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CHAPTER I
INTRODUCTION

The stud& of .functions is an important part of modern mathematics.
Today's studeht is ‘introduced early to the mathematical concept of
function. By?the time he has completed an elementary course in calculus,
the student i; familiar with many functions.

There aré functions peculiar to almost . every branch of mathematics.
There are others which, even though useful in many different areas of
mathematics, have their origin in a particular branch. These are usually
identified inésome way with the branch of their origin.

The funckions most glosely identified with number theory.are usually
called ”numbe}—theoretic”, "arithmetic" or "arithmetical'. They are
different froh most  functions found in algebra or analysis in that they
are usually défined on the integers or a subset of the integers. Some-
times an extension to the real numbers is made and questions of analytic
behavior are étudied. However, they are usually more useful in the study
of natural nuﬁbers or the integers.

Stewart k27) indicates that a number-theoretic function is one
- such that the function values depend upon the standard form of n. This
seems unnecesﬁarily restrictive and, although most of those used in this
paper meet th%t requirement, the adjectives "number-theoretic'" and
"arithmetic" %ill be used more loosely. For example, occasional refer-

ence will be made to arithmetical functions associated with the additive



theory of numbers. One such function, which does not meet Stewart's
requirement, is the function given by w(n) = the number of primes less
than or equal to n.

Number theory is one of the oldest branches of mathematics. It is,
however, not a dead issue. There are still many unsolved problems.
Also, interrelations often exist between number theory and other
branches of mathematics. For example, géometry has close ties with
number theory. Number theory provides useful examples for abstract
algebra and topology. Although primary interest will be centered on
the number theoretic ideas involved, some of the relationships between
analysis and:number theory will be seen in this dissertation.

One area of number theory which lends itself to study by under-
graduates and to undergraduate research is the study of the multiplica-
tive functions. Multiplicative functions, as defined in Definition
2.1, are not:restricted to number theory. However, some of the most
interesting ére peculiar to the subject. These form the princi?al
subject matter of this paper.

The reader should have a minimum background of a completé sequence
of elementary calculus which includes a study Qf series. Although a
course in elementary number theory is presumed, the reader could pos-
sibly acquire the background needed by a careful study of the topics
covered in Chapter II. The series used are usually considered as series
of complex numbers. However, so as not to confuse the reader who has
not been exposed to complex series, they are stated as if they were
real valued. This makes no difference as far as the major points of

the paper are concerned.



The matefial is presented in what 1s hoped to be a logical sequence.
Thus, the reader should presume nothing concerning the level of diffi-
culty from the location of a topic. For example, the material in
Chapter V is relatively easy, but, it will take a mature reader to
understand most of Chapter IV. No comprehensive historical develop-
ment is attempted. However, historical facts are mentioned at various
points in the development.

Chapter II provides the background from number theory and analysis
which will be needed in the later chapters. This is for the purpose
of making the paper self-contained thus making it unnecessary that the
reader be an expert on the subject and eliminating the need for several
references. Chapters III and IV develop the theory of generating
functions which are useful tools in the study of number-theoretic
functions. Chapter V includes material which evolved as a result of
the study. A search of the literature has failed to uncover these
results elsewhere. Thus, they are presumed to be new. The reader
will recognize that not everything which could be developed has been
proved here and can possibly make some additional conjectures and

prove them.



CHAPTER II

BACKGROUND FROM NUMBER THEORY AND ANALYSIS

Multiplicative Functions

There a&e several different types of functions associated with .
number theory. The usual way of classifying them seems to be to
classify them as "multiplicative', ''those associated with the additive
theory of numbers', and "other'". This is somewhat misleading because
there is more than one type of function that could be called additive
and there arb functions associated with the additive theory of numbers
which could not be called additive functions. The class of multiplica-

tive functions is well defined by a precise mathematical property.

Definition 2.1. - A function f, defined on the natural numbers, is

called multiplicative if and only if

£ (mn)

f(m)f(n)
whenever (m,n) = 1. If

£ (mn)

f(m)f(n)
for all,nat@ral numbers m and n, then f is called completely (totally,
uncondition%lly) multiplicative.

It sho@ld be observed that some functions from algebra and calcu-
lus satisfy;this definition when their domain is restricted to the
natural numéers. For example, the identity function, defined by

f(n) = 1 foﬁ every n, and the power functions, defined by . f(n) = nX%#O,



are completely multiplicative. It is also possible to define multipli-
cative functions in the same way for the set of all integers. However,
the natural numbers are consistently used here as the domain.

Throughout the paper some notation is used which should be explained.

First d|n will be used, as is usual, to mean d divides n. Hence, if

L

is written dgn specifies the index set for the sum as those natural
numbers whicﬂ divide n. By the Fundamental Theorem of Arithmetic it

is known that if n > 1, then n can be written uniquely (except for
order) as thé product of primes. Thus, a natural number n > 1 is often

expressed in 'standard form (or canonical form) as,

8.1 3.2 a

T
n = pP. p, .-.P T or n= T P
172 T _

where the subscripts ére used to indicate that the primes are different.
However, the same subscript being used for the exponent means only that
the ith exponent belongs to the ith primes of the chosen order. The
order is often chosen as the "hatural order', that is,
Py <Py < e <P
Th¢ nota#ion (m,n) = 1 used in Definition 2.1 will be used often
and, althougﬁ it may never be referred to directly, it is appropriaté

to remind thé reader of its precise meaning.

Definition 2,2. Natural numbers m and n are relatively primé; written

m,n) =1, if and only if when p|n then pfm and when pIm then p/fn

for p a primé.
I



Definitibns 2,1 and 2.2 would thus lead one to suspect that primes
play an impo;tant part in the theory of multiplicative functions. That
i
this suspicipn is a fact is seen in the important role of primes in the
discussions %nd theorems of this paper. .
The folléwing theorem shows a very useful characteristic of mul-

tiplicative functions.

Theorem 2.1. If f is multiplicative and not identically zero, then

£(1) = 1.

Proof: If fgis not identically zero, then there exists an integer .n
such that f(ﬁ) # 0. But, (l,n) = 1, thus

| f(n) = £(1'n) = £(1)f(n).
Hence, f(n) f 0 implies £(1) = 1.

It was i%dicated earlier that primeé play an important role in
multiplicatipe functions. In fact, if a function is given to be mul-
tiplicative énd is defined for powers of each prime, it is determined
for all natural numbers. For example, let g be a multiplicative func-

tion such that g(pa) = 3% for every prime p. Then

8.1 a2 a

gm) = g(py P, ---p,)

PR r
glp;)elp, ). -glp, )

a, a a a.+a. +...+a
=3132 3T -31 72 T,

In this case, g was specified as multiplicativé, then an expression for

g(n) is caléulated. Usually, a function arises in answer to a question
i L :

about n, or a defining property is found for a function which can then
|

be shown to be multiplicative. As an example, if prime p is given,



let Mp(n) = a + 1 where a is the highest power of p that divides n.

The function‘Mp then answers the question: Does pb divide n? Observe

that if Mp(n) 1, then pb X n and if Mp(n) =k, k > 1, then pbln for
b < k. Also, Mp is multiplicative. For if (m,n) = 1 and pa]m, then
P X n. Thus,

Mp(m)Mp(n) = Mp(m)'l = Mp(m) = Mp(mn).

Later, when the formula for the function 1 is given, the reader should
note that:

T(n) = I M (n).
p|n

Later in this chapter an operation on multiplicative functions,
called the convolution product, will be discussed. However, a special

case, given by the following theorem is needed earlier.

Theorem 2.2. If f is a multiplicative function then the function g
defined by

g(n) = £(d)
din
is also multiplicative.

Proof: If (m,n) = 1, then d|mn means that d can be written d = st
where slm, t|n and (s,t) = 1. Then,

g(mn) = % £() = )  f(st).
d|mn s]m,t n

Hence, since f is multiplicative, f(st) = £(s)f(t).

Thus,

g (mn) L f(s)E(t) = % £(s) - % £(t)
s|m tin

s|m,t|n

g(m)g(n).



It is no surprise that the set of multiplicative functions is not
closed under some operations. It is obvious that f + g is not always

multiplicative when f and g are. For example,

Fm) = n’, g =1
define multiplicative functions but
2
(f+gn=n" +1
does not.
Because of the obvious close relation between multiplicative func-
tions and the operation of ordinary multiplication of functions, the

following is not an unexpected result.

Theorem 2.3. If f and g are multiplicative functions, then f-.g is mul--

tiplicative and, if g(n) # 0 for every n, f/g is multiplicative.

Corollary 2.4. 1If g is a multiplicative function such that g(n) # 0
for every n, fhen 1/g is a multiplicative function.

Corollary 2.4 follows easily from Theorem 2.3 if one recalls that
f(n) = 1 for every n defines a multiplicative function. The corollary
is stated so that it may be observed that not all multiplicative func-
tions have an inverse under the operation of ordinary multiplication of
functions. For example, note‘that f(n) = 1 for every n is the identity
and that

g(l) =1, g{(n) = 0 for n > 1,
defines a multiplicative function which, by Corollary 2.4 has mno inverseo
Andther theorem, which was used earlier but needs to be formally

stated since it will be assumed many times, is the following.



Theorem 2.5.  If f is multiplicative and.n is written in standard form,

then

Proof: The proof is by induction on r.

The arithmetical functions discussed in this paper are defined on
P, the set of positive integers. The notation f(a,n) and similar no-
tations are QSed but this is intended to mean that f is a function of
n which involves an arbitrary constant a. |

Functions defined on P x P or P x P x ... x P may be studied in
very much thé same mannef as is used here. In‘fact, the definition
of muitiplic%tive can be easiiy‘extended by’requiring that a function
be multiplicétive in each‘component of (nl,nz,..,,nk). 'Unfdftunately,
the functions themselves do not generalize as easily. Cohen (5) and
Vaidyanathaswamy (30) are two of the many mathematicians to generalize
number theorétic'functions., There seems to be a number of Ways to
generalize mdst of them as functions of several variables. qu this
reason, and Because it would lead too far afield, it is not deemed
desirable to include functions of several variables in the present

discussion. -

Some Special Multiplicative

Arithmetic Functions

There are several multiplicative functions which have arisen nat-
| ‘ o

urally in thé investigations of number theory. There are others, which

because of their unusual nature or because they are representative of a

larger class; have become a part of the 'folklore'" of the subject. In
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order to have examples upon which to base later discussion, they are
presented here. Their definition, elementary formula (if it is not a
part of the definition), and some useful properties are given. Some
proofs are omitted in order to avoid boring the reader. For proofs, he
may refer to one of several elementary number theory texts.

Probably the function of number theory most often encpuntered is
the Euler totient function or phi function. It occurs in counting
problems and in the additive theory of numbers as well as in the mul-

tiplicative theory.

Definition 2.3. The Euler totient function, denoted.-by ¢, is defined

as follows: ¢(n) is the number of positive integers less than or equal
to n and relatively prime to n.

To see that the behavior of ¢ is quite irregular, one should note
that ¢(15) = 8, ¢(16) = 8, ¢(17) = 16, ¢(18) = 6, ¢$(19) = 18 and
¢(20) = 8.

The following theorems, which are easily proved by several different
methods, give the formula for ¢(n) and for the sum of ¢(n) over the

divisors of n.

Theorem 2.6. If n is written in standard form then,

1 1 1
o) = n |2 J ke o lJ (_P-_l]
‘ %

pl {? PI. = npl&[n l

Theorem 2.7.  For any positive integer n,

= ) ¢(d).
n dTn¢( )

The function ¢ is multiplicative. This may be proved by independent

methods and the above theorems will follow by using Theorems 2.2 and 2.5.
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As an alternate procedure, Theorem 2.6 can be proved directly from the
definition of ¢. Then, it follows from the formula in Theorem 2.6
that ¢ is multiplicative.

There are many useful formulas involving ¢, but some other func-
tions must be defined first. One of these is the Mobius u function

which has a unique role in the theory of multiplicative functions.

Definition 2.4. Let p be the function defined for positive integers
such that,
1w @)=1; (@{Ei) uw (n) =0
if n > 1 and n has a perfect square as .a factof; p(n) =,(—1)r ifn>1
and n is the product of r different prime factors.
The fact that y is multiplicative follows from thé definition.
The next theorem, which provides some useful equalitiés, follows easily

from Theorem 2.6 and Definition 2.4.

Theorem 2.8. If ¢ is the Euler totient function, then ¢(n) is equal

to any of the following equivalent sums.

n % p(d)/d = % nu (d)/d
din d|n

= % du(n/d) = ) cu(d).
din cd=n
Theorem 2.9.
1, ifn =1
u(d) = <
dTn {0, ifn>1

and .
% lu(d)| = 2
din

where r is the number of distinct prime factors of n.
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The function defined by the first sum is usually designated by

e. Thus, hereafter, e(n) = % u(d). The function defined by the second
' din

sum is a member of a class of functions which is discussed later.
The unique role of p in the theory of multiplicative functions
is expressed in a relationship called the Mobius inversion formula.

It is given by the next theorem.

Theorem 2.10. The functions g and f are related by

g(n) = % £(d)
din

if and only if

f(n) = % u(n/d)g(d) = %_u(d)g(n/d)»
din ‘ d

n

It is not intended by the previous statements to indicate that
Theorem 2.10 applies only to multiplicative functions. Not only does
it apply to all functions on the positive integers but there 1s an
extension of this inversion which applies for functions f and g on
positive real numbers.

There are other types of inversion invelving other functions.
However, it has been shown by Satyanarayana (24) that this particular
inversion is;unique to the Mobius function. This was accomplished
by proving independently some of the consequences of Theorem 2.10 and
showing that if Theorem 2.10 defined a function u¥*, theh u* = p.

There are some well-known functions of positive integers whose

function values at n depend on the divisors of n.

Definition 2.5. For any real number k, the function Oy is the function

such that ok(n) is the sum of the kth powers of the divisors of n.
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That is,

k
o, (n) = dr.
k d%n

Since ng is multiplicative it is easy to see that, by Theorem

2.2 is also multiplicative.

’Ok

Two special cases are particularly useful. If k = 1, note that
ck(n) gives the sum of the divisors of n. This function is denoted by
o. If

k=0, go(n) = 1,
k d%n

and it is seen that o, simply counts the number of divisors of n. The

0

function % is usually designated by 1 and is often called the tau-

function.

Theorem‘z.ll gives formulas for t(n), o(n) and ck(n) based on the
standard form of n. It may be observed that, in this form, the formula
for t(n) cannot be derived by taking k = 0 in the formila for Oyt

However, it may be done taking the limit as k goes to zero.

. T a.
Theorem 2.11. If n = T pil, then:
. i=1
T
(1) t(m) = 1 (a,+1)
i=1 1
[(a,+1
r |p. -1
(ii) o(m) = 0 |= 1
i=1 - Pi”"
[ (a.+1)k
| T P N -1
(iii) o, (n) = T = -
©i=1 P; - 1

The functions defined by

£.m) = ) o (d)
K d|n k
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are not usually considered in elementary number theory. Since functions

created in tﬁis manner are an important part of the theory of generating
!

functions, tﬁe formula for fo(n) % T(n) is derived here.
; din

Let

f (n) T(n).
0 d%n

Then,

(1) + t(p) +T(p2) S T(pa)

a
fO(p )

1+ 2+ 3+ ...+ (a+ 1)

- (arl) (a+2)
= SRS

Thus, since fO is multiplicative by Theorem 2.2,
a, a a
_ 1 72 T
fo(n) = fo{pl Py ---P. ]
[ a a a
1 2 T
folp1 ]fo{pz J°"f0{pr }

(a1+1)(a1+2)(a2+1)(a2+2)7..(ar+1)(ar+2)§r.

[}

Another function which occurs frequently in the study of the
theory of numbers is the lambda function (sometimes called Liouville's

function).

Definition 2,6. If

RS T I
no=p;p,T.

let é
1 2 T

Ex(n) = (-1)4, where qg=a, +a,+ ... + a_.

From this definition, it is apparent that q is the total number

of primes,; distinct or not, in the standard form of n and that the sign

of x(n) tellé whether this is even or odd.



15

It is a fact that X, as given by Definition 2.6, is a member of
a special class of multiplicative functions which is discussed in the

following theorem.

Theorem 2.12. If k is any non-zero real number and v is a function on

the positive integers such that v(mn) = v(m) + v(n) whenever (m,n) =1,
then the function defined by hk(n) = kv(n) is a multiplicative function

of n. If v(mn) = v(m) + v(n) for all m and n, then h, is completely

k

multiplicative.

kv(mn)

Proof: _ hk(mn)
_ v+ v
_vm v
= h, (mh, (n),

The function A is completely multiplicative and is thus an example
of the last statement in the theorem. An example of the first type
may be seen by lettihg k = 2 and v(n) = r where

a1 8 ar

no= PPy Pl
Thus hz(n) =:2r and hz(l) = 1 since v(1) = 0. This function could be
considered as one measure of the '"compositeness' of n. However,

24

g(n) = where q = a, + a, + ... + a_ would probably be a better

1 2
measure.

The next, and last, function to be considered is a multipliCative
function which has application in the study of prime numbers. It is

really one of a class of multiplicative function called group charac-

ters. This function, designated here by .y, is one of the simpler
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non-trivial group characters. The study of group characters, as such,

has no placeéin this discussion. However, since they are multiplicative
i .

functions, iﬁ is appropriate to include a representative. For a com-

plete but concise development of group characters, Lectures on Elemen-

tary Number Theory, by Hans Radamacher, is recommended.

Definition 217. For natural numbers n, let x be the function defined

by
(O, if n is even
x(n) = { %l
lf—l) , if n is odd.
It is important to notice that if n is in the sequence S such that
Sk = 4k + 1, then x(n) =1 and if n is in the sequence T such that
tk = 4k + 3, then x(n) = -1. In fact, this statement is an alternate

form of the definition and is used in Chapter III. It may dlso be

seen that

% x(d) = d;(m) - dg(m)
din

where dl(n) is the number of divisors of n that are in S and'ds(n)
is the number of divisors of n that are in T.

The purpose of this section was to give a representative collection
of number—thebretic functions. Others which ha&e not béen given here
are defined a; the need arises. Properties of most functions used in

the paper are stated briefly in the Appendix.

The! Convolution Product of Multiplicative Functions
|

Earlier the ordinary products of arithmetic functions were dis-

cussed. There is a different kind of product which is more naturally
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related to tﬁe study of generating functions. It is called the convol-'
ution producé (sometimes the Dirichlet product) of two arithmetic
functions. Convolution products have been the subject of much study.
Lehmer (15) %nd Carlitz (2) published papers in 1931 and 1964, res-
pectively, which deal with convolution products.

The treaﬁment given here is largely due to Shockly (26). His
recent text is the only elementary text that this writer has seen that
covers convoiution products. In his seventh chapter, he shows that the
set of all afithmetic functions is a ring, with identity, under the
operations of ordinary addition of functions and convolution multipli-
cation. He éhows also that the multiplicative functions are a subset
which is closed under convolution multiplication and is, in fact, a
group under ﬂhat operation.

This lasf statement is the fact that makes convolution products

important in this study. It is really the basis for one method of

finding generating functions (Theorems 3.18 and 3.19).

Definition 2.8. Let a and B be arithmetic functions. The function

o @ B called the convolution product of o and B, is defined by

(0 ® B)(n) = % a(d)8(n/d).
d|n

Two examples of convolution multiplication have already been seen.
If a(n) = 1 for every n, .then

 (@eB8)m = [ Bm/d) = ] 8(d)

| din d|n

which was the?sum considered in Theorem 2.2. The other example was
seen in connektion with the Mobius inversion formula. The reader will

have ample opbortunity to see other examples where products are

actually compﬁted.
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It is al@ost obvious that convolution multiplication is commutative
and associative. While the definition, and these properties as well,
hold for all arithmetic functions, the most important fact for this
study is thaf the multiplicative functions form a subset of the arith-

metic functions which is closed under convolution multiplication.

Theorem 2.13. If o and B are multiplicative functions then so is o & B.

Proof: If (m,n) =1 and d[mn it is easily seen that d can be written
as d = st where s]m and tln. Also, (s,t) = (m/s,n/t) = 1. Thus,

(0 ® B) (mn) = % a(d)8(mn/d) = T a(st)B(m/s*n/t).
d|mn sim
t|n

Since a and 8 are multiplicative, this sum 1is equal to

% a(s)B(m/s)a(t)B(n/t) which is equal to the product of
m

S

Y a(s)B(m/s) and % a(t)B(n/t).
sTm tin

However, these are (o ® 8)(m) (oe®B)(n), respectively. Thus
(¢ @ B) (mn) = (a @ B)(m)* (o @ B)(n)
for (m,n) = 1, and o @ B is multiplicative.
It has been observed already that u has a unique place in the theory
of multiplicative fuﬁCtions because of its use in the MSbius inversion

formula. Recall that
//1, ifn=1.

% u(d) = e(m) =
din 0, ifn> 1.

Theorem 2.14.' The function e is the identity for convolution multipli-

cation. That is

0O ® € SE® o = 0

for any arithmetic function o.
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Since thé identity for convolution multiplication is not the same
as the identity for ordinary multiplication, it should be expected that,
if an inversé exists for o, it is not 1/a. The following theorem shows
that the convolution inverse exists if a(l) # 0. Note that an explicit

. -1 . . .
expression for a = is given in the proof.

Theorem 2,15. If a(l) # 0, then the arithmetic function o has a convol-

ution inverse.

Proof: Let d(l) #£ 0. Define the function B8 by,

B(1) = 1/a(1),

-1/a(1) % g(d)a(n/d), if n > 1.
din

B(n)
d<n
The foilowing shows that B = a_l where a—l means, in this discussion,
the convolution inverse of a.
Ifn=1, (Be a)(1) = B(L)a(l) =1 =¢e(1).

If n > 1, then

i}

(8 & o) (n) % B(d)a(n/d) = % B(d)a(n/d) + B(n)a(l)
din dln

d<n

-1
d%nB(d)u(n/d) +{ 18] di 8(d)a(n/d) }a(l)
d

n
d<n n
=0 =¢ec(n).
Hence,
¢ @ B=B®a=c¢
and 8 = o .

Theorem 2.16. If o is a multiplicative function, o # O then a_l exists

and is multiplicative.
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Proof: Since a(l) = 1, by Theorem 2.1, the inverse exists, by Theorem
2.15, and is ‘defined by o 1(1) = 1, o *(n) = - § o" Y (da(n/d) if n > 1.

? d|n

d<n

The proof that a—l is multiplicative is relatively simple but, because
of the compufations involved, is very long. A short outline of the
proof follows. The computations which are omitted are very similar to
those in the proofs of Theorems 2.13 and 2.15.

It can be verified for a finite number of cases that if (a,b) = 1,

o Tab) = o (@e tb).
If this is not true for all positive integers a and b; there is a pair
(m,n) = 1 such that mn is the smallest product with relatively prime

factors, m and n, and

o tm) # o ma ()
That is, if cd < mn and (c,d) = 1, then the eqﬁélity holds. Using this
fact and the fact that if (m,n) = 1 and dlmn, then d can be written as

d = st where slm and t|n, it is possible to show that

o Tmetm) - o tmn) = 0.
The computation depends on the definition of a—l and the fact
st < mn implies

a_l(st) = anl(s)a—l(t)
where s and t are given above. Thus,

ot e ) = o7t ),
contrary to the assumption, and it is impossible to choose a first
product mn asiwas done. Hence, a_l is multiplicative.
Using Theorem 2.16 and the construction in the proof of Theorem

2.15, it is possible to find a_l(pa) and, using Theorem 2.5, to find
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u_l(n), It is interesting that, since

% u(d) = em, v im) =1
din

for every natural number n. That is, the identity function for ordinary
multiplication is the inverse of the Mobius function under convolution
multiplicatioﬁa

Although not all of them are referred to directly, these last four
theorems are the basis for the conclusions drawn in the last section
of Chapter IIi.

The follbwing theorem shows that the identity is the only function

which is its own inverse.

Theorem 2.17. If o is its own inverse under convolution multiplication,

then o = ¢.

Proof: Suppose a @ o = €. Then
1, ifn=1

H

e(n) = %a(@aﬁﬂd)=z
din {0, if

o
\
ot

Since o is multiplicative, a(l) = 1. Thus,

e(p) = a(Da(p) + a(p)a(l) = 0
implies
2a(p) = 0 or a(p) = 0.
Suppose
a(pt) = 0 when i < a.
Then .
%) = a(LapY + a@ar™ + ...+ apDa(l)

20 (p®) = 0.



Or,
a
a{(p) = 0 for all a > 0.
Hence, also, .
a(n) =0 ifn > 1.

Therefore o = €.
Composition of Multiplicative Functions

It would be very useful if the ordinary composition of two multi-
plicative fuﬁctions were again a multiplicative function. This, how-
ever, 'is notéthe case. The purpose of this section is to examine
some types oﬁ functions whose compositions are multiplicative.

First, éo verify that not all compositions of multiplicative
funétions aré multiplicative, consider the following example.

Note that ¢(21) = ¢(3)$(7) = 26 = 12. Then,

(t o ¢)(21) = 1(12) = 6.
But,
(t09)(3) (tod)(7) =r1(2)t(6) = 2:4 = 8.
Thus,
(to®)@L) # (t 0o ¢)B) (ro¢)(N).
Hence, T and ¢ are multiplicative but 1 ¢ ¢ is not.
There are examples of compositions of functions which are multi-
plicative. It will be recalled from elementary algebra that
| lab] = [af|b]
for all inteéers a and b. Thus;
)| = [umum)| = Ju@)||lum].
Hence |u| is %ultiplicative. This is an example of the following

theoren.
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Theorem 2.18. If o is completely multiplicative and 8 is a multipli-

cative function such that the range of B is a subset of the domain of
a, then their composit o o B is also a multiplicative function. If

B is completely multiplicative then so is o o B.

Proof: With the conditions as stated for o and B, and (m,n) = 1,

(0 0o B)(mn) = afg(mn)] = of[B(m)B(n)]

a[8m)]o[B(n)] = (a o B)(m)*(a o B)(n).

If B is completely multiplicative the same proof holds for all m and
n, thus o o B is completely multiplicative.
There afe other functions whose composites are multiplicative.
If £f(n) = n2 for all n, then 7 of is multiplicafive. Since
(t o f)n = T(nz):
(r o £)(m) = t[m)°] = r(m’n).

But, if (m,n) = 1, then (mz,nz) = 1 and

c(m°n?) =t (m%) (m?).
Hence,
(t o f)(mn) = (r o H)m (xr o £)(n)
when (m,n) = 1 and 7t o f is multiplicative.
It is obvioué that this example does not satisfy the hypothesis

of Theorem 2.18. However, it is ihcluded in the following theorem.

Theorem 2.19. Let g be a multiplicative function. If g is a multipli-

cative function such that
(B(m),s(n)) =1
whenever (m,n) = 1, and the range of g is a subset of the domain of g,

then ¢ o g 1is a multiplicative function.
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Proof: With' the given conditions,

(o o ) (mn) = o[f(mn)]
a[8(m)g(n)]
a[B(m)]a[B(n)]

(¢ 0 B)(m)+(a o B)(n).

Hence, o o B'is a multiplicative function.

It is pqssible that these two theorems do not cover all available
cases. HoweQer, for the purposes of this study, they are sufficient.
It is only nécessary that oﬁe know that there is a sufficient number
of examples so that general discussion is merited. The réader should
be able to see other examples which satisfy the hypotheses of these

theorems.
Dirichlet Series

The discussion of generating functions in the chépters that follow
uses éertain‘elements of analysis° Although the formal properties of
series dre eésentially all that is needed it seems advisable to state
for the readér the theorems from analysis which are applicable and

which sometimes make a proof. easier.

Definitidn 2.9. A Dirichlet series is a series of the form

o

) am)n™>.

n=1

The vari?ble s is usually considered complex and; when the sefiesk
converges, it;coﬁverges in some haif plane to a complex valued function
of s. In ordér to make the discussion appear more elementéry; attention
will be restricted to those complex s which lie on the reai line. Thus,

in
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] amn™,
n=1
the reader m%y consider s a real number and the series will converge
to a real number for s > So .
Hardy aﬁd Wright (12) explain the role of Dirichlet series as

generating functions in the following manner.

The theory of Dirichlet series, when studied seriously for its
own sake, involves many delicate questions of confergence. These are
mostly irrelevant here, since we are concerned primarily with the for-
mal side of the theory; and most of our results could be proved . . .
without the use of any theorem of analysis or even the notion of the
sum of an infinite series. There are however, some theorems which
must be considered as theorems of analysis; and, even when this is
not so, the reader will probably find it easier to think of the series
which occur as sums in the ordinary analyticdl sense.

One of the tools needed is the operation called the formal product
of Dirichlet series. The formal product of two Dirichlet series is
formed by taking all possible products of the terms of one series with

the terms of the other and combining powers of n"°. Thus, if
Yau ol .| Y bwv il = Y c@mn’3,
u=1 n=1 n=1

by collecting coefficients on the left side

c(n) = )} ab) = % a(d)b(n/d) = % a(n/d)b(d) .
' uv=n - d|n d{n

The following theorem shows the uniqueness of coefficients in

Dirichlet series.

Theorem 2.20: If

) a(n)n”™> and ) b(n)n~>
n=1 ‘ n=1

converge to the same function in some region, then

! a(n) = b(n).
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The convergence is necessary for an analytic proof of the theorew.
However, in the formal sense this would be taken as the definition of
equality of %he series and convergence is nét a factor.

Formal products may be extended to a finite number of series. The

formal product of the series

<] o]

Ja@u™s, JTbmvs, ] cww S,
u=1 v=1 w=1

is, then,

y(m)n~>
1

ne~18

n
where

y(n) = ) a@becm)... .

UvW...=n

It is possible under certain circumstances to extend the defini-.
tion of formal pioduct té an infinite set of series. For fhis purpose,
suppose that a(l) = b(l) = ¢(l) = ... = 1 so that the term
a(u)b(v)c(w)... contains only a finité number of factors which are not
1. Then, y(n) is the same as given in the finite case. This holds
if the series aré absolutely convergent or, in the formal sense, if
the order of multiplication has been specified.

A most important theorem, as far as generating functions are con-
cerned, is de?ived by using a’fofmal product of series. First, let f
be a multipli¢ative function and recall that £(1) = 1. Take the collec-
tion of all series of the form |

1+ f(p)pfs + f(pz)pézs + ...+ f(pa)p—as + ...
for p a prime;, For example, if p = 2, then a(u) = f(za) when u = 22
and is zero oiherwise. If the series are multiplied, in the natural
order of the ﬁrimes, then, by the Fuﬁdamental Theorem of Arithmetic,

each n occurs:just once as a product n = uvw ..., and
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a a a

- 1 2 T, _
y(n) = £, )£(,") ... £ = £()
when
al a2 ar
n=Dp;py, --- P -

Since the order of multiplication is specified and y(n) reduces to a
single term, no question of convergence arises. This proves the follow-

ing theorem. .

Theorem 2.21. If f(n) is multiplicative then

] £n™S = H1+£m)p S+£(p2p 2% + .o+ £Tp™2 + .02
n=1

p

where the product is taken éver primes in the natural order.

A similar theorem which depends on the absolute convergence of the
series can be proved. However, since it is desirable that questions of
convergence be avoided, Theorem 2.21 is sufficient here.

The simplest of the Dirichlet series is

t(s) = ) n°>.
n=1

It is convergent for s > 1, and its sum ¢(s) is called the Riemann zeta
fuﬁction. Volumes have been written involving this function and it is
not the purpose here to delve deeply into theory concerning it. It is
a fact that one of the outstanding unsolved problems of mathematics is
the location of its zeres. In this paper, it is mostly a useful tool.

¢

The next theorem could be considered a corollary to Theorem 2.21.

Theorem 2.22. If s > 1 then t(s) = I(l-p >) .

p

0f course, by;Theorem. 2.19

YnT =1+ p s p_ZS + ...}

n=1 P
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without considering convergence.

Another Dirichlet series which is often encountered is given by
L(s) =17°-3%+5% - ...,
It can be seen that

x(m)n~5.
1

L(s) =
n

018

It is also possible to write L in product form as;

L(S) = H—i——_—;
p 1-x(@p
or;
L(s) =1 l_s I 1
q l-qg r l-r-s
where

g =1 (mod 4) and r = 3 (mod 4).
Before closing this chapter it is necessary that some comments be
made concerning notation and nonemclature.
When

F(s) = s

n

f(n)n~
1

o~18

is written it usually means that the series converges to a function of
s. In this paper, both the symbol and the name functioﬁ are used some-
what loosely,' The symbol, and the name generating function, will be
intended to convey the idea that there are some values of s for which
the series éonverges to F(s). However, it should late¥ be obvious to
the reader that when the proper order of terms is chosen the series
generates f e?en if it does not converge. Sometimes the séries is
referred to a$ the generating series. The two designations are almost

interchangeable, however, generating series is often used to indicate



that F.is in series rather than product form. The symbolism also pro-
vides a convenient name, such as ¢, L, or F by which to refer to the

series.
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CHAPTER 1I1I

GENERATING FUNCTIONS FOR MULTIPLICATIVE ARITHMETIC FUNCTIONS:

ZETA FUNCTIONS AND RELATED FUNCTIONS
Introduction to Generating Functions

From the discussion in Chapter II, it may be observed that some
properties of.a multiplicative arithemtic functioﬂ are attainable from
its definition or elementary formla. There are questions concerning
such function§ which are not easily answered from the elementary theory.
The purpose of the present chapter is not to raise and answer such ques-
tions but to examine one tool used by mathematicians in doing so. This
tool is the generating function.

The firsf study of generating functions is attributed to Euler.
According to Qickson (7), the study of partitions led Euler to discover
the first genérating'functions. The greatest usefulness of such func-
tions has probably been in the additive theory of numbers. However, the
impetus provided by their study hés led to developments in the theory of
multiplicativé functions as well. Their usefulness extends also to the
theory of comélex variables.

Writers in the field have found difficulty in giving a precise
definition of%”generating function'". Some have attempted a definition;
others give aédiscussion only; still others define it to be whatever

type function:is useful at the moment; and the remainder assume that the

30
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reader is fully acquainted with them so that no definition is neces-
sary.

Vaidyanathaswamy (30) gives the following somewhat confusing
definition:

The "'generator'" of a multiplicative function f(N) 's_ﬁ function
f(x,z) of two arguments, such that f(p,z) = f(p)z + £(p7 )z~ +
The ''generating function" F(x,z) or f(N) is defined by F(x,z)
=1+ f(x,z).

Hardy and Wright (12) handle the idea of a generating function in
the following manner. Their first approach is thus:

A Dirichlet Series is a series of the form

oo

F(s) = ) a(n)/n®

n=1

The variable s may be real or complex, but here we shall be concerned
with real values only. F (s), the sum of the series, is called the
generating function of o -

This would lead one to believe that they intended that all gener-
ating functiqns should be Dirichlet series. However, this is not the
case for later in the same chapter (12) the following discussion is
added.

The generating functions discussed in this chapter have been de-
fined by Dirichlet series; but any function

F(s) =) o u (s)

nn
may be regarded as a generating function of a - The most usual form of
un(s) is '

. -A.s
= n
u (s) =e

Where A_.is a sequence of positive numbers which increases steadily to
infinit?. The most important cases are the cases A_ = log n and x_ = n.
When A. = logn u_(s) = n - and the series is a Dirichlet series.

When AE = n,'it is a power series in x = e~

Thodgh something may be lacking in the way'of mathematical pre-

cision, this approach at least yields a general form for generating
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functions., &his lack may even be good. For, a too restrictive defini-
tion might sp delimit the concept as to make it useless.

The pow%r series is of little use in the theory of multiplicative
functions. &ts usefulness is restricted chiefly to the additive theory
‘and particulérly to the theory of partitions. Power series do arise
in the multi?licative theory, but, as will be seen in Chapter IV,
their role i§ secondary.

The preéent'chapter will be concerned with generating functions
which involve Dirichlet series and series (or infinite products) which

are related to them. In Chapter IV another type of generating function

will be considered.

Generating Functions of Some Well-Known

Arithmetic Functions

The.genérating functions included in this section are well known.

They are found in standard works such as those by Hardy and Wright (12),
LeVeque (16) or Titchmarsh (29). No attempt is made here to assign
them to their orignatbrs° The purpose of including them is threefold:
(1) to acquaint the reader with the generating functions of the arith-
metic functions which are usually included in an elementary number the-
ory course; (2) to illustrate techniques which will bé used later;
and (3) to p?ovide the reader with basic formulas frpm which others may
be developed by processeés to be shown in this chapter.

Most oféthe functions cénsidered here have generating functions
which are co%binations (products and quotients) of zeta functions. In
fact, it see&s natural that this should be the case for multiplicative

functions, since the terms of the zeta function are themselves
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-5, -S

factorable. That is, if n = ab, then n’° = (ab)-S =a’'b Hardy

observed in an address to the London Mathematical Society (12) that it

was natural to use the zeta function in connection with the theory of

primes because it was more natural to multiply primes than to add them.
Proofs of some theorems are included to illustrate the techniques.

However, to avoid repetition, some are stated without proof.

Theorem 3.1. 1/z(s) = ) u(mn > (s > 1).
’ n:l.

Proof: Since 7(s) = I[(l-pus)'l and u(pa) =0, fora> 1,
p
1/2(s) = N(1-p"5) = T{l+u(p) “S+u(pdp 25+ ...1.
% P

But by Theorem 2.21 this is

Youmn®.
n=1

At this point, it is desirable to digress from the gtated purpose
of this section to considér an idea which 1s inherent, though nét ob-
viourly so, in the theory.of generating functions. The equation of
Theorem 3.1 may be used as a definition for u.

To see that this statement is a fact, suppose h is a multiplicative
arithmetic function, defined on P, such that

1/z(s) = J h(m)n >,
n=1

Then, by Theorem 2.20, h{n) = u{n) for every n e P.

Another property of u may be seen from the following:
z(s) 1/z(s) = Zln‘s - Y u@n®
n=

n=1

S

[ -
[ % u(d)] n = 1
1 d n J

1]
It ~18

n
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Hence,

pu(d) =1, if n =1, and 0, if n > 1.
d|n

But this formula for this sum is the same as that derived in
Theorem 2.9.

The other generating functions mentioned in this paper lend them-
selves . to the same treatment. However, the elementary formulas are not
always easily derived. This method of defining the multiplicative
arithmetic functions will therefore probably not replace the usual
methods. It should be mentioned, though, that for the purpose of appli-

cations this type of definition is sometimes used.

Theorem 3.2.

t(s - 1)/c(s) = )} omn™> (s > 2).
n=1

Proof: Use Theorem 3.1 and multiply the Dirichlet series to get:

[e0]

) nl™s ) p(mn~® = Y nen® u(n)n—s
=1 n=1 n=1 n=1

z(s-1)/z(s)

n

°§‘

h(n)n~°, where h(n) = % du (n/d).
n=1 d|n
ThuS, h(n) = ¢(n) and

6(n)n >,
1

c(s-1)/z(s) =

n

N t~18

It will be seen in the next chapter that ¢(n) also has a generating
function of another type. Thus, by the uniqueness theorem (Theorenm
2.20) the arithmetic function generéted by a given generating functiph
is unique but the generating function for a given arithmetic function
may not be unique. In fact, since for an arithmetic function f, f(n)

is determined by the nth term of the series, this uniqueness must be
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present before a series can be a generating function.

Theorem 3.3. t(s)e(s-k) = ) dk(n]n_s (s >k + 1).
n=1

Proof: As in the proof of Theorem 3.2, z(s)z(s-k)

co

=7n% J ol Y n® g = Y ck(n)n-s.
n=1 n=1 n=1 d|n n=1
[+ <]
Corollary 3.4. t2(s) = ] t@n™® (s > 1).
n=1

Proof: Let k 0 in Theorem 3.3.

Corollary 3.5. z(s)z(s-1) = J o(m)n™ (s > 2).
n=1

Proof: Let k = 1 in Theorem 3.3.

Corollary 3.4 can also be arrived at from another direction. If
dk(n) is the number of ways of expressing n as the product of k factors
where the same factors in a different order are counted as different,
then note that dz(n) = 1(n). Then Corollary 3.4 is also a corollary

of the following theorem.

Theorem 3.6. ;k(s) = I dk{n)nﬂs.

Proof: ck(s) (I =7 n® ) 1 = dk(n)n_s.

1 dyew@y=n n

I~ 8

The following theorems are given here because of their relation
to those already given. They are related to later work as well because
they are simple examples of methods of 'discovering' functions through

the use of generating functions. However, reference will be made to
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this section at the appropriate time in order to remind the reader of

their importance.

Theorem 3.7. £(s)/c(2s) = ) |u(m)|n"%.
n=1
Proof:
1- ~2s -S
t(s)/e(2s) =1 |=B—| =1(1 +p7).
p (1-p p

Recall the proof of Theorem 3.1 and notice that p-s has the same coef-
ficient except that it is positive. Thus the function generated here

is the same except that all signs are positive. Therefore,

z(s)/c(2s) = ) |um)|n”5.

n=1

It‘is,easily seen that{u(n)}? = |u(n)| and, in fact, {u(m)}

2kl u(n) for k any

= |u(n)| when k is a natural number. Also,{u(n)}
natural number. Thus, by Theorems 3.1 and 3.7, all positive integral
powers of p are generated by these same series.

Theorems 3.8 and 3.9 were given by Titchharsh (29) who proved

them in a manner similar to the proof for Theorem 3.7. The proofs used

here will be referred to later as examples of a more general case.

Theorem 3.8.

2]

23(s)/5(2s) = ] t(n”S (s > 1).
n=1

Proof: By Corollary 3.4, ¢2(s) = ) tmn S (s > 1)
n=1

8

and, by Theorem 3.7, £(s)/t(2s) = ) lum) |n™% (s > 1).
n=1



Thus,
£3(s)/t(2s) =5%(s) * r(s)/t(2s)
= Jrmn. ] Jum a7
n=1 n=1
= J h(mn™®
n=1
where

h(n) = %lu(@lT@/@-
din

Recall that h(n) is multiplicative and that h(l) = 1.

[b™] = 0 for a > 1, h(p?)

i

%ammﬂv®W®
dfp

(p%) + 1™

(a+1l)+a=2a+1=

a4 2 ar

Thus, if n = PPy +-e Py then

r
a a
1 2
h[pl ]h[pz J e

h(n)

2a1} 2a2 2ar )
T pl )r p2 R pr =

3(s)/c(2s) = § tmHn

Hence,

Theorem 3.9.

gh(s)/z(2s) = J {t@)2n"° (s > 1).
n=1

D te® + [um te*)

Then, since

1

37



Proof: Multiply z(s) * z3(s)/z(2s) in their series form.
Other Generating Functions Involving Zeta Functions.

There are many other less well-known functions of number theory
which have generating functions defined by Dirichlet series. Although
these are not as often used in elementary number theory, some of them
warrant consideration from a historical point of view while others are
of a practical nature and relate handily to discussions in this.
chapter.

The multiplicative functions of the form kv(n), where k # 0 and
v(n) is an arithmetic function such that |

v(mn) = v(m) + v(n),
were discussed in Chapter II. Two special functions mentioned where
A{(n) and one such that k = 2, v(n) = r where
a, a a

n P2 T
no=pypy,T ce. P

Theorem 3.10.

z(2s)/z(s) = L A(mn > (s > 1).

n=1
Proof:
£(2s)/z(s) =0 ’EJE:EE- by Theorem 2.21:
pL 1-p
Thus,
1,-1 ) 1 ...
£(2s)/t(s) = I{1 + =) = TI(1 - L > )
; b .S s
p p p p

1}

Y-S = Y a@n™®

n=1 n=1

where q is the total number of prime factors of n.
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Theorem 3.11.

z(s)/c(2s) = ) 2" n"% (s > 1)
n=1
a a a
where n = pllpz2 . prr°

Proof. By Theorem 3.7,

£2(s)/5(2s) = ¢(s) - t(s)/t(2s)

[2+]

J o7 ] lum)n”s.
n=1 n=1

Thus;

1

t?(s)/t(2s) = ] n° % lum)
n=1 d|n

1 and

If g(n) = % lum)|, then g(1)
din ‘

g™ = lu| + @] + e

oo+ M =110+ ..+ 0 =2,
Then,
a, a a
1 72 :
gn) =g, p," ... p.0)

r

and since g is multiplicative,

al a2 ar T
gn) = glp; Jglp,™) -.. glp, ) = 27
Thus,
t2(s)/z(2s) = ) 2'n"°.
n=1

Theorem 3.12 is a more general theorem of the same nature as

Theorem 3.7. In fact, Theorem 3.12 reduces to Theofem 357 for k = 2.

Theorem 3.12. If qk(n) = 0 when n has a kth power, k > 1, as a factor

and qk(n) = 1 otherwise, then,

t(s)/c(ks) = | q (mn"". (s> 1)
- n=1
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Proof: The proof is essentially the same as the proof of Theorem 3.7.
It is implicit that k > 1 for if k = 1, then %y is the identity

function. This gives the obvious fallacy z(s)/z(s) = z(s). This

would mean z(s) = 1 for every s such that z(s) # 0. However, it is

known that z(2) 12/6.

The great Indian, Ramanujan, discovered several generating func-
tions (23). It is interesting that he found them "incidentally in the
course of other investigations'. Also interesting is that he generally
handled series with a casual disregard for convergence.. In fact, many
of his earlier proofs were wrong for that reason, but G. H. Hardy,
toiwhom heréommunicated them, was surprised to find many of His_calcu—
lations correct. As was usual in his day, his originai proofs were
not published with the results. However, his methods Werﬁkembloyed
by others wHo followed him and by his teacher,‘G.,H‘ Hafdy, as well.

The fiist theorem from Ramanujan is an ekample of a generating
function for the ordinary produdt of two arithmetic.funCtidns« It
should be recalled that the generating functiéns for oa(n) and Gb(n)
are given by Theorem 3.3. The proof used here was giyen by Titchmarsh

(29), who also specified the region of convergence.

Theorem 3.13.

z(s)z(s-a)z(s-b)c(s-a-b)/r(2s-a-b)

e ) ' —S
= 2 oa(n)ob(n) n
n=1
(s >max {1, a+ 1, b + 1, a+ b+ 1}1).

Proof: By Theorem 2.21 the left-hand side becomes
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-2s+a+b
I . 1l-p ’
P (1-p"%) (1-p5") (1-p7P) (1-p ST
and with z = p_s this is then
i l—pa+bz2
P (1-2) (1-p%2) (1-p°2) (1-p**P2)

The fraction can then be broken down by the method of partial fractions
to give:

b
1 1 P p__,_7D
(I'Pa)(l—pb) 1-z  1-p%z 1-pbz 1-p% "z |

Then, write each fraction in the braces in series form and combine

to get:
¥ - 1 - z‘ (1_P(m+l)a;p(m+l)b+p(m*l)(a+b))zm
(1-p)(A-p) m=0
- a1 . z (1_p(m+1)a)(1_p(m+l)b)zma
(I-p)(1=p) m=0
Hence:

z(s)z(s-a)z(s-b)r(s-a-b)/z(2s-a-b)

pp@ha b

p m=0 1—pa 1-pb pmS

=1 ] o, (Mo, P
p m=0

= nzloa(n)ob(n)n_s

by applying the formula for o, and Theorem 2.21 in that oxder.

k

It is reasonable to expect that a theorem as this would have some

interesting special cases. If-a =b = 0 then Theorem 3.9 is a special

—

case. Some other special cases are included in the following



corollaries.

Corollary 3.14.

i

£2(s)c?(s-1)/z(2s-1)

tmomn® (s> 2).
1

|
e~18

n
Proof: Let a = 0, b = 1 in the theorem.

Corollary 3.15.

£(s)z?(s-1)z(s-2)/c(2s-2)

= zlcz(n)n_s (s > 3).
n=

i)

Proof: Let a = b = 1 in the theorem.

The next theorem was also "found" by Ramanujan (23). Ié is in-
cluded here without pi‘oof° A method by which it and others like it
could be discovered, will be included in the finai sectién of this

chapter.

Theorem 3.16.

L(s)L(s-a)L(s-b)L(s-a-b)/(1-2 25*3*Py, (25 ab)

= 7 D™ (2n-1)0, (2n-1) (20-1) 5.
ne1 a b

Corollary 3.17.

Lt s/ (12725 z(2s)

-1 12 (2n-1) (2n-1) 75,
1

n
I e~18

n
It is a fact that the coefficients of the terms of the series for

L(s) give the multiplicative function x(n) defined in Chapter II.
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That is,

L(s) = ) x(n)n >,
n=1

Hence, products formed from L(s) and z(s) generate multiplicative
functions. Both L(s) and g(s) are also involved in the study of the
additive theory of numbers. In_fact, L(s) is the basis for the study
of the distribution of primes of the forms 4m + 1 and 4M + 3.

It will be observed that £(s) L(s) generates the multiplicative

arithmetic function %}x(d)n- However, 4z(s)L(s) generates the function
d|n

r(n) from additive theory where r(n) is defined to be the number of
representations of n as the sum of two squares. These representations
include squares of all integers and different orders are counted as .
different.

The proof of the above staﬁement requires theory which haé not
been developed. For a discussion of r(n) andva proof, the‘rgaﬁer is

referred to Chapter XVI and Chapter XVII of The Theory gﬁ-Nﬁmbers by

G. H. Hardy and E. M. Wright.

Some Classes of Multiplicative Arithmetic Functions

and Methods of Finding Their Generating Functions

The foregoing sections of this chapter would almost lead one to
believe that generating series were discovered by accident. The reéder
might even get’the feeling that one just takes some combinétion of ¢
or L, multiplies or divides them, and waits to see what happe’ns° It
is a fact that this would produce a multiplicative arithmetic function
and give its generating function. However, it ié desirable to have

a more systematic approach.
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Unfortunately, there is such a wide range of arithmetic functions
that it is impossible to classify them all. Vaidyanathaswamy (29)
attempted to classify the elementary functions. However, his classifi-
cations seem to be of a little use in this study. The purpose here is
to discuss some methods of finding generating functions and to extend
these methods.

Indications of some possibilities have already been seen. For
example, it is evident that Theorem 3.3 gives a generating function for
an infinite class of arithmetic functions. However, Theorem 3.13
would indicate that this is merely a subclass of a much larger class
of functions which are generated by the series in Theorem 3.13. By

taking a different direction, it can be seen that .

A @ = ] o @
k d%n k

is also a multiplicative function of n and that if F(s) generates Oy

then ¢ (s)F(s) generates A In fact, the general case is given in the

K

following theorem.

Theorem 3.18. If

f(n)n~*®
1

F(s) =

18

n
is the generating series for the multiplicative function f, then
t(s)F(s) gives the generating series for the multiplicative function A
defined by A(n) = f(d).
dln : ‘
In Theorem 2.13 it was found that the convolution product of two
multiplicative arithmetic functions is multiplicative. That is, if B

is the arithmetic function defined by .

B(n) = % £(d) g(n/d)
d|n
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where f and g are multiplicative, then B is multiplicative. If f and
g are functions whose generating series are known, it is possible to
find the generating series for B. 1In fact, an example of this was seen
in the proof of Theorem 3.8 where a method of determining the function
values of B was also used. The next theorem covers the general case:
If g(n) = 1 for all n, Theorem 3.19 is a special case of Theorem

3.19.

Theorem 3.19. If

F(s) = ) f(m)n >
n=1
and
G(s) = J gmn™®,
n=1
then
F(s)G(s) = j B(m)n >,
=1
where

B(n) = % £(d)g(n/d).
din '

Proof: The proof follows by the Dirichlet multiplication of tﬁe two
© series.

The generating function found by using Theorem 3.19 depeﬁds only
on those chosen for f and g. If e(n) is 1, if n =1, and 0, if n > 1,
e 1is the idéntity of convolution multiplicatien and no new generating
functions are found by Theorem 3.19, if g = or f = €.

In Theorems 3.2 and 3.3 the functions z(s-1) and z(s-k) were used,
It should be noted that h(n) = nk defines a completely multiplicative

function and that
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c(s-k) =
n

He—18
0
0
o~ 8
=
I
)

is its generating function. If g(n) = nk and f(n) # ¢(n), then for a
fixed f(n) an infinite class of functions may be created by using
Theorem 3.19.

From the foregoing discussion it is evident that many generating
functions of multiplicative functions may be found by using the rela-
tively few elementary functions for which the generating functions are
known. There are still many questions unanswered.

Two such questibns stem from Theorems 3.8, 3.9 and 3.13. 1In
Theorem 3.8, a generating function for T(nz) is given. In Theofems 3.9
and 3.13 generating functions are given for ordinéry products of some
elementary multipliéétive functions whose generatiﬁg functions ére
known. The functioﬁ r(nz) is a special case of the composition of
multiplicative functions as described in Chapter II.

Is there é general method of arriving at a generating function
for composites and ordinary products? Unfortunately, the ansﬁer is not
available. Theorems 3.8 and 3.9 were established by essentially the
same process. - While there is a similarity in the generéting function
of % (Theorem 3.3) and 9, % (Theprem 3.13), there is no obvious way
of obtaining the second from the first.

The most pfomising method seems to be the method used by Nadler
(19)(20). It is difficult to determine if this mefhod was originated
by Nadler but in the research for this paper it has not been found in
the writings of his predecessors. This includes those mentioned in his
bibiiographyo It qould actually hﬁve beén the method used by Ramanujan

to find the formulas in Theorems 3.13 and 3.16.
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By this method, it is possible to find generating functions for
some, if not all, ordinary products and compositions. It should also
be applicable to other functions. Essentially it might be described
as an inverse for the method used in some of the proofs.of this chapter

(see Theorem 3.13). Some examples will serve as illustrations.

Example 3.1. - Let
£(m) =A@t = (-1%m)

where q is the total number of prime factors of n. Suppose that

(e 0] _ (=] -t __-t
L £mn™ =1 ] £pp .
n=1 p t=0
Then,
[ fmn™® =1 § 0Fer1)p™™
n=]1 p t=0
= m{1-2p°+ Sp_zs - 4p_35 + Sp_45 - ..t
p
1 | 1-p~° : §2t25)
el e o
p (+p )% p | l-p - g%(s)

The formula found in Exampie 3.1 may be .proved Ey the method used
to prove Theorem 3.8 using the result of Theorem 3.10. Aﬁ»interesting
side result here is that A ® A = A « 1 where ® is cénVOlufion,multipli—
cation and ¢ is ordinary multiplication.

Consider the more complicated example which gives the generating
function of A - h2 where A and h2 are given in Definition 2.6 and

Theorem 2.12 respectively.

Example 3.2. Let g(n) = (—l)qZr where q is the total number of prime

factors of n and r is the number of distinct prime factors of n. Then



-t
Legmn™ =1 Jglplp
n=1 p t=0
gives §
T o(-1%%n7S = m{1-2p75 + 2p7%S - 2p73 4 L)
n=1 o)
= n {1+ § (-1t2pts
P t=1
o t
=H{l+221-i-
P t=1p~ |

- T+ 200-p%)/ %51
P

= 7 {1 - 2(l—ps)/(l-st)
P

= I (-1+2p° - p°%)/(1-p°%)
p

= 1 (1-2p7% + p 28/ (1-p7%)
P

-2s

= 1 (1-p"5%/ (1072 = £(28)/22(s).

p

The following example due to Nadler (19) not oniy invelves an

ordinary product of multiplicative functions but also a composition.

Example 3.3. Defihe the function pa by

0, =1 % m)

where a is a real number, and, as usual, n is a natural number. If
r t.
a = 0 then pa(n) = 1(n). Suppose a # 0 and n = I pil, From its

i=1

elementary formula,

48
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. i

1=
Also,

_a/2 T tl(—n/Z)
n —]'[pi
i=1

Then

o m) = n % (m)

a a

1 o1

T —tia/2 tia/2+a : a
I p. -p. /[l—piJ . A
i=1

Now, consider the function pa(nx),'where X is a natural number greater

than unity. Form the expression

Lo, @ n™ =1 I L@
n=1 p t=0

and consider the series in the right-hand side. By (A),

v tx, - : ® 2 2‘ ¢
Xooa(p X)p7S o 1/(1p?) | (p EX/2. At/ 24a) ots
t= | =0

Jp

This latter series may be summed as the difference of two geometric

series to get

ax/2 [ ax/2-s

1/(1-pM) {1/ (1-p ) - p%/(1-p )

ax/Z [ ax/2 -s

_(-p )/(-p?) - p*-p

(1-p ~-ax/2- s)(1 ax/z s)

)/ (1-p%)

-ax/2+a-s _ ax/2 -5

_-pth/a-p® « @t 5)/(-p%)
(l_p—ax/z-s)(l_pax/z s)
1« (p—ax/2+a . pax/Z)Pjs/(1_pa)
(l_p—ax/Z—s)CI_pax/Z—s)
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_ 1+ pa(PX_Z)p_ . (B)
(1-p 2275 (1p )

ax/2-s

Thus, using (B),

) oa(nx)n's =1 2 o (p *)p*
n=1 p t=0

1+ (px 2) -S

= ]I
o (1_p-(s+ax/2))(l_p-(seax/Z))

= r(s+ax/2)c(s- aX/Z)H{l+o (px :

. (©
P .

The special; case of x = 2 gives

p,In"% = c(s-a)e(s+a)e(s)/z(2s).

n=1

e~ 8

‘The product remaining'in (C) 1is not alWaYs a zeta function but it

may be observed that

-S

Il e~18

11 + o, 6™ p7%) =

1u(n)lp(n Y
P n .

1
Thus (C) may then be written as a product of»Dirichlet‘series;
Some further results are easily obtained. One of these is that

(C) remains the same if (-a) replaces a. This is due to the fact that
o_ () =0 ().
If

P ) = o, (/b (M)

then a formula similar to (C) exists for 5;, of which a special case is,

v — 2, -s _ g(s+a)(s-a)
lea(n o z(s)



Nadler (19), (20) also showed that the same technique, with a
slight alteration, could be applied to yield functions involving L(s).
Essentially, the only change necessary is to write

L(s) = 1(1-q" ) ! n@-r %7}
q T
where q and r are primes such that q = 1 (mod 4) and r = 3 (mod 4).
Using this method Nadler (19) developed a formula for 0y (2n+1)x

which is similar to (C) above. A special case which can be proved by

the methods used earlier in this chapter is given by the formla,

) (-1)“pa{(2n+1)2}(2n-1)"5 = L(s)L(s+a)1(s-2)/(1-2"2%)c(2s).
n=0

Two other special cases of more complicated formulas found by
Nadler (20) are of interest. They may also be proved by methods used
earlier, -

~They are:

] o (") = £(s)5(s-a)z(s-28) /5 (25-22)
n=1 ,

and

] x(mo_(a%) = L(s)L{s-a)L(s-2a)/ (1-222"%)g (25-2a).

n=1

It is evident that by using this method, a preduct representatio

51

n

of the generating function can be obtained. If thé series in the pro-

duct representation ¢an be summed as in the Exampies_S.l; 3.2, and 3.3
the generating function can be written as a product of Dirichlet serié
However, as pointed out earlier, these Dirichletgsexies are not always

zeta series or L series.

S.



CHAPTER " IV
GENERATING FUNCTIONS INVOLVING LAMBERT SERIES
Some Lambert Series and the Associated Power Series

A problem of recent interest concerns generating functions of a
type other than Dirichlet series.

It will be recalled that Hardy and Wright (12) were quoted, in
Chapter III, as proposing that any function

F(s) = Zanun(s)

might be regarded as a generating function for o If

oIS
un(s) B -ns
l-e
and
~$
X=e ,
then
&
u (s) =
n 1 - <"
Thus, a function F defined by
ot a(n)xn
F(x) = ] -
n=11-x

may be regarded as the generaéing function of a(n). A series of the
form a(n)xn
n=l 1 - x"

is called a Lambert series.

52



The following theorem gives a useful property of Lambert series.

Theorem 4.1. If

then

Proof:

thus

~wheTre

This relation between a(n) and b(N) is the same as that considered

earlier in connection with the Dirichlet series. In fact, the following

a t a(n)xn _
F(x) = ) and b(N) = ) a(n),
n=11 - x n%N
F(x) = ) bN)x".
n=1
< _ (xn N X2n R I ),
1-x"
F(x) = ] a(m) [ 2™ =] boox"
n=1 m=1 n=1

b(N) = % a(n).
- n|N

theorem shows that the entire relationship expréssed in Theorem 4.1 is

equivalent to

c(s)f(s) = g(s)

where f(s) and g(s) are the Dirichlet series associated with a(n) and

b(N), respectively, Dickson (7) attributes this theorem to Cesaro.

Theorem 4.2. If

and

a(n)n”
1

£(s) =

iho~18

.b(n)n—S
1

g(s) =

o~ 8



then

F(x) = Z a(m)x__ ) b(n)xn
n=l 1 - xn n=1
if and only if
z(s)f(s) = g(s).
Proof: If
z(s)f(s) = g(s)
then
z_l_.za(n)___zb(n)
n=1 ns n=1 nS n=1 nS

where

Thus, by uniqueness,

If

and
b(n) = a(d)
‘ d|n
the conditions. in the hypothesis of Theorem 4.1 are met, thus

b(n)x".
1

F(x) =

ne~18

n

If the conditions in the hypothesis of Theorem 4.1 are met then

b(n) = % a(d).
d|n
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The steps of the proof may then be reversed to prove that
t(s)f(s) = g(s).
It has been shown that if a(n) is a multiplicative arithmetic

function then

b(n) = % a(d)
din

is also multiplicative. Not all such functions have been explicitly
defined in the theory. However, there are many examples where both

a(n) and % a(d) define well-known arithmetic functions.
din :

The following examples show the relationship implied by Theorems

4.1 and 4.2 in the case of a few well-known arithmetic functionms.

Example 4.1. If a(n) = u(m),

then

b (n) % u(d).
'd|n

Since b(n) =1 if n = 1 and b(n) 0 if n> 1,

.(n)xn ot n
B 1 1] w@ = x
n=11 - x n=1 d|n
Example 4.2. Since n = o{(d),
| dn
§ p)x"  _ E ol o X
n=11 - x° n=1 (1 - X)Z
then
k
b(n) = d" = ok(n)
din
Thus,
P 3 n
L = o, (n)x".
n=1l1 = xn n=1 k
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Two special cases of this example were reported by Dickson (7).

If k = 1, then

0 n 00
2 nx»h = E o(n)xn
n=l1 - x n=1
and if k = 0, then
o X" o n
Z o= J t(m)x .

n=11 - x° n=l
Since a(n) is multiplicative if and only if .b(n) is multiplica-
tive, it is apparent that for each Lambert series which génerates a
multiplicative function there exists a corresponding power series. One
notes also that if a(n) is giveﬁ, then

b(n) = % a(n)
din

and by the Mbbius inversion formula if b(n) is given then

a(n) = % p(d)b(n/d).
dln

Suppose that

(n)xn

‘A(n)xn

n 1

n=l1 - x n

ne~—-138
f=n

ir~18

wheré A(ﬁ) = (-1)q and q represents the total number of prime factors
of n.

Then, A (n) = % h(d) and h may be determined from this relafion—
ship. ain

Since

h(n) = J n(@A(n/d); h(p?) = % () (n/d)
d|n dlp
=LY+ uEN Y+ ue e - L + u(rd)l(l)

= 1%+ (Dt

= (-1 %2,
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If

then

2
hm) =hip Ynlp,q ... njp

since h is multiplicative. Thus,

al a a
hm) = ((-1) 2HED 2y .. (D
a, ¥a, + ... + ar,p
P o7
But,
al + 8.2 + + a_r = q

and r is the number of distinct prime factors of n. Hence
h(n) = (-1)92%

where q is the total number of distinct prime factors. of n.
Classes of Arithmetic Functions from Designated Power -Series

Ggheralization of séme o% tﬁé theorems of the last sedtion pro-
duces . classes of functions-which»are of some interést;iﬁlthemseives.y
The first théorem of this seétion derives afcléss of éritﬁmétié fdnc;
tions by choosing Uk(an) as the coefficients Sf the:aésociated poﬁer
series. The second theorem shows how this method méy be uséd to épply
to other %unctions. Oﬁher_theorems of the section éharaéﬁéfize the
functions found‘and deveiop theory needed for a further generalization.

Harris and Warren (13) proved the following theorem corcerning
ck(an), In this theorem and in éll theorems and discussions in the
remainder of the present chapter; r and s are used as follows: r is the

largest factor of a for which (r,n) =1 and a = rs.
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‘Theorem 4.3. If £, (a,n) is an arithmetic function,

n
o f (a,n)x oo
k = 2 ck(an)xn
n=1 (1 - x" } n=1
if and only if.

_k k
fk(a,n) = 3 ck(r)n .

The proof is not included since this theorem becomes a special
case of the next theorem. It was given here as a theorem for two
reasons. First the proof given by Subba Rao (28) for the more general
theorem was patterned after that given for this one. Second, further
reference to it will be made in examples which occur later in the
éhapter.

It should be observedtthat Example 4.3 is ieally & épééial case
of Theofém 4.3, If a =1, then

X Kk
fk(a,n) =1 ok(l)n = n

and the result is exactly Example 4.3.

The following theorem is a generalization of Theorem 4.3.

Theorem 4.4. Let g and h be multiplicative functions defined on P

such that

n

h(n) = %-g(d)
d

and let r and s be as given fOi Theorem 4.3. Let f(a,n) be the

arithmetic function defined by the relation

then

f(a,n) = h(r)g(sn).
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Proof. Since, by Theorem 4.1,

h(an) = f(a:n),
din
f(a,n) = ) h(an/d) (d),
din
by the M6bius inversion formula, with r and s defined as stated, s has
no factors.ekcept those which are already factors of n. Hence any
divisor of sn which is not a divisor of n has a square factor. If d is

such a divisor then‘u(d) = 0, Thus,

% h(an/d)u(d) =,§ h(an/d)u (d) .
din d|sn

Since (r,n) = 1 and h is multipliéative,

%‘ h(an/d)u(d) =% h(r*sn/d)u(d)
d|sn d|sn

= % h(r)h(sn/d)u(d)

dlsn

=h (1) % h(sn/d)u(d).
d|sn '

But, by the MSbius inversion formula the latter sum is just g(sn).
Thus,‘ | |
~f(a,n) = h(r)glsn)

as:ciaiﬁgd., |

The converse is also true. It may be establiéhed by feVersing
the steps of the proof.

Further insight into the nature of‘f(a,n) and fk(a,n) of Theorems
4.4 and 4.3 may be gained from the following theorems.

Theorem 4.5. Let ; K
Fk(a,n) = fk(a,n)/n

where fk(a,n) is defined by
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f (a, n)x

5

1]
I~ 8

ck(an)xnu
l—x n=1
Then, Fk(a,n) is periodic in n with least period P where P is the

product of the distinct prime factors of a.
Proof: The proof is given for the more general case.

Theorem 4.6. Let g(n) be a positive valued and unconditionally multi-
plicative function of n, so that
gm,n) = g(m)g(n)
for all positive integers m and ﬁn Then, the function
k(a n) = f(a,n)/g(n)
is perlodlc 'in n with least perlod P, where: f(a n) is defined in

Theorem 4.4 and P is the product of the distinct prime factors of a.

Proof: First, it must be shown that if b is any factor of a such that
(b,n) = 1, then (b,n + P) = 1, and conversely.
If (b,n + P) # 1, then there exists a prime P; such that pl|b
and plln + P, But plln + P means that
n+P = CPq
and
n = cp; - P.
However, b is a factor of a, thus pllb implies that pl]P, Hence,
n=cp; - P'p;1 = pl(c—P') and pl|nu
Since pllb and plln, then (b,n) # 1 contrary teo assumption. Therefore,
if (b,n) = 1 then (b,n + P) =
If (b,n + P) = 1, then, since every prime divisor of b also di-

vides P, no prime divisor of b divides n. Thus, (b,n) = 1. By the
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fact just proved, r and s are the same if n is replaced by n + P.

f(a,n) _ h(r)g(sn) - h(x)g(s)g(n) -
gm ~  gl) T h(rig(s).

This follows from Theorem 4.4 and the fact that g is completely mul-

tiplicative. Therefore,

fa,n+P) _ _ f(a,n) ,
Tgmeby h(r)g(s) = ’E'(—IE— and k(a,n)

has least period less than or equal to P.
If R is any period then
k(a,n) = k(a,n+R)
for all n. If n = a, then

k(a,a)

h(l)g(a).
Let
k(a,a + r) = h(t)g(u)
where t is the largest factor of a such that (t,a +’R) =1 and a = tu.
If R is a period, then |
h(1)g(a) = h(t)g(u).

But, h is multiplicative so that h(l} = 1; therefbie,’

"

h(t)g(u) = g(a)

g(tu) = g(t)g(u).

£}

Hence, h(t) = g(t); or

i

g(t) = h(t) % g(d).
djt

This holds only if t = 1. If t = 1, then (a, a + R) = a and every .
prime factor of a is a factor of R. Thus P|R and k(a,n) has least
period P.
. : k . y oy s .
Since g(n) = n 1is a positive valued completely multiplicative
function it may be seen that Theorem 4.5 is a special case of Theorem

4.6,
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It will be seen later, in the examples, that some values of
the function Fk of Theorem 4.5 occur several times in each period.
One such value is ok(a)e The following proposition which was conjec-

tured and proved by this writer, shows that the number of times that

ok(a) occurs depends on the period.

k K
the value ok(a) exactly ¢(P) times per period.

Theorem 4.7. Let F. be defined as in Theorem 4.5. Then F, assumes

Proof: 1If (a,m) = 1, thenr = a and s = 1. By Theorem 4.3

£ (am/m* = s (1) = o (a).

If m < P, where p is the product of the distinct primes thatgdivide
a, then (a,m) = 1 if and only if (P,m) = 1. But, (P,mj = 1 exactly
$(P) times as me{l, 2, ... P}. Thus

Fk(a{m) = o, (a)
at least ¢(P) times in the first period, hence, in every period.

To show tha£

Fk(a,m) = ck(a)
no more than ¢ (P) times per period, it will suffice to show thdt if
s # 1 then

skc‘(r) # o, (a).

k k

In fact, it is shown that when a = rs and s # 1,

skok(r)< o(rs).
Ifr=1, then
sk < 1+ sk_i Ok(s)..

If r #.1, let 1, dl,dz,oca,dk,r be the divisors of r. Then,
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s,d S""’dks and rs are all distinct divisors of rs. However, there
are other divisors of rs for r # 1 and s # 1 implies that 1 is not

among those listed and neither is r. Then,

sko (r) = sk dk = sk(l + dk + dk + ool * dk + rk)
k 1 2 t
d|n :
= sk + skdk + skdk + L., * skdk + skrkc
1 2 t
And,
o, (rs) = X 4 skdi * skd§ + skdg oo+ skdt s sKrK w1 e XDk

where EDk is the sum of the kth pewers of all other divisors of rs and

hence a positive quantity. Then, comparing the two values,
sko (r) < o, (rs) = o, (a).
k k k
Thus, Fk assumes the value qk(a) no more than @(P) times per period.
The next theorem and its corollary are based on Theofems 4.3 and
4.5, They initiéllyvéppear to add little to the theory. However, théy
result indirectly in the generalization of Theorem 4.5 to nﬁmbers of the
form an + b. Also, they lead to a novel identity which proves useful

in computation of one of the derived arithmetic functions.

Before the theorem is proved, a definition and a lemma are needed.

Definition 4.1. If u(n) is the Mobius function, let

‘u(m/a), if a)m
v(m/a) =

l0, if afm.

\

Lemma 4.8. (i) If a divides m and u is the Mobius function, then

i1, ifm=a

alm/a) @ =

f

0, ifm > a.



Proof: Since m/a = 1 for m = a and m/a > a, this is equivalent to
summing the Mobius function over the divisors of n = m/a.

(ii) If u is as defined, then

Y um/a)x"/ (1-x™ = x®.
m=1

Proof: By Theorem 4.1,

[e+) <]

L um/a)x"/(1-x™ = ] | %Ecd/a)}xm
d

m=1 m=1 m

which, by Definition 4.1, becomes

[>e]

) {% () 3",
d|m/a

m=1
a|m
By Lemma 4.8 (i),
{ ‘ Ll(d) }Xm = Xaa
m=1l- d|(m/a)
aim ‘

The conclusion follows by combining these results.

Theorem 4.9. Let &

g (Esm = S (m - ] o (0R0/D)

with the usual restriction that the sum is zero if t = 0,

Then, 0
© g (t;a,mx o 0
— = Z ok(am)x .
m=1 1-x m=t+1

Proof: Since

oo : oo t .
m _ m . j
L oplamxt = ] op(am)x’ - ] o) (ja)x
m=t+l m=1 j=1
then by Theorem 4.3
mn
© . o f (a,m)x
: ‘ m k
Z,ck(am)x =‘2 —-m—
m=1 m=1 (1-x)

64



and, (1)
m
o o f (a,m)x t .
. ke .
z ck(am)xm = z — - z ck(aj)xj.
m=t+1 m=1 (1-x7) j=1
By Lemma 4.8 (ii),
. 7 Em/ix" .
m=1 (l-xm)

Thus, substitute in the second term of (1) to get, .

o0 o f (a m)xm t © e .M
k .
z gk(am)xm = —n.l___ - Z O'k(a_J) z .E(l/:)_gl.}_(._
m=t+1 =1 1-x j=1 m=1 1-x

° £ (a,mx"  t = o (a)um/iN"

m=l  1-x" j=1 m=1 1-x"
d e m
. m ) o (@)u(m/j)x
i fk(a,m)x ) j=l.k
m=1 1-xm m=1 l-xm

® gk(t;a,m)xm :
LT

=1 1-x

Corollary 4.10. Ifm <t then‘gk(t;a,m) = 0. Hence,

® g (t;a,mx" @
k ; m
_..__;..n___. = Z gk(am)x .
m=t+1 1-x m=t+1

Proof: If m < t then, by Definition 4.1,

t
| o Gayvm/j) dZF o, (ad) (m/d)
) m

j=1
=V o 9—‘9} u(d)
pES &

= fk(a,m)c

65
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Thus

gk(t;a,m).= fk(a,m) - fk(a,m) =0,

The final statement of the corollary is then immediate since the first
t terms of © m
z gk(t;a,m)x
m=1 l—xm

are then identically zero.

The following theorem establishes the identity which was mentioned

earlier.

Theorem 4.11. Let

0ifm< t
8y (asm) =
ok(am) ifm> t.

Then
% g (t;a,d) = 6, (a,m).
d|m :

Proof: By Theorem 4.9 and the definition of §

k:
© g (t;a,m)x *
z —B————;rr——— = Z dk(a,m)xm
m=1 1-x m=1

But, by Theorem 4.1,

5, (a,m) =d% g, (t;a,d).
L m

The novelty of this identity lies in the fact that gk(t;a;m)
depends heavily on t, whereas, its sum over the divisors of m depends

almost entirely on a and m.
Some Computational Examples

Some examples will serve to illustrate the theorems of this chap-

ter.
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The first two examples illustrate Theorem 4.11. It should first
be noted that Theorem 4.11 reduces considerably the amount of
computation involved in finding the sum of gk(t;a,m) over the divisors
of m. Second, the two examples together emphasize the fact that, once

m is taken greater than t, the sum no longer depends on t.

Examgle 4.4, Let

®
[
©
.
-
u
—
.
ct
"

5 and m = 15,

then by Theqrem»4.ll,

% g,(£39,d) = 0(135) o(5)0(27) = 6(40) = 240.
df1s *

If the sum is computed directly the computation is as follows. As a

result of_Coroliary 4,8,

7 805,94 = ] g (t;9,d) = g (5,9,15).
dl15 d

15
d>6
The definition of g; then gives
’ 5
g,(5:9,15) = £,(9,15) - ] o(95)u(15/§)
j=1

= 9(15) - [0(9) - o(27) - o(45)]
= 9(15) - ¢(9) + (27) + o(45)
= 135 - 13 + 40 + 78

= 240 = g(135),

Examgle 4.5. If t = 4 and a, k, and m remain the same as in ExamﬁIe

4.4, then

I g, (4,9,d) = o(135)
alis

by Theorem 4.11.

If the direct method is used, the computation is as follows.
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g,(4;9,15) = ) g, (4;9,d)
d|15 d|15 .

d>5

g,(4:9,5) + g,(4;9,15)

n

[£(9,5) - ) o(95)u(5/)]

J:

i

+

1

I
[£(9,15) - J o(95)1(15/3)]
j=1

50(9) - [-0(9)] +9(15)-[0(9)-0(27)]

506(9) + 9(15) +0(27)

i

5(13) + 9(15) % 40

i}

65 + 135 + 40 = 240

o(135).

The next example will illusfrate the periodicity of fk(é,mj/mk
which was proved in Theorem 4.5. The results wili,thén be used to show
an example éf Theorem 4.3. An example where the period is much longer
could obVioUsly have been chosen. However, little is to be gaiﬁed by

looking at a longer example.

Example 4.6. Let k = 2 and a = 24, then by Theorem 4.5 the period is
p = 6.
Ifm =1, then
f2(24,l)

l2

= 0,(24) = 850.



£,(24,2)

If m = 2, then - 8% 5,(3) = 64(10) = 640,
£,(24,3)
If m = 3, then — = 370,(8) = 9(85) = 765
3
£,024,4) ,
If m = 4, then 7 = 8%0,(3) = 64(10) = 640,
£,(24,5)
If m = 5, then ———5—— = 0,(24) = 850 .
5
f2(24,6j 5 5
If m = 6, then — = (24)° 0,(1) = 24" = 576,
6

It was shown in the proof of Theorem 4.5 that r and s are unchanged by
adding P (and thus any multipie of P) to.m. Thus,
£,(24,6b+1) £.(24,1)
2
—— = 0,(24) = 5
(6b+1) 1
Or, ifm=0, 1, 2, 3, 4, 5

f2(24,6b+m)

5~ = 5 0,(¥)
(6b + m)

where r and s are the same as for m in the first period which is com-

puﬁéd above.

Example 4.7. If k = 2 and a = 24, then by Example 4.6,

850, if nzl (mod 6)
' 640, if nz2 (mod 6)
(n) = fz_fifizl _ /765, if n=3 (mod 6)
Y n2 640, if nz4 (mod 6)
850, if n=5 (med 6)
\576, if n=0 (mod 6).
By Theorem 4.3, then
T oym@ni” S n
Z = z 0, (24n)x
n=1 1“X n:l

where y(n) is given above.



70

Harris and Warren (13) uncovered an interesting computational scheme
which is based on the theorems of this chapter.

If 1
® fk(a,n)x o

= = Z ok(an)xn,
n=1 1-x n=1

then, by Theorem 4.1,

o, (an) = % £ (a,d).
din

The function fk(a,n) has now been characterized for all values of a.
If a is taken to be a prime p, then by Theorem 4.5, fk(p,n)/nk'is

periodic with least period p. Since
| ok k
’ fk(P,n) =5 Gk(r)n >
where rs = p, there are just two cases to consider. First, if p divides

pknka If p does not divide n,

i

n, then r = 1 and.s = p yields fk(p,n)
then T =pand s =1 yieids

@° + 1)nk,

i

: k
fk(p,n) = cka)n
In view of the preceding it is then easy to compute fk(ﬁ,n) and

thus toe compute %_fk(a,d). If ok(p), ck(2p), ok(Sp) . . . are com-
d , .

. n .
puted by this method for each prime p then ok(n) will be computed at

least twice with the exception of n = 1 and n a power of a prime. But
ok(l) = 1 and
i, _ i-1
o (@) = o (pep” )
will be computed exactly once.
The method of cemputation is illustrated in Table I. If k = 2

the numbers in each column are just fz(a,d) where d is a divisor of n.

In the tablea =3, n=1, 2, 3, . . ., 12.
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TABLE 1

an 3 6 9 12 15 18
10 10 10 10 10 10

40 40

81
160
250

324
o, (an) 10 50 91 210 260 455
an 21 24 27 30 33 36
10 10 10 10 10 10
40 40 40
- 81 81
- 160 160

250
440 324

640 ‘
729
1000
1210

1296
o5 (an) 500 850 820 1300 1220 1911
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A Genéralization to Power Series Where the Powers Are an

Arbitrary Arithmetic Progression

It has been seen in previous theorems of this chapter that for
a > 0 an arithmetical function fk(a,n) exists such that
fk(a,n)xn

o (an)xn°
1 k

2 - =
n=1 1—xn n

il~18

Harris and Warren (13) investigated the question of the existence
of a function‘fk(an+b) with a > 0 and b > 0 such that

® f (an+b)x®P
R P,
n=1 1-x n=1

8

an+b

The final two theorems of this chapter show under what conditions the

function exists and characterize it when it exists:

Theoren 4.12. If there is an arithmetic function fk(an+b) with b > 0

such that .
an+b -

8

= Z ck(an+b)xan+b,
n=1

fk(an+ﬁ)x

He-18

n=l  1-x3n*b

then a = (a,b).

Proof: 1Let g = (a,b) such that i = (a/g, b/g). By Dirichlet's theorem
there exists an No and a prime p such that

(a/g)No + (b/g) = p.
Thus, x&P appears on the right side (in the powet series) with a non-
zero coefficient.

Write the left side as the double series:

E fk(an+b) [Xan+b . x2(an+b) N xS(an+b) ]
n=]

1
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Note that the coefficient of xaN+b

is Z fk(an+b) summed all n for which
an+b\aN+b° Since aNo + b = gp, the coefficient of x8P in this form of
the left sidé is ka(an+b) where the sum is over all n such that
an+b|aNo+bn Suppose an+b|gp, then g ; (a,b) implies that
(a/g)n + (b/g)|p. But b > 0 means that
(a/g)n + b/g =p
or
an + b = gp = aNo + Db.

Thus the coefficient of x&P is.just fk(aN°+b).

Now the coefficient of ngp‘in the doﬁble series form of the left
side is ka(an+b) summed over all n such that an+b|2gp.' This includes
n = No but may include other va}ues of n.

Consider the case where there is an n # No. Then (a/g)n + (b/g)|2p

and hénce

1]
N

(a/g)n + (b/g)

or

1}

(a/g)n + (b/g) = p.

The second case implies n = No, so consider the first only. _From the

first case n = E&ék’ hence a|2g-b. But b = kg so a|2g-kg or a|(2—k)g.

Now; (2-k)g = an and g > 0 means 2-k > 0. Hence k = 1andb = g
giving also a = g. |

If No is the only n for which an + b|2gp, then the coefficient of

Xng in the left side is just fk(aN°+b) which is net zero. Hencevx2gp

must occur oh the right side so there is n, such that

an, + b = 2gp.

Combine

an, + b 2gp



vand

aNo + b = gp

to get a/g (hl - No) = p. Thus a/g|p and a/g = 1 or a/g = p.

possibility that a/g

For all possible cases a = g, thus a = (a,b).

Theorem 4.13. If b = at and

hk(t;a,n) = gk(t;a,n+t)

where g1 in the function defined in Theorem 4.9, then
an+b

8

hk(t;a,n)x

b an+b

e~ 8

= ) o, (an+b)x
1 1-x3h n=1 K

Proof:

o hk(t;a,n)xan+b
n=1 1-x2b
fl gk(t;a,n+t)xa(n+t)
i n=i l_xa(n+t)
= Z " ———;—-ﬁ———— where y = x .
n=t+ -y

By Corollary 4.10, :
m
© g ltsa,m)y s m
e it ) o, (am)y".
m=t+1 1-y" m=t+l

And, it follows that

I op(amy™ = | o (amet))y™"
m=t+1 n=1

) ck(an+b)xan+b&

1

ne~—18

n

p is ruled out by b/g > 0. Hence a = g.
§

The

74
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Theoreﬂé 4.12 and 4.13 thus say that fk(a,m) exists and satisfies

the conditi&ns given in Theorem 4.13 if and only if a = (a,b). It may

also be seen that hk is a function which meets the requirements for

fk in the hypothesis of Theorem 4.12. Hence a specific function has

been exhibited which meets all requirements.



CHAPTER V
CONTRACTIONS OF MULTIPLICATIVE FUNCTIONS

The searéh for methods of finding multiplicative functions and
their generating functions motivated the definition and theorems of
this chapter.: The ideas involved are simple but lead to a method of
deriving infinitely many different functions from a single know function.

A function, called the characteristic function of a set, is used
extensively in many other areas of mathematics. The reader, however, .
need know nothing more than the definition. This function is usually
designated by the Greek letter chi which has already been used to desig-
nate a number-theoretic function. For this reason, and in the interest
of simplicity, a notation is adopted so that, after the initial defini-

tions, chi need not be used.

Definition 5.1, Let S be an arbitrary subset of a uﬁivérsal'sgt U.

t

Then the function‘defined by
xs(m) =1, ifme S, an& xs(m) =0, ifme U ~ S,
is called the characteristic function of S. |
In fhe following définition and in the remainder of the chapter the

universal set is always P, the set of positive integers.

Definition 5.2. Let f be a multiplicative function defined on P. Define

fS’ the contraction of £ to S, as follows:

£,(n) = £(mMxg(m).

76
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It should be observed that the domain of fS is still P. Thus, the
definition does not restrict the domain of f to S but merely makes all
values zero on P - S. Also it is seen that the set S greatly influences

the character of f For example, if S is finite, the range of fS con-

. S '
tains at mosﬁ a finite set of non-zero elements.

It is désirable, for reasons which are later obvious, to separate
the multiplicative functions into two classes. One class will include
those functions which have a zero. The other will contain those which
have no zeros. For instance, the Mobius function is of the first type
and the phi and sigma functions are of the second type. Some theorems
relate to one type but not the other and some to either of the two.

The first theorem is a collection of observations which are immedi-

ate consequences of the definition. They are stated without proof.

Theorem 5.1. Let f be a multiplicative function having no zero. Then:
(i) if n e SNR, fs(n) = fR(n) # 0;
(i1) if n ¢ S and n £ R, fS(n) = fR(n) = 0;
(iii) ifne S -RorneR - S, fs(n) # fR(n);
(iv) if QC P and RC P, £,QUR) = £5(QUEGR);
(v if R=S and QC P, fS(Q) = fR(Q).

If f has a zero the inequalities in Theorem 5.1 (i) and (iii) may
or may not hold. Thus if f has a zero those parts of the theorem are
invalid.

The next theorem shows the relationship of the ranges when con-
tractions ar§ to two sets and to their union. It holds for the con-

traction of any multiplicative function.



78

Theorem 5.2. Let f be a multiplicative function. If SC P, Q(C P and
SUQ # P, then

FNORENGIVINGE

Proof: If x # 0 and x ¢ fs (P) then there exists m € SUQ such that

wQ
f(m) = x. Butme SJQ implies m e S or m € Q. Then, either

fS(m) = f(m) = x or f.(m) = f(m)'= X.

Q
In either case, x ¢ fS(P)Lij(P). Conversely, if x € fS(P)Lij(P) then
X g fS(P) or X ¢ fQ(P). Thus there exists m such that f{m) = x and

meSormeQ. Thus m ¢ SJQ and
| fSUQ(m) = ftm) = x.
Hence, x ¢ fSUQ(P)°
If x = 0, SLQ # P makes zero an element in.both members. When £
is a function which has a zero, this conditipn is unnecessary. If
SUQ = P, the right side may include zero Qhen the left side does not.

A result similar to Theorem 5.2 can be proved for intersections.

Theorem 5.3. Let f be a multiplicative function. If S and Q are proper

subsets of P, then fsr\Q(P)C:fS(P)r\fQ(P)'

Proof: If x = 0 then S, Q'and SMQ proper subsets of P implies
X g fo\Q(P) and x & fS(P)f\fQ(P). Thus, zero is in bqth sides of the
equation by hypothesis.

Suppose x # 0 and x ¢ fS/\Q(P)' Then, thereJexists m e SNQ such
that f{(m) = x. Butme S and m ¢ Q; hencg fs(m)_= f(m) = x and
fQ(m) = f(m) = x. Thus, xafS(P) and foQ(P); therefore xafS(P)fij(P)

and, fo\Q(PDCZfSCPM/\fQCP)'
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The containment cannot be shown to be reversed unless f is a
!
special type of function. For example, let f be the tau-function and
let S and Q be given by S = {1, 2, 4, 6, 8, 9, 10} and Q ={1, 3, 4, 8].

Since 1(2) - (3) = 2, 2gTS(P)nTQ(P)‘ but 22;1an(1>) = {0, 1, 3, 4} .
When f is a one to one function defined on P, m # n implies f(m) # f(n).
Thus the difficulty in the above example is avoided and

fsﬂQ(P) = fS(Pyij(p)’
under the hyﬁotheses of Theorem 5.3.

There are other properties of contractions which could be consi-
dered here. Those in the first three theorems are given so that the
reader may see some of the possibilities. However, the principal
purpose of this paper is the discussion of ﬁu1tipiicatiVe functions.

It is appafent that not all contractions of a mcltiﬁliCative
function on P are themselves multiplicative fuﬁdtions on P. For, sup-
pose S is any finite set such that there are aeS and beS With (a,b) = 1
and ab ¢ s. Then

| tg(@)7g(b) = T(a)T(b) # 0 = 7 (ab).
This would lead one to conjecture that propertics of the set S determine
whether or not fg is multiﬁlicative, Also, onc would sﬁrmise that S
should be a closed set under multiplication. Thesé assumptions are
reasonable but not entirely correct. In fact, it ﬁill be seen that
whether or not f has zeros is also a factor.. |

Before proceeding further, it seems desirable to consider some

examples of contractions which are multiplicative.

Example 5.1.' Let S = {1, 2, 3, 4, 6}. Then, it is easily shown that Mg

is a multiplicative function on P. But 1. is not a multiplicative

S

function.
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Example 5.2.; Let S = {nln 2'3) where i = 0,1, 2, ..., and

2542) here i =0, 1, 2, ..., and

j =0, 1, 2,5000,}. Let Q = {n|n = 2
j=0,1, 2,5.0.}, It can be verified that if f is multiplicative then
fS and fQ aré also multiplicative.

From Example 5.1 it can be concluded that it is not generally
necessary that S be infinite, nor that S be closed under multiplication, -
in order thaﬁ fs be multiplicative for some f. Some of the difficulty
involved in éharacterizing sets S for which fS is multiplicative is due
to the fact éhat f may have zerés. The location of the zeros of f
seems to influence considerably the type of set, and in fact the speci-
fic sets, for which the contraction of f is multiplicative.

If multiplicative functions without zeros are considered, it is
possible to find conditions on S which are both necessary and sufficient
to make fs multiplicative. Essentially, the problem reduces to one of
- finding sets whose characteristic function is'multiplicative on P.

Since the ordinary product of multiplicative functions is multiplica-
tive, and
£4(n) = £@)xg(@),
it is seen that Xg being multiplicative implies fS is also.
For practical reasons, the final result is not given as stated in
the preéeeding paragraph. The next theorem gives the éonditions for an
arbitra?y function. SinCe xp(n) = 1, for every neP,-satisfies the hypo-

thesis of thé theorem it is obvious that Xg is a special case.

Theorem_5.4.1 Let f be a multiplicative function, defined on P, such
that £(n) # O for every n € P. Then fS is multiplicative on P if and

only if S meéts the following conditions:
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(1) if (a,b) =1 and a € S,’b ¢ S then ab ¢ S;
(ii) fof every factorization n = ab where (a,b) = 1, n £ S implies

a é Sand b ¢ S.

Proof: If (a,b) =1 and a, b € S, then by (i) ab ¢ S. Thus
fS(ab) = f(ab) = f(a)f(b) = fs(a)fs(b).

If (a,bj = 1 and either a#S or béS, then (i) and (ii) imply abiS,

Thus;
fs(ab) =0 = fs(a)fs(b),

Hence (i) and (ii) imply that fS is multiplicative on P. (Note that
(11) implies that 1 € S, hence fs(l) = f(1) = 1.)

Suppose;S does not satisfy condition (i). Then, there exists a € S
and b € S with (a,b) = 1 and ab ¢ S. Hence

fs(a) = f(a) # 0 and fs(b) = f(b) # 0
and fs(a)fs(b) # 0.
However, fs(ab) = 0. Thus
| £g(ab) # £ (a) £y (b)

and fS is not multiplicative.

Suppose S does not satisfy condition (ii). Then n € S With a
factorization n = ab where (a,b) = 1 and either a ? Sorb # 5. Hence

fi(ab) = f(ab) # 0
and either’fs(a) = O or fs(b) = 0. Thus, fs(ab) # 0 and fs(a)fs(b) =0
gives
fs(ab) # fsga)fs(b),

Hence, f. is not multiplicative.

S

Thus, fé multiplicative on P implies (i) and (ii).
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The proéf of the sufficiency of (i) and (ii) in Theorem 5.4 did
not employ tﬂe fact that f had no zero. The implication thus goes that
direction fof any multiplicative function f. Most of the discussion in
the remainder of thévchapter requires only that sets exist for which fS
is multiplicative. This theorem gives some, if not all, sets such that
fS is multipiicative whenever f is multiplicative. Two sets which
satisfy (i) énd (ii) are seen in Example 5.2. One might observe that
infinitely many such sets are possible by using any pair of primes as
bases. In fact, it is possible to cfeate sets such as these by using
any finite n@mber of primes and taking all possible products.

The foliowing corollary gives the case for functions which are

completely multiplicative.

Corollary 5.5. If f has no zeros and is completely multiplicative, then

fS is completely multiplicative, if and only if S satisfies the follow-
ing conditions:
(i1)* S is closed under multiplication;

(ii)* n e S and d|n implies d e S.

Proof: The proof is the same as for Theorem 5.5 with the conditions
(a,b) = 1 dropped.

Conditions (i)* and (ii)* are sufficient -for any multiplicative
f. However, they are stronger than is necessary. Iﬁ fact, the set Q
of Example 5.2 fails to satisfy (ii)*. |

To summérize the results so far, one might say that new multipli-
cative functions may be found by taking a known function and‘judiciously
defining a s%t of zeros. The next step is to show that still others

may follow ffom these by the usual processes.
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The nexf theorem is basic to the discussion which follows.

Theorem 5,6.; Let

h(n) = Yfg@ and k(n) = %f@L
dTn d|n

Then h = kS if and only if, for every n ¢ P,
e
( f(d), ifne s
din

£(d) =
din
deS L 0, if n ¢ S.

Proof: By Definition 5.2, h(n) is the left member of the equation and
kS(n) is the right member.

That h and kS are equal is unusual. First, consider the following
example.

{aln = 2%%3%) where i = 0, 1, 2, ... and j =0, 1, 2, ...}

Let S

{1, 4, 9, 16, 36, 81, ...}. Let f be the Euler ¢-function

% $(d).
din

Thus, k(36) = 36 and kg(36) = 36. But,

so that n

h(36) = 6g(1) + §5(2) + 05 (3) + 65(4) + 45(6) + 9g(9) + bg(12)

+

65 (18) + 95 (36)

$(1) + ¢(4) + ¢(9) + ¢(36)
1+2+6+ 12 = 21.

Also, since 2 ¢ S, kg(2) =0 whereas
R(2) = 9g(1) + 95(2) = L.
The foliowing theorem shows that the equality in Theorem 5.6 never

holds if f is a function such as ¢, T or o -



84

Theorem 5.7. Let h and k be as given in Theorem 5.6. If f is a posi-
tive valued multiplicative function and S is a proper subset of P for

which fS is multiplicative, then F # GS.

Proof: If S is a proper subset then there exists m ¢ P - S for which
fs(m) = 0 and ks(m) = 0, By Theorem 5.4, it can be concluded that 1 ¢ S.
Thus, since 1|m,
h(m) = f£(d) > £(1) = 1,

d|m

deS
Hence, kS(m) = 0 and h(m) > 1 implies h # ks.

Where Xg is the characteristic function of S and S is a proper

subset of P, this theorem indicates that Tg # h when

h(n) = ] xg(m).
i din :

When the condition in Theorem 5.6 is not met, two different func-
tions are created by summing on divisors of n of a‘conﬂraction to a
set S and by reversing this order, Thus, by using Théorem‘S.ls and
contraction to a given set, two different functions and théir generat-
ing funcdtions may be found:

Earlier it was ‘mentioned that summing on the divisors of n was a
special case of convolution. In fact, it is the case if one function
is the identity for ordinary multiplication. If 1. represents the

S

identity function restricted to S, it can be seen by examble, that

- f_(d) is not, in general, equal to f.(m)l.(n/d).
S S S
din dln

To see this, let S be the set Q of Example 5.2. Then,
Q= {1, 4, 9, 16, 36, ...}

and



3 ) £ (@)1 (n/d) = £,(1)1,(12) + £,(2)1,(6)
dle S S S S S S

£.(3)1g(4) + £5(4)1(3) + £5(6)15(2) + £5(12)1,(1)
= 0.
But,

§ d%lzfs(d) = £5(1) + £5(2) + £5(3) + £5(4) + £4(6)

S+

£,(12) = £,(1) + £(4)

£(1) + £(4).

If £(4) #-1, theseisums are not the same. Thus, the equality holds
on the given set for a very restricted type of function.
The general case for convolution products 1s given in the next

two theorems.
Theorem 5.8. If H(n) = % fs(d)gs(n/d)
‘ din

and

K(n) = } £(d)g(n/d),
din

then H = KS if and only if

[ ') £(dgln/d),deS, if n ¢ S
d|n '
Ks(n) =.

) 0, if n ¢ S.

Proof: The fheorem follows from the definition of f and KSB

s’ &g
Theorem 5f9.; If H and K are defined as in Theorem 5.8 and S satisfies

the éonditioﬁs (1)* and (ii)* of Corollary 5.5, then H = Ksa

85
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Proof: If S is closed under multiplication then d ¢ S and n/d ¢ S
makes n e S. By (ii)*, n e S implies d € S and n/d ¢ S for every divi-

sor d of n. Hence,

Ks(n) = ) f(d)gn/d) = f(d)g(n/d) when n e S.
‘ dTn d[n
deS
If n ¢ S, then either d ¢ S or n/d ¢ S for every divisor d of n. (If
both are in S then n ¢ S.) Hence, Ks(n) = 0 and
H(n) = % £5(d)gg (n/d) = 0.
d|n
Therefore, Ks(n) = H(n) for all n.
By Theorem 2.13, if S is a set for which fS and gg are each mul-

tiplicative and if

h(n) = %,fs(n)gs(n/d),
d|n

then h is also multiplicative, In particular, when £, g and S satisfy
the conditions in Theorem 5.4, it is true that h is a multiplicative
function.

A few comments can be made concerning the generating functions of
contractions of multiplicative functions.

First, regardless of whether f, is multiplicative or not, whenever

9]

F(s) = f(n)n >

j 0~—1 8

=1
is the generating function of f, then

Fr(s) = ] £,mn™° = ] £()n°
n=1 neS

is the generating function of fS° It might also be pointed out, in
case the queetion of convergence arises; that Ifs(n}lijf(n)] for every.
n.. Thus, by comparison the latter series converges absolutely whenever

the previous one does.
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Second,fwhenever the contractions of multiplicative functions are
multiplicati?e, the methods discussed in Chapters III and IV still hold
for finding ?ther functions based on them. However, by Theorems 5.8
and 5.9 it f;llows that Theorem 3.19 can yield two different functions
which depend?on whether the contraction to S is done before the convolu-

tion or after it. That is, if

F(s) = J f(m)n™> and G(s) = ) gmn >
n=1 n=1

it is recalled that F(s)G(s) generates a function h defined by

h(n) = % £(d)g(n/d).
di{n

Then, also, if F* and G* are as stated earlier, then F*(s)G*(s) gener-

- ates the function defined by

k(n) = % £ (d)gg (n/d).
© d|n .

But, hS and k are not hecessarily the same funcﬁioq.

Since there is an infinite number of sets whiéh satisfy the condi-
tions in Theorem 5.4, ffom a given function and its generaﬁing function
it is possible to derive an infinite number of-multipliéétive funétions
and their geherating functions. As described above, it is also possible

to find others from these.
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APPENDIX
MULTIPLICATIVE FUNCTIONS OF ELEMENTARY NUMBER THEORY

The following list includes several of the most common multiplica-
tive functions of number theory. Listed here are (1) their usual
designation; (2) the definition; (3) related formulas; (4) gener-
ating function or functions.

A. (1) The Euler totient function, ¢(n);

(2) ¢(n) is the number of positive integers m such that'm < n
and (m,n) = 1;

(3) o) =n T (I - 1/P);

P|n
n = ) 6 (d);
dTn
(4) t(s-1)/c(s) = | ¢mn~>;
n=1
E o(m)x" - x_
n=1 1-x" (1—x)2

B. (1) The Mbbius‘functiqn, u(n);
(2) u@m) =1, ifn = 1; p(n) = 0, if n has the s&uare-of a
prime as a factqr, and u(n) = (-l)r, if n is the product
of r distinct pfimes;

b

(3) ¢(m) =n ) HdL
| d%n d

1]

Ju(m) |

0 if n has the square of a prime as factor and

lum) | = 1, otherwise.
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(4)3

(D
(2)
(3)

(4)

ey

(2)
(3)

4

(1)
(2)

(3)

(4)

(1)
(2)

(e}

1/z(s) = ) u(@n™>;

n=1

The convolution identity, e(n);

e(n) =1, ifn=1and e(n) = 0 if n > 1;
e(n) = u(d);
din
Y e(m)n”® = 1.
n=1
T(n);
1(n) is the number of positive divisors of n;
r a i ; T
Ifn= 1 P; s then t(n) = I (a. + 1);
i=1 i=1 *t
t(n) = ) 1;
d|n
2 v -5
t2(s) = ) t(mn"".
n=1
o(n);

o(n) is the sum of the positive divisors of n;

a.+1
T p;l -1
o(n) = 1 ——e—= ] d;
i=1 Pi d[n

£(s)c(s-1) = | o(mn >,
n=1
o (03
ck(n) is the sum of the kth powérs of the positive

divisors of n;
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(3)

4)

o)

(2)

(4)

- (D

(2)
(4)

1

(2)

(3)
(4)

T p;(a,+1) -1
Ok(n) = Il lk = = dk;
i=1 P; - 1 din
Note: 0, =0 ind 0g = T
-5
(s)e(s-k) = } o (mn";
n=1
§ nkxn § n
= o, (n)x".
n=1 1-x" n=1 k

Liouville's function, X{(n);
A(m) = (-1)%, where q is the total number (distinct or
not) of prime factors of n;
z(2s)/5(s) = } A(mn~>.
n=1
x(n);

x(m) = 0, if 2|n, and x(n) = (-1) P72 ¢ 0 is odd;

J x(mnS.
n=1

L(s)

q ()

qk(n) =0, if n has the kth power of a prime as a factor

and qk(n) = 1, otherwise;

a;(m) = [u@|;
t(s)/t(ks) = ] q (mn”>.
n=1

92



VITA
William Wayne Malone
Candidate for the Degree of

Doctor of Education

Thesis: MULTIPLICATIVE NUMBER-THEORETIC FUNCTIONS AND THEIR GENERATING
FUNCTIONS ,

Major Field: Higher Education
Biographical:

Personal Data: Born near Paris, Mississippi, October 22, 1930, son
of Irving and Mary Malone.

Education: Attended public schools in Lafayette County, Mississip-
pi; graduated from Taylor High School, Taylor, Mississippi,
in 1948; attended Delta State College in the summer and fall
of 1948; received the Bachelor of Arts in Education degree
from the University of Mississippi in August, 1954, with a
major in mathematics; received the Master of Education degree
from the University of Mississippi in August, 1958, with a
major in secondary education; received the Master of Arts de-
gree from Louisiana State University with a major in mathemat-
ics in August, 1960; attended the University of Mississippi
in the summer of 1961; completed requirements for the Doctor
of Education degree at Oklahoma State University in July,. 1968.

Professional Experience: Taught elementary grades at Pine Flat
Elementary School, Lafayette County, Mississippi, from 1949
to 1951; taught high school mathematics at Pinedale High
School, Etta, Mississippi, the year 1951-1952; taught high
school mathematics at Taylor High School, Taylor Mississippi,
from 1952 to 1956; served as principal of Black Jack High
School, Batesville, Mississippi, for the year 1956-57; was
principal of Cardwell High School, Carwell, Missouri, from
1957 to 1959; taught mathematics at Louisiana State University
at Alexandria, Alexandria, Louisiana, since September, 1960;
was on leave for 1965-66 and the spring semester 1967-68.

Organizations: Member of Mathematical Association of America,
National Council of Teachers of Mathematics, and Phi Delta
Kappa.



