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CHAPTER I 

INTRODUCTION 

1 .. 1 Statement of the Problem 

Shells are widely used as structural elements in 

modern buildingst aircraft, shipst rockets, etc. A careful 

study of shells used in engineering shows that they are 

frequently laminated from anisotropic materials. A very 

important application is found in spacecraft and supersonic 

missile construction in which aerodynamic heating around 

the fo:rward portion of such craft often results in large 

temperature gradients over the surface and through the 

shell thickness., Nonuniform temperatures induce stresses 

within the structure and may have a pronounced effect on 

its designo Thus, it is important to be able to predict 

stresses arising from temperature effects~ 

Many scientists today in the technically advanced 

countries engage in the research and development of the 

fastest possible ballistic missiles to meet the need of 

military defensive and offensive system~ It is believed 

that the present analysis will contribute to the structural 

design of nose cones of missiles flying at zero angle of 

attacko 

A common type of shell is one which possesses symmetry 

1 ( 
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with respect to an axis of revolution. An isothermal 

theory for such shells has been developed previously and 

applied to conical shells subjected to certain special 

cases of surface loading (6), (7). This thesis extends the 

theory of anisotropic shells by including thermal effects 

and applies the results to the analysis of the fiberglass 

wound conical shell subjected to axisym.metrio thermal 

gradients. 

1.2 Historical Background 

The development of the theory of laminated anisotropic 

shells of revolution subjected to isothermal conditions 

provides the background for the content of this thesis. 

Historically, analytical studies O·f struotural members of 

mult1 .... 1ayered construction have been of interest to techni

cal people in the fields. of aircraft construction, rocket 

construction and ship building. It is becoming in

creasingly important with the rapid development of modern 

aerospace technology and the introduction of new, ef

ficiento anisotropic material to expand further the tech

nology. 

There have been exhaustive studies dealing with the 

theory of homogeneous, isotropic shells, but there have 

been few which investigated the general theory of an

isotropic laminated shells, until Ambartsumyan (1) com ... 

pleted his book, Theory of .AJlisotropic shells i.n 1.959. 

Hts effort sbed light on many fundamental problems in the 



theory of anisotropic shells. Although this book is con

sidered as a good reference in the theory of anisotropic 

shell analysis and its application, many important problems 

are not covered, such as the theories of stability and 

v1brationp nonlinear theory and temperature problems of 

anisotropic laminated shells. I.t is the purpose of this 

thesis to fill one of these gaps; that of axisymmetrie 

thermal stresses in laminated, anisotropieshells of revo

lution. 

Temperature problems in the theory of isotropic shells 

have been studied by some prominent investigators. In 

1952 Huth (7) presented a paper analyzing thermal stresses 

in oonioal shells, considering aerodynamic heating of a 

missile nose cone. By using Meriam•s analysis of the ro

tating conical shell (12) and a standard procedure de

veloped by .Meissner (11), Huth (7) obtained a fourth-order 

ordinary differential equationo Thompson's function was 

used in the solution of the homogeneous part and a poly

nomial series expansion was applied to obtain the par

tioular solution. 

In 196211 S. B. Dong, Kos. Fister and R. L. Taylor 

presented a paper on the theory of laminated anisotropic 

shells and plates (4)o Following classical isotropic shell 

procedure, but incorporating speeialized elasticity re

lations f'or orthotropie laminations, governing equations 

for small displacements were presented for shells of revo ... 

lution. The specialization of equations to the case of the 



4 

e.yl1.ndr1eal shell was made using the well-known Donnell 

approximations. Incorporating the Airy stress function and 

the transverse displacement, the system of equations were 

reduced to two fourth-order differential equations. 

Following a procedure suggested by Vlasov (l9), thee

quations were simplified to a single equation in terms of 

the transverse displacemento The general solution was ob

tained by a trial function method for the homogeneous so-

lution and by polynomial series for the partieular so~ 
,~;;;-..,,'el>_..,\ 

lu.tiono 

In 1963 B.adkowski presented a paper on stress analysis 

of orthotropic thin multi-layered shells of revolution 

(13)o From strain-displacement relations, stress-strain 

relations and equilibrium equationsj) twoj) coupled, second= 

order differential equations were obtained in terms of 

two unknown variables; io e. horizontal force and reference 

surface meridional curvature change. A computer program 

was written to solve the matrix difference equations. An 

analytical method was employed for solving oylindriea.l 

shell equationso 

In 1966 9 papers were presented by Dong (3) and Grin

ehenko (6) concerning the temperature problems in laminated 

shells of revolution. Dong (3) used the finite element 

method to carr~ out the solution of the problem., .He es

tablished the stiffness for each finite element and used 

conventional structural techniques to enforce equilibrium 

and continuity of displacements at all joints .. Grinchenko 
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(6) used an analytical method to solve the problem of the 

shell consisting of isotropic layers. He set up the 

equations of equilibrium and compatibility of deformation 

of the shell elements in association with conventional 

relatiqnsh1ps between forces, moments and deformations by 

applying the Kirchoff-Love hypothesis and combined these 

through the use of Meissner•s functions. He obtained two 

second-order governing differential equations. By differ

entiation, he reduced the two simultaneous differential 

equations to one third order hypergeometrio equation and 

used the sum of three partial solutions to represent the 

sought solution of the governing differential equation. 

Both Dong's and Grinchenko 1 s works were limited to the 

conical shell. This thesis, however, covers general shells 

of revolution. 

1.3 Basic Concept~ 

The theory of shells is a part of the theory of 

elasticity of elastic bodies. In the theory of elasticity, 

the term shell is applied to bodies bounded by two curved 

surfaces, the distance between the surfaces being small in 

comparison with the other dimensions. The locus points 

which lie at equal distanoes from these two surfaces define 

the reference surface of the shell. The distance between 

two curved surfaces of the shell determines its thickness 

and will be designated by h. The investigation was made 

with an infinitely small anisotropic element defined at 



6 

different points of the body by three orthogonal eoordi-

nate lines. In the general case of a uniform curvilinearly 

anisotropic body, the elastic body obeys the generalized 

Hoo:11. e ~ s Law o 

1(14 Assumptions 

1) The shell was eonsidered to be thino (The ratio 

of its thickness to the radius of curvature of the refer-

enci:e, surface being very small compared to unity) o 

2) The shell is of uniform thickness h consisting of 

an arbitrary number of homogeneous anisotropic layers, ea.eh 
k having uniform thickness, t ~ 

3) It was assumed that at each point of each layer 

there is only one plane of axial symmetry parallel to the 

reference surface of the shells. 

4) The curvilinear coordinates were selected to 

coincide with the lines of principal curvature of the shell 

surfaeeo 

5) All layers of the .shell obey the generalized 

Hooke's Law and function simultaneously without slippingo 

6) After deformation9 a rectilinear element normal to 

the undeform~d coordinate surface of the shell remains 

rectilinearly normal to the deformed coordinate surface of 

the shell with its length preservedo Thus, the normal 

stresses on an area parallel to the reference surface of 

the shell were'neglected in comparison with other stresses o 



CHAPTER II 

DERIVATION OF THE GOVERNING EQUATIONS 

The following development proceeds along lines similar 

to those established by Ambartsumyan (1) .. For completeness 

of this presentation some of his work will be briefly 

redeveloped here .. However9 major emphasis will be placed 

in this chapter on rederiving the governing equations to 

include the effects of nonuniform, axisymmetrie temperature 

distributions .. 

2 .. 1 Basic Elastic Constants 

Consider a shell consisting of a number of curviline

arly anisotropic layers as shown 1n figure (1). The shell 

is undergoing small deformations while obeying the gener= 

a.lized Hooke 6 s Le.w.. Usil"lg the, tensor notation, the stress= 

strain relation can be expressed as 

where i, j are indices and k is layer designation; e~ is 

the total strain and akTk are the strains due to the local 
i 

k temperature with a 1 being coefficients of linear thermal 

expansion and Tk :ts ·the local layer temperature o The 

constants a~j are called the elastic constants and there 

7 
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is generally a total of 21 independent elastic constantso 

In. the case of three orthogonal planes of elastic symmetry, 

the number of a~j reduces to 9o If, at a point in a body, 

there are three mutually perpendicular planes of elastic 

symmetry the body is known as an orthogonally anisotropic 

or an orthotropic bodyo 

The geometric hypothesis of nondeformable normals 

(after deformat:ton a rectilinear element normal to a refer-

enee surface of a shell remains rectilinear, normal to the 

deformed referenc1e surface of the shell preserves 1 ts 

length) gives: 

ek 
3 = 0 

k 
(= 

k (2olo2) 84 9 23) = 0 

k 
(:: k 

e5 e1J) = 0 

where 1 0 2 0 J, are ·the three principal coordinate lines 

corresponding to the meridianso parallels and normals to 

the surfacep respectivelyo Furthermore, the unit elon=· 

gation of a fiber at a distance y from the reference 

surface undergoes 'the unit elongation of a fiber at the 

reference surface plus the elongation of fiber due to the 

curvature change at the corresponding point: io eo 

k E\ = £1 + y~ 

e: = c 2 + YXz 
k k 

9 6 = 8 12 ""' '1. + Ye 
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where E, 1 , E, 2 and x 1 , )( 2 are tangential strains and 

curvature changes of the referenee surface of the shell. 

For a she.11 of revolutiont the component of shear defor

mation ('1.) on the coordinate surface and the torsional 

deformation ('1:-) are zero for the case of axially symmetric 

loading. Then, invert:tng equations (2.1ol), incorporating 
k k equations (2o1.2) and (2olo3L and setting both a3 and e12 

to zero, one obtains 

k 1 [ k le k k k k k 
O' 1 --- a = a1282 + a Y\ - a12YXz - a 22 a1 T - TTk 22C1 22 

k k~] + a12a.2 
(2.t.4) 

k 
=-1-[ak E. = ak E k k k k k 

0'2 + a "(X. - a yX - a a. T 
TTk 11 2 12 1 11 2 12 1 11 2 

where 

Equations (2o1..)4) and (2o1o5) relate the stresses in each 

layer to the reference surface strains and curvature 

changes and local temperature of the layero For a shell 

consisting of orthotropia layers with its principal di

rections of elasticity at each layer coinciding with the 

directions of coordinate lines 1, 2 and 3, the desired 

elastic constants of the lr:thlayer are (1); 
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a~l - 1 --it 
E1 

k 1 
a.22 = """""'Jc 

E2 
(2.1.6) 

k k 
k \)2 '"1 a. = --= --12 k Ek E 

2 1 

The stress resultants are defined as 

(2.1.7) 

(2.1.10) 

where n• = n+m,tota.l number of layers in the shell, 6k is 

the distance from inner surface of shell to the kth layer 
,., 
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and A is the distance between inner surface and reference 

surface of the shell (see figure 1). By introducing e

quations (2o1.4) and (2o1.5) into equations (2olo7) through 

(2.lo10), one obtains 

where 

Tl = c11 c1. + C1zc2 + K11~ + K12~ 

T2 = c22c2 + c12E1 + K12~ + K22Xz 

Ml = D11Xi + D12X2 + K11c.1 + K1282 

M2 = D202 + D1~1 + K12€1 + K2262 

ne 

T = L 
it k::1 

no 

T2t = ~ 

( ak - ~) I k k k k <a22"1 ~ "12"2 > 
TTk 

(a -A) 
k-1 

( ok "" .6~ 

Jkk .kk (alla.2 ... a12a.1} 
,,.k 

( ok-1 .. A) 

k 
( T ) d.y 

k 
(T ) dy 

( k ' 
T )ydy 

- Tit {2.1.11) 

- T 2t 
(2.1.12) 

- Mlt (2.1.13) 

- M2t 

(2.1.15) 

(2o1o16) 
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Figure 1. Geometry of A Shell Element 
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k 
( T ) ydy 

D1J = !ktB:J [ (a; -(1) - J.t..( a! - a!-1) 

+ 3A 2 ( 6k ... 6k-1 ) ] 

wherein 

Cij oharaoterizes the influence of the elongation along 

the coordinate lines. Dij represents the bending stiffness 

and torsional stiffnesses about the coordinate lines and 

Kij represents the stiffness of interaction of tension and 

bending. 
·-·-·:.---~~;

.-.!:-
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For a shell consisting of an odd number of anisotropic 

layers symmetrically arranged relative to the middle 

surface of the shell, .all interaction stiffneSlses K1 j be

come zero. Equations (2.1.11) to (2.1.14) can therefore be 

simplified to 

Tl = c11e1 + 01262 - Tlt (2.1.18) 

T2 = C22e2 + c12c1 ... T2t (2.1.19) 

Ml = D11Xi + D1z?<'z - Mlt (2.1.20) 

M2 = D22Xz + D12~ - M2t (2.1.21) 

2.2 Equations of Equilibrium 

The conditions for equilibrium involve consideration 

of stresses acting on an infinitesimal element whether 

these stresses are caused by temperature or other effects. 

Thus 0 the equations remain identical to those derived for 

the isotropic shell of uniform temperature.· Consider the 

notation of figures 2 & 3. The equations of static equi-

librium, in the absence of surface forces, written for 

orthogonal curvilinear coordinates are, 

d(rT1 ) . r . 
--·ds + T2 sin e + RN = o 

1 
(2.2.1) 

(2.2.2) 
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Meridian 
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Figure 2. Shell of Rotation 
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Figure J. Forces and Bending Moments Acting 
on An Element pf Shell 
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(2.2.3) 

where, in addition to terms defined previously, 

s = the variable along the meridional direction 

N = transverse shear force 

r = the distance from points to the axis of revo.lution 

R1 = the radius of curvature of the meridian 

R2 = the second principal radius of curvature of the surface 

2.3 Kinematic Equations 

One may relate middle surface strains and curvatures 

to displacements at a point on the middle surface. Again,, 

these are unaffected by thermal effects and remain the same 

as those from classical shell theory (1). They are, using 

the nota.tion and geometry from figure 4, 

c = du + _!___ (2.3.1) 
1 ds R1 

c2 = l(w cos e ... u sin e> (2.J.2) r 

x.1 dW (2.3.3) = - rs 

X2 ::: w ~in ~ (2.J.4) 
r 



r 
w+d~~+du 

Figure4. Displacement of An Element 
of Shell in Plane of 
Meridian 
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where 

W rlw U 
- ds R1 

u = displacement in meridional direction 

w - displacement in radial direction 

1rhe equation of compatibility i.s (1) 

(2.J.5) 

2o4 Combination of Equations 

Following the procedure of Meissner (11), an auxiliary 

funct:ion V = V(s) may be introduced to reduce the number 

of equations invol,red in the solution. Let the stress 

resultants be defined as follows: 

T dV (2.4.1) = d's 2 

Tl = = ~l!L.e. v (2.4.2) 
r 

N cos e v (2.4.J) :::: 
r 

where V = V(s) is a function to be determined. The form 

of these definitions is such as to satisfy inherently the 

two force equilibrium equations .. The moment equilibrium 

equation becomes 

d(:rM1 ) 
-~ + M2 sin e = v cos e -· o ds 

(2.4.4) 
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Again, substituting the values of T1, T2 and Nin terms of 

Meissner's function into equations (2.1.11) and (2.1.12) 

and solving for the strains c 1 and c 2 , one obtains 

- K .. C )Sin~ W - (K C K C )dW 
22 12 r · 11 22 - 12 12 ds 

- K C ) sin ~. W + ( K C - K C ) ~ 
12 12 r . 12 11 11 12 ds 

(2.4.6) 

where 

Likewise, substitution of these functions into equations 

(2 .. 1.13),(2.1.1,4) and solving for M1 and M2, leads to 

M ( D 11 ) dW (. o ) sine w 
.1 = - 11 + D11 ds + D12 - D12 r 



a.nd 

where 

- M 2t 
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(2.4.8) 

(2.4.8.a.) 

These a.ux.111a.ry funotions a.re introduced primarily tb 

sa.tis:f''y the forcre equilibrium equations. The eompa.tibility 

eondition a.nd moment· equilibrium provide two simultaneous 

equations f'or the two unknown functions V a.nd w. With this 

in mind, the values off e1 a.nd e2 :ttrom equations (2.4 • .5), 

(2.4.6) ma.y be substituted into the compatibility equation 

(2.3 • .5). '!'he oompa.tibility equation is then expressed in 

terms ot:·· a.u.JC,ilia.ry tu.notions a.s 



,·· .. ,. '! 

! 
i 

.J 

where 

and 

+ ~ (s;) 

g? ( s) 
1 . 

The moment·· equilibrium equation (2.4.4) may also be ex

pre,saed in terms of the auxiliary function as 

22 
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p 2 
3 sin e ) ~ ( ) - n=---( =n-1 _1 __ .._,,,D,..,,.j__l_,) r 2 V + ~2 s (2.4.10) 

where 

K11 C 12 - K · c: d T K C - K C + P 1 
------~1_2....--1_1 ~ + 22 11 12 l 2 T2 t 

.n(D11 - Di1) ds !l(D11 - Di1) 

(2.4.10.a) 

Equations (2.4.9) and (2.4 .. 10) comprise a complete system 

of differential equations in terms of the two required 

functions V and W, by means of which one may determine all 

the design force of'the problem. 



2.5 ~he Governing Equation for the Orthotropio, 
Odd-Number-of Layeres Shell. 

24 

The elasti~ constants for shells of revolution con-

sisting of an odd number of orthotropic layers symmetri-

cally arranged relative to the middle surface of the shell 

have been obtained in section 1. The material of the shell 

at'each point has only one plane of elastic symmetry paral= 

lel to the middle surface of the shell .. If the coordinate 

surface of the shell coincides with the middle surface, one 

has the advantage of all interactional stiffness Kij being 

zero. By v:.irtue of this, one obtains 

The moment resultants M1. and M2 become 

(2 .. 5 .. 1) 

(2.5.2) 

Thenp equations (2 .. 4o9) and (2 .. 4 .. 10) reduce to 
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2 D D 2 d ~ _ sin e d W ( 12 1 + . .:.zz_ sin e )W 
ds r ds - ~R1R2 ... D11 r2·, 

'1 1 • --.-· ~v + ~ (s) 
P11 n.2 2 

(2.5.4) 

where i 1 (s;) remains as defined in equation (2.4.9. b) but 

m2 ( s) beo:omes; 

m (s1 
2· 

1 sin e ( ) dM1 t = - D11 r M2t - Mtt + ds 

As discussed in Appendix 1 and referenee (1), the values of 

C D 
~ and 22 may reasonably be assumed to equal some 

11 Dll 

constant >....i.e. 

The system may then be written in a compact form as 

where 

- c12 1 .....£L. 1 x C ··) L(V) +~ R R V = 0 R W + ~ . s· 
11 1 2 · 11 2 1 

L- d 2 sine d - )sin2e 
.. = ds2 -. r ds ... -, r2-

(2.5.5) 

( 2 • .5 0 6) 

Multiplying equation (2.5.5) by an undetermined factor, a, 

and combining with equation (2.5.6) leads to 



I.cw> - <~12 J- + c.n a>l- + a: [Lev) + (~12 l 
11 1 11 2 11 1 

+ a.Ii ~RV ] = ~2(s) + a© {s) 
11 2 '"1 

To determine the value of a, let 

~ rl + en a = =1k2 
11 . 1 11 

By means of this substitution it is possible to find the 

complex function a in terms of V and W 

26 

a= W + av (2.5.10) 
\ 

wh10h satisfies equation (2.5.7)0 Addition of equations 

(2.5.8) and (2 .. .5.9) results in 

2 °11 D12 °12 ~ 0 11 a: + --(-.- + -.->~ + · - o 
o. D:l.1 · 011 R1 D11n -

The solution to this quadratic equation is 

From Appendix 4 it is seen that 
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Eu_ (ri12 + g12) <.<1 
n 11 11 

The value of i- is praotiically always very small o There-
1 

fore 9 the terms involving -J:- can be discarded and 

a i - i ~ Will identically S.@,tisfy equation (2.5o7) • 
~ " . . 

Inserting the value of a in equation (2o5o7) one obtains 

1 & [d2V _ sine dV _ :>i. s1n2 e v J+ ---1 _ _LV 
\}~Lds2 r ds r2 D11 R2 

Bee:ause 

;; = w - i~ v 

equation (2 ... 5012) can be written as 

= il12(B') - i ~-n~ (s) Volin 

Or, in linear operator form, 
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L(ii} + i rn:- : = <b (s} - i ,@iL ~ (s} (2.5 .14) v~ 2 2 Vn~ 

This is the governing dif~erential equation for a shell of 

revolution consisting of an odd number of orthotropic 

layers. subjected to axisymmetric, thermal gradients. As 

expec;ted, the form of this equation is identical to that 

derived by Ambartsumyan (1) for the isothermal shell except 

for an additional term 11 reflecting thermal effects, on the 

right'::side. The solution of equation (2.5.14) consists of 

the sum of the homogeneous and particular solutions and 

only the particular solution can be affected by this new 

term. Therefore, the homogeneous solution obtained by 

Ambartsumyan through asymptotic: integration is perfectly 

applicable to the present problem. 



CHAPTER III 

SOLUTION OF' THE G:OWERN'ING EQUATION 

J.1 Solution of the Homogeneous Eg_uat1on 

As, explained in section 2o5, the homogeneous solution 

obtained by Ambartsumyan (1) is applicable to this problem. 

It is (1) 

a= {E1cos/3 - F 1sinj3)e-13+ (E 2cosr, + F 2sini3)ei3 

+ 1 [ (' sin~ + F1 cos~) e -~ - (1~2 sin~ 

F2 cosi3)ej3] (3.1.1) 

where E o E: F1 and F2 are unknown constants 0 and j3 can 
1 2 

be expressed as 

k s d ~~Ff Ja: 
s 

in which O 

(3.1.2) 

From equations {3.1.2) and (3.1.3), it is seen that j3 

changes with respect to the shape, thickness and elastic 

properties of shell. 

29 
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J.2. Solution of Part1oular Equation 

A partieular solution of equation (2.5.14) would 

apply to the general shell of revolution. Suoh a particu

lar .solution was not obtained in this study, however., par

ticular solutions were obtained :for two important shell 

shapes; the circular cylindrical shell and. the conical 

.shell with .special material properties. These.solutions 

will be discussed in the following sections • 

.3 .. 2.a Pe.rti001lar Solution for the e~1reular, Cylindrical 
Shell 

The, governing equation for the general shell of revro

lut;,1on beoomes1 the gov,erning equation for a circular 

cylindrical shell, if the geometric variable e is set to 

zero. The g9verning equation then becomes 

(3.2.1) 

The derivation of right hand side of above equation can be 

found in Appendix 2. 

Let 

(J .. 2.2) 

Its deriv:ative with respect to xis 



da 
__E_ == a + a21 dx 1 · 

also the second derivative is 
d2-

0'p 
2 = 0 

dx 

.31 

(J.2.4) 

Substituting the assumed polynomial and its derivatives 

into equation(J.2.1) and equating the corresponding terms, 

one obtains a particular solution for circular cylindrical 

shell in the form 

where 

a ==(A'+ B'i)(x-L) 
p 

Particular Solution for the C'onical Shell 

The governing equation for the general shell of revo

lution (2.5.4) becomes the governing equation for a conical 

shell9 if the geometric variable e is a certain constant Cl. 

As·: shown in Appendix 1, A rapidly approaches as the number 

of layers increases to infinity if the material properties 

alternate. Equation (2.5.14) can be written in this case 

as 
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(J.2.6) 

The der1·va.tion of the right hand side of the above equation 

can be found in Appendix 2. 

Let 

Its derivativ:,e with respect to x is 

dcr 
~ = 2(a1 + a21)x + (b1 + b2i) 

Also the second derivative is 

d2-
0'p_ ( ) ___ .... = 2 a1 + azi 

df' 

(3.2.8) 

(3.2.9) 

Subst1tuttng· the assumed polynomial and its derivatives 

into equation (J.2.6) and equating the crorresponding terms 

provides enough conditions to solve for the unknown con= 

stants. The obtained particular solution then can be 

written 

rf (A•+ B*i)x 2 cc*+ n*1)x = + (3.2.10) 
p 

where 

c11tana. c 
A* (H-ll· = _g_H**) = n.. ell 

* ~· B = - tana.H 
1 

(3.2.10.a) 

2 
c* = - _c_1_1_ta_n_a._ (H* - ~12 H**)L + JC11 tan a. Ho 

n 11 n 



)) 

* &_ 3tan2a. c11~c11D11 * c 2 
D = Pu Ltana. H* + h. in --(H -~ H**) 

.3oJ ,The General Solution for the Circular Cylindrical 
Shell 

In sec:ttion 3.1 the homogeneous solution was obtained 

for, the general shell of .revolution. .If' the geometric 

war1able e is zero, equation {3.1o1) yield the homogeneous 

solution for the·,. circular cylindrical shell 

+ i [(E1s1ns + F1oosa)e-6- (EislnS 

- F'2coa,13) e 13 J 
where 

a=/;$ 
The general solution of equation (J.,2.1) is the sum= 

mation of equations (J.,J.l.) and (3.2.5). .On the basis of

equation (2.5 .. lJ) the general solution is 

W - 1J!ifi-v = (E1oosa - F1s1na)e-S + (E2oosa 

+ F'2s1ns)eS + A's + 1 [(E1sinS + P1 oosa)e-S 

- (E2s1n13 "" F2cos13)e 13 + B0s] (.3.3oJ) 
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Separating the·: imaginary and real parts, one obtains 

Let"" 

where 

By introducing the new constants 

= (E sins 
2· 

(3.3 .. 4) 

(3.3 .. 6) 

(J.J.6~a) 

The equations (J .. J .. 4) a.nd (Jo3.5) cran be written in the 

following forms; 

W = A1e(i3) + B1~(~) + A2e(~; + B2~(~; + Aijs (3.3.7) 

-w··· = . r [ =A1-f(13) {, Bl e (i,) = Az.f(f31) 
i ell 
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+ B2 e( ~1 l] -fl~~ o.B's (3.3.8) 

where 

e( i3) = e= i,cos 13 

j'( f3) = e- f3s1n ~ 

¢( f3) = e( i,) + Y(f3) 

</;(f3) = e( f3) -j'(i3) (3.3.,8 .. a) 

The sought functions Wand V are thereof obtainedt and 

their derivatives are 

~: = - k ~[ A1¢( f3) ... B1(/J( fa) = A2¢( f3 1 } 

+ B2<J.>(13t)] + A9 

(3 .. 3.,10) 

With these obtained functions and their derivatives 0 the 

design stress resultants are determined 

T = ... s ~no" v = o 
1 r 

(3.,3 .. 11) 

(3.3.12) 
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M1 = D11 ~ G1¢( $) - B1'1-( $) - Az¢( $1) 

+ :S (JI( /3 ) J - D A's: - M 2 1 11 1 t {J.J.13) 

Ir [ M2 = D12 /2f A1 ¢( /3) "" Bl4,1( /3) ... A2¢( /31) 

+ B2<j1{$1)] - M2t (3 • .3.14) 

N = J:.. fi:2D [- A :f ( /3) + B1 e( 13) = A2:f { 13 1) r 11 1 

+ B: e( 13 ) - l l -;:-S ] fl¥. fl B} 

2 1 C11 r 

On the, basts of' the'· property of long circular cylindrical 

shell ( 1), 131 shall be discarded in calculating the quanti""· 

ties, a tt edge where s = 0 o Also /3 shall be discarded at;'

the other end wheres= L. With this in mind, the con

stantsJ A1 , B\, A2 , Br~ can be determined from the boundary 

conditions. 

J.4 The General Solution for the Conical Shell 

Again, in section .3 .. 1 the homogeneous solution was 

obtained for the?general shell of'revolution .. Equation 

(3 .. 1 .. 1) is the homogeneous solution for the conical shell 

if the geometricJ variable e is constant a. 

/3 ' /3 
ah= (E1cosl3 = F1sinl3)e- + (E2cos/3 + F2sin/3)e 

+ i [ (E1 sin/3 + Fi cos/3) e =13 = (E2sin/3 
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( J .4 .,1 ) · 

where, in the ease of the conical shell 

(J.4 .. 2) 

On basis of equation (2.5.13), the general solution is 

W - i~ VJ = (E1 cos~ - F1 sin ~)e- ~ + (E2<>os ~ 
13 * 2 * [ + F2sini,)e + A (L-s) + C (L-s) + 1 (E1 sinia 

S 13 * 2 + F1cosia)e- · -(E2sinS - F2cosS)e + B (L-s) 

( 3 .4 • .)) 

Following the same procedure of section J.J.a, the functions 

W? V and their derivatives are obtained as 

where 

+ A*(L=s) 2 + c*(L=s) 

V = =f [ =A1.:f( 13) + Bl e( S) - A2.f (s 1) 
k c;11 

J ** 2 ** + B2 e( 13i> = B (L=s) + D (L=s} 

** 0 D = L tana,H 
Jtan2a; C . 

+ •. . . . . 'l\(H* = C12 H**) ..n .. . . c 
11 

(J.4 .. 4) 

(J.4.6) 



dW 
ds = 

(3.4.8) 

~! = 011 k'l2 ( L-s1) tana. [ -Ai <J, ( ~) - Bi~ ( ~) + A2</J ( 61) 

+ B2~(~1)] - zre**(L-s) + o** (J.4.9) 

Substituting equations (3.4.4) through (J.4.9) into 

equations (2.4 .. 1) through (2.4.J) and (2 .. 5.1) through 

(2.5.2), the design quantities then are 
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(J.Lh.10) 

(J .. 4 .. 11) 

N1 = ::a. k2o11 [ -A1.Y'( ~, + Bl e( ~, + B2 e( ~1) 

- Aif'(~1 ) J - cotttB-(L-s) - ooto.0** (3.4.12) 

M1 - D k I 1 [ - 11 \(2(L-s)tana. A1¢(l3) - Bl</)(13) - A2¢(i,1) 

+ B2<f,(~1)] + ~; [ A1 e(~) + Bif(~) + A2 e(~1l 

+ B21'C~1)] + 0 11 [2A*(1-s) + c-*] 
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/ i 2 [ M2 = =D12~~2.,..,,(L=----s.....,)t-a-n- A1¢(f3) - Blip(~) + A2'f(~1) 

+ B/<e1 l] + ~:! be <el 

+ Bjt(e1 ) J + n12 [ 2A* (L-s) + cl] 

+ D 22 [A* ( L=s) + e*] - M2 t 

where A1, A2, B1, and B2 are four unknown constants which 

shall be determined by boundary conditions. F'br a shell 

containing a eonieal vertex, tb assure the···oontinui ty of 

slope at'· the Vi.ertex point, 1 t is neo-essary to assume 

A2 = B2 = O (see equation {J.4.4) _-) _ 

A closed conical shell with a clamped base was used to 

illustrate the applieation of this theoryo The unknown 

constants were determined on basis of the oiamped edge 

oondi t'ion which require 

att the edge wheres= O; ($ = 0) 

F!rom equations (J.4.12) and (J.4.1'.3) it was found thatt: 

** L B 
tan a. 

1 ** ... . D 
tan a. 
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-Dllk h -Bl] D 
[ 2A*L + c*] Mi = J2Ltana. 

+--1.£. A + 011 L 1 

[ * *] + 012 A. L + C - Mlt (J.4.17) 

It2 == Ltana. (J.4.18) 

Inserting equations (J.4 .. 16) ... (:, .. 4.18) into equation 

(J.4.15), A1 was; found to be 

where 

(..3 .,4. 20) 

G** = L(B** + n**> - J2Ltana. k [A*L (2D11 + D12> 

+ c~* (D11 + D12) 1 + 2 J2Ltana. k M~ t 

The?normal displacementrw of the conical shell was derived 

(1) as 

+ [ 

s 

e0z + I (Wsilla 
s 

( 3 0"4 0··21) 

Agai~, the boundary condition for the edges= 0 1 ,a= 0 

is w = 0 

On basis of equat11.on (J~4·..,4), :CJ.~.1.0), ,(3.4 .. 1,1) at 

s = O ; .,a = o e; is obtained 



Al.so, the boundary condition for s = L ; f:31 = 0 is 

w :::: 0 

Similarly, equations (J.4.4 ), (J.4.10). (J.4.1f) at' 
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(3 .4 .23) 

Solving equations (J.4.22) and (J.4.23) simultaneously, 

one· obtains 

v* 
B1 = ** v 

where· 

Le:1t 11 and B1 be the· obtained constants A1 and B1 • .Then, 

the design quantities can be expresEed as 



** ** "" 2B (L=s) + D 

Hi • D11 i /( 2(L-s) tan a. [Al~( j) - ii1 </'( ia) J 
+ ~~,[A1 e(ial + ii/Cial J + 0 11 [2A*(r.-s) + c*] 

+ 0 12 [A*(L-s) + c*] -· ,r1 t 

N = "f_t;t k2ii11 [ -A1.'f ( ia) + ii1 e ( ia) J 
- cot~ [B**(L-s} + n**] 

Inserting equat~on (2.1.5) in equations (2.1.10) and 

( 2 .1.11) the layer stresses were fi"iound' tb be 

42 
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k k 
+v F. + Y( X + Y X ) 

1~ 2 1 1 

Alternately, these can be expressed in terms of Meissner 0 s 

functions. If equations (2.J.:,) 11 (2.3.4), (2o4o5) and 

(2.4.6) are substituted in the above equation; 

k 
O' = 
2 

( 3. 4. 34) 

In Appendix 2o it was proved that 



Thus, 

n' 
T = L 
2t k=l 

= 

k 
(-c12 + "2c11> 

!l 

Bas·ed on equation (2o1.17) 

k 

= 
(-C . + V. C ) 

12 2 11 ( c; ttk + c ttk) T 
.n. 22 2 12 1 m 

c: . C' ,..,k ,,,, c· ka.k ""' 0., ,..k 0 2 ka.k J T + 11 ···2·· 2 .... 1 ... \,,<, 1 . ·12V r:> + ""' . . .... - · V 1 ~ 1 12 22 2 12 2 2 m 

Equat1on· (3.4 • .33) can be reduced to 

44 
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( k w ... dW) ... ( k k k k] 
+ y v2L = s ds a.1 + v 2a.2) AT (J.4.35) 

Likewise, equation (;.4.J4) also reduces to 

3.5 Numerieal Examples 

As arr illustration of the application of this theory 

to typical problems, a typical numerical solution of the 

eonieal she-11 will be discussed. 

/To establish partially the validity or~the solution, 

the equations were ttrst:t speo::ialized to the· ease,, of the 

isotropic:: shell and results compared with those of an 

existing solution for this speed.al problem by Huth (7). 

Example 1. The 1~otropicr. eonieal shell. 

The elasticity properties were for an isotropic ma

terial and all data and thermal gradients were taken f'rom 

renreno:a· ( 7). The? thermal v.aria.tions are shown in figure 

(5) and the v, m. and a. arl6~· 

v = !. 
4 



1000° -- F temperature on ,-----~-----___.;....-:----:---
.5000 F,--____ parabola 

temperotu.re E ·--- on i~ner surface 

' . 1. 
120'' 

Figure· .5.- Temperature Variations Along The 
Inner and Outer Shell Surface 
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• 1500 F 



E:, ='JO x 106 lb/in2 

-6 a. = 7 x 10 in/ in/deg F 

'!'he·, elast10·1 ty properties become 

c11 = c:22 = 2 JC 106 lb/ 1n2 

<iz = f x 106 lb/ in2 

!l.: 4o2.5 x 1012 lb2/ in 

1? = .5T~2 1/in 

n11 = n22 = 650 lb/in2 

n12 = 159 lb/in2 

E 1 _L 2 
M1t = - 1 =Vo .'.3(32)2 • (500 + 144 s:) 

P = 1~4 deg F/ 1n2 

P.rom Appendix 2 one obtains 

* ** 3 H = H = 1o22 lb/in H0 = 0.0064 lb/in2 

* * Also from the definitions of A and C' following equation 

(3o2o10), it wae,,found that 

1/in2 
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and were used to determine !\, M2 whiah are con tri bu ted by 

the part1eular solutions; 
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and 

[ * *] [ * *] D12 A (L - s) + C + n22 A (L - s) + C 

These are -wery small compared to that contributed by M1to 

The values of T1 , T2 , and N contributed by the.particular 

solution are 

-Ii-* ** B (L = s) + D 
D 

= H s tana. 

and 

** ** 0 =2B (L = s) + D = (=L + 2s) H tana. 

Because 

3 tan2a. C11 * c12 **> -8 ..n.. - - ( H = er- H = 0 • 9 8 x 10 1 I in 
11 

is very small~ it' can be neglect'ed o 

A computer program was wri·tten to solve, the formulated 

equations (J"lr,026) to (304028).. The results are plotted 

as figures 60 7 and 8 .. 

Example2o The orthot;rop1c conical shell 

A coni~al. shell consisting of nine orthotropic layers 

with the same shell dimensions and thermal variations as 

those of example 1 was a.lso invest'igated .. 

From Appendices 1=4 

011 = 00305 

Ci2 = 0 .. 375 

x 

x 

106 

105 

lb/in2 

lb/1n2 
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Figure 6 •.. Membrane Force, T1, as A Function of 
s in'A He~ted Conical Spell 



0 
0 
x 0 

c 
....... -2 
..c 

cu -4 
u ... 
.e -6 
Q. 
0 
0 -8 

<II 
c: -10 
0 .... 
.a 
e -12 
<Lo 

.E 

"-14 
.... N 

-16 

-18 

-20 

50 

,--.--------------------------------------------------0.02 

. 

0 

·( -

'; 

60 

S ( in) 

Figure 7. Membrane Hoop Force, T2, as A Function 
of~ in A Heated Conical Shell 

0.01 

120 



·C ·-·, 
c 

.Q --c 
cu 
E 
0 

e 
c;JI 
c ,, 
c 
Cl) 
4) 

~ 

150 

140 

130 

120 

110 

100 

90 

80 

70 

60 

50 

lJ,O 

JO 
0 . 60 

S l In ) 
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c22 = Oo275 x 106 lb/in2 

Dll = 00111 x 103 lb/in2 

I 

n12 = 12015 lb/in2 

n22 = 80 lb in2 

=2 
k = 49o2 1/in 

Kl = 1 

Kz = 5 

El 6.,87 x 106 lb/in 2 
= 

Ez = 2o31 x 106 lb/in2 

k 
0000684 t = in 

0'.1 = 6.67 x 10=6 in/in/deg F 

a2 = 6008 x 106 in/in deg F 

8.21 1010 lb2/in 4 
fl= x 

Following theF procedure stated in Example 1, one obtains 

** 3 H = 00146 lb/in 

H~ = 0.,00093 lb/1n2 
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* -5 C- = -0.582 x 10 1/in2 

A computer program was written to solv,e the formulated 

equa.tio:tr.ts ( .3 o4 .26) - (3 .4 ~30). The results were plotted as 

in figures 9= 150 
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CHAPTER IV 

DISCUSSION .. AND CONCLUSION 

In the analysis of this problem~ se-veral significant 

assumptions have been ma.deo For example, it was assumed 

the ratios of elastic constant:s ;; c22 to c11 o n22 to n11 

were considered to be equa.l to an arbitrary constant ). in 

order to reduce the system of diff"erential equations to a 

single governing equation~ Furthermore, this arbitrary 

c·ons tan t A. was taken to be unity in order to make the par= 

tioular solution poss:1 ble" In addition to these as:= 

sumptions9 the first·appro:x:imation of asymptotic inte= 

gratiion was taken in the solution to the homogeneous part· 

those equations whieh are obtai.ned when the coefficients of' 

1/k2 and 1/k vanisho By elementary reasoning, it was shown 

1n Reference 1 that the f'irst approximation has an error 

of' the order of h/R in comparision wi tin unity o Therefore, 

:it.: leads one to conclude that the results obtained by this 

analytical method e.re only approxima:t;e 9 but adequate for 

most engineering purposeso 

It i.s seen from the design quantities: that' the homo= 

geneous solution is in the form of a damping function which 

converges so rapidly that the edge effect zone is very 

small compared to the corresponding dimension of the shello 
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From the plotted figures, one sees the abrupt changes in 

the design quantities occurring somewhere between 5 ino and 

10 ino from the rigidly clamped e:ndo As pointed out by 

Huth ( 7), in an actual missile configuration, rigid elamping 

certainly will not be achieved, so the considered case 

re,presents a limiting si tuati.ono 

In the analysis of Example 2 fiberglass was used as 

the construct.ion material o Ot' course, the numerical values 

for typical elasti<c·. propert;:les are low compared to those 

of steel which was considered in Example lo Corre= 

spondingly, the design quantities become proportionally 

lesso 

It should be noted also that there are deviations 

existing 1:n the compari.sons of the summation of the layer 

forces against 'the corresponding tangential resultant 

forces .. The deviations amount to 906 % for t;he meridional 

direction and .5 o 6 % for the c.irr:mmf"erential directi.on .. 

Both are less than 10 % and a.re consi.dered to be good for 

engineeri.ng purposes o The a©1(llumu.lated error ls beli ved to 

be the result of' t,he approxima ti ems discussed preYiously'". 
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APPENDIX 1 

THE ARBITRARY CONSTANT 

For convenience, the layer thickness is considered to 

be unity in the ~ollowing calculationso The definitions of 
=2 c:1 j, n II Di j and k show that they are functions of the 

layer thiC'kness tk 0 (tk) 2
11 (tk)3 and \ respectivelyo 

t 
Therefore, these elastic constants shall be modifled by the· 

layer thickness before applying to the problemso The 
C D 

ratios 22 and .=.22....have been plotted against the total 
~ D11 

number of layers in the shell as shown in Figure 16. It is 

seen that the curve behaves in an osoillating damped 

fashion and converges relativ,ely rapidly to unityo Alter

nately o ·the ratios can be shown ma them.a t:ically to approach 

unity in the limit by using equations (2.1017), (2o2o17.a) 

and (2.1.6): 1. e. for the case of alternating layers of 

equal thicknesses 0 

n' 

r.22 L B22 (6k = 6k=1) 
k::::1 

(A.1.1) = 
c11 f B11 (ok = 6k=1) 

k=l 
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. .. ' ~' 

(E. F + E + E + 0 ••••n1 term) 2 + 1 2 1 1 t 

(Ei + E2 + El 2 + E + 00000n•term)1 
- V1 V2 

= 1 (A.1.2) 



APPENDIX 2 

THE THERMAL GRADIENTS 

In this section is discussed the calculation of the 

temperature distribution through the thickness of the 

shello With the assistance of some insulating material on 

the inner surface of the shell, the temperature along the 

inner surface can be held uniform. To determine the 

temperature at each point of each layer, a steady-state 

heat c.onduction condition was assumed to exist through the 

shell th1oknesso Taking a ninelayered shellp for example, 

the heat-balance equations are 

K1 (Tl = T ) 
in = K2(T2 - Tl) (A.2.1} 

K (T ... Tl ) = K (T - T2) (A.2.2) 2 2 1 3 

Kl ( T3 ... T2 ) = K2(T4 - T ) 
3 

{A.2.J) 

K2CT4 - T3 ) = K1 ( T.5 - T4) (A.2.4) 

K1 ( T.5 ... T4 ) = K2(T6 - T5) (A.2.5) 

Kz(T6 - T5 ) = Kl (T7 ... T6) (A.2.6) 

K1CT7 ""T6 ) = K2 er.rs - T7) (A.2.7) 
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(A.2.S) 

where K1 , K2 are the alternating thermal conductivies. 

The solutions to these eight simutaneous equations are 

T1 = l [K1Tin + K2T21 K1 + Kz 
(A.,2 .. 9) 

(A.2.,10) 

TJ = ____ 1'---[K T + (K + 2K )T4J 
2K + 2K2 1 in 1 2 

1 

(A.2.11) 

(A.2.12) 

(A.2.14) 

T7 = 4K1 ! 4K2 [Kt Tin+ (3K1 + 4K2)T8] (A~2.15) 

TS = 4K l [K T + ( 4K + 4K ) T t-J + 5K 2 in 1 2 ou 
1 2 

(A.,2.16) 

where Tin and Tout are gtwen temperatures on inner surface 

and outer surface respectively .. Ts• T7, T6·····T1 are 

found in reverse order and are obtained .as 



71 

T2 
1 [(3K1 + 4K 2)T1n - 4K1 + 5K2 

+ (K1 + K )T J 2 out 

T3 
1 [(3K1 + ?K2)Tin = 4K1 + 5K2 :· ·:-·,\'ii;. -

+ (K + K ) T J 
1 2 out 

T4 = 4k : 5K [(2K1 + 3Kz)T1n 
1 2 · 

+ (2K + 2K )T J 
1 2 out 

(A~2.20) 

. T.5 = 4K 1 l-( 2K + 2K ) T + 5K 1 2 in 
1 2 

(A.2.21) 

+ (JK + JK )T 1 
1 2 outj 

(A.2 .2.2) 

+ ( JK + 4K ) T .] 
· 1 2 out {A.2.23) 

{A.2 .,24) 
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Because heat flows linearly from face ~o face of each · 

layer, the half of the summation of temperatures at each 

face of the layer gives the average temperature for each 

corresponding layer asi 

T - 1 [(SK 9K )T 1 - in - 2(4K + 5K) 1 + 2 in 
1 2 

T 2 .,., 1 

+(Kl+ 2K2)T J out 

T = 1 [(6K 7K )T . 3 = 2 2 ( 4K + 5K ) 1 + 2 . in, 
1 2 

+ (2K1 + JK2)Tout] 

T5 = 4 
1 

.5K ) [ (41\ + 5K )T = 2(4K + 2 in 
1 2 

+ (4K + 5K )T J 
1 2 out 

T = 1 
~JKl + 4K2)Tin 6 ... 5 2(4K + 5K) 

1 2 

+ (5K1 + 6K2)Tout] 

(A.2.25) 

(A.2.26) 

(A.2.27) 

(A~2. 28) 

(A.2.29) 

(A.2.JO) 
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T7 - 6 = 1 L-(2K + 3Kz)Tin 2(4K1 + 5K2) 1 

(A.2.32) 

T = 1 rK T 
out - 8 2(4K1 + 5Kz) L 2 in 

(A.2.33) 

From these expressions, by subtracting the temperature of 

the middle layer from that of each layer, one obtains 

where 

K K 
T. ::::6T +T 

m 

K th 
T = Temperature of the K layer 

T = Temperature of the middle layer 
m 

(A.2oJ4) 

(A.2.J5) 

K th AT . = Temperature difference between the K layer and 
the middle layer 

For instance, the temperature differenee between the first 

layer (T1 ... 1n) and the middle layer (T5..;4 ) can be written as 
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= ( 4K1 + 4K2) T ou J 
= 4(K1 + K2) (T - T ) 

2(4K + 5K) . in out 
1 2 

(A;2;J6) 

In general, the -temperature difference for any layer, b..t5"', 
in tfhe, presenc:e of any arbitrary number of layers, n 9 , may 

be expressed as 

_[ k_=_(_n...,.;_+_1 )_,] ____ (_K=-1 _+_K-=-2_) ( T = Ti ) 
2ft· n ° =-1 ) K + ( n ° + 1 ) K ] OU t n 

L' 2 1 2 2 

(A.2.37) 

where n' = total number of''layers 

k = kth layer 

Then, the resulant'· force due to temperature are, using 

equattlons (2o1.15) 

~ k 
o J ( ok -.. .1) 

L cr1t dY 
k:1 

(6 = l.l) 
k=1 
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(Ao2 ~J8) 

J{6-A) 
n• ·kk 

T = L (J dy 
2t k::1 2t 

( 6 - ~) 
k-1 

= L . . . (T -T ) 
n' E~(et~+-v~o:~)~ [K-(n'2+1 )] (K1+K2 ) . . .. 

k= 1 1- \I V 2 1( n' -1 } K + ( n' + 1) K 1 out in 
1 2 L 2 1 2 2J 

+ Tm}tk (A.2.39) 

It is seen that:k is the variable in the series, if ex

pansion is made only regariding tb term [k - (n'2+1)] 

t ·' 
~ 1, n°+1 J n°-1 ~ n°-5 ~ Lk- (-2-) = = ( 2 ) - ( 2 ) - ( 2 < ii il il •• f<qL!j>i'~ .. 0 • 

Therefore, 

T 
m 
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As n° approaches infinity the values for T1t and T2t are 

Also, from Appendix: 1., it is seen that 

Thus ~ ( s) iS' reduced tb 
1 

The moments due to temperature are 

and 

e I ( ok = Ll) 
n k . 

=L. 0'2t YdY 
k=1 ( o =A) 

k-1 

(A.2 .. 43) 

(A;2.,45) 

Tout 
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(A.2.46) 

the,, variable 

terms. Likewise, as n' approaches infinity the values for 

Thus, i 2 ( s) is reduced to 

SP 2 ( s) = - _ _1_ dMt 
011 ds 

(A.2.47) 

(A.2.48) 

If'' the longitudinal temperature variation is given by 

then 

or 

where 

T = ps2 + R 
out 

1 dMt H0 

= --- - + - (L ... x) 
D11 ds - D11 

:xr::::L-s 

(A.2.49) 

(A.2.50) 

(A.2.51) 

(A.2.52) 

.. 
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Also ~l (s) can be written 

* 012 ** i (s-) = -(H - -0 : H ) ( x. - L) 
1 11 

where, 
k k ·.lt; k k 

* ..p!. El ( a.1 + "':2:et.'. ) t 
H = 2PL ·.12 

k=l 1 - v1 V;, 
·~ 

theref'ore. 

(A.2 .54) 



APPENDIX J 

'DHE; MA'llERIAL PROPERTIES O?' RESIN-GLASS 

For an orth.otropic:. material the elastic constants are 

functions of resin-glass proportion, the filament orien

tat'ion w1 th respect~ to the load direction, and the material 

properties· in the principal direoitions. To determine the 

equivalent elastic· constants and Poisson's ratio, the known 

solution was applied and only the,, formulated expressions 

shall be introduced 

i.e. 

(A~J.1) 

(A.J .2) 

(A.J.J) 

(A.J .4) 

where 

E~ = modulus of elasticity of fiber glass 

Er= modulus of elasticity of resin 
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j = percentage of fiberglass by volune 

Exm· = generalized transverse modulus elastic-:1 ty 

bi. = non-dimensional height!··of" an element1~ 

vf = Poisaon's,ratio of'' flber glass 

vr = Po1sson°s ra.tto of resin 

The data o~ ela~ti~ constants and Poisson's ratio used in 

Example 2 are; 

Er = 10 x 106 lb/in2 

E r = .5 x 106 lb/1n2 

'\)f = .2 

Vr = .36 

f = .67 

Using equations (A.J.1, 2, J, 4) one obtains 

E- = 6.87 x 106 lb/in2 
L 

ET = 2.J1J x 106 lb/in2 

VLT = .253 

VTL = 0.083 

Determination of0
·· thermal coefficients for the combined 

material, ta.king filament·: strue:ture for analysis, it is to 
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determine the equivalent thermal coefficients in the fiber 

direction and transverse direction. Examing an element as 

shown in figure 18. 

The thermal ooeffloient in the (T) direction simply is 

The thermal coeffioient'in (L) direction is obtained by 

solving the compatibility equation 

and the equilibrium equation 

(A.J.6) 

From equa t 1lon ( 1) 

crf + crr _ ex. ex. 
E E - f- r 

f r 

from equation (2) 

= (1 - f )cr 
0 f f' r (A.J.8) 

substituting equatlon (A.J.8) in equation (A.J.7), one 

obtains 

ex. - a. f r 

-1 1-f 
E +~ 
r f 

inserting cr value in equation (A.J o5) 
r 



I 
w 

EXPANDING IN L DIRECTION 

I 
EXPANDING IN 
T DIRECTION 

Figure 18. Element of . Filament Structure 
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a. +----
r 

1:fr' one uses 

Ef'. = 10 x 106 lb/in2 

E = 0.5 x 106 lb/1n2 
r 
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APPENDIX 4 

THE SIMPLIPIC:AT[ON OF- VlALUE a 

The value a was obtained through the solution of the 

quadratic> equation ( 2 .5 .11) as 

... 
a= 

(A.4.1) 

By virtue of'·· equations ( 2 .1.17). the following terms were 

found 

Then, it is easily seen that 
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1 
where R and the summation of series is very small. 

1 

Equation (Ao4.1) is; theref'ore, simplified to a = -i ~11 ".· 
D n 

. 11; 
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