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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem, The basic concept leading to

this thesis is that of deciding on the basis of sample tests whether
or not to repair a group of equipment. The engineer is often faced

with such a decision as is exemplified in the follewing hypothetical
situation.

A mammfacturer of electronic equipment has produced a line of
voltage generators which are now in operation. In addition to having
produced the equipment, the manufacturer must maintain the generators,
The manufacturer cannot continually monitor each generator but must
rely on periodic checks of only a fixed number of the generators,

From these checks the mamufacturer must make either the decision to
recall the generators and make the necessary repairs or the decision
to leave the equipment in opsration,

A very important ingfedient in such a decision is the probability
that a voltage output is outside specified limits at a specified
time. Essentially this probability can be estimated by estimating
the probability distribution function of the random variable which
describes the voltage outputs at the specified time,

The probability distribution function of a rand@m variable can
be approximated as a series expansion of the moments of the random

variable, Two series expansions which are common in the literature



are the Gram-Charlier seriss and the Edgeworth series (2). See
Appendix A for a discussion of these series,

In most situations the moments are unknown, Therefore, to ap-
proximate the probability distribution function using a series expan~
sion the engineer nseds estimates of the moments of the random
variable which describes the voltage outputs at a speecific time,

It is this problem of estimation of moments with which this thesis

is concerned,

1.2 General Approach to the Problem Solution, "When in doubt,

compute the sample m@menﬁsww In many situations, where observations
of a random variable are possible, this advice offered by Deutsch (3)
must suffice for the estimation of moments, However in some situa=
tions, such as that menticned in Section 1,1, there may be other
sources of information which should be put to use in the sstimation
of moments, Particularly the engineer may have a priori information
about the moments which is derived from the design phase of the
system development. In addition a system model which deseribes the
behavior of the eguipment outputs may be available,

This effort is directed toward the use of three sources of infore
mation in the estimation of moments. These ares

1) A System Model

2) A Priori Information

3) System Observations

Chapter II is devoted to the development of a system model and
the subsequent derivation of an augmentéd moment model whieh provides

the bagis for the recursive estimation of moments, The system model



used is of the form

X, =CX . +8 (1.2,1)

whefe Xn is the random variable which represents the possible values
of the equipment cutputs at the time tn and is given in terms of the
previous random variable xnml and two system random variables Cn and
Snp This model is by no means unique and in many situations is not
realistie, but the procedures used in Chapter II to determine the
model require that the model have no more than two parameters, e.g.,
Cn and Sn of Equati@n 1.2.1. An example is given to iliustrgte this
procedurs,

From the system model an augmented moment model is derived. The

augmented moment moedel is

By mAR 4t ks (1.2,2)

where By and B4 are vectors of moments of Xn and anlo respectively,
and A and p., ars composed of moements of C_and S . To derive this
==y Sn n n

[N

moment model 4t is assumed that the random wariables Cn” X

el and

Sn of Equation l.2.1 are indspendent.

In Chapter III the augmented moment model is uszed to develop 2
recursive moment estimation scheme., In this development the augmented
‘moment model is considered to be 2 vector vwalued sample function from
a stochastic process. In this framework the moments are randem
variables which at the time tn take on speeific values, The sample
moments ars compubted from the observations of Xn° The sample moments
ars then used to determine unbiased data estimates, E;n which are
formulated as uniform, minimum variance, minimum risk, unbiased

estimators (5), (3), (2).



To develop the recursive moment estimation scheme the works of
Papoulis (10) and Kalman (7) on recursive filtering are relied upon
very heavily, The unblased data estimates, gz are assumed to be noisy
observations of the random mcments g0 The estimate Q_n is then
derived as the linear eétimate of p, in terms of the observations,
ESo&Enoonpﬁgo and the a priori estimate gé, such that the mean squared
error between Qn and.y;n is minimized, Several difficulties arise in
the use of Qn as derived in this manner. These difficulties are also
presented in Chapter IIT and an alternative approach, the pseudo-
minimam variance recursive moment estimation scheme, is introduced,

Another apprecach, the Bayesian recursive moment estimation scheme
is presented in Appendix D, This épproach is an attempt to make use
of a reproducing a priori density function in Bayes! Rule to esti-
mate ko

Te demonstrate the pseudo-minimum variance recursive moment
estimation scheme and to investigate its estimating properties a
simulating computer program was written, For comparison purposes
the Bayeslan recursive moment sstimation scheme presented in Appendix D
was in@luded in this program, Chapter IV &isgusses the simulaticon

and presents some typlcal results,



CHAPTER IT
DEVELOPMENT OF THE SYSTEM MODELS

2,1 Introduction, This chapter is concerned with the develop-

ment of a mathematical model of time variation of equipment output
and the subsequent derivation of a moment model to be used in the
recursive estimation of moments,

4 statement of the physical problem is presented and a system
model in the form of a first-order linear difference equation is
developed. The development of this model is illustrated by an
example, The model is then extended to a system model which describes
the time variation of the random variables of the system. From the
system model an augmented moment model is derived which is a first-
order linear vector-matrix difference equation in terms of the
moments of the random variables of the system.

A method is suggested by which estimates of the parameters of

the augmented moment model can be determined,

2,2 Statement of the Physical Problem. A collection of K

pleces of equipment, e,g., a set of 5,000 voltage generators, 1,000
similar radars, or 10,000 amplifiers of the same type, etc., is in
operation, Periodically the outputs of k of the K pieces of equip-
ment are observed. The outputs may be the voltage outputs of the

generators, the signal-to-noise ratios of the radars, the gains of



the amplifiers, etc, See Figure 1, It is desired to estimate at
a time tn the probability that a piece of the equipment is operating
outside acceptable limits of operation, i.e., P[Xn < a or Xn > b],
where Xn is 2 random variable which represents the posSible values
of the equipment outputs at the time t e

An estimate of P[Xn <aor Xn > b] can be made from the k obser-
vations at time tn’ This estimate could be determined by construct-i
ing the empirical distribution function of Xn from the k observations.
Alternatively estimates of the moments of Xn could be formed from the
k observations and the distribution function of Xn approximated using
a truncated Gram-Charlier or Edgeworth series. See Appendix A.
Howeverg\neither of thess approaches makes use of the k observations
, etec. In order to use the

at time tn or the k observations at t

1

observations made at the.n-l previous sampling times the time varying

N=2

changes in the equipment outputs must be modeled. The next section

develops such a system model,

2,3 Development of the System Model., In order to get some

understanding as to how egquipment outputs change with time and
enviromment, a lengthy test, a life test, is often performed upon
a collection of typical pieces of equipment, Such a test can aid in
determining a model of the time varying changes in the equipment
outputs.,

Consider the ith piece of equipment undergoing a life test. The
life test enviromment is referred to as El” and‘glpn is a vector
guantity representing the different constituents-—temperature, rate

of change of temperature, pressure, radiation, humidity, etc,-—of
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A System of Operating Equipment with Equipment Outputs



environment which cause change in the system outputs from tnal to tn

in environment Elo The output of the ith piece of equipment at time

t, is a function of E, ,,» the previous output at time t ., and other
=1, h-1l

possible variables, i.e.,

(1) _
xi,,n f(xignulnaooa_E_lpn)p n _>_ 1 (2,30_1)

where the subscripts i and n denote the ith piece of equipment and
the time tng respectively, and the superscript (1) denotes the environ-

ment, Elo See Figure 2,

x,
1*15££
2 xgl)

i,n

t

tnul n

Figure 2, The ith Equipment Cutput
in Life Test, E1

The change that is observed in the ith equipment's cutput from

t to t, can be modeled in several ways, With the two observa-

Tl
tions of the values Xy pel and, xglg the model of the change is rea
g Ld= D2

stricted to be in terms of only one unknown, Arbitrarily the change



is modeled here as a multiplier, i.e.,
x(li = o{1)y ) n>1 (2.3.2)

The multipliier, cgli, represents the change in output which is ob-
?
served when the equipment is operated in the life test environment,

Eq; the change whichlis caused by the interreaction between the

: . : (1)
equipment and E1 during the time ffom tn-l to tn. Note that ci,n
is uniquely determined from Equation 2.3.,2 by the observations of

4 (1)
%y ,n.1 &4 %y pe

Now assume that the ith piece of equipment is operated in the

system enviromment, E,, from tn 1 to tno The output at time tn is a

29

function of Ez nt the previous output at time tn 10 and other possible
9 -

variables, i.e,,

(2) _
xi,,n = f(Xinn_,loooooEZDn)o n _>_ 1 (29303)
See Figure 3,
; (2)
Xign‘nl xi n
e ———— A/r——-——-\_,.__\\__‘_—‘

tnml tn

Figure 3, The iih Equipment Output in
System Operation, E2
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(2)

Expanding X in a Taylor series expansion about the vector gl o
9 9

(2) _

xiqn = f(xl no1?oee 1 n)+Vf(x lgooopEl n) (E ﬁglgn)+°°°»

n>1 (2,3.4)

where ".% denotes the dot or imner product and Vf is the gradient of
f with respect to the constituents of E, ,and in a sense is a measure
of the sensitivity of the equipment output to a change of environ-

ment. A first order approximation to XSZ) is
9

x(z) ~wx(l) Vf(x

i,m " "i,n o100 0B, n)’ ("E'Z,négl,n)° nzl

From Equation 2,3.2 and letting

(2) '(2)
S VLG qeeensBy ) (B -By )

L2 o (D) s(2)

1 n 1 n i, n«l 1 n’

n>1 (2.3.5)

The additive temrm, s(z)
i,n

caused by the difference between the system enviromment, E2, and the

» represents the change in the output which is

life test environment, Elo

Equation 2,3.5 is a first-order linear difference equation model
of the change that takes place in the ith equipment output under the
influence of the system enviromment, Ezo Although this model is not
unique it is a satisfactory model in that it reflects the change that

occurs and also the way information about the change is obtained.

(1)

The multiplier, e reflects the change which can be observed in

a life test environment while the additive term, sézi, reflects the

9

additional change which occurs when the equipment is placed in the
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system enviromment. From Equations 2.3.2 and 2,3.5 and observations
(1)
i,

" during life test and observations of xi,n-l and

of x. 1 and x

i,n-
2
xg ) during system operation there are two equations and two unknowns,

10
2
cgl) and s§ )o In which case, c(l) (2)

o i,n i,n i,n

and s can be uniquely deter=

mined,

Example, Consider a collection of voltage generators which are to be
operated in an enviromment such that temperature is the only signifi-
cant constituent, It is desired to model the voltage output, x, of a
generator as a function of time under the influence of temperature,
It is assumed that the time derivative of the voltage output, x, is

proportional to the temperature, T, and the voltage output, i.e.,

dx _
T KT(t)x

Solving this differential equation with the conditions x = X1

at t =t and x =x at t =1t
Ne 1. n.

n
X t
n n
[/ &= [ KI(t)dt
x X t
Nw 1 Tiw 1
t
X, n
In(e——) = K [ T(t)dt
X .
N1, t
Nl
X tn
n _ kK [ T(t)dt
X € ¢
N1 n-1 ¢
n
K [ T(t)dt
x =x ., e b4 (2.3.6)

n Nl



1z

Thus for this example the change in voltage output from tn

1 to tn is

a function of the integral of the temperature, T(t), from t . to tno
The effect is the same as that caused by a constant or average

temperature, Ta n? such that

t
n

Tl = ) = HON
© hel

Therefore Equation 2,3.6 can be expressed as

KT (t-t .)
X =X g HR D1 n-1 (2.3.7)

If a generator is observed during a life test, envirorment El'

and the voltage outputs at times tn 1 and tn are observed to be

X and xgl)

5 pel s n respectively, then the observed change in output
p A= ?

frem x, to xgl) is caused by the time integral of temperature,
1,0=1 i,n

(1) ()
T n(bteg) = 0 T (B)at

aﬂ
Nl

and Equation 2.3,7 becomes

(1)

1 KaT (t t.nt - )
xéoi =x, e 1%a,n" " "n=1 s n2>1 (2.3.8)
) p N
R ¢ 5 B . .
Thus the multiplier, ey, 1o of Equation 2,3.2 is
?
K T(l)(t t )
1 " e
gy = b e (2.3.9)
9
) : (1) (L o
and from the observations of xi,nml and xi,n" cinn is uniquely

determined,

If the generators are placed in the operating system enviromment,



(2)
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EZ, the voltage outputs at times tnml and tn are Xi,nml and xi’ ’
: n (2) .
respectively, Again the change in voltage from Xi,n-l to Xi,n is
caused by the time integral of temperature,
(2) n (2)
(bt )= [T ()at
t
n-1
and Equation 2,3.7 becomes
IK T(Z)(t t_ .)
2 i " N
( ) ia,n* " n "n<l , n>1 (2.3.10)

=X,
i n i,h=l

7

. (2)
Expanding xi,n

Ta s in a Taylor series expansion about the particular value Ta
L} 9
(2)
X(E) = x eKlT; n(tn“ t l)
i,n  “i,n-1
1
T( )_ ( )
a,n a 1
(2)
+ [x. KiTavn(tn‘ntnﬂl)j (T (2) (l))+ooo
( 5 i,n-l a,n a n
Tf?a):, (1)
a,n a,n
(1)
= x KiTa,n(tﬁmtnml)
i,n=1
( )
nlty=ty 1)
n” “n-1 (2)
xi,,nwl Ki(tn”tnml) a ana nk".
(2) (1)
a,n a,n
(1)
(1) FK (bt ) KiTa,n(tn“tnml) T(Z) (1))+..°
*4,n 1V " ne1/%i,ne1 © a,n” “a,n

]

in terms of the significant environmental effect,

(1)
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2
Taking the first order approximation of xé i from the Taylor series
v
expansion
x(2) = 1) (2)
i,n ®i,n *i,n-1 " ®i,n ° nzl (2.3.11)
where cgli is given by Equation 2.3.9 and
]
(1)
s$3) =k (t ot x folanl b2 (2 (D), 5 1)
i,n n n 1/%4i,n-1 a,n a n ‘o

Equations 2.3.9 and 2. 3 12 indicate for this example how the

model parameters, c( ) and s( )

9 9
constituents, T( ) and T( )
a,n

0’ are related to the environmental
o’ which cause change during life test and
system operation. Equatlon 2.3.11 is the desired model for the

voltage output of the ith piece of equipment.

As indicated prior to the above example if the values of x,
(1)

and xi

i,n~1

are observed during the life test and the corresponding

2
values of X el and xg i are observed during system operation, then
9 4i= ]
(2)

using Equations 2,.3.2 and 2;305 the two parameters, c§oi and s o
can be uniquely determined, It is implicit here that the same unlt is
in system operation as in life test and that it is identifiable in
both environments, |

When a collection of equipment is in operation only k samples
are taken of the total number of K units in operation, k < K. Usually
M, the number of units observed during the life test, is considerably

less than K, M < K, and not necessarily equal to k, M # k. Then
1)

1 n’ i=1,2,000,M can be determined. Also, unless the correspond-

ing M units are observed during system operation, séz) can not be
9



15

determined., Instead from the M observations during life test and the
k observations during system operation at each sampling time, tn,
only estimates of the population of equipments can be determined.

A discussion of how estimates about c§}% and séfi are obtained is
presented in Section 2.5,

Since at best only estimates can be determined it is useful to
extend the model, Equation 2.3.5, to a model relating the random
variable Xn to the random variable Xn-l where Xn is the random
variable representing the possible values of the K equipment outputs

at the time tn° The extended model is a first-order linear difference

equation and is given by
X, =CX, 1+S,», n21 (2,3.13)

where C, is a random variable which represents the possible values

of ¢ i=1,...,K, and Sn is 2 random variable which represents the

i,n?
possible values of S5 i=1,..0.0.K. XNote that the superscripts

¢
n(1)" and ®(2)" representing the enviromments have been omitted in
Equation 2,3.13, It is impliecit in the remainder of the study that

Equation 2.3,13 refers to the system operation envirorment,

2.4 Development of the Augmented Moment Model, To estimate the

probability that a piece of equipment is operating outside acceptable
limits of operation, P[Xn < a or Xn > b]9 a series expansion of the
probability distribution function of Xn in terms of the moments of Xn
can be used, See Appendix A. In this section an augmented moment
model is derived from the system model developgd in Section 2,3, This

augmented moment model becomes the means whereby the estimates of the
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moments of Xi” 0 €£i< n=1, can be used in the estimation of the
moments of Xn°

Although the augmented moment model and the techniques of mpment
estimation developed in this study can be extended to higher order
moments, the estimation of only the first three moments of Xn is pre=
sented here, Of cpurse with only k observations of Xn in many cases
the estimates will become less accurate in a mean squared error sense
as estimation of higher order moments is attempted. -

The following notation will be used throughout this thesis, The
first moment of a random variable is the mean or expectation of that

random variable, i,e.,
P T I 0 byg TEG) .oand o kgg = ES)
A1l other moments are central moments, i.e,,
= r = -
bron E{[xn - "Ll,,n:l bos p’:r'Cn - E{I:Cn - p'lCn-] }o
— ID —-—
“rs_ T B{[S, - “1sn] boo TEZ 3 .o

Assuming that in the system model, Equation 2.3.13, Cn’ YT

and Sn are independent randem variables® the mean of Kn is

H

by = B{X} =E{C X, , + 8} = B{CIEX .} +E(S)

L}

M0, F1,ne1 T s nx1l (2.4.1)

*The assumption of independence may not always reflect the true
circumstances, In the example presented in Section 2.3, Equation
2,3,12 indicates that Xn 1 and Sn are very definitely dependent,
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Similarly the second central moment, variance, of Xn is

]

2 . 2
bo o = B[Kpeny o I3 = E{[Cnxnml+sn"ulcnulgnmluulSn] }

il

L2 2
[a2c ®1c Jbo,n1 * 020 Py g Fhas » n21 (242)
n

And the third central moment of Xn is

3, _ 3
LL39n - E{I:Xn""“‘l,,n:I } = E{[Cnxnml+sn““lcnulpn-l'ulSn] }

(b *3,. B w2 Ju
3¢, ~2C,1C T1C - ¥3,n-1
: 3
¥ l:3”‘3cn“’_"6”‘2cn”‘1cnj H2,0-1"1,0-1 30 M1 01 M3s

n>1 (2.4.3)
The detailed developments of Equations 2,4.1, 2.4.2, and 2.4.3 are
given in Appendix B.
Equations 2.,4,1, 2.4.2, and 2.4,3 indicate a non-linear relation-
ship between the moments of Xn and the moments of Xnm1° For example,

Equation 2,4,2 gives by , a5 2 function of uz ol and the square of
9 ¢ {1=o

2 3 P
W1, na1® By using W, ne1® M1,n-1° and Mo ne1®1,ne1 28 auxiliary

variables a linear form can be construed, In this case Equation 2.4,2

. ‘ . 2
gives u2,n as a linear function of Bo el and ul,nml° With these

auxiliary variables an augmented moment vector o can be defined as

“l,n

LL2,,n

1
3

po= | w2 |, n21 (2.4.4)
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The variation of this augmented moment vector with n(time) can
be written in the form of a first-order linear vectormmatrix difference

equation,

b =4, Th o on2d 2.4.5)

where A is given in Figure 4 and

"
Bs = on
| M1,
e
18,

N n n

Equation 2.4,5 is the derived augmented moment model.

2.5 Estimating the Moments of C and S , In order to use the
41 I

augmented momenﬁ model, Equation 2.4,5, the moments of Cn and Sn
must be known, Unless the statistical properties of the changes due
to the life test emvirommental stresses, Cnvvand those due to the
system envirommental stresses, Sn” are known these moments will be
unknown, In this section a method of determining estimates of the
moments of Cn and Sn isisuggesteda

In Section 2,3 the change in output was observed in a controlled

life test. This change was represented by the difference equation

xgli = o)

i,n xignml 9 i= looaooMo n Z 1 (2"3"2)



i

Hie 0 o 0 0 )
n
0 2 1 0 0 0
[hae "4 Hac
n n
By . o 3 _ .
0 0 Leag ! 3"‘2cn“1cn+*‘1cn3 0 H3c [3k30 T6kse My
n n n n
24 [ o 0 pz 0 0
1c Mis 1c
ha o n
2 2 3
e 1 © © e M1s M 0
n n n n n
g oo 4 (o *fuz Ju 0 Py o B By B [bpn b +u3 ]
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1
It was also noted that cg i is uniguely determined by observations
?

( )

of xi,nml and X e i.e.,
ey
cin—-xln [ i:’lpcoogM’ nZl (20501)
’ i,n-1

In a controlled life test where M pieces of equipment are ob-

(1 )

determined by Equation 2.5.1, an estimate of the mean of Cn is

served periodically and s for the ith piece of equipment is

g, nx1 (2.5.2)

Similarly estimates of higher order central moments of Cn are

*

rCn

M
o :Ml by ( (l) )r N r = 2,39@!:0, n _>~ 1 (20503)

1=1 i, n lC

!
or, using unbiased estimates as will be done in this study when
possible, the unbiased estimates of the second and third central

moments are

M
* 1 ( ) * 2
W = 2 ° > 1 2, ol'"'

* M (l) 3
Mg W Z(c in 1C) » n>1  (2.5.5)

See Appendix C for a development of unbiased estimates, Estimates
of higher order moments of Cn can be determined in a similar fashion.
Thus, estimates of the moments of Cn can be determined from a
life test of M pieces of equipment.,
Estimates of the moments of Sn are more difficult to obtain,

Since Sn models the change due to the difference in the enviromment
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of the life test and that of the system operation, accurate know=
ledge of the moments of Sn is difficult to obtain prior to actual
observation of the system in operation. Instead the estimates of
the moments of Sn must represent the a priori knowledge of how one
. believes the system environment affects the system,

The estimate of the mean of Sn will often be zero because a
life test is often designed to simulate the actual system envimerment,
The estimate of the second moment, variance, of Sn should reflect
the uncertainty that one has in‘the effect of the system enviromment.
If the uncértainty as to the difference between the life test environ~
ment and the system enviromment is great, uzsn should be large, If
one's confidence is high that the change due to the system environ-
ment is not very different from that observed in the life test, uZSn
should be small, 8ince little else can be said about the environ.
meptal changes, it is plausible to assume that Sn is normally distri-

buted,



CHAPTER III

RECURSIVE MOMENT ESTIMATION

3.1 Restatement of the Problem and Introduction to Recursive

Moment Estimation, In Section 2.2 the problem is given as one of

estimating P[Xn <aorX > b] where Xn is a random variable repre-
senting the.possible values of the equipment outputs at the time tno
The estimate is to be formed by making estimates of moments of X
and then approximating the distribution function of Xn using a
truncated Gram-Charlier or Edgeworth series. The moments of Xn
Will be estimated using the augmented moment model, Equation 2.4.5,
In this section the pfoblem is restated and more definitively
formalized in terms of the augmented moment model.

The augmented moment model of Equation 2.4,5 is a vector valued
function which describes the way the moments, B Equation 2,44, of
Xn’ Equation 2.3.13, vary with time (n), In this respect Equation
2.4.5 can be thought of as a vector valued sample function from a
stochastic process.

To develop the concept of the augmented moment model as a sample
function consider the first moment, the mean, of Xno From Equation

2.,4,5 the mean of X is
'J,lon = 'J,lcn '_lenml + l.LlSn 1 n Z 1 (30191)

Equation 3,1.1 is a function describing how the mean of X, varies
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with time; at least how it changes from one sampling time to another,

See Figure 5.

Figure 5, ul,ﬁ versus time (n)

Figure 5 depicts the function by 5 in relation to the equipment
9

outputs, x. 1 =1;0000Ko The system of K pieces of equipment

i,n?
generates the function, ulgn° & sample function from a stochastic
process, Other sample functions of means from this stochastic pro-
)Eess are generated in the same manner, To elaborate, if there are
other systems of equipment in operation, similar to the system of K
pieces of equipment which generate ulgng then these systems also
generate sample functions like Equation 3.1l.1, If there are no
other systems ﬁhen a hypothetical stochastic process can be assumed
from which the one sample funection, ul,n” is realized,

If time is fixed at tn the value of the sample function, ul,n”
is fixed at a constant which is the mean of Xno Similarly for all the

sample functions of the means of the stochastic process; if time is
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fixed at tn then each sample function takes on a constant value, If
the stochastic process is considered as a whole and time is fixed

at tn there results a random variable, , Which represents all

Ll"].,,n
possible mean values at time tno One realization of this random
variable is the value of ulung the mean of Xn° Other realizations
are the means of the other systems of equipment at tn” either actual
or hypothetical,

In a similar manner as that described above, each element of the

augmented moment vector, B i.eo, Ho o W , etc,, can be con-
9

3,n
sidered as a sample function from a stochastic process. Thus the
augmented moment model can be thought of as a vector valued sample
function from a vector valued stochastic process,

In the context of the augmented moment model as a vector valued
sample function from a stochastic process the problem of estimation
of moments becomes one of estimating the value of the sample function
g at each sampling time, tna

In the next section H;o the best estimate of B from the k
observations of the random variable Xn” is developed. The criterion
for "best" is taken to be minimum mean squared error, E; is referred
to as the unbiased data moment estimate, E: is the best estimate of
B given only the k observations of Kna

In Section 3.3 a scheme of recursive moment estimation is
developed. The procedure is a systematic method of determining ﬁng
the best estimate given the initial estimate, ggg and the n + 1 data

%

moment estimates, By 1i=0,1,.00,n, Section 3.4 discusses several

difficulties in this recursive moment estimation approach and
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Section 3.5 presents an alternative, pseudo-minimum variance recursive

moment estimation procedure,

3:2 Unbiased Data Moment Estimates., When the stochastic process

introduced in Ssctivn 3,1 is halted in time at ?n there results a
random vector, B which represents all possible values of the moment
veetor, The vecﬁbr valued sample function, the augmented moment model
of Equation 2.4,5, takes on one possible value of this random vector,
B the moment vector, Equation 2,4.4, of Xno

It is desired in this secﬁion to determine the best estimate of
the moment vector By given only the k obseryations of Xno

From the k independent samples, X ne%p n,ooo,xkgn, of X taken
at time t » the sample moments of Xn are given by

1,n e} 1,0 (x =l ) 9 r=2,3000

& j=p 1. Lo
(3.2,1)

These sample moments are estimates of the moments, By polt 0
¢ ryn
r =2,3,000, respectively, However all except my , are biased esti-
b

mates, For example, my is a biased estimate of By po for
. ? 9

E{m2 na&na} - E{E lZl(xl n, n) lEna} - E:l “2.n (3.2.2)

=5

where E{°!Ena} means the expectation given all the moments of Xno
The bias in the estimate of Ho , Can be removed if, as can be deduced
N :
from Eguation 3,2,2, the estimate u; n given by
?

* ko
UZ.

"I % (3.2.3)

o s %* ° o o o
is used instead of Ty o Hp o 1S obviously an unbiased estimate of
9 9
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ko and is referred to as an unbiased data estimate.
9

Unbiased data estimates are used as estimates of the moments,

L. The vector H; is defined as

v ,
bt = o , n21 (3.2.4)
' v
l,n
3*
p‘l,,n
*

fuZ,nulgn>

where each element of E; is an unblased estimate of the correspond-
ing element of Koo In fact, the elements of g; are the UMV-RUE's
(uniform, minimum variance, minimum risk, unbiased estimators) of the
elements of B and are given in terms of the sample moments, Equation

3.2,1, by Equations 3,2.5. See Appendix C for the derivation of

UMV-RUE's,
* =
by =y (3.2.5a)
u; k 0 |[m,
. (3.2,5b)
er| 1 kell|w?
- . -, - -
K 0 0 ]
2 my
* ""a—-—-—l‘-——-—-
(uzul) = o) (e2) <k  k(k2) 0 mymy
*
b3 2 3(k-2) (k-1)(k-2) || m3
1 i | JL 1]

(3.2.5¢)
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Note that in Equations 3,2.5 the second subscript, n, has been
~omitted for simplicity of presentation., For the remainder of this
section n will be omitted often, It is implicit that all random
variables, data, moments, and estimates have the same time corres—
pondence unless otherwise indicated.

A measure of the goodness of one of the elements of g: as an
estimate of the corresponding element of B is the mean squared
error, €.g., E{(u;”nmuzun)z} is a measure of the goodness of u;,n
as an estimate’ of u29n° It is necessafy"in the following chapters
to have, in addition to the mean squared errors of the elements of
H;Q the error covariances of the 9lements of g:, €580
E{(u;pnwuznn)(ugpn-u39n)}o Tt is convenient to place the mean
squared errors and error covariances togetﬁer in the error covariance

matrix of E; given by

¥ = B ) ) -

However the error covariance matrix of the estimate g; is unknown and
in its place an estimate must be used.

To aid in determining an estimate of the error covariance matrix
of E;s consider the covariance matrix, @ii of g; given the moments

of ¥,
n

\I":Em B (P-':“’Eﬂn) (E-;”E-n)Tl Ena}

Two typical elements of @gn are expanded,

One element of @:V is the variance cﬁ* given by
1

2wl * 2 . *2 2
%2 B{ (bg=by) " |nad 5 By |Rpa)=H]
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From Equations 3.2.5

2 2 2
0 4 = E{m -
u{ { llgna} ul

Using Equations C.4.3

2 _1 2 2

1
= % by | (3.2.6)

Another element of @i" is the covariance cu*u* given by
12

= *m ) *,, = * ¥ -
Uu;u; B{ (ny=inq) (w3=n,) |, } E{ulu2|9_na} b, b,
which from Equations 3.2.5 is
-k .
"u;u; %I E{mymy |ty 3=

and using Equations C.4.3

k k-1 k=1 ..
T % % = [..._p, +...._.p,p,]_,p,u,
‘ kel 2 ‘ 21 172
bobs K 2k
= 1 .
E W3 (3.2.7)

Similar developments of the remaining elements of @in result in
Equations C.4.4, Since mﬁ” is a (6x6) symmetric matrix it has 21
distinét eleit;ents° These 21 elements are those given in Equations
Cultolt, |

Equations 3.2.6, 3.2.7, and C.4.4 all indicate the conclusion
to be drawn here; that is, that the covariance matrix, @in,Ais a
funection of tﬁe unknown moments of Xn, and therefore is unknown.,

Since Ez is the UMV-RUE of En it does minimize the variances

of E; which are the diagonal elements of Qﬁ“ therefore the measures
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of goodness chosen are the diagonal terms of \,1\/:, the UMV=RUE of \11:: )
which is determined strictly from the data observed. Each element
of \,f;:; is the UMV=RUE of the corresponding element of \y;'.. ‘ For
example, (GS:T.)* is the UMV-RUE of oi* and (ou*u*)* is the UMV-RUE of
1 12
ou;u;° |
Equations C,4.4 indicate that \1};” is a linear function of
moments and products of moments. In fact \p:k = B Z, where B is a
matrix of constants and Z is a matrix of moments and products.of
moments. B and Z are implicitely defined by Equations C.4.4. The
following theorem concludes that \'I‘::,, the UMV-RUE of \1;:1: is the same
linearl_ function with the moments and produéts of moments replaced by

their UMV-RUE*s., This theorem is essentially proven as part of

Theorem 2.7, p. 60, of Fraser (5).

Theorem 3.2,1l, Given 1) a random variable X having the absolutely

continuous distribution, Fx(x; 8) on Rl,, the ;veal line, 2) t(x),
a complete and sufficient statistic for {FX(XS-Q)\LG-G’G'}”

3) \I!:R = B Z, where B is a matrix of constants and g is a_,'
matrix of moments and products of moments of X, and &) g_*, the
matrix Z with each element replaced by its UMV=RUE, then \'I\y:,
the UMV-RUE of g, , is

v=3z"

Example., Consider the variance 05*., From Equation C.4.4
2

(k=3) u2
= 2

S1,
"k YT )

o?

"
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Let
fﬂ(x) = x‘tF hxJx. + 6x2x x 3K XXX
1= 17 12 17273 T LT2t3L
and
f;(z) xixg - 2x2x %3 + X XX Xy,
then
¢ - L, LE x3 6 2
B{£1(X)} = B{Xy} - 4E{X{} E{X,} + 6E{X|} E{X,} E{Xj}
=3E{X } B{X,) B{Xj} E{X,}
— 2 L
= = lkx30r,1 + 6a2cxl - 3]
= p,LL
and
2.2 2 ,
E{fg(g)} = E{XI}ELXZ}QZE{XI}E{XZ}E{X3}+ E{XI}E{XZ}E{XB}E{XQ}
4
= g - 20&201% + 0y
_ .2
)

where o, = E{X"}, r = 1,2,000

Let
o) 60 - 8 100
then
B{h(D)} = £ 81 (D] - -%i?%%-E{f (X))
=%u ﬁ%%ug

(02*)*9 the UMV-RUE of oﬁ*, is the conditional expectation of h(x)
0

given the complete and sufficient statistic t.
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2 *: = B[ !
(@, @y = 5[ @ - =R )y

1

L]y - Yol me ol

1 % (ko3) 2%
I3 T g B

1

where u: and ug*are the UMV=RUE%s of uu and ug, respectively, ©See
Appendix C for a more comprehensive aevelopment of UMV-RUE's,

The UMV-RUE's needed in %ﬁ are given in Equations C.4.5 in
terms of the sample moments, Mo = 1,2,000 o« From the k observa-
tions of X, Xq9Xp00009%pp the sample moments M. T = 1,25000, ATE
calculated according to Equations 3,2.1., Then the estimate g; is
determined from Equations 3.2.5 and 3;, the estimate of the error
covariance matrix of u:D is caleulated using Equations C.4.4 by
replacing the moments and produc£s of moments in Equations C.4.4

by their corresponding UMV-RUE's of Equations C.4,5.

3,3 Development of the Recursive Moment Estima,tes° In the
previous section E;” the best estimate of‘g‘n given only the k observa-
tions of Xn” was developed. If the k observations of Xn were the
only information available pertaining to B then.E; would have to
suffice as the best estimate of Byo However at the n previous
sampling timesvtﬂe estimates g; of Ei have been made from observa-
tions of X3, 0 <1 < n-l, In addition a priori knowledge may be
available from which the estimate Eé of Lo is derived., In this
section a recursive estimation procedure is developed for which the
estimate ﬁn is the linear estimate of p in terms of p

_ng‘lgooogp‘
and I, the identity matrix, which minimizes tr E{E&nmgn][gnfgn] }o
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and u*

A
B is taken to be the linear estimate of H@ in terms of By

=
A
which minimizes tr B (b b Tuo-y 17
The vector Qn is

H?
-..o

ﬁn = A2 » ngz 1 (30301>

MJl,n
A
u3

l.n
A

(

)

u’2,,1r1p11,nJ

where each element of En is an estimate of the corresponding element
of B

In terms of the stochastic process introduced in Section 3.1 this
section is concerned with the development of an estimate of the value
of u given go,gioooomgzo It is implicit from the context whether
L, is the random vector or a value of the random vector.

The following development of ﬁn parallels the proof of the theorem
on recursive filtering given by Papoulis (10). However the assump-
tions here are less restrictive than those of Papoulis. Whereas
Papoulis deals only with the estimation of a random variable with
zero mean, the estimate of a vector of random variables with non=zero
means is developed here,

To the augmented moment model of Equation 2,4.5 an observation

equation is attached, The augmented moment model and the observation
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equation are

By = A s
. (3.3.2)
by =yt

where _!_L_n is given in Figure 4, kg in Equation 2.4.5, and ,P:; in

n

Equations 3.2.4 and 3.2.5.

The following assumptions are made concerning Equations 3.3.2:

(A)

(B)

(c)

(D)

(E)

}_Lsn is a random vector with E{ Hsn] = Esn and

E{ ‘[:H’-Snwgsnj [Esn"gsn] T}

5_’:’*
m\-‘
i

=
!

Bo = [ch sbog shac ]T is a random vector with Efp. } = EC
n n n n n

- T
and g, = E{[gc =t ][EfC =Bo 17} (See Figure 4 for the
n n n n n
relation of p, to A ).
n

The random vectors E-C 0 L_L_S , and E—i” i < n, are indepen=
n n

dent, Thus B{p. pl} =E, B(ul) . B{ug p} = Bg E{uj}
n n n n

T - =T .
By Bg} =B, By » i<n
_Cn sl’l ECH Sn

The random vectors Yso 1 = 0,1,2,000, are orthogonal, Thus
T, _ * A % T, _ . . .
E{xi:ﬁj} = B E&i“’ﬁij&j“ﬁj] } =2 1#]
=y 1=
and E[xi} =0 , 1=0,1,2550e

/

The random vectors Byo Bg v Bpoo and thus A, are orthogonal
i i '

toyy. Bugtjl = Big v} = Bug Xj) = Efayg} = 0,
i?j = Oolpnno ‘



Under the above assumptions B , C and D are determined such
Ine =2 N9 2p

that for

B =Bl *Cpr *D, (3.3.3)

ﬁn is the linear estimate of Hn in terms of ﬂo,_;gooo,&: and I, the
. . . _ . e | A A 7T
identity matrix, which minimizes tr E[[Enqgn][gnﬁgn] }o
From assumptions (C) and (E)
EA Y =LE E *Ty = T E{uT ‘ (3.3.4)
{A s} = ABE{R.T o {,}isn}ij_ } = Hsn {i} » 1< n (3.3
where B{A } = 4
=n =n

Similarly from (C), (D), and (E)

%
BuelD = HuwD . 3= 01,2, (3.3.5)

and E{E;ugT} = E{Hiﬁg} +-%€ e 1=3
(3.3.6)

= Bupl} 143

R I . s Ak *
Since b, is to be the linear function of Booliysoeosl o and I
A
which minimizes tr E{[Enggn][gnmﬁn]T}g orthogonality must hold,
Thus

B (o0 ] i) = 0 (3.3.7)
Bu -8 JelT =0 » 2=0,100ml  (3.3.8)

Blu -2 T} =0 (3.3.9)

A
where in Equation 3.3.8 gg is taken to be p,. See Kalman (7) and
Papoulis (10) for discussions and developments of orthogonality.

From (C) and Equations 3.3.2

E{u,} =& Ep, 1} * Esn (3.3.10)
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Taking expected values in Equation 3.3.3, since E; is the UMV-RUE
of &i”

* 3
B(ui) = B{E[w]|ue,)) = Bley) o 1= 0ul,ee,

: A
and since B{[  -u 11} = 0, solving Equation 3.3.9 for D yields

D, = (I-C)Er) ~BEy ] (3.3.11)

Furthermore using Equation 3,3.10

b, = [tz- c)A, - B TE(p o) #(I - o g (3.3.12)

From Equation 3.3.2
E{[g - A -, ] w*l = 0 i=20,1 n-1l
G s
Then
®T - *T - *T .
B{pps ) = A E{py qbs 7} thg By} o 1% 0015000,0m1
. ‘ n
(3.3.13)
Solving Equation 3.3,10 for Eé , using the results in Equation 3.3.14
n

and solving for A yields
i ¢}

K, = (e p]) - 5w 15l Toe o]} - Bu, 3suB T,
1 =0,1,000,n=1 (303011"’>

.
Expressing B En as

A
B ow By Tl m B - S PR g - ) -Gy - B

A . *
since E{E& 1 - Hnmlj HiT} =0 K i=0,1,..0,n=1, and from

(D) and (E) E{yp:} =0 , 1= 0,1,0.0mel,

Equation 3.3.8 becomes
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A *T *T, =
Bfp - Je ) =8[(T-Clu -Bp ,-DJu™t =0,
i= Ogl,ooogn!‘“l (303015)

, : =1
Using Equation 3.3,11 in Equation 3.3.15 and solving for (I - Qn) §n

yields

(T - gn)“l_lin = [F{;En&g} - E{p YB(p]} I(Ble, qui) - By, 1)k} Tl,

1= 0,1,000,n=1 (3.3.16)
Therefore from Equations 3.3.14 and 3.3.16

= (I ) (3.3.17)

B - C)A
4] =n -n’"~n

Using Bquations 3.3.3 and 3,.3.11 in Equation 3.3.7
B{[e, - Bl ;- Gt~ (T-C Ry} +BEp, 1]url =0
which with BEquations 3.3.5 and 3.3.6 becomes
B{fifin) = E{Qn} B(pd} = BalE(Rn.200) - Blgn.1)E{ud}]

+ ¢ [Blupt} - B{u )Blug} *+ 4]
(3.3.18)

A
The error covariance matrix for By is given by

g =y, - a0, - B0 = B, - 5,80

which, making use of Equations 3.3.3 and 3.3.11, becomes
A T T - A T T
G, = B{mp ) - B{p }E{p;} - B[E(B, e} - B{e, 13E{m}]

- G [B{upT} = B{p }E{p]}] (3.3.19)
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Using Equation 3.3,18 in Equation 3,3.19 yields

A A
¥ =0 or c =\1n1r*“°1 - (3.3.20)

C b
n -nm ~n n'n

: A
Then with Equations 3.3.12, 3.3.17, and 3.3.20 P‘n of Equations 3.3.3

becomes ,
A nNox ] A — A ox_
Bn = (T - ¥, ][In‘-l'nml T Bg 1+ ¥ ! H”-: (3.3.21)
n

‘ A A
Therefore to complete the development of L, an expression for ¥, in

A *
terms of o4 and N is necessary.

From Equations 3.3.2

A ‘ T
E[Enml&n -Apn - ESn] }=2
from which

A A - ~T
B{k, 18} = B{h, qul JAT + E{&n_l}asn (3.3.22)

The previous error covariance matrix is

A

Y A | S A T
g™ Bl g = b g ey - o TV = By -y T )
=mp wf ) -Bp wl
ne1n.1 Epeifn 1
so that Equation 3.3.22 can be written as
A T AT T
Bl nt = EE{E-nlenml} - ‘I’nml] Ayt E{Enml}}is-n
Solving Equati 3.3.10 for bt , EB T b “
. ving ngquation o Jde or M ¢ ] ecomes
s “tbn.ibn

A . ) A, mT
E{ e 11"3111'] = [E£ By lﬁ'i«» 1} "E£ En. 1} E{ i’irTl‘m l} .. IJ ﬁn'*"E{ Bne 1} E{ h‘.r?}
(3.3.23)
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Using Equation 3.3.23 Equation 3,3.18 becomes

(I - gn)ﬁ%9 =B E@n 1,n-1 @ 1] A +C @ (3.3.24)
where Y, o= Ep) - (3w
n,n n n 7
and R = Ef T } - Ef }E{HT }
nel,nel tEne1Bnol Eno1d®ina

Substituting Equations 3.3.17 and 3.3.20 into Equation 3.3.24

A ey IRy I v
(T-wy Dy = @T-wu R0y, o -% 14 vy
(3.3.25)

A
Solving Equation 3.3.25 for T, yields

=T - N * -1 *
= {gn n —nE@h 1 n 1,n= l:l A }{@hgnﬁﬁnﬁwnul_i%ml,n l:l ﬁ@
(3,3,26)
Let
By = Ay 1 T B (3.3.27)
n
and
LI 1y 3T
v =Efp -p o -p 1) (3.3,28)
then Equation 3,3.21 becomes
= 1 AR TR SR A A
b= T ewwTe v oW (3.3.29)

Now toc show that

- -T 1
TA LY, - Y 1,,n_,1jl AT,

Ne

v

n,n

A
and that @i can be expressed in terms of @h 3

First conside
r @h,n



1
i}

non = BBl ) o -Blw 3 T7

L

= B{Ap, wl ANE R BT 13y
a ‘ ' T 57T : | — T
-A B{p, 1}E(p, (A YE{A B 1(.L1;Sn“°E.sn) }
BBt 1507 JALE Blun 115 (g s ) g
— T - T '—T
HE{ (H'.sn“,u'_s >ﬂn,, 143 =E{ E.Sn"ﬂ‘.sn} E{p 1} An

Adding and subtracting the term AnE{LL lH-n l}A to q;

= T T, = T =T = =T
\lln,,n = B Ax‘Jr}inmlJ:L-nmZl.-é‘-n«t “"-é-nE{ En-lﬂn-l} A1rx+-én‘1"n_l,n-lAn*‘I"Sn

- T - T ,T
B{A g, 1 (g g )T} (kg -Bg i 1A)

- N -
Then using Equation 3,3.30 in ¥ + A [:‘i' =\ ] AT
n,n N-*n=l *n-l,n-l- =n

- A | -7

U B 1 ] Ay
= EfA I AR AT4R

{-y#nml}in_l-n}“ {En lﬁn‘-l}-—n —nq’ *\I’S

+ EfA (be <Fe )34 (o <l AT

(Rt 1 W 5 }+E{ b ~Bs Bno1dn)

Now consider \1;12 of Equation 3.3.28
T - A -
v = EB[Ap g A 1B ]

JENCIEL T “An“-nml ] }

39

- _ - T
E{[Apy,. 1'us ~AnfEn 1] “-‘-f»sn]-—ﬁnﬁnm 1'Es ~Anf{in 1) “Esn] }

(3.3.30)

(3.3.31)
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' = A T T E gp al yED
W, = E{A R, qbn A0 A E(p, b ull—n*‘i’s

-A E{Enmlgnml]A +E{A B l(gs =-gs ) ]
-A E{Ln 11+.n 1}én AnE{&n_ VE( (ug ”Es ) !
B (ﬁsn“"Esn)ﬁE_, 140} -EL L -Es Hg-n 1}En

. . : < wy - ol 13T K
Adding and subtractlng the term AnE{Enmlgn-l}én to ¥,

N g -] - A T
¥ = E{A L-inm].:mr:lml;—n} A 2 B 1un l}én @ 1 " +'@S
+ E . T ,T | 2)
(A 1 (g <G5 )} + (ﬁs;&sn)anmlén} (3.3.3
n n

The right side of Equation 3.3.31 is the same as the right side of

Equation 3,3.32 so that

, o *Efy o -u . JE =4 (3.3.33)

n,n
Therefore Equation 3.3,26 becomes

A = g0t *“‘l %*
L A E A W (3.3.34)

and ﬁn of Equation 3.3.29 becomes

A <1 ‘ |
po=ely ol e rely vl e (303,35)

A
BEquation 3.3.32 is an expression of gé in terms of mh 1 but con-

sider a slightly different development of @i
_ A - A \ -
- Ei[ém(&nml = Emml) *)<An - én)ﬁnml +’(Hﬁn - MSn)j

[y - ) * Ay LR+ (e - ug )T



41

. A A \TT Ty AT, T T
¥, = B{A iy )y qmuy ) &) FELQA A Du qup i (A-40)7) *T‘I’Sn
A A - \T A - T
* Ay gl i (B B - ) (g g )]
- A T - A - T
+ B (B 3 (e 1 1) A+ BUGAE b 1 G )
A

- A T T - T
* B (ug ~Bg )y 1otin 1) An) * B{ (g B Jun.1 (Ay-ay) (3.3.36)

Since Bo s Bg s and by are independent the expectations with respect
n n
to o o Bg oo and By can be taken separately and then using the
n n

A
orthogonality relations for Booq

A Ap S A Amp - T _
, Ef -A=n(-&rxm.f&n»l)-&nml(&n“én)' } =B AE( (Enml”ﬁn-l)ﬂ‘-nml} (-‘&‘-n'ién) 1 =9

. and
A - T
. E{-Aén(&nmlm}ﬁnml)(anm‘usn) } = E{ALE] nmlwﬁnml} (ES "’H-'-S ) } =9
Similarly
A
E{ (4 “’An)&n 1(En1 P—nml) } 9
and

o A TT
E (Esr“&sn) (Enml“ﬁnml) ~A—’n} =9
£
Then \If;l becomes
A

- A T - T
¥ = BAg, A0 ¢ BT en DT v
’ n

+ EKA G‘An)ﬁn 1(95-8 “;E,s ) .} + E{(J;Ls ~u )ﬁnml(%mﬂx ) }
(3.3.37)
The results of this development are now summarized, If the
A : A
estimate B g and its error covariance matrix i are available, }-&;1

and its error covariance matrix \;_:; are determined from Equations 3.3.27

and 3,3.37, respectively, which are
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- A o

w =Ap o +hg (3.3,38)

b ¢ e ¢ U n
_ A T - A Ap - T
= B{Aw oA} ¥ E((A A Dy g, 1 (A -4 )} + ¥s_

- A - \T - M - T
*E((A A Dp o (g -Dig )7} * E{(dg ~bg Jup 1 (A-A1)
n n n n
(3.3.39)
A A
Then p  and its covariance matrix g, are determined from Equations

3.3.35 and 3.3.3%, respectively, which are

A 7

-wa[\If +\I/:| TR [le w"‘]“l * (3.3.40)

Y, = vy + Tt o (5.5.1)
Some comments on the difficulties which arise when Equations 3,3.38
through 3,3.41 are implemented are offered inmthe next section,

There are several interesting cases of this development which
are worth enumerating here, They are:
Case I. A unknown, ES unknown, A and ES dependent,

This is the most general case° the one for which Equations 3,3.38
through 3,3.41 were developed.
Case‘II° A unknowno ES unknown A and ES independent.

This case is not pOSSible with the augmented moment model since
A is a function of ES but it does hold interest for those situations
in whlch A and ES are not related. In this case Equations 3.3.38
through 3. 3 #1 become

- A _
Ty T (3.3.422)

- ¢ - A Ap - \T -
Y, = Blhnk, b+ B((AR Dk, ey g (R ¥ g (3.3.420)

A -1 r . |
b=t T e re et T ey (303.20)



b3

4, =y T (3.3.424)

Case ITI. A knowm, g unknown,
n
This case also is not possible with the augmented moment model
but it has special importance which makes it worthy of presentation,

In this case the recursive moment estimation equations are

i A -
= A + (30301‘"33)
En nn.1 Esn

¥ = A%, 1A * ¥ C (3.3.430)

A ' e * ml ‘« L
e =l + T u vyl + ¢ (3.3.43c)

T w1l % i
v, =gl + Ty (3.3.43d)

These results (with ES = Q) are the same as those obtained by
Kalman (7) and are the vector form of those obtained by Papoulis (10),
Casg IV, A unknown, pg known.
n :
This case would apply to the augmented moment model if fo were

unknown while bg was known, The moment estimation equations are
n

¢ o A .
n - Ahgn@l +EESn (3.3.4%a)

- A T =\ Ap Iy
By = E{A oA} Y E((A R )Dp el (A -E) (3

=n =n

*

A ' | =1
b= gl T ! e T e (3.3.0)

A _— -
¥, = @;E@; +’m£] 1’@£ (303.44d)

Case V., A known, i, knouwn.
e | =--"Sm

This is the simplest case and will be used extensively in the

next chapter. It occurs when u~ and are known, The recursive
P ch E:Sn



moment estimation equations are

A

Bn = A o tug (3.3.452)

= n
¢ =48 oA (3.3.45b)
Aw*'"-i-'»*-wlﬂ-i-ﬂ'n-h*]ml* ( Ll,)
go=swly vet e e le ro TR 3.3.45¢

A =1
u =yl e (3.3.454)

3,4 Inherent and Practical Difficulties, One of the inherent
difficulties in recursive moment estimation was introduced previously.
It is that @i is unknown, Section 3,2 presents a detailed discussion

A
of @ﬁ and proposes the use of g; in its place. Section 3.2 should be
A A

referred to for the development of @io In that development @i is the

* * . : s 42
UMVmRUE of qiﬂ = E{[&ngEn][gngun]T|una], which is the conditional
covariance matrix of g; given the moments of Xno Although the
theoretical development of Section 3.3 requires that @i be used in
the weighting of g: and E; (See Equation 3,3,41), in practice when
p(n) is the value of p_ that occurs @i“ would be a reasonable weighte
ing parameter to use, but still @iﬂ is unknown and in its place
Ay q
@h is used.

In some of the more general cases of recursive moment estimation
enumerated in Section 3,3 there are yet cother unknowns, Due to the

A
independence of Bo o Bg and Bl Equation 3,3.40 can be written
n n =
oo AT Theh A L .
W, = B{Any, A7} T E((AADE(R qu- 1}(A -4 D7) + ¥

. s e a— A ud :
+ B (4,-E E(L, 1} <&sn==ﬁsn>T} + B <&sn=&sn>E{&§@1} (4,E)")
(3.4,1)
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Two obvious unknowns required by this equation are the mean value of
g;_n 10 E{E 3} (vhich is also E{p l}),, and the matrix E{gn lﬂn 13

An alternative to the use of E{gn 1] and E{Hn IE 1} is offered.
It is suggested that E(nml) the value of gnm which has been deter-
mined be used for E{Enml}g since E{ﬁnml} = E{p,_1} is unknown and
ﬁ(nml) is the estimate of Booqe To determine E{ﬁn_lgg;l} the

covariance matrix

\ v A
B[e, ,-Bre, I, ~B(L, 37} = B{e, 8T .} - EA )Eul )

A
is necessary, but it is unknown. Since Q(nml) is used for E{p 4]

and the nearest thing to an estimate of this covariance matrix is
A

v

A A
1+ it is suggested that 1_1_1._2 1} be approximated by
- ~1En.

A
Vo1t p(n-1)p" (ne1)

When.EC and/or ES are unknown, Cases I, II, III, and IV of
Section 3,3, ES 9 Eb 0 and their covariance matrices must be known.
In Section 2,5 a disgussion of estimation of ES and EC is pre-
sented. The estimates presented there can be used for :ES and Eb a
Estlmatlon of gb could follow the same procedure for determlnlng
q: presented in Section 3.2, But estimation of ¥y must undoubtedly
be based on engineering judgement just as is the eztimation of bg
presented in Section 2,5, |

In additicn to these inherent difficulties which essentially
arise from lack of information concerning the statistical propertiss
of the augmented moment model, there are some practical problems which

‘ * 0 *
stem from the use of A in the combination of B, with Bpo

Particularly, twe of these problems are that; 1) ag may not
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always be a positive definjte matrix as an error covariance matrix
should be and, 2) gi +-$; is ill.conditioned for the matrix inversion
which is required in Both ﬁn and %ho To illustrate these two con-
ditions consider the following example.,

From a normal distribution with méan 10 and variance 1, N(10,1),
a sample of size 50 was drawn. Qﬁ was then constructed according
to the procedure outlined at the conclusion of Section 3.2. The
resulting %; is given here with the lower part of the matrix omitted

A
. * . .
since \Irn 1s symmetrlco

L01351  <.0033%  ,001040 .272 4,09 -,0248)
01891  .,01525  ,0675 ~1,023 ,1882

Ax »0354 0213 ,326  -,1532
" 5.46 82,3 =,502
1240,  =7.63

1,880
(3:4.2)

Consider the (2 x 2) principal minor
201351 4,09
= 16,75 « 16,75 = 0
L, 09 1240,
A
Here only slide rule accuracy has been used, The actual @i was
generated in a computer simulation which will be discussed in the

next chapter, In the computer simulation the same prineipal minor

as that given above is



k7

.013514378 4,0937072 16.7542544 ~ 16,7584386

H

L.0937072 1239.7335

il

-, 0041842 < 0 (3.4,3)

Since this principal minor is negatiﬁe Qﬁ is not positive definite,
Since %i is not necessarily a positive definite matrix it can

not be assumed that ]Qig # 0 or that IQ£‘+ m%lg# 0, Thus %; +-¢é

may not have in inverse, Even if %ﬁ + @é does ﬁave an inverse there

can be difficulty in determining it. When a matrix contains such

large numbers as 1240 and such small numbers as ,001040 as Qﬁ does, .

the matrix is not easily and accurately inverted., If @i is a

comparable matrix to S; this condition will remain and @; + %i

will be difficult to invert, Of course there are very sophisticated

computer routines which will do a fairly accurate inversion on such

an 11l-conditioned matrix, but they are generally very time consuming,

3.5 Pseudo-Minimum Variance Recursive Moment Estimation: An

Alternative, To eliminate some of the difficulties encountered in

the previcus section an alternate approach is proposed which modifies
A
the method of determining y. from u  and p*, Equation 3.3.41, and
“A A
¥, from g% and @i » Equation 3,.3.42, but which does not affect
. , .. g _ A T A
the various ways of determining g o from Yol and ¥, from o1
enumerated in Section 3.3, Essentially this alternative combines
E; and g; element by element so as to minimize the mean squared error
A
of the resulting elements of By
To facilitate the presentation of this alternative Byo g;, g;,

A
and L are redefined with a slight modification in notation, Let
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p ={w, }, i=1,...,6, so that equating this to By of Equation

2.4,.4,
Hl,n M1,n
u2,,n LL2,,n
] [ ,
=] 3.n| = 3.1 =
{uign} X ? uzv % (30501)
u@,n 1,n
3
u5on ul,n
b6 .n uzpnul,q_
Similarly
Pt % A A -
En = {ui,n}° Bn = {ui,n}” kn = {ui,n}ﬂ 1= 15.00,6
(3.5.2)
. A
In accordance with this notation Uy s @h, and q% are given by
LI ' A - A A A .o
‘I’n = {Gijgn}p Wn i {gij,,n}” ‘i’n = icij,n}” 1,J = 1900096
(3.5.3)

1
Jon

variance between the ith and jth elements of E; of Equations 3.5.2.

L o el g » :
where for example Oﬁjpn = E{[“i,n““i,nj[“jpn”“ ]} is the error co-

If the augmented moment medel

E:‘n = "A;ngnml,&, HSn

could be reduced to

Mion T %43, nen Thas 0 1T Loeenst (3.5.4)
then a one dimensional development analogous to the development of

- Section 3.3 produces the following recursive moment estimation

equations
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- A -
Bin © %44, nPine1 T His (3.5.5)

7 T a2 A - 2 Az " - 2.
T35, = BlaYs o300 B8y p2is 0) DE(RY o) E{(“isn uisn) }
_ - A : 6
¥ 2B(agy no2ya n) (g Bys JVE(Hs po0] - (3.5
* t
A %43 n . %4 n x.
L S rS— i 250
LL1ﬂn o +0. u":'L,n ! +o¥ LLi,n (3.5.7)

ii,n ii,n

A 2 & 9 .0

ii,n "ii,n
In addition the error covariance 3 = E{[uo @G ][M- mﬁ. ]} is
' ij,n i,n"in-+j,n Tin

1

3 = — : - - ,,n,—o_* G* Ul 1 1 * ]
ije,n - '(gii,,n ii,n)(ojj,,nwjj,,n)l- ii,n"jj,n"ij,n "ii,n"jj,n"ij,n
(3.5.9)
Equations 3.3.41 and 3.3.42 would be the same as Equations 3.5.7 and
3,5.8 if the covariances between the slements of g; and the covari-
ances between the elements of E: were zero, i.e., if the off diagonal

7 #®
terms of T, and W, were zero,

In the case where a;; o 18 known Equations 3.5.5 and 3.5.6 become
bl

[ - . N
By n = 243 4 onel +’uisn (3.5.10)

1 ) A | _ 2
O3 n =83 i E{Quisnmuisn) } (3.5.11)

If in addition Eis = 0 this one dimensional development is carried
out by Papoulis‘(lg), although he does not reduce his results to the
same form as Equations 3.5.10, 3.5.11, 3.5.7. and 3.5.8.

This simplification of Equations 3.5.5 and 3.5.6 is analogous to

Case IIT of Section 3.3. There likewise are one dimensional analdgies
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for each of the other four cases presented,
. . . * * .
Since, as has been discussed previously, ¥, = {Qij n} is un-
?

known, Equations 3.5.7, 3.5.8;, and 3.5.9 must use estimates of

0:1 no These estimates are taken to be the corresponding elements
: .

of q: = {0 i3, nls Le€es G n° Then Equations 3n5;79 3.5.8 and 3,5,9

become
A* N
1l1l,n *
-’r&&ﬁ%—- b : " (3.5,12)
"1,n 94 0044, n i o!, +o* im
ii,n "ii,n
1 Ax
A _ %3 n%in -
o - . A
ii,n ' *
%4 ,n"%14,n (3.5.13)
A - 1 ' A Ay t v ? Ay
% g T T IR I RN RS SRS
ii,n 11 n Jggn ijon (3.5.14)

Therefore, to alleviate some of the difficulties encountered in
the recursive moment estimationvscheme of Section 3.3., namely, that
Qi may not be positive definite and that g%-% Qﬁ may not be invertable,
either theoretically or practically, it is proposed that Equations
3,5,12 through 3,5.14 be used in place of Equations 3.3.41 and 303;420

Equations 3.5:12 and 3.5.13 are very similar in form to the
results of combining two unbiased estimators so as to minimize the
variance of the resulting unbiased estimator, See Fraser (6);
Problem €, po'2h4° This similarity leads to the phrase "pseudom
minimam variance recursive moment estimation” to ideﬁtify_this
alternative re@grsive moment estimation procedure,

Thus far no comments‘have been offered as to how this re@uréive

scheme begins, Assuming thatngé and q% are the a priori estimate of
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B, and its error covariance matrix, Equations 3.5.12 through 3.5.14
' A ‘A A
. i . * * . . X
are used to combine Ly and g, with By and §y to determine By and .
From Equation 3.5.12 it is observed that, if the confidence in the
B

a priori estimate Be 4 is great, as would be reflected by a small
9

mean squared, error, would be influenced mostly by u; 0°
?

v A
%1,0° 1,0 -
while if there is little confidence, a large ol o Wi would be

, i1i,0° 1,0
influenced mostly by pr
i,0 _
In order to summarize the results of this section and this
chapter the following pseudo-minimum variance recursive moment
estimation algorithm is presented. Case V, A known,‘gs known, is
n
used, However the same procedure holds by changing only the equa-
A : A
N ° H
tions involving B and(}inal and ¥, and Y1

The Pseudo-Minimum Variance Recursive Moment Estimation Algorithm:

A
(1) Determine the prediction estimate, g;a from Boo1f

A
u; =Awna +‘ESn (3.5.15)

A
o o i ) .\ '
and the error covariance matrix of Byo o from \SEE

Jo=ayg AT (3.5.16)
RN 3050

(2) From the observations of X > E;Q the data estimate or
observation of p , is computed according to Equations 3.2.4
and 3,2.5 and the estimated error covariance matrix of
g;, Qﬁ, is determined using the UMVmRUE"s of moments and
products of moments, Equations C;4050 in Equations C.4.4,

A .
(3) The pseudo-minimum variance estimate, B is determined

from
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A 1 H T x
“““‘““K"“‘ + 0. .
ul, o' [ 119n i,n °1i,nu1,n]”
ii,n 1i n
i = 1900096 (3°5°l7>
and its error covariance matrix is calculated from
A
g *
A (o (o N
_ 1i,n"ii,n .
T ST D=L (35.9)
ii,n “ii,n
. cand
A 1 [g* g* o g g Ay j
i A* ii,n"jj,n"ij,n “ii,n"3j,n"ij,n- °*
(Oﬂ )(g +o* ) 21 JJ» Jr 'Y ¢ I 1Y Jr

ii,n 11 n " jjen JJ,

1= 1y000,6 (3.5.19)



CHAPTER IV
SIMULATION AND DISCUSSION OF RESULTS

4.1 Introduction, This chapter is concerned with a discussion

of a computer aided simulation of the pseudo-minimum variance re-
cursive moment estimation algorithm and some results of several
simulations, Only the important points of the simulation are pre-

sented with major emphasis placed on the results,

4,2 Simulating Program., In order to demonstrate the pseudo-

minimum variance recursive moment estimation algorithm and to investi-
gate its moment learning ability a Fortran IV computer program was
written and implemented on an IBM 7040 computer, For comparison
purposes the Bayesian recursive moment estimation algorithm, devel-
oped in Appendix D, was included in the program.

The program simulated the system model, Xn = Canul + Sn‘ by
recursively constructing a number of its sample functions. The sample
functions were then recursively sampled without replacement, i.e.,
no one sample function was used more than once at one sampling time,
and from these samples E; and.gg were determined. The number of
samplé functions and the number of samples taken at each sampling
were specified initially. Using the initial assumptions for o and

1 A
@b, ioeau(ggamd.@b,and<gi and @ﬁ? determined at each sampling, the

pseudo=minimum variance and Bayesian recursive moment estimation
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algorithms, Equations 3.5.15 through 3.5.19 and Equations D,6.1
through D.6.3, respectively, were programed to determine the estimates
E; and Eng and the corresponding error covariance matrices, @i and %ha
To support these estimates and to aid in evaluating their accuracies
the augmented moment model, o = -nE -1 + LS , wWas also recursively
computed. Then for each of the estimates, En En and Ln the ratios
of each of their elements to the corresponding elements of g was
determined,

In order to construct the sample functions the initial random

variable X, was assumed to be normally distributed with mean by p and

0
variance Mzgng i€, N(ulonguzgn)a By sampling this distribution (by
means of a random number generator) the initial values of the sample
functions were determined, Then for each n> 1, C and 5 were
assumed to be N(ulcnquzcn) and N(Mls ouzsn)g respectively. By re-
cursively sampling these two distributions and using the resulting
values with the initial values of the sample functions the sample

functions were constructed. The program was written so that
(byp obon 3 = (Uye sbioe ) and (Byg obog ) = (g ohog )
lCi ZCi lcj” ij 15,7728, 1Sj“ ZSj ’
1, % 15250000
Tt should be noted that, although Xqo Cn and Sn were nermally
distributed random variables, for n > 1, Xn was not a normally dis-
tributed random variable, Also by setting the values of (p ohnm )
1C,°"aC,
and (uls shog ) for all n the simulation was restricted to Case V of
n n
Section 3.3 where gn and g are known, In particular A. = éj
andLs _u‘E:‘S 9 ij gooon

4,73 Simulation Results and Discussion, Figures 6 through 14
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present some typical results from simulations performed using the com-
puter program described in the previous séction, In each case 1,000
sample functions were generated. From these 1,000 sample functions
50 samples were taken at sach sampling time, n = 0,1,2,.... In
each of these simulations;ﬁﬁo ,(ulcn,uzcn)n and (“1sn”“zsn) remained
constant with by,0 = 10,(ulcnpu20n) = (1,0,0,01), and
(ulsnygzsn) = (0.0,0,01). Also the a priori estimate of Bo was set at
5 =0

In Figures 6 through 14 the subscript v on an estimate refers to
an estimate determined by the pseudo-minimum variance recursive moment
estimation algorithm. The subscript B refers to one determined by the
Bayesian recursive moment estimation algorithm, In each figure the
ratio of the estimate to the corresponding element of B is presented.,

In the first set of simulations, Figures 6 through 12, @6 was
fixed at q% = 0,1 x lOlOI0 This has the effect of removing the
a priori estimate, Eé = 0, from the pseudo-minimum variance estimate,
Three simulations were performed with values for MZDO of 0,01, 1, and
4, respectively, Figures 6 through 8 depict.the results of the
simulation with uZ,O = 0,01, A complete set of curves is presented
showing the estimates of ulgn” u29n and-MBQna In Figures 9 and 10

only estimates of bo o and are presented when s o = 1 since the
9 9

3sn
estimation of Uy p in this case was, pictorially, essentially the same
~ 9
as that in Figure 6. Likewise; for the same reason when by o = 4 only
9
estimates of u and W are presented, See Figures 11 and 12,
2,n 3,n

The last set of figures, Figures 13 and 14, present the results

of a simulation in which p = 1,0 and JH = T, This value of /?
2,0 ¥o ¥
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causes the pseudo-minimum variance recursive moment estimation algo=-

rithm to weight the a priori estimate of 1  so highly that the data

0
estimates of u2,n and uBDn are considered only slightly. Again
pictorial presentation of the estimates of ulgn was so much like
Figure 6 that it was omitted.

In Figure 6 where uZDO = 0,01 and qé = 0,1 x lOloI9 the fact that
the Bayesian estimation algorithm is an averaging of the projections
of the a priori estimate, &59 and the data estimates, H;s
i=0,1,60.,n, is clearly demonstrated, From Equation D.6.3 with
wg = 1

S190 =% 81,0 %350
From the simulation “390 = 0,0 and ui,o = 9,998 so that

A

=31 1 =
1.0 2(000) + 2(90998) 4,999

and

A —— -
MIDOB/MIDO - uo999/10 - Oouggg
which is verified in Figure 6, From the augmented moment model

0 A
I V) i +
1.1 ¢y 71,0 18

From the simulation Bio. = 1,0 and B1g = 0,0, so that
= 1 1

ti

! ] =
Mlgl 100(40999) + 0,0 40999
and

7

' = 0,4
ulle/ulnl 999

Then since u; ] = 10,06
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A 2 10 1 =%

=3 - :.2_ J;
by g S5 0q,p TF 0y T 5H999) + 5(10.06)

=1 1 410,06
3(000) + 3(90998) + 3(1 .06)

= 6,686
so that
A
by,18/bp,p = 0-6686
ete,-

Likewise the fact that the larger a priori error covariance
matrix @é causes the a priori estimate uioo to be of 1little effect
in the pseudo-minimum variance estimate is obviocus since the data
estimate uigo and the pseudo-minimum variance estimate alﬂO are the
same value of 9,998,

In the pseudo-minimum variance estimate, since the sample mean,
u;goﬂ is such a good estimate of “1,0 (the estimated error covariance
between HE,O and b1 0 is 0,002), its value of 9,998 is essentially
projected through the augmented moment model and used as the esti-
mate of‘ulpn at each value of n, Note in Figure 6 that there is a
slight change in uignv/ul,n at n = 3 and n = 20, At these values of
n the estimated error covariance of “i,n is small enough in comparison
to the estimated error covariance of ui,n that u{,n slightly modifies

the estimate of By pe Otherwise uz n produces no noticeable change
b 7

in u{ n and ui 0
’ ,

A
becomes o
> I,n

In each of the other two estimations, Figures 7 and 9 in this
simulation, the averaging property of the Bayesian algorithm is not
quite so obvious, since the projection of the estimates through the

augmented moment model alsc involves the estimates of the augmenting
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moment terms u% n”uipn and u29nul ne It is noticeable that the data
Ly ?

estimates, ug N and u; ne Vary much more from u2,n and MBgn than
9 ?

' . . e g A
¥  does from h in Figure 6, causing more variation in and
lgn ]-pn : 29n
ﬁ » This is to be expected since u* and u* have larger variances
340 2,n 3,n

B
than ulpn°
Figure 7 does show that in the pseudc-minimum variance estimation
A
the large qf causes W to be u* « It also indicates that at n =1
0 2,0 2,0
.. ] . . A :
the estimate Wy 1 is such a goodﬁestlmate of ”291 that up 1 is essen
tially ué 1 and that for n = 2,3,.,.. the estimats of Bo p is essen=
b ?
A
tially.uz 1 projected through the augmented moment model,
?
In Figure 8 as in each figure depicting the estimates of u3 n’
9
the estimates at n = 0 are not accurately presented, The figures
indicate that the estimates of b3 0 are all zero, This occurs since
?

the presentation is that of the estimate divided by u Since it

3,0°

was assumed that X, was normally distributed p 0, In the simula-

0 3,0
tion the computer tried to divide by zero but instead of giving an
answér of infinite or stopping the simulation the ratio was evaluated
as zero, Thus uBQOVJMBgO” MBVOB/MBQO and u;go/uBDo all appear to be
zero, However for larger values of n the presentation is accurate.

Figure 8 indicates that at n %= 2 the pseudo-minimum variance
estimate uggz is such a good estimate of Wy o that the following
estimates of u39n are essentially the projections of uggzo Notice
that for some larger values of n, e.g., n = 23 and 43, the value of
u;pn exerts a slight influence on the value of GBDn in the combination
of u%gn and M§Dn°

Figures 9 through 12 present results from simulations in which
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bs 0 = 1 and bp o = 4, These are similar to Figures 7 and 8, However,
it is obwvious that the increased variance on XO affects the pseudo-
minimum variance estimates of u29n and Wa pe These estimates do not
approach uZﬂn and uBVn as quickly as they did in the first simula=-
tion. In fact the pseudo-minimum variance estimates of u39n in

Figures 10 and 12 appear to be following the trend of below and

*
3

away from yu for large values of n., In Figures 9 and 11 both the

3,n
Bayesian and the pseudo-minimum variance estimates of W2 n appear to
reach a fairly steady percentage error forblarge values of n, In

Figure 11 the Bayesian estimate of “zvn has a smaller error than the
pseudo-minimum variance estimate for values of n above n = 15, This

is also true for the estimates of W in Figures 10 and 12,

3;n
In Figures 13 and 14 the results with q% = I indicate that the
pseudo-minimum variance estimates of u29n and u39n approach values
which are approximately 35% and 5% of b n and By ps respectivelyo‘
This algorithm has taken the a priori estimate Qé = 0 as a good
estimats of go'and essentially projected this value through the
augmented moment model to determine 329n and 339n° The SIOpq$ of the
curves depicting the early esfimates of u2,n and u39n appear to be
negative, This is not actually the case, For example “2,1 increases
to ks o
QZglv/uz;l is actually larger than u;ﬂZV/uzuzo

but it does not ilncrease as much as uz 1 to Y Se that
2

2,2°
It ig interesting to note in Figure 14, that even though
1 = , = o em b ;
“3,0 0 and u390 0 the estimate of ujgn for large n is not at all
near the value of u3 ne This is due to the fact that u% 0 and
9 a

are not zero, but the a priori estimate of each is zero and

[

Mo 01,0
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with @g = I a false confidence is maintained in these estimates,
A . A
These estimates essentially become the estimates u3 and (. b )
1,0 2,0"1,0
A
which are used in the augmented moment model to project u3 0 to u; 1°
? 9
The error covariance of u; o 15 determined mainly from g% and thus
7

8 o . . . .
u3 1 is considered a good estimate of W This error remains and
9

3,1°
-1s compounded as n increases,

Other simulations were performed for various parameter values,
One simulation with by g = 1 and @g = 1,000 T and all other parameters
the same as in Figures 6 through 14, produced results in which the
pseudo-minimum variance estimates of W1,n were within 4% of Wy ne
the estimates of uzgn within 10% of u29n° but the estimates of uB,n

for n greater than 20 were only about 50% of u » In another set of

3,n

simulations with by o = 1 and g% = 0,1 x 10797 all other parameters
remained the same except:for Hog o Simulations were performed for
values of bog of 1, 10, 100, Sznce by WaS a krioum value the
results of th:se simulations were very sgmilar to Figures 6, 9, and
10, except that the curves for uign/ulgn” uzon/ulonp and uggn/ulgn
exhibited much more variation than they do in Figures 6, 9, and 10,

Thus for Case V of Section 3.3 where én and,ES are known, as

simulated; UZDn the variance of the initial random sariable X, and

0

w0 8
wb the estimated error covariance matrix between %o and gé appear to
be critical parameters to the pseudo-minimum variance recursive
moment estimation algorithm. Conversely, since the moments of Cn

and Sn are known in this case, they are apparently not very critical.
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CHAPTER V

SUMMARY AND-CONCLUSIONS

5,1 Summagy;' The objéétife}Of fhis‘study was to develop a
procédure for the estimation of the distribution function of a random
variable representing time-varying equipment outputs. The Gram-
Chariier or Edgeworth series expansions of the distribution function
in terms of the moments of the random variable are often used to
approximgte the distribution function, For this type of approxima-
tion the problem was reduced to one of estimation of the moments of
the time-varying random variable,

Two methods for the estimation of moments‘wéré-developeda These
make use of not only unbiased sampie moments determined from system
observations, but also a system model and a priori information.

Chapter II presents the development of a‘system model of time-
varying equipment outputs and the subsequent derivation of a moment
model, The system model used was a first-order linear difference
equation and the resulting moment model was a first-order vector-
matrix difference equationo‘

Chapter III presents the theoretical development of the recursive
moment estimation schemeo This scheme makes use of the sample moments
and the moment model to determine the best linear mean squared error
estimate of the moments in terms of the a priori estimates and all the

unbiased data estimates computed through the estimation time., Several

70
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~difficulties which appeared in this development are discussed and an
alternative approach, the pseudo-minimum variance recursive moment
estimation scheme, is presented.

The other method for the estimation of moments, the Bayesian
recursive moment estimation scheme, is presented in Appendix D, The
Bayesian approach was an attempt to make use of a reproducing a priori
density function in Bayes' Rule to estimaté the moments.

Chapter IV discusées a simulating computer program and presents
some typical results of simulations of the two methods of recursive

moment estimation,

5.2 Conclusipns0 The procedure presented in Chapter II for the
development of a system model is an appraoch which is useful in the
modeling of time-varying eqﬁipment outputs, The form of the model is
not unique, but with information on system behavior avdilable only
from 1life tests and systém tests, the procedure is restricted to the
development of a model with only two parameters.

For the derivation of the moment model from the system model it
was assumed th;t the random variables of the system model were inde=
pendent. This aésumptien may not always hold. In fact, in the‘
example used in Chapter II to demonstrate the system model develop=-

ment, it is obwious that Xn and Sn are not independent.,

w1
Pseudo-minimum variance recursive moment estimation provides a

means to make use of a system model, a priori information, and system

observations to estimate moments. It makes use of at least estimates

of the error covariance matrices between the estimates and the moments

to be estimated in the weights necessary to combine estimates., In
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Bayesian recursive moment estimation the weights are predetermined
Qonstants° The pseudo-minimum variance recursive moment estimateé
are modified minimum mean squared error estimates, while the Bayesian
recursive estimates are averages of projected estimates. As a result
of this the pseudo-minimum variance estimates tend to approach the
moments faster than the Bayesian estimates,

The derivation of the pseudo-minimum variance recursive moment
estimation algorithm is not unique to the system model chosen or the
resulting moment model. Howe&er the form of the algorithm no doubt :
will change with a change in models,

The pseudo-minimum variance recursive moment estimation algorithm
is easily implemented on a digital computer, both for simulation and
actual use with a system in operation.

The pseudo-minimum variance estimates are better estimates than
the sample moments in a modified mean squared error sense. Thus the
pseude=-minimum variance moment estimates will, in this same sense,
yield better results in Gram=Charlier or Edgeworth series approxima-
tions to the distribution function,

When the pseudeo-minimum variance moment estimation is used some
thought should be given to the choice of the system model., It may
well be that a system model different from that used in this study is
more realistic and may even produce a simpler algorithm., See
Section 5.3,

The pseudo-minimum variance recursive moment estimation.algorithm
does have some limitations which should be noted., The algorithm is

no better than the system model., The model can reflect only the
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variations which are observed in life test and system test., Changes
in the system during operation which depart from these, such as cata-
strophic failures, can not be modeled, When it becomes apparent that
something of this nature has occurred other tests are required to
determine the necessary model changes before continuing., Just as with
sample moments the moment estimates are more accuraté when determined
from more data, This is reflected both in the moment model develop-
ment and the eomputation of sample moments. In Chapter IT it is
indicated that higher érder moments of the system random variables
are difficult to obtain., Using a fixed amount of data in many cases
the higher order sample moments will be less accurate estimates than
the lower order sample moments, This inaceuracy of higher order
estimates is clearly indicated in the simulation results presented
in Chapter IV,

The sample moments were used to develop unbiased data estimates,
Several unbiased estimates of higher order moments and products of
moments were derived in Aﬁ)pendix'co These esﬁimates, which as far as
the author could find are not available in the literature, may be of

some use in other areas of: endeavor,

5.3 Recommendations for Further Study. As indicated in earlier

remarks of this chapter some consideration should be given to the
development of other system models and the resulting moment models,

For example if the system model developed was of the form

X =X

n N1 * Cn * Sn

and the random variables Xnmlg Cno and Sn were independent the result-
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ing moment model (for three moments) would be

Bn = Bpo1 f,ECn f’Esn

where

Bn = |M2n| o o, T [Pac | v 20d Bg T |Hpg
n n n

" " "
Jun L BCQJ | 389_

In this moment model the moment vectors are not augmented. The error
covariance matrices, @ﬁg @ga and g% are all (3 x 3). Thus the
estimate %i would be easier to obtain; requiring fewer unbiased
estimates of higher order moments and producfs of moments,

‘Even though it is felt that when using a series expansion to
approximate the distribution function the pseudo-minimum véfiance
estimation scheme produces the best moment estimates some considera=
tion should be given té other approaches., Approximation of the dis-
tribution function might be accomplished by constructing an empirical
distribution function. BEither this empirical distribution function
could be éonstructed from all system observations at all sampling
times through the present by projection of the observations through
the system model, or empirical distribution functions could be con-
structed at each sampling time and then through some form of the sys%

tem model these distribution functions projected and combined.
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APPENDIX A

THE GRAM~-CHARLIER SERIES AND THE EDGEWORTH SERIES

EXPANSIONS OF A DISTRIBUTION FUNCTION

£-p
Consider the standardized random variable y = vr—_; where
2

2 o : :
b, = E{X} and w, = E{[X -~ u; ]}, The density function, f£(y), of ¥

is given by Cramér (2) expanded in a Gram-=Charlier series as

£(y) = Co8(y) *+ 5% ¢(l)(y) t o7 ¢(2)(y) + =2 3 ¢(3)(y) + oo

(A.1)
where Crg r=1,2,00., are constant coefficients,
L -ve/2
e e , the normal density function, N(0,1),

and

r dr
687y = L5 00, v = L2
The derivatives of the normal density function are given by

,¢<r>(y) = (=1)F B (y) #(y)

where Hr(y)g T = 1,2,000, arse the Hermite polyncmials, The Hermite
polynomials are defined by

2
)n ex /2 qn emXZ/Z

ax”

Hn(X) = (=1 oo 1= 0,1,2,000

the first few of which are given by

76
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Hy =1
H1 =y
H2==y2«-l
Hy =37 - 3y

S b 2
th 6y~ + 3

The constant coefficients, ¢, are given by

“+00
c, = (-1)F f B (y)f(y)dy

=t

the first few of which are

(@]
Y
Q
i
o

Since Co = 1 and Cl = 02 = 0, the Gram-Charlier series expansion of

f(y) becomes

C
f(y) = §(y) + 3’? ¢(3)

C
@) + 35 0@ s (8.2)

It can be shown that under certain conditions, Equation A.2
will converge to the true density function of Y (2). However
Carmér (2) shows that generally the Gram-Charlier series is not

an asymptotic expansion, i.e,, addition of another term to an approxi-
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mation using a finite number of terms in the Gram-Charlier series does
not necessarily reduce the error between the approximation and the
true density function,

The Edgeworth series expansion of f(y) is given by

£(y) = #(x)

- _]_; B ¢(3) (x)
38 (LLZ)'B;z

sk ( H% 3 ¢ () + 10 <_..1372>2 6 (x)
+ coo (AOB)

The development and additional terms of the Edgeworth series may be
found in Cramér (2). The Edgeworth s;riésg unlike the Gram-Charlier
series, is, under fairly general condj'.‘tim.r_xs,7 an asymptotic expansion,
Since in this study only the first three moments are used, only
the first two terms (through the third order terms) of either the
Gram-Charlier or the Edgeworth series can be used. Under this

restriction the approximations of f{y) by both the Gram-Charlier and

the Edgeworth series are identical, Therefore f(y) is approximately

1 (3)
¢(y) wa-H-T_%B"Tg¢ (y)

(b

B(y) + == (—-3—72)(y3 By) ?(y) (A.4)

and the distribution function of y is

given by

ile

£(y)

flo

F(y) = s(y) - (( RE )7 - 1) B(y) (4.5)



where >

1 ¥ -z /2
3(y) = [ e dz
w0

N

=3

Before such an approximation, Equation A.4 or A.5, can be used
in the context of this study a modification must be made. This
modification is necessary; for since the mean and the variance of X,
the random variable under consideration, are unknown a standardized
random variable can not be used, This modification is accomplished
Ey performing a change of variables, Since Y = Eq:-ﬁl

,/ZTT ?
=, Koy Y = ul

79

6)

f.(y) X = [
Y 1 1
f (x) = = £y = ——)
x }935 DR y N )
dy :
= (x5 by, by)
M
+ —-33)[x3m3u1x2+3(u§—u2)qug+mlu2]¢(x;ulouz) (4.
W
2
‘and
X = Wy
F (x) = Fo( == )
S
; @(XS Hlou2>
1 b 2 2 .
- 5? ( E;~;§72 )[X = qul + By = uzj B(x; ulouz) (A.7)
2
where
2
(Xf“‘l)
1 = 2,

¢(X§ ulou‘z) ﬁwffﬁ; e

and



(5py)”

_ 1 T TR
@(X;; p‘lop‘z) = '\/’Tuz f e 2 dz

<00
Equation A.7 can be used to approximate F(x) by using the

estimates of Hes Boo and uj developed in the body of this thesis.
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APPENDIX B

MOMENTS THROUGH THE SYSTEM MODEL

B.l Introduction, The System model

Xn = Can_l + Sn (B.1.1)

can be considered as a model of the transition of the random variable
Xn_l to the random variable Xn° In this appendix, assuming that Cn’
Xnmlﬁ and Sn are independent random variables, the relationships
between the first (mean), second (variance), and third central moments

of Xn and Xnnl are established,

B.2 The Mean, By pe Since Cn” Xn 1 and Sn are independent
o ¥ -

random variables

i

ul,n E{Xn} = E{CpXpn. 1 *+ Sp} = E{Cp}E{Xy 1} + E{Sy}
= o + i (B.2,1)
1C, "1,n=1 15,

where ulcn is the mean of Cn” ul,nul ig the mean of Xnul’ etc,

B.3 The Variance, u, s The variance, the second central
N “~9

moment, of Xn is

1}

o~ 2 - 2
W B (X1 n ) = E{[Cnxn=l+sn“ulcnul,nal“”lsn] }

2;n

i

2
B [(C¥na-p1c #1,n1)*(Spmys ) 1) (8.3.1)
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which due to the independence of Cn” Xnnl’ and Sn is the variance of

Can_lplus the variance of Sn

- 2 2
bo,n = BLCKan = 1o M1 1]} FEDS, - ey T (823:2)

Recalling the relations between the variance of the product of two
independent random variables and the moments of each random variable,

b2 n becomes

2 . 2
= + + +
H2.n MZCHMZVn_l u1cn“2,r_1u1 LJ‘.2cn”'1,,n_,1 uzsn

1}

2 2
0" + i + Uop W + (B.3.3)
[ 2C, 1cn] 2,me1 T H2C By po1 T M2g _

where uzcn is the variance of Cn” u2,n~l is the variance of Xn-l” etc,

B.,4 The Third Central Moment, u The third central moment of

3,

X is
n

M3 n = B [X,, - p‘l,,njj} = E{[CX,q * 5y - LJ‘lCn“]_pr;b_,]_ - ”1sn]3}

4

E{[(Cnxnwl - “lcnp'l,,nml) + (Sn ae Ualsn):,j} (B.,th)

el? and Sn is the third central

which due to the independence of Cn, X

moment of Can_’l plus the third centrgl mement of Sn
bo o = E[CX & = ponp Py +E[s -wu ]3} (B.4.2)
3,n nn-1 lCn 1,n=1 n 1Sn sre

Expanding E{[Cnxnml - ulcnglvnml]3}

3 = 3¢3 242
E{[CpXn.1 - ulcnulﬂnmlj } = E{CXr 4 - 3Cnxn-l”lcnul,nal
2 2 3 3
¥ X¥n-1'1c Mone1 - Mic M, nead

= E{CHE(X] 1} - 3E£CﬁjEiXgml}“1cn“1,nm1*2“fbn“f,n~1 (B.%.3)



Recalling that

- 3 2 3
b3 nal = B{X) 1} - B{X 4} ul,nwl'* 2LL1,nwl
and
' - 2 2
by el = B Enad = By

and using the same relations for MBC and Boe
n n

3
BlC X, 1~ “1cn“1,nm1] }

1}

3 e o3 2
B{Cokg pop * 3[B(CH) - B(C)) “1cn] b2 ne1*1,n-1
+{EC)) - 3E{Ci}“1cn * 2“%cn] b 1

+ u3

= Pgn W * BUon Uqp W ¥
3C, " 3sm-1 2C "1C "3,n-1 1C,"3,n-1

3
+3“3cn“2,,n.1,“'1,n_1+6“20n““10n“2,n_1“1,n~1+“3cn“1,n.1

i

+ + 3
[“3cn 3“20nulcn “1cn] W3 nel
+ | + 6 | ! + 3
[3“3cn LL2cn“10nJ Fo ne1"1,n-1 LL3cn”'1,,nm1
Therefore the third central moment of Xn is
b o = [han * 30,0 By I, Ju
3,n x, 2¢ M1c T Pic J ¥3,n-1

+'[3u3c

n

+ 6 , ‘ 3
Mac, “1cn] LL2,n_1“1,n.1+“3cn“1,nm1
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APPENDIX C
UNIFORM, MINIMUM VARIANCE, MINIMUM RISK, UNBIASED ESTIMATORS

C.l Introduction. In this appendix some useful theorems are

presented which lead to the development of UMV~RUE“S (uniform, mini-
mum variance, minimum risk, unbiased estimators). Some discussion of
the interpretation of these theorems and their application to the
determination of UMV-RUE!'s is made. The procedure for the construc-
tion of UMV-RUE's is then presented in the form of examples and,
finally, some useful relationships for the development of UMV-RUE's
'Are presented.

The theorems and procedures of this appendix are essentially
taken from Fraser (5) with modifications so that they agree with the
content and notation of this thesis. The reader is referred to
Fraser (5), Chapter 1 and 2, for a more comprehensive and theoreti-

cal presentation.

C.2  The Rao-Blackwell and LehmannmScheffé Theorems, Very

fundamental to the development of UMV.RUE’s are the Rao-Blackwell
and Lehman-Scheffé Theorems. These two theorems are presented here

in forms suitable to the purpose of this thesis.,

Rao-Blackwell Theorem, If t(x) is a sufficient statistic for the

family of distribution functions indexed by a parameter vector,

8, {Fy(x:8]0 ¢ ¥}, and £{x) is an unbiased estimator of g(8),

84
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then h{t) = E{f(X)it(E)} is an unbiased estimator based on t(x).
The variance of h(t) is less than the variance of f(x),
U§(§)>ci(§), unless f(x). = h(t(x)) almost everywhere (FX(X;Q))°
With a strictly convex loss function, R(8), the inequality
Rf(§)>RhQ§) holds unless f(x) = h(t(x)) almost everywhere

(Fx(x;g)), in which case Rf(g) = Rh(g),

Lehmann-Scheffé Theorem, If there is a complete and sufficient

statistic t(x) for {Fx(xgg)gg‘e 1}, then every estimable real
parameter g(8) has a unique unbiased estimator with minimum
variance and minimum risk (strictly convex loss); the estimator

is the only unbiased estimator which is a function of t(x).

The Rao~Blackwell Theorem indicates that if there exists a
sufficient statistic for the ciass of probability distribution func-
tions, one of whiqh is under consideration, and if an unbiaéed esti-
mator of a parameter is known, then the conditional expectation of
that estimator given the sufficient statistic is also an unbiased
estimator of the parameter, Furthermore the conditional estimator
has smaller variance and risk than the unconditional estimator. The
Lehmann-Scheffé Theorem further indicates that, if the sufficient
statistic is also complete, the conditional estimator is a unique
unbiased estimator and has smaller variance and risk than any other

unbiased estimator of the parameter,

C.3 UMV-RUE’s of the Parameters of an Absclutely Continuous

Distribution, Consider the k independent samples x = (X19XZ90009Xk)

of a random variable X having the absolutely continuous distribution,



86

Ex<x3§) on ng the real line., In Chapter II, Problem 14 of Fraser (5)
it is shown that the order statistic, t{x) = (x(l)”°°°”x(k))” is a
complete sufficient statistic for the class of absolutely continuous
distributions on Rlo In the following examples UMV.RUE!'s of some of

the parameters of Fx(xag) will be determined,

the Mean of X, This example can be

Example 3,1 The UMV-RUE of M19

found in Fraser (5), pp. 58-59. Let f(x) =x Then, since

1°
E{(f(X)} = E{Xl} =By f(x) is an unbiased estimator of Hyo Therefore
by the Rao~Blackwell Theorem h(t) = E{f(;)ﬁt(ﬁ)} is an unbiased
estimator of Wi, and by the Lehmann-Scheffé Theorem h(t) is the UMV-
RUE of qo So, h(t), the conditional expectation of Xq0 must be
determined,

The conditional probability, given the order statistic, assigns
equal probability to each of the k! permutations of (x(l),ooo,x(k))o

Then if one is fixed, say x<i) = X1, there remain (k - 1)! permuta=-

tions with x(i) = X1° Thus

P{X]_ = x(l)ﬂt(ﬁ)} = M -‘-‘i%{ o 1 =1,.00,k <C°3°1)

k}
and
* o K 141 X X
by = h(t) = Elx |t} = ‘iE ") kT k 1§1xi =X (C.3.2)

Therefore uz = X is the UMV-RUE of Hyo

In the body of this thesis UMV-RUE!s of several moments and pro-
ducts of moments are used. The UMV-RUE's used are presented iﬁ Equa=
tion C.4.5. It would be somewhat redundant and serve no useful purpose

to present the development of each of these UMV-RUE's, Example C.3.2,
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however, does present the development of a somewhat typical UMV-RUE,

Exaﬁple Co3.2 The UMV-RUE of byt the Qroduct of the Fourth and

Second (Variance) Central Moments of X. By can be expressed as
by, = B{[X - ul]h} =0y, = Mgy * 6(12@% - BOLL{ (C.3.3)

where a, = E{Xr} is the rth non-central moment of X.

‘Similarly
2
by = B[X = u P} =a, - of (C.3.4)
Then '
Wby = 00, = %aJZTMaBazalHkx aJB_ + 6a2al - 9a2a§_’ + 3&? (C.3.5)
Let
f(x) = xgxg - x§x2x3 - 4x%x%x3 + 4x{x2x3x4 + 6x§§gx3x4
- 9x§x2x3x4x5 + 3x1x2x3xux5x6 (C,3.6)
= 2 2 2 L 6
E{f(X)} = W, = 007 = hchx + haBal + éazay = 9a,0) * 3y
= uu’u,z ) (C03°7)

Therefore f(x) is an unbiased estimator of Bybo o The conditional
expectation, given the order statistic, of f(x) is the UMV-RUE of
By o Proceeding as in Example C,3.1 but fixing six elements of

@)y say (o) = Xpo X(py T Hps X(gy TEgy Ky T, Xy = X,
X(35) = Xgo There remain (k - 6)! permutations of t(x). Thus

Pfxl‘*(e)°X2“x<f>9X3=X<g>vxu=X(h>vX5“X<i>»X6=X<j)lt<z)}
(kmé)v = eofagvhoioj = lgobouyk
k! k(kml)(k=2)(kw3)(k~4)(km5) ot (C.3.8)
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and
(o) "=n(t) = E{£(X)|t}

a E ZEX x -xbx lix3 xfx
T KD (R2) (-3 (B (5) SAEEAR S g .

fﬁxgxfxgxh+6x§x%xgxh-9xexfxgxhxi+3xexfxgxhxixj] (C.3.9)
which will reduce to

" 1
() "= ey ™=

5)L (-3 18 a g (K -9k3+53k2-135k+120)a4a

fk(4k3-28k2+80k~80)a§_k2(6k2-27k+30)ag+k(6k3-24k2+66k-48)a5a1

-k (4k =12k +44k-60)a aZal-k (k +6k =7k+30)a payt k3(6k l5)a2al

+k3(4k2+20)aBa%.9k5a2a§+3k5a§] (CUB@IQ)

k

1 r
where a_ =& XX
vk o=y it

(uhuz)* can be reduced further to

*_ 1 3 3
[OR) (kml)ooa(k.5)L (k -4k +11k -8k)m +k(k -9k~ +53k" -135k+120)m4m2
5c(4k 28K +80Kk-80)m gk (6 ~27kc+30)m3 ] (C.3.11)
1 X * '
where m, =% ifl(xi - “1)’ T = 253000

Verification of the UMV-RUE!'s was performed by taking the ex-
pectation of £he UMV-RUE's, This was accomplished by using Equétions
C.4,5 to express UMV-RUE's in terms of sample moments., Then Equa=~
tions Co4,1, C.4,2, and C,4.3 were used to determine the expectations

of the sample moments and thus the expectations of the UMV-RUE's,
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C.4 Some Relationships Helpful in the Development of UMV-RUE!s,

m. in terms of uio In order to determine E{mr}, the expectations of

the sample moments, it is helpful to first express the sample moments,

k k r
E.(x. - m ) ? r=2935000,
1=1 1 T Kgm i1

=1

1]
by [l

™

>

=

]
by [

= +
m o=ty (C.l.1a)
m, 1 -1 u; 0 0
= + py + u_%_ (C.l,1b)
mi 0 1 (p{)2 2u) 1
1
myl [ -3 2 oy 0 0 0
mml=l0 1 -1]|ulu! | + m +u2 o | +u3]o0
2™ 241 Wy 2 , 1 W
3 173 8 1
m’f [0 0 1) 3(kq) 3 1
(C.4.1c)
(m, |2 a0 6 3] [ ow ] Jo ]
Tt
m3m1 } 0 1 0 =3 2 o “3“1 \+u m3
n2 o 0 1 -2 1 (ng)? Ho (Cl,1d)
2 1, 142 (. 143
_mZml_ WO 0 0 1 -»lJ uz(p‘.l) _"‘2“‘1“(“1) +m2m];
1R
I (ul) ]




—m5— 1 .1 0 10 0 -10 &4 u;
m,my 0 1 0 =4 0 6 =3 p,&ui
man, | _ 0 0 1 =1 =3 5 2 u;u;
m3m]2_ o 00 1 0 -3 2 u;(ui)z
mgml 0 00 0 1 -2 1 (“;)2“1
nizmi o 00 0 0 1 - ph(ut)?
o,
" _
My
0
2
! ugu'l-Bué(ui)%z(ui)amBml !
_Zu;(ui)z-z(ui)umzmi |
With H given by
(1 .6 0 15 0 0 -20 0
0 1 0 -5 0 10 0
0 0 1 -1 L4 40
0 0 0 1 0 -4 0
H=[0 00 01 -6 4 0
0 0 0 0 1 -1 0
0O 00 00 0 10
0 00 0 o o0 1
0 00 0 0o o0 0
0o 00 00 0 0 0

15
=10

-1

-1

90

(C.4,1e)
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= - e

Mg U:g 0
My u;uli m,
m ., s 0
m ()" gy =501 Y2461 (1) 330 ) S4mymy
y
m‘g - Eu?)f . " 0
R i ] mm,
n uituy)’? 20112601 (61) 31 ) S
n3 (1)) 0
mnd 2003 | wh)2ul2us () Beu]) Sy
_mzmiJ “;(“i)u _?u%(w{)3m3(gi)5+m2mf |
] (ui)é ]
[0 . 0 -
0 0
0 0
0 0
“ o3 O +u3 ’ (C.b.1£)
Lo 1],
ugui-3u£(ui)2+2(ui)4 0
0 0
0 0
3y (8102301 upi-01)°

L Jii,}w The expecti?ftions of u}'; in terms of the moments W, are given by

— - 1 . _

ol 0
“’% Mo
(LL“)Z 1 W
B :'} b= k" (Coly,2a)




[ 20 §
gty
t
"“LL,,U“Z
u;(u{)z
172
(u3)
7 1
ujuéul
10,043
“3(“1)
¢ 0 3
(“z)v
(1p)2(0])?

1, T\l
by (k)

°

7
g |

—.l

k

L

i
Tl
&S

K (k1)

k3(k-1)

k3(k-1)
3 (k1)
3k3(k-1)
3k?(k=1)
7k(k-1)

15(k-1)

K3 (k~1)
k2(k-1)
2Kk (k1)

Lk(k=1)

10(k-1) |

0
0
o
0
K (k-1)
k3(k-1)
K2 (k-1)
0
21 (k1)
Lk(ka1)

10(k-1)
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(C.4,2b)
u5}
P2
(C.4.2¢)
0 ——p,é_
0 “’4”’2
0 u%
3
0 -|,1,2 |
0
0 (Col#,2d)
0
k3(k-1) (k-2)
K2(k-1) (k-2)
3k (k=1) (k=2)
15(k-1) (k-2)
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The computations involved in the tedious task of determining Equa-
tions C.4.2 were eased somewhat by the use of several relations
developed by Tchouproff (12). Note that E{uj} = 0 and

E{LLIH‘} = parp r = 29390000

Eimr}° E{mr]g the expectations of the sample moments, are determined
by using E{u;} of Equations C.4,2 in the expectations of m, of

Equations C.4.1. These results are

E{ml} = “’1 (C,LP,Ba)
m, k«-1 O o
B o =% .
n2 1 k||u2 (C.k.3b)
m3 (k-l)(kuZ) 0 0 u3
E{ | mom; |} =;1-2- (k1) k(k-1)  Of|uuy| (C.k.3e)
mi 1 3k k2 ui
n, ]
m.nm
5| )
T
2
st
[(k-1) (k2-3k+3) 0 3(k-1)(2-3) 0 w, ]
Cq ] 1) (ke2) k(k-1)(k=2) =3(k-1)(k-2) O Bty
B (k-1)? 0 () (K2e2kr3) 0 ||
(k-1) 2k(k-1) (ke1)(ke3)  KP(k-Df|uu’

(C,dLBd)‘
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"5 "5
Ty ]
B mBmz } =% Ki uju; (Colto3e)
mmy k b by
mgml “gul
e v
o g
mJn, gty
) )
w5 oy
B| ng |}= ﬁ% KSM W5 (C.k.3f)
. gm b gl
3 “3“3
B msz{ i _u.zuL{ .

5 6 !
where Kmu and Kmu are given in Figure 15,

\If*!o The 21 distinct elements of \11’” s the covariance matrix of _I._L_*,

' * 2 .
where g = [u{,ug,ug,ul*,u%*,(uzul)*]T, are given by

=4
cu* b, (Coldolia)
1
o] 1 Ol p
ST 3
=1 (C.k,bb)
CuFu2* 0 2ifugty
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where K - and ch. are given in Figure 16,

UMV-RUE's of Moments and Products of Moments, The UMV-RUE's of g,
where y = E“l"’*Z'“’a'“i'”?ﬂz“l]T* and the UMV-RUE's required to

A
determine \'p*, the UMV-RUE of \'p"', are given in terms of the sample

moments by

by ® my (b4, 52)
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APPENDIX D

BAYESTAN ESTIMATION

D,1 Introduction, This appendix is concerned with the develop-

ment of a procedure whereby the prediction estimate, H; and the
observation or data estimate, Qgg are combined to produce the estimate,
A

Be This development is based on the use of Bayes' Rule in what is

commonly called Bayes! learning.

D.2 Bayes' Learning., Let § be a vector valued random variable

(an unknown parémeter set modeled as a vector valued random variable)
and ¥ a vector valued randem variable statistically related to 6. The
a posteriori density function of § given Y according to Bayes' Rule is
given by

fyia £
fglz = -H%Y—Q (D.2.1)

9

where £  1is the a priori density function of 8, inG is the con=~
ditional density function of ¥ given 6 and fY is given by
= | f F

/ Yie d g

P 8%
An iterative, or recursive, approach to the computation of an
a posteriori density function can also use Bayes! Rule. Let ﬁn be a
vector valued random variable and go Zﬁ7°°°”zn vector valued random
g

variables statistically related to Qno The a posteriori density

101
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Y , where ¥.,Y Y are conditional

function of Q given Y llgcoog_n Lysdyseeenl,

independent given gnp is

£

; ) xle. 9|YO,, Tioeeend (D.2.2)
T.X Y £ Y o
— - I. ‘Yogllgnoag_n

v is the a priori density function of 8 given
gecaey -n
1 “n-1
YO,Xl,h.as_n_lu ?Xn Qn is the conditional dehsity of ln given gn and
is referred to as the liklihood of Y , and f

S 1o SRR

is given
by

£ :ff dr
lh XO”Xl”°°°ﬂXn_l angn in10’11’°°°ﬂzn-l

If in Equation D.2.1 f is of the same family of density

9|Y

and in Equation D.2.2 f is of the same
LD SRPETD &)
s then f, and
8 |Xgeyseeesly 1 [

are said to be reproducing a priori density

functions as f

D

family of density iunctlons as f

T
2n|ZO”Xl°“°”ﬁzn-l

functions (11).

When Bayes' Rule is used as in Equations D.2.1 and D.2,2 to
estimate or learn the parameter set 8 or gn, respectively, and the
a priori density functions are reproducing densities, the estimation
or learning process is called Bayes! learning.

Ideally the use of Bayes! learning to estimate [ would be to

determine the density of B given HO X 94 ,qnagx by

f f ;
'-)-(-nIE-n PiniEOVzOozlsooag_X_nnl

(D.2.3)

f 7 =
Hngﬂo».}gonzlpowoén £n|ﬁ(u)”~}-(-0”§l”“° ”e)_(nml

where gn = {Xi n}” i=1,...,k, n=0,1,..., is a vector valued random
) [

variable for each n representing the k observations of the random



103

variable X and gé is the initial estimate of p,. The difficulty

in using Equation D.2.3 is that fX IE is unknown, Since the k obser-
=n|=n , k
vations of X are considered to be independent, f =1 X o
n -n‘ﬁn i=1 i,nlgn

Then, since f is the unknown density function which is to be

Xi,ng
approximated with estimates of its moments (See Section 2,2 and 3.1),

X
_ln

‘Instead, the approach here is to assume that g; is a normally

f is also unknown.
|

(Gaussian) distributed random vector and to use Bayes? learning to
estimate the parameters of its Gaussian distribution. From these
estimates an estimate of B is formed.

By making the assumption that g; is a normally distributed random
vector some obvious contradictions are overlooked. It is highly
unlikely that in any particular case the elements of H; will ever be
jointly normally distributed. .Certainly this is not generally true.
For instance, consider the case where X is normally distributed. E;
is formed from the k samples of Xn° The estimate u{n” the sample mean,
is ndrmally distpributed but the estimate uzn, the unbiased sample
variance, is chi-square distributed; so that g: can not be a normally
distributed random vector, However the assumption here is that the
normal distribution will yield a good approximation to the density

of 9;0

D.,3 Gaussian-Wishart: A Reproducing Density Funection, If the

likelihood, fY!G” of Equation D.2.1 is the Gaussian density function

with 8 the unknown parameter set composed of the mean vector, M, and

Ly,

the inverted covariance matrix, P, i.e., ¥ ~ N(M,P~ then Keehn (8)

has shown that the reproducing a priori density function fe, for
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8 = (M,P) is the composite Gaussian-Wishart density function,
G.W. (w,v,R, Q)

If ¥ is a r-dimensional vector which is normally distributed then

fy o, plE ) = N
- L 1
= (zm) % |pZ em[- L (z - 0T Bz - W]

(D.3.1)
where M is the r-dimensional mean vector and P is the (r x r) inverted
covariance matrix, The composite Gaussian-Wishart density function
on (M,P) is

fﬂﬂg(gpp,) = GW.(w',v',R',Q")
£ 1
-5 =
(zm) * |u'p|? exp[- 1 (@R")T w'p@-R")]

it

putel wlore2 ]
%ﬂgi e[ 2 exml- 5 tr v'a'p] (D.3.2)

where R is a r-dimensional vector, g" is a (r x r) positive definite

o « o e g
matrix, w' and v' are real numbers associated with R' and Q', respec~

t

tively, such that w' > 0 and v! > r + 2, C, ¢ is given by
9

- 1
r, v} r{r-1) r

v'ea
W agl[“( =)

C

and "ty " represents the trace of " o M,

The Gaussian=Wishart density implies that the random covariance
matrix gfl is distributed according to the inverted Wishart law with
parameters v' and Q“ where Q' is a covariance matrix and v' is a con-
fidence factor which measures how concentrated the inverted Wishart

. . . T
law is about Q. The concentration is greater when v 1is larger, The
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random mean vector M is then distributed according to the Gaussian law
with mean Eﬁ and covariance ma,trix%;ﬂ gfl where w' ié a confidence
factor which measures how concentrated the Gaussian law is about Efo
The concentration is greater when w' is larger. w' and v' can be
thought of as constants reflecting the confidence that Ef and g" are
the true mean vector and covariance matrix, respectively, of the
Gaussian distributed random vector Y (8),

Since the Gaussian-Wishart density function is a reproducing
a priori density with respect to the Gaussian density function with
unknwon mean vector and cov;riance matrix, the a posteriori density
function is also a Gaussian-Wishart density function. If the a priori
density function is given by Equation D,3.2 then the a posteriori

density function is of the same form as Equation D.3,2 with different

parameters, Thus ?Mmgjl is given by
fMDP]Y(I—n"’RII) = GoWo(WgV,Egg) (Ds3,3)

where, from Keehn (8),

w=w +1 ’ v=v +1,
1.1
wRty
E,"’ Wg+l 9 (D°3°l4’)
Q=== [vig' +wR'R' T+ 73T - wrRT]

vi+l

and y is the observation of the random vector Y.
In the iterative form of Bayes! Rule, Equatien D,2,2, if the

likelihood, fY g ° is Gaussian, zn N N(gﬂ,g;l)g then the reproducing
“nl=n

a priori density of ﬁn given zogllgqoo,znwl is
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YRR A S QU112 a RRELES MY
=n’=nl =0"= 1

lguoog_nm

- : ¥ 7
- Gaw° (Wﬁlvvﬂsﬂnog_n) (D°305)

and the a posteriori density of 8 given Zogzl,“u,z_n_l is

anDPn aY_ODZ;lp cee ,X_ (EDEIXO 9119 o‘n o gzn) = GoWo (Wnpvnvg_n,Qn)
(D.3.6)

where

Wy = w, t1 ’ v, =vh Tl ,
wiR! +y
R . =n
-1 W 1 ?
+
n

= 1 1Al InintT T
8 = prry Dvntn R+ 2o - Rl
n

and Yy is the observation of X_no

D4 Learning the Augmented Moment Vector, prro_ As indicated in

Section D.2 the approach here is to assume that E: is a normally dis-
tributed random vector and to use Bayes! learning to estimate the
parameters of the normal distribution and then form an estimate of w,.
Assuming that g: \ N(Envf_;l) where, recalling that g._; is a

6~dimensional vector, ¥ is the 6-dimensional mean vector and 2;1 is
the (6 x 6) inverted covariance matrix of g:, Bayes' Rule for the
density function of (y_nogn) is

£,%1, iy
- -E'-nmn&n “M-n”g'nlahm;

‘ (Do4.1)
n f *IE ‘
Epllnad

4=

&

2
B,

where § = (E,gop_;,,g;mo,g;) with pg the initial estimate of p, and
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E; the observation of Beo i= O,lnuao;no Then the reproducing a priori
. -1
density of (angn ) is
fﬂn».linlé (mop) = GoWo(wp,v, R ,Q7) (D.k4.2)

and the a posteriori density of (mn,ggl) is

fiy p B (m,p) = GWolw, , v, ,R .0 ) (D1, 3)
-n=-—nt—n

where, as in Equations D, 3.4,

wo=w +1 v.=v+1
n n _ n n
! *
w, R+
R = n Eﬂ, ? (DoLl'nLl')
n w +1
n

=4 Ry Imint T %® T T
noovl+l [vpQy * wReRn® + up it - wR Ry

Recall that the form of the Gaussian-Wishart (G,W.) density function
is given in Equation D,3.2.

From the discussion of Section D.3 Ry and Q are estimates of
the mean vector and covariance matrix of E; given £h with wand v
reflecting the confidence in En and Qn” respectively. However the
objective is to determine an estimate of By not estimates of the mean
vector and covariance matrix of H;* The desired estimate is taken to
be Qn such that ﬁn = g(gégggggigooo,g;) and the mean squared error
between ﬁn and By is minimized. The estimate which minimizes the .
mean squared error is the conditional expectation,
Therefore ﬁn = E[Hnl €t

In Chapter IIT u; is developed as an unbiased estimate of B

.00y E{plle .} =B . Then
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1]

E{pn} = B{B{k, l&na]} = E{p,} .

Now to show that E{p~ |} = E{p | &}
By €3 = Bl Jugon*(0),8%(1), 0o o¥(m)]

where H*(n) is the observation of Bos i.e,, the random variable g:
is observed to have the value E*(ﬁ)o Then using the properties of

conditional expectation

Efpn | €}
= E{E{g;[gnajﬁégu*(o),g*(l),oo.,,g*(n)}lgé,g*(o),g*(l), eoo,n¥(n)}

and since g; given Ba is conditionally independent of the initial

estimate Eg and the observations p*(0),...,u%(n)

i

Bur| €3 = E{E{u) |%a}|ﬂo,g*(0)gooogﬁ*(n)}

Ll

B{p | gs (0) 000 on*(n))

Hi

B{e, | &)
Therefore

By = B, [€) = Beg|E)
= f pf *|E’ () Q£ (D.4.5)

Equation D.4.5 indicates that En is the mean vector of the con-
ditional density function,'fﬁ* |£h° The conditional density function,
7 )
*|g, » is called the post-sampling density of By and is determined

from
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£, dm d (D.4.6)
P;nIE/ ;ﬁé an Bno € —n-nla £

where fM |5 is the a posteriori density of (M P ) given by

Equation D. 1+ 3and T *iMn 6, is the conditional density of E given
I2- 6t

its mean vector, _I\_4_n, and inverted covariance matrix, P and E, Since

LL_; is assumed to be normally distributed given _}_in and P

= Ny, "1) =f

!Mn —n" ) }Mn’—n

to that Equation D.4.6 becomes
=[ [T« dm d (D.4,7)
Enla m p yin‘M P -M-”Enlan £
The integration in Equation D.4.7 can be performed using the pro-
perties of the Gaussian-Wishart density as presented by Cramér (2).

Upon performing the integration the resulting density function is

l—l(vn) V. - -I: - ']'-'
(2m)” 2 (w +1 F( b el (_?ia) : |Qn| ?
£ * (E_‘Bf_a E,*voooﬂ-"*) = v
& 0 =0 n ' W, T .1 -n
n “n [1+m(gmgn) Q@ (w-R)IZ
(D.4.8)

vthere r = 6, Equation D.4.8 corresponds to the post likelihood
deve loped by Keehn (8).

The mean, which is somewhat obvious from inspection of L-Equation
D.4.8 but which can be verified by performing the onerous integrations,

of the post-sampling density, f *IE , 1s B_no Therefore the best
En{%n

estimate of p  given E’n is

A
g =R, (D.4.9)
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From Equations D.4.4

£y qgn W‘nu +1 [Wn i +E'rnj
wl . .
= PR ! --]-‘- * ]
Wn B_n + Wn Hn (Dol’"’olo)

To complete the development of the Bayesian estimate the relation-
ship between B-; and the prediction estimate E; must be esta,-blished and
the value of w__:l must be determined, It will be shown here that E-;x = y_:l

. ‘
and Wy T W qe |
The estimate which minimizes the mean squared error is the con-

ditional espectation of p given E’n-al” E{gn] Ep1)e

Using the augmented moment model, Equation 2,4.5,

By | ol = B A, oy *ug 1[E, 1)

4

KB 16 )+
= AR 1

t

En

1}

Therefore since E[g_nl E/n,, } = E{}_L_nl E’n 1} (as in the development of
Blur|€,) = E{w,| € 1)
Bupl€, 1} = *l e (9.) o= pl C(D.&.11)

As in the development of f x R - , the pre~sampling density
K le b !E/nml '

of _L_L_;,, is determined from

f o« = [ [ £ f dm d (D.4,12)
E lE/nml mp E‘-nly-n”gn y—n”gnienml £
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where f £ is the a priori density of (M 2, ) given by Equa-
~n’—nl Nel

‘tion D.4.2 and f *l N(M ) Upon performing the integration

nl¥n:En

l671]_13 of the same form as Equatlon D.4.8 with WV gn,gn re-

g g
placed by wh,vn,gnﬁgno Thus since the mean of f *IE' is R the mean
of the pre-sampling density, #E*lé; » 1s R Therefore from Equa-

tion D.4,11,

=p' (D.%.13)

RI
=n  In
The constant wh comes from the a priori density of (Mn,ggl),
Equation D.4.2, GQW’(W gv R"gg ).

Since
by =4 pLn.,l s
n
then
» s
= + olte
B =41 Tis (D.4.24)
Similarly Q' is given by
v T
S, = A0, 14 (D.k.15)

The a priori density of (ﬂn,g;l) is the a posteriori density of
(Enwlpzzil) with the parameters gnwl and gnml replaced bW'E; and Q;

respectively (See Section D.5).

1
fy p (g, = O ORTELQY) (D.4.16)
=n’=n el
where . .
W, = anl 0 vn =Vl e
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A
Thus using Equations D.#.13, D.4.16, and D.4.10 g, becomes

! A wl
=.n ¢ L * .
b s kn * 5 by (D.4.17)
LI = gl
where Wn anl and W’n LAY

Equation D.4.17 is then the Bayesian estimate of Boe
It should be noted that Equation D.4,17 does not use the error

. A*

covariance matrices, \Ix:l or \]‘;n, of g;l and g;, respectively, in deter-

A

mining koo Therefore there is no need to determine a relationship
A B

between ¢ and g:,l‘ or ¢ and Q . Thus the selections of Q; and v} used

in the a priori Gaussian-Wishart densities of Equations D.4.2 and

D.%4,16 are arbitrary and useful only to the theoretical development

A
of Byo

Equation D.4.17 can be developed in a simpler manner by assuming

' . s vo1 :
that the a priori density on Mn” anlan l,, is N(_I_{_n,, = I) and that
= - n
the likelihood of H;o f . " is N(“M_nql)o Under these assumptions

Batzn
Bayes! Rule, Equation D.4,1 becomes

£ fy
&zlﬂn Mnl e’nol '

fp‘: | E‘n—»l

f =
EIllal'l

where the a priori density is the reproducing normal density function,

o a o N -l- .
The a posteriori density on M , fﬂnl &n,, then becomes (Bn, o I)
' ? . :
R RILRY Bn s W Bn” land W, are still defined and related by

Equations D.4.4 and D.4.16,

1

n-1
1 - . s . ] :
= I, so that W, =W qe This is not the actual case unless A’n is an

n
orghogonal matrix, The projection of ..3.-,]. I is given by

W.
n

The assumption is made here that the projection of I is
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i

1 T=21 T
baor AT = ]
n

which is ﬁ.@t equal to "']:v" T unless A=l = AT, i.e., A is an orthogonal
Wn -n =T -n

matrix, Section D.5 shows that such an assumption is not necessary

in the Gaussian-Wishart formulation,

This simpler procedure.is adapted from what is sometimes referred

to as learning the mean vector of normal patterns (9).

D.5 The Density Function of the Projection of (Mn-lizmalll In

. : . . i . =1
this section it is shown thaﬁ if (Mn-l”gnml) is projected to (Mn,gn )

according to

(D.5.1)
and

p-t Al (D.5.2)

and if the density function of (gnmlfgnml) is the Gaussiaanisharf
density function then the density function of (angn) is also the
Gaussian-Wishart density function,

In order to ease the presentation the notation is simplified.

Let A =4, M, =N, Hsn-r_}g,l_xgn:smlg P_,=PB,andP =P, With

this simplified notation it is shown that if

(M.P) ~ G.W.(w,v,R,Q), (D.5.3)
M =AM+E (D.5.4)

and
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Prl=aptal (D.5.5)
then

(My.By) ™ G (v Ry 0Q)) (D.5.6)
where

Wl =W vl =v ,
Ry =AR+3B , (Do5.7)
- T
'Q'l - A Q A

- A Efl &T then

Note that if P]
By = (Dt pat (D.5.8)

As indicated in Section D.3

fy,p(mR) = £y p(m[E) Tp(R) (D.5.9)
where
fy(pla|p) = NE, £ ph)
Mip % X
=(m ° |wpl?emwl-3 @-DTve@- D)
(D.5,10)
and

fg(g) = Cpy '% Ql |£‘ 2 exp[- % trv@pl] (D.5.11)

where the constant C v 18 defined in Section D.3.
Lo
Since Equations D.5.4 and D.5.8 are linear transformations of

M and P the density funetioen fy p (m;,p;) can be expressed as
| | =]¢ ’l L7 sl T



115

“To] e A'l@l-.lé]lg = AT )7p(p = A'py)
' (D.5.12)
First consider fp(B = AT Py 4).
- v=1 Vel=2
tpe=aTp 0 =c Fol 7 [aTm 4| * ewl-}trgale 4]
' (D.5.13)
From the properties of the trace of a matrix
trv_Q__A_T;gl_A_L'trvAQATBl (D.5.14)
From the properties of determinants
(e 4] = |47 fleafla] = [£7][a]]z| = |47 a]le]
(D.5.15)
and V=r=2 v-r-2 v-r-2 : Val=2
R R e T N B
v=1 =r=1 Vor=2 '
= [aTa| % aTa| 2 |py| © (D..5.16)
then
v=1 Ver-2 v-1 v=1 -r-1 V=r-2
9| 2 |a" e, 4| = |3a| ®]aTa| % e 4| 2 |x,| °
T "2"1' L=l eepef
= (|3 alla 1£]17 |2 U
—5— =r=1 Y=r-2
=[faaa’| " [aTa] Byl 2 @sa9)

Using Equations D.5,14 and Dq5;l? in Equation D.5.13
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P
T oY V-1 Voo Lo 2 T
= 2 v T| 2 2 g1
4Ta] 2 o, 3agaT[?|n] ? ew[-3trvagata]
(D,5,18)
With Ql as given in Equation D.5.7 fP(p_ = AT Py 4) becomes
- aT
f(2=4"p) 4)
<Yl vil VeI'=2
= |aT 2 v < ol
8T " e Bal T fn] T eel-3e v e
D.5,1
ol (D.5.19)

which, except for the constant IAT Al 2_ s 1s of the same form as
Equation D.5.11,

Now consider fMlE(Q = _1_;__*1 [ml - B] lP- = AT-E]_ 4).

fypte = A [m-B]| p = ATp4)

[ o l |
= (2m 7 |[va"p;4 |2 exp(- 34 [my-B1-R) T Tp AA ) -B]-R)}

(D.5.20)
Again from the properties of determinants
ST S
= |aT
wA” py Al = |47 A% |w B (D.5.21)

The exponential of Equation D.5.20 contains
-1 =1
A m - B] - T walp) A (m - B]- R
= (@] - 8T - &D) aTwp) A m, - 2] - B)
=@ - BT -RTAT) wp) (m -B-4R)

=(m ~AR-8Twp (@ -AR- B (D.5.22)
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Using Equations D.5.21 and D.5.22 in Equation D.5.20

fMLE(E = 5‘1&1'2] IE A B, 4)
‘l =r 1
I_ ] (2TT)2 Pﬁ}hj oxp{ - E(M -AR-B) W’Rl(m ~-AR-B)} (D.5.23)

]

With gl as given in Equations D05,7, Equation D°5°23 becomes

plm = & Ll"BJIB A" py b
1 =

1
1 af eyt

exp[- 3(m - B))" wp (m) - R,)]
(DOSOZLP)
1
Tal2

""ﬁhich, except for the constant ‘A Al o 1s of the same form as

Equation pQSQlOm
Using Equations D.5.19 and D.5.24 in Equation D.5.12 the joint

density function of M. and P. becomes

1 =1
L For P a e
T e A - 2 2 - M -

fy 2, @20 =] |a%a]* (2m) 2 |w 2 |? expl- 3(my-B)) W y(my-Ry)]
T Vel Veol'=2

° C I,Y.Q 2 2 exp[»ltrVQ p] (D.5.25)

r,vi2 =1 By 2 ] =]
and since fMl’ (mlﬁgl) must be a density function
%;
o 4] %= 14]

Therefore

f (my,p7) = £ (m.|p Ve, (p,) (D.5.26)

w2y BLRL T ) | p, B[ B2 R B
where

=k 1

(D.5.27)
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and
vlml vlwr-Z

v S—gn——
= 1 2 2 1
fgl(ﬂl) - Cr”vll"? Q.]_' IR]" exp[- 2 tr Vl Q’l 'El]
(D.5.28)
with wi,vl,
Equation D.5,26 with Equations D.5.27 and D.5.28 is the Gaussian-

Ry, and Q, given in Equations D.5.7.

Wishart density function, so that

(My.B5) N GoW. (wy vy ,Ry.9;)

Returning to the original notation it is concluded that if

W 1B g) N G ot g Ry 108 y)

and

Mn = A-n Enml T ig

n

Bt =a, Bl A7

then
(M.B) N GWo (v R ,Q0)

where

] 4
W =W v, =V
n n-l °? n n-1

T

En = An Enml + Esn

v T
8,54 814,

D.6 Bayesian Recursive Moment Estimation Algorithm and Summary.

In order to summarize the results developed in this Appendix a Bayesian

recursive moment estimation algorithm is presented and some comments



are offered on the inadequacies of Bayesian moment estimation.

The Bayesian Recursive Moment Estimation Algorithm:

(1)

(2)

- (3)

A
Determine the prediction estimate, g;, from By 10

. A
= A tp (D.6.1)
By T 2n By S,

1 .
and W0 the confldence factor in g;, fromlwh_l, the

A
confidence factor in Boo10
¢ = .
W= g (D.6.2)

From the observations of Xn’ E:, the data estimate, or

observation of B is computed by Equations 3.2.4 and 3.2.5.
: N

Using Equation D.4.17 the Bayesian estimate, B is deter-

mined from p , p¥, and W;g

)
A ‘Wﬁ § _];. *
B T By * wnﬂn (D.6.3)

I
where w_ =w + 1
n n
A

Then the,algorithm begins again with B projected to E;+l” ete.

Actually Equation D.6.3 is an average of E: with the projections

of all the previous observations and the initial estimate of By

8 *® % L% -
googo,glpwo,gno For example let W 1,

then

ol

A1
By =Z 8o * 5L

From Equation D.6.1

WV} [
I
]

it
O *
+
&

o= op o + ‘::!:A '+
By T2 By Esl 2 21 Eg
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then using Equation D.6.3

A 2 1.1 x_1 ! 1 .1 % 2
=S +2 =41 + = +=p*¥+ £
B TFE T T4y TR By T Tk
Similarly
T A 1 § 1 * 1 * 2
Ez‘ﬁzlil‘”sz‘Bﬁl Ay by TF A A Byt A By T g g
A
- r 1 =31 r 1 * 1 1
L, gﬁz“’ﬂﬁz G Ay Ay Th A Ay TRl vl
2
T A bg *gﬁ%
A
b=l v 1
&nm n Hn-‘--H'EI’I
*‘l XX ! l o0 * l oc oo ¢ 0o l *
- né 2n Ll40 n= An ko T 5 AZ An ul * * n By
Z 3 Q00 L E
n &0 Ay &Sl T a A3 A, H'-82 * T an (D°6°4)
A

There are some obvious deficiencies in determining B in the
mamner of Equations D.6.3 or D.6.4, The weight attached to g; is
always Eyl;gio Although in this study the number of observations of
Xn used Eo determine H: is implicitly considered to be a constant k

for each n, k could vary with n, In either case the weight attached

to E; would be a better measure of how good g; is as an estimate of

L if it was a function of k, If k is large then gl+ T should be
W
n
large. If k is small then ;y;;fi should be small,
n A
As indicated at the end of Section D.4 neither y or q,;“l as

A
developed in Chapter IIT enters intc the actual determination of gnu

A
o t % *
Since I and Y, are measures of the goodness of p’ and p’, respecw
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tively, it would be desirable for the weights attached to g; and E; to
be functions of @i and 3;, %; is a function of k so that use of &;
in the weight of H; would make use of k also, which is desired as
indicated above.

The recursive moment estimation scheme developed in Chapter III

possesses these desirable properties.
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