
HOMOGENEOUS BOUNDED 

PLANE CONTINUA 

By 

' TERRAL LANE MCKEL1IPS 1 /! , 

Bachelor of Science in Education 
Southwestern State College 

Weatherford, Oklahoma 
1961 

Master of &cience 
Oklahoma State Univerd.ty 

St:Ulwa.ter, Oklahoma 
1963 

Submitted to the Faculty of the Gradµ,ate College 
of the Oklahoma State University 

i.n partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF EDUCATION 
July, 1968 



OKLAHOMA 
STATE UNIVERSITY 
LIBRARY 

JAN 301969 

HOMOGENEOUS BOUNDED 
st.::.:c.,;~:.;.:". \/· •• , .•. ,, ~· ... ,~·.:-·,;.,:·.::~:. ,\.,. ~~ . ~ .. ,. 

PLANE CONTINUA 

Thesis Approved: 

v \,j 

.tJaJ&r1.~ 
Dean of the G~aduate College 

ii 

. ···"'II' 



PREFACE 

Any list of people to whom gratitude should be expressed for aid 

given me in my quest for the degree for which this paper has been 

prepared, would almost certainly be inadequate. However, several 

people have given assistance of such significance that I .must deli

neate some or their specific contributions. 

Professor John Jobe gutded me through all the preliminary study 

of topology which was necessary to begin a thesis on that subject. 

He made the original suggestion which eventually led to the forma

tion of the theme of this thesis. Finally, he read the original 

drafts in their worst forms and continued to offer suggestions and 

give assistance until the thesis was completed. 

Professors H. s. Mendenhall, Ware Marsden, Vernon Troxel and 

John Jewett all served on my advisory committee, and each offered 

helpful suggestions at various stages of the development of the 

thesis. I particularly wish to thank Dr. Jewett for his willingness 

to accept the chairmanship of my committee at a very late date in 

my program, following the retirement of my original chairman, Or. 

Mendenhall. 

The typing of this paper was the result of the combined efforts 

of my wife, Karen, who typed the original draft, and Judy Roach who 

typed the last two drafts and gave much assistance in developing the 

correct format. Without their patience and assistance the task of 

preparing this paper would have been inuneasurably more difficult. 

iii 



Chapter 

I• 

II. 

III. 

IV. 

v. 

TABLE OF CONTENTS 

THE HISTORY OF THE PROBLEM 

Introduction •••••••• 
Fact and Fantasy Before 1948 
The First Example ••••• 
A More General Problem • • • 

FUNDAMENTAL TOPOLOGICAL CONCEPTS 

. . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . ' . 

Introduction ••• ~ • • • • • • • • • • • ••• 
The Topologi,cal Setting •••••••••••••• 
The Concept of Hontogeneity • • • • • • • • • • • 
Certain Types of Connected Sets •••••• 
Properties of Sets Associated with Special Points •• 
Sequences. • • • • • • • • • • • • • • •• 
Upper Semi-Continuous and Continuous Collections 
Crooked Chains ••••••••••••••••• . . 

EXAMPLES OF HOMOGENEOUS BOUNDED PLANE CONTINUA . . . . 

Page 

1 

1 
2 
4 
5 

8 

8 
9 

10 
11 
15 
19 
19 
21 

43 

Introduction. • • • • • • • • • • • • 43 
The Simple Closed Curve • • • • • • • • • • • 44 
The Pseudo~arc. • • • • • • • • • • • • • • 45 
The Circle of Pseudo.arcs • • • • • • • • • • • • • 61 
An Indecomposable Continuum Separting the Plane 74 

THE CLASSIFICATION OF CHAINABLE HOMOGENEOUS PLANE 
CONTINUA. • • • • • • • • 

Introduction. 
Locally Connected Homogeneous Continua ••••• 
Homogeneous Continua Containing an Arc ••••• 
Homogeneous Continua That do Not Separate the 

Plane •••••• . . . . . . . . . . . . . . 
Homogeneous Linearly Chainable Continua •••• 
Homogeneous Continua That Separate the Plane • 

SUMMARY. . . . . . . . . . . . . . 

76 

76 
78 
83 

86 
98 

105 

106 

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . 108 

iv 



Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

LIST OF FIGURES 

A Chain Crooked in a Chain with Four Links •. . . . . . . . 
A Chain Crooked in a Chain with Five Links . . . . . 
A Chain Crooked in a Chain with Six Links . . . , . . . 

Page 

23 

27 

28 

The First Layer of V•s •• • • • • • • ·• • . • , , • • 63 

The Second Layer of V•s. .. • . . • . • • • •· • . . 65 

The Chain Dl • . . • . • • • • • • • . • . . • . .. • • 70 

The ·chain 02 Near Vl . • . . • • . . . • • . . • • . • 72 

The Chain D3 Near V1 • • . . .. • • . • • • . • • . • 73 

v 



CHAPTER I 

THE HISTORY OF THE PROBLEM 

Introduction 

Thi$ chapt;er will present a chronological account of the deve

lopment of the properties and examples of homogeneous bounded plane 

continua. 

In order not to destroy the continuity of the sto;-y, no effort 

will be made to define topological concepts or. terminology within thh 

chapter. The topological terms which are less ~ell known are defined 

in Chapter II. Other terms can be found in the references listed 

in the introduction to the second chapter. 

It is necessary at this point to expl~in the ~eferencing style 

used in this paper. When only one number appears in the parentheses 

following some item, i.e., (3), then that number refers to the 

number that has been assigned to the source being cited in the biblio .. 

graphy of this paper. When a sequence of three entries in paren

theses follow some item, i.e., (3, 48, Theorem 16), then the first 

number gives the number of the source as given in the bibliography 

of this paper, the second number gives the page number within that 

source, and the third entry identifies the specific item that is 

being utilized. 

1 



The formal presentation of examples of homogeneous boundeo plane 

continua and the proofs of the theorems giving their basic properties 

will constitute Chapters III and IV of this paper. Hence, no attempt 

will be made at this time to verify how the results given in this 

chapter are achieved. 

As stated above, the results presented in this chapter are given 

approximately in the chronological order of their discovery. When 

those same results are presented again in later chapters, they will 

be given in the order that most efficiently facilitates their proof. 

Fact and Fantasy Before 1948 

The story of homogeneous bounded plane continua began in 1920 

when a topological definition for the word 11 homogeneous 11 was first 

given by Waclaw Sierpinski (26). The definition, as given by 

Sierpinski, stated simply that a set Mis homogeneous if and only 

if for every pair of points x and y belonging to M, there exists a 

homeomorphism mapping M to Mand x toy. Examples of such sets 

are easy to construct (for instance, any line in the plane is homo-

geneous). However, when certain other restrictions are required of 

the set, examples become less numerous. 

The simple closed curve is an example of a homogeneous bounded 
\ 

plane continuum (see Theorem 3.2). In 1920, B. Knaster and C. 

Kuratowski (19) stated a problem on homogeneous continua which took 

twenty=six years to resolve. The problem w~ich they presented can 
" 

be stated as follows: Is every nondegenereate homogeneous bounded 

plane continuum a simple closed curve? 

2 



Even though he could not verify his suspicions, in 1922 Knaster 

(18) himself gave a description of a hereditarily indecomposable con-

tinuum which he suspected of being homogeneous. This continuum was 

indeed homogeneous, but this fact was not proved until 1951 (3). 

In a brilliant paper in 1924, Stefan Mazurkiewicz (20) proved 

a result·which gave support to the idea that simple closed curves 

are the only homogeneous bounded plane continua. Mazurkiewicz proved 

that the only locally connected nondegenerate homogeneous bounded 

plane continuum is the simple closed curveo 

Mazurkiewicz vs paper was the last published on the problem until 

1937, In that year~ Zenon Waraszkiewicz (27) announced that he had 

proved that the only homogeneous bounded plane continuum is the 

sim~le closed curveo However, the following statement can be found 

in Waraszkiewiczis paper: 

It [the proof] is composed of two parts, of which the first, 
profiting only f1rom the local homogeneity, permits the res= 
triction of the class of continua under consideration to the 
one of irreducible sections of the plane such that every sub= 
continua is a simple arc or a proper indecomposable continuum. 
Now that second hypothesis is impossible since each auto= 
morphic transformation of a curve of which ever:y part is 
indecomposable, reduces to the :i.dentity, so that one can con= 
sider only the irreducible plane curves, each part of which 
is a simple arco 

3 

Of course, it is not immediately evident that it is incorrect to assume 

that "· • o each a.utomorphii.c transformation of a curve of which every 

part is indecomposable, reduces to the identity, • H • Hm..rever , 

as will later be proved (Theorems 3.5 and 308)~ sut~h is the ca.seo 

In 194,4, Gustav Choquet (8) stated the following theorem without 

proof: 11Any compact homogeneous plane set is eitheir (1) finite, or 

(2) perfect and totally disconnected, or 0) homeomorphk to a union 



of concentric circles of positive radius which cuts any diameter in a 

set of type (1) or (2). 11 This result is also false and was p:rrobably 

based on Waraszkiewiczis earlier paper. 

Hence, by 1945 the principle results that had appeared in print 

seemed to leave no doubt that the only nondegenerate homogeneous 

bounded plane continua were the simple closed curves. 

The First Example 

4 

In 1948, Edwin E. Moise (22) published an example of a continuum 

which he proved to be indecomposable and homeomorphic to ea.ch of its 

nondegenerate subcontinua. The methods used by Moise to describe 

his continuum suggested :immediately to Ro H. Bing that Moise's 

c,ontirw11Jm might be homogeme.ous. Later i.n the same yea.r, Bing ( 1) 

presented a proof that the pseudo-arc (as Moise had called his con~ 

tinuum.) was indeed homoge:1ceou.so Shortly the:reaftel:'~ Moise (23) also 

published a proof of the homogeneity of the pseudo~airco 

It is interesting to note that Moise suggested in his original 

paper on the pseudo=arc that it might be homeom,orphic to the cone, 

ti:rnmm descdbed by Knaster ( 18) :1.n 192.20 IL Ho Bing (3) established 

in 1951 that any pair of linearly chainable compact nondegen.erate 

heredita:r:Uy i!llidec.omposable: plane contirn1a are homeomorphic. That 

result is sufficient to show that the contirnuum de);icribed by K:naster 

was a pseudowBt'Co 

In 194,9 arnd 1951 9 two papers spp,1;.are,d which would have added 

support t:o t:he :motion that a simplE': c.los~d cmrve is the only homo 0 

ger1e:otJ1s bouude:d cor1titl:tn1:m~ if Moise air,d Bi.ng had 111ot ah:·eady J[YlJ\bli:s:hed 



their resultso In the first of these papers, F. B. Jones (11) 

showed that every compact plane continuum, that is both homogeneous 

and aposyndetic 1 is a simple closed curveo The second paper, by 

H. Jo Cohen (9)~ used the result of the first paper to prove that the 

only homogeneous bounded plane continuum that contains a simple closed 

curve is a simple closed curveo Another theorem in Cohen's paper 

extended the t.heorem which had earlier been proved by Mazurkiewicz 

(20). This new theorem stated that the only locally connected, 

locally homogeneous, bounded plane continuum is the simple closed 

curve. 

Since several papers had been published indicating that any one 

of several additional restrictions can force a homogeneous bounded 

plane continuum to be a simple closed curve, it may not be surprising 

that two .. papers by Issac Kapuano ( 15 and 16), which challenged the 

homogeneity of the pseudo=aric, were published i.n 1953. Kapuano vs 

proofs (as they appeared in print) were only vague outlines. However, 

his error seemed to lie in some sort of assumption that the points 

of the pseudo=arc had a kind of natural linear ordero 

A More Ge1neral Problem 

Once Bing had published his proof of the existence of a homo= 

geneous bounded plane continuum, other than the simple closed curve, 

a more general problem immediately arose;, The newer problem asked 

the question: How many distinct examples of homogeneous bounded plane 

continua exist, and how can they be classified? 

5 
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One of the most important results relating to the. n.,ew problem 

appeared in 1951. In that year, F. B. Jones (12) proved that a 

homogeneous bounded plane continuum that does not separate the plane 

is indecomposable. Since the pseudo=arc does not separate the plane 

and is indecomposable,.and since Bing had shown that all linearly 

chainable, comjpact, nondegenerate, hereditarily indecomposable plane 

continua are homeomorphic, it appeared that all bounded homogeneous 

continua, not separating the plane, might be pseudo .. arcs. By adding 

the restriction that the continua under consideration be linearly 

chainable, Bing (4) was able to establish that all homogeneous bounded 

plane continua, that do not separate the plane and are not tlegenerate, 

are hereditarily indecomposable. Hence, it was established that the 

only homogeneous, linearly chainable, bounded plane continu'1m is 

In 1954, Ro H. Bing and F. B. Jones announced simultaneously, 

but separately, that each had discovered a (circularly).chatnable 

homogeneous bounded plane continuum that was nei.ther, a simple closed 

curve nor a pseudo=arc. It was discovered that the two exalilples 

were essentially the same, and hence, the result was published jointly 
. . I 

in 1959 (7). This example was called a "circle of pseudo=al1:"cs 11 • 

It was shown to separate the plane and to be the union of am upper 

semi=continuous collection of pseudo=arcs. 

Between the announcement of the disc'~very of the circle of pseudo= 

arcs and the actual publication of its description, F. B. Jones (14) 

published a proof that every decom.posablej homogeneous bounded plane 

continuum that separates the plane, but which is not a simple closed 



curve, is a union of an upper semi=continuous collection of pseudo= 

arcs. In their joint paper, Bing and Jones established that all 

homogeneous bounded plane continua, that separate the plane and 

are a union of an upper semi=continuous collection of pseudo=arcs, 

are homeomorphic. 

Thus, the following is an exhaustive classification system for 

chainable homogeneous bounded plane continua: 

Type 1: Pseudo=arcs; 

1 

Type 2: Simple closed curves; 

Type 3: Circle of pseudo=arcs; 

Type 4: Indecomposable continua that s·~JParate the plane. 

It is not yet known whether continua of Type 4, which are homo= 

geneous, actually existo At least one example which may belong to 

that class has been defined (3; 48, Example 2), That continuum is 

shown to be an indecomposable continuum that separates the plane, 

but no proof of its homogemeity has been published. 

The last significant paper to be published on homogeneous bounded 

plane continua appeared in 1960, and was another paper showing that 

added restrictions almost always cause such continua to be simple 

closed curves. In that paper, Ro Ho Bing (2) proved that the only 

homogeneous. bounded plane. continuum which contains an arc is the 

simple closed curve. 



CHAPTER II 

FUNDAMENTAL TOPOLOGICAL CONCEPTS 

Introduction 

In this chapter, the basic topological concepts necessary to 

read this paper are presented. It will be generally assumed that the 

reader is familiar with the basic definitions and theorems that occur 

in a fir!:it course in elementary point set topology. In particular, 

any topological term appearing in Elementary Topology by D. w. Hall 
' 

and G. L. Spencer (10) is not defined in this chapt~r. 

In order to preserve space, many theorems that can be found in . 

the literature which are used to prove the theorems in this paper 

have not been stated. In each such case, a reference which includes 

the proof of the theorem is given. Of course, the hypotheses of all 

theorems utilized in this paper hav.e been carefully checked to assure 

' the applicability of the conclusions. The majority of the theorems 

that are used, but not explicitly stated, may be found in one of the 

three books, Elementary Topology by D. W. Hall and G. L. Spencer (10), 

Foundat.ions of Point Set Theory by R. L. Moore. (24), or Analytic 

Topology by G. F. Whyburn (28). 

Certain of the definitions in this chapter are of such a nature 

that examples are necessary to clarify their statement. In such a 

8 
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case, either an example will be given following the definition, or a 

reference will be given where an appropriate example can be found. 

A clear understanding of the definitions and theorems associated 

with the concept of "crooked chains" is necessary for reading many 

of the.proofs of this paper. Hence, nearly all such definitions are 

illustrated by example and all such theorems are followed by reason-

ably complete proofs. 

The Topological Setting 

The basic topological space assumed in all theorems and examples 

of this paper is the ordinary Cartesian plane with the usual metric 

topology. Care has been taken to assure that all results from other 

sources, that are used in this paper, are valid in this topological 

setting. Examples are presented in such a manner tha.t their existence 

in the plane is clear. 

Some confusion could arise by the frequent use of the term 

11 domain 11 throughout this paper since 11.apen set" is more commonly 

used in discussion of the Cartesian plane. The following definition 

should clarify the relationship- bet.ween the two terms o 

Definiti.on 2,1: .Let. .S be a topological space and D be a subset 

of So Then D is a domain if and only if D is an open set of·· So If 

a set Dis open relative to a set Mins, then Dis said to be a 
,\ 

domain relative to M or just a domain in M. 
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The Concept of Homogeneity 

The fundamental topological property of point sets that is. 

studied in particular in this paper is the property of being homo-

geneous. 

Definition 2.2:. A .point set Mis said to be homogeneous if and 

only if for. every pair of points x and· y of M there exists a homeo-

morphism. mapping M to Mand x toy. 

Example 2.3: Any simple closed curv:e is a homogeneous point set 

(see Theorem 3o2). 

A somewhat weaker property than homogeneity is the property of 

being locally homogeneous. In some theorems of this paper the 

hypotheses only require that the set under consideration be locally 

homogeneous. 

Definition 2.4: The set Mis locally·homogeneous if, for each 

pai.r of its points x and y of M there exists a homeomorphhm between 
' 

two domains in M, one containing x, the other containing y, such 

that xis mapped toy. 

Of course, any homogeneous set is locally homogeneouso The 

converse of thi.s statement i.s not necessarily true. The following 

example illustrates that fact. 

Example 2.5: Let H be the open arc in the Cartesian plane given 

by ((x,y): 2<x<3, y=O}. Let K be the unit circle. If Mis the 

union of Hand K then Mis locally homogeneous but not homogeneous. 
I 



Certain Types of Connected Sets 

The only class of point sets that will be studied in this paper 

relative to the concept of homogeneity is the class containing those 

sets that are both closed and connected. A special name is given 

to the members of this class and certain members of the class are 

further classified by additional properties. The following sequence 

of definitions is concerned with the naming of special classes of 

connected sets. 

Definition 2.6: A closed and connected·set is called a con= 
\. 

tinuum. 

Definition 2.7: A connected subset C of a set Mis called a 

componen.t of M if and only if C is not properly contained in any 

connected subset of M. 

Notation: An arc with end points x and y will usually be 
l 

denoted by xy. Occasionally, an arc xy will be denoted by xzy to 

emphasize that xy passes through the point z, where z + x and z :::/= Y.• 

On other occasions, the notations (xy) and (xzy) are useful to indi-

cate the open arc xy; that is, the arc xy except for its end points. 
, 
'. 

When (xy) and (xzy) are used in a discussion, [xy] and [xzy] may 

also be used to give added emphasis to the fact that the end points 

are to be included. 

Def.inition .208: An!!£ compon~ of a set M is a subset C 

of M such that each pair of points of C belongs to an arc in M 

but C is not properly contain.ea in any subset of M with that same 
.\ 

11 



property. 

Example 2o9: Let..H = ((x,y): JFO, -1~_)1_:51} and let 

K = {(x,y): y=sin 1/x, O<x~l}. Let M be the continuum HU K. Then 

each of the sets Hand K is an arc component of M. 

Definition 2.10: If p and q are two points of the same arc 

component of the set M then the union of all arcs in M that have p 

as an end point and contain q is called a ray starting at p. 

Example 2.11: Let K be the arc component of Min Example 2.9 

and p be any point of K. If q is a point of K whose x coordinate is 

less than the x coordinate of p, then the ray startirig at .. p an.d con-

taining q is the set of points belonging to K with x coordinate 

less than the x coordinate of P··. S.imila·rly, if the x coordinate of 

q is greater ~ban the x coordinate of p, then the ray starting at 

p and containing q is the set of points belonging to K with x coordi-

nat~ greater than the x coordinate of p. 

Definition 2.12: If M. i.s a continuum, a composant of M is a 
L i 

point set K such that, fer some point p· of M, the po·int x belongs 
\) 1 

to K if and only if there is a proper subcontinuum of M containing 

both p an.d x. 

Definition 2.13: A set of points Mis said to be cyclicly 

connected provided every pair of points of M lie together on some 

simple closed curve in M. 

12 
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Example 2.14: Let H be the set of points in th1:1 C~rtesian plane 

and on the circles centered at the origin and having radii one and 

two respectively. Let K = ((x,y): -2~x;::2, y=O}. If Mis the union 

of H and K then M is cyclicly con.nected. Obviously, any simple closed 

curve is also cyclicly connected. 

Definition 2.15: The point set Mis said to be connected im 

kleinen at the .point p if and only if p belongs to M and, for every 

domain D relative to M that contains p there exists a domain relative 

to M which contains p and is a subset of a component of D. 

Example 2.16: Let M be the continuum of Example 2.9. Then 
\ 

each of the sets Hand K is connected and connected im kleinen, but 

Mis not connected im kleinen at any point of H. 

Definition 2.17: A continuum which is locally connected and 

which contains no simple closed curve is calleda dendrite. 

Examples of dendrites are ea.sy to construct. Of course, an arc 

is one such example. 

Definition 2.18: A continuum Mis said to be: unicoherent if and 

on.ly if for every p.air of continua H aml K such that M is the union 
~- ' .J 

of Hand K, the intersection of Hand K is a continuum. A continuum 

is said to. be, hereditarily unicehe-rent if every subcontinuum is 

unicoherent. 

The pseudo=arc presented in Chapter II.1 is shown in Chapter IV 
\ 

('I'heorem 4. 7) to be hereditarily unicoh~.rent. 



Definition 2.19: The continuum M is ap'osynd:etic at the point z 
\ . \ 

of M with, respect to the point x of M provided that M contains a con
\ 

tinuum Kand a set V which is open relative to M, such that Mp (x} 

contains K, V contains z, and Vis a subset of K. 

Example 2.20: Let M be the continuum of Example 2.9. Then M 
--r-

is not aposyndetic at any point of H with respect to any other point 
. I . 

of H. However, M is ap.osyndetic a.-t. any p·o'int of K with respect to 

any other point of M. 

Pefinition 2.21: The continuum M is said to be indecomposable 

if and only if it is not the uni.on of two subcontinua distinct from 

M • 
I.. : • 

If every subcontinuum of M is ind·ecomposable then M is said to 

. be hereditarily indec.omposable. 

Examples of indecomposable continua are not easy to describe. 

Several such examples.can be found in "Concerning Hereditarily 

Indecomposable Continua," by R.H. Bing (3). 
! 
! 

Definition 2.22: A continuum is decomposable if and only if it 

is not indecomposable. 

Definition 2.23: If Hand Kare disjoint·closed point sets, 

the continuum M is said. to .. be, an .i.rr,e.ducibl:e'··· c·antinuum from H to K 

if M intersects both H and K.. but no pro.pe·r subcontinuum of M inter .. 

sects both Hand K. 

Definition 2.24: Suppose a 0\ 0 , a1b1, =:· . . , is a sequence of 

14 

arcs converging to an arc xy. The sequence is calN!·d a folded sequence 
,i 



of~ converging to xy if a0 , b0 , a1, b1, ••• , conv,erges to x. 

15. 
\ .\ 

Example2.25: Let the coordinates of the point ai be ( ( 112/i ,0), 

i = O, 1, 2, • . . let the coordinates of the point bi be . ' 
( ( 1/2)2i+l ,0)' and let 

. 
the of the i = 0, 1, 2, • . . coordinates . ' 

tl .:J.' · 2iB · - . ·. 
point ci. be ((1/2), ,1), i = 0, 1, 2, •••• Let aibi' i = O, 1, 

2, ••• , denote the arc formed by the union of two line segmen.ts 

joining ai to ci and bi to ci' respectively. Let ~y be the line 

segment joining x = (0,0) toy= (0,1). Then a 0 b0 , a1~1, ••• is a 

folded sequence of arcs converging to xy. 

De.f i.nition 2. 26: A simple triod- h the union of three. arcs 

such that the intersection of any two of them is the same point P• 

Defini.tion 2o 27: If S is the Cartesian plane and M is a closed 

p;roper suqset of S, then every component of S - M is called a comple-

'me-ntary .domain of M. 
- _____ j 

Definition 2,28: The set T ts sa,td .to ·separate the connected 

point se.t M if and only if M - Tis the union of two separated point 

sets. 

Properties of Sets Associated with Special Points 

Certain properties possessed by points, by virtue of their being 

members of homogeneous sets, are preserved under homeomorphisms of 

the set to itself. Consequently, one method of determining whether 

a set is homogeneous is to examine particular points under a homeo• 

morphism of- the set to itself, Thus, it is convenient to have special 
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names for points having properties that are sometimes .pres-erved under 

a homeomorphism. 

Definition 2.29: A point pis cal-led a boundary point of a point 
,, j .. 

setM if and only if every open set containing p contains a .point of 

Mand a point not belonging to M. The union.of all,boundary points 

of a set is called the b~undary of the set. 

The next point property that will be identified is one that is 

always preserved by a homeomorphism of a continuum to itself. That 

fact will be proved after an example is given illustrating the 

definition. 

Definition 2.30: If k is a positive integer, the poinc.p of the 

continuum M is said to be of Menger order k with re·spect to M if and 

only if it is true that (1) every domain with respect to M that con-

tains p contains a domain with respect to M which contains p and whose 

boundary with respect to M contains only k points, (2) if n is a 

positive integer less thank, there ex-ists a domain D with respect 

to M, containing p, such that if U is any domain with respec.t to M 

which contains .p and which is a subset of. D, then the boundary of U 

with respect to M contains more than n p~ints. 

Example 2.31: Let M.be the continuum of Exampl, 2ol4., Then 

the points having coordinates (-2,0) and (2,0) have ~enger order 

three; the points having coordinates (-1,0) and (1,0) have Menger order 

four; and all other points of M have Menger o~det two. 
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Theorem 2.32: Let M be a continuum and p1 and p2 be distinct 

points of M. Suppose there exists two open sets of M, say E and F, 

such that p1 and p2 belong to E and F respectively, and a homeomorphism 

from E to F that maps p1 to p2• Then p1 and p2 have the same Menger '· 

order. 

Proof: Suppose the Menger order of p1 is k1 and the Menger·order 

of p2 is k2 t, k 1• Without loss of generality, let k1 > k2• Then 

there exists an open set o1 of M such that o1 is a subset of E and, 
I' 

whose boundary with respect to M contains more than k2 points. Let 

o2 be the subset of F that is the image of o1 under the homeomorphism. 
) ·J 

I 

Then o2 is open in Mand the boundary of o2 with :tespect to M contains 
,I 

at most k2 points. Therefore, there exists some point p of the 
3 

boundary of D1 with respe,ct to M which maps to some point p4 of D2 

that is not on the boundary of o2 with respect to M. Let o4 be an 

open se·t of M such that p4 is in o4 and o4 is a subset of o2• If o3 
.I 

is the inverse image of o4 , then o3 is an open sub-set of o2 and contains 

But this is impossible because p2 is a boundary point of o2 with 
I 

respect to Mand hence no open subset of o2 contains p3 • 

.. Definition 2.33: A point p is called ,an enicl point of a continuum 

M if p has Menger order one with respect to M. 

Defini.tio.n 2 .34: The point p is. c.a-1.l-ed a--~ point, of the con-

· nected point set M if and otily if M - (p} is not connected. 
I ' 

Definiti.on 2.35: A point p will be called a -s·eparating point of 

a set M provided there exist two points a and b of some component C 



of M such that M - fp} = Ma U ~, where Ma and Mb are mutually separ-

ated and contain a and b respect~vely. 

Definition 2.36: A point p of a continuum M will be called a 

local .,separating point of M provided ·that there exists a compact 

neighborhood R of p such that if C is the component of the inter-

section of M with the closure of R that contains p, then 
I 

M n (R,.- 'f p}) = M1 U M2 where M1 and M2 are mutually separatecl sets 

and neither M1 n C nor M2 n C is empty. 

Example 2.37: Let M be the continuum of Example 2.14. Then 
,) 

every point of Mis a local separating point, but no point is either 

a cut point or a separating point. In connected sets cut points and 

separa.ting points are equivalent concepts • 

. Definition 2.38: !_point.! cuts!. p·oint '!!..'from!. point.! in!. 

continuum~-- if and only if ther.e exists no subcontinuum of M lying 

in M - {x} that contains both wand z. 

Example 2.39: It should be clear that if a continuum Mis 

cyclicly connected (as in Example 2.14) the-n no point x cuts a point 

w _,from a point z in M. But, le,t M be the continuum of Example 2.9, 

then any point of H other than (O,l) or (0,-1) cuts (0,1) from (0,-1) 

in M. 

Definiti.on 2.40: The point pis said to be accessible from the 

point set M if and only if for every point x of M there exists an 

arc xp lying, except for p, wholly .. in M. 
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Example, ·2.41: Let M be any open s·et in the plane. Then every 
j \ 

point of Mis accessible from M. 

Sequences 
\. 

Several of the continua used as examples in this paper occur 

as limi.t sets of sequences. Most of the terminology associated with 

sequences and g.eneralized· seque-nces (well-ordered sets) that is. used 

in this paper is standard. However, two terms, not so commonly used, 

are defined here so that their meaning will be clear. 

Defini.ti.on 2.42: If, for each positive integer n, Mn is a point 

set, then. the 1.imit.ing set of the se,quence M1 , M2 , M3 , • • • is a 

point set M such that p belongs to M if and only if for every open 

set R containing p there exist infinitely many integers n such that 

19 

Mn contains a point of R. If Lis the limiting set of every subsequence 

of M1, M2 , M3 , ••• , then M1, M2 , M3, ••• , is said·· to converge to L. 

Definition 2.43: Let 01 be any sequence (finite, countable or 

uncountable). The subsequence~ of the· sequence et is said to be an 
1' 

initial segment of Q'. if and only if· every term of et that precedes 

any term of ~- belongs to ~. 

Upper Semi=Continuou.s and Continuous Collections 

The proofs of several theorems in this paper are completed by 
. '· 

showing that certain sets can be decomposed into disjoint.collections 
; 

of subsets which can then be considered to be a topological space with 

the subsets as points. The terminology introduced in this section will 
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provide the foundation for such considerations. 

Definition 2.44: A collection G of mutually exclusive closed 

point sets is said to be upper semi=continuous ff and only if it is 
\ 

true that if g is a point set of the collection G, and g1 , gz, g3 , 

. . • is a sequence of point sets from G, and for every n, x and y n n 

are points in gn such tha~ x1 , x2 , x3 , •1 •• ,
1 
converges to a point 

in g, then every infinite subsequence of Y1, Y 2 , y3 , 

subsequence converging to a point that lies in g. 

. . . has a 

Definition 2.45: A collection G of subsets of a metric space M 

is said to give. an upper semi-c.ontinuous decomposition of M if and 

only if (1) the sets of G are compact, (2) G fills up M (every point 

of M belongs to a set of G), and (3) G is upper semi-continuous. 

Example 2.46: Let M be the subspace of the Cartesian plane whose 

points are the points of AU B where A= {(x,y): ~x<l, O~y~l} and 

B = ((x,y): 1~~2, O~y:::2}. For each x0 such that 0:::x0:::2 define 
I 

gx = ((x0 ,y): (x0 ,y) is an element of M}. 7f G = (gx}, O~x:::2, then 
0 

G is an upper semi .. continuous collection of sets that gives an upper 
\ \, 

semi=continuous. decom.po.sition. of M. 

Definition 2.47: A collection G of closed p1oint sets is said 

to be continuous if and only if it is true that if g is a po:Lnt set 
( 

of the collection G and g1, g2' ~3' • • • is a. sequence of point sets 

of this collection and, for every n, xn and y0 are points of gn, and 

the sequence x1 , x2 , x3 , •.•• converges to a pointing, then every 

infinite subsequence of y1 , Yz, y3 , ••• has a. subsequence converging 
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to a point that lies in g and, furthermore, 81, g2 , g3 , • • • con-

verg.es to g. 

Definition 2.48: A collection G of subs~ts of a metric space M 

is said to give a continuous decomposition of M if uid only if 

(1) the sets of G are compact, (2) G fills up M, (3) G is continuous~ 

Example 2.49: Let M be the subspace of the· Cartes.ian. plane. 
-\', .. 

whose points are the points of A where A = [(x,y): o::;~11, O::S~l}. For 

each x such that 0::SX~l, define gx = ( (x,y): ~y~l}. Then if G = (gx}, 

O~x::;l ,, G is. a continuous collection tha,t gives a continuous ,decomposi-

tion of M. 

Crooked Chains 

The definitions and theorems contained in this·section are the 
I 

least well known of any in the chapter. However, they are probably 

the most important since they are ideas from which the pseudo-arc 

and the circle of pseudo-arcs are developed. 

The principle definitions will be given first, along,.with illus-
1. \ 

trat:l.ve examples. A sequence oJ theorems ~ha.t .give the important ,, 

properties of crooked chains will then be proved. 

Definition 2.50: A collection of domains D = (d1 , d2 , ••• , dn) 

is called a linear chain if and only if di n dj =!, 0 if a-nd only if 

Ii = jl < 1, i = 1, 2, ••• , n. If p and q are.points belonging 
i 

only to dl and dn respectively then D is called a linear chain from.£ 

!£ S• If D = (d1 , d2 , ••• , dn) is a linear chain then dl and dn 



are called end links; all other links are called interior links. The 

link di is called the i=~.h Hnk. 

called adjacent links. 

If a~ n ~- f 0 then d. and dJ. are 
1 . J 1 

Definition 2.51: A linear chain .. such that no link has diameter 
\ 

greater than the positive number e is called an e=chain. 

Definition 2.52: A continuum M such that for every positive 
\ 

number e there is an e=chain coverit}g Mis called_linearly chainable 

ar e=chainable. 

Example 2.53: An arc is linearly chainable but a simple triad 

is not. 

Definition 2.54: A collection of domains D = (d1, d2, • 
) 

(n > 2) is called a circular chain if and only if ~in dj f 0 if and 

only if Ii= jl :5. 1, i = 1, 2, 3, ••• , n, except that dl n dn f (b. 
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Definition 2. 55: A continuum M is said' to be circularly chainable 

if for every positive number e the.re is a circular chain covering M 
\ i 

such that no link has diameter greater then e. 
1, 

Exam~le 2.56; A simple closed curve is circularly chainable 

whereas an arc is not. 

Definition 2.57: If D and E are either both linear chains or --1 

both circular chains then D contains E if and only if every link. of, 
) 

Eis a subset of some link of D. 

Example 2.58: In Figure 1, the. chain D contains the chain E. 
I 



Figure lo A Cba:.1'!'1. Crooked ln a. Chain 
with F.our Links o 
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Definition 2.59: The word chain refers to either a linear or 

circular chain. When the word chain is used alone, it will generally 

be clear from the context whether reference is being made to a 

circular or to a linear chain. If it is not clear, then it may be 

assumed that the statement is applicable to either type of chain. 

Definition 2060: If E and Dare chains (linear or circular) 

then E is a subchain of D if and only if each link of E is a link of 

D •. If E is a linear chain then E will be denoted by D(. ') if the 
l. ,J 

i-th and j-th links of Dare the end links of E. 
\ 

The following definition is the key idea in the description of 

the pseudo-arc. Special attention should be given to parts (b) and 

(c) of the definition. One is tempted to read the subscript on din 

part (c) as a k instead of an h. It is the arrangement of these 
I 

subscripts which essentially achieves the desired "crookedness" of 

the chains. 

Definition 2.61: The linear chain E = (e1 , e2 ,, •.•• , en) is 
. 1, 

. crooked in the linear chain. D = ( dl, a2 , • . • • , 
1 

c\n) if and only if: 

(1) D contains E. 

( 2) For every subchain E(i, j) of E such that et n db =t- 111, 

eJ n dk f ~' where jh = k\ > 2, the following conditions 

hold: 

(a) E(i,j) is the union of three chains E(. ) ' l. 'r E( )' r ,s , 

E(s,j) such that ( S=r)<J=i) > O, 
I 

and 

(b) e is a subset of a link of D(h 1 k) adjacent to dk, and 
r 

(c) es is a subset of a link D(h~k) adjacent to dho 
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Examples will be given illustrating Definition 2.61 after additional 

notation is introduced in Definition 2.62. 

Definition 2.62: Let (x1 ,y1), (x2 ,y2), ••• , (xn,Yn) be a 

collection of ordered pairs of integers. Then the chain E fqllows 

the pattern (x1,y1), (x2'y 2), ••• ,1 (xn,Yn)· in the chain D if and 

only if the xi= t~ link of E .is a subset of the Yi= th link of D, 

i = 1, 2, ••• , n. 

Example 2.63: This example is given to illustrate the pattern 

which must exist if a linear chain D has a specified number of links, 

the linear chain Eis crooked in D, the first link of Eis a subset 
I 

of the first link of D, and the last link of Eis a subset of the 

last link of D. 

Case 1: The chain D has exactly four links. Definition 2.61 

implies that there must exist links numbet;ed 1, x1, x2, and x3 such 
•\ ' 

1 

that l<x1<x2<x3 and such that E follows the pattern ( 1, l), (x1 ,3), 

(x2,2), (x3 ,4) in the chain D. In this case the only possible links 

of dh and dk of D where jh = k\ > 2 occur when h=l, k=4, or h=4, 

k=l. .One subchain E(i,j) of E such that ei n dl -=f:, {lJ and ej n d4 -=f:, {lJ 

is the subchain E( )" If one lets r = x2 ands= x3 then it can 
l ,x3 r •· 

be seen that Definiti.on 2.61 i.s satisfied.. Figure 1 illust.rates 

case 1. 

Case 2; The chain D has exactly five links. Definition 2.61 

implies that there must exist links numbered 1, x1, ~2 , x3 , x4 , x5 , 

x6 , and x7 of E such that l<x1<x2<x3<x4<x5<:x6<x7 and such that E 
. . . 
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follows the pattern (1,1), (x1,3), (x2,2), (x3 ,4), (x4 ,2), (x5,4), 

(x6,3), (x7,5) in D. In this example one could select links dh and 

·dk where I h - kl > 2 in any of the following ways, h=l, k=5; h=5, k=l; 

h=l, k=4; h=4, k=l; h=2, k=5; h=5, k=2. If h=l and k=5 then an 

example of a subchain E( i . ) 
' . ',1 I . 

is the subchain E(l )• ,, ,x7 
In this case one can let r = x3 ands= x4 

and then c.ondl,tions (a), (b), and (c) of Definition 2.61 are satis~ 

fied.. If h=5 and k:;:2 then an example .. of a subchain E(i,j) of E where 
I. 

ei n dh I= !1) and e j n dk I= Jb is the subchain E(x7 ,x4).. In this cas~ 

one can let r = x5 and s = x6 and again cond.itions (a), (b), and (c) 
\ 

of Definition 2.61 are satisfied. Similar selections can be made 

for the other possible choices of values for hand k. Figure 2 
'1 

illustrates case 2. 

Case 3: The chain D has exactly 6 links. Figure 3 illustrates 

case 3. 

Even Fi~ure 3 is not adequate to illustrate the complexities 

involved in a sequence of crooked chains. For example, suppose it 

is desired to draw a chain F crooked in E from a point pin the first 

link of E in F.igure 3 to a point q in the last link of E. Suppose 

F has n links. Now obviously, as F traverses any six links of E, 
\ 

the pattern that E follows in .D in Figure 3 must· be followec;I by F 

in E. But notice also that just~ of the-many other patterns that 

must be followed by Fin Eis that there must be a subchain F1 of F 

whose first link intersects e1 and whose last l\nk intersects en=l; 
) \ 

there musF be another subchrin F2 of F (distinct fr.om Fl except for 

its first link which is the last link of Fi) whose· first link 



Figure 2. A Chain Crooked in. a Chain 
with Five Links. 
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Figure 3. A Chain Crooked in a Chain 
with Six Linka. 
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intersects en=l and whose last link inte:,;sects e2 ; and there must 
I L 

be still another subchain F3 of F (distinct from F1 and Fz except 

that the first link of F3 is the last link of F2 such that the first 

link of F3 intersects e2 and the l.ast link intersects e • n 
·· Now each 

of the chains F1, F2, and· F3 must be the union of three distinct 

chains following patterns similar to the one described above; each 

of thos1e nine chains must b1e tpe unio_n of three distinct chains 
~ . . 

following. that pa,ttern; and etc.,· until. the point is finally reached 
J 

that none of the subchains under consideration traverse mo;re than 

three links of E. 

Definition 2.64: The chain Eis a consolidation of the chain 

D if and only if: 

(1) Each link of Eis the union of a subcollection of links of 

D, and 

(2) Dis contained in E. 

29 

It i.s now possible to establish some- prop-erties of crooked chainso 
\ 

The first two theorems .. in this section should se·em reasonable- even 

without cansidering. their proo,f so The last four thearems are almast 
I 

impassible to visualiz.e; how-ever, the.- techniques employed in their 

proofs help to make the theorems understan<f·ableo 

Theorem 2.65: If 0 9 E, and Fare chains such that Dis a con .. 
. \ 

solidation of E and Fis crooked in E, then Fis crooked in D. 

Proof: It must be shown that if F(h,k) is a subchain of F 

such that the end links fh and fk of F(h,k) intersect links dr and ds 



of D with Ir= sl > 2 then F(h,k) is the union of three chains 

F(h,u)' F{u,v)' and F(v,k) such that (k~h)(v=u) is positive and fu 

and. fv are subsets of links of D(r,s) adjacent to ds and dr respec= 

tively. 

i 
'The special case where no interior link of F (h,~) intersects 

either dr or ds will be considered first. Let em and en be links 

of E contained in dr and ds such that em and en i~tersect fh and fk 

respectively. Now D is a consolidation of E, h,enGe E(m,n) is con= 

tained in D(r,s)" Th~ link em 1 of E(m,n) adjacent to em intersects 
\ 

an interior link of F(h~k) and hence is not contained in dr• There= 

fore, the link e. 1 · of E( ) is contained' in the link of D 
m m,n (r,s) 

adjacent to dr. Similarly, the link e·n, of E(m,n) adjacent to en 

is in the link of D(r,s) adjacent to ds• 

Now Fis crooked in.E so F(h,k) is the union of three chains 

F(h,u)' F(u,v)' and F(v,k) such that (k.;.h)(v=u) is po'sitive and fu 

and fv li.e in the Links of E(m,n) adjacent to en and em resp·ectively. 

But from the previcms argument we· then have fu and fv contained in 

links adjacent to ds and dr respectively. 

Now that the special case is proved, the remainder of the proof 

is easy. For suppose that F(w,z) is any subchain of F such that the 

end links fw and fz of F (w ~z) i,ntersect links dr and ds of D with 

Ir - sj > 2. There exists a subchain F(h,k) of F(w,z) such that 

fh and fk intersect links of dr and ds of D but no interior links of 

F(h,k) intersect either dr or d5 • By the special case, F(h,k) is 

the union of three chains F(h,u), F(u,v)' and F(v,k) such that 

(k=hHv=u) is positive and fu and fv are contained in links adj~cent 
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to ds and dr respectively. But this means F( ) is the union of the 
Wi,Z 

three chaip.s F( ) , F( ) , and F( ·) where (z-w)(v-u) is positive w,u u,v ' v,z 
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and fu and fv are contained in links adjacent .to ds and dr respectively. 

The ref ore F is crooked ,in D. 

Theorem 2.66: If D, E, and Fare chains such that E contains 

F and is crooked in D, then Fis crooked in D. 

Proof: Let fh and fu be links of F intersecting lin~s dr and ds 

respectively of D and jr = sl > 2.
1 

It must be shown that F(~,k) is 

the union of th~ee cha~ns F(h,u)' F(u,v)' and ~(v,k) such that 

(k-h)(v-u) is positive and fu and fv are subsets of links of D(r,s) 

adjacent to ds and dr respectively. Let em and en be links of E 

containing links fh and fk respectively. No~ E(m;n) is the union 

of three chains E( )' E( )' andE( ) where (n-m)(y-x) > 0 m,x x,y y,n 

and ex and ey are contained. in links of D( ) adjacent to d's and dr . ri,s 

respect,ively. 

Let fu be a link of F(h,k) contained: in ex and let fv be· a link 
,· 

of F(u k) contained.in e. 
' y ' 

It is clear that F(h,k) is the union of three chains. F(hsu)' 

F(u,v)' and F(v,k) with (k-h)(v-u) > O, and· that fu. arid fv are subsets 

of links. of D(r,s) adjacent to d9 and d.r respect~vely. 

The next two theorems are useful because they show how to create 

a chain following a desired pattern from some chain in an existing 

sequence of crooked chains. The previous two theorems show that 

this n.ew chain will retain certain desirab.le properties. 
I 



Theorem 2.67: If the chain Dis crooked in the chain 
I 

E = (e 1 , e 2 , ••• , em) and dj is a particular link of D, then there 

is a chain F such that Fis a consolidation of D, dj is contained in 

only the first link of F, each link of Fis a subset of the union 

of two adjacent links of E, and any link of F containing an e.na link 

of D which intersects e1 or em is a subset of e1 U e2 or em-l U em. 

Proof: In case m = 1, 2, 3, or 4, let one link of F be the 

union of the links of D contained in e1 U e2 and the otq.er link of 
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F be the union of the links of D contained in e3 U e4 • Note that it may be true 

that F has only one link, but whether F has one link or two, the 

links of F can still be numbered so that the conclusion of the theorem 
\ 

is satisfied. 

The proof is completed by induction on m. Suppose the theorem 

is true form= 1, ••• , r=l, where r-1 > 4. 

The special case in which no interior link of D intersects 

either e1 or er will be proved first. There is no loss of generality 

in the following argument if it is assumed that the end links of dl 

and dn of D intersect ,e1 and er respectively. 

Let D = D(l"h) U D(h,k) U D(k,n) where l<h<k<n, dh is a subset 

of er-land dk is a subset of e2• The link dj may be a link in any 

of the three subchains of Din the above uniono The case where dj 

is a link of D(l~h) will be arguedo If dj is a link of D(h,k) or 

D(k, the theorem may be proved by techniques similar to the ones 

used below. 

The chain D(l,h) does not intersect er because no interior link 

of D intersects er• Hence \l,r-l) contains D(l,h)• Since EOa1r=l) 



has less than r links, the induction hypothesis imP'lies the existence 

of a chain H such that His a con~,olidation of D(l ,h), only the first 

link of H contains dj, each link of H is a subset of the union of two 

adjacent links of EO ,r-1)' and any link of H containing dl or dh is 

Let h be the first link of H that contains dh. Note the hu u 

is a subset of er-2 U e 1 because r- dh is a subset of e 
r-1' 

r > 4, 

and hence dh is not a subset of el )J e2 • 

The possibility exists that u=:;:l. If u=l then d. is a subset 
J 

of er-Z U er-l because dj is a subset of h1 = hu. Let s1 be the 

union of the links of Din e1 U e2 but not in D(k,n); let s2 be the 

union of the links of Din e3 but not in e2 nor in D(k,n); . . . . ' 
let sr_4 be the union of the links of Din er=3 but not in er=4 nor 

in D(k,n); and let s r-:3 be the union of the links of D in. er-Z y er-l 

but not in er-3 and not in D(k,n)• Now let F = ( s 3 , s 4 , • • • , 
r- r-
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s1, dk' dk+l.' ••• , dn). Then Fis a chain 1:1atisfying the conclusions 

of the theorem. Virtually the same proof as that constructed in the 

next case (u ~ 2) can be used to show that Factually does satisfy 

all conditions of the theorem. 

Now suppose u ~ 2. Let s 1 be the union of the links of D which are 
{ 

contained in e1 U e 2 but not in e3 and not in H(l,u=l) nor D(k+l,n); 

let s 2 be the union of the links of D which are in e3 but not in e2 
I 

and not in H(l~u-l) nor D(k+l,n); ••• ; let sr_4 be the union of the 

links of D which are in er_3 but not in er=4 and not in H(l,u-l) nor 

D(k+l,n); and let sr=:3 be the union of the links of D which axe in 

e .2 U e 1 but not in H( nor D • r= r- l,u-1) (k+l,n) 
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Define F as follows: F = (h1 , •• o, hu ... l' sr=3 , ••• , sl' dk+l' 

••• , dn)• It will now be shown that F has the properties asse::ted 

in the conclusions of the theorem. 

It is not difficult to see that Factually is a chain. To show 

that Fis a consolidation of D just note first that each link of Fis 

a union of a subcollection of links of D, by definition of the links 

of F. Then note that F clearly contains D because, by definition, F 

contains all of D that is in E(l,r)' and since no interier link of D 

intersects er, then all of D must be contained in E(l,r)• Now if 

the links of F are numbered so that the first link of F is h1, then 

dj is in only the first link of F. Each link of Fis a subset qf two 
I. 

adjacent links of E because of the corresp'Ond'ing property of H, the 

definition of s1, s 2 , ••• , sr_3 , and the fact that each link of 

D(k+l,n) is a subset of one link of E. Since hu is a subset of 

er;.,z U er-l and r >.A,.and since dl intersects el' then dl is not a 

subset of hu. Hence, dl is containe-d in HO,u-l)" Therefore, any 

link of F containing d1 which intersects e 1 is a subset of e1 U e2 

because H has that property. Now dn, the: other end link of D, is 

also an. end link of F. Hence, it is clear that any link of F con= 

tain.ing dn which intersects e1 or em is a subset of e1 U e2 or 

Thus, the special case of the theorem in which D has no interior 

links intersecting either e1 or er has been proved. 

The more general case in which D may have interior links inter= 

secting e1 or er can now be established. 
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Let D(h,,k) be the maximal subchain of D with the property. that 

D(h,k) contains dj, and no interior link of D(h,k) inter_sects either 

e 1 or ero If, no link of D(h,k) intersects e1 , or if no litk of D(h,k) 

intersects er, then by the induction hypothesis, there exists a 

chain H such that H is a consolidation of D(h,k), only. th_e first link 

of H contains dj, each link of His a subset of the union of two 

adjacent links of E, and any link of H containing an end link of 

D(h,k) which intersects e1 or er is a subset of e 1 U e2 or ~r-l U er• 

If one link of D(h,k) intersects e 1 and one link intersects er, then 

H exists by the special case which was previously proved. 

Let hu be the first link of H that intersects either el or er• 
I 

The case where hu intersects e 1 will be argued. The other case can 

be proved in a similar fashion. If hu intersects el then hu is a 

subset of e1 U e 2 by the properties of H. 

Let s 1 be the union of the links of D that are in e1 U e2 but 

not in R(l,u-1); let s 2 be the union of the links of D that are in 

e3 but not in e 2 and not in H(l,u-l); ••• ; let sr_3 be the union of 

the links of D that are in er-Z but not in er_3 arid not in H(l,u-l); 

and let sr_2 be the union of. the links in D that are in e LJ e but 
r-1 r 

not in H(l,u-l)o 

Define F as follows: F = (h1 , ••• , hu-1' s1, • • o, sr-2). 
t 

Virtually the same argument a·s the one used to prove the special case 

v, 

can be applied to show that F satisfies the conclusions of the theorem. 

Theorem 2068: If D = (d1 , d2 , ••• , dn) is a chain crooked in 

the chain E = (e 1 , e2 , •••. , em) and D(r,s) is a subchain of D 

such that a link of D 1 ) intersects e1 and a link of D 1 , intersects 
,r,s \r,s; 



em, then there is a chain F such that Fis a consc;,lidation of D, 

each element of Fis a subset of the union of two adjacent links of 

E, dr is contained in only the firs.t link of F and ds is contained 

in only the last. 

Proof: If m :5. 4, let F be the chain whose links belong to the 
,) 

set tfx, fy} where f . is. the· union of the x links of D that are in 

el u e2 and fy is the union of the links of D that are in e3. LJ e4• 

is clear that F satisfies tq;e conclusions of the theorem. 

Now let m > 4. A subchain D(h,k) of D(r,s) may be chosen so 

that (1) h < k, (2) dh intersects e1, dk intersects em, and (3) 

dr and ds are links of D(l,h) and D(k,n) respectively. 

It 

By applying Theorem 2.67 to D(l,h) and to D(k,n) both of which 

a-re crooked in E, two c.hains H and G can be found with the follmting 
l 

properties: (1) The chain His a consolidation of D(l,h)' each 

linkof.H is a subset of the union of two adjacent links of E, dr 

is containecl in only the f.irst link of H, and any link of H contain-

ing. dh is a subset of either e1 U e2 or emQl U em, arid (2) the chain 

G is a consolidation, of D(k,n), each link of G is· a subset of the 

union of two adjacent links of E, d8 is contained in only the:··first 
,) 

link of G., and any link of G containing dk is a subset of el. y e2 or 
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Since m > 4, if hu and gv are the first links of·H and G contain

ing dh and dk respectively then hu is a subset of e1 U e2 and gv is 

e • m 

Let s 1 be the union of the links of D that are in e1 .U e2 but 

not in H(l,u-l) nor G(v-l,l); let s 2 be the union of the links of D 
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that are in e3 but not in e2 .and not in H(l,u-l) nor G(v-l,l); • • •l 

let sm.3 be the union of the links of D that are in em_ 2 but not in 

em.3 and not in H(l,u.=l) nor G(v-l,l); a-nd let sm.2 be the union of 

the links of D that are in em.l U em but not in H(l;u-l) nor G(v ... l,l)" 
,, 

Now define the chain F as follows: (1) the first u-1 links of 

F are the links of H(l,u ... l)' (2) the last v-1 11.nks of Fare the 

links of G(v-l,l)' and (3) the other links of Fare s1 , s2, • • ., . 

It is not difficult to see that Fis a chain and is .a. consolida
' 

tion of D. Each link of Fis a subset of the union of two adjacent 

links of E because of the corresponding property of Hand G, and 

because the links s1 , s 2, •• • , s 2 were defined in such a way m-

that they were subsets of the union of adjacent links of E. The 

link dr is contained in only the first link of F because it. is con-

tained in only the first link of H. The \ink d5 is contained in 

only the last link of F because it is contained in only the first 

link of G and the. first link of G :is the last link ofl F. 

As in the case of the previous two theorems, the next theorem 

shows how to create chains following desired patterns .from .existing 

chains. This particular theorem will be utilized only to establish 

the more important theorem, Theorem 2.70. 

Theorem 2069: Suppose (l,x1), (2,x2), • o ., (n,xn) is acollec-----)--
tion of ordered pairs of positive integers such that h = XJ.SX£5.Xn = k 

and lxi - Xi+ll < 1 for i = 1, 2, 0 0 
0 ' 

n=L .· Suppose D1, D2, • 0 
0 ' 

.) 

nm, • • 0 is a sequence of chains from P to Q such that for. each 
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positive integer i, D is crooked in 
i+l Di' and no link of D. has a 

J. 

diameter of more than 1/L Denote the r=th link of Di by µir. 

Suppose that the subchain D2(u,v) of D2 is contained in the subchain 

of Dl(h,k) of D1 and the closures of d2u and d2v are mutually exclusive 

subsets of dlh and dlk respectively~ Then for each integer w, there 

is an integer j greater than w and a chain E = ( el' e 2 , • 

following the pattern (l,x1), (2,x2), ••• , (n,xn) in D1 such that 

Eis a consolidation of the links of Dj contBrined in D2(u,v) and no 

interior link of E in~,ersects d2u U d2v. 

Proof: Since x1 = h, xn = k and /xi= xi+ll ~ 1, then n ~ k=h+l. 

The theorem will first be proven for n = k=h+l and then completed by 
! 

induction on n. 

Since the closure of d2u is a subset of dlh' the closure of d2v 

is a subset of dlk and the diameter of any link of Di is less than or 

equal to 1/i, then there e;xists an integer m greater than w such that 

any link of Dm that intersects d2u is a subset of dlh and any link 

of Dm that intersects d2v is a subset df dlko 

Let n = k=h+l and let j be a,ny integer greater than mo Let e1 

be the of the links of 
~'<: 

let union Dj contained in dlh n D2( ); e2 u,v, 

be the union of the links of D. 
J 

contained in dl(h+l) n D~~ 2(U 9V) 
but 

.; and let en be the union of the links of Dj contained 

"#t 
in dlk n Dz(u,v)~ Now certainly e 1 is a subset of dlh' e2 is a subset 

of dl(h+l), o • • , and en 

pattern (1,h), (2,h+l), • 

is a subset of dlk• Hence, E follows the 
I '1 

•• , (n,k) in D1• But in this case, this 

, ., (n,x ), 
n 

Obviously, Eis a 

consolidation of the lirykp of Dj contained in E. Since j > m then 



from the corresponding property of Dm, it can be seen that any link 

of Dj intersecting d2u is containe'Cl in dlh and any link intersecting 
~· . 

d 2v is contained in dlk" Thus, the only links of E which intersect 

either d2u or d2v are e 1 and em respectively. 
) 

theorem for n = k=h+l. 

This establishes the 
1· 

Now suppose the theorem is true for all integers less than n. 

The special case where x1 = x 2 will be considered first. By 

the induction hypothesis there exists an integers> wand a chain 
\ 
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F = (f1 , f2, ••• , fn=l) following the pattern (l,x2), (2,x3 ), ••• , 

(n=l,xn) in o1 such that F is a consolid-ation of the links of D in 
s 

o2(ullv) and such th,at only the first link of F intersect~,~d2u and 

only the last intersects d2v. 

The same reasoning utilized to establish the exis
1
~ence of Dm 

in the.case n = k=h+l can now be used to assert the existence of an 

integer j > s such that any three linked suchain of Dj w~ich inter

sects 4zu is a subset of dlh" 
I 

Let e 1 be the union of the links of Dj which are contained in 

f 1 a~d which intersect d2u. Since f 1 is a subset of x 1 = xz·then e 1 

is a subset of x 1 • Let e 2 be the union of a\l links of Dj which are 

contained in f 1 but do no.t. intersect dzu. The property of D j 

scribed in. the p~eceding paragraph shows that e2 actually exists. 

Also, e 2 is a subset of f 1 which is a s.ubset of x 2 , and thu·s, e 2 is 

a subset of x.2 o Let e3 be the union of the links of D j contained in .. 

f 2 but not f 1 ; • • • ; l:~t en be the union of t.he links of D j contained 

in fn=l but not fn=Z. This construction of E = (ep e 2 , o o o, en) 

shows that E is a consolidation o~ the links of Dj contained in o2(ullv)~ 
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and that E folJows the pattern (l,x1), (2,x2), ••• , (n,xn) in o1• 

The corresponding property of F together with the construction process 

for the links e1 and e2 show that no interior links of E intersect 

d2u or d2v· 

The next special case which should be considered is the case 

where an integer r exists such that 2<r<::n and x = x. Techniques 
1 r 

similar to those which have been employed to this point in the proof 

can be used to construct a proof for this case. However, the proof 
I. 

for this special case is extremely long and tedious, and thus has 

been omitted. 

The final case that must be considered is the one where for 

every integer i such that l<i<n, xi=/= x 1• 

It must now be noted that the fact that o2 is crooked in D1 has 

not beien used in this proof. Indeed, the only case where any part of 

the hypothesis that Di+l is crooked in Di is ever used is in the case 

which was omitted. And in.that case, it is not necessary to have D2 
I 

crooked in D1, These fac,ts are po:tnted out because a chain W such 

that W has all the necessary properties of D2.( ·) will now be con.,. 
u,v ., ·, 

structed. It will then be asserted that the induction hypothesis 

applies to W sinc.e W will have the essential properties of D2(u,v) 

and since Dz(u,v) is an arbitrary chain contained in an arbitrary 

subchain of D1• That is, W will be contained in a subchain of D1 , 

the closures of the first and last links of W will be subsets of the 
\ \ 

first and last links respectively of that subchain of D1 , and by 

virtue of Theorem 2.65, subchains of Dj, j > 2, contained in W will 

be crooked in W. 
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Let W = (w1 , w2 , ••• , wt) be defined as follows: The link w1 

is the consolidation of the links of Dz(u,v) that are not contained 

in dlh but intersect dlh; w2 is the consolidation of the links of 

DZ(u,v) that are contained in dl(h+l) but do not intersect p1h; w3 

is the consolidation of the links of DZ(u,v) that are ip dl(h+2) but 

not in dl(h+l); ••• ; wt=l ls the consolidation of all links of 
\ 

D2(u,v) except d2v that are in dlk but not in dl(k-l); and wt= d2v. 

Hence, Wis a chain contained in D such that the closure of 
l(h+l ,k) 

I 

w1 is a subset of dl(h+l) and the closure of wt i,s a subset of d1k. 

Thus, by the induction hypothesis, there exists an integer j greater 

thanw and a chain F = (f 1, f 2 , ••• , fn-l) such that Fis a consoli= 

dation of the links of Dj in W, F follows the pattern (l,x2), (2,x3 ), 

., (n<~l,x0 ) in o1 , f1 is the only element ofF intersectingw1 , 

and fn,~l is the only link of F intersecting wt = d2vo 

,'<: 
Define e 1 to be the union of a 11 elements of D j in D n 2(u,v) 

e 2 = f 1 , ••• , en= f 1• Then E = (e1 , e2 , • o 
Il= / 

all conclusions of the theorem. 

., e) satisfies 
n 

The next theorem is the most important one of this section. \ . 

This theorem furnishes the result that will eventually provide the key 

to proving the homogeneity of the pseudo=arc. 

Theorem 2.70: Suppose (l,x1), (2,x2), ••• , (n,xn) is a collec= 

tion of ordered pairs of positive integers such that 1 = x1~x1:s_xn a~d 

• , D= 1, 
/ 

Suppose o1 , o2 , •• 

a sequence of chains from P to Q such that o1 has xn links and for 

each positive integer i, Di+l is crooked in Do, the closure of each 
l, i 
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link of Di+l is a compact subset of a link of o1, and no link of Di 

has a diameter 
.J 

of more than 1/i. Then there is an integer j and a 

chain E from P to Q such that E is a consolidation of D. and E follows 
J 

the pattern (l,x1), (2,x2), . . . ' (n,xn) in D1 • 

Proof: Leth= 1, k = xn, u = 1, and v = m where o2 has m links, 

then the conclusion of this theorem is immediate from Theorem 2.69. 



CHAPTER III 

EXAMPLES OF HOMOOENEOUS BOUNDED PLANE CONTINUA 

Introduction 

The three known examples of nondegenerate homogeneous bounded 
\' 

plane continua which were briefly discussed. in Chapter I will be pre-

sented in more detail in this chapter. The first two examples, the 

simple closed curve and the pseudo-arc, will be t;horoughly discussed 

and the proofs of their homogeneiey will be presented. The third 

example, the circle of pseudo.arcs; will be briefly described, but 

the proof of its homogeneity will be omitted. 

It will be shown .in Chapter IV that any chainable nondegenerate 

homogeneous bounded plane continuum that is not homeomorphic to a 

simple closed curve, a pseudo-arc, or a circle of pseudo.arcs must 

be an indecomposable continuum separating the plane. It is not known 

whether such a homogeneous continuum actually exists. The final 

example of the chapter will be an example of a chainable hereditarily 

indecomposable continuum which separates the plane. This continuum is 
I 

·I 

suspected of being homogeneous. 

All examples given in this chapter will be described in such a 

way that their existence in the plane is clear. Hence, any topological 

properties of the plane which are needed in proofs will be used without 

43 



44 

hesitation. 

The Simple Closed Curve 

The fact that a simple closed curve is a homogeneous bounded 

continu~m is almost immediate from its definition (10; 170, Definition 

3'.2). Since a simple closed curve is defined to be a homeomorph of 

the unit circle, then by the compactness of the unit circle any simple 

closed curve is bounded (10; 170, Theorem 3.3 and 10; 75, Theorem 4.16). 

The crux of the remainder of the proof is contained in the following 

lemma. 

Lemma 3.1: The unit circle U is homogeneous. 

Proof: Let x1 -and xz be any two points on t~e unit circle u. 

A function F from U to U will be defined such that F(x1) = x2 and 

Fis a homeomorphism. 

Let the coordinates of x1 be given by (cos e1, sin e1), ~01<2rr, 

and the coordinates of 'x2 be given by (cos e-2, sin e2), ~0-2<2rr. 

The Either E\:S.'62 or ~2se1 •... It will be supposed that e1:s,e2• 

argument for the case 92~&2 is si~ilar to the one which follows. 

Let 62 - e1 = l1l· It is clear that O::.ia<2rr. 
(I , 

Let x e U and the coordinates of x be (cos e, sin i). Either 

~tl+9)<2rr or ~9+9)""2n<2rr. If 0~0+(»<2rr, define F(x) = l where th.e 

coordinates of y are (cos (&+9)), sin (e+gj)). If ~0+(3=2n<2rr, define 

F(x) = y where the coordinates of y are (cos (0+9l=2rr), sin (0+!11=2rr)). 

Since Fis just a function which rotates the uni~;.;<::ircle through 

the angle !11, then it is not hard to show that Fis a homeomorphism. 
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Also, F(x~) =.x2 because (cos (e1 + ~), sin (81 +,))=(cos e2, sin 8 )o 
•. . . 2 

Theorem 3.2: A simple closed curve is a homogeneous bounded 

con,tinuum. 

Proof: It was argued above that a simple closed curve ,,is. J::ieunded, 

Since a simple closed curve is homeomorphic to the unit circle then 

it is immediate from the corresponding property of the unit. circle 

that it is a continuum (10: 170, Theorem 3.3) •.. Lemma 3 .. 1 implies that 

it is homogeneous. 

The Pseudo=arc 

The simplicity of the description of the first example· of a homo
\ 

geneous bounded plane continuum, and of the proof that it is indeed 

homogeneous, gives no indication of the difficulties which are involved 
:l 

in presenting the second example. This second example, the ,pseudo=arc, 

is defined in terms of sequences of crooked chains. I.n addition to the 

theorems on crooked chains, some very delicate .pro.ofs of preliminary 

the9rems are necessary in order to establish the ,homogeneity of the 
j 

pseudo ... arc. 

Definition 3 .3: Let S be a compact metric space and let;. P and Q 

be distinct points of S. Let D1 , Dz, • • • b;e a sequence .such that: 

(1) Di is a chain from P to Q, i = 1, 2, ••• , 

(2) Di+l is crooked in D1 , i = 1, 2, ••• , 

lesi than or equal to 1/i, j = lj 2, ••• , n1• 
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( 4) if d is a. link of Di+l then there exists. a link d v of Di such 

that d c d 1. 

""° * Let M = t"l D.. Then M is called a pseudo ... arc. 
i=l l. 

It is virtually 'impossible to visualize. a pseudo-arc. One can 

. conceive of some of the difficulties involved in trying to describe 

the pseudo-arc with pictures if .Figures 1, 2, and 3 are studied. · In 

any one of these figures one could think of chain Das being o1 and 

chain E as being o2 in the sequence given in Definition 3 .J. Suppose 

it is desired to draw the chain o3 contained in the chain o2 in Figure 

3. The virtual impossibility of the task of dra:Wiag the chain o3 was 

discussed in the paragraph immediately following case J of Example 

2.6,3. Of course, it should be noted that in these figur.es the diffi-

cul ties are somewhat exagg.erated since condition (3) of Definition 3 .3 

has been more than amply satisfied. However, even if all conditions 

are satisfied in such a way that the minimum number of links exist in 

each of the chains o2 , o3 , ••• , it is difficult to draw any chain 

after the second one of the sequence. 

It should also be noted that it has not been assumed that the 

links of the chains in Definition 3.3 are connected. It may therefore 

be surprising that Mis.a continuum. However, that such is the case 

is the main result of the following theorem. 

Theorem J.4: The pseudo=arc Mis a compact continuum. 

Proof: It will first be proved that M is closed. Since each Di 

has only a finite number of links then (4) of Definition 3 .3 implies that 
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* * Di+l c Di, i = 1, 2, • • • • Now suppose M .is not closed. Let Pt be 

a limit point of M such that Pr does not be long to M. .If P' does not 

belong to M then .. there. exists an integer j, such that P I does not 

* · belong to D .• 
J 

* Now if p, does not belong to Dj then P• does not belong 

-D* ' .· D~' D* 
to j+l since j+l c j• 

---*-But Dj+l is a closed set containing Mand 

hence. all limit points of M. This contradicts pi is. a limit point 

of M. 

It is immediate that Mis compact since Mis a closed subset of 

a compact .space. 

Suppose Mis not connected. Then Mis the uriion of two separated 

sets Hand K. Let .the distance between Hand K be k. The number k is 

positive (10; 91, Theorem 1.13). · There exists an integer i such .that 

3/i.< k. Since every link of Di has diameter· less than or equal 

to 1/i, there exists an interior link di of Di such that din H = (I) 

and d1 n K = (I). Now by the definiti.on of M, for every J > i there 

. exists a.link of Dj whose closure is a subset of di. Since the 

intersection of a monotonic collection of closed and compact sets 

..., 
is not empty, it is clear that n dn f (I) (10; .69, Theorem 3.30). 

· n=i 

oO 

Let P1 belong to n dn, then P1 belongs to M. Hence P1 belongs.to 
n=i 

H or K. This is a contradi.ction. 

The fact that the. pseudo=arc is indecompo-sa·ble will be used in 

establishing its homogeneity. The proof that the p-seudo-arc is 

indecomposable .could be deduced-from the fact that the pseu4o=arc 

is.a homogeneous bounded plane continuum that does not separate the 



plane, if this la~ter· stateme·nt could somehow be proven first. That 

every homogeneous bounded plane continuum that does not separate the 

plane1is indecomposable, is one of the important results which has 

been achieved since the pseudo-~rc was first defined (see Theorem 

4. 8 in Chapter IV). However, no proof that the pseud·o-arc is homo
\ 

geneous which does. not make use of the· fact that it is indecomposable 

has yet been. published. 

Theorem 3. 5: Each subcontinuum of the p·seudo-arc M _ is indecom-

posable. 

Proof: Suppose there exists a subcontinuum Mr of M which is 

decomposable. Then M' = H U K where H and K are proper subcon.tinua 

of Mr. Let P1 be a point of Knot belonging to Hand P2 be a point 

of Hnot belonging to K. The distance between P1 and His greater 

than zero (10; 91, Theorem 1.13). Similarly, the distance between 

P2 and K is greater than zero. Hence, there exists an integer j 

such that the distance from. P1 to His greater than 2/j and the 

d'i·stance· from. P2 to K is greate·r than 2/j. Let D j (h;k) (h < k) 

and D(j+l)(u,v) ~e subchains of Dj and Dj+l respectively such that 

Pi and P2 belong to end links ef each of these subchains. Withol,lJ: 
l' 

loss of generality, let P1 belongto djh (the link numbere<J h in 

the chain. Dj), · Supp.o.se there exis.ts a link djm (h < m < k) of Dj(h~k) 

which contains n.o point of M'. Since Mr is a subset, of M and M is 
l/ 

then M' is a subset of the union of D and JO,m-1) a 5ubset of DJ, 
') I 

D ( 1 ) where d. is the last link of DJ .• 
j m+ ,n Jn 

48 



* * Now P1 belongs to Dj(l,m-l) and P2 belongs. to Dj(m+l,n) and 
. . ~ 

Mr= (Mr n Dj(l,m-l)) U (M• n Dj(m+l,n))• But by definiton of cha1,~, 

* * D j(l ,m-1) and D j(m+l_,n) are separated. This contradicts the fact 

~,hat M• is a continuum, Therefore, every link of Dj(h,k) contains 

a point of M•. Similarly, every link of D(j+l).(u,y) contains a 

point of Mi. Therefore, since the distance from P1 to Hand the 

d'istance from P 2 to K are both greater than 2/j, .it can be seen that 

dj(h+l) contains a po-int of K but none of Hand dj(k .. l) contains a 

point s°f H but none of K. It follows that dj(h+l) f dj(k,.l) and so 

I h - ~I > 2. Hence, Dj+l is crooked, in Dj implies that D(j+l)(u,v) 
. t 
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is the union. of three chains, D(j+l)(u,r), D(j+l)(r,s)' and D(j+l)(s,v) 

(r < s) such that d(j+l)r and d(j+l)s are subsets of ~j(k-l) and 

dj(h+l) respe·ctively. Since the d,efinition of '(crooked" only requires 
i 

thatJ d(j+l)r and d(j+l)s be subsets· of links of D j adjacent to djk 

and djh respectively, then it may not be: clear that these links can 

be· specified to be- subsets of dj(k-l) and dj(h+l)" However, if it 

is recalled that the requirement that h < k was also imposed on Dj(h,k)' 

then it is not difficult to see that no generality is lost in speci-

fying which li~ks of Dj(h,k) contain the end links of D(j+l)(r,s)• 

· Now since d(j+l)s is a subset oL dj(h+l), d(j+l)v n djk :fo ~,,' and 

k-(h+l) ~ .2 then the.re must be at le·a5,t one link d(j+l)t' (s < ~ ~ v) 

such that d(j+l)t is a subset of dj(k-l)• Now every U,nk of D(j+l)(u,v) 

contains. po-ints of Mi, d(j+l)r and d(j+l)t are subs.ets of dj(k-l)' 

which contains points .of H but not of K, so d(j+l)r and d(j+l)t 

both contain. points of H. But d(j+l)s is a subset of dj(h+l) which 
I 

contains no points of H. The definition of chain and the fact that 



r < s < t shows that H is not a continuum. Therefore} the assumption 

that M' could be written as the union of two proper subcon·tinua is 

false. 

In order to prove the existence of the type of .h.Qmeomorphism 

which shows that the pseudo-arc is homogeneous, two exist;ence 

theorems will, first be, established. The first .of these th~orems 

( Theorem 3. 6) guarantees the existence .of a homeomorphism ·be·twee:n 
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certain pairs of compact closed sets. The unusual and very restrictive 

set of hypotheses for this theorem may make the theoretn s·eem to be 
\ 

so limited in applicability that it would be of litde use.· However, 

if both of the sets, Mn (n = 1, 2), mentioned in the.hypotheses are 

the pseudo-arc Mand both sequences of domains are the sequence 

of crooked chains used to define M, then it can be seen that the 
I 

theorem produces a homeomorphism from M to M. Of course, the existence 

of a homeomorphism from M to Mis obvious (the identity, for instance); 

however, a special kind of homeomorphism from M to M can be deduced 

with the aid of the second theorem •. 

The second theorem (Theorem 3.7) makes use of Theorem ~.6 t~ 

prove that for certain pairs of continua there exists a homeomorphism 

that will map any arbitrary fixed pair of points of the fi.rst cone 
I 

tinuum to any arbitrary fixed pair of the second continuum. Obviously, 

if it is possible to allow both members of such a pair of continua 

to be the continuum M, then the homogeneity of M will be established. 

Theorem 3.6: Suppose M1 and M2 are pompact closed s.ets; e1 , e2 , 
' ' 

• is a sequence of positive numbers with a finite sum; and X(l,l) 



X(l, 2), ••• and x( 2 ,l)' x( 2 ~2), ••• are sequences of well

ordered collections of domains such that for each n ( n = 1, 2) and 

for each positive inte$er i, (1) X(n,i) covers Mn' (2) each element 
I 

of X(n,i) intersects Mn, (3) no element of X(n,i) has a diameter of 

mofe than ei, and (4) if the j-th element. of X(n,i+l) intersects 

the k-th element of X(n,i)' then the distance between the j-th ele

ment of X(m,i+l) (m = 1, 2) and t.he k-th element of \m,i) is less 

than ei. Then th.ere is a homeomorphism T carrying M1 ~nto M2• 
. I 

Proof: The first step will be to define T(P) for any point P 
1. 

belonging to Ml. 

Let ~he k-th element of X(n,i) be x(n,i)k' . Let \n,i) ·?en~te 

the· well-ordere~ collection whose k-·th element is Y(n,i)k wher~ 

Y(n,i)k denotes the set of. all p.oints Q such that the distance from 

Q to x( . )k is .n,1 

If x( . ) n,1 r 

less than ei + 2( ei,+l + ~.i+2 + • • • ) • 
I 

intersects x( . l) then by hypothesis (4) the 
n,1+ s 

distance- between x(m, i)r and x(m, i+l)s is less than e i. Also, by 

hypothesis (2), the diame-ter of. x(_ '+l) is no more than ei+l" Now ", . ·m,1 s 

supp·ose Q belongs to Y(m,i+l)s closure so that the dlstarce from .Q 

to Y(m,.i+l)s is zero. Then the cli.sta-nce from Q to x(m, i+l)s is less 

than or equal to ei+l + 2(ei+2 + ei+J + ••• ), so the distance 
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from Q to x(il,i)r is less than or equal to ei + 2(ei+l + ei+2 +. • .). 

Therefore, the closure of y(m,i+l)s is a subset of the closure of 

y(m,i)r~" In general, if i < j and x(n,i)r intersects x(n,j)s the 

closure of y( . ) is a subset of y m,J s (m,i)r", 

Now let P be a point of M1• By hypothesis, there is a sequence 

of domain~ x(l,l)a' x(l, 2 )b' • • • containing P. 
I 

Define T(P) to be 



the common part of y( 2 ,l)a' y( 2 , 2)b' •••• Since the diameters of 

the elements of the sequence y( 2,l)a' y( 2 , 2)b' ••• are approaching 

zero· and since the closure· of y( 2 ,i+l)ti is a subset of y( 2 ,i)v if 

x(l,i+l)u intersects x(l,i)v' then it is clear that T(P) is a.point 

and· does· not depend. on which sequence x(l, l)p, x(l, 2)q, 

domains. containing. P .is. selected • 
. ,J 

• • • of 

New' le·t D be· any damain centaining T(P). Since T(P) belongs to 

every element of Y(2,l)a, Y( 2 , 2)b' ••• and since the diameters of 

the· eleme.nts of this sequence approach zero·, then there exists some 

term Y(2,k)z such tha~ T(P) belongs to Y( 2 ,k)z and y( 2 ,k)z is a 

subset of D. Now since x( 2 ,k)z is a subset of y( 2 ,k)z which is a 

subset of D and since xc 2 ,k)z contains a p·oint of M2 , 'then p CC>l;'!,tains 

some· point of M2 •. Thus T(P) is a limit point of M2 • But ·M2 is 
( ,/ 

closed and compact. Therefore T(P) belongs to M2• 

To show that T is continuous, let. T(P) be a point of M and D 
. 2 

be a domain containing. T(P). There. i.s an integer j such that any 

element of Y( 2 ,j) containing. T(P) is a subset of D. By definiti~m 
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of T, if x(l,j)r is an element of x(l,j) containing P, T(M1 n x(l,j)r) 

is a subset y( 2 ,j)r" New T(P) belong,s, to y( 2 ,j)r which is a subset 

of D. Th,erefore T. is continuous. 

Suppose Tis not one to one. Then there exist distinct J?Oints 

P1 and. P2 of M1 such t~\t T(P1) = T(P2 ). Let the distance from P1 

to P2 be· d •. There exists an intege·r k s~ch that the diameter of every 

element of Y(l,k) is less than d. Hence no element o.f Y(l,k) contains 

both P1 and P2 • Since x( 2 ,k) covers M2 , some element of x( 2 ,k)' 

say x( 2 ,k)r' contains T(P1) = T(P2). Now there exi\sts an inte1er j 



greater thank such that every element of Y( 2 ') containing T(P1) = 
1 'J 

T(P2) is a subset of x( 2 k) • Let x(l ") and x(l J') be elements , r ,... ,J u , v . 

of X(l,j) containing P1 and P2 respectively. T~is means that both 

y(Z,j)u and y( 2,j)v contain T(P1)_,=?(P2? a~d so both y( 2~j)u and 

y( 2 ,j)v are subsets of x( 2 ,k)r• Now x( 2 ,j)u is a subset of y( 2,j)u 
I 

and xc 2 ,j)v is a subset of Y( 2,j)v and so both x( 2 ,j)u and Y( 2 ,j)v 

are subsets of X(2,k)r• It has been established in general that 

if i < j and \n,i)r intersects x(n,j)s' then the closurr of Y(m,j)s 

is a subset of Y(m,i)r• Now in this case we have k < j, x( 2,k)r 

intersects both x( 2 ,j)u and x(Z,j)v and so the closures of both 
I 

Y(l,j)u and Y(l,j)v are subsets of Y(l,k)r" But x(l,j)u is a subset 

of Y(l,j)u and ~(l,j)v is a subset of Y(l,j)v; henc~, x(l,j)u is a 

subset of Y(l,k)r and x(l,j)v is a subset of Y(l,k)r· This is a 

contradiction beca1use P1 belongs to x(l, j )u and P2 belongs to x( 2 , j )v 

but no element of Y(l,k) contains P1 and P2 • 
I 

If T can be shown to be a closed map, then tqe proof that Tis 

a homeomorphism will be complete. Now M1 and M2 are closed anc;l com-
' . 

pact and so Tis closed (10: 75, Theorem 4.16 and 10; 66, Th.eorem 

3.19). 

Theorem 3o7: Suppose M1 and M2 are compact continua; P1 and Q1 

are point~ of Mi; P2 and Q2 are points of M2; the sequence of posi-

tive numbers el' e2 , ••• has limit zero; and the sequences D(l,l)' 
I 

D(l, 2), ••• and D(Z~l)' D( 2 , 2), ••• are sequences of chains from 

P1 to Q1 and from P2 to Q2 respectively. Suppos'e also that for each 
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n (n = 1, 2), and for each positive integer i, (1) D( . l) is crooked 
nil i.+ 

in D(nii)' (2) the closure of each link of D(n,i+l) is a subset of 



a link of D(n,i)' (3) no link of D(n,i) has a diameter of more than 

c,c, * 1/1, and (4) Mn= n D • 
i=l (n,i) 

Then there is a homeomorphism carrying 
l' ' 

M1 into M2 t~at carries P1 to P2 and Q1 to Q2• 
\. 

Proof: By hypothesis, there exists an integer t such that no 

link of D(l, t) has a diameter of mor·e· than 1/2. Define \ l, l) to 

be D(l,t)" Define x( 2,l) to be a chain from P2 to Q2 which has 

the same number of lin\s as \ l, l) and which is ·a consolidation of 

some 0(2,i)" 

By hypothesis, there exists an integer k such that o(2 ,k) is 

cont,ained in D{ 2, i) and nci element has a diameter of more .fhan 1/ z". 

Define x( 2, 2) to be D( 2,k)• Since· x( 2,l) is a consolidati,on of 

D(Z,i) then X( 2 ,z) is contained in X(z,t)• 

Let (1,x1), (2,x2), ••• , ·(r,xr) ~e a pattern followed by 

X(2,2) in X( 2,l) where xr is the number of links in X( 2 ,t)• Since 

\ 2 , l) and \ l, l) have the same numbe·r of links, \~en x(l, l) is a 

chain from P1 to Q1 which has x links. , r 

Since no link of D(l,t) has a diameter greater than 1/2 and 

fo.r every i no link of D( 1 . ) has a diam.e·ter greater tha·n e. (where 
,1 · 1 

the limit of the e. 's is zero), then it is possible to define a 
l, . 

sub:sequence DO,ti)' D(l,t2), : •• of D(l,l)' D(l,Z)' ••• such 
I ,. ~ 

that (1) D(l, ti) = D(l, t), and (2) no link of D(l ,ti) has a diameter 

greater than 1/i. By Theorem. 2.66, D(l,ti+l~ is crooked in D(l,ti)' 

i = 1, 2, •••• 

The sequence D(l,ti), · i = l; 2, ••• , satisfies the hypotheses 

of Theorem 2.70. Therefore, there exists an integer j and a chain 

54 



E from P1 to Q1 such that Eis a consolidation of D(l,t.) and follows 
J 

., (r,xr) in D(l,ti)" That is, if 

X(l, 2) is defined to be E, then: (1) x(l, 2) is a chain from P1 to 

Q1 , (2) X(l, 2) is a consolidation of a term ~,f the sequence D(l,i)' 

i = 1, 2, ••• , and (3) x(l, 2) follows a pattern in x(l,l) that 

x( 2 , 2 ) follows in \ 2 , 1 ). 

Now since x(l, 2 ) is a consolidation of some term of D(l,i)' 

i = 1, 2, ••• , then by hypotheses (1) and (3) there exists an 

integer j such tha7 D(l,j) is contained in x(l, 2) and no link of 

D(l,j) has diame_ter greater than 1/4. Define x(l,3 ) = D(l,j)" Using 

Theorem 2. 70 and the same technique as above, it can be shown that 

there is an integer j and a chain x( 2 , 3 ) from P2 to Q2 such that 

x( 2 , 3 ) is a consolidation of D(2 ,j)and follows a pattern in x( 2 , 2) 
\ 

that x(l,J) follows in x0 ~2) 

The process used to define X(l, 2)' x( 2 , 2)' x0 ,3 ) and· \ 2 , 3 ) 
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can be continued to define the se·quences X(l,l)' \i, 2)' x(l,3 )' • • • 

and x(2,l)' \2,2)' x(2,3)' • • •• 

The following properties of X(n, i), n = 1, 2 are il:'lllneqiate: 

(1) X(n,l)' \n, 2)' ••• are collections of· dbma:ins covering Mn' 

(2) each link of X( i)' i = 1, 2, ••• , intersects M, (3) no . n, , n 

link of X(n, 2i-l) 

(4) X(n,i+l) is a 

nor X(n, 2i) has a diameter of more t?an l/2i and 

chain from Pn to Qn that follows a pattern in X( ") 
n,1 

that X(m,i+l) follows in X(m.,i)• 

Properties (1), (2), and (3) above show that X(n,l)' X(n, 2), 

• • • is a sequence satisfying hypotheses (1), (2), and (3) of 

Theorem 3.6. It will now be shown that hypothesis (4) of Theorem 



3.6 is also satisfied. 

Let (l,x1), (2,x2), • • ., 

follows in X(n,i) that X(m,i+l) 

(s,xs) be the pattern which X(n,i+l) 

follows in X( .. ) , Suppose the j-th m,1 

link of X(n, i+l) intersects .the k-th link of \n, i). Since every 
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link of \n, i+l) is a subset of some link of X(n, i) then the j.;;th link 

be a subset of the (k-1)-th, the k-th or the (k+l)-th · of ,x(n,i.+l) must 
,I) 

_link of :X(n,i)• Therefore, one of the ordered· p'airs (j,k ... l), (j,k), 
,' 

or (j,k+l) must belong to the collection (l,x1), (2,x2), ••• , 

(s,xs). Suppose it is (j,k). Then it is also true that the j-th 

link of X(m,i+l) is a subset of the k-th link of X(m,i)' an~ hence 

the distance between the j-th link of X(m,i+l) and the k"".th link 

of X(m,i) is zero. Now· suppose the ordered'. ·pair which be-1011.gs to 
j ' 

the pattern is (j ,k-1). Then the j-th link;of \m,i+l) is a subset 

of the (k=l)-th link of X(m,i)• The (k-1)-~h link of X(m,i) inter

sects the k-th link of X(m, i). Thus, the d'is·tance between the j-th 

link of x(m, i+l) and the k-th link of x(m, i) must be less 1:han the 

diameter of the (k-1)-th link of X(m,i)• A similar argument shows 

that if the ordered pair (j,k+l) belongs to the pattern then the 

distance between the j-th link of X(m,i+l) and the k-th link of 

X(m, i) must be less than the diameter __ 1of the (k+l)-th link of X(m, i). 

Regardless of which of the above three cases is true, it is clear 

that hypothesis (4) of Theorem 3.6 is satisfied. 

Therefore, by Theorem 3.6, there exists a homeomorphism carrying 

M1 into M2 which carries P1 and Q1 into P2 and Q2 ~~spectivelyo 

The.next theorem is the final one in the current sequence of 

theorems. This theorem furnishes the primary result of this chapter. 



The homogeneity of the pseudo=arc is proven by the technique which 

was suggested in the discussion :preceding Theorem 3.6. Hence, the 

majority of the proof is concerned with satisfying the hypotheses 

of Theorem 3.7 in an appropriate.fashion. The collection of theorems 

in Chapter II on the properties of crooked chains will be employed 

frequently in order to create a sequence of chains necessaryfor the 

utilization of Theorem 3.7. 

Theorem 3. 8: The pseudo=arc M is. homogeneous. 

Proof: Since Mis indecomposable, there exist two points Rand 

S of M which belong to dif.ferent composants of M (24: 59, Theorems 

B8 and 139). 

Let D j be any term. of the sequence o1 , o2, o • • · which was used 

to de.fine M. It will be shown that there exists a term Dk (k > j) 

of the sequence such that if Dk(R,S) is the subchain of Dk from R to 

S then Dk(R,S) has a link, that intersects the first link of Dj and 

has a link that intersects the last link qf Dj" 
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Consider the limiting set L of the sequence D1+1(R,S), oj+2(R,S), 

• • It is clear that Lis a subset of M. Suppose Lis not a 

continuum.. Since ·L is· closed but not a continuum then L is not 

connected. Le:t L be.the union of Hand K where Hand K-are closed 

separated point sets. Let U and V be d~ains such that His a subset 

of l.J, K is a subset of V, and the distance from U to Vis h. Now 

supp·ose R and S belong ta the same component C of L. · Now C is a 

subset of Hor C is a subset of K, and thus C is a proper subco17-tinuum 

of M containing Rands. This contradicts the assumption that Rand S 
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belong to different composants of M. Hence R.and S·belong to q;iffer-

·. en,t components. of L and· so it can be ass·umed· that R belongs·. to H and 

S belongs to K. Let Dj+t(R,S) be an element of the sequence Dj+l(R,S), 

Dj+2(R,S), ••• such that every link :of Dj+t<R,S) has diameter less 

t.han h/3. The first lin~ of DJ+t(R,S) intersects u, the .last link 

inte·rsects V, · no link has diame·ter as large. as h/3, and the (listance 

frOIIl U toV is h. Therefore, the·re·exists a link of Dj+t(R,S) which 

intersects neit:he·r U nor V. Let T be a set formed by selecting a 

-link· from e·ach. subchain i;> j+s(R,S), s. =:: t, which· intersects neither U 

nor V. There are two. possibilities: .( 1) 1 there exist an infinite 

number.of elements of T which contain a common point P1 , or (2) .an 

infinite sequence Z of distinct points can be selected from dis~inct 

elements of T. In case.(l) the point fi would aho have to belong 

to L. But this contradicts . the ass,umption that L is a s1,1bset qf the 

union. of U with y. In case(2) there exists a .point P2 which is a 

limit point· of Z because. it .was· assume-q; that M was defined in. a compact 

·• sp-ace. By de.finition of L, P 2 belongs to• L. But P2 does. not belong 

t:o U union V because .no eleme·nt of T intersects the domain. U union V. 

This contradicts that L.is a subset of the union of U with v. · There .. 

· fore, neither case (1) nor case (2) is possible. Hence.the· assumption 

. that L. is not a continuum. lead<s, to a contradictio.n. 

Since· R. and S. .. belong- to different compo·sar).ts· of M and L is a 

subcontinuum of M containing R_and S, then L must be M. Therefore, 

* * the limiting set of D j+l (R,S), Dj+2(R,S), ••• is M. Thus., it can 

. be seen tliat there exhts an infinite. subsequence of the sequence 

Dj+1CR.,S), Dj+z(R,S), ••• · such that ~ach term has a link which 



intersects the first link of Dj• By.an aJ;'gllitl.ent similar,to. the one 

above, . it .can. be shown, that the limiting. set of this subsequence is 

a subcontin1.1um:of M containingR.and s. Since R,and S belong.to 

different composants of M, then this subcontinuuni ;i..s M. But if the 

subcontinuum is M, · t;hen. some term of t;he· s1tbsequence must have. a 
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link which intersects the last lit:ik of D j" Hence, there is an integer 

k greater than j. such that Dk(R,S) i.ntersects bot;h end links of Dj" 

Let j :be an. integer-such that the union.of any two adjacent 

links of D. is a domain with diameter- no more than 1. By the above J ' 

argument, there exists an integer-h greater than, j,such that th~ sub-

chain Dh(R,S) has a link whichintersect;s the first link of Dj and 

has a link which intersects the last: link of D j" By Theorem, 2. 68 

there is a chain El such that E 1 is a cansoliciation- of Dh, each 

·element . af El is a subset of twa adjacent links of Dj' the first 

link of Dh(R,S) is contained in only the first link of El' and the 

last link of Dh(R,S) is. cantaine~ in only the last link af ;El. So 

E1 ,is a chain, from R to S such that E1 is a consolidation af Dh and 

no element of E1 has a diameter of mare than, 1. 

Let k be an i.nteger greater than h such that na element; of Dk 

is af diameter more than 1/2. By Theorem 2.65, Dk is crooked in E1• 

A simple argument that makes 1tse af properties (3) and {4) in the 

definitton of the pseuda=.arc, together with the assumed com.paci:ness, 

will show that there is an integer t such. that the closure of the unian 

0f each pair of intersecting links of Dt is a·subset of a link af Dk • 

. As previously dem0nstrated, there exists an integer m greater than t 

such that the subchain Dm(R,S).intersects the first.and last links 



of Dt. Therefore, by Theorem 2. 66, there is a chain Ei from R to S 

such that E2 . is a consolidation of Dm·. and each link of E2 is a subset 

of two adjacent links of Dt. By Theorem 2.66, E2 is crooked inE1• 

Also, since each link of E2 is a subset of _.the union of two adjacent 

links. of Dt, .the closure of each pair of intersecting 'links of Dt 
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is a subset of a link of Dk, and Dk. is crooked in E1 , then the closure 

of each link of E2 is a subset of a link of E1• It is also clear 

that. since no· element of Dk has diameter o-f more· than 1/2 then no 

element of _E 2 has.diameter of more than 1/2. 

If the above process is continued, a sequence R1 , E2 , ••• of 

chains from R to S is defined such that for each in,te:ger i, (1) 

Ei+l.is crooked·inEi' (2) the closure of ~ach element of Ei+l ;ls 

a subset of an.element of Ei, (3) no element of Ei has _a diameter of 

more than 1/i, and_· (4) E1· is a, consolidation of some D .• 
J 

New let P1 and P2 be any· two p:o'ints of M. Since M is· indecom.= 

pof?able, there: exist po-in.ts Qn (n = 1, 2) such that Q belongs to 
n 

Mand Qn and Pri belong to different composants of M. 

Using the. results established above ( letting Pn = R, Qn = S, 

and Y(n,i) = E1), it follows that there exists a sequence Y(n,l)' 

Y(n, 2), ••• of chains.fromPn to Qn such that for each-positive 

int_eg.er i, (1) Y(n, i+l) is crooked in Y (n, i), ( 2) the closure of each 

, link of Y(n, i+l) is a subset of a link of Y(n., i), (3) no link of 

Y(n,i) has_ a diameter of more than,1/i, and (4) Y(n~i) is a consolida

tion of some Dj• 

Theorem. 3. 7 .· gives iµmJ.ediately · that th.ere is a homeomorphism 

carrying Minto itself and Pl ~nto P2 • Therefore, Mis hom.ogeneot,1s. 



The Circle of Pseudo-arcs 

The final example of a bounded homogeneous plane continuum to 

be presented is the circle of pseudo-arcs. A formal presentation 

of this example would require the development of topological proper

ties which are not presented in this paper. Hence, no proof that the 

circle of pseudo-arcs is homogeneous will be given. A proof by 
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R.H. Bing and F. B. Jones of the homogeneity of the circle of pseudo. 

arcs can be found in the literature (7). The proof that the circle 

of pseudo-arcs, M, is homogeneous also points out that there is a 

continuous decomposition of Minto pseudos-arcs such that the decom

position space is a simple closed curve. This fact, together with 

some well-known theorems on upper semi-continuous decompositions 

(28), can be used to prove that the circle of pseudo-arcs is decom

posable. 

The particular approach used to present the example will be 

analogous to the process created by F. B. Jones (7). This process 

is not presented as a definition for a circle of pseudo-arcs, but 

is described in such a way that it is reasonable to believe that the 

example has the critical asserted properties. A weakness in the pre

sentation which will be obvious is that no justification will be 

offered that the steps can be repeated a countably infinite number 

of times, as will be asserted. However, several illustrations will 

be given together with a careful description of the critical phases 

of the first three steps of the process. It is hoped that since 

the process is, in a sense, cyclic with cycle length three, then 

sufficient information will be present to make all assertions at 
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least seem plausible. 

In order to make it easier t0 visualize the p0sitions of various 

parts of chains in the sequence of circular chains necessary for de-

scribing the circle of pseudo"arcs, two preliminary figures. are given. 

Figure 4 shows. a set of arcs called 11 the first layer of vis. 11 Figure 

4 was drawn in three stages as follows: 

(1) Construct two concentric circles Wl and w2 centered at the 

0rigin and having radii one and two respectively. 

(2) Define twelve points lying on the two circles in terms of 

their polar co0rdinates. Let a 1 = (2, -IT/12), b1 = (l,O), 

c 1 = (2, IT/12), a 2 = (1, ;,,IT/2 = IT/12), b2 = (2, --IT/2), c 2 = (1, ""IT/2 

+IT/12), a3 = (2, IT - IT/12), b3 =(l, IT), c3 = (2, IT +IT/12), a 4 = 

(1, IT/2 - IT/12), b4 = (2, rr/2), and c 4 = (1, IT/2 +rr/12). Now bi 

is connected by line segments t0 a 1 and ci' i = 1, 2, 3, 4. N0te 

that four 11 vi s" are thus formed.. The point b. will be said to be the 
l. 

vertex of Vi and ai and c1 will be called the end points of Vi. Note 

that if two v Is are adjacent then their vertices are on different 

circles. 

(3) Now locate three p·oints on the circular arc between a.· and 
l.' 

b. and three points on the circular arc between b. and c., j = i+l mod 4, 
J l . J 

in such a way that the circular ar.cs are divided into four congruent 

sub-arcs. As in step (2), connect the points lying between v1 and V. 1 
J 

j ::: i+l mod 4, in such a way that two new vis are formed with vertices 

on.different circles. When all points are connected between each 

Pair· v1. .. and V., a total of twelve vis will have. been formed such J .. 

. that no two adjacent vis have vertices on the same circle. ·Number 
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Figure 4. The First Layer of vis. 



the last eight vis in a clockwise fashion.beginning with v5 where v5 

h the V adjacent to v1 and. in the clockwise direc.tion from v1. The 

end points of the V1 s should be numbered so that ai is lo·cate4 in a 

clockwise directicm from ci. 

This completes the construction of the first layer of y•s. 

The result of steps (1), (2), and (3) can be· seen in Figure .4. 

Figure 5 shows the second layer of V•s. Note that the second 

layer includes .the first layer. The additional V•s in layer two 

were constructed by subdividing the circular arcs between the adja

cent vis of layer one and proceeding as in step (3) above. Note 

that the pattern of having the.vertices of adjacent V•s on different 

cir.cles. and the clockwise numbering pattern have been maintained. 

The process of constructing layers of V•s is now continued a 

countably infinite number.of times by.subdividing the circular arcs 

between.adjacent vis belonging to the preceding layer. The pattern 

for. alternating vertices. and .the numbering patte·rn are maintained. 

It will not be proved, but it should be clear that the closure 

of the union of the .. infinite collection of vis is a continuum which 

separates the plane. 

The goal in describing the circle of pseudo,..arcs is.to show 

how ~ach member of. .the infinite collection of V• s. can be rep,laced 

with a pseudo~arc. 

It might- be thought that if Lis the continuum formed by the 

closure of the union, of the V• s then L is homogeneous. and perhaps 

homeomorphic to a simple closed curve. However,. co.nsider any small 

neighborhood R of ~i· Let C be the component of L n R containinPbi. 
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a,, 
b~'? 

C.31-! 

Figure 5. The Second Layer of V'B• 

a3it 
b12. 

.C35' 



Then c is seen to be vi n R. Moreover' L.n(R <> (bi}) is the union of 

two separated point .sets each of which intersect C. Thus bi is a 

local separating point (Definition 2.36). of L. Now consider any 

small neighborhood R1 of ci. Let c1 be the component of L n R1 

containing ci. Then c1 is v1 n i1. But in this case c1 - [ci} is 

connected. Thus if L n (R 1 = (bi}) is the union of two separated point 

sets M1 and M2 , then c1 - [c1J is a subset of one of the two sets M1 

or Mz and hence does not intersect the other. Therefore ci is not a 

local separating point of L. Thus, it should seem reasonable that 

there does not exist a homeomorphism mapping 1 to 1 end ci to bi. 

The existence of points of 1 that are local separating points 

and points that are not, make it seem unlikely that a .homogeneous 

continuum can be constructed by simply substituting pseudo~arcs for 

the vis of the continuum L. The process will be called "replacing 

the vis 11 ; however, one of the essential ingredients of the process 

(described in property (6) below) is necessary inor:cer to overcome 

difficulties caused by the existence of local separating points in 

L. 

The general plan for replacing the vis by pseudo=arcs ,is to 

describe a sequence of circular chains in such a way that the i~th 

chain,covers the i=th layer of vis and has subchains crookeli in sub= 

chains of the preceding chain of the sequence. 

The most important properties of the sequence of chains a.re 

listed below. In describing the construction of the chains no 

reference will be made to some of the properties since they.are 

natural results of the processes necessary for guaranteeing other 
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properties. For .instance, (8) and (9) are naturally satisfied by 

the process used to satisfy (1) through (7). However, (8) and (9) 

must be.included in order to characterize the necessary 11 crookeciness" 

with property (10). 

The ten prop.erties of the sequence D1, Dz, D3 , ••• are: 

(1) The sequence D1, D2, D3 , ••• is a sequence of circular 

chains of connected domains. 

(2) For each positive integer i, the closure of each element 

of Di+l is a subset of some element of Di. 

(3) For each i, each element of Di intersects the annulus bet-

ween w1 and w2 , and not both of two intersect:inglinks of D1 inter= 

(4) If for each i, 01 is the maximum diameter of a link of D1 

then oi approaches Oas i approaches infinity. 

(5) The subscripts of the elements of Di which intersect w1 

preserve the clockwise order on w1 and the subscripts of those inter-

. sec ting w2 preserve the clockwise ord·er on w2• 

(6) If a 1 , b1 , and c1 are the end points and vertex of v1 , there 

is a natural number m, such that the shortest subchain of D irreciuc= 
1 ~ ' 

· ible from a 1 to ci contains bi, the subchain of D , irreducible 
mi+l 

from. a1 to bi contains c,, the sub.chain of D , irreducible from bi 
i mi+2 

to ci contains a 1 , the subchain of D , irreducible from a. to ci 
mi+3 i 

contains b1 and so on. 

c,e, 

= U (ai,b1,cd• 
i=l 
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(8) For each i:1 Di is the union of finitely many subchains 
,~ 

T. is a circu= 
ini 

lar chain, and (b) for each j, l<j<n., T .. is either irreducible from 
- - ]. ·. l.J 

w1 to w2 or (for some k) irreducible about {ak''bk,ck}. 

* * * } (9) If h < i, each element of (T11 , T12 , ••• , Tini is a subset 

. ,";; ,";; 
of two intersecting links of (Thl' l'h2' . . . ' 'i( } 

'l:hn • 
h 

(10) If h < i and. Iij is contained. in Thk U Tht' then Tij is 

crooked in Thk U th t where t :: (k+ l) · mod nh. 

A procedure for constructing o1 and portions of o2 and o3 will 

now be given. Attention will be centered on construcping the chains 

so that properties (l) through ( 6) are satisfied. It is not diffi= 

cult to see that properties (7) through (9) occur as a natural result 

.of the prpcedureo Property (10) will be·omitted because of the 

physical limitations imp,osed by the wid'th of a pencil lead. However, 

it will be clear that property (10) could be satisfied without de~ 

stxoying the other properties. The omission of property ( 10) is not 

meant to detr.act front its significance, since property ( 10) is actually 

the main item which justifies naming the continuum c.ircle of 11 pseudo= 

·arcs 11 • 

To construct o1 proceed as follows: 

(1) Group the vertices and end points Qf the vis. in layer one 

. in sets Sk, (k = 1, 2, ••• , 12) of three each such that (a) each 

Skis a subset only of w1 or only of w2 , (b) each Skis of the form 

· (a1 ,bj,ck} i/J, Jjk, i:fk, (c) no vertex. or end point in layer one 

is betweren.any pair of points in any particular Sk unless it belongs 



(2) Enclose each set·Sk .constructed in step (1) in a 4omain 

. such that (a) the dolllain interse·cts Wi if and only if Sk intersects 

Wi' and (b) no two such domains inte-rsect. 

(3) Far each domain D that intersectsW2 construct two. !iistinct 

non-intersecting chains such that D:is_ an end.:.link of each chain, 

the other two end links are the two domains on w1 ·containing the end 

points of the V of layer-one whose· vertex is in D, and the only 

· links of either chain that. inte-rsect w1 U w2 . are the end links. 

The chain Di is pictured in Figure 6. The only properties in 

the list of ten that necessarily apply to o1 are (1), (3), (5), and 

(8). Those four properties are satisfie<f~ However, it can be seen 

· that if mi~ 1, then property (6) is also satisfied. 

A portion of chain o2 will now be constructed. In fact only 

the part af o2 in the vicinity of v1 will be discussed. However, it 

should be clear that the process is general and· could have been done 

for any V af layer one. The subscrip;t 11111 is specified so that 

reference can be-made-tospecific pe-ints and vis in layer two. 

Since at some s;age prop,erty (6) m1;1.st be satisfied, o2 will be 

constructed in .. such a "fay that it. is possible, to let mi = 1 (and 

hence mi+l = 2) ~ It should .be nate·C:l· that if no attempt -were being 

mad·e to satisfy p-rap-erty (6) until some later stage, then o2 could 

be constructed.in exactly the same manner as o1, if the adc;litional 

restricti0n- imposed by pr,pperty (2) were appropriately satisfiec;I. 

Accordingly, attention will be .centerec;I. on· sat.is.fying_ property- (6). 

To construct o2 proceed as follows: 
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Figure 6 •. The Chain Dl. 
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(1) Using the points of layer two instead ·of layer one repeat 

the.process described in steps (1) and (2) of the constrijction of 

o1 , but cons.truct the dOIIlains so that property ( 2) is also satisfied. 

For convenience, the. domains constr.ucted in this step will be referred 

to by the subscript on the vertex. of the V of layer two included in 

, the dQinain. 

(2) Let T11 be the subchain of Di that is irreducible about 

.. a 1 , b 1 , c 1 • It can be seen that each end link of i' 11 contains three 

of the domains which intersect W2 constructed in step (1) anc;l that 

the interior l;i.nk·of T11 that intersects w1 contains three such 

domains that also intersect w1 • (See Figure 7). Being careful to 

pr-eserve property ( 2) construct eight mutually disjoint chains 

Ml' M2 , • • • , MB. such that (a) the end. links of M1 are dOIIlains 33 

.and· 12, (b) the end. links. of M2 are dOillairts 12 and 35, (c), the end 

. links of M3 · are domains 35 and· 1, (d) the end links of M4 are domains 

.l and36.,.(e) the-end links of M5 are damains 36. and 13, (f) the end 

links of M6. are domains 13 and. 14, (g) the end links of M7 are d~ains 

14 and 5, ( h) :the end. links of MB .are dOXI1ains 5- and 10. Now the 

second. part of p.roperty ( 6) is s.atisfied if i = 1 and m. = 1. But 
' 1. 

also n.ote that for sets of p.eints such as (a35,:i,35 ,c35} and. (a14 ,b 14 ,c14}, 

the first part of property (6) is .satisfied' •. If Figure 7 is examinea 

carefully, it can.also be seen that properties (8). and (9), are 

sat;i.sfie~:l. Repetiti.en of the .above p.rocess wi.thin each element ef 

(T11 , T1z, ... ~; T101} will satis.fy all appropriate properties. 

· Details ef censtructing. the c},lain o3 are omitted; however, if 

Figure 8 is studied it c,an be seen that the third part of property 
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Figure 7. The Chain o2 Near v1• 



Figure 8. The Chain D.3 Near v1• 



( 6) has been satisfied for the set o-f points { al' bl'c1}, that the 

second part of property ( 6) has· _been satisfied for the· sets 

[a14,b14 ,c14} ~nd [a35 ,b35,cj5}, and that the first part has been 

satisfied for the new points (marked but not name(}) from- layer three 

that appear in the figure. All other properties, except pr9perty 

(10), are.also seen to be satisfied. 

cO * Of course, the circl.e of pseudo=arcs is just n Di. It can 
i=l 

"'° * be shown that n Do sepa:r;ates the plane and therefore is no:t homeo= 
~=1 l. 

morphic .to the pseudo-arc. 
00 . * 

Moreover, n Do contains no local separ= 
i=l l. 

ating points an.d hence is not home·omorpl;lic. ta a simple closed curve. 

An Indecomposable Ccmtinuum S.ep-arating the Plane 

This chap.ter will be concluded with the p1r-esentation of an 

. e~ample af a continuum which· is strongly susp:ected of being· homo= 
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geneous,-but:which };las nat been. shewn tc;,.be·so. It is known that this 

continuum is hereditarily; indecomposable andseyarates the plane (3). 

Let o1 , o2 , ••• be a sequence of circular-chains .such that 

(a) each link of D. is.the interior of a circle with diameter less l. . 

than 1/i, (b) the closure of each link of 

link. of DO , ( c) each complementary domdn 
1 • 

D is 
. i+l 

'* of Di+l 

containe9.in a 

contains a comple= 

* · · mentary dotllain of Di, and ( d) if Ei is a proper· subchain of Di and 

Ei+l is. a subcl:).ain. of Di+l contained in Ei, then Ei+l is crooked in 

It is by no means obvious that a sequence of chains with the 

asserted prapertiesactually exists. in the plane. The proof that 



the ccmtinuum .is. indecompesable. and separates the- p·hne includes 

s_uggestions that. help tq e-stablish patterns useful in constructing 

the sequence o1 , o2 , • . • • (3). Howeve·r, if o1 has less than f eur 

links thenno·restr.iction on o2 is imposed by property (d). If.D1 

.has four or more links then property (d) forces D 
2 to have so many 

links that it is virtually imp.ossible to show .both Dl and D2 in one 

illustratian. Hence no illustr.ation for this example has· been 

. included. 
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CHAPTER IV 

THE CLASSIFICATION OF CHAINABLE HOMOGENEOUS PLANE CONTINUA 

INTRODUCTION 

The goal of Chapter IV is to show that the list of examples 

presented in Chapter III sufficiently illustrates all types of 

chainable homogeneous bounded plane continua known to exist. This 

will be accompl;i.shed by presenting a classification system for chain

able homogeneous bounded plane continua, and then proving that such 

continua always belong to one of the classes in that system, 

The results appearing in this chapter indicate that every 

chainable homogeneous bounded plane continuum must belong to one of 

the following four classes: 

Type 1: Pseudo-arcs, 

Type 2: The simple closed curves, 

Type 3: Circles of pseudo-arcs. 

Type 4: Indecomposable continua that separate the plane, 

The question of whether continua of type four actually exist 

was discussed in the last section of Chapter III, Examples contained 

in Chapter III show that continua of type one, type two, and type 

three can be constructed in the plane, 
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Many of the proofs necessary for shewing that the four clas-sifi= 

cations given above exhaust the set of homogeneous. bounded-plane 

continua are exceedingly long. Some require an extensive development 

of topological concepts not considered in this paper. However, several 

of the fundamental theorems can be p·resented· in. a manner that will 

require very little_ additional work to be done by the reader. The 

proofs of .most of :the, other theorems can be outlined' with sufficient 

details so that the mor~ knowledgeable read·er· c;a1;t supply the ren:tainder 

of the proof with the assis.tance of the references listed. Only 

-one major theorem will be severely neglected. The conclusion of that 

theorem is that all homog-eneous decomposable bounded plane continua, 

that are not simple closed curves,. are circle-s of pseudo-arcs. 

This particular the.orem is oae of those_ that is dependent on the 

presentation of several additional topological concepts. ~ut more 

.importa1J.tly, any sart of proof of the theorem would require that_ a 

proof of the homogeneity of the ci.rcle, of pseudo·..,arcs be given. 

The pt'.oof that. any two circles of.pseudo-arcs are homeomorphic is 

merely one qf.the side results. of the proof of the homogeneity .of 

such continua. The:. p.ro.o:f. .. of: .. .the~h.omoge:rr.e.it.y:.,.of.:.J:he circle of pseudo

.arcs is prohibitively long., even in the condensed· version in which 

it ',jl'as orig.inally published (7). · llen.ce, this result will be given 

but the proof will be indicat.ed by.reference. 

Theresults containe(l in the second section of this chapte:c: do 

not.at first appear to contribute to the problem of classif.ying homo

geneous.bounded plane continua. However, the fact that the only 

locally- cli>n1['!.ected homogeneous bounded p-~ane continua are the simple 



.closed curves is useful in the fourth section in.the proofs. of some 

· obviously important .results. Theorem 4.3. of the s_econd section of 

this chapter c.ould · have been listed as a lemma in the fourth section. 

However, it ~as felt that the conclusion of Theorem 4.3 was suffi-

ciently interesting to be presented in, a separate section. 

The iµ.ain· rest,1lt. of the third section of this chapter, that a 

I 
simple closed curve· is the only homogeneous _bounded plane continuum 

.containing _an :arc, does not-contribute to the main purpose of the 

chapter. However, since the result is closely related to the prob= 

lem and since the second section-of the chapter sets .the sta~e for 

its proof, the theorem is given along with a brief resum~ of its 

proof. 

· The last three .sections of the chapter contain the remainder 

of the theorems. necessary to assure that the typ:es on~, two, three, 

and.four, given previou.s.ly, are. actually sufficient to exhaustively 

classify homogeneous bounded plane continua. 

Locally Coanected Homogeneous Continua 

The purpo.se of· this: sec.tion will be to prove that the only 

lo.cally co.nnected homogeneous. bounded plane continua are the simple· 
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closed curves. · The theorem that is actually proved is· slightly· stranger 

inthe,sense that the hypothesis of homogeneity is not used, but is 

replaced by local homogeneity in the proof. 

Two·lemmas are required to establish the t11ainresult. Since 

the first of the two lemmas contains a result.that. is related to the 

topic·of this chapter,· its proof is included. The second. lemma is 
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stated without proof; however, the proof may ·be f oun.d in the reference 

cited. 

Lemma 4.1: If M is. a locally c<mnected, locally homogeneous, 

.nondegenetate, bounded plane continuum, then Mcontains .a simple, 

.closed curve. 

Proof: Suppose the theorem.is false. Then it ·is clear from 

,the <iefinit;ion of dendrite· (Definition 2.17) that M is a ,den<irite. 

It is known that every. point of a dendrite is.either a cut.point or 

an end poirit and that every pair of p9ints of a dendrite.are separ

.ated by,a third point (28; aa, Theorem Ll). Since Mis ... nonde,generate, 

it follows that there exist points of M which.are not.endpoints. 

That is, M mQst contain cut points. Now every non.degen~:i;-ate compact 

continuum has. at least two non=cut points and so M also has end 

points ( 24; 38, Theorem 93). An end point of M is. def.ine..d to ,be a 

point of M with Menger order one with respect to M (Definiti.an 2.33). 

So if an end point is a non-cut point, then cutpointsmust have 

Menger order·greater-than one. 

Let x be an. end po.int of M and y be. a cut .point of M~ Since 

x_and y have different Menger orderswith-respect to M, then Th~orem 

2.32 implies that there do not exist open sets E and .F -with respect 

to M containing x and y respectively and. a .homeomorphism map.ping E 

to F.and x toy. · This contradicts the hypothesis.that Mis. locally 

-.homogeneous. 

Therefore, it must be true that M contains a simple .closed curve. 
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Since the result of the next leIIlll).a isof no particular interest 

other than, as a tool in the proof of Theorem 4.3, and since the lenuna's 

conclusion is_- rather easy to visualize, no proof for the lemma is 

given. The proof can be found in the reference cited. 

Lenuna 4.2: Suppose the·simple closed curve J is the boundary 

of a· complementary dGma.i.n .. of the locally connectr·ed' plane continuum 

K. Let W be a connected open !;!Ubset·of Kcontaining_the·open, arc 

(ab) of .J, but neither a nor b. Then, if the open. arc (ab) contains 

no local separating point of K, it does not separate W (9). 

The main-result of this section can now be proved: 

The.orem · 4.3: If M ·is. a locally conne,cted, locally homogeneous, 

nondegenerate· bounded plane continuum, then M is. a simple closed 

curye. 

Proof: Lemma 4.1 shows that M must. contain a simple closed 

curve· C. 

Suppose Mis not.a simple closed curve, then there exists a 

p-oint Pl of M that does.not belong to c. Let p2 be any point of C. 

· It is known that e.very pair of points of a locally connectecl con= 

tinuummaybe- joined by an arc lying in. the continuum (28; 36, Theorem 

5. l}. Designate some arc. from p1 to p2 that U.es in M by p1p2• It 

is not o;ifficult to see· that some. paint on the. arc p1p2 has Menger 

order of at least three with respect .to Mo ·1n particular, the first 

pro-int on p.1p.2 in the orde.r from. p1 to p2 that belongs to C has Menger 

ordser greater tl;i.an 2 with respect· to M. Hence,· by Theorem 2~32, every 



point of M has Menger order of at least three. 

Now·M has Ro local separating point because if there exists a 

local separating point of M, then by the local homogeneity every 

point of M is a local separating point •. But, this is impossible since 

. all save a countable number of the local separating points of M must 

be of Menger order two (28; 61, Theorem 9.2). Therefore, M has no 

separating point. 

Since all locally connected continua that do not have separat:ing 

points are cyclicly connected then Mis cyclicly connected (28; 79, 

Theorem 9 .3). 

Now the boundary of each complementary domain of a cyclicly 

connected, locally connected, locally compact continuum is a simple 

closed curve ( 28; 107, Theorem·. 2. 5). Thus, the boundary of each 

complementary doma,in of M is a· simple closed curve. 

It will now be shown that there exists a point of M which is 
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not on the boundary of any complementary doma.in of M. Suppose that 

this is not the case. Then M is. the tJJnion of simple closed curves, 

each of which is the boundary of a complementary domain of M~ Since 

any two complementary domains of a continuum are.disjoint, and since 

the complementary domains of Mare bounded by simple closed curves, 

then M has at most a countable numbe·r of comp,lementary domains. Thus, 

M is the union. of a finite or, at most, a countable number of simple 

closed curve.s. If M is the union bf a finite· number of· simple closed 

curves, then certainly one of those curves contains an open subset 

of M. Since. no locally compact closed point· set M is the union of 

Gountably many point sets such that if K is any one of them, every 
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point of K is a limit ·point of M = K, then even· if M is the union -of a 

countable number of simple closed curves, one of them must still 

contain. an open subs.et of M ( 24 ;- 21, Theorem 53). It should be. clear 

than an open s.ubset_ of M which is. also an open s·ubset of a simple 

closed curve.can contain no points of Menger order higher than two. 

But this is impossible because-every point of M has Menger order three 

.or more. The ref ore, there.exists some point. q of M which is not on 

. the boundary of any complementary domain .of M. 

Let p be any point on the boundary J of a complementary 9omain 

of M. Because Mis locally homogeneous, there exists a homeomorphism 

be~ween two open subsets E and F· of M containing.p and q respectively, 

such that pis mapped to q. 

Consider any.arc containing p, say [cpd], lying· in E. Let the 

image of [cpd] be [c'qdv]. There exists a circle G such that q is 

the·, center of G, the interior of. G intersects M orily. at. points of F, 

and neither c' nor d I belong. to. the· interior of G. Now the interior 

of G will contain an· open suharc (x·r qy') of [ c v qd i J which separates 

the interior of.G into two domains n1 and n2• 

Let H.be the component of the common part of Mand.the interior 

of G .that ·contains (x'qyi). With reference to the homeomorphism 

between:E.and F, let V be the inverse.image of H. The inverse· image 

of (x'qy•) will be denoted by (xpy). By Lemma 4.2, V. - (xpy) is 

connected. This means that H = (x•qy') is a subset of n1 or n2• 

Without loss of generality,.suppose H ~ (x•qyr) lies inD2• Now H 

being the component of the common .. part · of M: and the interior of G, 

and (x I qy') beil'.lg part. of the .boundar:l,es of both Pl and n2 imply 



. that. q is on the boundary of. a complementary domain of· M. This is 

a contradiction. 

HoIQ.ogeneous Continµa Containing.an.Arc 

Theot:em 4.3 is. 1:he-point from which one starts.in·order to prove 

.tp.at the ~imple closed curve is the .only homogeneous. bounded plane 

con1:inuum· that cont:ai.ns an, arc. · A very brief outline of the. remainder 

of the proof is give.n. below. It should not .be supposed that enough 

of the piroof i,s ,given, that ·the details. would be ·.easy to supply. Each 

statement should be viewed .as a lemma requiring, a leng,thy, prqof to 

ve·rify • 

. Theorem :4.4: The only· homogcaneous bounded p'lane continuum that 

.contains an.arc.is a simple closeci curve. 

Indi_cation of Proof: Suppose there exists a homogeneous bounded 

plane- continuum M that contains an_a:,;c bµt is not a simple closed 

curve. · The proof ~hat no such corttinuum-can,e:xist :is accomplished 

by investigating. the pI;op.erties which such· .,a continuum woulrf J:?.ave 

- to possess. A( list of _twenty prope-r:ties can 'be ohtained. lt can· be 

shown tbat .the twentieth: property leads to. a contra·¢ticti<m~ · In, order 

to illustrate the relati.onship- of Theorem.4.4 to Theorem 4.J-, compact 

descriptions of the proofs of the first five properties are given. 

The rema-ining fifteen properties can be established in the order 

given but generally.require several rather lengthy lemmas for their 

complete. demonstration. 



Property 1. The set M is not locally connected, This pro,perty 

is inunediate from Theorem 4.3. 

Property .2. The set M is not connected im kleinen (Definition 

• 2. 15) at any point •. If M were connected im kleinen .at some point 

then by the homogeneity of M, it would be connected im kleinen at 

every point. But a continuum connected im kleinen at·every point 

· is locally connected (24; 90, Theorem 10). This contradicts Prop

erty 1. 

Property 3. The set M contains an open set Uwith uncountably 

many components. Property 2provides.the key fbr proving this 

property. 

Property 4. The set M contains no simple triod (Definition 

2.26). The homogeneity of~ implies that if M contains a simple 

triod then every component in U cont'7ins.a simple triad. It can be 

. shown that the plane.contains at most a countable number of triads. 

This contradicts Property 3. 

Property 5. The set M contains no .sitllple closed curve. It is 

poss:j.ble to prove from Theorem 4.3 that the simple closed curve is 

1:he only homogeneous bounded plane continuum containing a simple 

closed curve. 

Property 6. Each ray (Definition 2 .10) in M is the union of a 

countable number of arcs. 

Property 7. For each point p of an,arc component A·of M 

(Definition 2.8), A is the union of two rays R1 and R2 starting at 

p such that the intersection .. of R1 and R2 is .p. 

· Property 8. The .set M has uncountably many arc components. 
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Property 9. · If Risa ray of Mand pis a point of R, one of 

the rays starting at plies in R. 

Property 10. If :Ill is the .closure of a J;'ay of M, it, contains 

a continuum.<R that is irred,ucible wit!i respect to being the closure 

of .a ray. 

Property 11. If R is a ray -in an arc component A of M, R = A. 

Property 12. If the closures of two arc compenents of Minter

sect,·the closures, are equal. 

· Property 13. The clesure of each, arc component A ef M is. homo

ge,neous. 

:ey making u.se of the thirteen p.r:op.e:i:'ties listed thus f~r, it 
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is now possible ta prove that the e~istence of M implies the existence 

of another-continuum.Ml which is the closure of one of its arc com-

- ponents. T_hat is, pr.ope:i::'.tie,s, p-ne :through thirteen, imply. the existence 

of a homo-g,eneous boun<led- .p-lane· con.tinuum Mi one. ef whose arc ~om

ponents is de-nse in Ml but which is not .a· simple c.losed curye. The 

remaining-seven properties.are·properties.which-can be shown to be 

po.sse·ssed by Ml. 

Property 14. If C' is a· non-.degenerate subcontinuum of Ml that 

is not an_ arc, then C int.ersects uncountably-many arc cOIILponent,s 

of Mr. 

Property. 15. Each non-degenerate prop·er subcontinuum. of M' 

is an. arc. 

Property 16. The set M• is indeco~po,sable. 

Property 1,7. For each pesitive:-number e and each. arc xy in Mi 

there h an e.:.chain d1 , dz, ••.• , dn covering. xy such that .x belongs 



to d1 , y belongs. to dn' and the common part. of M' and the union of 

the boundaries of d1 , d2 , • • • , dn is a subset o-f the union of 

. dl and an. 
Property 18. For each .positive number e there is a pos.itive 

number 0 such that if ab··. is an arc in MI with the distance. between 

a .and bless than 0, then either the diameter of the set contl!lining 

the ppints.of ab is less thane or .each point of' M' is within.a dis-

tance of e o:( some ·point of ab. 

Property 19. If a point p of M' is ac~essible (Definition 

.2.40) from a component T ,of the coniplement of M' in the plane~ .each 

point. of any.arc in M' is accessible from T. 

Property 20. ·The setiM• contains a folded sequ~nce · of arcs 

( Defini_tion 2. 24) converging to an. arc. 

The proof of Theorem 4.4 can now be-completed by proving tbat 

it is impossible for the compact continuum M' to contain.a folded 

sequence .of arcs converging to an arc (2). 

Homogeneous Continua That OoNot Separate the Plane 

The main.result of this section is contained in· Theorem 4.8. . . 

This result will show that every homogeneous bounded. plane continuum 

which does not separate the p.lane must have one of the· prominent 

feat.ures of the pseudo .. arc. · That· is, such continua are always ind.e-

composable. 

It n,.ay -se_em strange. to include details of the. proof of the 

following-lemma when it is noted that.many details of the proof of 

the U1ain theorem (Theorem 4.6) resulting from.the leamma have been 
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omitted. However, mor12 than just the conclusions of the lemm-- are 

utilized in the proof of Theorem 4.6. Certain facts that are n0ted 

in the proof of the lemma are used in proving Theorem 4.6, as well 

as certain techniques that occur in the proof. In·particular, the 

technique which shows how a certain uncountable sequence of p.oints 

can be created, is a useful tool infilling in details that have 

been omitted from the proof of Theorem 4.6. Hence, the inclusion 

of the details of the proof of Lemma 4.5make it possible to·omit 

many details from the proof of Theorem 4.6. 

Lemma 4.5: Let M be a homogeneous bounded plane continuum. 

Let x and y be distinct points of M. F0r every point t of M denote 

by Ut the set of all points z of M such that Mis aposynOetic 

(Definition 2.19) at z with respect tot. Then Uy is not a proper 

subset of U. 
x 

Proof: Notice first that the definition of aposyndetic shows 

that Ut is openin M for every p0int t of M. 

Suppose that Uy is a proper subset of Ux. Since Mis homoger,i

eous, there exists. a homeomorphism T such that T(M}. = M and T(x) ,= Y• 

Let p belong t:o u~. ThenM contains a continuum K and a subset 
p 

V open in M • such that p belongs to VP· , VP is. a subset of K , and p . ' p 

KP is .a subset of M ~ {x}o Now T(1),) is a continuum in M, T(Vp) is. a 

subset of T(Kp) which.is open in M, and T(Vp) contains T(p). Also, 

T(Kp} is a subset of T(M = (x}) = T(M) - ('r(x)} = M = {Y}. Hence, 

T(p) belongs to Uy, and so T(Ux) is a subset 0f Uy. Now let p belong 

to Uy- Since·T is a homeomorphism, there exists a point z.of M such 



that T(z).= p. · :eecause.p belongs to Uy there e:dsts a continuum 

K that is contained inM .. ·(y} and a set V ·open in M which is a p . . p 

subset of KP and contains P• The open sef ·r1(v.) contains: the ·point . . p . 

• T= 1(p) = z and is .containe<;l in the con.tinuum· r= 1(l<p) ._ · Now. r 1(~) 

is contained· in T= 1(M = (y}) = r 1(M) -· p: .. l(y)} = M - (xJ. That is, 

z belongs to Ux• But if z belongs. to Yx :then, T(z) = p belongs t<:i 

T(U ). . ;x.. Therefore, Uy is a subset of T(~x), and it follows that 

Uy.= T(Ux)• 

It will now.be shown that.UT(.y) = T(Uy)• Let p belong .to Uy• 

By definition of aposy·ndetic there exist;s. a continuum KP ancl a set 

VP open in M such that p belongs to VP, VP is .a· subset of ~' and KP 

is a subset of M - (Y}. The set T(Kp') ·is a con~inuum in M, T(Vp) 

is open in M and is a subset of T(Kp). Also, T(1),) is a subset of 

T(M = (y}) = M = (T(y)}. This shows that T(U ) is. a subset of UT( ) • . y y 

Let p belong to UT(y)• There exists ,a continuUIXI:~ and.a set VP 

ope-n in M such that p belong·s to VP, VP is a subset of KP, and KP 

is a subset of M = (T(y)} •. Now the continuum r 1(1),)· is a subset of 

M = · (y}. Also, T"' 1(KP} ~ontains the set r 1(vp) which 'is open· in, M 

• ·T= 1( ) H b 1 U Thi and contains p = z. . ence, z e ongs to • · s means . y 

, T(z).= p b~longs to T(Uy)• Thus,. UT(y) is a subset of T(Uy)• It 

follows that UT(y) = T(Uy). 

Since Uy is a proper subset of.Ux.and T(Ux)·is equal to Uy, 

then T(Uy) is a proper subset of Uye Thus, UT( y )' is a proper subset 

· c;,f Uy• 

:r;;Jow y f T(y) because UT(y) is a proper subset of Uy. The 

hypotheses. of. the theorem are now satisfied by y and T( y). .That is, 
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y and T(y) are distinct points of M such that UT( ) is a-proper y 
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subset of Vy• Therefore, the same reason.ing .as that used in the 

preceding three paragraphs can be applied to show that T(y).and T(T(y)) 

are distinct points, and that UT(T(y)) is a proper subset of UT(y)' 

The process thus far described can.be repeated a countably infinite 

· number of ,times to produce the sequence,· x0 , x1 , x2 , o • • , where 

x0 .= x, x1 = y, x2 = T(y), ••• , xn.= T0 (y), ••• , and for each 

positive integer n 1 Ux .is a proper subset of Ux Also, if i =f:. j 
n n=l 

then x1 =fo xj because if xi = X, then U =U 
J .xi 'x. 

J 

The continuum M is compact and so the sequence x o' xl, x2, . . 
has a limit _point xw in M. Let p be a· point of u' • ·x w 

There·. exists 

a continuum K in Mand a set V open in·M such that V is a subset p p p 

of Kp containing p and ~- is a subset of M = (xw}• Since K is closed p 

. and does not contain Xw· then there must be an inflnite number of 

p-oints of the sequence ·X0 , xl' x2 , ••.• that do not belong to KP. 

Hence, for infinitely many positive integers n, M = (xnJ contai.ns 

.KP. That is, for infinitely many integers n, Mis aposyndetic at 

. p with respect to xn• This .means that for infinitely many integ·ers 

. ' 

n, p belongs to Ux. Now U . is a subset of Ux for every n. Thus, 
· n · Xn n=l 

p belongs to all Ux • It follows that U .· is. a proper subset of 
n ~ 

every Ux. 
n 

It.·also follows that x .=f:. x for any n because if x = x 
· ·· W' n w n 

then U~.= Uxn·which would m.ean that Ux: is. also a subset of u . . n . X:p.+l 

But this·. is not possible because Ux . 
' n+l 

is a proper subset of. u 0 

Xn 



Since M. is homogeneous, there exists a homeomorphism r1 such 

tq.at T1(M) =Mand T1(x) = xw. 

Consider the map T1TT11• Certainly T1Tr11 is a homeomorphism 

of M onto itself. Let T1 T.T11(:ic.v) = xw1 Then, as argued in previous 

qases, T1TTi1Cux) = 
w 

T1 (u ). But Uy is a .y proper 

T1(Uy) is a proper subset of 

Notice also that T1TT11(ux) = 
w 

subset of Ux and T1(ux) = u x w 

u That is, ux is a proper x 
w wl 

Thus, 

subset 

of Ux .•. The argument used to show that the points of the sequence, 
w 

x 0 ~ :i\, ,x2 , •..•• , are distinct can be.applied to show that xw1 

does not equal .Xw nor any xn that precedes x • 
w 

It will now be shown that the process thus far described can 

be carried out in such a way that an uncountable sequence of sets, 

Ux , Ux , Ux , ••• , · is produced. It should be clear that the 'pro-
o 1 2 
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cess described produces seq~ences .that may be dependent on the partic-

ular homeomorphisms T and T1 that are selected. Since it is not 

necessarily true that T :is the only homeomorphism which maps M to M 

and x toy, then the sequence produced by the process may not be the 

only·sequence with the ascribed properties. It will be shown that 

some such sequence must be uncountable, 

Let S be the class ~hich contains every sequence of sets that 

can be produced by repeating the process, and suppose that each 

element of Sis.a countable sequence. Now if Sa is an arbitrary 

member of s then (1) s = u ua ' u . . 
(!). ' 

(2) Sa is countable, 
. a :a1 ' 2 a3' 

(3) ua ·- ux~ (4) Ua . = Uy, (5) u is a proper subset of every u 
1 . 2 :an ·,.ak 



that precedes it, and (6) Ua. is open for all n • 
. n 

Let Sa and Sb be elements of S. Define.the.relation(~) by 

S < Sb if and only if U , U a , U , 
. a - 'al . 2 a3 

O O O ' U .is an initial seg
at 

ment. of Sa implies that Ua = Ub· , U = Ub, U = Ub, •. o ., 

1 1 a2 2 a3 3 

·U = Ub. The notation chosen for initial segments is intended to 
at t 

indicate that they may be either finite for infinite. Indeed, the 

·process used to create Ux, Ux, Ux, • 
. 0 . 1 2 

• • s.hows that initial seg= 

ments may be infinite and still not include the whole sequence. 

Note also that Sa ::: Sb simply m~ans that S is an initial segment 
a 

of Sb. It follows that .if Sa::: Sb then, Sb::: Sa if and only if 

Sa= Sb, and that if Sa::: Sb and Sb 5 Sc then Sa::: Sc. Hence, the 

re lat.ion (::::_) produces a partial order on S. 

A sequence of elements.of S, say Sa , S , Sa, o o .• , is 
l a2 . 3 

called a chain if and only if Sa < Sa < S < •••• Let B.= 
1 - 2 a3 -

S , S8 , S8 , ••• be a chain in S. and consider the union of the 
al 2 · 3 

elements of this chainj B*. Now B* will be a sequence)) say 

· Uc , U , Uc , •.•• , such that every initial segment. of B* is .an 
1 c2 3 

initial segment of some element of B. Since B* is a countable union 

of countable sequences then B* is a countable sequence. Also, by 

the definition of the elements of B, (1) ua1 = uc 1 , (2) Ua 2 = Uc 2 ' 

(3)·U is a proper subset of every Uc that precedes it, and 
en k 

(4) Uc h open for every n. The fact that eveiry initial segment 
n 

of B* · is an. initial segment of some elememt of B shows that B* can 
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be produced by the process that producec;l the elements of S. Hence, 

B* belongs.to S. If S is an element of B, then:Sa ·is an initial 
·~ k 

• segment of every element of B that follows S and so S .is also an 
ak ak 

initial·segment of B*· That is, B* is an.upper bound of t;he chain 

.B. . Since B was an arbitrary chain in S then every chain of S has 

an upper boundo ·Therefore, by Zorn's Lenuna there exists an element 

Sb of S such that if Sp belongs to Sand Sb~ Sp, then Sb= Sp 

(17; 33, Theorem 25). 

Let :x0 , x1 , · xb , xb ,. • . • • . be the sequence of points • that 
2 . 3 

x1 =y. ·Now x0 ; x1, xb, • is a: sequence of distinct points 
2 

.of the compact continuum M. Therefore, there exists a limit point 

xb .of the sequence that belongs to M. The same argument used to 
w 

extend the sequence, x0 , xl' .x2 , ••. •, to include. its limit poi.nt 

xw can now be used to extend the sequence, x0 , xl' · xb , • • .• , to 
2 

include its limit point xb. The same argument shows that Ux is w . . b 

a proper subset of every element of Sb. 

•• ·~ Ux , then Sb, belongs to s. 
bw 

But Sb·~ Sb 1 and 

Sb f Sb I o This contradicts the definition of Sb. 

w 

Therefore, the assumption that every element of Sis countable 

is false. 

Let the. sequence, Ux 0 , ux1 , ux2 , • o o, . U~, • • . o, be some 

uncountable sequence in So Then this sequence is well=ordered, 
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uncountabl.e, monotonically decreasing, and- :each member of the se-· 

quence is_an. open.set. ~ach member of the sequence isa proper subset 

of all metµbers of the sequence that precede it,·· so· it is possible 

to select. the seque'nce Y of d,is.tinct points Y = Y1, Y2, y3 , • • • 

in such. away that Yw belongs- to.U"w but to no.member of these-· 

qt1ence that fo.11.ows UXw. Since M is compact, then every uncountable 

subset of Y has a limit: point. TherefQre, there exists a point.yv 

of Y whic.h is a limit point of the. set of all points of Y that pr~

cede Yv·in Yanda limit point of the set of all points of Y that 

follow 'Yv in Y, ( 24; 3, Theorem 6). But VXv is an open set cox:,.-

tdning Yv but .no point of Y t,hat precedes Yv in Y. This is a 

contradiction. 

·Therefore, Uy·is not a.proper subset.of Ux• 

A complete e~position of the proof of the following·· theorem 

would require the development of s~ve.ral concepts which. are not 

considered in this paper. An outline of the ·proof has _been provided. 

Theorem 4.6: A hemogeneous, heredi~arily unicoheren:t, bounded 

: plane continuum M is· indecomposable. 

· Indication of Proof: Assume M is. not. indecomposable. It is 

known that. a compact continuum Mis indecomposable if and only if 

there do not exist two distinct points x and y- of Msuch that Mis 

aposyndetic.at x with respect to.y (B; 407, Theorem 9). Therefore, 

-the assumpt:ion that Mis not.indecomposable is equivalent .to the 

. as.sump ti.cm that there exist· two points x and y of M such t~at M is 



aposyndetic .at y with respect to x. That is, for some point x of M 

the set Ux is non,,.emptyo As was noted .in the proof of Lemma 4.5, 

since U:x is.non=empty for some point.x of M, and since Mis homo= 

geneous, then Uz is rwn=empty for every point z of M. 

Let x be an arbitrary point of Mand let H be. a set such that 

y belongs to H if and only if Ux = Uy• Define U = U for all x in 
x 

H. As.in the proof of Lemma 4.5, it can be seen that U is open. 

Also, it is clear thatH is a subset of M = u. Lemma 4.5 can be 

used to establish. that the set His closed. 

It is.impossible for ev-ery point of a compact continuum to cut 

every point of a domain relative to the continuum from every point 

ofanother.domain relative to the continuum (6; 501, Corollary 2) • 

. If it. is assumed that some point x of H cuts a point w of M from a 

point z of U but that x does not cut w from some other point of U, 

then the homogeneity of M leads to a contradiction of the preceding 

statemenl:. Thus, .if x cuts a point w·of M from a point of U, then 

x cuts w 'fr.om all points. of u. It can be .shown that U is a subset 

of Uw .. Lemma 4.5 will then imply that U. = Uw and hence.that w .also 

belongs. to H. 

If o is a poi.nt of H, let N0 be the set of all points. x of H 

such that x cuts o from ,U o F'or every point o of H the set N0 is 

closed and o cuts all points of N0 from every point of Uo 

The set H does not .contain a domain with respect to M. For 

suppose H contains a domain p. Let. o be.any point of H anp. con= 

· sider the set N0 • Suppose Dis also a subset of N0 • If this were 

true, then since e.very point of N0 cuts every other point of N0 
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from each. point of U, it follows that_ any point x of D would cut 

.. every point of the domain D = (x} from each point of U. But tqe homo= 

·geneity of M would then.imply that every point of M would cut each 

,point of some .open subset of M from each.poir:it of some other open 

sub-set of M. As noted earlier in. this proof,· such a situation can= 

not occur in a compact continuum (6; 501, Cor.ollary 2). Henc~, D 

is.not a subset of N0 • Thus·D - D.n N0 .is non.;.empty. Since N0 is 

.closed, then D = D n N is a domain. Suppose Mis aposyndetic at 
0 

some point x of D = D,n N0 with:respect to some pointy of r0 • By 

definition of Uy, x belpngs to Uy. Since y belongs .to N0 which 

is a subset of H, the~ Uy= U. But x belongs to D which is a subset 

of Hand so Ux = U. Therefore U = U. 
x ·Y 

This is impossible because 

it would imply that x belongs to Ux. Hence, Mis aposyndetic at no 

point of D = D n N0 with respect to a point of N0 • The following 

conditions are now clearly satisfied: (1) Mis a compact continuum, 

(2) P ..;. D n N0 is an open subset of M, (3) N0 is a closed subset of 

M such that (D = D n N0 ) n N0 is empty. (4) M is r,i.ot aposyndetic 

at any point of D= D n N0 with respect to a point of N0 • Hence, 

if z belongs to U, D = D n N0 contains a point x and N0 con.tains a 

point y such that y cuts x from z ( 13; 405, Theorem 6). As pointed 

out at the end of the preceding paragraph, this means y cuts x from 

every point of U. Therefore, x belongs to N0 • This is clearly 

· impossible,. because x belongs ·to D = D. n N. • It follows that H 
0 

contains .. no domain. 

Since U is open in M, then M ;,,· U is closed. It can be shown 

thatM = U is connected_an4 hence.that M = U is a continuum. 
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Suppose the domain U is not dense ln M. Then M = U is not 

empty. The set M -·U is hot a subset of H because M ·O- is a domain 

with respect to Mand H.contains no domain·with respect to M. Thus, 

M - (tJ n H) is .non~empty. Sincell and Hare closed, then M = (fi·n H) 

is open with respec.t .to M. Let y be. a point of .H. By definition 

· of U, M is not aposyndeti.c. at· any point of· M = (U' n H) with respect 

to y. Let. z be. any point. of '!]. As in· the- p·receding paragraph, 

sufficient conditions have been satisfied to guarantee-the existence 

. of a· point. x . in M .;, (tJ n H) such that y cuts x from z in M. The 

argument in paragraph four of this proof shows that x belongs to 

-H •. Obviously, this·is a contradiction because.x belongs to 

M = (fi·n H). ThereforEl!, U is qense.inM. 

· The facts that M is. homogeneous and hered'itarily unicoherent, 

U is d·ense·. in M, and M = U is a continuum can. be utilized. to show 

that if o is an arbit:i;-ary point, of H, then N0 .= M - U. 

·Now: by definition of N0 , N0 is a subset of H. By definition of 

H, H ~s a subsee of M. u. • Since M U = ~0 , then N0 = H. 

It has now been shown that H is a continuum, anp that .the union 

of Hand U is M. Also, His the boundary of U and every-point of ll 

cuts every point of H from every.point.of u. 

If G is defined to be the collection of all images of H under 

homeomorphisms of M to itself, it can be shown that G is an upper 

semi-continuous collection of point sets (Definition 2.44) filling 
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·up M. · Wit.h respect .to its elements. as points, G .. can be shown to be 

.a continuum MV which is compact, aposyndetic, homogeneous, ancl hered-

itarily unicohere.nt. Unqer· these conditions Mi must contain a 
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· non.separating point (24; 38, -Theorem 93; 13; 404, Theorem ,O; an.d 29; 

· 737, Theotem .6.6)0 Since Mi is homogeneous, it follows that every 

point of Mi is a·nonseparating point. 
"; 

Let a and b be distinct poirtts of Mi and T be_an irreducible 

~4bcontinuum of M -from a to.b. Let x .be any point of T distinct 

from a and .1:>. Since xis a nonseparating point of Mi, there exists 

a continuum T1 in M = (x} tha~ contains both_ a and b. But M' is 

hereditarily unicoherent. So :the conunon part of T and Tl is a sub-

continllµm containing .a and b but. not .. x. This .contradicts that T 

was irreducible from a to b. 

This contradiction is sufficient to imply that the original 

assumption of the -existence of the sets. U and· H was invalid. 

Therefore, M must be indecomposable. 

Some _ad.ditional details that were :omitted from, the preceding 

proof can be found, in the pape_r, 11Homogeneous Unicoherent ln.decom= 

posable Continua, 11 by _F. _B. Jones, which is listed in the bibliog-= 

raphy -of this papero 

Theorem 4. 7: · If M 'is a homogeneous bounded plane continuum 

that does not separate the plane, Mis .hereditarily unicoherent. 

_Pr.oaf: Suppose M is not hereditarily-1.micoperent. Then there 

exist two. points x and y of M such that; there exist.at l~ast two 

distinct irreducible subcontinua c1 and c2 of M from x _to y ( 21; 

179, Theorem L 1). The common part of Cl and c2 is not connected 

becaµse if-the-common part·were connected .then it. would contain a 

subcontinuum from x toy. Since C1 and C2.are distinct, that 



subcontinuum would p.ave to be. a prc;iper subcontinuum of c 1 or c2 • 

But this is not possible because c 1 and c2 .are irreducible. Henc.e, 

there exist two complementary,domains Hand K.of c 1 U c2 (24;.175, 

Theo~em 22) o Theref.ore Cl U c2 separates the planeo Let S be the 

· plane and S - (c1 U c2). = H1 U K1 where ·Hi· and K1 are open sets with 

no points in commono 
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is: emlity. Fe>r suppose either H1 . - M or K1 = M is empty, say H1 • M. 

Then Hi is an open.set that is a: subset of M. But Theorem 4.3 implies 

that M · is not locally connected. ,Since· M is homogeneous then· M can= 

not,he-locally.connected at any point. Therefore, M cannot contain 

H1 • It follows from S. - M = (H1 - M) U (K1 - M) that M separates 

the plane. T.his is a contradiction. and so M must be heredita.rily 

unic9herent. 

Theor.em 4.8: -·.- Tf M· is .. a homoge:neous bound:ed J)lane continuum which 

9-oes not separate the plane then M is. indecomposable. 

Proof: The theorem is an immediate result of Theorems 4.6and 

4.7. 

·Homogeneous Linearly Chainable Continua 

· In the preceding section it was shown that all homogeneous 

bounded plane continua that do not separate the plane are indecom-

. posable. Theorem 4.9. in this section will show that all compact, 

hereditarilyindecomposable, linearly chainable continua arehomeo-

· morphic. The definition.of,a pseudo~arc given,~n:ctapter III together 



99 

with Theorem 3. 5 show· that a pseudo=.arc is a .nondegene:i;ate, · here di= 

tarUy indecomposable, linearly chairable, compact continuum. Theorem 

4.10 will prove that every homogene.ous, nondegenerate, linearly 

chai:nable, compact continuum is.a pseudo=.arc. Thus, the results of 

this section together with those of the preceding section, are suffi= 

cient to.prove that all.homogeneous bounded plane continua that do 

· nat separate the plane are homeomorphic and .are pseudo=arcs. 

Theorem4.9: If Ml and M2 are compact,· nondegenerate, herecii= 

tarily indecomposable, linearly chainable, continua, then M1 and M2 

are homeomorphic. 

Proof: Since M1 is linearlychainable, there exists a sequence 

of chain.s, c1 , c 2 , c3 , • • • , such that no link of Ci has diameter 

greater than 1/i, each element of Ci intersects M, and .the closure 

·of every ·link of Ci+l is contained in a link of Ci. 

It will be· shown that the fact that M1 is.heredita:dly inde-

comp.osable implies that for some integer n2 , cn2 is crooked in c1 • 

• • ' c ln • . 1 
Suppose 

no chain of the sequence, c1, c2, c3 , ••• , ·is,crooke(l in c1• 

Thep .there. exist links. clh and elk of c1 such that k=h > 2 and for 

infinitely many integers m, Cm= (cm1,.cm2 , ••• , cmt) has two 
n 

links.cmi and cmj in c 1h and elk respectively ~uch that if cmr is 

in cl(k=l) and between cmi and cmj, then there is not a link .of Cm 

in cl(n+l) which is between cmr and C , 0 

mJ 
'l'he precec;ling statement 

is. less confusing when it is noted that all the assertions.of the 

sentence are justified by the existence of infinitely many chains 



in the sequence, c1 , c2 , c3 , ••• , that are~ crooked. in·C1 •. It 

can be supposed that the link cmridentified above is.such that no 

.• link of Cm· ;Ls contained in cl(k..;l) ,and is between cmi and c:mr· Let 

Wm be the union.of cm:l.' cmr' and the links of Cm,between them. Let 

V be the union of ')ur, .c . , and the links of Cm between, them • 
. m · mJ 

A sequence, ,a1 , a2 , a3 , ••• ,.of integers can be selected 

in· such a way that the sequences, Wa , W , W , •••. and 
.. 1 • a2 . a3 

Val, ~az' V a3 , • •.• , converge ( 24; 24, Theorem 59). 

· Let W. be the limiting set of Wa , W , W . , • • • and' let V 
.· 1 a2 a3 

be the limiting set of Ya , V , V , •.••• · Both W and V are 
· 1 2 2 .a3 · 

contin~a (28;' 14, Theorem 9.1). Now W intersects the closure of c 1h 

but not the closure of elk and V intersects-the ~losure of elk but 

not the .closure of. clh" Thus Wand V.are distinc.t. But Wand V 

. are not. dhj.oint because f.or every m both W and V .contain the m m 

link cmr• 

A con:tradiction has .been-reached since.it is now possible to 

.conclude that the hereditarily indecamposable continuumM1 has a 

decomp.osable subcontinuum V U W. 

Therefore, there exists a subsequence, C , C , C , ••• , 
nl !12 · n3 

of c1 , c2 , c3 , • . • • . such that C 
ni+l 

is crooked in C • 
n . 
. 1 

'I'he con.tim.ium M1 q.as uncountably many distinct. composants (24; 

-59, Theorem 139). ··Therefore, there exist two distinct points p and 

q belonging to different composants of M1 o For every i, let Wi be 

t.he union of the links of the subchain of C from· p to· q. The .ni 

.argument.contained in the third paragraph of the proof of Theorem 
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3.8 shows that the limiting set of w1 , w2 , ••• ·is a continuum con= 

taining p and q. Since p and q belong to differentcomposants of M1 

and the limiting set of w1 , w2 , w3 , ••• is a subco!).tinuum of M1 

containing p and q, then that limiting set must be M1 • · It follows 
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that for every 

and last links 

integer 

of c ' ' nJ 

J, some Wk (k > j) intersects both the firsj: 

and hence the subchain Cnk intersect.s the first 

and last links of cnj• 

The hypotheses of .Theorem 2. 68 have now been satisfied. There= 

fore, the.re is a chain Ej such that the first link of Ej contains 

p, ,the last link contains q, E j is a consolidation. of. Cnj and each 

link of E j lies in the union of two adjacent links of Cnj. It is 

clear that the diameter of every link of Ej is less than 2/j. 

A .. short induction. argument that makes use of Theorems 2.65 

and 2.66 will show that for every j, Ej+l is crooked in ,Ej° 

Therefore, from the sequence, E1, Ez, E3 , ., •• , a sequence, 

D1 , D2 , D3 , ••• , can be sele~ted such that for every positive 

integer i, 0) Di is a chain from p to q, (2) DiH is crooked in 

D1, (3) the closure of each link of Di+l is a subset of a link of 

Di, (4) no link of Di has diameter greater than 1/i, .and (5) 

Let pi and qi be points of M2 belonging to different composants 

of M2 • The process employed. to create .the sequence Di, D2, D3 , • • • 

c.an be repeated· to create. a sequence Gr, G2 , G3 , ••• such t4at for 

every i, 0) G1 is a chain from pi to qi, (2) Gi+l is crooked in G1 , 

(3) the closure of each link of Gi+l. is a subset of a link of G1 ~ 



co * (4) no link of Gi has diameter greater than 1/i, and (5) M2 = n G1 • 
i=l 

The hypotheses of Theorem. 3.7 have beetl ~athfied. Therefore, 

there is a homeomorphism.mapping·M1 to M2 • 

An.endpoint of a continuum has been defined in general to be 

a point with· Menger order one with respect. to that c<.uttinu~m. In 

· the c;:ase of a· linearly chainable co.ntinuum M, a point p will be 

called an end p.oint of M if and only if for each positive number 

e there is an e=chain covering· M such that the first·. link contains 

p. In· this case the two definitions .. of end point are equivalent 

but that fact is unimportant in the discussion. that fallows, .since 

· no theorems that were. proved using the first definition will be used 

here. 

Theorem 4.10: Each ,homogen.eous, nondegenerate, linearly cha-in= 

·· able, bounded plane cont;lnuum ~s. a pseudo .. a;c. 

Proof: It will be shown that M has an end point P• Let 

· T 1 , · T 2 , · T3, • • • be a sequence of -1/n--chains covering .M. Let 

· q1 , q2 ,. q3 , • • • · be points of M such that. qn belongs to the first 

link of Tn·f.or every n. Since Mis compact, some subsequence of 

· ql' q2, q3, • .•• converges to a point. q. 

For each neighborhood N of q·and each positive number e there 

is an e=chain covering M one of whose end links intersects M and 

lies in N. Ca 11 this prop.erty, "-the p·roperty of q n. 

It will be shown that every point of M has the property of q. 
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Let x be an.arbitrary point of Mand let F be.a homeomorphism mapping 
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M to.Mand qto:x. ~ow Fis uniformly continuous·(lO; 13.5, Theorem 

8.16). l'hus, given an e > 0, there exists a 6 > 0 such :that if P1 

and. p·z belong t,oM.and the, distance be.tween,·pl and .. pz ··ts. less than 0 

then·the distancebetwee11 F(p1) and F(pz} is less than,e. Tliat is, 

for every n there is some point· qt. of .q1 , .qz, q3 , • • • such that 

F(qt): is within ,a (listance of 1/n of· F(q) = x. Now let 

E 1 , E z, E 3 , • • • , E. . be t.he U.nks of Tn. Consider th~ sets n n n · ·~ · 

F(Enl n-M), F(E.nz ffM), ••• , F(E~ n.M). It is clear-that 

(F(Eni n M)) n (F(Enj n M)) is empty or non.a.empty according as 

(Eni n M) n (Enj n M) is. empty or non ... empty. It is also clear· that 

F(Eni n M) is an open subset of M for every L · It fallows that for 

· e-ach · set F(Eni n M) there.exists. and open subset . of ;the plane Gni, 

such that Gni n M = F(Eni n.M) and Gni n qnj is empty or non=empty 

.according, as (F(Eni n· M)) n (F(Enj n-, M)) is empty or honempty. Thi.s 

.means that Gnl' Gn2 ' ••• , Gnm are links of a chain covering M. 

· Let the c~ain whose links are Gnl, Gnz, • • • , G~ be denotec;i by 

· Sn. · It follows from the uniform continuit;y of F that for every n, 

there,exists_an St whose links have diameter less than 1/n. Therefore, 

for ~achneighborhood N of F(q) and each positive.number e there is 

an e .... chain covering·M,, one of whose encl links intersects M. an.d lies 

in N. Thus; x has.the property of q. Since x was arbit];:'ary, every 

·p-ei.nt of M has the.property o:j: q. 

Let d1,be an end link of a l.a.chain:covering M.and letp1 be.a:ny 

p·oint of M belonging to. d1 • Since p1 has th~ property c;,f q, there 

is. an end .. :link d2 of a l/2=chain covering :M st1ch that d1 CQ~tains 

-dz. and dz contai,ns a point Pz of M. Sini.Uarly, ,ttiere is an end link 



of a 1/J""chain covering M. such. that d2 contains a3 , and d3 contains 

a pointp3 of M. This process may be continued to define the 

sequences, dp d2 , d3 , ••• , and pl' p2, p3 , •••• The inter-

oD = 
section of the sets d1 , dz, d3 , • • • is non-empty since n di is 

i=2 

c.D "'° -a subset of n d. and n di is non .. empty · ( 10; 69, Theorem 3 .30). 
i=l 1 i=2 

<>O 
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Let p belong to n d .• The pdint p belongs to M because pis a limit 
i=l l. 

• and Mis compact. Now for every e > 0 

there is some set in the sequence, d1 , d2 , d3 , ••• , whose diameter 

is less than€• Therefore, for every e > 0 there ·is an e-chain 

covering M whose first link contains p. That is, p is an encl. point 

of M. 

It can now.be shown that Mis hereditarily indecomposable. 

Assume that Mis not hereditarily indecomposable. This implies that 

M contains a conti.nuum H which is the union of two proper subcoritinua 

Hi and H' i. Certainly, the interse.ction of Hi and H' i is non-empty. 

Let p belong to both Hi and HI r. An argument similar to the one 

used to show that every point of M has.the property of q will show 

that every.point of Mis an.endpoint. Hence, pis an end point of 

M. But it is known that a necessary and sufficient conditions that 

.a point p be an end point of a linearly chainable continuum Mis 

that for every pair of subcontinua H' and Hi r containing p, either 

H' contains Hi i or Hi r contains Hr (5; 66, Theorem 13). This is 

impossible since both Hi and Hi i ·are proper subcontinua of their 

union. Therefore, Mis hereditarily;i.ndecomposable. 
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Since by,hypothesis M was .nondegenerate and lin~arly chainable, 

and all npndegenerate, hereqitarily indecomposable, linearly chain= 

able continua are homeomprphic (Theorem 4.9) then M.must be.a pseudo= - . 

arc (Definition 3.3. and Theorem 3.5). 

Homogeneous Continua That .Separate the Plane 

l'he theorem presentec;l in, this sect;i.on will complete the list of 

theorems necessary to justify the· classificat;ion system .presented 

in the introduction to this cl:iapter. The the.orem will. not be proved 

for.the reasot1s cited in the introduction. 

Theorem 4.11: Every homogeneous bounded plane cpntinuum that 

separates. the plane and is decomposable, but is not a .simple closed 

curve, h a circle of pseudo~.arcs (14; 732, Theorem -2, and 7; 181, 

Theorem 10). 

The above .theorem is proved by ,showing that evefy homogeneous 

. bounded plane continuum that separates the plane and -is dec,omposable, 

but is not a simple closed curve, can. be dec.ompesed .into an upper·. 

semi=continuous collection of pseudo .. arcs that fill up the continuum 

(14; 732, Theorem 2). This. result would· be sufficient to justify 

the name "circle of pseudo=arcs 11 • However, as in the·case of the 

pseudo'."'.arc., it is. also shown that any·two such continua are homeo= 

morphic (7; 181, Theorem 10). Thus, the example presented in Chapter 

III is representative of all members of the class. 



CHAPTER V 

. SUMMARY 

The historical development of the examples.and theorems on.homo .. 

geneous bounded plane continua is given in Chapter I of this paper. 

This chapterwill provide a review of the development of those.same 

examples and theorems as they are foundwithin this paper. 

Chapter II delineates the topological concepts necessary for·the 

later presentation of specific examples and major theorems. In partic

ular; a detailed presentation of the properties of crooked ch,ains 

is given in Chapter II. 

In Chapter III, the three clistinct examples of homogeneous bounded 

plane continua, which have been discovered to this date, are given. 

The simple closed curve and the pseudo-arc are shown to be homo

geneous. The circle of pseudo-arcs is described in enough detail 

that its homogeneity shollld at least seem probable. A fourth example, 

distinct from the .first three, but which has neither been shown to 

be homogeneous nor non-homogeneous, is also presented in Chapter III. 

A clas1sif:i,.cation system, which places all chainable homogeneous 

bounded plane continua in four distinct classes, is given in Chapter 

IV. All such corttinua are classified according to whether they are 

(1) pseudo-arcs, ( 2) simple closed curves, (3) circles of pseudo

arcs, or (4) indecomposable continua that separate the plane, 
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Theorems that show that the classification system has the asserted 

properties are given in the remainder of the chapter. 
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