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CHAPTER I 

INTRODUCTION 

The study of functions is an important part of modern mathematics. 

Today's studept is introduced early to the mathematical concept of 
i 

function. By; the time he has completed an elementary course in calculus, 

the student is familiar with many functions. 

There ar¢ functions peculiar to almost every branch of mathematics. 

There are others which, even though useful in many different areas of 

mathematics, ~ave their origin in a particular branch. These are usually 

identified in· some way with the branch of their origin. 
! 

The func!tions most closely identified with number theory. are usually 

called "numbe:r-theoretic", "arithmetic" or "arithmetical". They are 

different from most functions found in algebra or analysis in that they 

are usually defined on the integers or a subset of the integers. Some-

times an extension to the real numbers is made and questions of analytic 

behavior are studied. However, they are usually more useful in the study 

of natural numbers or the integers. 

Stewart .(27) indicates that a number-theoretic function is one 

such that the function values depend upon the standard form of n. This 

seems unneceslsarily restrictive and, although most of those used in this 
' ; 

paper meet th:at requirement, the adjectives "number-theoretic" and 

"arithmetic" ~dll be used more loosely. For example, occasional refer­

ence wi~l be ~ade to arithmetical functions associated with the additive 

1 



2 

theory of numbers. One such function, which does not me~t Stewart's 

requirement, is the function given by TI(n) = the number of primes less 

than or equal ton. 

Number theory is one of the oldest branches of mathematics. It is, 

however, not a dead issue. There are still many unsolved problems. 

Also, interrelations often exist between number theory and other 

branches of mathematics. For example, geometry has close ties with 

number theory. Number theory provides useful examples for abstract 

algebra and topology. Although primary interest will be centered on 

the number theoretic ideas involved, some of the relationships between 

analysis and number theory will be seen in this dissertatibn. 

One area of number theory which lends itself to study by under-

graduates and to undergraduate research is the study of the multiplica-

tive functions. Multiplicative functions, as defined in Definition 

2.1, are not restTicted to number theory. However, some of the most 

interesting are peculiar to the subject. These form the principal 

subject matter of this paper. 
. . 

The reader should have a minimum background of a complete sequence 

of elementary calculus which includes a study of series. Although a 

course in elementary number theory is presumed, the reader could pos-

sibly acquire the background needed by a careful study of the topics 

covered in Chapter II. The series used are usually considered as series 

of complex numbers. However, so as not to confuse the reader who has 

not been exposed to complex series, they are stated as if they were 

real valued. This makes no difference as far as the major points of 

the paper are concerned. 
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The material is presented in what is hoped to be a logical sequence. 

Thus, the reader should presume nothing concerning the level of diffi­

culty from the location of a topic. For example, the material in 

Chapter Vis relatively easy, but, it will take a mature reader to 

understand most of Chapter IV. No comprehensive historical develop­

ment is attempted. However, historical facts are mentioned at various 

points in the development. 

Chapter II provides the background from number theory and analysis 

which will be needed in the later chapters. This is for the purpose 

of making the paper self-contained thus making it unnecessary that the 

reader be an expert on the subject and eliminating the need for several 

references. Chapters III and IV develop the theory of generating 

functions which are useful tools in the study of number-theoretic 

functions. Chapter V includes material which evolved as a result of 

the study. A search of the literature has failed to uncover these 

results elsewhere. Thus, they are presumed to be new. The reader 

will recognize that not everything which could be developed has been 

proved here and can possibly make some additional conjectures and 

prove them. 



CHAPTER II 

BACKGROUND FROM NUMBER THEORY AND ANALYS.IS 

Multiplicative Functions 

There atre several different types of functions associated with . 

number theory. The usual way of classifying them seems to be to 

clas~ify them as "multiplicative", "those associated with the additive 

theory. of numbers", and "other". This is .somewhat misleading because 

there is mor.e than one type of function that could be called additive 

and there are functions associated with the additive theory of numbers 

which could not be called .additive functions. The class of multiplica-

ti ve functions is well defined by a precise mathematical property. 

Definition 2.1. A function f, defined on the natural numbers, is 

called multiplicative if and only if 

f(mn) = f(m)f(n) 

whenever (m,;n) = 1. If 

f (mn) = f(m)f (n) 

for all natural numbers m and n, then f is called completely (totally, 

unconditionally) multiplicative. 

It sho~ld be observed that some functions from algebra and calcu­

lus satisfy !this definition when their domain is restricted to the 

natural numtiers. For example, the identity function, defined by 
. ' 

f (n) = 1 fo~ every n, and the power functions, defined by. f (n) = nx;q,!O:, 

4 



are completely multiplicative. It is also possible to define multipli-

cative funct~ons in the same way for the set of all integers. However, 
I 
' 

the natural 1umbers are consistently used here as the domain. 

5 

Throughout the paper some notation is used which should be explained. 

First djn will be used, as is usual, to mean d divides n. Hence, if 

). f (d) 
dTn 

is written d n specifies .the index set for the sum as those natural 

numbers which divide n. By .the Fundamental Theorem of Arithmetic it 

is known that if·n > 1, then n can be written uniquely (except for 

order) as the product of primes. Thus, a natural number n > l is often 

expressed in standard form (or canonical form) as, 

r ;;ii 
or n = IT p. 

i=l Ji 

where. the subscripts are used to indicate that the primes are different. 

However, the same subscript being used for the exponent means only that 

the' i th exponent belongs to th.e ith primes of the chosen order. The 

order is often chosen as the "!natural order" that is, . , 

The notaFon (m,n) = 1 used in Definition 2.1 \.Till be used often 

and, although it may never be referred to directly, it is appropriate 

to remind th$ reader of its precise meaning. 

Definition 2,2. Natural numbers m ;;ind n are relatively prime; written 

(m,n) - 1, if and only if when pjn then p%m and when plm then p%n 

for p a prim~. 
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Definitions 2, 1 and 2, 2 would thus lead, one .to suspect that primes 

play an important part in the theory of multiplicative functions; That 
I 

this suspicipn is a fact is seen in the important role of primes in the 

discussions ~nd theorems of this paper. 

The following theorem shows.a very useful characteristic of mul-

tiplicati ye functions. 

Theorem 2.1. If f is multiplicative and not identically zero, then 

f(l) = 1. 

Proof: If fl is not identically zero, then there exists an integer n 
i 

such that f(p) f O. But, (1,n) = 1, thus 

f(n) = f(l•n) = f(l)f(n). 

Hence, f(n) f O implies f(l) = 1. 
I 

It was ibdicated earlier that primes play an important role in 
I 

multiplicative functions. In fact, if a function is given to be mul-

tiplicative and is defined for powers of each prime, it is determined 

foT all natural numbers. For example, let g be a multiplicative func­

tion such that g(pa) = 3a for every prime p. Then 

g(n) 

a a a a +a + ... +a 
= 3 13 2 ... 3 r = 3 1 2 r 

In this cas~:, g was specified as multiplicative, then an expression for 

g(h) is calciulated. Usually, a function arises in answer to a question i . . 
! 

about h, or /a defining property is found for a function which can then 
I 

be shown to 
1
be multiplicative. As an example, if prime pis given, 



let M (n) =a+ 1 where a is the highest power of p that divides n. 
p 

The function M then answers the question: 
p 

b Does p divide n? Observe 

that if M (n) = 1, then pb J n and if M (n) = k, k > 1, then Pbln for 
p p 

b < k. Also, M is multiplicative. For if (m,n) = 1 and paJm, then 
p 

p % n. Thus, 

M (m)M (n) = M (m)•l = M (m) = M (mn). 
p p p p p 

Later, when the formula for the function Tis given, the reader should 

note that: 

T (n) = II M (n) . 
p[n p 

Later in this chapter an operation on multiplicative functions, 

called the convolution product, will be discussed. However, a special 

case~ given by the following theorem is needed earlie~. 

Theorem 2. 2. If f is a multiplioati ve function then the function g 

defined by 

g(n) Y f(d) 
dTn 

is also multiplicative. 

Proof: If (m,n) = 1, then dJmn means that d can be written d = st 

where sJm, tin and (s,t) = 1. Then, 

g(mn) = l f(d) = l f(st). 
dTmn sJm,tln 

Hence, since f is multiplicative, f(st) = f(s)f(t). 

Thus, 

g(mn) l f(s)f(t) = 
sJm,tJn 

= g (m) g (n). 

l f(s) · J. f(t) 
sTm tTn 

7 
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It is no surprise that the set of multiplicative functions is not 

closed under some operations. It is obvious that f + g is not always 

multiplicative when f and g are. For example, 

f(n) 2 
= n g (n) = 1 

define multiplicative functions but 

2 (f + g)n = n + 1 

does not. 

Because of the obvious close relation between multiplicative func-

tions and the operation of ordinary multiplication of functions, the 

following is not an unexpected result. 

Theorem 2.3. If f and g are multiplicative functions, then f•g is mul- · 

tiplicative and, if g(n) f O for every n, f/g is multiplicative. 

Corollary 2. 4. If g is a multiplicative function such that g (n) f O 

for every n, then 1/g is a multiplicative function. 

Corollary 2.4 follows easily from Theorem 2.3 if one recalls that 

f(n) = 1 for every n defines a multiplicative function. The corollary 

is stated so that it may be observed that not all multiplicative func-

tions have an inverse under the operation of ordinary multiplication of 

functions. For example, note that f(n) = 1 for every n is the identity 

and that 

g(l) = 1, g(h) = 0 for n > li 

defines a multiplicative fl:mction which, by Corollary 2.4 has no inverse. 

Another theorem, which was used earlier but needs to be formally 

stated since it will be assumed many times, is the following. 



Theorem 2.5. If f is multiplicative and n is written in standard form, 

then 
r a. 

f(n) = l 
TI f (p. ) . 

i=l l 

Proof: The proof is by induction on r. 

The arithmetical functions discussed in this paper are defined on 

P, the set of positive integers. The notation f(a,n) and similar no-

tations are used but this is intended to mean that f is. a function of 

n which involves an arbitrary constant a. 

Functions defined on P x P or P x P x ... x P may be studied in 

very much the same manner as is used here. In fact, the definition 

I 

of multiplica,tive can be easily extended by requiring that. a function 

be multiplicative in each component of (n1,n2, ... ,nk). Unfortunately, 

the functions themselves.do not generalize as easily. Cohen (5) and 

Vaiciyanathaswamy (30) are two of the many mathematicians to generalize 

number theoretic functions. There seems to be a number of ways to 

generalize most of them as functions of several variables. For this 

reason, and because it would lead too far afield, it is not deemed 

desirable to include functions of several variables in the present 

discussion. 

Some Special Multiplicative 

Arithmetic Functions 

There are several multiplicative functions which have arisen nat-

uraily in the investigations of number theory. There are others, which 
I 

' 

because of tneir unusual nature o:t because they are representative of a 

larger class, have become a part of the "folklore" of the subject. In 

9 
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order to have examples upon which to base later discussion, they are 

presented here. Their definition, elementary formula (if it is not a 

part of the definition), and some useful properties are given. Some 

proofs are omitted in order to avoid boring the reader. For proofs, he 

may refer to one of several elementary number theory texts. 

Probably the function of number theory most often encountered is 

the Euler totient function or phi function. It occurs in counting 

problems and in the additive theory of numbers as well as in the mul-

tiplicative theory. 

Definition 2.3. The Euler totient function, denoted by¢, is defined 

as follows: ¢(n) is the number qf positive integers less than or equal 

ton and relatively prime ton. 

To see that the behavior of¢ is quite irregular, one should note 

that ¢(15) = 8, ¢(16) = 8, ¢(17) = 16, ¢(18) = 6, ¢(19) = 18 and 

¢(20) = 8. 

The following theorems, which are easily proved by several different 

methods, give the formula for ¢ (n) and for the sum of ¢ (n) over the 

divisors of n. 

Theorem 2.6. If n is written in standard form then, 

¢(n) 000 [p(j 
Theorem 2. 7. For any positive integer n, 

The function¢ is multiplicative. This may be proved by independent 

methods and the above theorems will follow by using Theorems 2.2 and 2.5. 
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As an alternate procedure, Theorem 2.6 can be proved directly from the 

definition of¢. Then, it follows from the formula in Theorem 2.6 

that¢ is multiplicative, 

There are many useful formulas involving¢, but some other func-

tions must be defined first. One of these is the Mobius µ function 

which has a unique role in the theory of multiplicative functions. 

Definition 2.4. Letµ be the function defined for positive integers 

such that, 

(i) µ (1) = l; (ii) µ (n) = 0 

if n > 1 and n has a perfect square as a factor; µ(n) = (-l)r if n > 1 

and n is the product of r different prime factors. 

The fact thatµ is multiplicative follows from the definition. 

The next theorem, which provides some useful equalities, follows easily 

from Theorem 2. 6 and Definition 2 .4. 

Theorem 2.8. If¢ is the Euler totient function, then ¢(n) is equal 

to any of the following equivalent sums. 

Theorem 2.9, 

and 

n I µ(d)/d = 
dTn 

I nµ(d)/d 
dTn 

= l dµ (n/d) = 
dTn 

\ l cµ(d). 
cd=n 

1 
I:' µ ( d) = {I , if n 

dtn 0, if n > 1 

I JµCd) I = 2r 
dTn 

where r is the number of distinct prime factors of n. 
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The function defined by the first sum is usually designated by 

E: ' Thus, hereafter, s(n) = l µ(d). 
dTn 

The function defined by the second 

sum is a member of a class of functions which is discussed later. 

The unique role ofµ in the theory of multiplicative functions 

is expressed in a relationship called the Mobius invers.ion formula. 

It is given by the next theorem, 

Theorem 2.10. The functions g and fare related by 

if and only if 

f(n) = 

gCn) = . I fCd) 
dTn 

I µ(n/d)g(d) = I µ(d)g(n/d). 
dTn dTn 

It is not intended by the previous statem~nts to indic~te that 

Theorem 2,lO·applies only.to multiplicative functions, Not only does 

it apply to all functions on the positive integers but there is an 

extension of this inversion which applies for functions. f .;;i.rid g on 

positive real numbers, 

There are other types of inversion inv0lving other. functions. 

However, it lias been shown by Satyanarayana (24) that this particular 

inversion is unique to the Mobius function. This was accomplished 

by proving indep~ndently some of the consequences of Theorem 2.10 and 

showing that if Theorem 2.10 defined a functionµ*, thenµ*=µ, 

There are some well-known functions of positive integers whose 

function values at n depend on the divisors of n. 

Definition 2.5, For any real number k, the function crk is the function 

such that crk(n) is the sum of the kth powers of the divisors of n. 



That is, 

'\ (n) = 2 i. 
dTn 

Since n~ is multiplicative it is easy to see that, by Theorem 

2.2, crk is also multiplicative. 

Two special cases are particularly useful. If k = 1, note that 

13 

crk(n) gives the sum of the divisors of n. This function is denoted by 

a. If 

k = 0, crk(n) = 2 1, 
dTn 

and it is seen that cr0 simply counts the number of divisors, of n. The 

function cr0 is usually designated by, and is often called the tau­

function. 

Theorem 2.11 gives formulas for ,(n), cr(n) and crk(n) based on the 

stand!:!:rd form of n. It may be observed that, in this form, the formula 

for ,(n) cannot be derived by taking k = 0 in the formula for crk. 

However, it may be done taking the limit as k goes to zero •. 

Theorem 2 .11. 

The functions: 

If n 
r a. 

l. = II p. , then : 
. 1 l. l.= 

r 
(i) '(n) = II 

i=l 

r 
(ii) a (n) = TI 

i=l 

r 
(iii) crk (n). II = 

i=l 

(a. +1) 
l. 

[ ai+l J p. -1 
l. 

P· -1 
' l. ' 

(a.+l)k · 
l. p. -1 

l. 

k p. - .1 
. l. 

defined by 

fk (n) = l ak (d) 
dJn 
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are not usuafly considered in elementary number theory. Since functions 

created in 

functions, 

Let 

Then, 

t}:lis manner 
i 

are an important part of the theory of generating 

' 
t~e formula for f 0 (n) = I ,(n) is derived here, 

dTn 

I ,Cn). 
dTn 

2 = ,(1) + ,(p) +,(p) + a 
• • • + T (p.) 

= l + 2 + 3 + ... +{a+ 1) 

= (a+l) (a+2) 
2 

Thus, since f 0 is multiplicative by Theorem 2.2, 

fo(nl = fo[P:1P;2 ... p:,J 

= £0[P:1]£0[P;2] ... £0[P:,J 

Another fanction which occurs frequently in the study of the 

theory of num.bers is the lambda function (sometimes called Liouvil.le' s 

function). 

Definition 2 6, If 

let 

From,thts definition, it is apparent that q is the total number· 
I 
I 

of primes~ distinct or not, in the standard form of n and that the sign 
i 

of A(n) tell~ whether this is even or odd. 
I 
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It is a fact that A, as given by Definition 2.6, is a member of 

a special class of multiplicative functions which is discussed in the 

following theorem. 

Theorem 2.12. If k is any non-zero real number and vis a function on 

the positive .integers such that v(mn) = v(m) + v(n) whenever (m,n) = 1, 

then the function defined by hk(n) = kv(n) is a multiplicative function 

of n. If v(mn) = v(m) + v(n) for all m and n, then hk is completely 

multiplicative. 

Proof: hk(mn) = kv(mn) 

= kv(m) + v(n) 

= kv(m) k v(n) 

The function A is completely multiplicative and is thus an example 

of the last s'tatement in the theorem. An example of the first type 

may be seen by letting k = 2 and v(n) = r where 

Thus h2 (n) = ,2r and h2 (1) = 1 since v (1) = 0. Thi.s function could be 

considered as one measure of the "compositeness" of n. However, 

g(n) = 2q where q =al+ a2 + ... + ar would probably be a better 

measure. 

The next,: and last, function to be considered is a multiplicative 

function whi~h has application in the study of prime numbers. It is 

really one o{ a class of multiplicative function called group charac-

ters. This function, designated here by x, is one of the simpler 
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non-trivia,1 group characters. The study of group characters, as such, 
I 

has no place iin this discussion. However, since they are multiplicative 
I 

functions, i~ is appropriate to include a representative. For a com-

plete but concise development of group characters, Lectures on Elemen­

tary Number Theory, by Hans Radamacher, is recommended. 

Definition 2.:7. For natural numbers n, let x be the function defined 

by 

(o, if n is even 

X (n) 
Ji n-1 

- '( 2 -l ( -1) , if n is odd. 

It is important to notice that if n is in the sequence S such that 

sk = 4k + 1, then x(n) = 1 and if n is in the sequence T such that 

tk = 4k + 3, then x(n) = -1. In fact, this statement is an alternate 

form of the definition and is used in Chapter III. It may also be 

seen that 

· .. 
where d1 (n) is the number of divisors of n that are in Sand d3(n) 

is the number· of divisors of n that are in T. 

Tiie purpose of this section was to give a representative collection 

of number-theoretic functions. Others which have riot been given here 

are defined as the need arises. Properties of most.fundtions used in 

the paper are stated briefly in the Appendix. 

' 
The! Convolution Product of Multiplicative Functions 

I 

Earlier tre ordinary products of arithmetic functions were dis-
1 

cussed, Ther~ is a different kind of product which is more naturally 
! 
' 
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related to the study of generating functions.· It is called the convol-· 
I 

ution product (sometimes the Dirichlet product) of two arithmetic 
I 

functions. Gonvolution products have been the subject of much study. 
I 

Lehmer (15) and Carlitz (2) published papers in 1931 and 1964, res-

pectively, which deal with convolution products. 

The treatment given here is largely due to Shockly (26). His 

recent text is the only elementary text that this writer has seen that 

covers convolution products. In his seventh chapter, he shows that the 

set of all arithmetic functions is a ring, with identity, under the 

operations of ordinary addition of functions and convolution multipli-

cation. He shows also that the multiplicative functions are a subset 

which is closed under convolution multiplication and is, in fact, a 

group under that operation. 

This last statement is the fact that makes convolution products 

important in this study. It is really the basis for one method of 

finding generating functions (Theorems 3.18 and 3.19). 

Definition 2.8. Let a and S be arithmetic functions. The function 

a ® S called the convolution product of a and S, is defined by 

(a® S)(n) = I a(d)S(n/d). 
dTn 

Two exampJes of convolution multi plication have already. been seen. 

If a (n) = 1 for every n, then 

(a® S)(n) =. I B(n/d) = I B(d) 
dTn dTn 

which was the! sum considered in Theorem 2. 2. The other example was 

' seen in connection with the Mobius inversion formula. The reader will 

have ample opportunity to see other examples where products are 

actually compµted. 
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It is almost obvious that convolution multiplication is commutative 

and associative. While the definition, and these properties as well, 

hold for al 1 •arithmetic functions, the most important fact for this 

study is that the multiplicative functions form a subset of the arith-

metic functions which is closed under convolution multiplication. 

Theorem 2.13. If a and Sare multiplicative functions then so is a@ s. 

Proof: If (m,n) = 1 and d/mn it is easily seen that d can be written 

as d = st where s/m and t/n. Also, (s,t) = (m/s,n/t) = 1. Thus, 

(a® S)(mn) = I a(d)S(mn/d) = f a(st)S(m/s·n/t). 
dTmn s m 

t n 

Since a artd Sare multiplicative, this sum is equal to 

i a(s)S(m/s)a(t)S(n/t) which is equal to the product of 
s 1m 

t\ a(s)S(m/s) and I a(t)S(n/t). 
s m tTn 

However, these are (a~ S) (m) (aeS) (n), respectively. Thus 

(a® S)(mn) = (a® S)(m)·(a ® S) (n) 

for (m,n) = 1, and a® Sis multiplicative. 

It has been observed already thatµ has a unique place in the theory 

of multiplicative functions because of its use in the Mobius inversion 

formula. Recall that 

I µ Cd) 
dTn 

s (n) 

[1,ifn=l. 
( 0, if n :> 1. 

Theorem 2.14. • The functions is the identity for convolution multipli-

cation. That is 

a © E: =s @ a = a 

for any arithmetic function a. 
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Since the identity for convolution multiplication is not the same 

as the identity for ordinary multiplication, it should be expected that, 

if an inverse exists for a, it is not 1/a. The following theorem shows 

that the convolution inverse exists if a(l) f 0. Note that an explicit 

-1 expression for a is given in the proof. 

Theorem 2, 15. If a (1) f O, then the arithmetic function a has a convol-

ution inverse. 

Proof: Let a(l) f 0, Define the function S by, 

S ( 1) = 1/a(l), 

S (n) = -1/a(l) t S(d)a(n/d). if n > 1. 
d n 
d<n 

The following shows that S -1 where a -1 in this discussion, = a means, 

the convolution inverse of a. 

Hence, 

and S 
-1 

a 

Theorem 2 .16. 

If n = 1, (S@ a) (1) = S(l)a(l) = 1 = E:(l). 

If n > 1, then 

(S ~ a) (n) = l S(d)a(n/d) 
dTn 

l S(d)a(n/d) + S(n)a(l) 
dTn 
d<n 

= f S(d)a(rt/d) 
dTn 

+{ a(l) d n S(d)a(n/d)}a(l) -1 r 
d<n d n 

= 0 = E:(n) . 

a~ S=S@a=s 

-1 
If a is a multiplicative function, a I- 0 then a exists 

and is multiplicative. 
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Proof: Since a(l) ~ 1, by Theorem 2.1, the inverse exists; by Theorem 

; -1 -1 2.15, and is definec;l by a (1) = 1, a (n) = t -1 - a (d) a (n/d) 
d n 

if n > 1. 

d<n 

-1 . The proof that a is multiplicative is relatively simple but, because 

of the computations involved, is very long. A short outline of the 

proof follows. The computations which are omitted are very similar to 

those in the proofs of Theorems 2.13 and 2.15. 

It can be verified for a finite number of cases that if (a,b) = 1, 

-1 -1 ~1 a (ab) = a (a)a (b). 

If this is not true for all positive integers a and b, there is a pair 

(m,n) = 1 such that mn is the smallest product with relatively prime 

factors, m and n, and 

That is~ if cd < mn and (c,d) : 1, then the equality holds. Using this 

fact and the fact that if (m,n) = 1 and <limn, then d can be written as 

d = st where slm and tin. it is possible to show that 

a- 1(m)a- 1(n) - a- 1 (mn) = 0. 

The computation depends on the definition of a-land the fact 

st < mn implies 

where.sand tare given above. Thus, 

l -1 -1 a (m) a (n) = :a (mn) , 

contrary to the assumption, and it is impossible to choose a first 

product mn as was done. Hence, a-l is multiplicative. 

Using Theorem 2.16 and the construction in the proof of Theorem 

2.15, it is possible to find a- 1 (pa) and, using Theorem 2.5, to find 



-1 a (n). It is interesting that, since 

L µ(d) = E(n), µ- 1 (n) = 1 
dTn 
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for every natural number n. That is, the identity function for ordinary 

multiplication is the inverse of the Mtibius function under convolution 

multi plication. 

Although not all of them are referred to directly, these last four 

theorems are the basis for the conclusions drawn in the last section 

of Chapter I H . 

The following the.orem shows that the identity is the only function 

which is its own inverse. 

Theorem 2; 17. If ct is its own inverse under convolution multiplication, 

then a= E, 

Proof: Suppose a® a = E. Then 

E(n) = I a(d)a(n/d) 
dTn 

-· 
f 1, if ri = 1 

=~ 
I 
.I \o, if n > 1. 

Since a is multiplicative, a(l) = .1. Thus, 

E(p) = a(l)a(p) + a(p)a(l) = 0 

implies 

2a(p) = 0 or a(p) = 0. 

Suppose 

i a(p) = 0 when i < a. 

Then 

a a a-1 a E(p) = a(i)a(p) + a(p)a(p ) + • 1, + a(p )a(l) 



Or, 

a a(p) = 0 for all a> O. 

Hence, . also, · 

a(n) = 0 if n > 1. 

Therefore a E, 

Composition of Multiplicative Functions 

It would be very useful if the ordinary composition of two multi-

plicative functions were again a multiplicative function. This, how-

ever, is not lthe case. The purpose of this section is to examine 

some types o~ functions whose compositions are multiplicative. 

First, to verify that not all compositions of multiplicative 

functions ar~ multiplicative, consider the following example. 

Note th~t ¢(21) = ¢(3)¢(7) = 2•6 = 12. Then, 

(TO¢) (21) = T(l2) = 6, 

But, 

(T O ¢) (3) (T O ¢) (7) = T(2)T(6) = 2•4 = 8. 

Thus, 

(T O ¢) (21) f. (r O ¢) (3) (T O ¢) (7), 

Hence, T and:¢ are multiplicative but To¢ is not. 

There are examples of compositions of functions which are multi-. 

plicative. It will be recalled from elementary algebra that 

I ab I = I a 11 b I 
for all integ,ers a and b. Thus, 

i 

lµCmnJ I = lµCmJµCnJ I = 
! 

Iµ (m) 11 µ (n) I . 

Hence lµJ is bultiplicative. This is an example of the following 

theorem. 
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Theorem 2.18. If a is completely multiplicative and Sis a multipli-

cative function such that the range of Sis a subset of the domain of 

a, then their composit a o Sis also a multiplicative function. If 

S is completely multiplicative then so is a o s. 

Proof: With the conditions as stated for a and S, and (m,n) 1, 

(a o S) (mn) = a[S(mn)] = a[S(m)S(n)] 

= a[S(m)]a[S(n)] = (a o S)(m)·(a o S)(n). 

If Sis completely multiplicative the same proof holds for all m and 

n, thus a o Sis completely multiplicative. 

There are other functions whose composites are multiplicative. 

If f(n) = n2 for all n, then, of is multiplicative. Since 

2 
(, o f) n = , (n ) , 

( T O 
2 2 2 

f)(mn) = ,[(mn) ] = ,(m n). 

But, if (m,n) 2 2 
= 1, then (m ,n) = 1 and 

2 2 2 2 ,(m n) =,Cm ),(n). 

Hence, 

(, o f)(mn) = (, o f)m· (,of) (n) 

when (m,n) = 1 and, of is multiplicative. 

It is obvious that this example does not satisfy the hypothesis 

of Theorem 2 .18. However, it is included in the following theorem. 
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Theorem 2:19. Let a be a multiplicative function, If S is a multipli-

cative function such that 

Cs(m),S(n)) = 1 

whenever (m,n) = 1, and the range of s is a subset of the domain of a, 

then a o s is a multiplicative function. 
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Proof: With!the given conditions, 

(a o S) (mn) = a[S(mn)] 

= a [ S (m) S (n) ] 

= a[S(m)]a[S(n)] 

= ( a o S) (m) • ( a o S) (n) . 

Hence, a o Sis a multiplicative function. 

It is possible that these two theorems do not cover all available 

cases. However, for the purposes of this study, they are sufficient. 

It is only necessary that one know that there is a sufficient number 

of examples so that general discussion is merited. The reader should 

be able to see other examples which satisfy the hypotheses of these 

theorems. 

Dirichlet Series 

The discussion of generating functions in the chapters that follow 

uses certain elements of analysis. Although the formal properties of 

series. are essentially all that is needed it seems advisable to state 

for the reader the theorems from analysis which are applicable and 

which sometimes make a proof easier. 

Definition 2.9. A Dirichlet series is a series of the form 
00 

'I -s 
l a(n)n . 

n=l 

The variables is usually considered complex and, when the series 

converges, it converges in some half plane to a complex valued function 

of s. In order to make the discussion appear more elementary, attention 

wil 1 be restricted to those complex s which lie on the. teal line. Thus, 
I 

in 
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00 

\ -s 
l a(n)n , 

n=l 

the reader may considers a real number and the series will converge 

to a real number for s > So, 

Hardy and Wright (12) explain the role of Dirichlet series as 

generating functions in the following manner. 

The theory of Dirichlet series, when studied seriously for its 
own sake, involves many delicate questions of confergence. These are 
mostly .irrelevant here, since we are concerned primarily wi.th the for­
mal side of the theory; and most of our results .could be proved.· .. 
without the use of any theorem of analysis or even the notion of the 
sum of·an infinite series. There are however, some theorems which 
must be considered as theorems of analysis; a:nd, even when this is. 
not so, the reader will probably find it easier to think of the series 
which occur as sums in the ordinary analytical ·sense. 

One of the tools needed is the operation called the formal product 

of Dirichlet series. The formal product of two Dirichlet series is 

formed by taking ali possible products· of the terms of one series with 

the terms of·the oth~r and combining powers of n-s. Thus' if 

[ I a(u)u -s] . [ I b(v)v-s] = 
u=l n=l 

00 

\ . s 
l c (n)n - , 

n=l 

by collecting coefficients on the left side 

c(n) = 
1 

l a(u)b(v) = I a(d)b(n/d) = 
uv=n · dTn 

I a(n/d)b (d). 
dTn 

The. following theorem shows the uniqueness of coefficients .in 

Dirichlet series. 

Theorem 2.20; If 
00 

l a(n)n-s and 
n=l 

00 

I b(n)n-s 
n=l 

i 
i 

converge to the same function in some region, then 

a(n) = b (n). 
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The convergence is necessary for an analytic proof of the theore,. 

However, in the formal sense this would be taken as the definition of 

equality of the series and convergence is not a factor. 

Formal products may be extended to a finite number of series. The 

formal produ~t of the series 
00 

l a(u)u-s, 
u=l 

00 . 

l b(v)v-s, 
v=l 

00 

\ -s 
L.. c(w)w , 

w=l 

is, then, 00 

l y(n)n-s 
n=l 

where 

y(n) = l a(u)b(v)c(w) ... 
uvw ... =n 

It is possible under certain circumstances to extend the defini.,, .. 

tion of formal product to an inf~nite set of series. For this purpose, 

suppose that a(l) = b(l) = c(l) = = 1 so that the term 

a(u)b(v)c(w) ... contains only a finite number of factors which are not 

1. Then, y(n) is the s.ame as given in the finite case. 'This holds 

if the series are absolutely convergent or, in the formal sense, if 

the order of multiplication has been specified. 

A most important theorem, as far as generating functions are con-

cerned, is derived by using a .formal product of series. First, let f 

be a multipli~ative function and recall that f(l) = ,1. Take the collec­

tion of all series of the form 

l + f(p)p-s + f(p2)p.:.zs + • ; • + f(pa)p-as + 

for p a prime~. For example, if p = 2, then a(u) = f (2a) when ti = 2a 

and is zero otherwise. If the series are multiplied, in the natural 

order of the primes, then, by the Fundamental Theorem of Arithmetic, 

each n occurs just once as a product n = .uvw ... , and 
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al a2 a 
y(n) = f (pl ) f(p2 ) f(pr r) = f(n) 

when 
al a2 a 

n = P1 P2 P r. 
r 

Since the order of multiplication is specified and y(n) reduces to a 

single term, no question of convergence arises. This proves the follow-

ing theorem. 

Theorem 2. 21. If f (n) is multiplicative then 

00 

l f(n)n-s = 
n=l 

-s 2 -2s a -as IT{l+f(p)p +f(p )p + ... + f(p )p + ... } 
p 

where the product is taken over primes in the natural order. 

A similar theorem which depends on the absolute convergence of the 

series can be proved. However, since it is desirable that questions of 

convergence be avoided, Theorem 2.21 is sufficient here. 

The simplest of the Dirichlet series is 
00 

r;(s)= In-s. 
n=l 

It is convergent for s > 1, and its sum r;(s) is called the Riemann zeta 

function. Volumes have been written involving this function and it is 

not th'e purpose here to delve deeply into theory concerning it. It is 

a fact that one of the outstanding unsolved problems of mathematics is 

the loca.tion of its zeros. In this paper, it is mostly. a useful tool. 

The next theorem could be considered a corollary to Theorem 2.21. 

Theorem 2.22. · Ifs> 1 then r;(s) = IT(l-p-s)-l. 
p 

Of course, by;Theorem. 2.19 
00 

-s -2s IT{l + p + p + ... } 
p 



without considering convergence. 

Another Oirichlet series which is often encountered is given by 

L(s) = 1-s -3-s + 5-s - ... " 

It can be seen that 
00 

L(s) = I x(n)n-s. 
n=l 

It is also possible to write Lin product form as; 

or; 

where 

L(s) 

L(s) = 

= II 1 

p 1-x(p)p-s 

1 
II ---- s q 1-q 

II 
r 

1 

1-r-s 

q = 1 (mod 4) and r = 3 (mod 4). 

Before closing this chapter it is necessary that some comments be 

made concerning notation and nonemclature. 

When 
00 

F(s) = I f(n)n-s 
n=l 

is written it usually means that the series converges to a function of 
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s. In this paper, both the symbol and the name function are used some-

what loosely. The symbol, and the name generating function, will be 

intended to convey the idea that there are some values of s for which 

the series converges to F (s) , However, it should. late.r be obvious to 

the reader th;,1.t when the proper order of terms is chosert the series 

generates f even if it does not converge. Sometimes the series is 

referred to a~ the generating series. The two designations are almost 

interchangeable, however:, generating series is often used to indicate 



that Fis in .series rather than product form. The symbolism also pro­

vides a convenient name, such ass, L, or F by which to refer to the 

series. 
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CHAPTER III 

GENERATING FUNCTIONS FOR MULTIPLICATIVE ARITHMETIC FUNCTIONS: 

ZETA FUNCTIONS AND RELATED FUNCTIONS 

Introduction to Generating Functions 

From the discussion in Chapter II, it may be observed that some 

properties of a multiplicative arithemtic function are attainable from 

its definition or elementary formla. There are questions concerning 

such functions which are not easily answered from the elementary theory. 

The purpose of the present chapter is not to raise and answer such ques­

tions but to examine one tool used by mathematicians in doing so. This 

tool is the generating function. 

The firs~ study of generating functions is attributed to Euler. 

According to 9ickson (7), the study of partitions led Euler to discover 

the first generating·functions. The greatest usefulness of such func­

tions has probably been in the additive theory of numbers. However, the 

impetus provided by their study has led to developments in the theory of 

multiplicative functions as well. Their usefulness extends also to the 

theory of com~lex variables. 

Writers in the field have found difficulty in giving a precise 

definition of "generating function". Some have attempted a definition; 

others give a discussion only; still others define it to be whatever 

type function is useful at the moment; and the remainder assume that the 
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reader is fully acquainted with them so that no definition is neces-

sary. 

Vaidyanathaswamy (30) gives the following somewhat confusing 

definition: 

The "generator" of a multiplicative function f (N) ~s 2 function 
f(x,z) of two arguments, such that f(p,z) = f(p)z + f(p )z + .•.. 
The "generating function" F(x,z) or f(N) is defined by F(x,z) 
= 1 + f(x,z). 
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Hardy and Wright (12) handle the idea of a generating function in 

the following manner. Their first approach is thus: 

A Dirichlet Series is a series of the form 
co 

F (s) = l a(n)/n5 

n==l 

The variables may be real or complex, but here we shall be concerned 
with real values only. F (s), the sum of the series, is called the 
generating function of a . 

n 

This would lead one to believe that they intende'd that all gener-

ating functions should be Dirichlet series. However, this is not the 

case for later in the same chapter (12) the following discussion is 

added. 

The generating functions discussed in this chapter have been de­
fined by Dirichlet series; but any function 

F (s) = l a µ (s) n n 

may be regarded as a generating function of a ,; n, The most usual form of 
µn(s) is 

µ (s) = n . 
-As e n 

Where A .is a sequence of positive numbers which increa?es 
infini t9. Tl).e most important cases are the cases A . = log 
When A = lo~ n µ (s) = n-s and the serie~ is a Di¥ichlet 
Wh ,n , .. n . . s en A = n, ;it is a power series in x = e 

n 

steadily to 
n and A = n. . n series. 

Though something may be lacking in the way of mathematical pre-

cision, this approach at least yields a general form for generating 
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functions. This lack may even be good. For, a too restrictive defini-. 

tion might sb delimit the concept as to make it useless. 
I 
I 

The pow~r series is of little use in the theory of multiplicative 

functions. Its usefulness is restricted chiefly to the additive theory 

and particul'arly to the theory of partitions. Power serie~ do arise 

in the multiplicative theory, but, as will be seen in Chapter IV, 

their role i~ secondary. 

The present· chapter will be concerned with. generating functions 

which involve Dirichlet series and series (or infinite products) which 

are related t.o them. In Chapter IV another type of generating function 

will be considered. 
I 

Generating Functions of Some Well-Known 

Arithmetic Functions 

The generating functions included in this section are well known. 

They are found in st.andard wqrks such as those by Hardy and Wright (12), 

LeVeque (16) or Titchmarsh (29). No attempt is made here to assign 

them to their orignators. The purpose of including them is threefold: 

(1) to acquaint the reader with the generating functions.of the arith-

metic functions which are usuaHy included in an elem~ritary number the­

ory course; · (2) to illustrate techniques which will B~ used later; 

and (3) to provide the reader with basic formulas from which others may 

be developed by processes to be shown in this chapter . 

. Most of: the functions considered here have generating functions 
i 

which are combinations (products and quotients) of zeta functions. In 
! 

fact, it seems natural that this should be the case for multiplicative 

functions, since the terms of the zeta function are themselves 
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factorable. -s -s -s -s That is, if n = ab, then n = (ab) = a b . Hardy 

observed in an address to the London Mathematical Society (12) that it 

was natural to use the zeta function in connection with the theory of 

primes because it was more natural to multiply-primes than to add them. 

Proofs of some theorems are included to illustrate the techniques. 

However, to avoid repetition, some are stated without proof. 

00 

Theorem 3.1. 1/z;;(s) = l µ(n)n-s (s > 1). 
n=l -_ 

Proof: Since z;;(s) = IT(l-p-s)-l 
p 

1/z;;(s) = IT(l-p-s) = 
p 

a and µ(p) = O, for a> 1, 

-s 2 -2s IT{l+µ(p) +µ(p )p + ... }. 
p 

But by Theorem 2.21 this is 
00 

\ -s l·µ(n)n . 
n=l 

At this point, it is desirable to digress from the stated purpose 

of this section to consider an idea which is inherent, though not ob-

viou:rly so, in the theory.of genJrating fµnctions. The equation of 

Theorem 3.1 may be used as a definition forµ. 

To see that this statement is a fact, suppose his a multiplicative 

arithmetic function, defined on P, such that 
00 

1/z;;(s) = l h(n)n-s. 
n=l 

Then; by Theorem 2.20, h(n) = µ(n) for every n E P. 

Another property of µ may be seen from the following: 
()() 00 

z;; (s) 1/z;; (s) l n 
-s l µ(n)n-s = . 

n=l n=l 
00 

[dk(d) l l -s 
1 = n = 

n=l 



Hence, 

I µ(d) = 1, if n 
dTn 

1, and 0, if n > 1. 

But this formula for this sum is the same as that derived in 

Theorem 2.9. 

The other generating functions mentioned in this paper lend them-
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selves to the same treatment. However, the elementary formulas are not 

always easily derived. This method of defining the multiplicative 

arithmetic functions will therefore probably not replace the usual 

methods. It should be mentioned, though, that for the purpose of appli-

cations this type of definition is sometimes used. 

Theorem 3 .. 2. 
00 

s(s - 1)/s(s) = I ¢(n)n-s (s > 2), 
n=l 

Proof: Use Theorem 3.1 and multiply the Dirichlet series to get: 

s(s-1)/s(s) = 

Thus, h(n) ¢(n) and 

00 00 

I nl-s I µ(n)n-s = 
n.=l n=l 

00 

00 

\ -s 
l n·n 

n=l 

00 

I µ(n)n-s 
n.=l 

l h(n)n-s, where h(n) = 
n=l 

f dµ (n/d). 
dTn 

00 

s(s-1)/s(s) = I ¢(n)n-s. 
n=l 

It will be seen in the next chapter that ¢(n) also has a generating 

function of another type. Thus, by the uniqueness theorem (Theorem 

2. 20) the arithmetic function generated by a given generating functi.on 

is unique but the generating function for a g±ven arithmetic function 

may not be unique. In fact, since for an arithmetic fuµction f, f(n) 

is determined by the nth term of the series, this uniqueness must be 



present before a series can be a generating function . 

Theorem 3. 3. 

Proof: As in 

= 

Corollary 3. 4. 

00 

s (s) s (s-k) = I ak(n)n- 5 (s > k + 1). 
n=l 

the proof of Theorem 3 . 2, s (s) s (s-k) 
00 

I n 
-5 

n=l 

00 00 00 

I n 
k -5 I n 

-s t k I -s . n = d = ak(n)n . 
n=l n=l d n n=l 

00 

s 2 (s) = l T(n)n- 5 (s > 1). 
n=l 

Proof: Let k = 0 in Theorem 3.3 . 

Corollary 3.5. 
00 

s(s)s(s-1) = l a(n)n- 5 (s > 2). 
n=l 

Proof: Let k = 1 in Theorem 3.3. 

Corollary 3.4 can also be arrived at from another direction . If 
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dk(n) is the number of ways of expressing n as the product of k factors 

where the same factors in a different order are counted as different, 

then note that d2(n) = T(n). Then Corollary 3.4 is also a corollary 

of the following t heorem. 

00 

Theorem 3.6 . k s (s) I dk(n)n- s. 
n=l 

Proof: k s (s) 1 = 

The following theorems are given her e because of their r e l ation 

to thos e already given . They ar e rel ated to l ater work as well because 

t hey ar e simpl e exampl es of methods of "di s covering" f unct i ons through 

t he use of generat i ng f unct i ons . However , refer ence wi ll be made to 



this section at the appropriate time in order to remind the reader of 

their importance. 

Theorem 3.7. 

Proof: 

00 

r;(s)/1';(2s) = l lµ(n) ln-s. 
n=l 

1',;(s)/1';(2s) = IT [ 1-(:'] 
p 1-p 

-s Recall the proof of Theorem 3.1 and notice that p has the same coef-

ficient except that it is positive. Thus the function generated here 

is the same except that all signs are positive. Therefore, 
00 

1';(s)/1';(2s) = I Jµ(n)Jn-s. 
n=l 

It is easily seen that{µ(n)} 2 = Jµ(n) J and, in fact, {µ(n)} 2k 

= jµ(n) I when k is a natural number. Also,{µ(n) }2k+l = µ(n) fork any 

natural number. Thus, by Theorems 3.1 and 3.7, all positive integral 

powers ofµ are generated by these same series. 

Theorems 3.8 and 3.9 were given by Titchinarsh (29) who proved 
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them in a manner similar to the proof for Theorem 3.7. The proofs used 

here will be referred to later as examples of a more general case. 

Theorem 3. 8 . 
00 

1';1(s)/1';(2s) = l T(n2)n-s (s > 1). 
n=l 

oq 

Proof: By Corollary 3. 4, 1'; 2 (s) = l T (n}n -s (s > 1) 
n=l 

and, by Theorem 3.7, 
00 

1';(s)/1';(2s) = I Jµ(n) Jn-s (s > 1). 
n=l 



Thus, 

where 

~3(s)/~(2s) =~ 2 (s) • ~(s)/~(2s) 
00 00 

\ -s = l ,(n)n . I Iµ Cn) 
n=l n=l 

00 

= l h(n)n-s 
n=l 

h(n) = I lµ(d) l,(n/d). 
<lTn 

-s 
n 

Recall that h(n) is multiplicative and that h(l) = 1. Then, since 

. al a2 
Thus, 1£ n = p1 p2 

Hence; 

Theore~ .3. 9 , 

a O for a> l, h(p) 

= df Palµ(d) l,(~a/d) 

.. ~ '. 

= 1µ(1) l,(pa) + lµ(p)l,(Pa-l) 

= (a+ 1) +a= 2a + 1 
a 

r pr, then 

h(nl = h[p:l]h[p;z] h[~:,J 

= [p:al l [p:•2 J • •. T [tr l 

·2a = ,(p ). 

= ,[p~a1],[p:·2J ... ,[p;·,J = T(n2J. 

00 

~ 3 (s)/~(2s) = l ,(n2)n- 5 • 

n=l 

00 

~4 (s)/~(2s) = l {,(n)} 2 n-s (s > l). 
n=l 
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Proof: Multiply ~(s) • ~3 (s)/~(2s) in their series form. 

Other Generating Functions Involving Zeta Functions 

There are many.other less well-known functions of number theory 

which have generating functions defined by Dirich,let series. Although 

these are not as often used in elementary number theory, some of them 

warrant consi<;ieration from a historical point of view while others are 

of a practical nature and relate handily to discussions in this. 

chapter. 

The multiplicat~ve functions of the form kv(n), where k ~ 0 and 

v(n) is an arithmetici function such that 

v(mn) = v(m) + v(n), 

were discussed in Chapter It. Two special functions mentioned where 

>,.(n) and one such that k = 2, v(h) = r where 

Theorem 3.10. 

Proof: 

Thus, 

00 

a 
r p . 

r 

~(2s)/~(s) = l >,.(n)n-s (s > 1). 
n=l 

s(Zs)/s(s) = d'~~:::.J by Thedrem 2.21, 

~(2s)/~(s) = II(l 
p 

II (1 
p 

00 

l l ... ) 
- -+ --. s 2s 

p p. 

00 

= I· (-il)qn-s = l >,.(n)n-s 
n=l n=l 

where q is the total number of prime factors of n. 
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Theorem 3 o lL 

where n 

00 

z:(s)/Z:(2s) = l 2r n-s (s > 1) 
n=l 

a 
r 

p . r 

Proof. By Theorem 3.7, 

Thus, 

z: 2 (s)/Z:(2s) = z:(s) • z:(s)/s(2s) 
00 

= l n-s 
n=l 

00 

00 

l I \1 (n) In -s. 
n=l 

z: 2 (s)/Z:(2s) = l n-s Y /µ(n)\. 
n=l dTn 

If g(n) = I /µ (n)\, then g(l) = 1 and 
dTn . 

+ •.. + /µ(pa) I = 1 + 1 + o + ••. + o = 2. 

Then, 

and since g is multiplicative, 

Thus, 

al a2 
g(n) = g(pl )g(p2) 

00 

z: 2 (s) /Z: (2s) = l 2rn -s O 

n=l 

Theorem 3.12 is a more general theorem of the same nature as 

Theorem 3. 7. In fact, Theorem 3. 12 reduces to Theorem .3. 7 for k = 2. 
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Theorem 3.12. If qk(n) = 0 when n has a kth power, k > l, as a factor 

and qk(n) = 1 otherwise, then, 
00 

Z:(s)/s(ks) ~ l qk(n)n-s. (s > 1) 
n=l 
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Proof: The proof is essentially the same as the proof of Theorem 3.7, 

It is implicit that k > 1 for if k = 1, then qk is the identity 

function. This gives the obvious fallacy s(s)/s(s) = s(s). This 

would mean s(s) = 1 for every s such that s(s) f 0. However, it is 

known that s (2) 

The great Indian, Ramanujan, discovered several generating func-

tions (23). It is interesting that he found them "incidentally in the 

course of other investigations". Also interesting is that he generally 

handled series with a casual disregard for convergen:de. . In fact, many 

of his earlier proofs were wrong for that reason, but G. H. Hardy, 

to' whom he communicated them, was surprised to find many of his calcu-

lations correct. As was usual in his day, his original proofs were 

not published with the results. However, his methods were employed 

by others wh.o followed him and by his teacher, G •. H; Hardy, as well. 

The first theorem from Ramanujan is an example of a generating 

function for the ordinary product of two arithmetic.functions. It 

should be recalled that the generating functions for 0 (n) and ob (n) a . 

are given by Theorem 3.3. The p:roof used here was given by Titchmarsh 

(29), who also specified the region of convergence. 

Theorem 3, 13, 

s(s)s(s-a)~(s-b)s(s-a-b)/s(2s-a-b) 

(s > max {l, a+ 1, b + 1, a+ b + l}). 

Proof: Ey Theorem 2.21 the left-hand side becomes 



II 
p 

-2s+a+b 
1-

and with z = p-s this is then 

II 1- a+bz2 
p a b a+b (1-z) (1-p z)(l-p z)(l-p z) 
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The fraction can then be broken down by the method of partial fractions 

to give: 

1 
{1 ~ z - _1 ... :-:-a-z 

_.P.._b_b_ + 1 P::: } . 
1-p z -p z . 

Then, write each fraction in the braces in series form and combine 

to get: 

= 

Hence: 

00 

1 Cl .. · (m+l)a. (m+l)b , (m:-1'1) (a+b)) m -p -p +p z a · b 
(1-p ) (1-p ) 

l 
m=O 

00 

1 

(1-pa) (l=pb) 
l (l-p(m+l)a) (l-p(m+l)b)zm. 

m=O 

s(s)s(s-a)s(s-b)s(s-a-b)/s(2s-a-b) 

00 

= II I 
p m:rO 

00 

1-p (m+ 1) a 
a 1-p 

1 (m+l)b -p 
b 1-p 

= II l o a (pm) ob (pm)p -ms 
p m=O 

00 

= Io (n)ob(n)n-s 
n=l a 

1 
ms 

p 

by applying the formula for ok and Theorem 2.21 in that order. 

It is reasonable to expect that a theorem as this would have some 

interesting special cases. If a= b = 0 then Theorem 3.~ is a special 

case. Some other special cases are included in the following 



corollaries, 

Corollary 3 .14. 

00 

= l ,(n)a(n)n-s 
n=l 

(s > 2) . 

Proof: Let a= 0, b = 1 in the theorem. 

Corollary. 3 .15. 

~(s)~ 2(s-l)~(s-2)/~(2s-2) 
00 

= l a2(n)n-s (s > 3) . 
n=l 

'!'. 
Proof: Let a= b = 1 in the theorem. 

The next theorem was also "found" by Ramanuj an (23). It is in-

eluded here without proof. A method by which it and others like it 

could be discovered;, will be included in the final section of this 

chapter. 

Theorem 3.16. 

. -2s+a+b L(s)L(s-a)L(s~b)L(s-a-b)/(1-2 )s(2s-a-b) 
00 

= , n-1 -s 
l (-1) cra(2n-l)crb(2n-1)(2n-1) . 

n=l 

,11', ,• 

Corollary 3. 17. 

4 ·' -2s 
L (s)/(1-2 )~(2s) 

00 

= l (-l)n-l,2(2n-1)(2n-i)- 5 • 

n=l 

It is a fact that the coefficients of the terms of the series for 

L(s) give the multiplicative function x(n) defined in Chapter II. 
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That is, 
00 

L(s) = I x(n)n-so 
n=l 

Hence, products fo;med from L (s) and t;; (s) generate multiplicative 

functions, Both L(s) and t;;(s) are also involved in the study of the 

additive theory of numbers, In fact, L(s) is the basis for the study 

of the distribution of primes of the forms 4m + 1 and 4M + 3. 

It will be observed that t;;(s) L(s) generates the multiplicative 

arithmetic function I xCd), 
dTn 

However, 4t;;(s)L(s) generates the function 

r(n) from additive theory where r(n) is defined to be the number of 

representations of n as the sum of two squares, These representations 

include squares of all integers and different orders are counted as. 

different. 

The proof of the above statement requires theory which has not 

been developed, For a discussion of r(n) and a proof, the reader is 

referred to Chapter XVI and Chapter XVII of The Theory of.Numbers by 

G. H, Hardy and E. M. Wright, 

Some Classes of Multiplicative Arithmetic Functions 

and Methods of Finding Their Generating Functions 

The foregoing sections of this chapter would almost lead one to 

believe that generating series were discovered by accident, The reader 

might even get the feeling that one just takes some combination of t;; 

or L, multiplies or divides them, and waits to see what happens, It 

is a fact that this would produce a multiplicative arithmetic function 

and give its generating function, However, it is desirable to have 

a more systematic approach, 
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Unfortunately, there is such a wide range of arithmetic functions 

that it is impossible to classify them all. Vaidyanathaswamy (29) 

attempted to classify the elementary functions. However, his classifi-

cations seem to be of a little use in this study .. The purpose here is 

to discuss some methods of finding generating functions and to extend 

these methods. 

Indications of some possibilities have already been seen. For 

example, it is evident that Theorem 3.3 gives a generating function for 

an infinite class of arithmetic functions. However, Theorem 3.13 

would indicate that this is merely a subclass of a much larger class 

of functions which are generated by the series in Theorem 3.13. By 

taking a different direction, it can be seen that 

is also a multiplicative function of n and that if F(s) generates crk 

then r;(s)F(s) generates Ak. In fact, the general case is given in the 

following theorem. 

Theorem. 3.18. If 
00 

F(s) = l f(n)n-s 
n=l 

is the generating series for the multiplicative function f, then 

i:;(s)F(s) gives the generating series for the multiplicative function A 

defined by A(n) = I f(d). 
<lTn 

In Theorem 2.13 it was.found that the convolution product of two 

multiplicative arithmetic functions is multiplicative. That is, if B 

is the arithmetic function defined by. 

B(n) = I f(d)g(n/d) 
dTn 
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where f and g are multiplicative, then B is multiplicative. If f and 

g are functions whose generating series are known, it is possible to 

find the generating series for B. In fact, an example of this was seen 

in the proof of Theorem 3.8 where a method of determining the function 

values of B was also used. The next theorem covers the general case; 

If g(n) = 1 for all n, Theorem 3.19 is a special case of Theorem 

3.19. 

Theorem 3. 19, If 

and 

then 

where 

00 

F(s) = l f(n)n-s 
n=l 

00 

G(s) = l g(n)n-s~ 
n=l 

00 

F(s)G(s) - l B(n)n-s, 
n=l 

B (n) = l f(d)g(n/d). 
dTn . 

Proof: The proof follows by the Dirichlet multiplication of the two 

series; 

The generating function found by using Theorem 3, 19 depends only 

on those chosen for f and g. If e(n) is 1, if n = 1, and o, if n > 1, 

E: is the identity of convolution multiplication and no new generating 

fundtions are found by Theorem 3.19, if g =E or f = E:. 

In Theorems 3.2 and 3.3 the functions ~(s-1) and ~(s-k) were used, 

k It should be noted that h(n) = n defines a completely multiplicative 

function and that 



(]() 

, nk-s = r; (s-k) = l 
n=l 

(]() 

\ k -s 
l n n 

n=l 

is its generating function. If g(n) = nk and f(n) f s(n), then for a 

fixed f(n) an infinite class of functions may be created by using 

Theorem 3 .19. 

From the foregoing discussion it is evident that many generating 

functions of multiplicative functions may be found by using the rela-

tively few elementary functions for which the generating functions are 

known. There are still many questions unanswered. 
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Two such questions stem from Theorems 3.8, 3.9 and 3.13. In 

Theorem 3.8, a generating function for ,(n2) is given. In Theorems 3.9 

and 3.13 generating functions are given for ordinary products of some 

elementary multiplicative functions whose generating functions are 

known. The function T(n 2) is a special case of the composition of 

multiplicative functions as described in Chapter II. 

Is there a general method of arriving at a generating :function 

for composites and ordinary products? Unfortunately, the answer is not 

available. Theorems 3.8 and 3.9 were established by essentially the 

same process, · While there is a similarity in the generating function 

of 0k (Theorem 3.3) and 0a ab (Theorem 3.13), there is no obvious way 

of obtaining the second from the first. 

The most promising method seems to be the method used by Nadler 

(19} (20) . It is difficult to deteI'llline if this method was originated 

by Nadler but in the research for this paper it has not been found in 

the writings of his predecessors,. This includes those mentioned in his 

bibliography. It could actually have been the method used by Ramahuj an 

to find the formulas in Theorems 3.13 and 3.16, 
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By this method, it is possible to find generating functions for 

some, if not all, ordinary products and compositions, It should also 

be applicable to other functions, Essentially it might be described 

as an inverse for the method used in some of the proofs of this chapter 

(see Theorem 3, 13), Some examples will serve as illustrations, 

Example 3,1, Let 

f(n) = A(n),(n) = (-l)q,(n) 

where q is the total number of prime factors of n, Suppose that 

Then, 

= 

= 

00 00 

l f(n)n-s = TI l f(pt)p-ts. 
p t=O n=l 

00 

I f(n)n -s 
n=l 

00 

= TI l (-l)t(t+l)p-ts 
p t=O 

-s -2s TI { l - 2p + 3p -3s -4s 4p + Sp - ,,,} 
p 

TI 
p 

1 = TI [ l-p-s]2 = 
-2s p 1-p 

, 2 (.2s) 

, 2 Cs) 

The formula found in Example 3.1 may be .proved by thl:l method used 

to prove Theorem 3,8 using the result of Theorem 3,10, An interesting 

side result here is that A ® A = A • , where ® is convolution multipli-

cation and • is ordinary multiplication, 

Consider the more complicated example which gives the generating 

funation of A • h2 where A and h2 are given in Definition 2,6 and 

Theorem 2,12 respectively, 

Example 3.2, Let g(n) = (-l)q2r where q is the total number of prime 

factors of n and r is the number of distinct prime factors of n, Then 
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00 00 

I g(n)n~s = IT I 'g(pt)p-ts_ 
n=l p t=O 

gives 
00 

I (-l)q2rn-s -s -2s .-3s .. '}. = IT{l-2p + 2p 2p + 
n=l p 

00 

= IT {l + I (-l)t 2p-ts 
p t=l 

= IT {l + 
2 If !f p t=l p 

s 2s · 
= IT {l + 2(1-p )/(p -1) 

p 

= IT { s 2s 1 - 2(1-p )/(l-p ) 
p 

= IT (-1 + 2ps _ p2s)/(l-p2s) 
p 

IT -s -2s -2s = (l-2p · + p )/(1-p ) 
p 

= IT (l-p-s)2/(l-p-2s) = t;(2s)/t;2(s). 
p 

The following example d4e to Nadler (19) not only involves an 

ordinary product of multiphcative functions but also a ccimposition, 

Example 3. 3. Define the functiort p by , a 

-a/2 
p (n) = n cr (n) a . a 

where a is a real number, a:r:id, as usual, n is a natural nUmber. If 
r t. 

0 then P (n) ' (n) . Suppose (:. 0 and = IT p. 1 From its a = = a n a i=l 1 

elementary formula, 



Also,. 

Then 

a (n) 
a 

-a/2 
n 

r t.(-n/2) 
l TI p. 

i=l l 

-a/2 p (n) = n a (n) 
a a 

r [ -ti a/2 ti a/2+al [ al 
= TI p. -p. / 1-p. 

. 1 1 . 1 1 
1= 
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(A) 

Now, consider the function pa(nx), where xis a natural number greater 

than unity, Form the expression 

and consider the series in the right-hand side, By (A), 

This latter series may be summed as the difference of two geometric 

series to get 

Cl · a.x/.2-s) I (l a) a(l -ax/2.-s) I (l . a) = -p. -p - p -p . -p 
(l-p~ax/2-s)(l-pax/2-s) 

1 + (. -ax/2. +a . .·. ax/2) -s1 (l . a) = p ~ p p. -p 
(l-p-ax/2-s)(l-pax/2-s) 



Thus, using (B), 
00 

l P (nx)n-s = 
n=l a 

(B) 

00 

n \ ( tx) -ts 
l Pap p 

p t=O 

x-2 -s 
1 + p (p )p a 

= IT __,..,_.~.,_.__,..,_.~~.,_..,_..,_..,_.~ 
_ p (l-p-(s+ax/2))(l-p-(s-ax/2)) 
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· · .x-'2 · -s = t(s+ax/2)t(s-ax/2)IT{l+pa(P lP , (C) · 
p . 

Th,e special: case of x = 2 gives 
. 00 . 

l pa(n2)n-s = t(s-a)t(s+a)t(s)/~(2s). 
n=l 

I 
The product remaining in (C) is not always a zeta function but it 

may be observed that 

Thus (C) may then be written as a product of Dirichlet series; 

Some further results are easily obtained. Orie of these is that 

(C) remains the same if (-a) replac.es a. This is due to the fact that 

p (n) = p (n) . -
-a a · 

If 

then a formula similar to (C) exists for p , of which a special case is, 
a . 

00 

l P (n2)n-s = t(s+a)s(s~a) 
· n=l a . s (s) 



Nadler (19), (20) also showed that the same techniq"'e, with a 

slight alteration, could be applied to yield functions involving L(s). 

Essentially, the only change necessary is to write 

-s -1 -s -1 
L (s) = II (1-q ) II (1--r ) 

q r 

where q and rare primes such that q = 1 (mod 4) and r = 3 (mod 4). 

x Using this method Nadler (19) developed a formula for pa (2n+l) 

which is similar to (C) above. A special case which can be proved by 

the methods used earlier in this chapter is given by the formla, 
00 

, n 2 -s -2s 
l (-1) pa{(2n+l) }(2n-1) = L(s)L(s+a)l(s-a)/(1-2 )l,;(2s} .. 

n=O 

Two other special cases of more complicated formulas found by 

Nadler (20) are of interest. They may also be proved. by methods used 

earlier; 

They are: 

and 

00 

I a (n2)n-s = ~(s)~(s-a)~(s-2a)/~(2s-2a) a 
n=l 

00 

l x(n)cr (n2) = 
n=l a 

2a-2 . · 
L(s)L(s-a)L(s-2a)/(1-2 )~(2s-2a). 
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It is evident that by using this method, a pr0duct representation 

of the generating function·can be obtained. If the series in the pro-. 

duct representation can be summed as in the Examples 3.1, 3;2, and 3.3 

the generatirtg function can be written as a product of Dirichlet series. 

However, as pointed out earlier, these Dirichlet series are not always 

zeta series or L series. 



CHAPTER· IV 

GENERATING FUNCTIONS INVOLVING LAMBERT SERIES 

Some Lambert Series and the Associated Power Series 

A problem of recent interest concerns generating functions of a 

type other than Dirichlet series. 

It will be recalled that Hardy and Wright (12) were quoted, in 

Chapter II I1 as proposing that any function 

F(s) = Ia u (s) 
n n 

might be regarded as a generating function for a , If 
n 

and 

then 

-ns e 
u (s) = ----n 1 -ns - e 

-s 
x = e 

u (s) 
n 

n x 
n 

1 - x 

Thus, a function F defined by 

F(x) 
oo n 

= l a(n)x 
n n=l 1 - x 

may be regarded as the generatfung function of a(n), A series of the 

form oo n l a(n}x 
n=l 1 - xn 

is called a Lambert serieso 

52 



The following theorem gives a useful property of Lambert 

Theorem 4.lo If 

then 

Proof: 

thus 

where 

00 n 
F (x) = I a(n)x and b (N) = t a(n), n n=l 1 .... x n N 

00 

F (x) I b (N) x 
n 

= 
n=l 

n 2n 3n x n 
• ' 0) J = (x + x + x + n 

1 - x 

00 00 00 

F(x) = l a(n) l xmn = l b(N)xn 
n=l ·m=l n=l 

b (N) = I a (n) . 
· nTN 
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series. 

This relation between a(n) and b(N) is the same as that considered 

earlier in connection with the Dirichlet series. In fact, the following 

theorem shows that the entire relationship expressed irt Theorem 4ol is 

equivalent to 

c:(s)f(s) = g(s) 

where f (s) and g (s) are the Dirichlet series associated with a(n) and 

b(N), respectively, Dickson (7) attributes this theorem to Cesaroo 

Theorem 4.2. If 
00 

f(s) = l a(n)n-s 
n=l 

and oo 

g(s) = l b(n)n-s 
n=l 



then 

if and only if 

Proof: If 

then 

00 

F(x) 
oo n 

= l a(n)x 
n=l 1 - xn 

= l b(n)xn 
n=l 

00 

l \ 
n=l n 

<;;(s)f(s) = g(s). 

<;;(s)f(s) = g(s) 

00 

l 
n=l 

a(n) = 
s 

n 

00 

l 
n=l 

b (n) 
s 

n 

If the series are multiplied as usual, 

where 

Thus, by uniqueness, 

If 

and 

00 00 

l :y (n) = 
s n=l· n 

l b (~) 

b (n) 

n=l n 

y(n) = 2. a(d). 
dTn 

= Y (n) = I aCd). 
dTn 

oo n 
F(x) = l a(n)x 

n=l 1 - xn 

b(n) = l a(d) 
dTn 

the conditions in the hypothesis of Theorem 4,1 aTe met, thus 
co 

F(x) = I b(n)xn. 
n=l 

If the conditions in the hypothesis of Theorem 4.1 are met then 

b (n) = ), a(d). 
dTn 
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The steps of the proof may then be reversed to prove that 

r,;(s)f(s) = g(s). 

It has been shown that if a(n) is a multiplicative arithmetic 

function then 

b(n) = I a(d) 
dTn 

is also multiplicative. Not all such functions have been explicitly 

defined in the theory. However, there are many examples where both 

a(n) and). a(d) define well-known arithmetic functions. 
dTn 
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The following examples show the relationship implied by Theorems 

4.1 and 4.2 in the case of a few well-known arithmetic functions. 

Example 4. L If 

then 

a (n) = µ (n) , 

b en) = I .µ Cd) • 
dTn 

Since b(n) = 1 if n = 1 and b(n) = 0 if n > 1, 

,Example 4.2. Since 

then 

Thus, 

co . .n l µ (n)x 
n=l 1 - x.n 

= 
co 

l 
n=l 

[ ). µ ( d) ] xn = x. 
dTn 

n = I HdL 
dTn 

co . n I <Pen) x 
n n=ll - x 

co k n 
\' n x 

co 

= l nxn 
n=l 

= !., 
n=l 1 = xn 

x 
2 

(1 - x) 



Two special cases of this example were reported by Dickson (7), 

If k = 1, then 

and if k = 0, then 

oo n 
l nx n = 

n=l 1 - x 

00 

I o(n)xn 
n=l 

00 n oo 

l _x_ - l T. (n) xn. 
n n=l 1 - x n=l 

Since a(n) is multiplicative if and only if b(n) is multiplica-

tive, it is apparent that for each Lambert series which generates a 
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multiplicative function there exists a corresponding power series, One 

notes also that if a(n) is given, then 

b (n) = I a(n) 
dTn 

and by the Ml:5bius inversion formula if b (n) is gi Ven then 

Suppose that 

a(n) = I µ (d)b (n/d). 
dTn 

oo n l h(n)x 
n=l l - xn 

= 

where A(n) = (-l)q and q represents the total number of prime factors 

of n. 

ship. 

Then, ;\ (n) = 

Since 

I h(d) and h may be determined from this relation­
dTn 

h(n) = l µ(d);\(n/d)~ h(pa) = I µ(d);\(n/d) 
djn dTpa · 

= µ(l)X(pa) + µ(p)A(pa-1) + µ(p2);,:(pa-2) + '" + µ(pa'.)A(l) 

(-l)a + (-1) (-l}a-1 



If 

then 

a 
r 

Pr' 

since his 

h(n) = h (:1 +:, hf J 
multiplicative. Thus,· 

a.12 a22 
h(n), = {(-1) H(-1) } 

But, 

al + ~2 + • • '· + ar = q 

and r is the number of distinct prime factors of n. Hence 

where q is the to.tal number of distinct prime factors. of n. 

Classes of Arithmetic Functions from Designated Power Series 

Generalization of same of the theorems of the last sedtiQn pro-
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duces. class.es of functions which. are of some interest in· themsel:ves. 

The first theorem of this sedtion derives a class of aritli:m~tia fu:nc­

tions by choosing crk (an) as the doefficients of the 'associated po\Jer 

series. The second theo,rem shows how this method may li>e used to apply 

to.other functions. Other .theorems of the section characterize the 

functions found and deveiop theory needed for a further generalization. 

Harris and Warren (13) proved the following theorem concerning 

crk (an). In this theorem and in all theorems and disctussions in the 

remainder of the present chapter, a:: ands are used as follows: r is the 

largest factor of a for which (r~n) =.land a= rs. 



·Theorem 4.3. If fk(a,n) is an ari.thmetic function, 

00 

I 
n=l 

if and only if . 

n 
fk(a,n)x 

n 
(1 - x ) 

= 

The proof is not included since this theorem becomes a special 

case of the next theorem. It was given here as a theorem for two 

58 

reasons. First. the proof given by Subba Rao (28) for the more general 

theorem was patterned after that given for this one. Second, further 

reference to it will be made in examples which occur later in the 

chapter. 

It should be observed that Example 4.3 is really a spe~ial case 
: . . 

of theorem 4;3. If a= 1, then 

and the resuH is. exactly Example 4. 3. 

The following thetirem is a generalization of Thee.rem 4. $. 

Theorem .4,4,. Let g and h be multiplicative functions de.fined on P 

such that 

h(n) = l,g(d) 
dTn 

and let rands be as given for Theorem 4.3. Let f(a,n) be the 

arithmetic function defined by the relation 

then 

00 f (a,n):x:n I 
n=l n 

(1 - x ) 

00 

l h(an)xn 
n=l 

f(a,n) = h(r)g(sn), 



Prqof. Since, by Theorem 4,1; 

h(an) = L f(a,n), 
dTn 

f (a,n) = I h (an/d) (d), 
dTn 
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by the Mobius inversion formula, with rands defined as stated, s has 

no factors except those which are already factors of .n. Hence any 

divisor of sn which is not a divisor of n has a square factor. If dis 

such a divisor then µ(d) = O. Thus, 

L h(an/d)µ(d) = L h(an/cl)µ(d). 
dTn dTsn 

Since (r,n) = 1 and h is multiplicative, 

L h(an/d)µ(d) = L h(r•sn/d)µ(d) 
dTsn dTsn 

= 1. h(r)h(sn/d)µ(d) 
dTsn 

=h(r) L h(sn/d)µ(d). 
dTsn ·. 

But, by the Mabius inversion formula the latter sum is just. g(sn). 

Thus, 

f(a,n) = h(r)g(sn) 

as claim,ed .. 

The converse is also true. It may be established by reversing 

the steps of the proof. 

Further insight into the nature of f(a,n) and fk(a,n) of Theorems 

4. 4 and 4. 3 may be gained from the fol lowing theorems. 

Theorem 4.5. Let 

where fk (a,n) is defined by 

k = .fk(a,n)/n 
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fk (a,n) x 
n 

00 00 

l l 0k(an)x 
n 

n n=l l~x n=l 

Then, Pk (a,n) is periodic inn with least period P where P is the 

product of the distinct prime factors of a. 

Proof: The proof is given for the more general case. 

Theorem 4.6. Let g(n) be a positive valued and unconditionally multi-

plicative function of n, so that 

g(m,n) = g(m)g(n) 

for all positive integers m and n. Then, the function 

k(a,n) = f(a,n)/g(n) 

is periodic inn with least period P, where f(~,n) is defined in 

Theorem 4.4 and Pis the product of the distinct prime factors of a. 

Proof: First, it must be shown that i·f b is any factor of a such that 

(b,n) = 1, then (b,n + P) = 1, and conversely. 

If (b,n + P) 'f 1, then 1there exists a prime p1 suc;:h thc1t p1 lo 

and p1 ln + P, But p1 1n + P means that 

n + P =.cp1 

and 

n = cp1 - P. 

However, b is a factor of a~ thus p1 I b implies that p1 IP. Hence, 

n = cp 1 - P 1 p1 = p1 (c-P') and p1 ln. 

Since p1 lb and p1 Jn, then (b,n) r 1 contrary to assumption. Therefore, 

if (b,n) = 1 then (b,n + P) = 1. 

If (b,n + P) = lt then, since every prime diVisor of b also di~ 

vides P, no prime divisor of b divides n. Thus, (b,n) = 1. Bj the 
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fact just proved, rands are the same if n is replaced by n + P. 

This follows. from Theorem 4.4 and the fact that g·is completely mul-

tiplicative. Therefore, 

f(a,n+P) f(a n) ----.......-.......- = h(r)g(s) = ' and k(a n) g(n+P) · . g(n) ' 

has least period less than or equal to P. 

If R is any period then 

k(a,n) = k(a,n+R) 

for all n, If n = a, then 

k(a,a) = h(l)g(a). 

Let 

k(a,a + r) = h(t)g(u) 

where tis the largest factor of a such that (t,a + R) = 1 and a= tu, 
'. 

If Risa period, then 

h(l)g(a) = h(t)g(u). 

But, h is multiplicative so that h(l) = 1; therefore, 

Henc~, h(t) = g(t); or 

h(t)g(u) = g(a) 

= g(tu) = g(t)g(u). 

gCt) = hCt) = I gtdJ. 
dTt 

This holds only if t = L If t = 1, then (a, a + R} = a arid eVery. 

prime factor of a is a factor of R. Thus PIR and k(a,n} has least 

period P. 

Since g (n) = nk is a positive valued completely multipii.cative 

function it may be seeh that Theorem 4,5 is a special case of Theorem 

4.6, 
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It will be seen later, in the examples, that some values of 

the function Fk of Theorem 4.5 occ~r several times in each period. 

One -such value is crk(a). The foHowing proposition which was conjec­

tured and proved by this writer, shows that the number of times that 

crk(a) occurs depends on the period. 

Theorem.4.7. Let Fk be defined as in Theorem 4.5. Then Fk assumes 

the value crk(a) exactly ¢(P) times per period. 

Proof: If (~,m) = 1, then r = a ands= 1, By Theorem 4.3 

If m ~ P, where pis the product of _the distinct prim.es that ;divide 

a, then (a,m) = l if and only if (P ,m) = 1. But, (P ,m) = l exactly 

¢(P) times as mE{l, 2, ... P}. Thus 

at least <l>(P) times in the first, period; hence, in every period. 

To show that 

Fk (a_;.m) = crk (a) 

no more than ¢ (P) times per. period, it· will suffice to show that if 

s. 'f l then 
k . 

s crk(r) 'f crk (a). 

In fact, it is shown that when a= rs ands 'f 1, 

k . 
s crk (r) < cr (rs). 

If r = l, then 

k k 
s < 1 + s ...:, crk (s) .. 

If r 'fl, let 1, d1,d2,.,.,~,r be th_e divisors 0f.r, Then, 



s,d1s, ... ,dks and rs are all distinct divisors of rs, However, there 

are other divisors of rs for r f 1 ands f 1 implies that 1 is not 

among those listed and neither is r, Then, 

k sk t dk = 
k dk + dk dk k 

S Ok (r) = s (1 + + ... + + r ) 
d n 1 2 t 

k kl kl kdk k k 
:: s + s 1 + s 2 + ... + s t + s r . 

And, 

k k k k k k k 
s + s dl + s dl + s d2 + 

k k k k \ k 
+ s dt + s r + 1 + lD 

where Iok is the sum of the kth pnwers of all other divisors of rs and 

hence a positive quantity, Then, comparing the two values, 

Thus, Fk assumes the value crk(a) no more than cp(P) times per period. 

The next theorem and its corollary are based on Theorems 4.3 and 
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4., 5, They initially appear to add 1i ttle to the theory, However, they 

result indirectly in the generalization of Theorem 4.5 to numbers of the 

form an+ b. Also, they lead to a novel identity which proves useful 

in computation of one of the derived arithmetic functions. 

Before the theorem is proved, a definition and a iemma are needed. 

Definition 4. 1. If µ (n) is the Mobius function, let 

iµ(m/a), if a\m 

µ(m/a) = ) 
1 0, if aXm. 
\. 

Lemma 4.8. (i) If a divides m aridµ is the Mobius function, then 

\J ( d) dJ(m/a) 

\. 1, if m = a 
= /., 

) 
1 0, if m > a, 
\ 



Proof: Since m/a = l form= a and m/a > a, this is equivalent to 

summing the Mobius function over the divisors of n = m/a. 

(ii) If µ is as defined, then 
00 

l µ(m/a)xm/(1-xm) = 
m=l 

a 
x . 

Proof: By Theorem 4.1, 
00 

I µ(m/a)xm/(1-xm) = 
m=l 

00 

I { l µ(d/a) }xm 
m=l dTm 

which, by Definition 4.1, becomes 

By Lemma 4.8 (i), 
00 

00 

I { I µ (d) }xm. 
m=l dTm/a 
aim 

l { l . µ (d) }xm = 
m=l dT (m/a) 
aim . 

a x ; 

The conclusion follows by.combining these results. 

Theorem 4.9. Let 
t 

l ak (j a)µ(m/j) 
j=l 

with the usual restriction that the sum is zero if t = 0. 

Then., 

Proof: Since 

00 

I 
m=l 

00 

m 
gk(t;a,m)x 

1-xm 

00 

I ak(am)xm = 
m=t+l 

= 

then by Theorem 4.3 
00 00 

00 

l ak(arrt)xm. 
m=t+l 

t . 
l ak (j a) xJ 

j=l 

m 
fk(a,m)x 

l ak(a.m)xm = l 
m=l m=l (1-xm) 
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and, (1) 

00 

l <\ (am) xm 
m:::t+l 

t 
l crk(aj)xj. 

j=l 

By Lemma 4. 8 (ii) , 

oo - m 
xj = l µ(m/j)x . 

m m=l (1-x ) 

Thus, substitute in the second term of (1) to get,. 

m 
oo 00 fk(a,m)x t 00 - m 
l crk(am)xm = l --m- - l crk(aj) l µ (m/j~x 

m=t+l m=l 1-x j=l m=l 1-x 

m 
oo fk(a,m)x 

= l 
m=l m 1-x 

. . m 
= I gk_Ct,;a,m)x 

m=l 1-xm 

t 00 

I I 
j =1 m=l 

crk (aj )µ(m/j) xm 

1-xm 

Corollary 4.10. If m .::_ t then' gk(t;a,m) = 0. Hence, 

00 

I 
m=t+l 

n'l 
gk(t;a,m)f 

1-xm 

00 

= l crk(am)xm. 
m=t+l 

Proof: If m < t then, by Definition 4.1, 

t 

l crk(ja)µ(m/j) = I ok(ad)µ(m/d) 
j=l dim 

= fk (a,m). 
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Thus 

The final statement of the corollary is then immediate since the first 

t terms of 00 

I 
m=l 

m gk(t;a,m)x · 

Iii 1-x 

are then identically zero. 

The following theorem estabU,shes the identity which was mentioned 

earlier, 

Theorem 4.11, Let 

<\ (a,m) 
= {o if m 

C\ (am) 

< t 

if m > t. 

Then 

Proof: B;y Theorem 4. 9 and the definition of <\, 
m 

00 gk(t;a,m)x oo . 

l ---in-.. -= l (\Ca,m)xm 
m=l 1-x m=l 

But, by Theorem 4.1~ 

The novelty of this identity lies in the fact that gk(t;a~m) 

depends heavily on t, whereas, its sum over the divisors of m depends 

almost•entirely.on a and m, 

Some Computational Examples 

Some examples will serve to. illustrate the theorems of this chap-

ter, 
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The first two examples itlustrate Theorem 4.11. It should first 

be noted that Theorem 4, 11 reduces considerably the amount of 

computation involved in finding the sum of gk(t;a,m) over the divisors 

of m. Second, the two examples toget.her emphasize the fact that, once 

mis taken greater than t, the sum no longer depends on t. 

Example 4.4. Let 

a = .9 , k = 1, t = 5 and m = 15 , 

then by Theorem 4. 11, 

l gl(t;9,d) = 
dTlS . 

cr(l35) = cr(5)cr(27) = 6 (40) = 240. 

If the sum is computed directly the computation is as follows. As a 

result of Corollary 4. 8_, 

L g1(5,9,d) = L 'gl(t;9,d) = gl(5,9,15). 
dT15 dT15 

d>6 

The defin;i. tion of g1 then gives 
5 

g1 (5;9,15) = f 1 C9,1s) - I cr(9j)ii"c15;j) 
j =l 

= 9(15) [cr(9) - cr(27) - cr(45)] 

= 9(15) cr(9) + cr(27) + cr(45) 

= 135 13 + 40 + 78 

= 240 = cr(l35) ·" 

Example 4.5. If t = 4 and a, k, and m remain the same as in Exam:f.[e 

4.4, then 

by Theorem 4. 11. 

l. g l ( 4, 9, d) = 
dll5 

cr(l35) 

If the direct method is used, the computation is as follows, 



I. g1C4;9,1sJ =I. g1 C4;9,dJ 
dT15 dT15 . 

d>5 

= g1 (4;9,5) + g1 (4;9,15) 

4 

= [f(9,5) l cr(9j)µ(5/j)] 
j =l 

4 

+ [fC9,15) - I cr(9jJi7c15/j)] 
j=l 
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5cr (9) [ -cr (9)] +9 (15 )- [ cr (9) -cr (27)] 

= 5cr(9) + 9(15) +o(27) 

= 5(13) + 9(15) + 40 

= 65 + 135 + 40 = 240 

= cr (135), 

k The hext example will illustrate the periodicity of fk (a,m)/m 

which was proved in Theorem 4.5. The results wili.then be used to show 

an example of Theorem 4.3. An example where the period is much longer 

could obviously have been chosen. However, little is td be gained by 

looking at a longer example. 

Example 4,6. Let k = 2 and a= 24, then by Theorem 4.5 the period is 

p = 6. 

If m = 1, then 

f2(24,l) 
----"--- = 

12 
02(24) = 850, 



If m = 2, then 
fz(24,2) 2 64(10) 640, = 8 CJ2 (3) = = 

i 

If m = 3, then 
f 2 (24, 3_) 2 

9 (85) 765 = 3 0'2(8) = = 
32 

If m = 4, then 
f2(24,4) 2 64 (10) 640. = 8 0'2(3) = = 

42 

f2(24,5) 
If m = 5, then = cr 2 (24) = 850 , 

52 

f2(24,6) 2 2 · If m = 6, then · 2 = (24) cr 2(1) = 24 = 576, 
6 

It was shown in the proof of Theorem 4. 5 that r aind s are unchanged by 

adding P (artd thus any multiple of P) tom. Thus, 

f2(24,6b+l) 

. 2 
(6b+l) 

Or, if m - O, 1 , 2 , 3, 4, 5 

f 2(24,6b+m) 

2 
(6b + m) 

2 = s cr 2 (r)_ 

where rands are the same as form in the first period which is com-

puted above. 

Example 4.7. If k = 2 and a= 24, then by Example 

y(n) = 

By Theorem 4.3, then 

f 2 (24,n) 

2 
n 

= 

00 2 n l y(n)rtx _ 
n n=l 1-x 

where y(n) is given above. 

850, 
640:, 
765, 
640, 
850, 
576, 

if rt=l 
if n:=:2 
if ri::3 
if n=4 
if n::::5 
if n::::O 

00 . 

\' n 
l cr 2 (24n)X 

n=l 

4.6; 
(mdd 6) 
(mtid 6) 
(mod 6) 
(mod 6) 
(mod 6) 
(mod 6). 
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Harris and Warren (13) uncovered an interesting computational scheme 

which is based on the theorems of this chapter. 

If 
00 

I 
n=l 

then, by Theorem 4,1, 

= 

00 

I ok (an)xn, 
n=l 

The function fk(a,n) has now been characterized for all values of a. 

If a is taken to be a prime p, then by Theorem 4.5, fk(p,n)/nk is 

periodic with least period p. Since 

k k fk(p,n) = s ok(r)n , 
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where rs= p, there are just two cases to consider. First, if p divides 

n, then r = 1 ands= p yields fk(p,n) = pknk. If p does rtbt aiVide n, 

then r = p and s = 1 yields 

fk(p,n) = ok(p)nk = (pk+ l)nk . 

. In view of the preceding it is then easy t0 compute fk(p,n) and 

thus to compute dtI/kCa,d) .. If ok(p), ok(2p), ok(3p) 

puted by this method for each prime p then ok(n) will 

... are ~om-

be computed at 

least twice with the exception of n = 1 and n a power of a prime. But 

will be computed exactly once. 

The method of computation is illustrated in Table I. If k = 2 

the numbers in each column are just f 2(a,d) where dis a divisor of n. 

In the table a = 3, n = 1, 2, 3, , . , , 12. 
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TABLE I 

an 3 6 9 12 15 18 

10 10 10 10 10 10 
40 40 

81 
1(>0 

250 
324 

10 50 91 210 260 455 

an 21 24 27 30 33 36 

10 10 10 10 10 10 
40 40 40 

81 81 
160 160 

250 
440 324 

640 
729 

1000 
1210 

1296 

500 850 820 1300 1220 1911 



A Generalization to Power Series Where the Powers Are an 

Arbitrary Arithmetic Progression 

It has been seen in previous theorems of this chapter that for 

a> 0 an arithmetical function fk(a,n) exists such that 

n I fk(a,n)x 

n=l 1-xn 

00 

= l ak(an)xn, 
n=l 

Harris and Warren (13) investigated the question of the existence 

of a function fk(an+b) with a> 0 and b > 0 such that 

00 

l 
n=l 1 an+b -x 

00 

\ an+b = l ok(an+b)x , 
n=l 

The final two theorems of this chapter show under what conditions the 

function exists and characterize it when it exists. 

Theorem 4.12, If there is an arithmetic function fk(an+b) with b > 0 

such that 

then a = (a,b). 

· an'+b I fk(an+b)x 

n=l 1-xan+b 

00 

\ an+b = l ok(an+b)x ·, 
n=l 
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Proof: Let g = (a,b) such that 1 = (a/g, b/g). By Dirichl¢t's theorem 

there exists an No and a prime p such that 

(a/g)No + (b/g) = P· 

Thus, xgp appears on the right side (in the power series) with a non-

zero coefficient, 

Write the left side as the double series: 

00 

r [ an+b 2 (an+b) 3 (an+b) 
l fk (an+b) x + x · + x + , , , ] , 

n=l 



73 

aN+b . '\ Note that the coefficient of x 1s l fk(an+b) summed all n for which 

an+bJaN+b. Since aNo + b = gp, the coefficient of xgp in this form of 

the left side is Lfk(an+b) where the sum is over all n such that 

an+b\aNo+b. Suppose an+b\gp, then g = (a,b) implies that 

(a/g)n + (b/g) Jp. But b > 0 means that 

(a/g)n + b/g = p 

or 

an+ b = gp = aNo + b. 

Thus the coefficient of xgp is just fk(aNo+b). 

Now the coefficient of x2gp in the double series form of the left 

side is Ifk (an+b) summed over all n such that an+b \ 2gp. This includes 

n = No but may include other values of n. 

Consider the case where there is an n f No, Then (a/g)n + (b/g) \2p 

and hence 

(a/g)n + (b/g) = 2 

or 

(a/g)n + (b/g) = p. 

The second case implies n = No, so consider the first only. Fram the 

f . . 2g~b h . 1rst case n = --, ence 
a But b = kg so a\2g-kg or a\ (2-k)g . 

Now, (2-k)g an and g > 0 means 2-k > 0. Hence k = 1 and b = g 

giving also a= g. 

If No is the only n for which an + b \ 2gp, theri the cG>efficient of 

2gp x in the left side is just fk (aNo+b) which is not zero. Hence x2gp 

must occur on the right side so there is n1 such that 

Combine 

an1 + b = 2gp 



and 

aNo + b = gp 

to get a/g (nl No) = p. Thus a/glp and a/g = 1 or a/g 

possibility that a/g = pis ruled out by b/g > 0. Hence 

For all possible cases a= g, thus a = (a,b). 

Theorem 4.13. If b at and 

where gk in the 

) 

Proof: 

function defined in 
an+b 

~ hk(t;a,n)x 

Theorem 4.9, then 
00 

n~l 1-xan+b 
\ an+b = l crk(an+b)x . 

n=l 

= 

= 

an+b 
; hk(t; a,n) x 

l 1. an+b 
n=l -x 

00 a(n+t) 
L gk(t;a,n+t)x 

n=l 1 a (n+t) -x 

m 
00 gk(t;a,m)y 
l 

n=t+l 1-y m where y 

By Corollary 4.10, 

And, it follows that 
00 00 

, m , n+t 
l crk(am)y = l crk(a(n+t))y 

m=t+l n=l 

00 

l crk(an+b)xan+b. 
n=l 
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= P· The 

a= g. 

a 
;:: x • 
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Theorenis 4. 12 and 4. 13 thus say that fk (a,m) exists and satisfies 

the conditio'ns given in Theorem 4. 13 if and only if a = (a,b). It may 

also be seen that hk is a function which meets the requirements for 

fk in the hypothesis of Theorem 4.12. Hence a specific function has 

been exhibited which meets all requirements. 



CHAPTER V 

CONTRACTIONS OF MULTIPLICATIVE FUNCTIONS 

The search for methods of finding multiplicative functions and 

their generating functions motivated the definition and theorems of 

this chapter. The ideas involved are simple but lead to a method of 

deriving infinitely many different functions from a single know function. 

A function, called the characteristic function of a set, is used 

extensively in many other areas of mathematics. The reader, however, 

need know nothing more than the definition. This function is usually 

designated by the Greek letter chi which has already been used to desig­

nate a number-theoretic function. For this reason, and in the interest 

of simplicity, a notation is adopted so that, after the initial defini~ 

tions, chili need not be used. 

Definition 5.J. Let S be an arbitrary subset of a universal set U. 

Then the function defined by 

xs(m) = 1, if ms S, and xs(m) = O, if ms U - s, 

is called the characteristic function of S. 

In the following definition and. in the remainder of the chapter the 

universal set is q.lways P, the set of positive integers. 

Definition 5 .I 2. Let f be a multiplicative function defined on P. Define 

fs, the contraction off to S, as follows: 

fs(n) = f(n)xs(n). 
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It should be observed that the domain of f 8 is still P. Thus, the 

definition does not restrict the domain off to S but merely makes all 

values zero on P - S. Also it is seen that the set S greatly influences 

the character of f 8 . For example, if Sis finite, the range of f 8 con­

tains at most a finite set of non-zero elements. 

It is desirable, for reasons which are later obvious, to separate 

the multiplicative functions into two classes. One class will include 

those functions which have a zero. The other will contain those which 

have no zeros. For instance, the Mobius function is of the first type 

and the phi and sigma functions are of the second type. Some theorems 

relate to one type but not the other and some to either of the two. 

The first theorem is a collection of observations which are immedi­

ate consequences of the definition. They are stated without proof. 

Theorem 5.1. Let f be a multiplicative function having no zero. Then: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

if n s snR, f 8 (n) = fR(n) /: O; 

if n ts and n t R, f 8 (n) = fR(n) = D; 

if n s s - R or n s R - S, f 8 (n) /: fR(n); 

if QC P and RC P, f 8 (QU R) = f 8 (Q)l)f8 (R); 

if R = s and QC P, f 8 (Q) = fR(Q). 

If f has a zero the inequalities in Theorem 5.1 (i) and (iii) may 

or may not hold. Thus if f has a zero those parts of the theorem are 

invalid. 

The next theorem shows the relationship of the ranges when con­

tractions are to two sets and to their union. It holds for the con­

traction of any multiplicative function. 



Theorem 5.2. Let f be a multiplicative function. If SCP, QCP and 

s UQ 'f P, then 

Proof: If x f:. 0 and x E fsu/P) then there exists m E SUQ such that 

f(m) = x. But m E 9JQ implies m ES or m E Q. Then, either 

f 5 (m) = f(m) = x or fQ(m) = f(m) = x. 
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In either case, x E f 5(P)UfQ(P). Conversely, if x E f5 (P)UfQ(P) then 

x E f5 (P) or x E fQ(P). Thus there exists m such that f(m) = x and 

m ES or m E Q. Thus m E: S.)Q and 

fSUQ(m) = f(m) = x. 

Hence, x E f5'UQ(P). 

If x = O, Sl,Q'f P makes zero an element in both members. When f 

is a function which has a zero, this condition is unnecessary. If 

SUQ = P, the right side may include zero when the left side does not. 

A result similar to Theorem 5.2 can be proved for intersections. 

Theorem 5.3. Let f be a multiplicative function, If Sand Qare proper 

subsets of P, then fSnQ (P)C f 8 (P)(\ fQ (P). 

Proof: If x = 0 then S, Q and S("\Q proper subsets of·p implies 

x t fsr, Q (P) and x e £5 (P)~ £Q (P) . Thus, zero is in both sides of the 

equation by hypothesis. 

Suppose x f:. O and x t fS{'Q (P). Then, there_ ex,ists m. E 9'Q such 

that f(m) = x. But m E S and m e Q; henc~ f 8 (m) .= f(m) = x and . 

fQ(m) = f(m) = x. Thus, xef8 (P). and XE:fQ(P); therefore XE:f8 (P)()fQ(P) 

and, fS/" Q(P)Cfs(P)nfQ(P). 



The containment cannot be shown to be reversed unless f is a 
I 
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special type of function. For example, let f be the tau-function and 

let Sand Q qe given by S = {l, 2, 4, 6, 8, 9, 10} and Q ~{l, 3, 4, 8}. 

Since ,(2) ~ ,(3) = 2, 2ETS(P)n,QCP) but 2~'S1Q(P) = {O, 1, 3, 4} 

When f is a one to one function defined on P, m f n implies f(m) f f(n). 

Thus the difficulty in the above example is avoided and 

fSflQ (P) = fS (P)()fQ (P) 
' 

under the hypotheses of Theorem 5.3. 

There are other properties of contractions which could be consi-

dered here. Those in the first three theorems are given so that the 

reader may see some of the possibilities. However, the principal 

purpose of this paper is the discussion of multiplicative functions. 

It is apparent that not all contractions of a multiplicative 

function on Pare themselves multiplicative fundtions on P. For, sup-

pose Sis any finite set such that there are aES and bES with (a,b) = 1 

and ab i S. Then 

's(a),s(b) = ,(a),(b) f o = is(ab). 

This would lead one to conjecture that properties of the set S determine 

whether or not fs is multiplicative. Also, one would stlrmise that S 

should be a closed set under multiplication. These assumptions are 

reasonable but n:ot entirely correct. In fact, it will be seen that 

whether or not f has zeros is also a factor. 

Before proceeding further, it seems desirable to consider some 

examples of contractions which are multiplicative. 

Example S.L: Let S = {l, 2, 3, 4, 6}. Then, it is easily shown that µS 

is ,:J. wultiplicative function on P. But 's is not a multiplicative 

function. 
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E 1 5 2 L S { I = 2i3j h . 0 1 2 d xamp e - . . et = n n w ere 1. = , , , ... , an 

j = 0, 1, 2, · ... ,}. Let Q = {nln = z2i32j where i = O, 1, 2, • • I J and 

j = o, 1, 2, ! ... }. It can be verified that if f is multiplicative then 

fs and fQ are also multiplicative. 

From Example 5.1 it can be concl_uded that it is not generally 

necessary that S be infinite, nor that S be closed under multiplication,· 

in order tha~ fS be multiplicative for some f. Some of the difficulty 

involved in ~haracterizing sets S for which fs is multiplicative is due 
' . ' 

to the fact that f may have zeros. - The location of the zeros of f 

seems to influence considerably the type of set, and in fact the speci-

fie sets, for which the. contraction off is multiplicative. 

If multiplicative functions without zeros are considered, i:t; is 

possible to find conditions on S whic_h are both necessary and sufficient 

to make fs multiplicative. Essentic1.lly, the problem reduces to one of 

- finding sets whose characteristic function is 'multiplicative on P. 

Since the ordinary product of multiplicative functions is multiplica-

tive, and 

fs(n) = f(n)xs(n)i 

it is seen that Xs being multiplicative implies fs is aiso. 

_For practical reasons, the final result is not given as stated in 

the preceeding paragraph. The next theorem gives the conditions for an 

arbitrary function. Since Xp (n) = 1, for every he:P, · satisfies the hypo ... 

thesis of the theorem it is obvious that Xs is a spedial case. 

Theorem 5.4. Let f be a multiplicative function, defined on P, such 
i 

·! 

that f(n) ~ b for every n e: P. Then f 5 is multiplicative on P if and 

only if S me~ts the following conditions: 
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(i) if (a,b) = 1 and a E S, b E S then ab E S; 

(ii) for; every factorization n = ab where (a, b) = 1, n E S implies 

a E S and b E S. 

Proof: If (a,b) = 1 and a, b E S, then by (i) ab E S, Thus 

fs(ab) = f(ab) = f(a)f(b) = fs(a)fs(b). 

If (a,b) = 1 and either a4s or btS, then (i) and (ii) imply abiS. 

Thus, 

fs(ab) = o = fs(a)fs(b). 

Hence (i) and (ii) imply that fs is multiplicative on P. (Note that 

(ii) implies that 1 ES, hence fs(l) = f(l) = 1.) 

Suppose S does not satisfy condition (i). Then, there exists a ES 

and b ES with (a,b) = 1 and ab t S. Hence 

fs(a) = f(a) f o and fs(b) = f(b) f o 

and fs(a)fs(b) f o. 

However, fs(ab) = O. Thus 

f S (ab) f f S (a) f S (b ) 

and fs is not multiplicative. 

Suppose S does not satisfy condition (ii). Then n E S with a 

factorization n = ab where (a,b) = 1 and either a f Sor b t S. Hence 

f S (ab) = f (ab) f O 

and either fs(a) = O or fs(b) = 0. Thus, fs(ab) f O and fs(a)fs(b) = o 

gives 

Hence, fs is ;not multiplicative. 

Thus, fs multiplicative on P implies (i) and (ii). 
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The proof of the sufficiency of (i) and (ii) in Theorem 5,4 did 
! 

not employ the fact that f had no zero. The implication thus goes that 

direction for any multiplicative function f, Most of the discussion in 

the remainder of the chapter requires only that sets exist for which f 5 

is multiplicative. This theorem gives some, if not all, sets such that 

f5 is multiplicative wqenever f is multipiicative. Two sets which 

satisfy (i) and (ii) are seen in Example 5,2, One might observe that 

infinitely m~ny such sets are possible by using any. pair of primes as 

bases, In fact, it is possible to create sets such as these by using 

any finite n~mber of primes and taking all possible products. 

The following corollary gives the case for functions which are 

completely multiplicative. 

Corollary 5. 5, If f has no zeros and is completely multiplicative, then 

f 5 is completely multiplicative, if and only if S satisfies the follow­

ing conditions: 

(i)* Sis closed under multiplication; 

(ii)* n ES and djn implies d ES. 

Proof: The proof is the same as for Theorem 5.5 with the conditions 

(a,b) = 1 dropped. 

Conditions (i) * and (ii)* are sufficient for any multiplicative 

f. However, they are stronger than is necessary. In fact, the set Q 

of Example 5, 2 fails to satisfy (ii)*. 

To summarize the results so far, one might say that new multipli-

cative functions may be found by taking a known function and judiciously 
I 

defining a s~t of zeros. The next step is to show that still others 
! 

may follow f~om these by the usual processes. 



The next; theorem is basic to the.discussion which follows; 

Theorem 5 . 6. · Let 

h(n) = I fs (d) 
dTn 

and k (n) = J,f(d). 
dTn 

Then h = ks if and only if; for every n E P, 

l f (d) = 
dTn 
dES 

lrnf(d), if n E S 

l O, if n i S. 
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Proof: By Definition 5.2, h(n) is the left member of the equation and 

ks(n) is the right member, 

That hand ks are equal is unusual. First, consider the following 

example. 

Let S = {nln = 22i32j where i = 0, 1, 2, ... and j = 0, 1, 2, . , . } 

= {1, 4, 9., 16, 36, 81, .. ,}, Let f be the Euler cp-function 

so that n = l cp(d). 
dTn 

Thus, k(36) = 36 and ks(36) = 36. But, 

h(36) = <l>sCl) + <l>sC2) + <l>sC3) + <l>sC4) + <l>sC') + <l>sC9J + <l>sC12) 

+ <l>sC18) + <l>sC36) 

= cp(l) + cp(4) + cp(9) + <1>(36) 

= 1 + 2 + 6 + 12 = 2i. 

Also, since 2 i S~ ks(2) = O whereas 

The following theorem shows that the equality in Theorem 5;6 never 

holds if f is a function 'such as cp, Tor crk, 
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Theorem 5,7. Leth and k be as given in Theorem 5.6, If f is a posi-

tive valued multiplicative function and Sis a proper subset of P for 

which fs is multiplicative, then Ff GS, 

Proof: If Sis a proper subset then there exists m E P - S for which 

fs(m) = O and ks(m) = 0, By Theorem 5.4, it can be concluded that 1 ES, 

Thus, since llm, 

h (m) = I fCd):::.. fCl) = 1, 
dTm 
dES 

Hence, ks(m) = O and h(m) :::._ 1 implies hf ks. 

Where Xs is the characteristic function of Sand Sis a proper 

subset of P, this theorem indicates that's f h when 

h(n) = I x8 (n). 
, dTn 

When the condition in Theorem s;6 is not met, two different func-

tions are created by summing on divisors of n of a contraction to a 
set S and by reversing this order;, Th1.1s, by using TheoreII). 3, 18 and 

contraction to a given set, two different functions and their generat-

ing functions may be found, 

Earlier it was :mentioned that summing on the divisors of n was a 

special case of convolution, In fact, it is the case if one function 

is the identity for ordinary multiplication. If 18 represents the 

identity function restricted to S, it can be seen by example, that 

Z f 8 (d) is not, in general~ equal to I fs(n)ls(n/d). 
d In dTn 

To see this, let S be the set Q of Example 5.2. Then, 

Q = {l, 4, 9, 16, 36, . , .} 

and 



/ 

0, 

But, 

+ 

= f(l) + f (4) 0 

I 

If f(4) f-1, these sums are not the same, Thus, the equality holds 
! 

on the given set for a very restricted type of function. 

The general case for convolution products is given in the next 

two theorems. 

Theorem .~ , 8, If 

and 

H(n) = I fs(d)gs(n/d) 
dTn 

K(n) : ). f(d)g(n/d), 
<lTn 

then H = K8 if and only.if 

' I f(d)g(n/d),deS,. if n e S 
I dTn · 

0, if n t S, 

Proof: The theorem follows from the definition offs, gs and KS, 

Theorem 5, 9,. If H and K are defined as in Theorem 5. 8 and S satisfies 

the conditio:µs (i)* and (ii)* of Corollary 5,5, then H = K8 , 
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Proof: If Sis closed under multiplication then d ES and n/d ES 

makes n ES. By (ii)*, n ES implies d ES and n/d ES for every divi-

sor d of n. Hence, 

Ks(n) = tt' f(d)g(n/d) = 
d n 

I f(d)g(n/d) when n ES. 
dTn 
dES 

If n ~ S, then either d ff S or n/d ff S for every divisor d of n. (If 

both are in S then n ES.) Hence, KS(n) = 0 and 

H(n) = I fs(d)gs(n/d) = o. 
dTn 

Therefore, KS(n) = H(n) for all n. 

By Theorem 2 .13, if S is a set for which fS and gs are each mul­

tiplicative and if 

then h is also multiplicative. In particular, when f, g and S satisfy 

the conditions in Theorem 5,4, it is true that h is a multiplicative 

function; 

A few comments can be made concerning the generating functions of 

contractions of multiplicative functions. 

First, regardless of whether fS is multiplicative or not, whenever 
00 

F(s) = I f(n)n-s 
n=l 

is the generating function off, then 
00 

F*(s) = I fs(n)n-s = 
n=l 

I f(n)n-s 
TIES 

is the generating function of fS, It might also be pointed out, in 

case the question of convergence arises, that ifs(n) l~if(n) J for every 

n,, Thus, by comparison the latter series converges absolutely whenever 

the previous one does, 
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Second, 1 whenever the contractions of multiplicative functions are 

multiplicative, the methods discussed in Chapters III and IV still hold 

for finding pther functions based on them. However, by Theorems 5.8 

and 5.9 it fpllows that Theorem 3.19 can yield two different functions 
! 

which depend; on whether the contraction to Sis done before the convolu-
i 
I 

tion or after it. That is, if 
CX) 

F(s) = l f(n)n-s and G(s) = 
n=l 

CX) 

l g(n)n-s 
n=l 

it is recall~d that F(s)G(s) generates a function h defined by 

h(n) =. I f(d)g(n/d). 
dTn 

Then, also, if F* and G* are as stated earlier, then F*(s)G*(s) gener-

ates the function defined by 

k(n) = Y. fs(d)gs(n/d). 
dTn . 

But, hs and k are not hecessarily the same fundio~. 

Since there is an infinite number of sets which satisfy the condi­

tions in Theorem 5.4, from a giveri function and its generating function 

it is possible to derive an .infinite number of multiplicative functions 

and their generating functions. As described above, it is also possible . 

to find others from these. 
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APPENDIX 

MULTIPLICATIVE FUNCTIONS OF ELEMENTARY NUMBER THEORY 

The following list includes several of the most cominon multiplica-

tive functions of number theory. Listed here are (1) their usual 

designation; (2) the definition; (3) related formulas; (4) gener-

atihg function or functions. 

A. (1) The Euler totient function, ¢(n); 

(2) ¢(n) is the number of positive integers m such that m < n 

and (m,n) = 1; 

(3) ¢(n) = n IT (1 - 1/P); 
Pjn 

n = \"'t.· ¢(d); 
d n 

00 

(4) s(s-1)/s(s) = I ¢(n)n-s; 

co 

I 
n=J. 

¢(n)xn 

1-xn 

n=l 

x =---
(1-x)2 

B. (1) The Mobius functiortJ µ (n); 

(2) µ (n) = 1, if n = 1, µ (n) == 0, if n has the square of a 

prime as a factor, and µ (n) = (-1) r, if n is the product 

of r distinct primes; 

(3) ¢(n) 

jµ(n) J = 0 if n has the square of a prime as factor and 

Iµ (n) \ 1, otherwise, 
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00 

(4) 1/s(s) = I µ(n)n-s; 
n=l 

oo n 
1 µ:(n) x = 
l x. 

n=l 1-xn 

C. (1) The convolution identity, s(n); 

(2) s (n) = 1, if n = 1 and s (n) = 0 if n > 1; 

(3) s (n) = 

00 

I µ(d); 
dTn 

(4) l s(n)n-s = 1. 
n=l 

D. (1) T(n); 

(2) T(n) is the number of positive divisors of n; 
r a. r 

(3) If n 
l rr p. , then T(n) = rr (a. + 1); 

i=l l i=l l 

T (n) :::: ): 1; 
dTn 

00 

(4) s2 (s) = I T(n)n-s 
n=l 

E. (1) er(n); 

(2) er(n) is the sum of the positive divisors of n; 

a. +l -1 r p. l 
(3) er (n) rr l 

= dtnd; 
::: 

i=l p. -1 
l 

00 

(4) s(s)s(s-1) l er (n) n -s = 
n=l 

F. (1) erk(n); 

(2) crk(n) is the sum of the kth powers of the positive 

divisors of n; 
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(3) 
r 

= II 
i=l 

Note: 0 = 0 and 0 = ,, 
1 . 0 

ao 

(4) ~(s)~(s-k) = I 0k(n)n-s; 
n=l 

oo k n oo 
\ n x \ n 
l --n = l ak (n) x . 

n=l 1-x n=l 
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G. (1) Liouville's function,. \(n); 

H. 

(2) \(n) = (-l)q, where q is the total number (distinct or 

not) of prime factors of n; 
00 

(4) ~(2s)/~(s) = I \(n)n-s. 
n=l 

(1) X (n); 

(2) x(n) = 0, if 2 In, and x(n) 
00 

(4) L(s) I x(n}n 
'-$ 

= 
n=l 

= (-l) (n-1)/2, if n is odd; 

I. (1) qk (n) ; 

(2) qk(n) = 0, if n has the kth power of a ptime as a factor 

and qk(n) = 1, otherwise; 

(3) ql (n) = Iµ (n) I; 
00 

(4) ~(s)/~(ks) = I qk(n)n-s. 
n=l 
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