORDER
THE MINIMUM EXPECTED COST WILL BE 31.485

ORDER
2

1
1
0

SOQURCE

2

Ull6) Z(1s792) MINeCOST ORDER
1 0 394000 2
1 1 314692 1
2 0 300442 1
2 1 244675 0
" POLICY WHEN SOURCE NO. 2 IS CHOSEN AT PERIOD 7
U{leb) Z(1s7+2) MIN.COST ORDER
1 0 39,000 2
1 1 314692 1
2 0 306442 1
2 1 244675 S0

2
2
2

172

1 ITEMS FROM SOURCE 2



VITA
Techapun Raengkhum
‘Candidate for the Degree of

Doctor of Philosophy

Thesis: FINITE PERIOD INVENTORY MODELS
Major Field: Engineering
Biographical:

Personal Data: Born May 30, 1939, in Lampang, Thailand, the scn
of Suwan and Tab Raengkhum, of Bangkok, Thailand.

Education: Attended Bangkok Christian School in Bangkok, Thailand
and graduated in 1954, Entered Chulalongkorn Pre-university
School and graduated in 1956. Entered Chulalongkorn Univer-
sity in Bangkok, Thailand, in 1956; received the Bachelor of
Engineering degree with second class honor in Electrical
Engineering in 1960. Entered Syracuse University at
Syracuse, New York, in 1963; received the Master of Science
degree in Engineering Administration in 1964. Completed
requirements for the Degree of Doctor of Philosephy in
January, 1968.

Professional Experience: ©Employed by National Energy Authority,
Thailand, as an Electrical Engineer from April, 1960 to
present.

Professional Membership: Engineering Society of Thailand, and
Alpha Pi Mu.





