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CHAPTER 1
THE HISTORY OF THE PROBLEM
Introduction

This chapter will present a chronological account of the deve-
lopment of the properties and examples of homogeneous bounded plane
continua.

In order‘not to destroy‘the cdntinuity of the story, no effort
will be made to define topological concepts or»terminology>within this
chapter. The topological terms which are less well known afe defined
in Chapter II, Other terms can be found in the references listed
in the introduction to the second chapter.

It is necessary at this point to éxplain‘tﬁe referencing style
used in this paper. When only one number appears in the parentheses
following some item, i.e., (3), then that number refers to the
number thaﬁ has been assigned to the source being citéd in the biblio-
graphy of this paper. When a sequence of three entries in paren-
theses follow some item, i.e., (3, 48, Theorem 16), then the first
number gives the number of the source as given in the bibliography
of this paper, the second number gives the page number within that
source, and the third entry identifies the specific itém that is

being utilized.



The formal presentation of examples of homogeneous bounded plane
continua and the proofs of the theorems giving their basic properties
will constitute Chapters IIT and IV of this paper. Hence, no attempt
will be made at this time to verify how the results given in this |
chapter are achieved,

As stated above, the results presented in this chapter are given
approximately in the chronological order of their discovery. When
those same results are presented again in later chapters, they will

be given in the order that most efficiently facilitates their proof.
Fact and Fantasy Before 1948

The story of homogeneous bounded plane continua began in 1920
when a topological definition for the word "homogeneous! was first
given by Waclaw Sierpinski (26). The definition, as given by
Sierpinski, stated simply that a set M is homogeneous if and only
if for every pair of points x and y belonging to M, there exists a
homeomorphism mapping M to M and x to y. Examples of such sets
are easy to construct (for instance, any line in the plane is homo-
geneous)., However, when certain other restrictions are required of
the set, examples become less numerous,

The simple closed curée is an example of a homogeneous pounded
plane continuum (see Theorem 3.2). In 1920, B, Knaster and C.
Kuratowski (19) stated a problem on homogeneous continua which took
twenty-six years to resolve, The problem which they presented can
be stated as follows: Is every nondegenereate homogeneous bounded

plane continuum a simple closed curve?



Even though he could not verify his suspicions, in 1922 Knaster
(18) himself gave a description of a hereditarily indecomposable con-
tinuum which he suspected of being homogeneous. This continuum was
indeed homogeneous, but this fact was not proved until 1951 (3).

In a brilliant paper in 1924, Stefan Mazurkiewicz (20) proved
a result which gave support to the idea that simple closed curves
are the only homogeneous bounded plane continua. Mazurkiewicz proved
that the only locally connected nondegenerate homogeneous bounded
plane continuum is the simple closed curve,

Mazurkiewicz's paper was the last published on the problem until
1937, 1In that year, Zenon Waraszkiewicz (27) announced that he had
proved that the only homogeneous bounded plane continuum is the
simple closed curve, However, the following statement can be found
in Waraszkiewicz's paper:

It [the proof] is composed of two parts, of which the first,

profiting only from the local homogeneity, permits the res-

triction of the class of continua under consideration to the

one of f{rreducible sections of the plane such that every sub-

continua is a simple arc or a proper imndecomposable continuum.

Now that second hypothesis is impossible since each auto-

moxphic transformation of a curve of which every part is

indecomposable, reduces to the identity, so that one cen cone
sider only the irreducible plane curves, each part of which

is a simple arc.
Of course, it is not immediately evident that it is incorrect to assume
that "o . . each automorphic transformation of a curve of which every
part is indecomposable, reduces to the identity, . » .'. However,
as will later be proved (Theorems 3.5 and 3.8), such is the case.

In 1944, Gustav Choquet (8) stated the following theorem without

proof: '"Any compact homogeneous plane set is either (1) finite, or

(2) perfect and totally disconnected, or (3) homeomorpkic to a union



of concentric circles of positive radius which cutszs any diameter in a
set of type (L) or (2)." This result is also false and was probably
based on Waraszkiewicz's earlier paper.

Hence, by 1945 the principle results that had appesred in print
seemed to leave mno doubt that the only nondegenerate homogeneous

bounded plane continua were the simple closed curves,
The First Example

In 1948, Edwin E. Moise (22) published an example of a continuum
which he proved to be indecomposable and homeomorphic to each of its
nondegenerate subcontinua., The methods used by Moise to describe
his continuum suggested immediately to R. H. Bing that Moise's
continuum might be homogeneous, Later in the same year, Bing (1)
presented a proof that the pseudo-arc (as Moise had called his coun.
tinuum) was indeed homogereous. Shortly thereafter, Moise (23) also
published a proof of the homogeneity of the pseudo-arc,

It iz interesting to note that Moise suggested in his original
paper on the pseudo-arc that it might be homeomorphic to the cone
tinuum described by Knaster (18) in 1922, R. H. Bing (3) established
in 1951 that any pair of linearly chainable compact nondegenerate
hereditarily indecomposable plane continua are homeomorphic. That
result is sufficient to show that the continuum deScribed by Knaster
was a pseudo-arc,

Im 1949 and 19531, two papers sppasred which would have added
support to the notion that a simple closed curve is the only homoe

geneous bounded continvum, if Moise and Bing had not already published



their results, In the first of these papers,‘Fe B. Jones (11)

showed that every compact plane continuum, that is both homogeneous
and aposyndetic, is a2 simple closed curve, The second paper, by

H. J. Cohen (9), used the result of the first paper to prove that the
only homogeneous bounded plane continuum that contains a simple closed
curve is a simple closed curve., Another theorem in Cohen's paper

extended the theorem which had earlier been proved by Mazurkiewicz

(20), This new theorem stated that the only locally connected,
locally homogeneous, bounded plane continuum iz the simple closed
curve. |

Since several papers had been published indicating that any one
of several additiomal restrictions can force a homogeneous bounded
plane continuum to be a simple closed curve, it may not be surprising
that two.papers by lLssac Kapuano (15 and 16), which challenged the
homogeneity of the pseudo-arc, were published in 1953. Kapuano's
proofs (as they appeared in print) were only vague outlines, However,
his error seemed to lie in some sort of assumption that the points

of the pseudo-arc had a kind of natural linear order,
A More General Problem

Once Bing had published his proof of the existence of a homo-
geneous bounded plane continuum, other than the simple closed curve,
a more general problem immediately arose. The newer problem asked
the question: How many distinct examples of homogeneous bounded plane

continua exist, and how can they be classified?



One of the most important results relating to the new problem
appeared in 1951, In that year, F. B. Jones (12) proved that a
homogeneous bounded plane continuum that does not separate the plane
is indecomposable., Since the pseudo-arc does not separate the plane
and is indecomposable, and since Bing had shown that all linearly
chainable, compact, nondegenerate, hereditarily indecomposable plane
continua are homeomorphic, it appeared that all bounded homogeneous
continua, not separating the plane, might be pseudo-arcs. By adding
the restriction that the continua under consideration be linearly
chainable, Bing (4) was able to establish that all homogeneous bounded
plane continua, that do not separate the plame and are not degenerate,
are hereditarily indecomposable. Hence, it was established that the
only homogeneous, linearly chainable, bounded plane continuum is
the pseudo-arc.

In 1954, R. H, Bing and F. B. Jones announced simultaneously,
but separately, that each had discovered a (circulariy) chadnable
homogeneous bouﬁded plane continuum that was neither.a simple closed
curve nor a pseudo-arc, It was discovered that the two examples
were essentially the same, and hence, the result was published jointyy
in 1959 (7). This example was called a "circle of pseudo-arcs',

It was shown to separate the plane and to be the union of am upper
semi-continuous collection of pseudo-arcs,

Between the announcement of the discbvery of the circle of pseudo-
arcs and the actual publication of its description, F. B. Jones (14)
published a proof that every decomposable, homogeneous bounded plane

continuum that separates the plane, but which is not a simple closed



curve, is a union of an upper semi-continuous collection of pseudo-
arcs. ILn their joint paper, Bing and Jones established that all
homogeneous bounded plane continua, that separate the plane and
are a union of an upper semi-continuous collection of pseudo-arcs,
are homeomorphic.

Thus, the following is an exhaustive classification system for
chainable homegeneous bounded plane continua:

Type 1: Pseudo-arcs;

Type 2: Simple closed curves;

Type 3: Circle of pseudo-arcs;

Type 4: JIndecomposable continua that separate the plane.

It is not yet known whether continua of Type 4, which are homo-
geneous, actually exist. At least one example which may belong to
that class has been defined (3; 48, Example 2), That continuum is
shown to be an indecomposable continuum that seﬁarates the plane,
but no proof of its homogeneity has been published,

The last significant paper to be published on homogeneous bounded
plane continua appeared im 1960, and was another paper showing that
added restrictions almost always cause such continua to be simple
closed curves. In that paper, R. H. Bing (2) proved that the only
homogeneous. bounded plane continuum which contains an arc is the

simple closed curve.



CHAPTER I1
FUNDAMENTAL TOPOLOGICAL CONCEPIS
Introduction

In this chapter, the basic topological concepts necessary to
read this paper are presented. It will be generally assumed that the
reader is familiar with the basic definitions and theorems that occur

in a first course in elementary point set topology. In particular,

any topological term appearing in Elementary Topology by D. W, Hall
and G. L. Spencer (10) is not defined in this chapter.

In order to preserve space, many theorems that can be fbund in .
the literature which are used to prove the theoréms in fhis paper
have noﬁ been stated. In each such case, a reference which includes
the proof of the theorem is given. Of course, the‘hypotheses of all
theorems utilized in this paper have been carefully checked to'assure
the applicability of the conclusions. The majority of the theorems
that are used, but not explicitly stated, may be found in one of the

three books, Elementary Topology by D. W. Hall and G. L. Spencer (10),

Foundations of Point Set Theory by R. L. Moore (24), or Analytic

Topology by G. F. Whyburn (28).
Certain of the definitions in this chapter are of such a nature

that examples are necessary to clarify their statement. 1In such a



case, either an example will be given following the definition, or a
reference will be given where an appropriate example can be found.

A clear understanding of the definitions and theorems associated
with the concept of '"crooked chains" is necessary for reading many
of the proofs of this paper. Hence, nearly all such definitions are
illustrated by example and all such theorems are followed by reason-

ably complete proofs.,
The Topological Setting

The basic topological space assumed in all theorems and examples
of this paper is the ordinary Carfesian plane with the usual metric
topology. Care has been taken to assure that all results from other
sources, that are used in this paper, are valid in this topological
setting. Examples are presented in such é manner that their existence
in the plane 1is clear,

Some confusion could arise by the frequent use of the term
"domain!" throughout tpis paper since '"open set! 1is more commonly
used in discussion of the Cartesian plane., The following definition

should clarify the relationship between the two terms,

Definition 2.1: Let S be a topological space and D be a subset

of Sc Then D is a domain if and only if D is an open set of 'S. IE
a set D i@ open relative to a set M in S, then D is said to be a

domain relative to M or just a domain in M,
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The Concept of Homogeneity

The fundamental topological property of point sets that is.
studied in particular in this paper is the property of being homo-

geneous.,

Definition 2.2:. A point set M is said to be homogeneous if and
only if for every pair of points x and y of M there exists a homeo-

morphism mapping M to M and x to y.

Example 2,3: Any simple closed curve is a homogeneous point set

(see Theorem 3.2).

A somewhat weaker property than homogeneity is the property of
being locally homogeneous. In some theorems of this paper the
hypotheses only require that the set under consideration be locally

homogeneous.

Definition 2.4: The set M is locally homogeneous if, for each

pair of its poeints x and y of M there exists a homeomorphism between
two domains in M, one containing x, the other containing y, such

that x is mapped to Yy,

0f course, any homogeneous set is locally homogeneous., The
converse of this statement 1s not necessarily true., The following

example illustrates that fact.

Example 2.3: Let H be the open arc in the Cartesian plane given
by [(x,y): 2<x<3, y=0}. Let K be the unit circle, If M is the

union of H and K then M is locally homoge?eous but not homogeneous.



Certain Types of Connected Sets

The only class of point sets that will be studied in this paper
relative to the concept of homogeneity is the class containing those
sets that are both closed and connected. A special name is given
to the members of this class and certain members of the class are
further classified by additional properties. The following sequence
of definitions is concerned with the naming of special classes of

connected sets.,

4

Definition 2.6: A closed and connected set is called a con-
B

tinuum.

Definition 2,7: A connected subset C of a set M is called a

component of M if and only if C is not properly contained in any

connected subset of M.

Notation: An arc with end points x and y will usually be

denoted by xy. Occasionally, an arc xy will be denoted by xzy to

emphasize that xy passes through the point z, where z # x and z # y.

On other occasions, the notations (xy) and (xzy) are useful to indi-
cate the open arc xy; that 1s, the arc xy except for its end points;
When (xy) and (xzy) are used in a discussion, [xy] and [xzy] may

also be used to give added emphasis to the fact that the end points

are to be included.

Definition 2.8: An arc component of a set M is a subset C

of M such that each pair of points of C belongs to an arc in M

but C is not properly contained in any subset of M with that same
. . A

11



property,

Example 2.9: Let H = {(x,y): x=0, -I<y<l} and let
K = {(x,y): y=sin 1/x, O<x<l}. Let M be the continuum H | K, Then

each of the sets H and K is an arc component of M.

Definition 2,10: If p and q are two points of the same arc

component of the set M then the unlon of all arcs in M that have p

as an end point and contain q is called a ray starting at p.

Example 2,11l: Let K be the arc component of M in Example 2.9

v

and p be any point of K. If q is a point of K whose x coordinate is

less than the x coordingfe of p, then the ray starting at p and con-
taining q is the set of points belonging to K with X coordinate

less than the x coordinate of p. Similarly, if the x coordinate of
q 1s greater than the x coordinate of p, then the ray starting at

p and containing q is the set of points belonging to K with x coordi-

nate greater then the x coordinate of p,

Definition 2.12: 1I1If M is a continuum, a composant of M is a
4 ;

point set K such that, for some point p of M, the point x belongs
\\) P .

to K 1f and only if there is a proper subcontinuum of M contailning

both p and x.

Definition 2.13: A set of points M is said to be cyclicly

connected provided every pailr of points of M lie together on some

\

simple closed curve in M.

12
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Example 2,14: Let H be the set of points in the Cartesian plane

and on the circles centered at the origin and having radii one and
two respectively. Let K = {(x,y): -2«<x<2, y=0}, If M is the union
of H and K then M is cyclicly connected, Obviously, any simple closed

curve is also cyclicly connected.

Definition 2.15: The point set M is said to be connected im

kleinen at the point p if and only if p belongs to M and, foer every
domain D relative to M that contains p there exists a domain relative

to M which contains p and is a subset of a component of D.

Example 2.16: Let M be the continuum of Example 2.9, Then
[
each of the sets H and K is connected and connected im kleinen, but

M is not connected im kleinen at any point of H.

Definition 2,17: A continuum which is locally connected and

which contains no simple closed curve 1s called a dendrite.

Examples of dendrites are easy to construct., Of course, an arc

is one such example,

- Definition 2.18: A continuum M is said to be 9nicpherant if and

only Lif for every pair of continua H and K such that M is the union
, A .

of H and K, the intersection of H and K is a continuum. A contiauum

is said to be hereditarily unicoherent if every subcomtinuum is

unicoherent,

The pseudo-arc presented in Chapter III is shown in Chapter IV

(Theorem 4.,7) to be hereditarily unicoherent.
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Definition 2,19: The continuum M is aposyndetic at the point z
) —_— !

of M with respect to the point x of M provided that M coqtains a con-
tinuum K and a set V which is open relative to M, such that M - {x}

contains K, V contains z, and V is a subset of K.

Example 2,20: Let M be the continuum of Example 2.9. Then M
{ T

<

is not apasyndetic at any point of H with respect to any other point
\

of H. However, M is aposyndetic at any point of K with respect to

3

any other point of M.
{

Definition 2.21: The continuum M is said to be indecomposable

if and only if it is not the union of twe subcontinua distinct from
M. 1If every subcontinuum of M is indecompesable then M is said to

be hereditarily indecomposable.

Examples of indecomposable continua are not easy to describe.

Several such examples can be found in "Concerning Hereditarily

Indecomposable Continua,” by R. H. Bing (3).

s
;

Definition 2.22: A continuum is decomposable if and only if it

is not indecomposable.

Definition 2.23: If H and K are disjoint closed point sets,

the continuum M is said to.be an irreducible continuum from H to K

if M intersects both H and K but no proper subcontinuum of M inter.

sects both H and K.

O

Definition 2.24: Suppose a ko’ albl’ s o s 1ls a sequence of

arcs converging to an arc xy. The sequence is called a folded sequence
/
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of arcs converging to xy if ags bo’ ajs bl, + « o, converges to X.

24
Example 2.25: Let the coordinates of the point a, be ((1/2) 1,0),

i=0,1, 2, . + .3 let the coordinates of the poinﬁ bi be
((1/2)%*10), 1 =0, 1, 2, . . .; and let the coordinates of the
point c; be ((l/2)%i+l,1), i= 0;‘1, 2,_.#{‘.. Let a;b;, 1 = 0, 1,
2, . + ., denote the arc formed by the union of two line segments
joining a; to c; and b; to c;, respectively., Let xy be the line

segment joining x = (0,0) to y = (0,1). Then azb,, ajby, « . . is a

folded sequence of arcs converging to xy.

Definition 2,26: A simple triod is the union of three arcs

such that the intersection of any two of them is the same point p.

Definition 2.27: If S is the Cartesian plane and M is a closed

proper subset of S, then every compoenent of S . - M is called a comple-

‘mentary domain. of M.

Definition 2.28: The set T is said to separate the connected

point set M if and only if M - T is the union of twoe separated point

sets.
Properties of Sets Associated with Special Points

Certain properties possessed by points, by virtue of their being
members of homogeﬁeous»sets, are preserved under homeomorphisms of
the sef to itself, Consequently, one method of determining whether
a set 1is hOmogenéous is to examine particular points under a homeo-

morphism of the set to itself. Thus, it is convenient to have special
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names for points having properties that are sometimes-preserved under

a homeomorphism,

Definition 2.29: A point p ,is called a boundary point of a point

ot

set'M 1f and only if every open set containing p contains a point of
M and a point not belonging to M. The union.of all.boundary points

of a set is called the boundary of the set.

The next point property that will be identified is one that is
always preserved by a homeomorphism of a continuum to itself, That
fact will be proved after an example is given illustrating the.

definition.

Definitien 2.30: 1If k is a positive integer, the point p of the

continuum M is said to be of Menger order k with respect to M if and

only if it is true that (1) every domain with respect to M that con-
tains p contains a domain with respect to M which contains p and whose
boundary with respect to M contains only k points, (2) if n is a
positive integer less than k, there exists a domain D with respect

to M, containing p, such that if U is any domain with respect to M
which contains p and which is a subset of D, then the boﬁndary of U

with respect to M contains more than n points,

Example 2,31: Let M be the continuum of Example 2,14,, Then

the points having coordinates (-2,0) and (2,0) have Menger order
three; the points having coordinates (-1,0) and (1,0) have Menger order

four; and all other points of M have Menger order two.
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Theorem 2.32: Let M be a continuum and Py and pp be distinct

points of M, Suppose there exists two open sets of M, say E and F,

such that Py and p, belong to E and F respectively, and a homeomérphism

1

from E to F that maps Py to p,- Then Py and Py have the same Menger

)

order.,

1 and the Menger: order

of p, is k, # ky. Without loss of generality, let k; > k. Then

there exists an open set Dy of M such that D1 is a subset of E and

Proof: Suppose the Menger order of Py is k

whose boundary with respect to M contains more than k2 points. Let

D2 be the subset of F that is the image of D; under the homeomorphism.
Y .

) g 4

Then D, is open in M and the boundary of D2 with respect to M contains
s
at most k2 points. Therefore, there exists some point Py of the

boundary of Dy with respect to M which maps to some point Py of D2

that is not on the boundary of D, with respect to M. Let D4 be an

'

open set of M such that p, is in D, and D4 is a subset of DZ. 1f D3
4 . .
is the inverse image of D4, then D3 is an open subset of D2 and contains
py. But this is impossible because po is a boundary point of D2 with
f

respect to M and hence no open subset of D, contains P3-

2

.Definition 2.33: A point.p is called an-end point of a continuum

M if p has Menger order one with respect to M.

- Definition 2.34: The point p is called a cut point of the con-

nected point seét M if and only if M - {p} is not connected.

b

Definition 2.35: A point p will be called a separating point of

a set M provided there exist two points a and b of some component C
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of M such that M - {p} = M UM, where Ma and M, are mutually separ-

ated and contain a and b respectively.

Definition 2.36: A point p of a continuum M will be called a

local .separating point of M provided -that there exists a compact

neighborhood R of p such that if C is the component of the inter-

section of M with the closure of R that contains p, then
MA (R.-'fp}) = M; U M, where M; and M, are mutually separated sets

and neither My n C nor M, n C is empty.

Example 2.37: Let M be the continuum of Example 2.14. Then

every point of M is a local separating point, but no peint is either
a cut point or a separating point. In connected sets cut points and

separating points are equivalent concepts.

Definition 2.38: A point x cuts a point w from a point z in a

' continuum M if ‘and only if there exists no subcontinuum of M lying

in M - {x} that contains both w and z.

Example 2.39: It should be clear that if a continuum M is

cycliély connected (as in Example'2,l4) then no point x cuts a point
w from a point z in M, But, let M be the continuum of Example 2.9,
then any point of H other than (0,1) or (0,-1) cuts (0,1) from (0,-1)

in M,

Definition 2,40: The peint p is said to be accessible from the

point set M if and only if for every point x of M there exists an

arc Xp lying, except for p, wholly in M.



19

Example 2.41: Let M-be any open set in the plane. Then every
g \

4

point of M is accessible from M.

\

Sequences
A

Several of the continua used as examples in this paper occur
as limit sets of sequences. Most of the terminology associated with
sequences and generalized sequences (well-ordered sets) that is used

in this paper 1s standard. However, two terms, not so commonly used,

are defined here so that their meaning will be clear.

. Definition 2.,42: 1If, for each positive integer n, M, is a point

set, then the limiting set of the sequence Ml’ My, M3, e o o is a

point set M such that p belongs to M if and only if for every open
AT
set R containing p there exist infinitely many integers n such that
M,, contains a point of R, If L is the limiting set of every subsequence

of My, M2, Mg, « » -, then My, MZ’ M3, » « «, is said to converge to L,

Definition 2.43: Let o be any sequence (finite, countable or

uncountable), The subsequence B of the sequence @ is said to be an
\ . ) :

initial segment of @ if and only if every term of ¢ that precedes

any term of B belongs to Bo

Upper Semi-Centinuous and Continuous Collections

\

The proofs of several theorems in this paper are completed by
showing that certain sets can be decomposed into disjoint.collections
i ’ .

of subsets which can then be considered to be a topological space with

the subsets as points. The terminology introduced in this section will
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provide the foundation for such considerations.

Definition 2.44: A collection G of mutually exclusive closed

point sets is said to be upper semi-continuous if and only if it is
i

true that if g is a point set of the collection G, and gy, g3, 845
o o o 15 a sequence of point sets from G, and for every n, X and Y,
are points in g, such tha% X1 X9 x3, o s o, coOnverges to a point

: / / . .

in g, then every infinite subsequence of yy, Yos Ygs o o has a

subsequence converging to a peoint that lies in g.

Definition 2.45: A collection G of subsets of a metric space M

is said to give.an upper semi-continuous decomposition of M if and

only if (1) the sets of G are compact, (2) G fills up M (every point

of M belongs to a set of G), and (3) G is upper semi-continuous.

Example 2.46: Let M be the subspace of the Cartesian plane whose

points are the points of A J B where A = {(x,y): 0<x<l, 0<y<l} and
B = {(x,y): 1<x<2, 0<y<2}. For each x  such that 0<x,<2 define
| H
gxo = [(xo,y): (xosY) is an element of M}, Ff G = {gx}, OsxSZ,Athen
G is an upper semi-continuous collection of sets that gives an upper
' N :

semi-continuous decomposition. of M.

Definition 2.47: A collection.G of closed point sets is said

to be continuous if and only if it is true that if g is a point set
(

of the collection G and gy, Bys 835 o ¢ o is a sequence of point sets
\ L

of this collection and, for every n, x, and y, are points of g,, and
i

the sequence X)s Xgy Xgp o o o converges to a point in g, then every

infinite subsequence of Y1» Vg5 Y35 o o o has a subsequence converging
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to a point that lies in g and, furthermore, gy, 895 835 o + o COD-

verges to g.

Definition 2.48: A collection G of subsets of a metric space M

is sald to give a continuous decomposition of M if and only if

(1) the sets of G are compact, (2) G fills up M, (3) G is continuous.

Example 2.49: Let M be the subspace of the Cartesian plane

whose points are the po;nts of A wheré A= {(x,y): 05%513 Qsjsl}. For
each x such that 0<x<l, define g = {(x,y): QSYSI}‘: Then if G = {g.},
0<x<1, G is a continuous collection that gives a continuous decomposi-
tion of M.
ﬂ
Crookedehains

4

The definitions and theorems contained in tEiSvsection are the
least well known of any in the chapter, However, they are probably
the most importaﬁt since they are ideas from which the pseudo-arc
and the circle of pseudonafcs are developed.

ng principle definitions will bé given first, alpng~with illuiu

trative examples. A sequence of theorems that give the important

properties of crooked chains will then be proved.

Definition 2.50: A collection of domains D = (dl’ d2’ . o e dn)

is called a linear chain if and only if d; N dj # @ if and only if

]i - j[ < 1,1i1=1,2, ..., n If p and q are points belonging
; :

only to d, and dn respectively then D is called a linear chain from p

1
to g, If D=(dy, dy, » o -, d,) is a linear chain then dl‘and d
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are called end links; all other links are called interior links. The

link d; is called the iagh link, If d; ﬂ'dj # @ then di and dj are

called adjacent links,

Definition 2.51: A 1$near chain such that no link has diameter

greater than the positive number ¢ is called an e-chain.

5

Definition 2.52: A continuum M such that for every positive
Y

number ¢ there is an e-chain covering M is called linearly chainable

or e-chainable.
{

Example 2.33: An arc is linearly chainable but a simple triod

i

is not.

Definition 2.54: A collection of domains D = (dl, d2, o & ey dn)
o

(n > 2) is called a circular chain if and only if d; N dj # @ if and

only if li = jl <l,i=1,2,3, ..., n, except'that di n dn * B,

Definition 2.55: A continuum M is said to be circularly chaingble

if for every positive number € there is a circular chain covering M

\ i

such that no link has diameter greater then ¢.
\\

Example 2.56: A simple closed curve is circularly chainable

whereas an arc is not.

Definition 2.57: If D and E are either both linear chains or
, {

both circular chains then D contains E if and only if every limk of.
=oneanle : \

E is a subset of some link of D.

Example 2.58: 1In Figure 1, the chain D contains the chain E.
\ /
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A Chain Crooked in a Chain

with Four Links.

Figure 1,
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Definition 2.59: The word chain refers to either a linear or

circular chain. When the word chain is used alone, it will generally

be clear from the context whether reference is being made to a
circular or to a linear chain. If it is not clear, then it may be

assumed that the statement is applicable to either type of chain.

Definition. 2.60: If E and D are chains (linear or circular)

Ll

then E is a subchain of D if and only if each link of E is a link of
D.. If E is a linear chain then E will be denoted by D(i i) if the
2

i-th and j-th links of D are the end 1ipks of E,

i

The following definition is the key idea in the description of
the pseudo-arc., Special attention should be given to parts (b) and
(c) of the definition. One is tempted to read the subscript on d in

part (c) as a k instead of an h. It is the arrangement of these

t
o

subscripts which essentially achieves the desired "crookedness" of

the chains.

,

Definition 2.61l: The linear chain E = (el, €y o o 4y e,) is
. g .
- crooked in the linear chain.D = (dy, dy, » + ., dy) if and only if:

(1) D contains E.

/

(2) For every subchain E< of E such that ey n‘dh +0,

i,3)
e n dx # @, where ]h - k‘ > 2, the following conditions
hold:

(a) E(i,j) is the union of three chains E(i’r)g E(rQS)’ and

E such that (s-r)(j-i) > 0,

(s,3) _
(b) e, is a subset of a limk of D(h k) @djacent to dy, and
k) &jacent

(e) eg is a subset of a link D(hgk) adjacent to dy.
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Examples will be given illustrating Definition 2,61 after additional
4

notation is introduced in Definition 2.62.

Definition 2.62: Let (xl,yl), (xz,yz), e e, (xn,yn) be a

collection of ordered pairs of integers. Then the chain E follows
the pattern (xl’yl)"(XZ’yz)’ . . .;J(xn,yn)'in the chain D if and
only if the xiath link of E is a subset of the ys-th link of D,

i=l, 2, * . L ] n.

Example 2.63: This example is given to illustrate the pattern

which must exist if a linear chain D has a specified number of links,
the linear chain E is crooked in D, the first link of E is a subset
of the first link of D, and the last link of E is a subset of the
last link of D,

Case 1: The chain D has exactly four links, Definition 2.61
implies that thére-must exist links numbereg 1, %1, Xy and Xg such\
that l<x;<x,<xg and such that E follows thé pattern (1,1), (xy,3),
(xz,Z), (x3,4) in the chain D. In this case the only possible links
of dy and dy of D where [h - kl > 2 occur when h=l, k=4, or h=4,
k=1. One subchain E(i,j) of E such that e, n 4 # ¢'and e n 4, #+ ¢'

is the subchain E if qpe.lets r =X, and s = X4 then it can

R4

(l,x3>'/
. be seen that Definitien 2.61 is satisfied. Figure 1 illustrates
case 19.

Case 2: The chain D has exactly five links. Definition 2,61

implies that there must exist links numbered 1, Xis ¥gy Xy, X 5 X

4° 75°

xg, and xy of E such that l<x1<x2<x3<x4<x3<x§<x7 and such that E



26

follows the pattern (1,1), (x,3), (%,,2), (x3,4), (x,,2), (x5,4),
(%4,3), (%7,5) in D. 1In this example one could select links d, and
'dy. where ]h - kl > 2 in any of the following ways, b=1, k=5; h=53, k=1;
h=1, k=4; h=4, k=l; h=2, k=5; h=5, k=2, 1If h=l and k=5 then an
example of a Subchil? E(i,j) of E where e, N d + 0 an@ ey N 4 # 0

is the subchain E(l In this case one can let r = x_, and s = Ry,

9x7). 3

and then conditions (a), (b), and (c¢) of Definition 2.6l are satis

fied. If h=5 and k=2 then an example of a subchain E(i 1) of E where
\ N

In this case

k]

e; n dy # @ and e; N di # .0 is the subchain E(x7

,X4)’

one ca? let r = x5 and s = Xg and again conditions (a), (b), and (c)

of Definitionizoﬁl are satisfied, Similar selections can be made
for the other p;ssible choices of‘valées for h and k. Figure 2
illustrates case 2,

Case 3: The chain D has exactly 6 links. Figure 3 %11ustrates
case 3. |

Even Figure 3 is not adequate to illustrate the complexities
involved in a sequence of crooked chains. For example, suppose it
is desired to draw a chain F crooked in E from a peint p in the first
link of E in Figure 3 to a point q in the last link of E. Suppose
F has n links. Now obviously, as F traverses any six 1inks §f E,
the pattern that E follows in D in Figure 3 must be followed by F
in E. But notice also that just one of the many other patterns that
must be followed by F in E is‘that there must be a subchain Fj of F
whose first link intersects e and whose last 1ipk intersects e, 13

-

there musf be another subchain Fy of F (distinct from F, except for

its first link which is the last link of Fl) whose first link
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N.h.n.ﬂé‘

A Chain Crooked in a Chain

with Five Links,

Figure 2.



28

hain

A Chain Croocked in a C

Figure 3.

iix Links.
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intersects e, j and whose last link intersects e&,; and there must
\ I
be still another subchain F3 of F (distinct from F1 and Fo except

that the first link of F3 is the last link of F, such that the first

2

link of F3 intersects e, and the last link intersects e - "Now each

2

of the chains Fl’ Fo, anle3 must be the union of three distinct

¥

chains following patterns similar to the one described above; each

i

of those nine chains must be the union of three distinct chains
. i :
following that pattern; and etc., until the point is finally reached
; 1

that none of the subchains under consideration traverse more than

three links of E.

Definition 2.64: The chain E is a consolidation of the chain

D if and only if:
(1) Each link of E is the union of a subcollection of links of
D, and

(2) D is contained in E,

It is now possible to establish some properties of crooked chains.

The first two theorems. in this section should seem reasonable even

g

without considering their proofs% The last four theorems are almost
impossible to visualize; however, the techniques employed in their

proofs help to make the theorems understandable.

)

Theorem 2.65: If Dy E, and F are chains such that D is a cone
A

gsolidation of E and F is crooked in E, then T is crooked in D,

Proof: It must be shown that if F is a subchain of F

(h,k)

such that the end links fh and fk of F(hgk) intersect links d, and dg



of D with ]r - s] > 2 then F(h k) is the union of three chains
?

F F and F such that (k-h)(v-u) is positive and £
(h,u)? “(u,v)? (v,k) (k-h)(veu) P u
and f,, are subsets of links of D(r,s) adjacent to dS and d,. respec-

tively,

’

The special case where no interior limk of F(h k) intersects

29
either d, or dg will be considered first., Let e and e be links
of E contained in d. and dg such that e  and e, i?tersect £y, and £
respectively, Now D is a consolidation of E, hence»E(m n) is con=-
N E
tained in D(r,s)” Th? link emg_of E(m,n) adjacent to e 1?tersech
an interior link of F(h k) and hence is not contained in d.. There-
9

fore, the link e, of E( ) is contained in the link of D

(r,s)

adjacent to dr’ Similarly, the link e ; of E(m,n) adjacent to e

Nl

is in the link of D(r,s) adjacent to dg.
Now F is creoked in E so F(h k) is the union of three chains
4 N
, F F k kah){ve i ositi
F(h,u)’ (u,v)’ and (v,k) such that (k<h)(v.u) is positive and fu
and £, lie in the links °f'E(m,n) adjacent to e, and en respectively.
But from the previous argument we then have £, and fv contained in
links adjacent to dS and d,. respectively.
Now that the special case is proved, the remainder of the proof
is easy. For suppose that F<W z) is any‘subchain of F such that the
b
end links £ and £, of F(wsz) %ptersect links d,. and dg of D with
of F

,r'm s! > 2. There exists a subchain such that

l§

Fih,x) °F Flw,2)

fh and f) intersect links of d. and dg of D but no interior links of
F(h,k) intersect either d. or d,. By the special case, F(hgk) is
the union of three chains F(hgu)a F(u9v>’ and F(v,k) such that

(k-h)(v-u) is positive and £, and f, are contained in links adjacent

30
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to dS and d. respectively, But this means F(w 2) is the union of the
- 9
three chains F F and F where (z-w)(v-u) is positive
8 Fryu)t Fluy? 20 Fiy,z) (zw)(v-u) is p
and f,, and fV are contained in links adjacent to d, and d, respectively,

Therefore F is crooked in D.

Theorem 2.66: If D, E, and F are chains such that E contains

F and is crooked in D, then F is crooked in D.

Proof: Let fh and f, be links of F intersecting links dr and dg
N

| (h,k) **
the union of thﬁee chagns F<h,u)’ F(u,v)’ and ?(v,k) such that

respectively of D and ]r - sl > 2. It must be shown that F
/

(k-h){v-u) is positive and fu and fV are subsets of links of D

(r,s)

adjacent to d, and d, respectively. Let e, and e, be links of E

containing links f, and £ respectively., NOW’E( is the union

m,yn)

of three chains E(m,x)’ ) and.E<y ) where (n-m)(y-x) > 0

E(x,y

s il

and e, and e are contained in llnksbof D(r s) adjacent to d and d,.

y

respectively.

9

Let £, be a link of F(y i) contained in e, and let f_be a link

. 4
&

of F(u,k) contained. in eyo‘ |
It is clear that F(h,k) is the union of three chains F(hgu)’
F(u,v)’ and F(v9k) with (koh)(v-u) > 0, and that £, and fV are subsets

of links of D(rgs) adjacent to d_ and d,. respectively.

The next two theorems are useful because they show how to create
a chain following a desired pattern from some chain in an existing
sequence of crooked chains. The previeus two theorems show that

this new chain will retain certain desirab}e properties.,
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67: If the chain D is crooked in the chain
] " :

Theorem 2.
E = (e, €5 o o o, em) and dj is a particular link of D, then there
is a chain F such that F is a consolidation of D, dj is dqntained in
only the first link of F, each link of F is a subset of the union
of two adjacent links of E, and any link of F containing an end 1iﬁk

of D which intersects ey or e, is a subset of e Ueyore 5 Uepy.

Proof: In casem=1, 2, 3, or 4, let one link of F be the
union of the links of D contained in ey U e, and the-othér link of
F be the union of the links of D contained in e3 U e4. Note that it may be true
that F has only one link, but whether F has one link or two, the
links of F can still be numbered so that the conclusion of the theo%em
is satisfied.

The prooef is completed by induction on m. Suppose the theorem
is true form=1, . . ., r-l, where r-1 > 4,

The special case in which no interior link of D intersects

will be proved first. There is no loss of generality

§

either e, or e,

in the following argument if it is assumed that the end links of dy

and d, of D intersectﬁel and e, respectively,

r

h

of e, | and d; is a subset of e,. The link dj may be a link in any

Let D = D<19h) u D(h,k} U D(kgn) where l<h<k<n, d, is a subset

of the three subchains of D in the above union, The case where dj
is a link of D(19h> will be argued. If dj ig a link of D(h,k) or
i
D(k ) the theorem may be proved by techniques similar to the ones
9’»4

used below.
The chain D(l h) does not intersect e, because no interior link
3= .

of D intersects e,. Hence E< contains D(l h)° Since E
]

1’ré1> (l,z-1)
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has less than r links, the induction hypothesis implies the existence
of a chain H such that H is a consolidation of D(i,h)’ only the first
link of H contains dj, each link gf H is a subset of the union of two
adjacent links of E(l,rnl)’ and any link of H containing d; or dj is

a subset of e; U ey or e 9 U e..1°

Let hu be the first link of H that contains dh. Note the hu

is a subset of ey.o U €r.1 because dh is a subset of e 1’ r> 4,

@

and hence dy is not a subset of e |J ey
The possibility exists that u=l. If u=l then dj is a subset

of e. U e g because dj is a subset of hl = hu’ Let s, be the

union of the links of D in ey U ey but not in D(k,n); let S5y be the

. union of the links of D in eq but noet in ey nor in D(k,n); o o o}

let‘sraq be the union of the links of D in e, 3 but not in e,  , nor

in D(k,n); and let s be the union of the links of D in‘ermz u er

T =1

but not in e,._3 and not in D(k,n.)o Now let F ==(srm3, S..40 * e
S1s dys dygys o o o) dn). Then F is a chain satisfying the conclusions
of the theorem. Virtually the same proof as that constructed in the
next case (u > 2) can be used to show that F actually‘does satisfy
all conditions of the theorem.

Now suppese u > 2. Let sl‘be the union of the links of D which are

I
contained in ey U e, but not in eq and not in H(l

,u=1) (k+1,n)’

let Sy be the union of the links of D which are in eq but not in e,

)

,u=1) (k+1,n)? *

links of D which are in e, 3 but not in e._4 and not in H

nor D

nor D let s. be. . the union of the

and not in H(l 4

(1,u-1) nor
D(k+1,n); and let srm3 be the union of the links of D which are in

i D .
e.ob e. ¢ but not in H<1’u=1) nox (et ,n)
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Define F as follows: F = (hl, s o oy D1 S..372 ° ° °» 5P» dk+l’
o o oy dn)o It will now be shown that F has ghe properties asserted
in the conclusions of the theorem,

It is not difficult to see that F actually is a chain. To show
that F is a consolidation of D just note first that each link of F is
a unien of a subcollection of links of D, by definition of the links
of F, Then note that F clearly contains D because, by definition, F

contains all of D that is in E , and since no interior link of D

(1,r)

intersects e_, then all of D must be contained in E(l £)* Now if
b

r’
the links of F are numbered so that the first link of F is hl’ then
dj is in only the first link of F, Each link of F is a subset of two

adjacent links of E because of thé corresponding property of H, the
definition of sy, Sos e s 05 Sy 3, and the fact that each link of
D(k+19n) is a subset of one link of E, Since hu is a subset of
e. o U €. 1 and r >.4, and since dq intersects e, then d1 is net a
subset of hua Hence, dy is contained in H(l,ual)° Therefore, any
link of F containing d; which intersects ey is a subset of e; U ey
because H has that property. Now dp, the~$ther end link of D, is
also an end link of F. Hence, it is clear that any link of F cone
taining dp which intersects e; or e 1is a subset of e; U ey or
e 1 U €ne

Thus, the special case of the theorem in which D has no interior
links intersecting either &, or e, has been proved.

The more general case in which D may have interior links inter-

secting e; or e, can now be established.

r
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Let D(b k) be the maximal subchain of D with the preperty. that
1, .
D(h,k) contains dj’ and noe interior link of D(h k) intersects either
s =L
e) or e, If}no link of D(h,k) intersects elg or if no 1?gk of D(h,k)

intersects e, then by the induction hypothesis, there exists a

1

chain H such that H is a consolidation of D(h K)* only the first link
v s ‘

of H contains dj, each link of H is a subset of the union of two

adjacent links of E, and ény link of H containing an end link of

D(h,k) which intersects e, or er is a subset of el U e, or §r=1 U ey

If one link of D(h K) intersects e) and one link intersects e,, then
s

H exists by the special case which was previously proved.

Let h, be the first link of H that intersects either e; or e,.
The case where hu intersects e will be argued. The other case can
‘be pfoved in a similar fashion. If h, intersects e; then h, is a

subset of e) J e, by the properties of H.

Let sy be the union of the links of D that are in ej U e, but

3

not in H(l;uml)i let sy be the union of the links of D that are in
eq but not in e, and not in H(l,ual)s s s o) let S..3 be the union of
Ehe links of D that are in €r.2 but not in €. 3 and not in H(lgual);
and let Srag be the union of the links in D that are in €. 1 U er but
not in H(lgual)°
Define F as follows: F = (hy, o s o, By 15 S5 o o o, Sp_o)e
|

Virtually the same argument as the one used to prove the special case

can be applied to show that F satisfies the conclusions of the theorem.

Theorem 2,68: If D = (dy, dy, » . .+, d ) is a chain crooked in

the chain E = (ey, €9, + « 4, em) and D(r,s) is a subchain of D

such that a link of D<r s) intersects €y and a link of D intersects
s’

(r,s)
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e then there is a chain F such that F is a consolidation of D,

m?
each element of F is a subset of the union of two adjacent links of
E, d. is contained in only the first link of F and d, is contained

in only the last.

Proof: If m< 4, let F be t%e chain whose links belong to the
set {f_, fy} where fX is the unioﬁ of the links of D that are in
e U ey and fy is the union of the links of D that are in eq. U €. It
is clear that F satisfies the conclusions of the theorem.

N?w let m > 4, A subchain D(h,k) of D(r,s) may be chosen so
that (1) h < k, (2) dy intersects ej, dj intersects e_, and (3)

d,. and dg are links of D(l,h) and D(k,n) respectively.

By applying Theorem 2.67 to D(l,h) and to D(k,n) both of which
are crooked in E, two chains H and G ca? be found with the following
properties: (1) The chain H is a consolidation of D(l,h)’ each
link of H is a subset of the union of two adjacent links 6f E, d.
is contained in. only the first link of H, and any link of H contain-
ing dy is a subset of either e, U ey or e 1V e and (2) the chain
G is a consolidation. of D(k,n)’ each link of G is a subset of the
union of two adjacent links of E,‘dS is contained in only the first

)
link of G, and any link of G containing di is a subset of e, J e, or

€1 U ege

Since m > 4, if hu and g, are the first links of H and G contain-
ing dy, and dk respectively then hu is a subset of e U &, and gy is
a subset of en.1 U e s

Let sy be the union of the links of D that are in e; U e, but

not in H(l,ual) nor G(val,l); let S, be the union of the links of D
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that are in ey but not in e, and not in H(l,ual) nor G(val,l); o o e}
let $..3 be the union of the links of D that are in e 2 but not in

en.3 and not in H nor G(V=1,1); andflet 8.2 bg'the union of

(1,u=1)
the links of D that are in €n.1 Y e bgt not in H(l,ual) nor G(VH1,1>o
Now define the chain F as follows: (1) the first u-l links of
F are the links of H(lwual)’ (2) the last v«l links of F are the
links of G(vnl,l)? and (3) the other links of F are Sys Spr o o os
Sp.0°
It is not difficult to see that F is a chain and is-avéonsoli\daw
tion of Dov Each link of F is a subset of the union of two edjacent
links of ﬁAbecause of the corresponding propertg.of H and G, and
because the links sy, Sps o s s Sp o Were defined in such a way
that they were subsets of the union of adjacent links of E. The
link dy is contained in only the first link of F because it is con-
tained in only the first link of H. The link d  is contained in

only the last link of F because it is contained in only the first

link of G and the first link of G 4s the .last link o%.F.

As in the case of the previous two theorems, the next theorem
shows how to create chains following desired patterns from existing
chains., This particular theorem will be utilized only to-establish

the more important theorem, Theorem 2.70.

Theorem 2.69: Suppose (1,xy), (ngz), s o »s (m,x ) is & collec-
tion of ordered pairs of positive integers such that h = £ <x<KX, = k

and Xi b xi+l 5 1, for i = 1, 2, 6 o oy n'—‘-la‘ Suppose D19 Dz, e o o0g

D s » o 18 a sequence of chains from P to Q such that for each

m?
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positive integer i, D, is crooked im Di’ and no link of Di has a

i+l

diameter of more than 1/i, Denote the r-th link of Dy by d, .

Suppose that the subchain DZ(u v) of D, is contained in the subchain
I . '

of Dl(h,k) of D1 and the closures of d2u and d2V are mutually exclusive

subsets of dqy and dlk respectively., Then for each integer w, there

3y

is an integer j greater than w and a chain E = (el, €y o o .,en)
following the pattern (1,xy), (2,x3), . . ., (n,xn) in Dy such that

E is a consolidation of the links of Dj contagined in D2(u ) and no
H

interior link of E intersects d2u U'd2v’
Proof: Since 1 =h, x

= k and Ixi - X I < 1, then n > k-h+l.

n i+1

The theorem will first be proven for n = K=h+1 and then completed by

induction on n.

Since the closure of d, is a subset of dlh’ the closure of d,

is a subset of d1k and the diameter of any link of D; is less than or

AY

equal to 1/i, then there exists an integer m greater than w such that

any link of D_ that intersects d, 1s a subset of dy; and any link
‘ m 1h

2u

of Dm.thgt intersects dzv is a subset of dlko

Let n = koh+l and let j be any integer greater than m. Let ey

be the union of the links of D; contained in dip O p* let e,

J Z(u,v);
. 14 . : e
be the union of the links of.‘Dj contained in dl(h+l) n Dz(usv) ?ut

not dyps o .« .3 and let e, be the union of the links of Dj contained

in dye N Dz(u,v); Now certainly e; is a subset of d1ys e2 is a subset
of dl(h+1>’ o s », and e, is a subset of dﬁa. Hence, E follows the
pattern (1,h), (2,h+1), . - ., (n,k) in Dy. But in this case, this

is the pattern (l,xqJ), (2,%5), + . ., (n,xn). Obviously, E is a

consolidation of the lipks of Dj contained in E. Since j > m then
|
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from the corresponding property of Dp, it can be seen that any link
of Dj intersecting d2u is contained in dlh and any linklintersecting
dy, is contained in dik, Thus, the only links of E which\intersect
either d, or d,, are e; and e  respectively, This establishes t?e
theorem fgr n = k-h+l,

Now suppose the theorem is true for all integers less than n.

The special case where Xy = %o will be considered first, By
the induction hypothesis there exists an integer s >‘w and a chain
F=(f1, £9, o » &, fmul) following the pattern (l,xz), (2,%3)5 « o &,
(n:l,xn) in D1 such that F is a consolidation of the links of Ds in
D2(u9v) and such thgt only the first link of F intersecti;dzu and
only the last intersects dy.»

The same reasoning utilized to establish the existence of D
in the.case n = k-h+l can now be used to asserﬁbthe existence of an
integer j > s such that any three linked suchain of Dj which inter-

1 1

sects d,, is a subset °f'd1h°

/ Let ey be the unien of the links of Dj which are contained in
£y apd which intersect dy o Sincg £, is a subset of x = X9 then e
is a subset of Xy Let e, be the union of all links of Dj which arxe .
contained in f but do not.intersect Ay, The property of Dj - de-
scribed in the preceding paragraph shows that e, actually exists.
u Also, e, is a subsgt of £y which is a subset of x,, and thus, e, is
a subset of gzo Let e be the unieon of the links of Dj contained in
lebut not fl; s o o3 let e, be the union of ?he links of Dj contained

in £, 1 but mot £, ,. This construction of E = (e19 €5 o o o, en)

shows that E is a consolidation of the links of D. contained in D 5
, s 3 2(u,v)
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and that E follows the pattern (l,xl), (2,x2), o o g,‘(n,xn) in Dy
The corresponding property of F together with the construction process
)

for the links e; and e) show that no interior links of E intersect
d2u or dzva

The next special case which should be considered is the case
where an integer r exists such that 2<r<n and X, =X Techniques
similar to those which have been employed to this point in the proof
can be used to construct a proof for this case. However, the proof
for this special case is extremely long and tedgous, and thus has

| !
been omitted, |

The final case that must be considered is the one where for
every integer i such that l<i<n, x; # X1

It must now be noted that the fact that D, is crooked»in D1 has
not been used in this proof, = Indeed, the only case whgre any part 6f
the hypothesis that D;y1 is crooked in D; is ever usedvis in the case
which was omitted, And.i?ﬂthat case, it is‘not necessary to have D,
crooked in Dy. These facts are pointed.out/bécause a chain W such
that W has all the necessar& properéies of DZ(u,v) Will-%OW»be con-
structed. It will then be asserted that the induction hypothesis
applies to W since W will have the essential propertieg of DZ(u,v)
and since DZ(u,v) is an arbitrary chain contained in an arbitrary
subchain of D;. That is, W will be contained in a subchain of Dl’
theﬂclosurgs of the first and last links of W wil% be subsets of the

R

first and last links respectively of that subchain of Dy, and by'ﬂf
virﬁue of Theorem 2.65, subchains of Dj’ i > 2, contained in W will

be crooked in W.
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Let W = (Wl, Wos o o o, wt) be defined as follows: The link Wy
is the consolidation of the links of Dz(u v) that are not contained
2 .
in dyy, but intersect dlh; Wy is the consolidation of_the links of

at a , . , ,
that are contained in dl(h+1) but do not intersect g

Botu,v) 1h’ V3

is the consolidation of the links of D that are in d

2(u,v) 1(ht2) DUt

not in d o e e5 W q is the consolidation of all links of

1(ht1)’?

!
D2(u,v) except d2V that are in dy) but not in dl(k-l); and w, = d2v'

Hence, W is a chain contained in D such that the closure of

L(ht1,k)

w, is a subset of d and the closure of wt is a subset of 4

1 1(h+1) 1k’
Thus, by the induction hypothesis, there exists an integer j‘greater
than w and a chain F = (fl, f2, e o oy fnml) such that F is a consoli-
dation of the links of Dj in W, F follows the pattern (1,x2), (2,x3),
o o o3 (nml,xn) in Dl’ f1 is the only element of F intersecting Wi
and £, is the only link of F intersecting-wt== dzvo

. ' . %
Define ey to be:the union of all elements of Dj in DZ(U,V) N dlhg

ey = fl’ o 0 oy B = fnal°f Then E = (el, €95 5 o o, en) satisfies

n

all conclusions of the theorem.

The next t%eorem‘is the most important one of this section.
This theorem furnishes the result that will eventually provide the key

to proving the homogeneity of the pseudo-arc,

Theorem 2.70: Suppose (1,xy), (Z,XZ), e o oy (n,x,) is a collec-

tion of ordered pairs of positive integers such that 1 = x<x,<x_ and

) I .
Xy = Xgq < 1 for i\: 1, 2, . . ‘s mal. Suppdse Dl’ D2, e ¢ o 18

{

a sequence of chains from P to Q such that Dl has xn'links and for

each positive integer i, Diyy is crooked in Di’ the closure of each

/
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link of D,,; is a compact subset of a 1link of Dy, and no link of Di
haf a diameter of more than 1/i. Then there is an integer j and a
chain E from P to Q such that E is a consolidation of Dj and E follows

the pattern (l,xl),.(z,xz), o o oy (n,xn) in Dy

Proof: Let h =1, k=%, u=1, and v = m where D2 has m links,

then the conclusion of this theorem is immediate from Theorem 2.69.



CHAPTER III
EXAMPLES OF HOMOGENEOUS BOUNDED PLANE CONTINUA
Introduction

The three knﬁwn ekamples of nondegenerate homog%neous bounded
plane continua whiéh were briefly discussed in Chapter I will be pre-
sented in more detail in this chapter. The first two éxamples, the
simple closed curve and the pseudo-arc, will be thoroughly discussed -
and the proofs of their homogeneity wi;I be presented. The third
example, the circle of pseudo-arcs, will be briefly described, but
the proof of its homogeneity will be omitted.

It will be shown in Chapter IV that any chainable nondegenerate
homogeneous bounded plane continuum that is not homeomorphic to a
simple closed curve, a pseudo-arc, or a circle §f pseudo-arcs must
be an indecomposable continuum separating the plane. It is not known
whether such a homogeneous continuum actually exists. The final
example of the chapter will be ahkexamplé.of a chainable hereditarily
indecomposayle continuum whiFh separates the plane. This continuum is
suspected og being homogeneous.

All examples given in this chapter will be described in such a
way that their existence in the plane is clear. Hence, any topological

properties of the plane which are needed in proofs will be used without

43
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hegitation,
The Simple Closed Curve

The fact that a simple closed curve is a homogeneous bounded
continﬂ§m is almost immediate from its definition (10; 170, Definition
3.2). Since a simple closed curve is defined to be a homeomorph of
the unit circle, then by the compactness of the unit circle any simple
closed curve is bounded (10; 170, Theorem 3.3 and 10; 75, Theorem 4.16).

The crux of the remainder of the proof is contained in the following

lemma ,
Lemma 3.1: The unit circle U is homogeneous,

Proof: Let Xy and Xy be any two poeints on the unit circle U.
A function F from U Eo U will‘be deéined suéh that F(xy) = X, and
F is a homeomorphism,

Let t£e coordinates of x; be given by (cos 81, sin él), Q561<2n,
and the coordinates of'x2 be given by (cos 62, sin 62), 0<84<2r.

Either 63562 or Qzﬁal.'vlt will be supposed that 91562. The
argument for the case %!562 is similar to the one which fpllows.

Let 8 - ©; = @, It is clear that O<@<2r.

Let x e%ﬁ and the ébordinates of x be {cos &, sin ©). Either
0<0+@<2r or 0<@+P-2r<2m. TIf 0<@+@<2r, define F(x) = y where the

" |

coordinates of vy are (cos (8+@), sin (8+8))., If 0<€+@-2r<2rr, define
F(x) = y where the coordinates of y are (cos (0+8-217), sin (e+¢=a%)>e

Since F is just a function which rotates the unit. circle through

the angle @, then it is not hard to show that F is a homeomorphism,
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Also, F(xl) = %, because {cos (61 + §), sin (el + @0)) = (cos @2, sin 62)0

Theorem 3.2: A simple closed curve is a homogeneous bounded

continuum,

Proof: 1t was argued above that a simple closed curve .is bhounded,
Since a simple closed curve is homeomorphic to the unit circle then
it is immediate from the corresponding property of the unit. circle

that it is a continuum (10: 170, Theorem 3.3). . Lemma 3.1 implies that

it is hemogeneous.

I8

The Pseudo-arc

The simplicity of the description of the first example of a homo-
geneous bounded plane continuum, and of the proof that it is indeed
homogeneous, givgs no indication of the difficulties which are involved
in presenting the second example. This second example, the'pseudofarc,

\ "
is defined in terms of sequences of crooked chains. In addition to the
theorems on crooked chains, some very delicate proofs of preliminary
theqrems are necessary in order to establish the homogeneity of the

J
pseudo=arc,

Definition 3,3: Let S be a compact metric space and let P and Q
A

be distinct points of S, Let Dl’ Dy, .+ « . be a sequence such that:
(1) Dy is a chain from P to Q, i =1, 2, . . .,

(2) D;4y is crooked in D,, i =1, 2, , . o,

i’

(3) if Di = (dy1, digs o ¢ s dini)’ then the diameter of dij is

less than or equal to 1/i, j =14 2, . . ., ny.
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(4) if d is a link of Di+l then there exists a link d! of Di such

that d — dt,

<o %
Let M= A D,. Then M is called a pseudo-arc.
fo= _—

1
It is virtually impossible to visualize a pseudo-arc. One can
- concelve of some of the difficulties involved in trying to describe
the pseudo-arc with pictures if Figures 1, 2, and 3 are studied. ' In
any one of these figures one could think of chain D as being D; and
chain E as being D2 in the sequence given in Definition 3.3. Suppose
it is desired to draw the chain D

contained in the chain D, in Figure

3 2

3. The virtual impossibility of the task of drawing the chain Dy was
discussed in the paragraph immediately following case. 3 of Example
2,63. Of course, it should be noted that in these figures the diffi-
culties are somewhat exaggerated since condition (3) of Definition 3.3
has been more than amply satisfied. However, even if all conditions
are satisfied in such a way that the minimum number of links exist in
each of the chains DZ’ D3, e o. o, it is difficult to draw any chain
after the second one of the sequence.

It should also be noted that it has not been assumed that the
links of the chains in Definition 3.3 are connected. It may therefore
be surprising that M is a continuum. However, that such is the case

is the main result of the following theorem.
Theorem 3.4: The pseudo-arc M is a compact continuum.

Proof: It will first be proved that M is closed, Since each Dy

has only a finite number of links then (4) of Definition 3.3 implies that
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Dw"s

Dyt C:D?, i=1, 2, ., . .. Now suppose M is not closed. Let P' be

a limit point of M such that P! does not belong to M. If P' does not
belong to M then there exists an integer j such that P' does not
beleng to Dﬁo Now if P¢ doe; not belong to D? then P! does not belong

to B?;I since B?;I c D?. But D§+l is a closed set containing M and
hence all limit points of M. This contradicts P' is a limit point
of M.

It is immediate that M is compact since M is a closed subset of
a compact space.

Suppose M is not connected. Then M is the union of two separated
sets H and K, Let .the distance between H and K be k., " The number k is
positive (10; 91, Theorem 1.13). There exists an integer i such that
3/i. < k. Since every link of Dy has diameter  less than or equal
to 1/i, there exists an interior link d; of Dy such that d; nNH= @
and d; N K =@, Now by the definition of M, for every j > i there
exists a link of D, whose closure is a subset of'di. Since the

J

intersection of a monotonic collection of closed and compact sets

is not empty, it is clear that (ﬁ dp, # @ (10; 69, Theorem 3.30).

n=1i

O
Let Py belong to n dp, then Py belongs to M. Hence Py belongs.to
=i )

H or K. This is a contradiction.

The fact that the pseudo-arc is indecomposable will be used in
vestablishing its homogeneity. The proof .that the pseudo-arc is
- indecomposable could be deduced from the fact that the pseudo-arc

is a homogeneous bounded plane continuum that does not separate the
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plane, if this latter statement could somehow be proven first. That

i i
i

ever§ ﬁomogeneous bounded plane continuum that does not sepérate the
planeris indecomposable, is one of the important results which has
been achieved since the pseudoagrc was first defined (see Theorem
4,8 in Chapter IV), However, ?o proof that the pseudo-.arc is homo-
geneous which does not make use of the fact that it is indecomposable

has yet been published.

4

Theorem 3,5: Each subcontinuum of the pseudo-arc M.is indecom-
H

posable,

Proef: Suppose there exists a subcontinuum M!' of M which is
decomposable.. Then M' = H |J K where H and K are proper subcontinua
of Mt, Let Pl be a point of K not belonging to H and P2 be a point
of H not belonging to K. The distance between P1 and H i§ greater
than zero (10; 91, Theorem 1,13). Similarly, the distanc; between
P2 and K is greater than zero. Hence, there exists an integer j
such that the distance fr»om‘Pl to H is greater than 2/j and the

distanee-f.rom,P2 to K is greater than 2/j. Let D (h < k)

j{h k)
and D(j+1)(u,v) be subchains of Dj and Dj+1 respectively such that

Py and P, beleng to end links of each of these subchains. Without
loss of generality, let P; belong to djh (the link numbered h in
the chaln.Dj),.Suppose there exists a 11nk'djm (h<m< k) of Dj(hgk)

which contains no point of M!., Since M! is a subset of M and M is
y i

a subset of D; then M' is a subset of the union of D, and
2 J j(1,m=1)
D, where d, is the last link of D..
j(mt+l,n) jn j



49

Now P; belongs to D?(l,mal) and P, belongs: to D?(m+l,n) and
= (M D?(l,m-l)) U (Mt n D?(m+1,n)>’ But by definiton of cha%?,
D?(l,mml) and D?(m+1,n) are separated. This contradicts the fact
5pat M! is a continuum: Therefore, every link of Dj(h,k) contains

a point of M!. Similarly, every link of D contains a

(3+1)Cu,y)
point of Mt, Therefore, since the distance from P, to H and the
distance from P2 to K are both greater than 2/j, it can bevseen that
dj(h+1) contains a point of K but none of H and d?(k-i) contains a
point of H but none of K. It follows that dJ(h+l) F d, (k 1) and so

]h - k! > 2., Hence, D J+1 is crooked in DJ implies that D(J+l)(u v)

is the union. of three chains, D(j+1)(u,r)’ (+1)(x,s)’ and D(j+l)(s,v)

(r < s) such that d and d are subsets of d

(3+1)r (§+1)s (k1) 279
dj(h+l) respe¢tive1y. Since the definition of qcrooked" only requires
tha§’d(j+1)r and d(ig)g be subsets of links olej adjacent to dj

and djh respectively, then it may noﬁ be clear that these links can

be specified to be subsets OE'dj(kml) and dj(h+1)’ However, if it

is recalled that the requirement thét h < k was also imposed on Dj(h,k)’
then. it is not difficult to see that no generality is lost in speci- -
fying which links of D, j(h,k) contain the end links of D(J+1)(r s) ‘
Now since d(3+l)s is a subset of dJ(h+l)’ d(J+1)v N dJk # ¢, and
k-(htl) > 2 then there must be at leaét one link d(j+1)t’ (s < E < v)
such that d(j+l)t is a subset of dj(k-l)’ Now every link of D(j+1)(u,v)
contains peints of M7, d(j+1)r'and'd€j+l)t are subsets of dj(k-l)’
which contains points of H but not of K, so d(j+1>r_and d(j+1)t

both contain points of H. But d(j+l)s is a subset of dj(h+l) which

contains no points of H, The definition of chain and the fact that

1
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r < s < t shows that H is not a continuum. Therefore, the assumption
that M!' could be written as the union of two proper subcontinua is

false.

In order to prove the existence of the typevofuhqmeomorphism
which shows that the pseudo-arc is homogeneous, two existence
theorems will first be established. The first of these theorems
(Theorem 3.6) guarantees the existence of a homeomorphism between
certain pairs of compact closed sets, The unusual -and v;ry restrictive
set of hypotheses for thig theorem may make the theorem seem to be
so limited in applicability that it would be of littde use,- However,

T

if both of the sets, M, (n=1, 2), mentioned in the. hypotheses are
the pseudo-arc M and both sequences of domains are the sequence
of crooked chains used to define M, then it can be seen that the
theorem produces a homeomorphism from M to M. Of course, the existence
og a homeomorphism from M to M is obvious (the identity, for instance);
however, a special kind of homeomorphism from M to M can be deduced
with the aid of the second theorem.
fhe second theoremv(Theorem 3.7) makes use of Theorem %.6 to
prove that for certain pairs of continua there exists avhoméomorphism
that will map any arbitrary fixed pair of points of the firs% cone
tinuum to any arbitrary fixed pair of the second continuum. Obviously,

if it is possible to allow both members of such a pair of continua

to be the continuum M, then the homogeneity of M will be established.

Theorem 3.6: Suppose My and M, are Fompact closed sets; €7, €95

s+ o o 18 a sequence of positive numbers with a finite sum; and X(l 1)
. H
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X(1,2)’ o » o and X(2’1>, X(Z,Z)’ . » o are sequences of well-
ordered collections of domains such that for each n ( n =1, 2) and
for each positive integer i, (1) X(n,i) covers M_, (2) each element
of X(n,i) intersects Mﬁ: (3) no-element of X(n,i) has a diameter of
moFe than €;, and (4) if the j-th element of X(n,i+1) intersects
the k-th element of x(n,i)’ then the distance between the j-th ele-

ment of X(m,i+l) (m=1, 2) and the k-th element of X(m,i) is less

than e;. Then there is a homeomorphism T carrying M, into M,.
i 1= 2

Proof: The first step will be to define T(P) for any point P
belonging to Mj.
Let Y denote

(n,i)k’ (n,i) \

the well-ordered collection whose k-th element is Y(n,i)k where
; - I(n, N

Let ghe k-th element of X(n,i) be x

Y(n,ik denotes the set of al;;points Q such that the distance from

Q to X(n,i)k 1S less than e; + 2(e; q t e o T« o o)o

+2

If X(n,i)r intersects X then by hypothesis (4) the

n,it+l)s

distance between X( and x is less than €, . Also, by
i

m,i)r (m,i+l)s

hypothesis (2), ths diameter of X(p,it]1)s LS RO more than ¢; ;. Now
suppose Q belongs to y(m,i+l)s closure so that the dlsta?ce from Q
t0 Y(m,i+l)s is zero. Then the distance from Q to *(m,i+l)s is less

than or equal to €441 + 2(5;].__!__2 +.€i¥3 + . + o), 50 the distance

2 i + LJ . . *
from Q to X(y j), is less than or equal to e, + 2(ei+1 €ii9 T )

Therefore, the closure of y(m 1+1) is a subset of the closure of
s S

y( ) . In general, if i < j and x
m,i)r -

R intersects x X the
(nsl)r (n,J)S

closure of Y(m, )s is a subset of Y(m,i)r".

Now let P be a'point of M By hypothesis, there is a sequence

l.
of domains_x(l,l>§, x(l,Z)b’ P contilning P. Define T(P) to be
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the common part of y(2 1)a’ y(z 2)p? * e Since the diameters of
3= 3

the elements of the sequence y(2 1a . are approaching
9 ) .

b y(z’z)b’ s &

zero and since the closure of y(2,i+1)u is a subset of y(2,i)v if

X(1,i+1)u intersects X(1,1)v then it is clear that T(P) is a point
2 .

and does not depend on which sequence x(lal)p’ x(l,2)q’ o ¢ o« of

domains containing P is selected.

4
I

Now let D be any domain containing T(P). Since T(P) belongs to
every element of ¥(2,1)as y(2,2)b’ s s » and since the diameters of
the elements of this sequence approach zero, then there exists some
term y(2 i)z such that T(P) belongs t°'Y(2,k)z and y(2,k)z is a
subset of D, Now since X(2.%)z is a subset of y(2,k)z which is a
subset of D and since X(2,k)z contains a point of Mz,‘then D contains

" But M, is

some- point of M2°v Thus T(P) is a limit point of M2. 9

closed and compact. Therefore T(P) belongs to M2.
To show that T is continuous, let T(P) be a point of M2 and D

be a domain containing T(P). Theﬁe.is an integer j such that any

i) containing T(P) is a subset of D, By definitign

element of Y<29J

of T, if x(l,j)r is an element of X(l,j) containing P, T(M; N x(l,j)r)
is a subset y(Z,j)r° Now T(P) belongs to y(Z,j)r which is a subset
of D. Therefore T is continuous.
Suppose T is not one to one, Then there exist distinct points
P, and Py of My such that‘T(Pl) = T(P,). Let the distance from P
1 i 2 | 1
to P2 be d. There exists an integer k such that the diameter of every
element of Y(l k) is less than d, Hence no element of Y(l,k) contains
9 : R
both P1 and P,. Since X(z,k> covers M,, some element of X(Z,k)’
8Y X(9 1)y contains T(Pp) = T(Pz). Now there exists an inte%er j
2, \ ‘
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greater than k such that every element of.Y(2 1) containing T(Pl) =
1 s

T(Py) is a subset of X(Z,k)r‘“h%et X1 and X(1,4)v be elements

»3du

of X containing Py and P, respectively. This means that both

(1,3)

and Y(2,i)v contain T(Pl)"=‘?(?2?.a§d.so bgth Y(Z;j)u and

is a subset of y(2

(2, )u

y(Z,j)v are subsets of X(2,k)r Now x

(2,5)u Jiu

and X(2,5)v is a subset °f'y(2,j)v and so both x(2,j)u and y(2,j)v

are subsets of X(p k)r. It has been established in general that

if 1 < j and x i) intersects x(n,j)s’ then the closure qf Y(m

(n,l r 3j)S

is a subset of Y(m,i)r’ Now in this case we have k < j, x(z,k)r

intersects both X(y u and X(2 i)v and so the closures of both

H s
y(l,j)u and y(l,j)v are subsets of y(l,k)r“ But'x(l,j)u is a subset
of Y(1,3)u and x(l,j)v is a subset of Y(1,i)v henc?, x(l,j)u is a

subset of y(l,k)r and X(1 i§ a subset of y(l,k)r' This is a

»3)v
contradiction becapse P1 belongs to X(1,i)u and P2 beloggs to X(2,5)v
but no element of Y(l,k) contains P1 aﬁg P2.

If T can be shown to be a closed map, then the proof that T is

a homeomorphism will be complete. Now M; and M, are closed and com-

v

2
pact and so T is closed (10: 75, Theorem 4.16 and 10; 66, Theorem
. ] .

4

3.19).

Theorem 3,7: Suppose M. and M2 are compact continua; P. and Q1

1 1

are points of My; P2 and Q, are points of MZ; the sequence of posi-

tive numbers €15 €25 o o o has limit zero; and the sequences D(l 1)
g 9
{

D(l,Z)’ s o » and D(Zgl)’ D(Z,Z)’ o s o are sequences of chains from
P, to Q) and from P, to Q, respectively. Suppose also that for each

n (n =1, 2), and for each positive integer i, (1) D is crooked

(n,i+1)
in D, .y, (2) the closure of each link of D, . is a subset of
(n,1i) (n,i+l)



a link of D(n,i)’ (3) no link of D(n,i) has a diameter of more than
. [
1/i, and (4) M.=nD . Then there is a homeomorphism carrying

i=1 (Tl,i) Lo

M1 into M2 thét carries Pl to P2 and Ql to Q2.

Proof: By hypothesis, there exists an integer t such that no
link of D(l,t) has a diameter of more than 1/2, Define-X(l’l) to
D » Defi £ P hich h
be (1,t) efine X(2,1) to be a chain from o to Q, whic as
the same number of 1in§svas X(l 1) and which is a consolidation of
k s
some D

(2,1)°
By hypothesis, there exists an integer k such that D

is
(2,k)
contained in D(z 1wand no element has a diameter of more than 1/2.
3 (2, b
”DefinevX(z’z) to be'D(z’k). SincevX(z’l) is a consolidation of
D(Z,i) then X(2’2) is contained in X(Z,l)'

Let (1,x1), (2,%5), « .,-(r,xr) Pe a pattern followed by
X(2,2) in X(2,1) where X, is the number of links in X(Z,l)‘ Since
X(Zgl) and-X(1’1> have the same number of links, ghen X(l,l) is a
chain from Pl to Q4 which has X links.

- Since no link of D(l £) has a diameter greater than 1/2 and
, .

for every i no link of D has a diameter greater than ei (where

(1,1)
the limit of the eiﬂs is zero), then it is possible to define a
subsequence D(l,tl)’ D(l’tz)’,jv‘ . of D(l,l)’ D(l,Z)’ s s o such
that (1) D(19t1> = D(19t>’ and (2) no link of D(l,ti) has a diameter
greater than 1l/i. By Theorem 2,66, D(l9ti+l? is crooked in D<1’ti),
i= 1, 2’ i L4 ® 0

The sequence D(l £:)? i=1, 2, + » ., satisfies the hypotheses

. s bg

of Theorem 2,70, Theréfore, there exists an integer j and a chain

54
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E from Pl to Ql such that E is a consolidation of D and follows

(1:tj)

the pattern (l,xl), (2,x2), e o oy (r,x.) in D(l,tl)' That is, if
X(1,2> is defined to be E, then: (1) X(1,2> is a chain from P, to
Ql’ (2) X(l,Z) is a consolidation of a term ?f the sequence D(l,i)’
i=1,2, .. ., and (3) X(1’2> follows a pa£fern in X(l,l) that
X(Z,Z) follows in X(Z,l),' |

Now since X(1,2) is a consolidation of some term of D

(1,1)°

i=1, 2, .. ., then by hypotheses (1) and (3) there exists an
i

integer j such thag D(l 1) is contained in X and no link of
! s

(1,2)
D(l,j) has diameter greater than 1/4., Define X(1’3) = D(l,j)’ Using
Theorem 2,70 and the same technique as above, it can be shown that
there is an integer j and a chain X(2,3) from P2 to Q, such that
X(2’3> is a consolidation of D(Zgj) and follows a pattern in X(%,Z)

that X(l,3) follows in X(l,z)

The process used to define X(l,Z)’ X(2’2>, X(l,B) and X(2,3)

can be continued to define the sequences X(l,l)’ X(l,Z)’ X(l,3)’ o o o

i

and X(Zgl)’ X(ZQZ)’ X(293), o o o

The following properties of X(ﬁ iy o = 1, 2 are immediate:

) ’

(L X(n91>, X(n,Z)’ . + . are collections of“dOmains‘covering M,
(2) each link of X(n,i)’ i= 1} 2, « + ., intersects Mn’ (3) no
link of X(n,Zial) nor X(n,Zi) has a diameter of more t?an 1/21i and
(4) X(n9i+l) is a chain from ?n to Q, that follows a pattern in X(n,i)
that X(m,i+l) foliows in X(m,i)'

Properties (1), (2), and (3) above show that X(n,l)’ X(?sz)’
s+ o o 1s a sequence satisfying hypotheses (1), (2), and (3) of

Theorem 3,6, It will now be shown that hypothesis (4) of Theorem
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3.6 is also satisfied,
Let (1,%1), (2,x2), . o e (s,xs) be the patter? which x(n,i+l)

i)’ Suppose the j=-th

follows in X(n,i) that X(p i+1) follows in X(ms1

link of X(p,i+1) intersects the k=th link of X(n i)° Since every
, :

link of X is a subset of some link of X(n 1) then the j-th link
. 2

(n,i+l)

of X(n i+1) must be a subset of the (k-1)-th, the k-th or the (k+l)-th
i kg Ly

link of X Therefore, one of the ordered pairs (j,k=<1), (j,k),

(nsi)o
or (§,k+l) must belong to the collection (1,x7), (2,%5)5 5 ¢ o,

(s,xs). Suppose it is (j,k). Then it is also true that the j-th
link of X(m,i+l) is a subset of the k-oth link of X(m,i)’ ang hence

the distance between the j-th link of X( and the k-th link

m,i+1)
of X(m,i) is zero. Now suppose the ordered pair which belongs to
the pattern is (j,k-1). Then the j-th llnk}Qf.X(m’i+l) is a subset
of the (k-1)-th link of X(m,i)' The (k=1)=ﬁh l;nk of X(m,i) inter-
sects the k-th link of X(m,i)‘ Thus, the distance between the j-th
link of X(p ;.1) and the koth link of X, .y must be less than the
diameter of the (k-1)-th link of X(m,i)' A similar argument shows
that if the ordered pair (j,k+l) belongs to the pattern then the
distance between the j-th link of X(mgi+l) and the keth link of
X(m,i) must be less than the diameter Pf the (k+l)-th link of X(m,i)°
Regardless of which of the above three cases is true, it is clear
that hypothesis‘(4) of Theorem 3.6 is satisfied.

Therefore, by Theorem 3,6, there exists a homeomorphism carrying

Ml into M2 which carries P; and Q into Py an@ Q2 ;gspectivelyo

The next theorem is the final one in the current sequence of

theorems, This theorem furnishes the primary result of this chapter.
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The homogeneity of the pseudo-arc is proven by>the technique which
was suggested in the discussion preceding Theorem 3.6. Hence, the
majority of the proof is concerned with satisfying the hypotheses

of Theorem 3.7 in an appropriate fashion. The collection of theorems
in Chapter II on the properties of crooked chains will be employed
frequently in order to create a sequence of chains necessary for the

utilization of Theorem 3.7.
Theorem 3.8: The pseudosarc M is homegeneous.,

Proof: Since M is indecomposable, there exist two points R and
S of M which belong. to different composants of M (24: 59, Theorems
138 and 139),

Let Dj‘be_any term of the sequence Dy, D,, » o which was used :
to define M. It will be shown that there exists é term Dy (k > j)

of the sequencé such. that if (R,8) is.the subchain. of Dk from R to

by

S then Dk(R,S) has a link: that intersects the first link of Dj*and

has a link that intersects the last: link:qof Dj'

: . o % Je
Consider the limiting set L of the sequence Dj+l(R’S>’ Dj+2(

« + oo It is clear that L is a subset -of M. Suppose L is not a

R,8),

continuum. Since: L is'clbsed but not a continuum .then L is not
connected. Let L be.the union of H and K where H and K are closed
separated pbint‘sets. Let U and V be demains such that H is a subset
of U, K is a subset. of V, and the distance from U to V is h, Now
suppose R and S:-belong te the same component C of L. Now C is a
subset of H or C is a subset of K, and thus C is a proper subcentinuum

-of M containing R and S, This contradicts .the assumption that R and S
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belong to different compoesants of M. Hence R .and S belong to differ-
‘ent components.of L and so it can be assumed that R belongs:te H and

S belongs to K. Let Dj+t(R’S) be an element of the sequence Dj+l(R’S>’
Dj+2(R,S), « o « such that-every. link -of Dj+t(R,S)»has diameter less
‘than h/3. The first liﬁk'of Dj+t(R,S) intersects U, the last link
intersects V, no.link has diameter as lérge.as h/3, and the distance
from U-to. V is h. Therefore, there exists a link of Dj+t(R’s) which
intersects neither U nor V, Let T be a set formed by éeleéting a

link from each.subchain Dj+s(R,S),.s.z t, which: intersects neither U
nor V., There are two possibilities: (1)‘there-exist)an infinite

number . of elements of T which contain a common point P., or (2) an

1
infinite sequence Z of distinct points can be selected frpm distinct
elements of T. In case. (1) the point P, would also have to belong
to L, But this contradicts the assumption that L is a.sqbset of the
union of U with Vo 1In case.(2) there exists a point P, which is a
limit point of Z because it was assumedé that M was défined?in,a compact
'space. By definition of L, ?2 belengs to L. But.P2 does. not belong
to U union V because no eiement of T intersects the domain U unioen V,
This contradicts that L is a subset- of the union of U with V, - There-
“fore, neither case (1) nor case (2) is possible. ’Hencé‘therassumption
.that L is not a continuum. leads to a contradiction.

Since R. and-S. belong to different composants of M and L is a
subcontinuum of M containing R and S, then L must be M. Therefore,
the limiting set of D§+1<R,S), D§+2(R.,s>, .+ . is M, Thus, it can
_be seen that there exists an infinite subsequence of the sequence

Dj+1(R;S), Dj+2(R,S), e o o such that each term has a link which
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intersects the first link of D By .an argument similar to the one

je
above, it can be shown that the limiting set of this subsequence ‘is
a subcontinuum.of M containing R and S. Since R and S beleng:to
diffgrent composants of M, then this subcontinuum is M. But if the
subcontinuum is M, then some term of the subsequence must have a
link which intersects the last link of Dj‘ Hence, there is an integer
k greater than j such that D (R,S) intersects both end links of Djo
Let j be an integer -such that the union of any two adjacent
links of Djvis a domain with diameter no more than 1. By the above
argument, there exists an integer .h greater than j such that the sub-
-chain Dh(R,S)-has a link which intersects the first link of Dj and
has a link which intersects the last link of D;., By Theorem 2.68

J
there is a chain E; such that E; is a consolidation of Dy, éach
‘element of El,is a subset-of two adjacent links of Dj’ the first
link of Dy(R,S) is contained in only the first link of Ey, and the
last link of Dy(R,S) is contained in only the last link of E;. So
Ey is a chain from R to S such that E; is a consolidation of Dh and
no element of E; has a diameter of more than.l.

Let k-be an integer greater than h such that no element of D
is of diameter more than 1/2, By Theorem 2.65, Dk is crooked in‘E1o
A simple argument that makes use of properties (3) and (4) in the
definitien of the pseudomarc,itogether with the assumed compactness,
wiil show that there is an integer t such that the closure of the unien
- of each pair of intersecting links of Dt is a-subset of a link of Dy.

As previously demonstrated, there exists an integer m greater than t

such that the subchain D (R,S) intersects the first and last links
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of Dp. Therefore, by Theorem 2.68, there is a chain‘Ez from R to S
such that E, is a consolidation of Dy and each link of Ez is a subset
of two adjacent links of D.. By Theorem 2.66, E, is cfookedain Eq.
Also, since each link of E2 is a subset of the union of ;wo adjacent
links of D, the closure of each pair of intersecting links of D,
~is a subset of a link of Dy, and Dk~is crooked in El, then the closure
of each link of E; is a subset of a link of El' 'It is also clear
that since no-element of D, has diameter of more than 1/2 then no
element.of‘Ez has diameter of more than 1/2.

If the above process is continued, a sequence El’ Ez, o o o Of
chains from R toe S is defined such that for each integer i, (1)
Ei+1.is crooked in-Ei, (2) the closure of each element of Ei+1 is
a subset of an element of E;, (3) no element of E; has a diameter of
more than 1/i, and (4) E; is a.consolidation of some Dj’

Now let Py and Py be any two points of M. Since M is-in@ecomm
‘posable, there: exist points Q, (n = 1, 2) such that Qn belongs te
M and Qn and Pn‘belong to different composants- of M.

Using the results established above (letting P, =R, Q, =8,
anqu(n’i) = Ei)’ it follows that there exists a séquence Y(n,l)’
Y(n,Z)’ e o o of 'chains-from.Pn to Qn‘such that for each.positive
integer i, (1) Y(n,i+l) is crooked in Y(n,i)’ (2) the closure of each
link. of Y(n,i+l) is a subset of a link of Y(n,i)’ (3) no link of

Y .y has a diameter of more thahil/i, and (4) Y, is a consolida-
(n,1) : (n

‘91)

tion.of some Dja

Theorem 3.7 gives immediately that there is a homeomorphism

carrying M inte itself and'Pl,into PZQ Therefore, M is homogeneous,
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The Circle of Pseudo-arcs

The final example of a bounded homogeneous plane continuum to
be presented is the circle of pseudo-arcs. A formal presentation
of this example would require the development of topological proper-
ties which are not presented in this paper. Hence, no proof that the
circle of pseudo-arcs is homogeneous will be given. A proof by
R. H. Bing and F. B. Jones of the homogeneity of the circle of pseudo-
arcs can be found in the literature (7). The proof that the circle
of pseudo-arcs, M, is homogeneous also points out that there is a
continuous decomposition of M into pseudo-arcs such that the decom-
position space is a simple closed curve, This fact, together with
some well-known theorems. on upper semi-continuous decompositions
(28), can be used. to prove that the circle of. pseudo-arcs is decom-
posable.

The particular approach used to present the example will be
analogous to the process created by F. B. Jones (7)., This process
is not presented as a definition for a circle of pseudo-arcs, but
is described in such a way that it is reasonable to believe that the
example has the critical asserted properties. A weakness in the pre-
sentation which will be obvious is that no justification will be
offered that the steps. can be repeated a countably infinite number
of times, as will be asserted. However, several illustrations will
be given together with a careful description of the critical phases
of the first three steps of the process. It is hoped that since
the process is, in a sense, cyclic with cycle length three, then

sufficient information will be present to make all assertions at
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least seem plausible.

In order to make it easier to visualize the positions of various
parts of chains in the sequence of circular chains necessary for de.
scribing the circle of pseudoearcs, two preliminary figures are given.
Figure 4 shows a set of arcs called "the first layer of Vis." Figure
4 was drawn in three stages as follows:

(1) Construct two concentric circles Wy and Wy centgred’at the
origin and having;radii one and two respectively.

(2) Define twelve points lying on the two circles in terms of
their polar coordinates., Let aj = (2, -r/12), by = (1,0),
cy = (2, m/12), ay = (1, =7/2 - m/12), b2 = (2, -17/2), cy = (1? =17/ 2
+7/12), ag = (2, m - m/12), by = (1, M), ¢35 = (2, w +1/12), a, =
(1, m/2. - m/12), b, = (2, ﬂ/2>, and ¢, = (1, /2 + w/12). Now bi
is connected by line segments to aj and cy, i=1, 2, 3, 4, Note
that four "Vts!" are thus formed.- The point bi will be said to be the
vertex of Vi and a; and c¢; will be called the end points of V,. Note
that if two V's are adjacent then: their vertices are on different
circles.

(3) Now locate three points on the circular arc-betwéen,ai;and
bj’and three peints on the circular arc bet‘ween-pi and 5 j = itl mod 4,
in such a-way that the circular arcs are divided into four congruent
sub-arcs, As in step (2), connect the points lying between V; -and Vj,
j 2 i+l mod 4, in such a way that two new Vis are»formed with verﬁices
on different circles. When all points are connected between each
pair V, and Vj’ a total of twelve Vis will have been formed such

.that no two adjacent V's have vertices on the same circle. Number



Figure 4,

The First Layer of Vig,
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the last eight Vis in a clockwise fashion. beginning with Vs Whgre Vs
is the V adjacent to V; and. in the clockwise direction from Vi. The
end points of the V!s should be numbered so that ay is located in a

clockwise direction frém.cia

This completes the construction of the first layer of V!s,

The result of steps (1), (2), and (3) can be seen in Figure 4.

Figure 5 shows the second layer of Vis., Note that the second
layer includes the first layer., The additional V's in layer two
were constructed by subdividing the circular arcs between the adja-
cent Vis of layer one and proceeding as in step (3) above. Note
that the pattern of having the vertices of adjacent Vis on different
circles and the clockwise numbering pattern have been maintained.

The process of constructing layers of V's is now continued a
countably infinite number of times by subdividing the circular arcs
between. adjacent V's belonging to the preceding layer. The pattern
for alternating vertices and the numbering pattérn_are maintained,

It will not be proved, but it should be clear that thg closure
of the unionAof the infinite collection of Vis is a continuum which
separates the plane.

The goal in describing the circle of pseudo-arcs is. to show
how each member of the infinite collection of V's.can be replaced
with & pseudo-arc.

It might be thought that if L is the continuum formed by the
closure of the union:of the V's then L is homogeneous and perhaps
homeomorphic to a simple closed curve, However, consider any small

neighborhood R of bj. Let C be the component of L n K containing by.

64
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ViSe

Tigure 5, The second Layer of



Then C is seen to be Vi N R. Moreover, L,m(ﬁ - {biD:is the union of
two separated point sets each of which intersect C. Thus b; is a
local separating point (Definition 2.36) of L. Now consider any
small neighborhood Ry of c;. Let Cp be the component of L Ry
cqntaining ¢;. Then C; is Vy n R1. But in this case Cy -{cy} is
connected. Thus if L n(ﬁl - {bi})is the mion of two separated poeint
~sets My and M,, then C; - {ci} is a subset of one of the two sets M;
or My and hence does mnot. intersect the other. Therefore c; is not a
local separating point of L, Thus, it should seem reasonableithat
there does not exist a homeomerphism mapping L to L. end ¢y to,bi.

The existence of peoints of L that are local separating points
and points that are net, make it seem unlikely that a homogeneous
continuum can be constructed by simply substituting pseudo-arcs for
the Vts of the continuum L. The process will be called "replacing
‘the V's'"; however, one of the essential ingredients of the process
(described in property (6) below) is necessary in. order -to .overcome
difficulties caused by the existence of local separating points in
L.

The genéral plan for replacing the V's by pseudo-arcs is to
describe a sequence of circular-chains-in such a way that the i-th
chain covers the i-th layer of Vis and has subchains crooked in sub-
.chains of the preceding chain of the sequence.

The most important properties of the sequence of chains are
listed below, ~ In describing the construction of the chains no
reference will be made:to some of the properties since they are

natural results of the processes necessary for guaranteeing other
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properties, For instance, (8) and (9) are naturally satisfied by
the process used to satisfy (1) through (7). However, (8) and (é)
must be included in order to characterize the necessary 'crookedness!'
with property (10).

The ten properties of the sequence Dy, Dj, D3, . . . are:

(1) The sequence Dy, D2, D3, . . . is a sequence of circular
chains of connected domains.

(2) For each positive integer i, the closure of each element
of D;,, is a subset of some element of Dj.

(3) For each i, each element of D; intersects the annulus bet-
‘ween Wl and Wz,vand not both of two intersecting links of“‘Di inter-
sect Wp U W,

(4) If for each i, §; is the maximum diameter of a link of Di
then éi approaches 0. as i approaches infinity.

(5) The subscripts of the elements of D, which intersect W
_preserve the clockwise order on W, and the subscripts of those inter-
‘secting W, preserve the clockwise order on Woo

(6) If ai"bi’ and ¢, are the end points and vertex of V,, there

is a natural number mi such that the shortest subchain of Dm irreduc-

i
ible from a; to c; contains bj, the subchain of D , irreducible
Mit1 ‘
from a; to bi contains ci, the subchain of D , lrreducible from bi
{42

to c; contains aj, the subchain of Dm s, lrreducible from_ai to ¢y
i+3 '

contains b; and so on.

a3 yo o
(7) (W U W) n (A D)= U fag,by,c)e
i=1 i=1
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(8) For each i, D,

i 1s the union of finitely many subchains

¥ % ’ kS
Tips Tyos o o °"Tini such that (a) Til’ Tios. o o s Tini is a circu-
lar chain, and (b) for each j, Lijgni, Iij‘is either irreducible from

Wy to W, or (for some k) irreducible about {ak;bk,ck}.
g &

T . . LI T

(9) If h < i, each element of {Til’ Y

ini} 1s a subset

of two intersecting links of {Til’ Tﬁz, o . ey Tinh}.

(10) If h < i and Tij is contained in Thk U Tht’ then Tij is
crooked: in Thk U Tht where t = (k+1) mod n, . |

A procedure for constructing Dl and portions of D2 and D3 will
now be given., Attention will be centered on constructing the chains
so that properties (1) through (6) are satisfied. It is not diffi-
‘cult to see that properties-(?) through (9) occur as a natural result
.of the procedureo.'PrOPerty (10) will be omitted because of the
physical limitations imposed by the width of a pencil lead. However,
it will be clear that property (10) could be satisfied without de.
stroying the other properties. The omission of property (10) is not
meant to detract from its significance, since property (10} is ;ctually
the main item which. justifies naming the continuum circle of "pseudo=
-arcs”Q

"To -construct Di proceed.as follows:

(1) Group the vertices and end points of the V's in layer one
in.sets 8§, (k =1, 2, . e. s 12) of three each such that (a) each
Sk is a subset only of Wy or only of W,, (b) each Sy is of the form
‘Cai’bj9ck} i#j, j#k, i#k, (c) no vertex or end point in layer one
is between any pair of points in any particular Sk unless it belongs

to Sk-



(2) Enclose each set Sy -constructed in step (1) in a domain
.such that (a) the domain. intersects W; if and only if Sk intersects
W, and (b) no two such domains intersect,

(3) For each domain D that intersects W, construct two distinct

2
non-intersecting chains such that D:is an end«link of each chain,
the other two end links are the two domains on Wy containing the end
points of the V of layer one whose vertex is in D, and the only

- links of either chain that.intersect Wj U W, are the end links.

The chain Dy is pictured in Figure 6. The only properties in
the list of ten that necessarily apply to Dy are (1), (3), (5), and
(8)., Those four properties are satisfied. However, it can be seen
that if my = 1, then property (6) is also satisfied.

A portion of chain D, will now be constructed. In fact only

the part of D, in the vicinity of Vi will be discussed. However, it

2
should be clear that the process is general and could have been done
for any V of layer one. The subscript "1l" is specified so that
reference can be made to specific points and Vis in layer two.

Since at some stage property (6) must be satisfied, D, will be

. = 1 (and

constructed in. such a way that it is possible to let my

hence m 1= 2), It should be noted that if no attempt~were being

i+
made to satisfy property (6) until some later stage, then D, could
be constructed.in exactly the same manner as Dj, if the additional
restriction imposed by property (2) were appropriately satisfied,

Accordingly, attention will be centered on satisfying property (6).

To construct D, proceed as follows:
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Figure 6. The Chain D,



71

(1) Using the points of layer two instead of layer one repeat
the process described in steps (1) and (2)‘of.the construction of
Dl’ but construct the domains so that property (2) is also satisfied.
For convenience, the domains constructed in thisvstep will be referred
to by the subscript on the vertex of the V of layef two included in
.the domain,

(2) Let Ty; be the subchain of Dy that is irreducible about
al"bl"cl° It can be seen that each end link of Tll contains three
of the domains which intersect Wy constructed in step (1) and that

the interior link of 'I'11 that intersects Wi contains three such

domains that also intersect Wyo (See Figure 7). Being careful to
preserve property (2) construct eight mutually disjoint chains

My, My, « + ., Mg such that (a) the end links of M1 are domains 33

and 12, (b) the end links of M, are domains 12 and 35, (c) the end

2

links of M3-are domains 35 and 1, (d) the end links of M, are démains

4
1 and 36, (e) the end links of M5 are domains 36 and 13, (£) the end

links of M6\are domains 13 and. 14, (g) the end links of M, are domains

7

14 and 5, (h) the end links of M8 are domains 5-and 10. Now the

second part of property (6) is satisfied if 1 =1 and m; = 1. But

also note that for sets of points such as.{a35,b35,c35}'and.[al4,b14,c14},

the first part of property (6) is satisfied. If Figure 7 is examined
carefully, it can.also be seen that properties (8) and (9) are
satisfied, Repetition of the above process within each element . of

chl’ Tygs s » o5 Ty, } will satisfy all appropriate properties.
' 1

Details of constructing the chain D, are omitted; however, if

3
Figure 8 is studied it can be seen that the third part of property
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(6) has been satisfied for the set of pointsv{al,bl,cl}, that the
second part of property (6) has been satisfied for the sets
fa14,b14,c14} and {a35,b35,¢35}, and that the first part has been
satisfied for the new points (marked but not named) from layer three
that appear in the figure., All other properties, except property
(10), are also seen to be satisfied,

, A 0 3
Of course, the circle of pseudo-arcs is just O D?. It can
=1

0 g
be shown that N D, separates the plane and therefore is not homeo-
i=1
o0 - ofe
morphic to the pseudo-arc. Moreover, N Di contains no local separ-

i=1
ating points and hence is not homeomorphic te a simple closed curve.

An Indecomposable Continuum Separating the Plane

This chapter will be concluded with the presentation of an

. example of a continuum which is strongly suspected of being homo-

74

geneous, -but which has not been shown to be so, It is known that this

continuum is hereditarily indecomposable and separates the plane (3).

Let Dl’ D . ».. be a sequence of circular chains such that

27
(a) each link of Di is. the interior of a circle with diameter less
than 1/1i, (b) the closure of each link of Di+l is containeg,in a
link of Di’ (¢) each complementary domain of D§+l contains a comple-
mentary domain of D?, and (d) if E;, is a proper subchain of Diband
Ei+l is a subchain of Di+1 contained in Ei’ then Espq is crooked in
-Eio

It is by no means obvious that a sequence of chains with the

asserted properties. actually exists. in the plane. The proof that



the coentinuum is indecompesable and separates the plane includes
suggestions that help teo establish patterns useful in constructing
the sequence Dy, Dy, o 4 o (3)., However, if Dl.haS'less than four

links then no restriction on D, is imposed by property (d). If D,

2

has four or more links then property (d) forces D, to have so many

2
links that it is virtually impossible to show both D; and D2 in one
illustration. Hence no illustration for this example has been

included.
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CHAPTER IV
THE CLASSIFICATION OF CHAINABLE HOMOGENEOUS PLANE CONTINUA
INTRODUCTION

The goal of Chapter IV is to‘show that the list of examples
presented in Chapter III sufficiently illustrates all types of
chainable homogeneous bounded plane continua known to exist. This
will be accomplished by presenting a classification system for chain-
able homogeneous bounded plane continua, and then‘proving that such
continua always belong to one of the classes”in that system.

The results appearing in this chapter indicate that every
chainable homogeneous bounded plane continuum must belong to one of
the following four classes:

Type 1: Pseudo-arcs.

Type 2: The simple closed curves.

Type 3: Circles of pseudo-arcs.

Type 4: 1Indecomposable continua that separate the plane.

The question of whether continua of type four actually exist
was discussed in the last section of Chapter III. Examples contained
in Chapter'III show that continua of type one, type two, and type

three can be constructed in the plane,
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Many of the proofs necessary for showing that the four classifi.
cations given above exhaust the set’ of homegeneous. bounded plane
continua are exceedingly long. Some require an extensive.development
. of topological concepts not considered in this paper. However, several
of the fundamental theorems can be presented in a manner that will
require very little additional work to be done by the reader. The
proofs of most of the other theorems can be outlined with sufficient
details so that the more knowledgeable reader can supply the remainder
of the proof with the assistance of the references listed. Only
one major theorem will be severely neglected, Thé conclusion of that
theorem is that all homogeneous decompesable bounded plane continua,
that are not simple closed curves, are circles of pseudo-arcs.

This particular theorem is one of those that is dependent on the
presentation of several additienal topolegical concepts. But more
importantly, any sort of proof of the theorem would require that a
proof of the homogeneity of the circle:of pseudo-arcs be;giyen.

The proof that any two circles of pseudo-arcs are homeomorphic is
merely one of the side results of the proof of the homoegeneity .of
such continua. The proof. of.the.hemogeneity.of the circle of pseudo-
.arcs is prohibitively long, even in the condensed version in which

it was originally published (7). " Hence, this result will be given
but the proof will be indicated by.reference.

The results contained in the second section of this chapter do
not at first appear to contribute to the problem of classifying homo-
‘geneous bounded plane continua., Hewever, the fact that the only .

locally cennected homogeneous bounded plane continua are the simple
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.closed curves is useful in the fourth section in .the proofs. of some

-obviously important results., Theorem 4.3 of the second section of
this chapter could have been listed as a lemma in the fourth section.
However, it was felt that the conclusion of Theorem 4.3 was suffi-
‘ciently interesting to be presented in a separate section.

The main result of the third section of this chapter, that a
simple ‘closed curve is the on1§ homogeneous bounded plane continuum
,containing:an:arc, does not contribute to the main purpose of the
chapter. However, since.the result is closely related to the prob;
lem and since the second section:of the chapter sets the stage for
-its proof, the theorem is given along with a brief resumé of its
proof., I

The last three sections of the chapter contain the remainder
of the theorems necessary to assure that the types one, two, three,
and four, given previously, are actually sufficient to exhaustively‘

classify homogeneous bounded plane centinua.
Locally Comnected Homogeneous Continua

The purpose of this:section will be to prove that the only
locally connected homogeneous bounded plane continua are the simple
closed curves. - The theorem that is actually proved is slightly- strenger
in the sense that the hypothesis of homogeneity is not used, but is
replaced by local homogeneity in the proof.

Two' lemmas are required to establish the main:result. Since
the first of the two lemmas contains a result that is related to the

topic- of this chapter, its proof is included. The second lemma is
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stated without proof; however, the proof may be found in the reference

cited,

Lemma 491: If M is a locally connected, locally homogeneous,

.nondegenerate, bounded plane continuum, then M contains .a simple

closed curve,

Proof: Suppose the theorem is false. Then it is clear from

‘the definition of dendrite (Definition 2.17) that M is a .dendrite.
It is known that every point of a dendrite is.either a cut point or
an end point and that every pair of points of a dendrite are separ-
ated by a third point (28; 88, Theorem 1.1). Since M is.nondegenerate,
it follows that there exist poeints of M which are not. end peoints.
That is, M must contain cut points. Now every nondegenerate compact
continuum has at least two non-cut points and so M also has end
points (24; 38, Theorem 93). An end point of M is defined to be a
point of M with Menger order one with respect to M (Definitdon 2.33).
So if an end point is a non-cut point, then cut.points must have
Menger order greater than one.

~ Let x be an end point of M and y be a cut point of M, Since
x and y have different Menger orders with respect to M, then Theorem
2,32 implies that there do not exist open sets E and F with respect
to M containing x and y respectively and-a.homeomorphism mapping E
to F . and x to y., This contradicts the hypothesis.that M is locally
homogeneous.,

Therefore, it must be true that M contains a simple closed curve.
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Since the result of the next lemma is of no particular interest
other than as a tool in the proof of Theorem 4.3, and since the lemma's
conclusion. is rather easy to visualize, no proof for the lemma is

given. The proof can be found in the reference cited,

Lemma 4.2: Suppose the simple closed curve J is the boundary
of a complementary demain of the locally connected plane continuum
K. Let W be a connected open subset of K containing the open arc
(ab} ef J, but neither a nor b, Then, if the open arc (ab) contains

no local separating point of K, it does not separate W (9).
The main result of this section can now be proved:

Theorem 4.3: If M is a loecally connected, locally homegeneous,
nondegenerate bounded plane continuum, then M is a simple closed

curve.,

Proof: Lemma 4.1 shows that M must contain a simple closed
curve: C.

Suppose M is not.a simple closed curve, then there exists a
point-py of M that does not belong to C. Let P, be any point of C.
It is known that every pair of points of a locally connected con-
tinuum may be joined by an arc lying in the continuum (28; 36, Theorem
5.1), Designate some arc. from p; top, that lies in M by PPy It
is not difficult to see that some peint on the arc PPy has Menger
order of at least three with respect to M, In particular, the first
point on PPy in the oxder fromvpl to p, that belongs to C has Menger

- order greater than 2 with respect to M, Hence, by Theorem 2:32, every
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point of’M has Menger order of at least three.

Now M has no local separating point:because if there exists a
local separating point of M, then by the local homogeneity,eve;y
point of M is a local separating point. But this is impossible since

.all save a countable number of the local separatingrpoints~of M must
be of Menger order two (28; 61, Theorem 9.2)., Therefore, M has no
separating point.

Since all locally connected conti;ua that do not have separating
points‘arevcyclicly connected then M is eyeclicly connected (28; 79,
Theorem 9.3). |

’Now the boundary of each complementary domain of a cyclicly
connected, locally connected, locally compact continuum is a simple
closed curve (28; 107, Theorem:2.5)., Thus, the boundary of each
complementary domain of M is a simple closed curve.

"It will now be shown that there exists a point of M which is
not on the boundary of -any complementary domain of Mab Suppose that

. this is not the case., Then M is the union of simple closed curves,
each of which is the boundary of a complementary domain of M. Since
any two complementary domains of a continuum are disjoint, and since
the complementary domains of M are bounded by simple closed curves,
then M has at most a countable number of complementary domains. Thus,
M is the union of a finite or, at most, a countable number of simple
closed curves., If M is the yanion 06f a finite number of simple closed
curves, then cerfainly‘one of those curves contains an open subset

of M. Since no locally compact closed point‘sef M is the wunion of

countably many peint sets such that if K is any one of them, every



82

point of K is a limit point of M - K, then even if M is the union of a
countable number of simple closed curves, one of them must still
contain an open subset of M (24; 21, Theorem 53)o It should be clear
than an open subset of M which is also an open subset of a simple
closed curve can contain no points of Menger order higher than two.
But this is impossible because every point of M has Menger order three
- or-more. Therefore, there exists some point q of M which is .not on

. the boundary of any complementary domain of M.

Let p be any point on the boundary J of a complementary demain
. of M, Because M is locally homogeneous, there exists a homeomorphism
between two open subsets E and F of M containing.p and q respectively,
such that p is mapped to q.

Consider any arc containing p, say [cpd], lying: in E. Let the
image of [cpd] be [ciqd!], There exists a circle G such that q is
the center of G, the interior of G intersects M only at points of F,
and neither ¢! nor df belong to the interior of G, Now the interior
of G will contain aﬁ-open subarc (xiqy!) of [ciqd!] which. separates
the interior of G into two domains D; and Dzs

Let H be the component of the common part of M and the interior
of ‘G that contains (x'qy'). With reference to the homeomorphism
between E. and F, let V be the inverse image of H., The inverse image
of (x1qy!) will be denoted by (xpy). By Lemma 4.2, V - (xpy) is
connected. This means that H - (x'qy') is a subset of D, or Dj.
Without loss of generality, suppose H - (x!'qy’) lies in Dy. Now H
being the component of the common. part of M. and the interior of G,

and (x'qy’') being part of the boundaries of both Dj and D, imply
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“that q is on the boundary of .a complementary domain of M., This is

a contradiction.
Homogeneous Continua Containing an Arc

‘Theorem 4.3 is.thenpointsfromvwhich one starts in order to prove
that the simple closed curve is the oniy homogeneous . bounded plane
continuum that cqntains an arc. - A very brief outline of the remainder
of the proof is given below., "It should not be supposed that enough
of. the proof.isvgivgn»that‘the details would be.easy to supply. Each
statement should be viewed -as a lemma requiring a lengthy.proof to

verify,

- Theorem 4.4: The only homogeneous bounded plane continuum that

.contains an arc . is a simple closed curve.

Indication of Proof: Suppose there exists a homogeneous bounded
plane continuum M that contains an arc but is not a simple closed
curve. ' The proof that no such continuum can exist is accomplished
by investigating the properties which such.a continuum would have
to.pessess, Ac-list of twenty properties can be obtained. ‘It can: be
shown that the twentieth property leads to a contradiction., In.order
to illustrate the relationship of Theorem. 4.4 to Theorem 4.3, compact
descriptions of the proefs of the first five properties are given.
The remaining fifteen properties can be‘estabiished in the order
given but generally. require several rather lengthy lemmas for their

complete demonstration.,
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Property 1. The set M is not locally connected. This property
is immediate from Theorem 4.3,

Property 2. The set M is noet connected-im kleinen (Definition
. 2,15) at any point, .If M were connected im-kleinen at some point
then by the homogeneity of M, it would be connected im kleinen at
every point. But a continuum conneéted'im kleinen at: every point
~is locally connected (24; 90, Theorem 10)., This contradicts Prop-
erty -1, |

Property 3. The set M contains an open set U with uncountably
‘many- components, Property 2 provides the key for proving this
property.

" Property 4. -The set M contains no simple triod (Definition

2,26). ‘The homogeneity of M implies that if M contains a simple
triod then{every’component in. U contains a simple triod. It .can. be
- shown that the plane~contaiﬁs,at most a countable number of triods.
This: contradicts. Property 3.

- Property 3. The set M contains no simple closed curve. It is
possible to prove from Theorem 4.3 that the simple closed curve is
the only homogeneous bounded plane continuum containing a simple
closed curve.

Property-6.~ Each ray (Definition 2,10) in M is the union of a
countable number of arcs,

Property 7. For each point p of an arc camponent.é'of M
(Definition 2.8), A is. the union of two rays Ry and R2 starting at

p such that the intersection. of R, and R, is p.

1

"Property 8, The set'M has uncountably many arc components.
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Property 9. If R is a ray of M and p is a point of R, one of
the rays starting at p lies in R.
Property 10. 1If Rl is the closure of a ray of M, it contains
a continuum'R that is irreducible with respect to being the closure
of a ray.
- Property ll., If R is a ray in an arc component A dva,ii»= A.
Property 12, If the closures of two arc components of M inter-
sect, -the closures are equal,
" Property 13. The closure of each, arc component-A of M is homo-
geneous.
By making use of the thirteen,prnperties listed thus f§r, it
is now possible to prove that the existence of M implies the existence
of another continuum M'!' which is the closure of one of its arc com-
- ponents. That is, properties one through thirteeniimply the existence
of a homogeneous bounded plane continuum 'M' one of whose arc come
-ponents is dense in M! but which:isvnot_a simple closed curve. The
remaining seven properties are properties.which~can be shown to be
possessed by Mt,
Property 14, If C is a non-degenerate subcontinuum of M!' that
is net an arc, then C intersects uncountably many arc components
of M1,
Property 15. Each noﬂmdegeneratevproper subcontinuum of M!
is an arc.
Property 16. The set M! is indecomposéblee
Property 17. For each positive. number € and each arc xy in M?

there is an sachain dys dz, s o. 05 @ covering. xy such that x belongs

n
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to dl’ y belongs. to dn’ and the common part of M' and the union of

the boundaries of d dy, o 0w, dy is a subset of the union of

1°
'31 and ano

- Property 18. For each positive number ¢ there is a positive
number & such that if ab-.is an arc in M!' with the distance between
a and b less than §, then either the diameter of the set containing
'thevpoints,of ab is.less than ¢ or_each.pqint of M! is within.a dis-
tance of ¢ of some point of ab.

Property 19. If a point p of M! is accessible (Definition
- 2.40) from a component T of the complement of M! in the plane, each
point of any arc in M! is accessible from T,

Property 20, ‘The set'M! contains a folded sequence of arcs
(Definition 2.24) converging to an arc.

The proof of Theorem 4.4 can now be completed by proving‘that
it is impossible for the compact continuum M' to contain a folded

sequence of arcs converging to an arc (2),
Homogeneous Continua That Do.Not Separate the Plane

The main result of this section is contained in Theorem 4.8,
This result will show that every homogeneous bounded plane continuum
which does not separate the plane must have one of the prominent
features of the pseudo-arc. That is, such continua are always inde-
composable.

It may seem strange to include details of the proof of the
following lemma when it is noted that many details of the proof of

the main theorem (Theorem 4.6) resulting from the leamma have been
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omitted. However, more than just the conclusions of the lemm- are
~utilized in the proof of Theorem 4.6. Certain facts that aré noted
in. the proof of the lemma are used in proving Theorem 4.6, as well
as certain techniques that occur in the proof. vInxparticular, the
technique which shows how a certain uncountable sequence of points
can be.created, is a useful tool in filling in details that have
been. omitted from the proof of Theorem 4.6. Hence, the inclusion

- of the details of the proof of Lemma 4.5 make it possible to--omit

many details from the proof of Theorem 4.6.

. Lemma 4,5: Let M be a homogeneous bounded plane continuum.
Let x and y be distinct points of M. TFoer every point t of M denote
by U, the set of all points z of M such that M is aposyndetic
(DPefinition 2.19) at 2z with respect to t. Then-Uy is not a proper

subset of U_.,
- UX

Proof: -Notice first that the definition of aposyndetic' shows
that Ut is open-in M for every point t of M.

Suppose that Uy is a proper subset of Ux' Since M is homogen~
eous, there exists a homeomorphism T such that T(M) =M and T(x) =y,

Let p belong toyU%o Then M contains. a continuum Kp andla‘subset
v

Vp open in M:such that p belongs to V is a subset of Kp’ and

, P’ 'p
Kp is a subset of M ,{x}u Now T(Kp) is a continuum in M, T(Vp) is a
subset of T(Kp) which is open in M, and T(VP) contains T(p). Also,
T(Kp)~is a subset of T(M - {x})-= T(M) _-{T(x)} =M - {y}. 'Hence,
T(p) belongs to Uy, and so T(UX) is a subset of Uye Now let p belong

to Uys Since T is a homeomorphism, there exists a point z.of M such



that T(z) = p. Because p belongs to Uy there exists a continuum

KP that is contained in M - {y} and. a set'Vbropen in M which is a
subset of Kp:and contains p. The open set T“l(VP) contains:the~peint
vTal(p) =z and is contained in the continuum‘T°1(KP).,'Now'I°l(Kp)
is»contained'inﬂTal(M‘a {y}) = T“l(M) m'{T°1(y)} =M - {x}., That is,
z belongs to Uy, But if z belongs.to.Ux then T(z) = p belongs to
T(Uy) - Therefore,.nyis:a subset of T(Ux):and it follows that

Uy = T(Uy).

yl
By definition of aposyndetic there exists a continuum Kp and a set

. _ K _
p is a subset Qf , and Kp

is a subset of M - {y}. The set T(KP)'is a continuum in M, T(Vp)

It will now be shown that‘UT(y) = T(Uy). Let p belongﬂto U
Vp open in M such that p belongs to Vp’ Vv

is open in M and is a subset of T(Kp)' Also, T(Kp) is a subset of

T(M - {y}) =M - {T(y)}. This shows that'T(Uy)-is a subset of UT(y)°

" Let p belong to UT(y>o There exists,a»continuum'Kp and a set VP

open in M such that p belongs to V_, VP is a subset of Kp’ and KP

is a subset of M - {T(y)}, Now the centinuum T“l(KP)~is a subset of
M- {y}. Also, T“l(Kp)'contains the set T“l(Vb) which is open in M
and contains T“l(p) = z, .Hence, z belongs to(Uy. This means
"T(z).= p belongs to T(Uy). Thus,;UT(y) is a subset of T(Uy). it
follows that UT(y) = T(Uy).

‘Since Uy'is a proper subset of.Ux,and T(Uy) is equal-to U,
then T(Uy) is a proper subset of Uy. »Thhs, UT(y)vis a proper subset
'Qf_Uy.
Now y # T(y) because Ur(y) is a proper subset of Uy. The

hypotheses of the theorem are now satisfied by y and T(y). That is,

88
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y and T(y) are distinct points of M such that UT(y>’iS a-proper

subset of Uy@ Therefore, the same reasoning as that used in the
preceding three paragraphs can be applied to show that T(y). and T(T(y))
are distinct points, and that UT(T(y)) is a proper subset of UT(y)e

The process thus far described can be repeated a countably infinite
number of times to produce the sequence, X _, X;, Xg, o o o, where

e vy x_=T™y), « » -, and for each

= T(y), 0

X, =X, % =y, X

2

positive integer n,.an“isva proper subset of U, 'la Alsg, if 1.# j
T N

i

then x, # x; because if x; X then Uxi = ij.

The continuum M is compact and so the sequence X, xl, XZ’ e o o,
has a limit point % in M. Let p be a point of U, . There exists '
W
a continuum KP in.M and a set Vp open in'M such that Vp is a subset
of Kp containing p and KP is a subset of M =@%§o Since_Kp is closed

and does not contain xw;then there must be an infinite number of

points of the»sequence~xo, Xys X9y o vl that do not belong to Kp.

Hence, for infinitely many positive integers n, M m{x } contains
n

KPo That is, for infinitely many integers n, M is aposyndetic at

.p with respect to x,. This means that for infinitely many integers

n, p belongs to U, - Now U_ . is a subset of U for every n. Thus,
Xy Xn : .xnm1

p belongs to all U, . It follows that UX' is a proper subset of

n Y
every Uxﬁc It also follows that Xw»# x for amy n because if X, = xn
then U, .= U  'which would mean that Uy  is also a subset of U_ 0
X Xn n x

But this is not possible because Uy +1.is a proper subset of U_ o
R sl
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Since M is homogeneous, there exists a homeomorphism Tl such
that Tl(M) = M and Tl(x)A= X o

Consider the map TITTilo Certainly TlTTil‘is a homeomorphism
. =1, _ . .
of M onto itself, Let Terl‘(xw> = xwlo Then, as argued in previous

cases, TlTTil(Ux ) =U, . Notice also that TlTTIl(Ux ) = TlT(Ux) =
W W W
"1

Tl(Uy). ‘But Uy is a proper subset of Uy and Tl(Ux) = wa. Thus,

,Tl(Uy> is a proper subset of U . That is, Uy 1is a proper subset

W w1

of Uy, . The argument used to show that the points of the sequence,
"X ;

X c.s o, are distinct can be applied to show that“xw

09' x19x2’ 1

does not equal xy nor any x, that precedes X o
It will now be shown that the process thus far described can
- be carried out in such a way that an uncountable sequence of sets,

Ux_, U, Ug 5 o0 oy is produced. It should be clear that the pro-
0 1 2 . .

“cess described produces sequences.that may be dependent on the partic-
‘ular homeomorphisms T and Tl‘that are selected. Since it is‘not
' necessarily true that T is the only homeomorphism which maps M to M
and X to.y, then the sequence produced: by the process may not be.the
only«séquence with the ascribed properties. It will be shown that
" some  such sequence must be uncountable.,

Let S be the class which contains every sequence of sets that
can be produced by repeating the process, and suppose that each

element of S is a countable sequence. Now if S, is an arbitrary

member of S then (1) Sa = qal’ Qa R Ua3

) s o e oy (2) S, is countable,

(3) Ual = Uy, (4)3Ua21= Uy’ (5) qah is a proper subset of every yak



that precedes it, and (6) U, is open for all n.
2n

Let S, and S, be elements of S. Define the relation (i) by

-sa < Sb if and only if Ua s Ug s U 5 o0 o, U ~is an initial seg-

1 T2 % t
ment. of 5, implies that U, = U; U =Uu g =71 oo o
“a : H] ’ g - ’ »
2y byt Tay byt Ty thy
'Ua = Ub . The notation chosen for initial segments is intended to

t t

indicate that they may be either finite for infinite. Indeed, the

‘process used to create U, , U_ , U, , - ... shows that initial seg-
p Ry Cxy X, ‘ g

ments may be infinite and still not include the whole sequence.

Note also that S, < Sy, simply means that S is an initial segment
= a . {

of Sy. It follows that if S, < Sy then. S5y < Sa if and only if

Sy = Sy, and that if S, < S5y and S < SC then 5, < S,. Hence, the

relation (<) produces a partial order on S,

A sequence of elements of S, say Sa], S. , 5. , ¢ o o, 1s

22

called a chain if and only if Sal.g S, <8 <. s oo Let B=

27 737
S ,8, ,5. , o . o be a chain in S and consider the union of the
elements of this chain, B*, Now B* will be a sequence, say

‘Ue s U 5 Us 5 o o o, such that every initial segment of B* is an

1 %2 73
initial segment of some element of B. Since B* is a countable union

of countable sequences then B* is a countable sequence. Also, by

the definition of the elements of B, (1) U, =U_, (2) U_ =1U_,
: 5al c a .G
1 2 2
(3)rUC is a proper subset of every U, that precedes it, and
n k

(4 U is open for every n. The fact that every initial segment
gn P y v g

of B* is an initial segment of some. element of B shows that B¥* can
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be produced by the process. that produced the elements of S. Hence,

B¥* belongs.to S. If S, 'is an element of B, then:Sakris an ‘initial
“k

segment of every element of B that follows Sak and so Sa is also an
k

initfal segment of B*. That is, B* is an upper bound of the .chain
B, .Since B was an arbitrary chain in S then every chain of S has
an upper bound. Therefore, by Zorn's Lemma there exists an element

Sp of S such that :i’.f.Sp belongs. te S and S, < S, then Sy, =5

P P

(17; 33, Theorem 25).

Let %, xl,-xbz, Xy 500 . .be the sequence of points.that
3

corresponds to Sy = Ux ,‘le, UXb ’ Uxb s o e

© 2 3

s where x = x and

X1 = Vo Now.Xg5, X1, Xy 5 o o is a sequence of distinct points

.of the compact continuum M, Therefore, there exists a limit point

xy, . of the sequence that belongs to M., The same argument used to
W : ‘ :

extend the sequence, Xos Xys X3, ¢ o e, O include its limit point

Xy Ccan now be used to extend the sequence, Xg5s xl,‘xb s ». 0 0o, LO
‘ 2

include its limit point x, . The same argument shows that U is
P bw *,

w

a proper subset of every-element of Sy. Thus, if S, =Uy ; U,
)

*1
U s o o o UXb » then Sy, belongs to S, But Sb'ﬁ qu and
2 W

Sy, # Spi» This contradicts the definition of Sbo
Therefore, the assumption that every element of S is countable
is false.

Let the sequence, U, , Uy , U
o o

1 X,ooo,U 9. o o oy be some

-uncountable sequence in S. Then this sequence is well-ordered,
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uncoumtablegnmonotonically decreasing, and each member of the se--
quence is an open set. Each member of the sequence is a proper subset
of all members of the sequence that precede it, so it is possible

to select the sequence Y of distinct points ¥ = Y12 Y25 Y35 o o s

in sdch.a'way'that‘yw belqngs‘tovUXw but to no member of the se.-

quence that follows,UxW. Since M is compact, then: every uncountable

subset of Y has a limit point. Therefore, there exists a point‘.yv
of Y which is a limit point of the set of all points of Y that pre-
cede y,,-in Y and a limit point of the set of .all points of Y that

follow'y, in ¥, (24; 3, Theorem 6). But va is ‘an open set con-

taining. y, but no point of Y that precedes y, in Y, This is a
contradiction.

.Therefore,’Uy/is not afproper subsec.of Ugo

A complete exposition of the proof of the following theorem
would require the development of several concepts which are not

considered in this paper., An outline of the proof has been provided.

Theorem 4,6: A homogeneous, hereditarily unicoherent, bounded

“plane continuum M is indecomposable,

Indication of Proof: Assume M is not: indecomposable. 1t is
kneown that a cempact continﬁum M is indecomposable if and only if
there do not exist two distinct points x and y- of M such that M is
aposyndetic at x with respect to.y (13; 407, Theorem 9). Therefore,
‘the assumption that M is not indecomposable is equivalent to the

~assumption that there exist two points x and y of M such that M is



aposyndetic at y with respect to x., That is, for some point x of M
the set Uy is non-empty. As was noted in the proof of Lemma 4.5,
since Uy, 1s non-empty for some point.x of M, and since M is homo-
geneous, then U, is non-empty for every point z of M.
Let x be an arbitrary point of M and let H be a set such that
y belongs te H if and only if U, = Uy’ Define U = Uxﬂfor all x in
Ee “As in the proof of Lemma 4.5, it can be seen that U is open.
Also, it is clear that H is a subset of M - U, Lemma 4.5 can be
~used to establish. that the set H is closed.
It is impossible for every point of a compact continuum to cut
every point of a domain relative to the continuum from every point
of another domain relative to the continuum (6; 501, Corollary 2).
If it is assumed that some point x of H cuts a point wyof M from a
point 2z of U but that x does not cut w from some other point of U,
then the homogeneity of M leads to a contradiction of the preceding
statement. Thus, if x cuts a point w of M from a point of U, then
x cuts w from all points of U, It can be shown that U is a subset
of Uy,» Lemma 4.5 will then imply that U = U, and hence that w also
~belongs to H. |
If o is a point of H, let Nj be the set of all points x of H
such that x cuts o from U, For every point o of H the set Ny is
closed and o cuts all points of N, from every point of U.

The set H does mot contain a domain with respect to M, For
suppose H contains a domain D, Let o be any point of H and con-
~sider the set Nj. ‘Suppose D is also a subset of Ny, If this were

true, then since every point of N, cuts every other point of N
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from each point of U, it follows that any point x of D.would cut
every point of the domain D cfx} from each point of U. But the homo-
‘geneity of M would then imply that every point of M would cut each
.point of some open subset of M from each point of some other open
subset of M. As noted earlier in this proof, such a situatien can-
not occur in a compact continuum (6; 501, Corollary 2). Hence, D

is not a subset of N,, Thus D - D.A N, is non-empty. Since‘Nd is
closed, then D - D N N, is a demain. Suppose M is aposyndetic at
some point X of D - D.N N, with respect to some point y of Noo By
definition of Uy’ x belongs to Uyo Since y belongs to Nj which

U, But x belongs to D which is a subset

is a subset of H, then Uy':.

of H and so Uy = U. Therefore U = Uy. This' is impossible because
it would imply that x belongs to U,. Hence, M is aposyndetic at no
point of D - DN N, with respect to a point of N . The following
conditions are now clearly satisfied: (1) M is a compact continuum,
(2) D = D:n N, is an open subset of M, (3) N; is a closed subset of
M such that (D - DN NO) N N, is empty. (4) M is not aposyndetic
‘at any point of D.- D:N N, with respect to a point of N,. Hence,
if z belongs te U, D - D N No containé‘a point x and No contains a
point v such that y cuts x from z (13; 405, Theorem 6), As pointed
out at.the end of the preceding paragraph, this means y cuts x from
every point of U, Therefore, x belongs to Ny. This is clearly
‘impossible, because x belongs to D - D N Nyo 1t follows: that H
contains no domain.

Since U is open in M, then M - U is clogsed, It can be shown

that'M - U is comnected and hence that M - U is a continuum.
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Suppose the domain U is not dense in M. ThenuM - U is not
empty. The set M - U is nbt a subset of H bécause M . T is a domain
with respect to M and H contains no domain with respect to M. Thus,
M - (0 n H) is non-empty. Since U and H are closed, then M - (TN H)
is open with respect to M. Let y be a point of H. By definition
~of U, M is not aposyndetic at any point of M - (U N H) with respect
to y. Let z be any point of U, As in the preceding paragraph,
sufficient conditions have been satisfied to guarantee the existence
.of a point x.in M - (TN H) such that y cuts x from z in M. The
argument in paragraph four of this proof shows that x belongs to
vHe‘_Obviously, this-is a contradiction because x belongs to
M - (0 n H), Therefore, U is dense in M,

The facts that'M is homogeneous and hereditarily unicoherent,
U:is dense in M, and M - U is a continuum can be utilized to show
that 1f o is an arbitrary point of H, then N, =M - U,

Now by definition of Ny, Nj is a subset of H., By definition of

o

H, H is a subset of M -~ U, Since M - U = N_, then N, = H.

It has now been shown that H is a continuum, ang.that the union

-of H and U is M, Also, H is the boundary of U and every point of H

cuts every point of H from every point. of U,

If G is defined to be the collection of all images of H under
homeomorphisms of M to itself, it ¢an be shown that G is an upper
semi-continuous collection of point sets (Definition 2.,44) filling

up M, " With respect to its elements as points, G can be shown to be

~a continuum M! which is compact, aposyndetic, homogeneous, and hered-

itarily unicoherent. Under these conditions M' must contain a
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‘nonseparating point (24; 38, Theorem 93; 13; 404, Theorem 0; and 29;
737, Theorem 6.6), Since M! is homogeneous, it follows that every
point of M' 1s a nonseparating point,

Let a and b be distinct points of M! and T be an irreducible
subcontinuum of M from a to b, Let x be any point of T distinct
from a and b, Since x is a nonseparating point of M!, there exists
a continuum Ty in M - {x} that contains both a and b. But M! is
hereditarily unicoherent. So the common part of T and T is a sub-
‘continuum ceontaining a and b but not x. This contradicts that T
was. irreducible from a to b,

This. contradiction is sufficient to imply that the original
assumption of the existence of the sets.U and H was invalid.

Therefore, M must be indecomposable.

Some additional details that were omitted from the preceding
proof can be found in the paper, ''Homogeneous Unicoherent Indecom-
-posable Continua," by F. B. Jones, which is listed in the bibliog-

raphy -of this paper.

Theorem 4,7: 'If M 'is a homogeneous bounded plane continuum

that does not separate the plane, M is hereditarily unicoherent,

Proof: Suppose M .is not hereditarily unicoherent. Then there
exist two points % and y- of M such that there exist at least two

distinct irreducible. subcontinua C, and C, of M from x to y (21;

1
179, Theorem 1.1). The common part of Ql and CZ is not connected

because if the commen part were comnected then it would contain a

subcontinuum from x to y. Since Cj and C are distinct, that
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subcontinuum would have to be a proper subcontinuum of Cl‘pr Cyo

But this.is not poessible because C1 and C2 are irreducible, Hence,
there exist two complementary domains H.and K of C; UGy (245 175,
Theorem 22)., Therefore Cy U C, separates the plane., Let S be the
plane and S»a‘(cl U.CZ)‘=_H1 U K; where Hy and Kl are open sets with
no points in coemmon.

Now S - M.= (H; - M)y (Ky - M) and neither H; - M nor K; - M

1
is empty. For suppose either Hy - M or K; - M is empty, say Hl - M,
Then Hj is an open. set that is a subset of M. But Theorem 4.3 implies
that M is not lecally connected, Since M is homogeneous then M can-
not :be-locally. connected at any point. Therefore, M cannot contain

H.. It follows from S - M = (Hy - M) U (K1 - M) that M separates

10
the plane. This is a contradiction and so M must be hereditarily

unicoherent.

Theorem 4.8: If M-is .a homogeneous bounded plane continuum which

does not separate the plane then M is indecompesable.

Preof: The theorem is an immediate result of Theorems 4.6 and

Go7
Homogeneous Linearly Chainable Continua

In the preceding section it was shown that all homogeneous
bounded plane continua‘that do not separate the plane are indecom-
--posablgo Theorem 4,9. in this section will show that all compact,
hereditarily indecomposable, linearly chainable continua are-homeo-

"morphic, The definition.of a pseudo-arc given: in Chapter III together
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with Theorem 3.5 show that a pseudo-arc is a nondegenerate, heredi-
tarily indecomposable, linearly chainable, compact continuum. Theorem
4,10 will prove that every homogeneous, nondegenerate, linearly
chainable, compact continuum is a pseudo-arc. Thus, the results of
this section together with those of the preceding section, are suffi-
cient to prove that all homogeneous bounded plane continua that do

- not separate the plane are homeomorphic and.are pseudo-arcs.

Theorem 4.9: 1If M; and M, are compact, nondegenerate, heredi-
tarily indecomposable, linearly chainable, continua, then M; and M,

are homeemorphic.,

Proof: Since Ml is linearly chainable, there exists a sequence
of chains, Cy, G, Cas o o o, such that no- link: of Ci has diameter
greater than 1/i, each element of C; intersects M, and the closure
‘of every link of C;y; is contained inm a link of C;.

It will be shown that the fact that M; is hereditarily inde-

composable implies that for some integer n,, an is crooked in Cy.
Let the links. of Ql be Cyypo le’vc13’ o o ey clnlc Suppose

no chain of the sequence, Cl’ CZ"C3’ o o o5 18 crooked in Cla
Then there exist links_qlh and Cig of ¢y such that k-h > 2 and for

infinitely many integers m, G = (cml, Cpo? ° ° °» can> has two

llnks»cmi and ij in ¢y and ¢y respectively such that if ¢ p L8

in ¢yep.1) and between ¢ i and’cmj, then there is not a link .of Cm
in ¢

which is between Cp and 3 The preceding statement

1(n+l)

is less confusing when it is noted that all the assertions of the

r

sentence are justified by the existence of infinitely many chains
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in the sequence, Cl’ CZ’ 03, « s o, that are not crooked in'Cy. It

.can.be supposed that the link.cmr identified above is.such that no

.link of C_-is contained in Cl(ksl)=and is betweem~cmi and ¢ .. Let

- W, be the union of ¢ , and the. links ovam;betweenvthem. Let

wi’ Spr

Vm be the union of c¢

mr? Smj? and the links of Ca between ' them.

A sequence, a;, 2,, a o o o,.0f integers can be selected

3’

in such a way that the sequences, W W, W, , o . o.and

ap’ Ta,’ ag
V. ,V_ ,V_ , . . ., converge (24; 24, Theorem 59).,
a a a,’
1 2 73
Let W be the\limiting set of Wal, W, o Wa,, o o o and let V
2 3 '

be the limiting set of‘Val, Vaz’ Va,s
continua (28; 14, Theorem 9.1). Now W intersects the closure of C1h

5 oo so Both W and V are

but not the closure of ¢y and V- intersects the. closure of c1k but

not the closure °f‘clh° Thus W.and V are distinct. But W and V
.are not.disjoint because for every m both Wm and,Vﬁ contain the
- 1link Cor
A contradiction has been reached since it is now possible to
.conclude that the hereditarily indecemposable continuum My has a

decomposable subcontinuum V |y W.

» L] [ .y

Therefore, there exists a subsequence, C_ , .G
. . nl nz . n3

.Of Cl’ GZ’ C3, 6. 5 @ -Such that Cn.° iS choked in Cnoo
i+l o1

The . continuum M, has uncountably many distinct composants (24;
-59,.Theorem 139). -Therefore, there exist two distinct points p and
q belonging to different composants of Mio For every-i, let W; be

the union of the links of the subchain of C, from p to q. The
i

_argument . contained in the third paragraph of the proof of Theorem
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3,8 shows ;bat the:limiting set of WL9 Woy o o o 1s a continuum cone-
taining p ahd g. Since p and q belong to different composants of My
and the limiting set of Wl’ WZ’ W3, o 0.0 is a subcontinuum of ¥l
containing p and :.q, then that limiting set must be Mla ‘It follows
that fer every. integer j, some»Wk (k > j) intersects both the first

-and last' links of C_., and hence the subchain an intersects the first

j’
and last’ links of an.
The hypotheses of Theorem 2,68 have now been satisfied. There-

fore, there is a chain E; such that the first link of Ej contains

3
- p, -the last: 1link contains q, Ej'is‘a consolidation‘of.Cnj and each
. 1ink of Ej'lies in. the union of two adjacent links of an, It is
clear that the diameter of every link of E; is less than 2/j.

]

A short induction argument that makes use of Theorems 2.65
~and 2.66 will show that for every j, Ej+1 is crooked(in=Eja

Therefore, from the sequence, Ey, E,, E3,_a o o4 @rSEQquence,
D1 DZ,'Dg,lo . s, can be selected .such that for every positive
integer i, (1) D; is a chain from p to q, (2) Dy, is crooked in
D;, (3) the closure of each link'of_Di+1‘is a subset of a link of
Dy, (4) no link of Dy has diameter greater -than l/i, and (5)
M, = A Dy

i=1

Let p! and q' be points of»Mé belonging to different composants
oﬁ Mzo The process employed to create the sequence Di, Dy, D3, o »
can be-repeated to create a. sequence Gy, Gj, 63, « o o such that for

every i, (1) G; is a chain from p' to q', (2) Gyyq is crooked in Gy,

(3) the closure of each link of Gy .y is a subset of a link of G,
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, o 4
(4) no link of Gy has diameter greater than 1/i, and (5) M; = N G,

i=1 *
The hypotheses of Theorem 3.7 have been satisfied. Therefore,

there is a homeomorphism.mappinngl to M,.

An end point of a continuum has been defined in general to be
a point with Menger order one with respect to that continuum., In
‘the case of a linearly chainable continuum M, a point p will be
called an end point of M if and only if for each.positive number
€ there is an e-chain coveringvM such that the first.link contains
. ps 'In-this case the two definitions of end point are equivalent
but that fact is unimportant in the discussion that follows, since
no theorems that were. proved using the first definition will be used

here.,

Theorem 4.10: Fach homogeneous, nondegenerate, linearly chain-

- able, bounded plane continuum is a pseudo-arc,

Proof: It will be shown that'M has an end point p. Let
Tl"TZ”TB"' « o be a sequence of 1/n-chains covering M, Let
43> 995 dgs * o « :be points of M such that\qn belongs to the first
link of Tn~for every n. Since M is compact, some subsequence of

Q15 995 935 ¢ o o cbnverges to a point q.

For each neighborhood N of q and each.positive number ¢ there

is an e-chain covering M one of whose end links intersects M and
~'lies in N. Call this property, "the property of q".
It will be shown that every point of M has the property of q.

Let x be an arbitrary point of M .and let .F be a homeomorphism mapping
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"M to M and q to:x, Now F is uniformly continuous (10; 135, Theorem
8,16). Thus, given an ¢ > 0, there exists a § > 0 such :that if P
and. p, belong to M. and the'distancevbetween«pl and.p, is less than §
then the distance between F(pl) and F(pz),is less than .e. That is,
for every n there is some point;qt, of q1s 99 d3s - - . -such that
F(q.) is within a distance of 1/n of F(q) = x. Now let

Enis Ehae n3? * °

F(E; AM), F(E,nM), ..., FE nM. It is clear that

E Ehm,be the links of T . Consider the sets
(F(Eni n-M)) ﬂ.(F(Enj N M) is empty or non-empty accor@ing as
‘(Eni nMn (Enj A M) is empty or non<empty. It is also clear that
F(Eni A M) is an open subset of M for every i. It follows that for
~each set F(Eni N M) there exists and open subset of the plane Gni’
such that Gni nM-= F(Eni N-M) and G,; ﬂ:an is empty or non-empty
according as (F(Eni AM)N (F(Enj nM)) is emptyvor-nonemﬁty, This
-means that Gnl’ an, s s ey Gnm are links of a chain coveging M,
" Let the chain whose links are Gnl’ an,b° o o5 Gy be denoted by
8. It f01lows'from the uniform continuity of F that for every n,
there exists an S; whose links have diameter less than 1/n. Therefore,
for each neighborhood N of F(q) and each positive number ¢ there .is
an e~chain covering M, one of whose end links intersects M and lies
in N. Thus, x has the property of q. Since x was arbitrary, every
‘point of M has the property of q.

Let dj be an end link of a l=chain covering M and let Py be any
- peint of M belonging to dy. “Since pj has the property of q, there
is an end;link‘dz of a 1/2-chain covering M such ;hat dy contains

az_and d, contains a point p, of M. Similarly, there is an end link
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of a 1/3-chain covering M such that d, contains 33,,and'd3 contains
a point p3 of M. This process may be continued to define the

sequences, d;, dj, d3, s 0.0, and py, Pos Pgs o o oo 'The inter-

K o0 o
section of the sets dy, dy, d3, + . o 1s non-empty since N d; is

i=2

oD go_ﬂ
~a-subset.of N d, and N 'd

. i .
i=1 i=2

; 1s non~empty (10; 69, Theorem 3,30).

Let p belong to 7? di' ‘The point p belongs to M because p is a limit
i=1

point of P1» Pps Pgs » o« and M is compact. Now for every ¢ > 0
there is some set:in the sequence, ql, d2, d3, e.s s+ Whose digmeter
is less than ¢. Therefore, for every ¢ > O there-is an.geg=-chain
covering M whose first link contains . p. That is, p is an end point
of M, |

It can now be shown that M is hereditarily indecomposable.
Assume that M is not hereditarily indecomposable. This implies that
M contains a continuum H which is the union of two proper subcontinua
Hi and H'!, Certainly, the intersection of H' and H!'' is non-empty.
‘Let p belong .toe both H' and H''. An argument similar to the one
used to show that every point of M has the property of q will show
that every.point of M is an end point. Hence, p is an. end point of
M. But it is known that a necessar§ and sufficient conditions that
.a point p be an end point of a linearly chainable continuum M is
that for every.pair of subcentinua H' and H!'! containing p, either
H' contains H'! or H'! contains Hi' (5; 66, Theorem 13)., This is
‘impossible since both -H! and H'' are proper subcontinua of their

union. Therefore, M is hereditarily indecomposable,
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Since by hypothesis M was nondegenerate and linearly chainable,
and all nondegenerate, hereditarily indecomposable, linearly chain-
able continua are homeomorphic (Theorem 4.9) then M must be a pseudo-

arc (Definition 3.3 and Theorem 3.5).

Homogeneous Continua That Separate the Plane

The theorem presented in:this section will complete the list of
theorems necessary to justify the classification 'system presented
in the introduction to this chapter. The theorem will not be proved

for the reasons cited in the introduction.

Theorem 4.,1l: Every homogeneous bounded plane continuum that

separates.the plane and is decomposable, but is not a simple closed
curve, is a circle of pseudo-arcs (l4; 732, Theorem 2, and 7; 181,

Theorem 10).

The above theorem is proved by showing that every homogeneous
. bounded plane continuum that separates the plane and is-deqomposable,
but is. not a simple closed curve, can. be decomposed into an upper:
semi-continuous collection of pseudo-arcs that fill up the continuum
(14; 732, Theorem 2). This result would be sufficient to justify
-the name "circle of pseudo-arcs!", However, as in the case of the
-pseudo-arc, it is also shown: that any two such continua are homeo-
‘moxrphic (7; 181, Theorem 10), Thus, the example presented in Chapter

I11 is representative of all members of the class.



CHAPTER V

-SUMMARY

The Historical development of the examples and ﬁheorems on homo-
geneous bounded plane continua ié given in Chapter 1 of this paper.
This chapter will provide a review of the development of those same
examples and theorems as they are found within this paper.

Chapter II delineates the topological concepts necessary for the
later presentation of specific examples and major theorems. In partic-
ular, a detailed presentation of the properties of crooked chains
is given in Chapter II,

In Chapter III, the three distinct examples of homogeneous bounded
plane continua, which have been discovered to this date, are given.

The simple closed curve and the pseudo-arc ;re shown to be hom&-
geneous, The circle of pseudo-arcs is described in enough detail

that its homogeneity should at least seem probable, A fourth exaﬁple,
distinct from the first three, but which has neither_begnvshown to

be homogeneous nor non-homogeneous, is also presented in Chapter III.

A classification system, which places all chainable homogeneous
-bounded plane continua in four distinct classes, .is given in Chapter
IV. All such continua are classified according to whether they are
(1) pseudo-arcs, (2) simple closed curves, (3) circles of pseudo-

arcs, or (4) indecomposable continua that separate the plane.
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Theorems that show that the classification system has the asserted

properties are given in the remainder of the chapter.



10.

11-'

12.

cal Society, Volume 10, 1959, 345- 346.
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