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PREFACE 

Dynamic analysis of structures is becoming more and more important 

in these days of rapidly advancing technology. One of the most impor

tant characteristic of a physical system on which its dynamic behavior 

depends is its natural frequency of vibration. In this dissertatio~, 

free and forced harmonic vibartions of planar frames are investigated 

by the String Polygon method. 

Though the basic idea of the string polygon is about a century old, 

its application to the analysis of frames and other structural systems 

was first proposed by Professor Jan J. Tuma in 1960-61 in his lectures 

at Oklahoma State University and in numerous publications thereafter 

of himself and his associates. This dissertation is an outgrowth of 

those ideas and is possibly the first to investigate the application 

of the String Polygon method to dynamic analysis of structureso 
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and indebtedness to the following individuals and organizations without 

whose assistance this work could not have been completed. 

To Professor Jan. J. Tuma for being chiefly responsible for the 

author's graduate training in St.ructural Engineering, for his friend

ship, advice and inc~ssa.nt encou:t;"agement throughout the author's gradu

ate program; 

To the members of his advisory committee Drs. R .. L .. Janes, E. K .. 

McLachlan and A. E. Salama for their understanding and guidance; 

To his former teachers Dr. Ko So Havner, Dr .. J. W,. Gillespie and 
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Prof. N. R. Tembe for their excellent instructions in the author's 
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To his former colleagues Dr. M. N. Reddy, Dr. J. T. Oden, Dr. s. 

Bart Childs, Mr. James D. Ramey and Dr. Charles Lindbergh for their 

friendship and encouragement; 

To Mr. Ashok Nain and Mr. Brij Kishor for helping check some of 

the computations; 
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f r:iends for their friendship and conf:i,dence; 
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CHAPTER I 

INTRODUCTION 

lol Statement of the Problem 

Free 9 as well as forced 9 harmonicj in~plane vibrations of planar 

rigid-jointed frames (Figure 1) are investigated using the String 

Polygon methodo A minimum number of unknown forces and deformations 

are chosen as primary unknowns in any given frameo All end forces and 

end deformations for each member are expressed in terms of the primary 

unknowns by using transport matriceso The end elastic weights and the 

elastic moment for each member are derived from its end deformationso 

These elastic loads are then used to establish the elasto=static equa

tions for all conjugate panels of the given .frameo 

The re.sulting set of simultaneous equations provi.des the solution 

for the primary unknowns. In case of free vibrations~ the criterion 

of singularity of the coefficient matrix of the final equations gives 

the natural frequencies of the frameso For forced vibrations the un

knowns are solved for i.n terms of the applied loadso 

lo2 Scope of the Problem 

This investigation concerns vibration analysis of planar frames 

vibrating in=planeo Free vibrations are studied for the natural fre

quencies of the fr.am.es whereas forced 'tdbrat:.ions are studied for the 

response of the frame due to any applied harmonic loadso The 
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Figure lo Planar Rigid Jointed Frames 
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investigation is restricted to the study of planar frames comprising of 

straight bars of constant sections connected rigidly at their endso 

The frame supports may be pinned~ fixed 9 guided or on rollerso Deforma

tions are assumed to be small enough not to affect the basic geometry 

of the frames and positions of applied loadso Effect of axial deforma

tions is includedo 

The study also includes the investigation of the most suitable 

choice of the primary unknowns and of the method of formulating the 

problem using the string polygon eonceptso The application of the 

method is to be illustrated by numerical exampleso 

lo3 Assumptions and Limitations of the Problem 

In addition to the commonly made assumptions in the Euler-Bernoulii 

small deflectioin theory of bendingp the following assumptions and 

limitations apply& 

lo The stresses are within the elastic limit and the stress

strain relationship is linearo 

2o Each member is straight and of a constant section and has uni

form properties throughout its lengthe 

3o One principal plane of each member coincides with the plane 

of the frameo 

4o The cross-sectional dimensions of each member are small in 

comparison with its lengtho He.nee shear deformaticm.s and 

rotatory inertia are neglectedo 

5o Only small osc:Ulations are con.sideredo Hence transverse 

deformations are considered independent of axial forceso 

60 Axial forces induced in the members are small compared t:o 



their critical buckling loads. 

7. Damping is considered very small and is neglected in case of 

free vibrations. However for forced vibrations,only steady 

state part is considered. 

8. It is p0ssible to express the def0rmations at a point as a 

product of a p0s;i.ti0n function and a time function. 

9. Response of the frame to external harmonic loads will either 

be in phase or out of phase by 180° with the loads. 

lo4 Notations and Symbols 

Notations and symbols of quantities appearing in this disserta

tion are defined where they first appear and are also compiled under 

Nomenclature. This also contains a list ef circular and hyperbolic 

hybrid functions adopted from Bishop (16). 

1.5 Historical Review 

Before the classical methods in structural dynamics were develop

ed, lumped mass approximation appears to have been widely used to ob~ 

tain good results both for beams and frames.. Among the first to study 

the dynamic analysis of beams, censidering; the mass distributed, seem 

to be Rayleigh (1) and Love (2). The application of the classical 

analytical methods for determining natural frequencies of beams and 

simple frames has been described, among others, by Darnley (3), 

Hohenemser and Prager (4), Timoshenko (5), Bennon (6) and Saibel (7), 

(8), and (9). 

Gaskell (10) extended Cross's moment balancing and Grinter 1 s angle 

balancing techniques to problems in structural dynamics. 



The so-called stiffness analysis has been effectively used by 

Veletsos and Newmark (11), (12), and (13), for problems in structural 

dynamics. Rieger and Mccallion (14) have studied the natural frequen

cies of single as well as multi-spa!"\~ pinned and fixed base portal 

frames and prepared tables to aid ;in the design of portal frames. 

An important contribution to the field of structural dynamics is 

made by Bishop (15)ll (16), and (17) in h:.ts receptance method which 

appears to be the first systematic approach in analyzing vibrating 

systems using the flexibility concept. He however gives credit to 

Carter (18) for introducing the dynamic flexibility concept and to 

Duncan (19) and Johnson (20) fo'l;' extending it. 

5 

The application of matrix analysii, to structural dynamics is 

studied by Pestel and Leckie (21) and also by Marguerre (22). Laursen, 

Shubinski and Clough (23) as well as Ariaratnam (24) have applied the 

stiffness matrix methods to vibration analysis vf frames. Levien and 

Hartz (25) have published a paper on the dynamic flexibility matrix 

analysis of frarni:::s. 

A good number of books on structural dynamics have been published 

in the last decade, e.g~ Rogers (26), Biggs (27). These books explore 

the analysis of many types of vibrat.;i.ng structural systems using all 

ge.nerally available methods for static analysis of structures. 

All the literature h,ow(;:;ver seem to indicate the complexity of com

putation in problems in structural dynamics and indicate the use of 

electronic computers as imperative, particularly for complex fram.eso 

Elaborate computer programr:; to solve pi:·oblerns in this area are reported 

to have been developed at the University of California at Berkeley (23) 

and at Massachussets Institute of Technology (28). 



CHAPTER II 

MEMBER DYNAMIC PROPERTIES 

2.1 Co-ordinate Systems 

Two types of co-ordinate reference systems are used. Both are 

right-handed, orthegonal cartesian systems. The first referred to as a 

member system is a system associated with each member. It has its ori

gin at one end of the member, its J{-axis aligned along the member, its 

y-a:Kis in the plane of the frame and its z-axis normal to it. 

The other system, referred to as the basic system, has fixed re

ference axes with x-y axes in the plane of the frame and z axis normal 

to it. The origin of the basic reference system is located at any 

convenient point. 

2.2 Member Dynamic Prope:rties 

The elastic properties of a straight bar in dynamic state are 

defined by relating its end forces and end deformations. 

A typical bar ij taken out of a vibrating frame is conside:red 

(Figure 2). The figure shows the amplitudes of the end f0rces acting 

on the bar. Cross-sectional sign convention is adopted to define the 

orientation of the end forces which are shown in their positive sensee 

The end deformations are measured in the directions of the end 

forces. The member reference axes are also shown. 

Axial and transverse vibrations are considered separately. 

6 
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y' 

Figure 2. Typical Bar With End Froces 

Axial Vibrations: The governing differential equation for axial 

vibrations is derived by considering the dynamic equilibrium of a small 

element of length d)c 1 taken out of the member as a free body (Figure 

3). 

I I 
-r--- oh<''--' -·-I 

Figure 3. Diffe~ential Length of a Member 
in Axial Vibrations 
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The equation of equilibrium is 

":>11.T -:,2U 
~'I I I.I x ------ = m -
OX I ot2 

The stress-strain relation at that section give& 

01,l N , . x 
=;:~::;;- (2-2) 

ox' AE 

Combining equations (1) and (2) gives 

2 2 o u m o u 

ox• 2 =-; ot2 
(2-3) 

where 

u = axial displacement 

m = mass/unit length 

A = area of cross section 

E = modulus of elasticity 

N = normal force 

x' = position variable 

t = time variable 

€ = axial strain 

Assuming a product solution for u of equation (2-3), u(x',t) = 

X(x 1 ) • T(t), the general solution can be shown to be 

u(x 1 ,t) = (C 1 Cos kx' + D1Sin kx') (A 1 Cos pt+ B1 Sin pt) 
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p = angular frequency of vibration 

2 l 
k = (mp /AE) 2 

and A1 , B', C' and 0 1 are constants. 

Assuming that all forces and displacements reach their amplitudes 

in phase (or out of phase by 180°) with each other and working with the 

amplitudes, the end axial forces and end a,dal displacements can be 

related by making this soluticrn satisfy the following boundary condi-

tions: 

at x' = o, u 
au N .. 

= A - = _,2::,l 
- ~ijx' ' 

0}{ 1 AE 
(2-5) 

and 

OU N •. 
at x' = L u = + A ....- = ....J2:. , £.l.j ix' ' 

ox' AE 
(2-6) 

Applying the first two conditions gives 

Aijx' -1.0 0 C' 

= (2-7) 

N .. /AE 0 k D' 
J.J 

Applying the remaining two conditions gives 

Ajixi Cos kL Sin kL C' 

= (2-8) 

Nj/AE .. k Sin kL k Cos kL D' 
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Combining equations (2-7) .smd (2-8) and rearranging gives 

N .. /kAE Cos kL 
Jl 

Sin kL N . ./kAE lJ 
= (2-9) 

Ajix' Sin kL -Cos kL Aijx' 

In c~se the axial deformations are neglected, equation (2-9) may 

2 2 2 
be modified by letting A- co, k - O, and k AE -mp • In tlutt case 

N .. 1,0 2 
N .. 

Jl 
mp L 

lJ 
= (2-9a) 

~ii 0 -1.0 ~jY..' 

Transverse Vibrations: The governing differential equations for 

transverse vibrations :l,s derived by considering the dynamic equilibrium 

of the small element of len$th dx 1 under the effect of transverse 

forces and moments (Figure 4). 

Figure 4e Differential Length of a 
Member in Transverse 
Vibrations 
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The equations of equilibrium are 

. 2 oVX, 0 V 

-+m-=O ( 2-10) 

ox' ot2 

and 

( 2-11) 

The moment-deformation relati@n is 

(2-12) 

Combining Equations (2-10), (2-11) and (2-,12) gives 

(2-13) 

where 

v = transverse displacement 

I= moment of inertia ©f the cross section about the axis of 

bending 

V = shear force 

M = bending moment 

Assuming a product solution for v of equati0n (2-13), v(x',t) = 

X(x 1 ) • T(t), the general salutien can be showm. to be 
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v(x 1 ,t) = (A Cos AX'+ B Sin AX'+ C Gosh AX'+ D Sinh AX') 

• (A' Cos pt+ B' Sin pt) (2-14) 

where 

and A, B, C and Dare constants. 

Assuming that all forces, moments and deformations reach their 

0 amplitudes in phase (or out ef phase by 180) with each other and work-

ing with the amplitudes, the end forces and end deformatfons of the bar 

can be related by making the solution satisfy the foll©wing boundary 

conditions: 

At x 1 = O, 

At x' = L, 

v = Aijy' 

2 o v M .. 
- ::;: --2:.J. 

2 ox' EI 

' 

v = -Ajiy' ' 

2 o v M .. 
- = -..l2:. ' 

EI 

ov -=-
ox' 

::,,3 . 
u v V .. 
- = ..2;.l 

EI 

av -= e .. 
J 1. 

3 . o v v .. 
- ;::: _J2:. 

EI 

Applying the cenditions at x' = 0 gives 
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Aijy' 1.0 0 LO 0 A 

-eijn .. 0 1.0 0 1.0 B 

= 
2 

Mi/" EI -l~O 0 1.0 0 c 

3 
Vi/A El 0 -1.0 0 1.0 D (2-15) 

Applying the conditions at x• = L gives 

-.Ajiy' Cos AL Sin AL Gosh AL Sinh AL A 

ejin .. -Sin AL Cos )J., Sinh AL C@sh AL B 

-
2 Cash M . ./A EI -cos AL -Sin AL AL Sinh AL c 

Jl 

3 
Vji/t .. EI Sin AL -Cos AL Sinh AL Cosh ll, D (2-16) 

Combining equations (2-15) and (2-16) and rearranging gives 

3 F9 -F8 F7 FlO 
3 

V .. /).. EI V ij/).. EI 
J l. 

2 F9 -FlO 
2 

M . ./11. EI F7 F8 t\/:\ EI Jl 
1 

.A.jiy' 
=2 

F8 FlO .. F9 F7 ~ijy' 

Sj/:\ -FlO F7 -F8 -F9 9i/A (2-17) 

where 

F7 = Sin ll, + Sinh AL 

F8 = Sin AL - Sinh AL 
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F9 = C0s AL + Gosh AL 

FlO = Cos AL - Gosh AL 

TransEort Matrix: The force-deformation relations of axial and 

transverse vibrations, equations (2-9) an4 (2-17), can be combined into 

a single matrix relation: 

N .. /k.AF.. Gl 0 0 G2 0 0 N .. /kAE 
J l. l. J 

3 a F9 -F8 a F7 FlO 
3 

V .. /A EI V . ./ "A. EI 
J1 1J 

2 F9 
. 2 

M .. /A EI a F7 0 -FlO F8 ~\./"- EI J1 1 =-2 

4 jix 1 
G2 0 0 -Gl a 0 Aijx' 

Ajiy' a F8 FlO 0 -F9 F7 Aijy' 

e . .!:>.. 0 -FlO F7 0 -F8 -F9 ei/A J1 

(2-18) 

where 

Gl = 2 Cos kL 

G2 = 2 Sin kL 

The axial force term rnay be made similar to the shear force term 

N N 
-.......=~o 
kAE 11. EI 

2 ];< 
(mp )2 

N ?i..•I EI N =-----=-. 
3 

:>.. EI A 
2 1 

(mp )"2 
AF.. 

3 
:>.. EI 

?i.. . -
R 



15 

where 

Using this, Equation (2-18) becomes 

3 Gl 0 0 ! G2 0 0 
3 

Nji./t' EI A Nij/,.. EI 

3 0 F9 -FB 0 F7 F10 
3 

V. /;>,.. EI Vi/"- EI J.i. 

2 
Mji/A. EI 0 F7 F9 0 -FlO 

2 
F8 M . ./'}.... EI 

1J 
1 

=-

Ajix' 
2 1::: G2 0 0 -Gl 0 0 Aij:x:' R 

Ajiy' 0 F8 FlO 0 .,.f9 F7 Aijy' 

e .. n .. 
J1 

0 -FlO F7 0 -F8 -F9 81/11. 

(2-19) 

In a frame with members of many different sizes, it is convenient 

t0 work in terms of the properties of one r(:\ference member. Referring 

the quantities 11. 9 I, A, m and Ras A, I , A, m and R for the refer-
o O O O O 

ence member and those fo)'.' any other, say j_th member, as A,, I., A,, m. 
1 l. 1 1 

and R. and denoting 
1 

A. 
1 

o:.i =-
A 

0 

N' N 
= 

m. 
l. 

=-
m 

0 

3 
A EI 

0 0 

I. 

Si 
1 

= ---
I 

0 

V' 
v 

= 3 
A EI 

0 0 
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(2-20) 

Equation (2-19) may be modified to read as shoWI+ on the next page. 

In case the axial deformations are neglected the following modifi-

cati.ons should be made in the eoe:f:Eicient matrix of Equation (2 .. 21). 

denoting 

Term (1, 1) ::;: 2.0 

n (1,.6,) .- 2a..L.A 
l J. O 

11 (4, 1) = o.o 
II (4-,4·) = -2.0 

{_F}={N 1 V' M1 } 

{ 6 } = { Ax I Ay, e' J 
{sJ={F f 6} (2-22) 

and denoting\ x coefficient matrix= [T 1MJ, Equation (2-21) can be 

writ:ten shortly as 

(2-23) 

This can also be written as 

T(ll)!}: ,, T(12)!1'! 
J.J . lJ 

----'----
F~. 

J l. 

6~. 
JJ. 

T(21)!1:- II T(22)!~ 
lJ lJ 

(2-24) 

I 

It may be noted that the relation stated above can be easily used 



I N .. i 

J1 

v .. I I J1 

M .. I I J1 

Ajixt I 

Ajiy' I 

e • • I 
Jl 

1 
=-

2 

I Gl 

~ 0 

I 
0 

' "A. 1-0- G2 
Ra. 

O l 

I 0 

0 

0 0 

l, -\ F9 -a.:(3. ops 
1 1. 

l, :!,-
a:~f3:•F7 F9 

1 1 

0 0 

-\. -\ -\ -~ a. j3. •F8 a.. j3. ~FlO 
J.. L l J. 

l.. 3. --z. -4 a.. j3. •F7 
1. l,. 

-~ -\ -a.. J3. ¢Fl0 
l. 1. 

R 
0 

- a.. •G2 
"A. i 

0 

0 

3 l, 
0 a.:'[3: • F7 

1 1 

]., ]., 
0 -a ~{3 ~·Flo 

1 1 

-Gl 0 

0 -F9 

\ -\ -o:.. j3 • • F8 
J. L 

0 

0 
11 

l ]., 

a.~j3~·Fl0 
11 1 1 

a~j3~·F8 
1 J. 

11 

0 
11 

a:%13\F1 
1 1 11 

-F9 

N .. 
1J 

f 

v .. t 
1J 

M .• I 
J.J 

Aijx' 

A .. I 
1JY 

ei/ 
( 2-21) 

I-' 
"-! 
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to derive the flexibility functions as well as the stiffness functions 

of the bar, if desired. The flexibility functions are obtained when, 

by suitable transposition, the displacement values { 8}s are expressed 

in f:et"ms of the force values { F }s. On the ether hand, expressing the 

force values in terms of the displacement values gives the stiffness 

functions. 

2.3 Load Functions 

The end deformations induced in a free-free bar due to applied 

harmonic loads between its ends are termed load functions, 7s. 

Consider a free-free bar ij subjected to a harmonic transverse 

load of amplitude P applied at a general section x' = g, (Figure 5). 

y' 

Figure,.,~5o A Free-Fre1:1 Bar With an Applied 
Transverse FQrce 
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The end slopes and displacements induced may be computed easily by the 

reciprocal deformation relations (Bishop (15)). Thus using 

gives 

p E ,=l 
.'J' 

Aijy' 

p SY'=l 

.6.jiy' 

p ;=;l 
gy' 

e .. 
lJ 

p~y,=l 

eji 

PSY 1 

.6ijy' 

v .. =l 
lJ 

= .6.SY I 

v .. =l 
Jl 

= A$Y' 

Mij=l 

= ASY' 

M .. =l 
Jl 

= .6.~Y' 

V .. =l 
J,.J 

=Pi;y,".6.gy• 

v .. =l 
Jl 

- P •A - SY' SY' 

M .• =l 
l.J 

- p •fl 
- SY' SY' 

M .. =1 
Jl 

- p • fl 
SY' SY' 

(2-25) 

(2-26) 

For more than one externally applied l0ads, the total end deform.a-

tion effects may be found by superposition, and for distributed appHed 

loads of amplitude wx 1 , the total effect may be found by integrating 

Equations (2-26). 
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The effect of axial, applied load may be expressed similarly. 

p ~x' Nij=l 

Aijx' = P s,,, • As.2,1 

psx' Nji=l 

Ajix' = Psx• • Asx' 

And for a distributed axial, applied load 

w 
Aijx' 

w 
Ajix' 

The computation of the deformation functions due to unit end forces 

used above is shown in detail in Appendix A. 

Load Effect in Transport Relation: When the effects of applied 

loads are to be included in a transport matrix relation such as Equa-

tion (2-24), it may be stated generally as 



{} { }{ w} F.. M F.. F .. 
".J...; = [TI ] ...2:J + ; l. • 

6. i o. . o .. 
J J.J Jl. 

{ FI i} represents the forces and deformations induced at j 

oji 

applied loads when the end i is const:i:·ained to some presct·ibed 

of forces and {Fw} 
Thei:efore ~i represents 

6 .• 
J J. 

{
F. ·} deformations ..2:..l. • 
&ij 
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(2-27) 

due to 

values 

the 

forces and deformation needed at j in order that no forces and deforma-

tions are induced at 1 due to the loads on the bar ij (Figure 6). 

These values can be computed from the previously defined load functions 

of a free-free bar, as follows: 

(2-28) 

where 

w 
Aijx' 

w 
A'j ix' 

{ 'fij J = 
w 

and { 'fji} = 
w 

(2-29) 
Aijy' ' Ajiy' 

6!~ a,.-:v 
lJ Jl 
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y' 

Fi.)' 
(DIEiii.;;~~~======-===-!!!!!!!!!ll!•AEt~~,~~(J)j"""---...~~-x' 

---- M] 
NO FO!e.C'E..S O~ --- 1~ W 

.:bE.FORMA.TIONS A.T L -- - -- ....- < Nji 

VJ! 

Figure 6. Load Effect in Transport Relation 

2.4 Transformation to Basic Reference Axes 

The dynamic properties of a membe:i;- are thus far defined in the 

member system of co-ordinates. The inter-relation of member end forces 

as well as deformations at joints in which they meet can best be esta-

blished if all member end values are described with respect to a set of 

cormnon reference axes. The basic reference axes are used for this 

purpesee 

A bar ij (Figure 7) inclineQ to the positive x axis of the basic 

system by an angle wj is col'l.sidered. The f;igure shows the member axes 

and the member end forces in both the member system and the basic 

system in their positive sense. It may be noted that the end forces 

referred to in the basic system are so defined that they coincide with 

those referred to in the member system for w. = O. 
J 



y' 

0 
N·· 

lJ 

M 
Nji 

0 N .. 
jl 

Figtlre 7. Inclined Member With End Forces in Member 
System as Well as in Basic System 
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x' 

The following tr&nsforrnation relations may now be established in 

terms of w • r 

© M .. M 
vji = -Nji Sin wj + vji Ces wj 

O Jf 
Mji = . ji • (2 .. 30) 

Dividing the first two equations thr@ugh0ut by ,..3EI and the last 
(i) 0 

@ne by 11.2EI, these equatiGns may be rewritten as 
e e 



Also 

N'o = 
ji 

M M m . Ce s w. + V ! . Sin w. 
Ji ~ JL J 

M,o = M'M 
ji ji 

ii J 

e M The last equation abave is divided by A0 ta give eji = eji. 

In matrix natati©n a~d symbolic form, these equations may be 

written as 

where 

Cos w. 
J 

Sin wj 0 

[w.] = -Sin w. cos wj 0 
J J 

0 0 1.0 
3x3 

0r in a combined form 
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(2-31) 

(2-32) 

(2-33) 

(2 .. 34) 



= 

where 

cwjJ I o 
---,- _ J_ - -

I 
o I cwjJ 

M 
F .. 

J l. 
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(2-3,5) 

(2-36) 

It may be noted that each of the angular transformation matrices 

(wj] and [nj] is orthogond, i.e .. 

and 

(2-37) 

It can similarly be shown that 

and 

fs.~J= [rr.]f s.~} l lJ J l l.J 
(2-38) 
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By using Equations (2-35) and (2-38), the transport matrix rela-

tion (Equation (2-23)) developed in the mernber system of co-ordinates 

may be expressed in the bas~c reference system. 

where 

( 2-40) 

2.5 Equilibrium and Compatibility at a Joint 

A bar system ijkl (Figure 8) is considered.· The free body diagrams 

of the bars ij and jk show their end forces in the basic reference 

systemo The free body diagram of the joint j shows the effect of the 

forces from ends ji and jk and also shows the effect of any externally 

applied forces at the joint. These externally applied forces referred 

here may as well be the force effects of any other member meeting into 

the joint .. 

Equilibrium at j 

V o V o _ Vo .. 
"k = ... 
J J 1. J 

M o M o _ Mo. 
jk = ji J 

Dividing the first two equations throughout by A3EI and the last 
0 0 

2 one by A EI, these equations may be written in matrix notation 
0 0 

(2-41) 



M~ JL 

Figure 8 • 

N~. 
Jc. 

N~ 
J 

ci M~ Vj0k 

N~fL 
~(]) 

Equilib . . :rium a . t a J . oint 
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where 

( F0 l = { N• 0 v• 0 M• 0 } l jJ j j j 

No 0 Mo 

and N'o = j v,o = VJ 
and Mt:::; J 

j >..3Et 
, 

j )..3 in >.2Et 
0 0 0 0 O O 

Compatibility at j 

0 0 
.Ajkx = -Ajix 

0 0 
~jky = -Ajiy 

e•o 0 = -e• jk ji 

eo eo 
where 9,0 = -J! and e~o = -1! 

jk A Ji A 
0 0 

In matrix notatio~ 

Combining Equations (Z-41) and (2-42) gives 

0 

=tl~ i-0- 0 
F~ Fjk Fji J 

0 0 
0 ( 2-43) oJk O I -I oji 

where I is a unit matrix ~x3, 
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Symb<;>lically 

(2-44) 

where [I , Oj [J] = ~ ._I_ -
O I •:J: 

- I 

and 

Similarly it can be shown tha~ 

and so on for other jointso 

In absence of any joint loads a s~mple chain matrix product will 

result for several bars. For exampie 



CHAPTER III 

ELASTIC LOADS AND ELASTO-STATIC EQUATIONS 

3.,1 General 

The String Polygon method (29)s> (30) and (31) is based on conjugate 

analogy .. The real deformations are treated as conjugate loads--angular 

deformations as conjugate forces and linear deformations as conjugate 

moments. The geometric compatibility of deformations of a given frame 

is enfc,rced by establishing equilibrium equations of the corresponding 

conjugate loadss> also referred to as elastic loads., These equilibrium 

equations are called el~sto ... statie equatiens and are neatly written if 

the distributed conjugate loads are replaced by statically equivalent 

point loads at chosen points--usually the member endso 

3o2 Member Elasti.c Functions 

Member End Elastic Forces .. Figure 9(a) shows a bar ij in its 

deflected formo The values shown are the amplitudes of the end forces 

and end deformations .. The straight line joining i and j is the string 

line ijo The angles '\J and ,Sji between the string Hne and the end 

tangents to the deformation curve are taken as the end elastic forces 

i 1j and iji for the conjugate bar ij shown in Figure 9(b)., In. terms 

of the end deformations these end elastic forces can. be computed as 

follows& 

30 
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2' 
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'J 
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x' 

Figure 9a End Elastic Forces (or Bar ij With Transverse Loads 

i ca1 

N~ CD p)(, Q) 
Nji x' .. ;::_ 

1-zlA;j,<' .A··'~ :J t)( 

(b) ~1 
c·· x' f.J 

•• 
CD CD 

Figure 10. Member Elastic Moment for Bar ij With Axial Loads 



AiJy' + Ajiz' 

Lij 
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_ A1j , + Aj.r , 
P = ;, = a +X . .~x = 
ji ji ji L 

aiJy' + A31y• 

Lij 

(3-1) 

ij 

Member Elastic Moment. Figure lO(a) shows the axial forces and 

axial deformations of the bar ij. The total axial deformation is 

taken as the member elastic moment (30), Cij' shown on the conjugate 

bar ij in Figure lO(b). In terms of the end deformations, this ~ives 

(3-2) 

Equations (3-1) and (3-2) can be combined into the following 

matrix equationo 

- 1 1 
pij 0 

- Lij. :\.o 0 -- 0 Aijx' Lij 

Aijy' 

pji = 0 +-L 0 0 +...L "o 
elJ 

Lij Lij 
.Aj ix' 

Ajiy' 

ciJ 1 0 0 1 0 0 eh (3..,3) 

This equation describes the member elastic funct;ions in terms of 

its end deformationso 

Written symbolically, Equation (3-3) may be stated as 
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(3-4) 

While writing the elasto-static equations for any given frame it 

is necessary to compile the elastic quantities of all members in tenns 

of their end deformations in a single matrix. This may be done using 

Equation (3 .. 4) above. 

• 

p 
n _, 

' 
' 

' 
' 

' 

(3-5) 
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In symbolic form this Qecomes 

{ P} = [BJ t 6} (3.-6) 

3o3 Elasto-Static Equations 

Equations of equilibrium of the member elastic loads are written 

for necessary conjugate panels of the real structure such that all 

members are accounted for. For planar frame deforming in plane, the 

elasto-static equations are of the type E P = O, !: M = 0 and EM = Oo z x y 

Known as well as unknown deformations at the support are shown as 

externally applied elastic loads at the corresponding points on the 

conjugate panelso Figure 11, 12 and 13 illustrate the development of 

the elasto~static equations for some frames. The dotted lines indi-

eating the bottom side of the frame members establish the member orien-

tationso The curvilinear arrows indicate the direction in which a 

conjugate panel is traversedo 

Elasto=static equations thus developed should be equal in number 

to the primary unknowns in a frameo The resuiting set of equations in 

terms of all member elastic loads may be written symbolically as 

[A] { P} = 1 ~,} 
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Figure 11~ Single Span Gable Frame and Corresponding Conjugate 
Structure 
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Figure 12a Two-Span Single Story Frame and Corresponding Conjugate 
Structt.ires 
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Figure 130 Single Span Two Story Frame and Corresponding Conjugate 
Structures 

36 



CHAPTER IV 

SELECTION OF PRIMARY UNKNOWNS 

4.1 Selection of Primary Unknowns 

For analyzing.a complex, rigid jointed fr~me, it is necessary to 

render the frame '''statically determinate.11 This may conveniently be 

done by introducing cuts (Figure 14) in each cl<:>sed loop (panel) pre

ferably near a joint or a support. The ground between supports may be 

considered an infinitely rigid member. The idea is to convert the 

given frame into a "tree'' wherein the end quantities of any member can 

be computed in terms of those at the'free'ends. 

The forces and/or deformations at the cuts introduced in the frame 

may then be treated as externally applied functions and they constitute 

the set of primary unknownso In general there are (6n-b) primary un

knowns in a frame where 

and 

n = number of closed panels in the frame 

b = number of known forces and/or deformations at the 

supports released .. 

A judicious choice of the loc~tion of the cuts to be introduced 

in a frame may help reduce the number of primary unknowns. This is 

illustrated in Figure 15. 

37 
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Figure l4o Selection of Primary Unknowns in Some Frames 
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CUT 

C:CJT 

cur 

Unknowns { F : 6}at each cut 

Total unknowns= 18 

Unknowns { F .l values at all cuts 
and to} value at upper cuts 

Total unknowns= 12 

Fi.gure 159 Effect of the Choice of Loc;:.ation of Cuts on the 
Number of Unknowns 
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4o2 Solution of the Primarz Unknowns 

The primary unknowns are solved for by settina up an equal number 

of elasto-static equationso Each closed panel provides three equations 

of elasto-static equilibriumo In addition, for every deformation 

chosen as a primary unknown, one equation is written using a free body 

of the conjugate structure involving that deformation. 

The elasto-static equations however are not written in terms of 

the primary unknowns directly. They are actually written in terms of 

the member elastic quantities P's and C's (Equation 3-7) which can be 

expressed in terms of member end deformations as explained earlier, 

(Equation 3-6)0 To express the mem~er end deformations in terms of the 

primary unknowns~ transpo~t matrices are used ioeo the primary unknowns 

are transported from their locations to various member endso Figure 14 

illustrates the uf1ow11 of the unknowns through various members in some 

frameso 

The expression of the member end deformations in terms of the 

primary unknowns may symbolically be written as 

{o}=[c]fx} (4-1) 



CHAPTER V 

APPLICATION 

5ol Procedure for Application of the Method 

The various aspects of the proposed method, developed in the pre

vious chapters 9 can now be fitted together in the outline of the proce

dure for application of the method described in the following steps: 

lo The primary unknowns for the frame are identifiedo 

2o All end values for all members are expressed in terms of the 

primary unknowns using the transport relationso 

3o Elasto-static equations for the frame are writteno 

4o Elastic weights and moments are expressed in terms of member 

end deformations0 

.So The end deformations are expressed in terms of the unknowns 

established for the frameo 

60 The resulting final matrix equation is solved for the natural 

frequencies or the response of the frameo 

1o The mode shapes of free vibrations or the deflection diagram 

for forced vibrations are computedo 

The application of the method developed is now illustrated by the 

following three numerical exampleso These examples are solved using 

the computer programs written for IBM 70400 

41 
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5o2 Single Span Gable Frame 

A single span constant section gable frame, Figure 16., with fixed 

bases is analyzed for its natural frequencies. The following data are 

usedo 

L = 800 in 

a.= 0.4 

b = 0~2 

m= 15Q2174 x 10"'6 2 2 lbosec /in 

in 4 

A= 2074000 x 10·6 in2 

E = 30.6 x 106 lbs/in2 

{FA~] is chosen as primary unknown.. The transportation of quan

tities and the formulation of the problem are shown in detail in 

Appendix Bo The first four natural frequencies obtained are 236.,2., 

42502 9 95007 9 148204 cpso Figure 17 shows the corresponding mode 

shapeso. 

5o3 Two Span Sin~le Story Frame 

The frame shown in Figure 18 is analyzed for its first four natural 

frequencieso All members are identical in length and section. The 

following data are used. 

L = 600 in 

E = 28o3 x 106 lbs/in2 

S i 3 . 5 . ect on = 16 in x 16 in 
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Figure 160 Single Span Gable Frame 
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Third Mode Fourth Mode 

Figure 17. Mode Shapes of Free Vibrations 
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Fi.gure l8o Two Span Single Story Frame 
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Third Mode Fourth Mode 

Figure 190 Mode Shapes of Free Vibrations 



· M} { Ml 1FAB and FGDJ are chosen as primary unknowns. The transporta-

tion of quantities and the formulation of the problem are shown in 

detail in Appendix Bo The natural frequencies obtained are shown in 

Table I and compared with the values obtained by Rieger and Mccallion 

(14)o Figure 19 shows the eorrespendiag mode shapes. 

5o4 Sia,le Span Three Storz Frame 

The frame shown in Figure 20 is analyzed for symmetrical forced 

45 

vibrat:i.ons due to the pulsating load showno The following data apply@ 

L2 = 600 m 

Ll == .5o0 II 

12 = loO x 10·4 m4 

!l = 2.0 x 10·4 m4 

-2 2 2 m2 = 2o04 x 10 Tsec /m 

-2 2 2 ml= 5ol0 x 10 Tsec /m 

P = lo262 T 

w = 80o2 rad/sec 

7 2 
E = 2ol ~ 10 T/m 

Because of the symmetry9 the given frame is modified to an equiva-

lent frame shown in Figure 2lo The primary unknowns are N', M0 and 

Ayo values at A 9 C and Eo The transportation of quantities and the 

formulat.ion of the problem are shown in detail in Appendix Bo The 

primary unknowns are solved for in terms of the applied load and all 

the other end values a.re found using the same transport. relations that 
! 

are previously used in the problemo Table 11 shows the princtpal 

moment and deformation va.lu.es obtained, in comparison with those 
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obtained by Blaszkowiak and Kaczkowski (35)o Figure 22 shows the com.-

puted shape of the deflected framee 



1st 

2nd 

.3rd 

4th 

TABLE I 

COMPARISON OF NATURAL FREQUENCIES (CPS) OF THE 
TWO SPAN SINGLE STORY FRAME 
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Strin.g Polygon Rieger ana Mccallion (14) 

Including Excluding 
Axial Deformation Axial Deformation 

13905 

57402 

72108 

97508 

139 .. 5 

57407 

724.,5 

97600 

--

Figure 22. Shape of the 
Deflected 
Frame 

Excluding 
Axial Deformation 

142 .. 3 

583 .. 0 

734 .. 0 

990 .. 0 



MAB 

MBA 

MCD 

Moc 
MEF 

~E 

MBD 

MDB 

~F 

MFD 

MFG 

MGF 

9B 

SD 

9F 

A'AY 

Acy 

AEY 

TABLE II 

COMPARISON OF MOMENTS AND DEFORMATION VALUES 
OF THE SINGLE SPAN THREE STORY FRAME 

String Polygon Iteration 
(Refo (35)) 

- Oo350 Tm - Oo.367 Tm 

.. Ool71 Tm - Ool63 Tm 

+ 1.,648 Tm + lo632 Tm 

... 0.,551 Tm • 0.538 Tm 

- 00233 Tm ... 0024-1 Tm 

- O.,lll.l Tm - 0.,106 Tm 

~ 0.,171 Tm ... 0.,163 Tm 

+ 00249 Tm + 00240 Tm 

- 00302 Tm - 00298 Tm 

+ 00233 Tm + 00230 Tm 

+ Ool22 Tm + Ool24 Tm 

- 0<>106 Tm - Ool08 Tm 

16905 x 10 =6 rad -6 17403 x 10 rad 

:37602 x 1.0 
.. 6 

rad -6 374.,,3 x 10 rad 

11203 x 10 -6 rad -6 11403 x 10 rad 

=6 21600 x 10 m 24.507 x 10-6 m 

-6 76606 x 10 m 74000 x 10-6 m 

-6 146,,5 x 10 m 160.,0 x -6 10 m 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

601 Summary 

The applicability of th~ String P~lygon method to the analysis of 

planar rigid jointed frames for free and forced harmonic vibrations is 

investigated in th:i.s dissertation.. Effect of axial deformations of 

members is included in the studyo 

Instead of using the general flexibility approach in formulation 

of the string polygon functions as in the static analysis" it was found 

advisible to use transport matrix relation as an effective tool to keep 

down the number of unknowns in a problemo A procedure to choose the 

primary unknowns in a given frame is explainedo 

The dynamic properties of a member an.d load functions are derived 

firsto The formulation of a problem is simply done in the following 

steps& 

lo Elasto-static equations are written., 

2o The elastic loads are expressed in terms of member end defor
mation.so 

3o The member end deformations are expressed in tenns of chosen 
unknown.so 

4o The resulting matrix equation is solved either for natural 
freq1Jencies of vibration or the response of the structure in 
case of forced vibrationso 

Three numerical examples illustrate the method developedo 

It is believed that the combination of transport matrix and string 
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polygon use.d in the vibrat:i.on analyslLs of frames is original o 

602 Conclusions 

The method proposed is quite straightforward when applied using 

the steps describedo Several problems checked indicate that the 

method yie.lds excellent resul tso Effect of axial deformations i.n the 

analysis of frames with mem.bei:·s of commonly used proportions i.s found 

to be negligibleo The transport matrix used can be easily modified to 

exclude axial deformations if desiredo 

The advantages of using the String Polygon method over other 

methods are clearo It is superior to general flexibility method be= 

cause of simpler formulation and fewer unknowns involvedo It also is 

superior to methods which involve writing shear equilibrium equationso 

Also 9 frames wit.h sloping me.mbers do not present any speci.al problemso 

The proposed ro.et.hod also compares very well with the genera.l stiffness 

method and in some cases has fewer primary unknowns than the lattero 

necessaryo 

603 Extensions 

The ideas presented here may readily be extended 

( 1) 'fo frames with c.unred members 

( 2) To frames vibrating ou.t~of=plane 

(3) Ti:_1! three dimensional frames 

( 4) To the vibraticon analysis of frames due to :i.mpul s:ive or 

blast loadso 
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APPENDIX A 

DEFORMATION FUNCTIONS OF A BAR DUE TO 

UNIT END FORCES 

Expressions of defermation curves of a straight free-free bar ij 

of constant section loaded by end forces of unit amplitude are derived 

here. The expressions derived may also be recognized as expressi0ns of 

influence functions for various end deformations due to an applied load 

of unit amplitude on the bar at a general section, because of the recip-

rocal deformation relationships. 

Transverse Deformations: The amplitude of transverse def0rmations 

may be recalled from Equation (2-14) 

vx' = A Cos ;\,x' + B Sin ;\.x 1 + C Gosh Ax' + D Sinh AX' (A-1) 

The constants A., B, c and D are to be obtained from Equation 

(2-15) firsto 

A Oo5 0 -0.5 0 AijyY 

B 0 -Oo5 0 -0.5 eijn. 

= 
2 c 0.5 0 0.5 0 M . ./;\, EI 

l.J 

0 -0.5 0.5 
3. 

(A-2) D 0 V .. / ;\, EI 
l. J 
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For any end force of unit amplitude applied, the deformation values 

on the right hand side of the equation above can be obtained from the 

flexibility relation given below. 

.6ijy' -F5 Fl -F8 FlO V /">._3EI 
ij 

91/X Fl F6 ·FlO -F7 
2 

Mij/).' El 

1 3 
~'jiy' 

= F3 -F8 -FlO -F5 -Fl V j/A El 

ejin.. FlO -F7 -Fl F6 2 
Mj/"- EI (A-3) 

where Fl = Sin AL Sinh AL 

F3 = Cos AL Cosh M, - 1 

F5 = Cos AL Sinh AL - Sin AL Gosh AL 

F6 = Cos AL Sinh AL + Sin AL Cosh AL 

Equation (A-3) is derived from Equation (2-17) by suitable trans-

positiono 

The deformation equation for the bar due to any unit end force 

may now be found by solving for the end deformations induced by that 

force and solving for the constants A, B, C and D from Equation (A-2) 

and then substituting in Equation (A-1). 

For example, the deflection equation of the bar due to Mij of 

unit amplitude can be found as fol'lows .. ' 

Substituting Mij = 1, Vij = 0 = Vji = Mji in Equation (A-3) gives 

/j,i. 1 = Fl/(F3 ° /EI) 
JY 
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Substituting these values in Equation (A-2) gives 

1 
A= 2 (Fl - F3) 

2 11. EI F3 

B = l • (-F6) 
2 

2 11. EI F3 

1 c =-----2 
2 11. EI F3 

(Fl+ F3) 

D = l (-F6) 
2 11.2 EI F3 

• 

Substituting these in Equation (A-1) gives 

Mij=l 1 
vx, = ----- ((Fl-F3) Cos 11.x' - F6 Sin 1,.x' + (Fl+F3)• 

2 11. 2 EI F3 

Cosh 11.xv = F6 Sinh 11.x') (A-4a) 

Remaining values calculated similarly are 

vij=l 1 
(-F5 Cos AX i (Fl+F3) Sin 11.x' v = -xi 

2 ;\,3 EI F3 

-F5 Gosh AX I - (Fl-F3) Sinh 11.x') (A-4b) 

v. ,=l 
1 

v J l. = (-F8 Cos A.'"17' + FlO Sin AX I 
x' 

".3 
·~ 

2 EI F3 

-F8 Gosh AX I + FlO Sinh 11.x') (A-4c) 
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1 = -..-,,,--- (FlO Cos 11.x' + F7 Sin A.X 1 + FlO Gosh 11.x' 
2 t..2 EI F3 

+ F7 S inh 11.:< 1 ) (A-4d) 

The four values computed above are respectively the same as 

Axial Deformationsz The amplitude of axial deformation of the. 

bar ij may be recalled from Equation (2-4). 

u = C1 Cos kx 1 + D' Sin kx' 
)CI 

(A-5) 

The constants C1 and D' are to be computed fr0m Equation (2-7). 

-LO 

= 

D' 0 

0 

1.0 

~ijx 1 

N . ./kAE 
1.J 

(A-6) 

The flexibility relation given below may be used to compute /.;ijx' 

on the right hand side of the equation. 

- Cot kL 

= 

Cosec kL 

Cosec kL 

- Cot kL N .. /kAE 
. JJ-

The above equation is obtained by suitable transposition from 

Equation (2-9). 

(A-7) 

The deformation equation of the bar due to either end axial force 

of unit amplitude can now be computed by first computing!;,», , from ·1.JX 

Equation (A-7) and substituting in Equation (A-6) to solve for C1 and 
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D1 o Substitution in the expression for ux' gives the desired result. 

The deformation equations thus Gbtained are 

Nij=l 1 
u - - (Cot kL • Cos kx' + Sin kx') (A~8a) . x' - kAE 

Nji=l -1 
ux, = kAE • C0sec kL • cos kx' (A-8b) 

Nij=l N .. =l 
These two values are the same as A. and 8..Jl. referred to in 

<:,XI --~XI 

Chapter Ile 



APPENDIX B 

COMPUTATIONAL DETAILS OF THE NUMERICAL EXAMPLES 

B-1. Single Span Gable Frame (Fig1..ri::e 23) 

{ F~B } is chosen as primary unknown. 

The members AB, BC, CD and DE are referred to as member Nos. 1, 2, 

3 and Lf respectively and their corresponding transport matrices ,:ind the 

angular transformation matrices are referred to as [Tl], [T2], [T3], 

[T4], and [1fl], [112], [11"3], ['11'4]. 

© 

[1TB] = [112i [J] [1Tl] 

[:Ire] = ['113f [J] [1r2J 

[irD] = ['T1'4i [J] r,T3] 

Figure 23. Single Span Gable Frame and its Conjugate Structure 
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All member end values are e~pressed in terms of the primary un

known as follows, using l Sl} ={ ~B : 0 J 

{sAi}={s1} 

{sBl}= [Tl] {s~}= [T1]{s1} 

{sB~} = [1TB] [snl 1 = ['RB] [Tl] { sl} = [TRl] {s1} 

{sc!} = [T2] {sB~} = [T2] [TRl] {s1}::; [TR2] {s1j 

{sc;} = ['7TC] {sci}:;: [,re] [TR~] {s1} = [TR3] {s1} 

{sn~} = [T3] {sc~J = [T3] [TR3] {s1} = [TR4] { Sl} 

{sn:} = Eftn] {s0~.} = Erro] [TR4] {s1} = (TR5] {s1} 

61 

{sEriJ = [T4] {so:J= [T4] [TR5] {s1J = [TR5] {sl} (B-1) 

Elasto-Static Equations. Three elasto-static equations, ti = O, _____________ ,________ z 

I: MxAE = Ot I: MyDE = O, are written using the twelve elasti.c quantities 

shown Tn Figur0 23 • These are written in a matrix f()rm 

[A] { i } = 0 (B ... 2) 

3d2 12xl 

The elastic loads are expressed in terms of member end deforma-

tions using Equation (3-6). 

{ P i = [B] { 5 j 
12x1 12x24 24xl 

(B-3) 

The member end deformations are expressed in terms of primary 

unknowns using Equations (4-i) 
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{ 6 } = [c] { Sl j (B-4) 
24xl 24:x.6 6d 

which is modified tQ 

{ 6 ) = [Cl] { F J} 
24xl 24x3 3xl 

by drepping the c©lumns corresp(l)nding to zerl!> elements in { Sl J. 
Equations (B-2), (B-3) and (B-5) are combined to give 

[A] [B] [Cl] { F A~J = 0 

= [FINAL] { F Ail = 0 

(B-5) 

(B-6) 

Fer a non-trivial solution for { F Ai}, the determinant C1>f [FINAL] is 

ma.de zero. This gives the values of the frequency parameter A from 

which the frequencies are obtained in cycles per second. 

The mode shapes are obtained by substituting the solution for l in 

Equation (B-6) to selve fer f F Ai}. Substitution 0£ { Sl} in Equation 

(B-4) then gives all encl defermatiens. 

B-2o Twe Span Single Story Fr.nne (Figure 24) 

{ ~B} and { ~D} are chesen as primary unknowns.. The members AB, 

CD, FE, BD and DF are respectively referred teas members Nos. 1, 2, 3, 

4 and 5 and their cerrespcnding angular transfermation m')ltrices are 

referred teas ["1Tl], [~2], [13], [7r4] and ['11"5]. All members being 

identical !n length and cross-section, they have the same transport 

matrix referred t@ as [T]o 



(';;.. @ ® 
\.!:!) -- -- - -- - --, 

I @ I ® I 

l(D() :@(;@1 
I I I 

CUT@_ CUT I I @ 

Figure 24. Two Span Single Story Frame and Corresponding Conjugate 
Structures 

[11'B] = [1f4]T [J] ['TT l] 

[11'F] = [7T3]T [J] EiTS] 

All member end values are expressed in terms ef the primary un

knewns as follows, using { SlS2} = {si:s2J = { F Ai:O!F c~:O} 

{s A;f =fs1 J 

{sB~J = [TJ { SAi} = [T] [ s1J 

{sB~} = trrB] {SB~}= [1rB] [T] { slj = [TRI]{ s1j 

{ so:} = [T] { sB: 1 = [T] [TRI] { 51} = [TR2] { SI} 
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whete 

l SC~}= { 52 J 

1s0~J = [TJ{ sc~} = [T]{s2} 

f sng} = [1f2] [SD~}= ['1T2] [T] { s2} = [TR3] { 52} 

{ s0~} = [11"4] f s0!} = [1r4] [TR2] { s1} = [TR4] [ s1} 

{so~}= [JJ[ s0gJ+[ s0~} 

--------
= [J] [TR3] { S2} + [TR4] { Sl j 

= [TR5] { S2} + [TR4]{ Sl} 

= [Dl] [ SlS2 j 

tR4(11) 
[Dl] = 

0 

TR5(11) TR4(12) 

TR5(21) 0 

F part cmly 

TR5(12il 

TR5(22_J 
6x12 

{s0;} = [1tsi{ s0~} = ['1T5]1' [01]{ s1s2} = [02] l s1s2} 

{ SF~ 1 = [T] { sD;} = [T] [D2] f SlS2 } = [D3] { s1s2} 

{ SFi} = tJTF] {SF~} = tlfF] [D3] { SlS2} = [D4] { SlS2 3 
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{sE; 1 = [T]{ SFi} = [T] [D4]{ SlS2} = [D5] {SlS2} (Bw7) 

EJaste-static equations: Three elasta-static equations are 

written far each panel shown in Figure (24). These equations are 
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~p = 0 
z 

and 

These equations involv~ fifteen elastic quantities shown and are 

arranged in a matrix form 

[A] { P }= 0 
6xl5 15xl 

(B-8) 

The elastic loads are expressed in terms of member end defarma-

tiens using Equation (3-6), 

{ P j = [B] { 5 J 
15xl 15x30 30xl 

(B-9) 

The member end deformatiens are expressed in terms of primary 

unknowns using Equations (B-7) 

which is reduced to 

{& }= [c] { SlS2 f 
30xl 30xl2 12xl 

[ 6 } ::; [cl] { FA~iFc!} 
30x1 30x6 6xl 

by dropping the terms corresponding to zero elements in {81$2}. 

Equations (B-8), (B-9) and (B-11) are combined to give 

(B-10) 

(B-11) 
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= [FlNAL]{ FA!sFc~}= 0 (B-12) 

6x6 6xl 

By making the determinant of [FINAL] equal to zero, the freqL1ency 

parameter A is solved for. The mode shapes are obtained by finding the 

end deformations from Equation (B-11), using the values of { Sl} and 

{ 82} obtained by solving Equation (B-12) for {FA~} and { Fc;J. 

B-3. Single Span Three Story Frame (Figure 25) 

N', M' and !). valiJeS at A, C and E are taken as primary unknownso y 
p 

V' at C is a kn0wn value equal to - 2 cos wt. The remaining values of 

V', A and 0' at A, C and E a:r:e zero. x 

Members AB, CD and EF are identical and identically 0riented. 

Their transport matrix and their angular transformation matrb are 

referred to as [Tl] and ['11'1]. By the same reason, similar quantities 

for members BD, DF and FG are referred to as [T2] and ['1T2]. 

[1TB] = ['1T2i [J] ['lf 1] 

All member end values are first computed in terrns of {S1S2S3} = 

£s1: S2: 83} where 1s1J ={F~ i 6Ai}, (s2} ={Fe; j 6c~Jand 

{ 83 } . = l FE! ~ 6Ei } • 

tsA;}=fs1J 

{sBlJ = [Tl]{ s~}= [Tl] {st} 
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Figu~e 250 Single Span Th~ee Story Modified Frame and Corresponding 
Conjugate Structures 



where 

and 

{SB~}= [1T B] {SB~}= ['!TB] [Tl] { Sl} = [TRl] l Sl} 

{so!}= [T2] {SB~}= [T2] [TRl] { Sl} = [TR2] { Sl 1 

{Sn~}= ['11°2] [so~}= ['1r2J [TR2] { Sl} = [TR3] { s11 

{sc~J = t s2 j 

{ s0~} = [Tl] { s0tJ = [Tl] { s2} 

{ s0gJ = r,r1] { sD~} = [1n] [Tl] l s2J = [TR4] ( s2 J 

{ sn~} = [J] { sngJ + lsn~} 

= [J] [TR4] t S2} + [TR3] { Sl} F part only 

= [TR5] { S2} + [TR3] { Sl j 

= [Dl] t SlS2 j 

r~l) TR3~2) TR5~1) TR~j [Dl] = . 
0 0 TR.5(21) TR5(22) 

6x12 

{ S1S2} = i Sl i S2 J 

{ s0;} = [1T2f { SD~ } = [1r2i ['Dl] { S1S2} = [D2] { S1S2} 

{SF~} = [T2] { s0; 1 = [T2] [D2] { S1S2 j = [D3] { SlS2} 

{ sFg} = [1f2] [ SF~ J = [1f2] [03] { S1S2} = (o4.] { S1S2} 
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where 

{S l} = f S3} 
EF l 

{sF!}= [Tl]l sE;J= [Tl]{s3J 

{SF~}= ['in] { sF!} = ['lil] [Tl] l S3 f = [TRl~J { S3 j 

f sFg} = [J] { SF~}+ t sFgl 
---------

= [J] [TR4] [ S3 j + [D4] l 8182} F part only 

= [TR5] [ 83 J + [D4.] l SlS2 J 

= [El] [ SlS2S3 j 

~'41) 
D4~2) D4(p) D4Q. li) TR.5~~ 

TR~~ [El]= 

0 0 0 0 TR~l) TR5(22) 
6d8 
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{sF;} = [rn2]1 ( SF~}= [rrr2f [El] { SlS2S3 J = [E2] { SlS2S3 j 

{sc;}= [T2] { SF~}= [T2] [E2]{SlS2S3f = [E3]{SlS2S3J 

(B-13) 

Elasto=Static Equations: Three elasto-static equations are 

written for each conjugate panel shown in Figure 25., These equations 9 

written in terms of eighteen member elastic quantities, are 

!: p = 0 z 

r: ii = o xAB 



1 1 0 1 l 0 0 0 0 1 l 

0 0 -1 0 L2 0 0 0 0 L2 2L2 

Ll 0 0 0 0 -1 0 0 0 0 0 

0 0 0 0 0 0 1 1 0 1 1 

0 0 0 0 0 0 0 0 -1 0 L2 

0 0 0 0 0 0 Ll 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 o· 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 ·. 0 
'c 

0 0 0 0 1 1 

0 0 0 0 2L2 3L2 

-1 0 0 0 0 0 

0 0 0 0 1 1 

0 0 0 0 L2 2L2 

-1 0 0 0 0 0 

0 1 1 0 1 1 

0 0 0 -1 0 L2 

0 Ll 0 0 0 0 

0 
-1 
pl I 1 0 

0 I I 0 

-1 
-2 
p2 

0 
-AABy 

0 -3 
P3 

0 

O II I= I 0 

-4 
-1 P4 0 

-Acoy 

0 -5. 
P5 

0 

o II J 
-i_JL p: lA:~! 

(B-14) 

....... 
0 



-1 
pl 

-2 
p2 

-3 
P3 

-4 
P4 

-5 
P5 

-6 
p6 

[xJ I o I o I o I o I o 

--+--+--+---;--+--
O j [Y] I O I O J O I . 0 

--+--+-.-T--T--+--
o I o I rxJ J o I o I o 

--+--·~---~--~--+--
O I -0 J O J [Y] I O / 0 

---+---t- --· +--·· - +--+ - -. 
o j o I o l o I [x] j o 

--+--i---,--,-·-+--
O j O j . 0 j O j O I [Y] 

-1 -1 -1 -1 
0 /Ll A 0 /LI 0 0 /L2 Ao 0 /L2 

0 

[xJ = I o 1/Ll 0 0 1 Ll '/ lo [Y] = 0 1/L2 0 0 1/L2 

1 0 0 1 0 0 1 0 0 1 0 
J 

6 1 

Af 
0BA 

2 
0BD 

6n~ 
3 

6co 
3 

6oc 

6ni 
~: 

5 
6EF 

°F~ 
6 

6FG 
6 

0GF 

0 

)._ 
-0 

0 

(B-15) 

...... .... 
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These arranged in a matrix form are shown in Equation (B-14). 

The p values are expressed in terms of the meniber end deformations 

as shown in Equation (B-15). T~e vector on the right hand side of 

Equation (B-14) is written in terms of the primary unknowns (Equation 

(B-14b)). The member end defo:t:mations are expressed in tel1US of { Sl}, 

0 0 0 0 0 0 0 0 0 0 
I 1 

N AB 

0 0 0 0 0 0 0 0 0 0 
I 1 

MAB 

0 
0 0 -1 0 0 0 0 0 0 1 -.OABy AABy 

0 0 0 0 0 0 0 0 0 0 ' 1 
NCD 

0 = 0 0 0 0 0 0 0 0 0 
I ! 

MCD 

0 
-itDy 0 0 0 0 0 -1 0 0 0 L 

Acoy 

0 0 0 0 0 0 0 0 0 0 
I 1 

NEF 

0 0 0 0 0 0 0 0 0 0 
v ! 

MEF 

0 
-AEFy Lo 0 0 0 0 0 0 0 -1 1 

6.EFy 

(B-14b) 

{ 82} and { 83} as shown in Equation (B-16). Symbolically these rel a-

tions may be written as 

[A] { P J = [ R] { FD } (B-14a) 

{Pi= [B] l o J (l3-15a) 
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- -,- -

0 I 0 0 0 0 

T1(21) T1(22) 0 0 0 0 

TR1(21) TR1(22) 0 0 0 0 

TR2(21) TR2(22) 0 0 0 0 

0 0 0 I 0 0 

0 0 Tl(21) T1(22) 0 0 

= 
02(21) D2(22) 02(23) D2(24) 0 0 

03(21) D3(22) D3(23) D3(24) 0 0 

0 0 0 0 0 I 
'--

0 0 0 0 T1(21) T1(22) 

E2(21) E2(22) E2(23) E2(24) E2(25) E2(26) 

E3(21) E3(22) E3(23) E3(24) E3(25) E3(26) 6 
oGF (B-16) 

-
>---

{ 6} = [c] { SlS2S3} (B~16a) 

w.qere {FD} is the vector of primary unknowns,{N;J;., M_;];,, A}By' N~~, 

'1 1 'l 1 1 1 } 
MCD' ~CDy' NEF' MEF' AEFy O 

Combining these gives 

[A] [B] [C] { SlS2S3} = [R] {FD} (B-17) 
9xl8 18x36 36x18 18xl 9x9 9xl 



[c] { SlS2S3} is now m0dified by deleting zero elements in 

{SlS2S3} and also deleting the corresponding columns from [c]. This 
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leaves only the primary tmknowns and the effect of the applied load in 

'l Ven· Rearranging the terms makes it possible to separate the primary 

unknowns and the applied load. 

[A] [B] [ Cl ; C2 ] { FD i P} = [R] { FD J 
36x9 36xl 9xl lxl 

[A] [B] [cl] - [R~ {FD}= - [A] [B] { C2}• P (B-18) 

{FD} is now solved for in terms of P~ Using the known values of 

[FD} and V~~, {s1S2S3} is reconstructed and used in Equations (B-13) 

to obtain all member end forces and deformations. 
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