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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem. The basic concept lea.ding to 

this thesis .is that of deciding on the basis of sample tests whether 

or not to repair a group of equipment. The engineer is often faced 

with such a decision as is exemplified in the following hypothetical 

situation. 

A manufacturer of electronic equipment has produced a line of 

voltage generators which are now in operation. In addition to having 

produced the equipment, the manufacturer must maintain the generators. 

The manufacturer cannot continually monitor each generator but must 

rely on periodic checks of only a fixed number of the generators. 

F:r'om these checks the manufacturer must make either the decision to 

recall the generators amd make the necessary re,pairs or the decision 

to leave the equipment in operation. 

A very important ingit"edie:nt in such a decision is the probability 

that a voltage output is outside specified limits at a specified 

tim.eo Essentially this probability can be estimated by estimating 

the probabil:i.ty distribution function of the random variable which 

des~ribes the voltage outputs at the specified timeo 

The probability distribution function of a random variable can 

be approximated as a series expansion of the moments of the random 

variable. Two series expansions which are common in the literature 

1 



a.re the Gra::m=Cha:rlier series and the Edgeworth series (2). See 

Appendix A for a discussion of these series. 

In most situations the moments are unknowno Therefore 0 to ap~ 

proximate the probability distribution function using a series expa.n.,, 

sion the engineer needs estimates of the moments of the random 

variable which describes the voltage outputs at a specific time. 

It is this problem of estimation of moments with which this thesis 

is concernedo 

1. 2 Gen.erc1l Approach to the Problem Solution., HWhen in doubt, 

compute the sample moments. ~u In many si tua. tions 9 where observations 

of a :!:"&ndoin ,rariable are possible, this advice offered by Deutsch ( 3) 

must suffice for the estimation of moments. However in some situa­

ti<oinsg SUl(]h as tha.t mentioned in Sect:ton lol, there may be other 

sources of info:rmation which should be put to use in the estimation 

of moments. Particularly the engi.neer may have a priori information 

about the mome:nt,s which is derived from the design phase of the 

system develii:»pmento In addition a system model which describes the 

behavior of the equipment outputs may be a,va,ilableo 

2 

'.I'his effort b directed toward the use of three sources of infor= 

mation in the estima.ti©.n of moments. These ar·e~ 

1) A System Model 

2) A Pr:l.<1Jri Information 

J) System Obsell."'wations 

Chapter II is devoted to the development of a system model and 

the subsequent derivation of &in augmented moment model whicih provides 

the ba:SJis for the reic,ursive estima.tio)tll of momentso The system model 



used is of the form 

X =CX 1 +s n n n= n 

where X is the random variable which represents the possible values 
n 

of the equipment o·~tpu.ts at the time tn and is given in terms of the 

pre·vious :random variable xn ... l and two system random variables en and 

Sn• This model is by no means unique and in many situations is not 

realistic, but the procedures used in Chapter II to determine the 

model require that the m~del have no more than two para.meters, eogo, 

Cn and Sn of Equat~on lo2olo An example is given to illustr~te this 

procedureo 

Fran the system model an augmented moment model is derived. The 

augmented moment model is 

3 

where .l!n and ~l are vectors of moments of Xn and Xn=l' respectively, 

and A and u_ are oomposed of moments cf C and.So To derive this -.n -;; n n n 
moment model it i~ a~swned that the random variables en, 1n~l' and 

Sn of Equa.ti~n lo2ol are independento 

In Chapter III the augmented moment model is used to develop a 

recursive mi001ent estimation schemea In this development the augmented 

moment model i1:1 considered to be a vec:d:;or valued sample funot:;on from 

a stochastic process. In this framework the moments are random 

variables which at the time tn take on specific valueso The sample 

momenti3 are Cllompu.ted from the observations of Xn. The sample moments 

are then used to determin.e unbiased data estimates O ~ P which are . 

formulated as uniform0 minim.um vari.a.noe 9 minimum risk 9 unbiased 
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To develop the recursive moment estimation scheme the works: of 

Papoillis (10) and KaL'1'!an (7) o,n re((;:ursive filtering a:re :relied upon 

very he.~vily. 'Ihe m1biased data e:s:timates 9 ~~ are assumed to be noisy 
I\ 

obsel"Vati©n~ ©f the randlOl!ll manents .!!no Th~ estimate l:n is then 

derived as the linear estimate of !:!:.n in terms of the observations 9 

* • * 0 .l:!ool:!io o o o P~no and the a priori estimate !:!:.oo such that the mean squared 
I\ 

error between J:!n and~ is minimized. Several difficulties arise in 
/1. 

the use of ~n as derived in this mannero These difficulties are also 

presented in Chapter III and an alternative approach 0 the pseudo~ 

minimum v·ariance re©ursive moment estimation schemep is introduced. 

Another approa~hi the Bayesian recursive moment estimation scheme 

is presented in Appendix D. 'Ihis approach is an attempt to make use 

of a reprodu((;)ing a pr:iori density fun~tion in Bayes: 0 Rule to esti= 

To demon.stra te the pseud<()),.,minimmn varia.:nce re<erursive moment 

estim::. ti©n s:c:heme and t<0> i:nves lcigate its estimating properties a 

the BayeSlian re<a.u:rsive manent est:imati(J)n scheme presented in Appendix D 



CHAPTER II 

DEVELOPMENT OF '!HE SYSTEM MODELS 

2.1 Introduction. This chapter is concerned with the develop­

ment of a mathematical model of time variation of equipment output 

and the subsequent derivation of a moment model to be used in the 

recursive estimation of momentso 

A statement of the physical problem is presented and a system 

model in the form of a first~order linear differe~ce equation is 

developed. The development of this model is illustrated by an 

example. The model is then extended to a system model which describes 

the time variation of the random variables of the systemo From the 

system model an augmented moment model is derived which is a first­

order linear vector-matrix difference equation in terms of the 

moments of the random variables of the system. 

A method is suggested by which estimates of the parameters of 

the augmented moment model can be determined. 

2.2 Statement of the Ph.ysical Problem. A collection of K 

pieces of equipment, e.g., a set of 5,000 voltage generators, 1,000 

similar radars, or.10,000 amplifiers of the same type, etc., is in 

operation. Periodically the outputs of k of the K pieces of equip­

ment are observed. The outputs may be the voltage outputs of the 

generators, the signal~to-noise ratios of the radars, the gains of 

5 
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the amplifiers, etc. See Figure lo It is desired to estimate at 

a time tn the probability that a piece of the equipment is operating 

outside acceptable limits of operation 0 Le., P[Xn < a or Xn > b], 

where Xn is a random variable which represents the possible values 

of the equipment outputs at the time tn• 

An estimate of P[X < a or X > b] can be made from the k obser-n n 

vations at time tno This estimate could be detern,.ined by construct-

ing the empirical distribution function of Xn from the k observations. 

Alternatively estimates of the moments of Xn could be formed from the 

k observations and the distribution function of X approximated using 
n 

a truncated Gram-Charlier or Edgeworth serieso See Appendix A. 

However, neither of these approaches makes use of the k observations 

at time tn..,l or the k observations at tn_2, etc., In order to use the 

observations made at the n-1 previous sampling times the time varying 

changes in the equipment outputs must be modeled. The next section 

develops such a system model. 

2.3 Development of the System Model. In order to get some 

understanding as to how equipment outputs change with time and 

environment, a lengthy test, a life test, is often performed upon 

a collection of typical pieces of equipment. Such a test can aid in 

determining a model of the time varying changes in the equipment 

outputs. 

Consider the i.:t:h piece of equipment undergoing a life test. The 

life test environment is referred to as E10 and.§l,n is a vector 

quantity representing the different constituents--temperature, rate 

of change of temperature 0 pressure, radiation, humidity, etc ...... of 



0 

0 

K pieces of equipment 
• 
• 

• k 
observations 

7 

---

I 

I ! ] obse~a tions 

.______,o y=-=~~==rc=--==-==--=---=-· 

t t n-1 n 

Figure 1. A System of Operating Equipment with Equipment Outputs 



environment which cause change in the system outputs from tn=l to tn 

in environment E1• The output of the ith piece of equipment at time 

tn is a function of !ignP the previous output at time tn-lo and other 

poss:i.ble variablesil i.e. 9 

8 

n~l (2.3,1) 

where the subscripts i and n denote the i..t,h piece of equipment and 

the time t O respectively 0 and the superscript (1) denotes the environ= 
n 

ment 0 E1• See Figure 2. 

Figure 2. The iJ:h Equipment Output 
:i.n Life 'I'estp E1 

The change that is obse:rved in the i~ equip:rnent 0s oiutput .from 

t to tn can be modeled in several ways. With the two observaw n..,l 

tions of the values X:i 0 n ... ,l and xf ;~ the model of the change is re .... 

stricted to be in terms of only one unknown. Arbitrarily the change 



is modeled here as a multiplier, i.e., 

n>l 

(1) 
The multiplier 9 c. , represents the change in output which is ob-1,n 

served when the equipment is op~rated in the life test epvironment. 

E1; the change which is caused by the interreaction between the 

equipment and E1 during the time fr.om t 1 tot. 
. n- n 
·t 

Note that /l) 
1,n 

is uniquely determined from Equation 2o3.2 by the observations of 
(1) 

x, 1 and xi • 1,n- 9 n 

Now assume that the i.:lli, piece of equipment is operated in the 

system environment, E2, from t 1 tot. The output at time t is a n- n n 

9 

function of E2 , the previous output at time t 19 and other possible 
- ,n n-

variables, i.e., 

n~l (2.3.3) 

See Figure 3. 

X, 1 I IX(2) 
1 n= I i,n --------~~--~-'-----r,~----i-r=!.=!...------~--~~ 

I I 

Figure 3o The i!h Equipment Output in 
System Operationu E2 
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Expanding xi(2) in a Taylor series expansion about the vector ,!1 • ,n .n 

(2) 
xi == f(xi l' • • • ,!1 n)+vf(x. l'° • 09]h n) 0 <!2 =!1 )+ 0 

• •' ,n ,n- , 1,n- , ,n ,n 

n ~ 1 (2.J.4) 

where n.n denotes the dot or inner product and Vf is the gradient of 

f with respect to the constituents of ! ·,nand in a sense is a measure 

of the sensitivity of the equipment output to a change of environ­

ment. A first order approximation to x< 2) is 
i,n 

(2) (1) 
x ~xi +Vf(x. 1, ••• ,E1 )•(E2 -E1 ), i,n ,n 1,n- - ,n - ,n - ,n n~l 

From Equation 2.J.2 and letting 

(2) · (2) 
s. = Vf(x. l' • • • ,!1 ) · <!2 n-!1 n) • 1,n 1,n- ,n o , 

n~l (2.J.5) 

(2) 
The additive term, si O represents the change in the output which is ,n 
caused by the difference between the system environment, E2 , and the 

life test environment, E1• 

Equation 2.J.5 is a first-order linear difference equation model 

of the change that takes place in the i.!:h, equipment output under the 

influence of the system environment, E2• Although this model is not 

unique it is a satisfactory model in that it reflects the change that 

occurs and also the way information about the change is obtained. 

The multiplier, c~l), reflects the change which can be observed in 1,n 

a life test environment while the additive term, si(Z), reflects the ,n 
additional change which occurs when the equipment is placed in the 



system environment. From Equations 2.3.2 and 2.3.5 and observations 

of x. n 1 and x~l) during life test a.nd observations of x. 1 and 
1g ~ lvn ion-

11 

<2) d . t t• h t• d t nk x. ur1ng sys em opera ion t ere are two equa ions an ·:wo u nowns 0 
1 n 
(i) (2) (1) (2) 

c. ands. ~ In which case, ci and si can be uniquely deter-1,n 1,n ,n ,n 

mined. 

Example. Consider a collection of voltage generators which are to be 

operated in an environment such that temperature is the only signifi-

cant constituent. It is desired to model the voltage output, x, of a 

generator as a function of time under the influence of temperature. 

It is assumed that the time derivative of the voltage output, x 0 is 

proportional to the temperature, T~ and the voltage output, Le~, 

~ = KT(t)x dt 

Solving this differential equation with the conditions x = x 1 n-
at t = t 1 and x = x at t = t n~ n n 

x t 
11 n 

I .s!?r = f KT(t)dt 
x x t 

n.~l n~,l 

t 
x n 

ln(--2l...) = K J T(t)dt 
x l ' n... t 1 n.., 

x =: x 
n n-1 

tn 
K J T(t)dt 

e tn=l (2.3.6) 
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Thus for this example the change in voltage output from t 1 tot is 
n- n 

a function of the integral of the temperatureo T(t)9 from tn-l to tn. 

The effect is the same as that caused by a constant or average 

temperature 9 T 9 such that a,n 
t 
n 

T (t - t 1) = J T(t)dt 
a9n n n- t 

n-1 

Therefore Equation 2o3.6 can be expressed as 

K T ( t -t ) a.n n n-1 x = x e · 
n n-1 

If a generator is observed during a life test, environment E1, 

and the voltage outputs at times t 1 and t are observed to be n... n 

x and xi(~n) 0 respectively, then the observed change in output 
i,n-1 . 

from x. 1 to x~l) is caused by the time integral of temperature, 1,n .. , 1 0 n 

and Equation 2.3.7 becomes 

n 2: l 

(1) 
Thus the multiplier, ci,n' of Equation 2.3.2 is 

(1) 
( l) K1T (t -t 1) 

0 = e a,n n n-
i,n (2 .. 3.9) 

and from the observations of xi 1 and x1(l), o1(l) is uniquely 
0 n... 0 n ,n 

determined. 

If' the generator.!=I are placed in the operating system environment, 



(2) 
the voltage outputs at times t 1 and t are x, 1 and x, , n- n 1,n- 1,n 

respectively. Again the change in voltage from x, 1 l 9 n-

caused by the time integral of temperature 9 

t 

T( 2)(t -t ) = Jn T( 2 )(t)dt 
a 0 n n n-1 t 

n-1 

and Equation 2.3.7 becomes 
. (2) 

to x( 2 ) is 
i,n 

13 

(2) K.T (t -t 1) 
x = x e 1 a,n n n-
i,n i~n-1 

n _2! 1 (2.3.10) 

Expanding x~ 2) in terms of the significant environmental effect, 
1,n (l) 

T I in a Taylor series expansion about the particular value Ta n' a, n , 

K. T( 2) ( t - t ) 
x(2) = x e 1 a,n n n-1 

:t,n i,n-1 

T(2)=T(l) 
aon a,n 

(2) (1) 
T ='r . 
a,n a,n 

(2) (1) 
T ,~T ·~·· • • a,n a,n 

(2) (1) 
T =T a 0 n a.,n 



Taking the first order approximation of x~ 2) from the Taylor series 1,n 

expansion 

14 

x( 2) = c~l) x. + s~2) , n ,:= 1 
i,n 1,n 1,n-l 1,n (2o3oll) 

where c(l) is given by Equation 2.Jo9 and i,n 

K.T(l)(t -t ) ) 
(2) ( ) e 1· a.n n n-1 (T(2)-T(l) 

si =Kit -t 1 xi n 1 ,n n n- , - a,n a,n (2.J.12) 

Equations 2.3.9 and 2o3o12 indicate for this example how the 

~odel parameters, c~l) and s~ 2), are related to the envirornnental 1,n 1,n 

constituents, T(l)' and T(2), which cause change during life test and 
a,n a,n 

system operation. Equation 2.3.11 is the desired model for the 

voltage output of the i.:!ill, piece of equipment. 

As indicated prior to the above example if the values of xi 1 ,n-
and xf1~ are observed during the life test.and the corresponding 

9 ( ) 

values of xi 1 and x. 2 are observeq during system operation, then ,n- 1,n 
. . (1) (2) 

using Equations 2.3.2 and 2.3.5 the two parameters, ci and si , 
,n ,n 

can be uniquely determined. It is implicit here that the same unit is 

in system operation as in life test and that it is identifiable in 

both environments. 

When~ collection of equipment is in operation only k samples 

are taken of the total number of K units in operation, k < K. Usually 

M, the number of units observed during the life test, is considerably 

less than K, M < K, and not necessarily equal to k, M; k. 1'hen 

(1) 
ci , i = 1,2, ••• ,M can be determined. Also, unless the correspond­,n 

ing M units are observed. during system operation, s< 2) can not be 
i,n 



1.5 

determined. Instead from the M observations during life test ~nd the 

k observations during system operation at each sampling time, tn• 

only estimates of the population of equipments can be determined. 

A discussion of how estimates about c(l) and s(2) are obtained is i,n i,n 

presented in Section 2 • .5. 

Since at best only estimates can be determined it is useful to 

extend the model, Equation 2.3.5, to a model relating the random 

variable Xn to the random variable X 1 where X is the random 
n- n 

variable representing the possible values of the K equipment outputs 

at the time t. The extended model is a first-order linear difference 
n 

equation and is given by 

n?l (2.3.13) 

where Cn is a random variable which represents the possible values 

of ci,n' i = l, ••• ,K, and Sn is a random variable which represents the 

possible values of s1 , i = 1, ••• ,K. Note that the superscripts ,n 
11 (1) 11 and "(2)" representing the environments have been omitted in 

Equation 2.3.13. It is implicit in the remainder of the study that 

Equation 2.3.13 refers to the system operation environment. 

2.4 Development of the Augmented Moment Model. To estimate the 

probability that a piece of equipment is operating outside acceptable 

limits of operation, P[Xn < a or Xn > b], a series expansion of the 

probability distribution function of X in terms of the moments of X n n 

can be used. See Appendix A. In this section an augmented moment 

model is derived from the system model develop,d in Section 2.3. This 

augmented moment model becomes the means whereby the estimates of the 
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moments of X., 0 Si S n-1 0 can be used in the estimation of the 
1 

moments of X. 
n 

Al though the augmented moment model and the techniques of moment 

estimation developed in this study can be extended to higher order 

moments, the estimation of only the first three moments of Xn is pre­

sented here. Of course with only k observations of X in many cases 
. n 

the estimates will become less accurate in a mean squared error sense 

as estimation of higher order moments is attemptedo 

The following notation will be used throughout this thesis. The 

first moment of a random variable is the mean or expectation of that 

random variable, i.e., 

and 

All other moments are central moments, i.e., 

r = 2, 3, ••• 

Assuming that in the system model, Equation 2.3.13 0 Gno 1n.1, 

* and Sn are independent randC!>l!l variables the mean of Xn is 

*The assumption of independence may not always reflect the true 
circumstances. In the example presented in Section 2.3 0 Equation 
2.J.12 indicates that X 1 and S are very definitely dependent. n- n 



Similarly the second central moment, variance, of X is 
n 

17 

n 2: 1 (2.4.2) 

And the third central moment of X is 
n 

µ.Jon = E[ [Xn-µ.l,n]3} = E[ [cnxn-1 +Sn-~11Cnµ.1 0n-l-µ.lSn J3} 

= [µ-:ic +J.12c µ.le +µic J µ.3 n-1 
.; n n n n ' 

n>l (2.4.3) 

The detailed developments of Equations 2.4.1 0 2.4.2 0 and 2.4.3 are 

given in Appendix B. 

Equations 2.4.1, 2.4.2 0 and 2.4.3 indicate a non-linear relation-

ship between the moments of Xn and the moments of Xn-l• For example, 

Equation 2.4.2 gives µ. 20 n as a function of µ. 20 n-l and the square of 

2 3 
µ.lon-1" By using µ.lon-1' µ.lon~lo and µ.2on-lµ.lon-l as auxiliary 

variables a linear form can be construed. In this case Equation 2.4.2 

2 
gives 1120 n as a. linear function of µ.Z.n-l and µ.lon-1° With these 

auxiliary variables an a.ugmented moment vector .l:;io can be defined as 

1!:. = n n~l (2.4.4) 
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The variation of this augmented moment ve~tor with n(time) can 

be written in the form of a first-order linear vector-matrix difference 

equation 9 

u. =Au +J:!:. -n -n-n-1 S 

where A is given in Figure 4 and 
-n 

1!:.s = 
n 

n 

Equation 2.4.5 is the derived augmented moment model. 

(2.4.5) 

2.5 Estimating the Moments of C and S. In order to use the - -- n 1r--

augmented moment model 0 Equation 2.4.5 0 the moments of C and S n n 

must be known. Unless th~ statistical properties of the changes due 

to the life test environmental stresses, C O ·and those due to the 
n 

system environmental stresses 9 S, are known these moments will be n 

unknown. In this section a method of determining estimates of the 

moments of C and S is suggested. n n 

In Section 2.3 the change in output was observed in a controlled 

life test. This change was. rep·resented by the difference equation 

i = 1 0 .... o oMo 
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(1) 
It was also noted that ci,n is uniquely determined by observations 

f d (1) . 
O x. 1 an x .. t 1oe .. , 1,n- 1,n 

(1) 
x. 

== 1.,n c. 1,n x. 1 1,n-
i == l, ••• ,M, n>l (2.5.1) 

In a controlled life test where M pieces of equipment are ob­

served periodically and c~l) for· the ith piece of equipment is 
1,n · . -

determined by Equation 2.5.l, an estimate of the mean of e is 
n 

n 2: 1 

.Similarly estimates of higher order central moments of en are 

r == 2,3, ••• , n > 1 (2.5.3) -
r 

or, using unbiased estimates as will be done in this study when 

possible, the unbiased estimates of the second and third central 

moments are 

n::: 1 

n 2: l 

See Appendix C for a development of unbiased estimates. Estimates 

of higher order moments of en can be determined in a similar fashion. 

Thus, estimates of the moments of e can be determined from a 
n 

life test of M pieces of equipment. 

Estimates of the moments of S are more difficult to obtain. n . 

Since Sn models the change due to the difference in the environment 



of the life test and that of the system operation, accurate know-

ledge of the moments of S is difficult to obtain prior to actual 
n 

observa.tion of the system in operation.. Instead the estimates of 

the moments of S must represent the a priori knowledge of how one 
n 

believes the system environment affects the system. 

'!he estimate of the mean of S will often be zero because a 
n 
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life test is.often designed to simulate the actual system envi!'O?lment., 

The estimate of the second moment, variance, of S should reflect 
n 

the uncertainty that one has in the effect of the system environment. 

If the uncertainty as to the difference b~tween the life test environ-

ment and the system environment is great, µ, 25 should be large. If 
n 

one 1s confidence is high that the change due to the system environ-

ment is not very different from tha.t observed in the life test, µ, 23 
n 

should be smallo S::l.nce little else can be said about the environ ... 

mental changes, it is plausible to assume that S is normally distri­
n 

bp.ted. 



CHAPTER III 

RECURSIVE MOMENT ESTIMATION 

J.l Restatement of the Prbblem and Introduction to Recursive 

Moment Estimation. In Section 2.2 the problem is given as one of 

estimating P(Xn < a or X > b] where X is a random variable repre-
n n 

senting the possible values of the equipment outputs at the time t. n 

The estimate is to be formed by making estimates of moments of Xn 

and then app:roximating the distribution function of X using a 
.n 

truncated Gram=Charlier or Edgeworth series. The moments of Xn 

will be estimated using the augmented moment model, Equation 2.4.5. 

In this section the problem is restated and more definitively 

formalized in terms of the augmented moment model. 

The augmented moment model of Equation 2.4.5 is a vector valued 

function which describes the way the moments, !!:.no Equation 2.4.49 of 

X, Equation 2.3.13 0 vary with time (n). In this respect Equation . n 

2.4.5 can be thought of as a vector valued sample function from a 

stochastic process. 

To develop the concept of the augmented moment model as a sample 

function consider the first moment 0 the mean 9 of Xn. From Equation 

2.4.5 the mean of X is 
n 

n~l 

Equation J.1.1 is a function describing how the mean of Xn varies 

22 
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with time; at least how it changes from one sampling time to anothero 

See Figure .5o 

I I 
t t 
n=l n 

Figure .5., µ.1 versus time (n) ,n 

Figure .5 depicts the function µ.1 in relation to the equipment ,n 
outputs, x10 n, i = 1,ooooKo The syst.em.of K pieces of equipment 

generates the function, µ. 10 n0 a sample function from a stochastic 

processo Other sample functions of means from this stochastic pro-

cess are generated in the same manner .. To elaborate, if there are 

other systems of equipment in operation, similar to the system of K 

pieces of equipment which generate µ.lon' then these systems also 

generate sample functions like Equation 3ololo If there are no 

other systems then a hypothetical stochastic process can be assumed 

from which the one sample function, µ.1 0 is realized .. ,n 

If time is fixed attn the value of the sample function, µ.l,n' 

is fixed at a constant whi.ch is the mean of X o Similarly for all the n 

sample functions of the means of the stochastic process; if time is 
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fixed at t then each sample function takes on a constant value. If 
n 

the stochastic process is considered as a. whole and time is fixed 

at t there results a. random variable 9 µ1 9 which represents all 
n 9 n 

possible mean values at time t, One realization of this random 
n 

variable is the value of µ1 9 the mean of X. Other realizations 
9 n n 

are the means of the other systems of equipment attn? either actual 

o:r hypotheticalo 

In a similar manner as that described abovej each element of the 

augmented moment vector 9 .t;iv i.e. 9 µ29 n 9 µJin' etc. 9 can be con­

sidered a.s a sample function from a stochastic process. Thus the 

augmented moment model can be thought of as a vector valued sample 

function from a vector valued stochastic process. 

In the context of the augmented moment model as a vector valued 

sample function from a stochastic process the problem of estimation 

of moments becomes one of estimating the value of the sample function 

1!:.n at each sampling time 0 tno 

In the next sec:ti.on µ * 0 the best estimate of µ from the k -n -n 

observa tions of the random var:lable X 9 is developed. The cri teriori. 
n 

for 11best11 is taken to be mi.n:imum mean squared error, ~ is referred 

to as the unbiased data moment estima.te. ~ is the best estimate of 

~ given only the k observa.tions of Xn' 

In Section 3o 3 a scheme of recursive moment estimation is 
A 

developed, The procedure i.s a systematic method of determining !!no 

the best estimate given the :i.nitial estimate 0 ~o and the n + 1 data 

moment est:imates 9 ~r 0 i ~ 0 0 l 9 ••• 0 no Section J.4 discusses several 

difficulties in this recursive moment estima.tion approach and 
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Section 3o5 presents an alternative 9 pseudo=minimum variance recursive 

moment estimation procedureo 

3o2· Unbiased Data Moment Estimates., When the stochastic process 

introduced in Sectit>n 3ol is halted in time at ~n there results a 

random vector9 J!n 9 which represents all possible values of the moment 

vector. The vector valued sample functio11o the augmented moment model 

of Equation 2.4.5 0 tak~s on one possible value of this random vector 0 

~ 9 the mOiilent vector9 Equation 2.4o4, of Xn• 

It is desired in this section to determine the best estimate of 

the moment vector .l:.n given only the k obse~ations of Xn. 

From the k independent samples, x1 ,x2 0 ••• ,x. , of Xn taken ,n ,n K,n 

at time tn 9 the sample moments of Xn are given by 

These sample moments are estimates of the moments, µl,n'µron' 

r =2,3 9 000 9 respectively. However all except m1 are biased esti= ,n 

mates. For example, m2 is a biased estimate of µ2 9 for 
. 9n ,n 

where E{•!.1.&.nal means the expectation given all the moments of Xn. 

The bias in the estimate 

from Equation 3.202, the 

is used instead of m2 .• on 

of µ2 can be removed if, ,n 

* estimate µ2 given by ,n 

as can be deduced 

(3.2.3) 

* µ2 ,n is obviously an unbiased estimate of 



µ2 and is referred to as an unbiased data estimate., 
on 

Unbiased data estimates are used as estimates of the moments, 

!!:.n• The vector~ is defined as 
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* ~= n 2: 1 (3.,2.4) 

where each element of.!;!,.* is an unbiased estimate of the correspond-n . 

ing element ofµ o In fact 9 the elements ofµ* are the UMV-RUE 1s 
-n -n 

(uniform, minim.um variance 9 minimum risk, unbiased estimators) of the 

elements of !!:.n and are given in terms of the sample moments, Equation 

3.2 .. 10 by Equations 3.2.5 .. See Appendix C for the derivation of 

UMV ~,RUE rr so 

* µ = m 
1 1 

* k2 0 0 µ.3 m 
J 

(µ2µ1) * 1 ~,k k(k-2) 0 = m2ml (k-l)(k .. 2) 

3* 2 .. J(k .. 2) (k .. l)(k-2) m'.3 µ.l 1 

(.3.2o.5c) 



Note that in Equations J.2.5 the second subscript, n, has been 

omitted for simplicity of presentationo For the remainder of this 

section n will be omitted often;, It is illlplicit that all random 

variables, data, moments 0 and estimates h~ve the same time corres-

poridence unless otherwise in4-icatedo 

* A measure of the goodness of one of the elements of~ as an 

estimate of the corresponding element of l!.n. is the mean squared 

( * )2 * error, e.g. 0 E( µ.2,n-µ2,n } is a measure of the goodness of 1,1,2 ,n 

as an estimate· of 1.1,2,no It is necessary in the following chapters 

to have, in addition to the me&n squared errors of the elements of 

·- ' * .l!n• the error covariances of the elements of .l!n• e.g. 0 
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E((µ;,n-1,1, 20 n)(1,1,;
0
n-µJ 0 n)}. It is convenient to place the mean 

squared errors and error covariances together in the error covariance 

matrix of~ given by 

However the error co~rariance matrix of the estimate ~ is unknown and 

in its place an estimate must be used. 

To aid in determining an estimate of the error covariance matrix 

of~· consider the covariance matrix, '¥:! of ( given the moments 

of Xn' 

Two typical elements of ,;v:u are expanded. 

One element of 'i/1.*n is the variance a'2:it. given by 
n µl 

2 ' * )21 . *2 2 0µ* = E{(µl-µl ~al~ E(µl I.B:.na}-1,1,1 
l 
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From Equations 3o2o5 

Using Equations Co4.3 

which from Equations 3.,2.,5 is 

0µrµ; = k~l E[m1m2ll;.ia)-µ1µ2 

and usi.ng Equations C.4. 3 

Similar· developments of the rema:ining elements of 'ifl.*g result in 
. n 

Equations Co4o4o Since \[t~a is a (6x6) symmetric matrix it has 21 

distinct elements. These 21 elements are those given in Equations 

Equations j.2.60 ;02.7 9 and C.4o4 all indicate the conclusion 

to be drawn herei that is 0 that the covariance matrix 9 'it".a 9 is a 
n 

function of the unknown moments of X O and therefore is unknown. 
n 

Since ~ is the UMV ~RUE of ~ it does minimize the variances 

of ~ which are the diagonal elements of \}i,:i therefore the measures 
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A* . . *'" 
of goodness chosen are the diagonal tenns of ii'n' the UM\T-RUE of 'Vno' 

which is determined strictly from the data observedo Each element 

"* of~ is n 

exampleo 

the UMV-RUE of the corresponding 

(a2.)* is the OMV-RUE of a2* and 
µ1 µ1 

*' element of \{I: • For 
n 

(a )* is the UMV-RUE of 'µ*µ* 
1 2 

that '1f*' is a linear function of n 
•a 

moments and products of moments. In fact g,n =~!,where ~ is a 

matrix of constants and! is a matrix of moments and products of 

moments. ~and! are implicitely defined by Equations C.4.4. The 

"'* *' following theorem concludes that it:, the OMV-RUE of 'IJ!., is the same n n 

linear function with the moments and products of moments replaced by 
'··,: 

their UMV-RUE 1 s. '!his theorem is essentially proven as part of 

Theorem 2.7 9 p. 60 0 of Fraser (5). 

Theorem 3.2.1. Given 1) a random variable X having the absolutely 

continuous distribution 9 F/x;_ft) on R1
11 the real. liner, 2.) t(~), 

a complete and sufficient statistic for ( FX(x;J~I.! e: .et} o 

*' . . 3) wn . = ~ f, where ~ is a matrix of constants and f is, a 

* matrix of moments and products of moments of X 9 and - 4) ! 0 the 

A* matrix! with each element replaced by its UMV-RUE 9 then '\Jtn' 
*8 

the UMV ~RUE of ,T, 0 is 
'*'n 

Example. 

A• = B z* 
'Vn --

Consider the variance a2 •• 
. µ 

. 2 
From Equation c.4.4 

a2- = 1 µ - (k-'3) µ2 
µ* k 4 k(k-1) 2 

2 



Let 

and 

then 

and 

Let 

then 

u 2 2 2 
E( f 2 (!)} = E( X1} E( X2} =2E( X1} E( X2} E[XJ} + E( X1} E( Xz} E( x3} E( X4} 

2 2 4 
:.: a. 2 ~, Za,2.a.1 + 0:.1 

2 = µ. 
2 

E( h(!)} = * E( f~ (~,)} .., Jc~:1)) E( f~.(,!)} 

_ 1 . (k-3) 2 
- k µ.4 = k(k=l) µ.2 

(o2 ,.) * 9 the UMV=RUE of a2 * 9 is the conditional expectation of h(x) 
µ.2 µ.2 -

given the complete and sufficient statistic to 
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(o~ *) * = E( h(!) 1 t} = E( c ~ f ~ (!) - Jc~:l1 f ~(!) J It} 
2 

= 1 E( f u (X) 1 t} - (k-3L E( f g (X) It} 
k l - k(k~l) 2. -

= 1 µ* _ ~ µ.2* 
k 4 k{~ 2 

where µ.4 and µ~* are the UMV-RUEV,s of µ,4 and µ,~, respectivelyo See 

Appendix C for a more comprehensive development of UMV-RUE 1 so 

"* The UMV-RUE 8 s needed in'¥ are given in Equations Co4o5 in 
n 

terms of the sample moments, m 9 r = 10 20 000 o From the k observa­
r 

tions Of X9 Xl9X290009Xk 9 the Sample moments mrp r: 1,2,ooop are 

calculated 

determined 

according to Equations 3o2olo Then the estimate~ is 

A* 
from Equations 3o2o5 and~ 9 the estimate of the error 

n 

covariance matrix of µ* 9 is calculated using Equations Co4o4 by 
n 

replacing the moments and products of moments in Equations Co4.4 

by their corresponding UMV-RUEns of Equation~ c.4o5o 
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}o 3 Development of the Recursive Moment Estimates. In the 

previous section ~o the best estimate of H:.n given only the k observa­

tions of X 9 was developed. If the k observations of X were the 
n n 

* only information available pertaining to~ thenl:!:.n would have to 

suffice as the best estimate of B!.n" However at the n previous 

' * .. Sa.I!lpling times the esttmates ~ of .l:!i have been made from observa-

tions of x1 , 0 .:5 i ;:: n~,l. In addition a priori knowledge may be 

available from which the estimate~ of ~O is derivedo In this 

section a recursive estimation procedure is developed for which the 

A A * * estimate .i±.n is the linear estimate of ~n in terms of E:o9H:.1 oooooE:.zi, 

and I, the identity matrix 0 which minimizes tr E(U!:.n-~]U!:.n-~]T}. 



A r * !:.o is taken to be the linear estimate of !!.a in terms of .f!:.o and !:,a 

which minimizes tr E{ U!:.c,-~]U!o-~]T} 
A 

The vector ~ is 

A 
µ. 
2,n 

A 

(µ.2 µ.l ) ,n ,n 

n 2: 1 

A 
where each element of~ is an estimate of the corresponding element 

of l!:.n o 
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In terms of the stochastic process introduced ib Section 3ol this 

section is concerned with the development of an estimate of the value 

A * * ofµ. given µ._,µ. 19 000,µ. o It is implicit from the context whether 
-n· """O - """l'l 

.l:!:.n is the randan vector or a value of the random vector. 
A. 

The following development of~ parallels the proof of the theorem 

on recursive filtering given by Papoulis (10). However the assump-

tions here are less restrictive than those of Papouliso Whereas 

Papoulis deals only with the estimation of a random variable with 

zero mean, the estimate of a vector of random variables with non-zero 

means is developed here. 

To the augmented moment model of Equation 2.4.5 an observation 

equation is attached. The augmented moment model and the observation 



equation are 

,!;!:. =Au. + U-n -n-n-1 "-i:) n 
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µ.*. =IJ. +v -n -n -n 

( 3., 3o2) 

* where An is given in Figure 40· ~ in Equation 2o4o5 9 and !in in 
n 

Equations 3o2o4 and 3o2o.5o 

The following,assumptions are made concerning Equations 3.,3.,2: 

(A) !;s is a random vector with E(,a5 } = is and 
n n n 

(B) ~ = [µ.1c ,µ. 2c ,µ 3c ]Tis a random vector with E(!:c} = ~ 
n n n n n n 

and 'Ve = E( ~ =~ I!!!c -jk ]T} (See Figure 4 for the 
n n n n n 

relation of ~ to !n) o 

n 

( C) The random vectors !!c O E:.s 11 and ~ 11 i < n 0 are indepen.., 
n n 

dento Th.us E(.!:c ~i} = Ee E(~} 
n n 

E(f!:.c ~~ } = ic ~ 11 i < n 
n n n n 

(D) The random vectors .Yj_ 11 i = 00 l 0 20 oooo are orthogonal. Thus 

E(X:i_l3} = E(~~~]~j-,!!j]T} = .Q. i ~ j 
• -· ,T, i ::;: j 

- '*'i 

and E(.Y.:1.} = .Q o i = 00 10 29 000 

(E) The random vectors ~ 0 .a51 9 lb.ci O and thus At are orthogonal 

to lj. E(~.Yj} = E£lb.s1l3} = E£.ac11:3} = E{!tYj} = Qo 

i,j = 0919000 



Under the above assumptions B 9 C and D are determined such -n -n , -n 

that for 

A . A * * l!:n is the linear estimate of !:..n in terms of .l:o•.!:!:.i•~ooo.!:!:.n and I, the 

identity matri~0 which minimizes tr E(U!:.n-~]U!,.n-~]T}o 

From assumptions (C) and (E) 

-where E( A } :::: A -n -n 

Similarly from (C), (DL and (E) 

and 

Since~ is 

which minimizes 

Thus 

.. A * * to be the linear function of .1:.0 ,,l:!:.1 oooo 9J:.n' and I 
A A T 

tr E(U!i.n=~]~""l!:n] } 9 orthogonality must hold. 

where in Equation 30308 ~ is taken to be ~o See Kalman (7) and 

Papoulis (10) for discussions and developments of orthogonalityo 

From (C) and Equations 3o3o2 
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* Taking expected values in Equation 3.,3 ... 30 since ~ is the OMV-RUE 

of !:_it 

p i = 0,1,ooop 

and since E( U!n-l-~n-l]} = .Q., solving Equation 3o 3o 9 for 12.n yields 

(3o)oll) 

Furthermore using Equation 3o3ol0 

D =((.I - C )A - B ]E[u 1} + (I - C )i:L -n -n -n . -n -n- . -n ~ 
, . I n 

(Jo3ol2) 

From Equation 3o3o2 

Then 

(JoJolJ) 

Solving Equation 3o3ol0 for 1£s, using the results in Equation 3o3ol4 
n 

and solving for A yields 
-n 

I.I 
Expressing .l:.n ... .t:.n as 

. r.. "' ] *T since E(LJ::.n=l = J.!:.n-l J.!:.i} = Q O i = O,l,ooo,n-1, and from 

(D) and (E) E(I.:rJ!.{T} = Q v i = 0,1,ooo,n=l, 

Equation 30308 becom~s 
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i = Opl, •• 09n=l 

Using Equation 3.Joll in Equation 3.3.15 and solving for (I= C )-1B -n -n 

yields 

(I - ~)=1~ = [E(!:J:i} - E(an}E{afJ][E(~-1af1 - E(£n_1}E(J!i}T1 , 

i = O~lp••·~n-1 (3.3.16) 

Therefore from Equations 3.3.,14 and 3.:3.16: 

( ) -1 -I=C B =iA 
-n -n -n 

or B = (I - c )A 
""'.'Tl -n -n 

(3o3ol7) 

Using Equations 3.3.3 and 3.3.11 in Equation 3.3.7 

which with Equations 3.3.5 and 3.3.6 becomes 

T . T _. [,.. T T] 
E(~n} = E(B-.n}E(!!:.n} ~· ~ E(J!n=~) = E(Bi.n-1}E(£n} 

+ ~[E(J!~!} = E(J!n} E[.b!i_~} + w:] 
(3.3.18) 

I\ 
The error covariance matrix for 1!:.n is given by 

I\ JI:. . I\ T . I\ T w = E( rµ. .., µ. Jrµ. _ µ. J } = E[ r µ. = µ. J µ. } n Lt!n ~=n u:;:.n -n · U!n -n -n 

whichv making use of Equations 3.3.3 and 303.11 1 becomes 

(3.3.19) 



Using Equation 3o3ol8 in Equation 3o3!19 yi~lds 

" * ,T, ,- C ,T, 
'*'n -nwn or A * l c =ii:w. ... 

-n n n 

A 
Then with Equations 303.12, 3.3.17,, and 3.3.20 ~ of Equations 3o3o3 

becomes 
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" [ "' *-lJrr ~ J " •-1 * B:.n = I - 'll'n'cJ!n L..:rt=-n-1 + l!s + '11n'1tn .l!n.· (3. 3.21) 
n 

, A A 
Therefore to complete the development of .l:n an expression for '¥n in 

A * terms of ii: 1 and~· is necessary. 
n- n 

From Equations 3.3.2 

A ,r., ]T 
E(!i;i .. 11.J::n - .!~-1 - !:.s . } a .Q 

n 

from which 

The pr,vious error covariance matrix is 

so that Equation 3.,3.22 can be written as 

,Solving Equation 3.3.10 for~ 9 E(~-l~} becomes 
n, 

E(~n-1~~} = [E(~n-1l!ii-1}-E(~n-l} E[1!J_1}-in_JJ~+E(l!n-l} E(}!~} 

(.3.3.23) 



Using Equation 3o3o23 Equation 3.3.18 becomes 

where 

and 

Substituting Equations 3.3.17 and 3.,3.20 into Equation 3o3o24 

II 
Solving Equation 3.3.25 for'¥. yields n 

Let 

g - A -

~ = !nl:!:-n-1 + !:!:.s 
n 

and 

n r.. n Jr11. n ]T 'Vn = E( LI:.n - ~ ~ - ~ } 

then Equation 3.3.21 becomes 

,.. ·c ,.. *-lJ u ,.. *~l * 
!:!:. = I='¥'¥:. U, +'Vw. .!! n n n -n n n n 

Now to show that -a ] -T n +A r - A = 'l>'n,n -n \[n-1 iln...,l,n-1 -n 'l'n 

g ,.. 

and that\¥. can be expressed in terms of w. 1• 
n n-

First consider w. n,n 

38 
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wnpn = E( U!:.n-E(~} ~-E(~} ]T} 

== E( C!nµn-1 ~ -AnEO!:.n ... 11 -~ J~n-1 ~ ~AnE(!!!n-ll-J!s ]T} 
n ' n n n 

(3oJoJO) 

- A -T 
Then using Equation JoJo30 int: + An['lll 1-w. 1. 1] A n,n - n... n- ,n- -n 

Now consider '11'~ of Equation 3.,3 .. 28 
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- A T -T- A - T 
-!nEt1J:.n-l.l.l:.n=l} An·~!nE[~n-1} E{ (J!s -11:.s ) } n n 

- T T - "T -T 
+E{ <~s -~s )~-1~}-E{ls =ll:.s }E{~_1}!n 

n n n n · 

Adding and subtracting the tem A E( u. · ,.u. T 1JAT to w.' 
-n "'"n-..1.-:-n- ~ n 

(3.3,,32) 

The right side of Equation 3o3o31 is the same as the right side of 

Equation 3.3.,32 so that 

Therefore Equation 3,,3.26 becomes 

A u u J=l * w = w ['1! + w* w n n n n n 

A 
and~ of Equation 3.3.29 becomes 

n 

(3,,3,,33) 

(3.3.34) 

(3.3.35) 

I\ 
Equation 3.3,,32 is an expression of \{,U in terms of~· 1 but con-n n= 

sider a slightly different development of w.8 
n 
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/\ , "'T - T /\ - T 
+ E(~ (~=1=!:.n-, 1. )~l (!n-:\i) ) + E(An (~=l-~-1)(1:s -1:s ) } 

n· n 

- A .,., T T - /\ - T 
+ E{ (An-!n)E:.n-l \Ui.n-I'""l!i.n-1) !nl + E{ (!n-!n)i!:.n-1 <i!:.s ·-!±.s ) } 

n n 

- A T T - AT - T 
+ E{ Ci!:.sn-1:s) C!!n-r'~n ... 1) ~n} + E( <i!:.sn~~sn)J!n-1 <!n-!n) ) ( 3 .. 3. 36) 

Since~, .J:!:s 9 and·i!:,1 are independent the expectations with respect 
· n n 

to 1!:.c O l!s O and 1!:.i can be taken separately and then using the 
n n A 

orthogonality .relations for .l!n-l 

and 

Similarly 

and 

v 
Then 'q/n becomes 

The results of this developm.ent are now ~ummarizedo If the 
/\ . A u 

estimate !&n~l and its error covariance matrix 'Vn=l are available, Y:.n 

and its error covariance matrix 'iJI'~ are determined from Equations 3.3.27 

and 3 .. 3.37, respectively0 which are 
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g - I\ -
~ = !J:n~1 + J:.s (3.3.38) 

n 

..'... f\ "T - T + EJ"(A."'?A )u. ,u. · 1·(A -A)} 
'l -n -n -n-.L-rl= -n -n 

A A 
The.n µ. and its covariance matrix '1' are determined from Equations -n n 

3.3.35 and 3.3.34e respectively, which are 

Some comments on the difficulties which arise when Equations 363.38 

through 3., 3.41 are implemented are offered in the next section. 

There are several interesting cases of this development which 

are worth enumerating here. They are: 

Case L. A unknown 0 .!:!:.s unknown; A and U.- dependent. -n -n .,_,., 
n • n 

This is the most genera,l case; the one for which Equations 3. 3. 38 

through 3.3.41 were developed. 

Case.II. !n unknown 0 .l:!s unknowni An and .l:!s independent. 
· n n 

This case is not possible with the augmented moment model since 

A is a function of !!.:.s but it does hold 1.nterest for those situations 
-n n 

in which A and ls are not related. In this case Equations 3.3.38 
-n n 

through 3.3.41 become 

u - A -u =Ap, +i. 
-n -n-n-1 S n 

(3.3.42a) 

u A - A "T - T 
'1i' = E( A iJ: 1A } + E{ (A -A. )u. "O.µ. 1(A =A ) } + 'lt:s ( 3., 3.42b) n -n n~, :-n -n -n -n-.1.-n= -n -n 

n 
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A u r v *]=l * 
'V- = W L'V + '1o' '1o' n n n n n 

(3.3.42d) 

Case IIL !n known 0 .l!s unknowno 
n 

This case also is not possible with the augmented moment model 

but it has special :importance which makes it worthy of presentation. 

In this case the recursive moment estimation equations are 

I A -
~ == !~n-1 + its 

n 

,r, n ....,. A ,r, AT + ,r, 
'*'n - -n'*'n-1-n '*'S .. n 

(3.3.4Jb) 

These results (with is = Q) are the same as those obtained by 
n 

Kalman (7) and are the vector form of those obtained by Papoulis (10) .. 

Case IV •. An unknown 9 ll:s known. 
n 

Thi.s case would apply to the augmented moment model if 1:.c were 
n 

unknown while ~S was known.· The moment estimation equations are 
n 

n - I\ 
l!:.n = !J:n-1 + !!s 

n 

n A T - A "T .... T 
'1tn = E(!nWn=l!n} + E( (!n-!)1!:.n-11!:.n=l (!:n=!n) } 

Case V. A known 0 µ5 known. 
-n - n 

( 3. 3.44b) 

(3 .. 3.440) 

This is the s::lmplest case and will be used extensively in the 

next chapter. It occurs when ~C and 1!:.s are known. The recursive 
n n 



moment estimation equations are 

It A . 

!!:.n = ~-1 + l:.sn 

,r,u - A A AT 
'*'n - -nWn-1:..n 

3o4· Inherent and Practical Difficultieso One of the inherent 
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difficulties in recursive moment estimation was introduced previouslyo 

It is that 'V: is unknowno Section 3o2 presents a detailed discussion 

of'¥.* and proposes the use of if.* in its placeo Section J.2 should be 
n n 

A* "* referred to for the development of '!'no In that development 'Vn is the 

UMV-RU~ of w:' = E( lli:=B:.nJ~:=Y.nJTI µ,nal, which is the, conditional 

covariance matrix ofµ* given the moments of X o Although the 
-n n 

theoretical development of Section Jo3 requires that~~ be used in 

the weighting of~ and J:!.~ (See Equation 3o3o41) 9 in practice when 

B:.(n) is the value of !!:.n that occurs w:' would be a reasonable weight­

ing parameter to use 9 but still w:' i~ unknown and in its place 

"* \J!. is used .. 
n 

In some of the more general cases of recursive moment estimation 

enumerated in Section 3.3 there are yet other unknownso Due to the 
A 

independence of !!:.cno !!an and .l!n-l Equation JoJ.40 can be written 

A .. A A T 
ilt~ = E(!n'Ifn-1~) + E( <!Jn)E{B:.n~1~~-1} (An-An) ) + 'Vs 

n 

- A T - "T ·- T 
+ E( (.An=!n)E(Jb.n ... 11 (~ =~ ) } + E( (~ =!!:.g )E(l:.n-1} (.An~n) } 

, n n n n 
(J:4ol) 
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Two obvious unknowns required by this equation are the mean value of 

A A • . . A 1'T 
.l:!:.n=l' E(~=l} (which is also E(14i_1}), and th~ matrix E{.l:!:.:n-~n-l}o 

I\ A A 
An alternative to the use of E(!li.n-l} and E(~-l~-l} is offeredo 

A 'A 
It is suggested that .1:1:.(n-l) the value of ~-l which has been deter-

A A · 
mined be used for E£.l:l:.n-l} 9 since Ef!:!l.n-ll == E(J:!:.n-l} .is unknown and 
A A "T 
J:!:.(n-1) is the estimate of !;i=lo To determine E(~-l~-l} the 

covariance matrix 

E( ~n-1-E(~-1} J(~n-1-E(~=l} JT) == E(~-l~-1} ... E(~n-1} E(~!-1} 

is necessary0 but it is unknowno 
A A 

Since 1&,(n-l) is used for E(J£n_1} 

and the nearest thing to an estimate of this covariance matrix is 
A A AT 
wn-l' it is suggested that E(.1:,n.i.l:!:.n-ll be approximated by 

A A AT 
Wn=l + 1:.(n-l)J:!:. (n..,l) 

When .l:c and/or~ are unknown, Cases I 0 II, llI 0 and IV of 
n n . 

Section 3o 30 ~S , i'c O and their covariance ma trices must be knowno 
n n 

In Section 2o5 a di.scussion of estimation of .!:.s and~ is pre~ 
n n 

sentedo '!he estimates presented there can be used for g:5 and !co 
·n n 

Estimation of i'c could follow the same procedure for determining 
A . n w: presented in Section Jo2o But estimation of ifs must undoubtedly 

n 
be based on engineering judgement just as is the estimation of~ 

n 
presented in Section 2o5o 

In additi.on to these inherent difficulties which essentially · 

arise from lack of information concel1).ing the statistical properties 

of the a,ugm.ented moment model, there are some practical problems which 

stem from the use of ,q,: in the oombina tion of ~ with ~ o 

"* Pa.rticularly 0 two of these problems a.re that; 1) ,i,n may not 
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always be a positive defin~te matrix as an error covariance matrix 
n /+.* 

should be and9 2) ,v. +'¥. is ill-conditioned for the matrix inversion 
n n 

/+. A 
which is required in both~ and Wn" To illustrate these two con-

ditions consider the following exa.mpleo 

From a normal distribution with mean 10 and variance 111 N(lO,l), 

"* a sample of size 50 was drawno '¥. was then constructed according 
n 

to the procedure outlined at the conclusion of Section 3.2. The 

"* resulting ifn is given here with the lower part of the matrix omitted 

"* since 'Vn is symmetrico 

I\* 
~ :::: 

n 

.,01351 =oOOJJ4 

.,01891 

0001040 

-.,01525 

00354 

0272 

.0675 

00213 

5o46 

Consider the (2 x 2) principal minor 

.. 013.51 4~09 

4o09 12400 

Here only slide rule accuracy has been usedo 

4o09 - .. 0248 

-1 .. 023 .1882 

.326 -01532 

82.J . - .. 502 

1240. ~7o63 

1.880 

I\* 
The actual w. was 

n 

generated in a computer simulation which will be discussed in the 

next chapter. In the computer simulation the same principal minor 

as that given above is 



0013514378 

4.,0937072 

400937072 

123907}35 
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= =00041842 < 0 

"* Since this principal minor is negative 'Vn is not positive definite., 
A 

Since i!: is not necessarily a positive definite.matrix it can 

not be assumed that I;~ I f O or that [ ;; + ii~ I l 0., Thus ;: + 'qi~ 

A* u I 
may not have in inverse. Even if i'n + 'l'fn does have an inverse there 

can be difficulty in determining ito When,a matrix contains such 

. "* large numbers as 1240 and such small numbers as 0001040 as W'n does, 

the matrix is not easily and accurately invertedo If if.1 is a n 

comparable matrix to;* this condition will remain and 'il!.,
1 + ~* 

n n n 

will be difficult to inverto Of course there are very sophisticated 

computer routines which will do a fairly accurate inversion on such 

an ill-conditioned matrix9 but they are generally very time consumingo 

3o5 Pseud0=Min:imum Variance Recursive Moment Estimation~ An 

Alternative., To el:lmina.t.e some of the difficulties encountered in 

the previous section an alternate approach is proposed which modifies 

,.. Jl * the method of determining .l:!.n from l&.n and ~ 9 Equation 3o3o41, an~ 

',.. u "* w. from 'ill., and it. 0 Equation 3o3o42 9 but which does not affect 
n n n, 

u A u A 
the various ways of detennining a, from u. 1 and ~ f.rom ~ 1 n -n- n , n= 

enumerated in Section 3o3o Essentially this alternative combines 

u * ~ and !:.n element by element so as to minimize the mean squared error 
A 

of the resulting elements of :4io 

To facilitate the presentation of this alternative ~n 9 ~ 9 .e.:, ,.. 
and !!:.n are redefined with a slight modification in notation . ., Let 



'.• .. ·' 

~ = [µi,n}' i = l,ooo,6, so that equating this to~ of Equation 

2o4o4, 

IJ.1,n µ.l ;n 

µ.2.,n I.Lz,n 

µ. µ. 
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[ µ.i,n} ::: 3,n = 3,n =~ (3o5ol) 
2 

µ4,n µ.l,n 

µ. 3 
.5,n µ.l,n 

µ.6,n 112,nµl,n 

Similarly 

"'* ,.. In accordance with this notation ii~, \J,/n' and wn are given by 

g g A* A* A A 
wn = [oij,nl 9 "'n = (O'ij,n} 9 wn = (crij,nl 9 i,j = l,ooo,6 

(3.5.3) 

where for example cri9 , = E([µ.. -µ.~ J[µ.j -µ~ ]} is the error co-J,n 1,n 1,n ,n J,n 
u 

variance between the iJa! and jj;h elements of~ of .Equations 3.,.5.20 

If the augmented moment model 

could be reduced to 

then a one dimensional development analogous to the development of 

Section 3o,3 produces the follo'Wing recursive moment estimation 

equations 
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a~. ::: E(a2ii }~ii +E( (aii -aii /JE(~~ 1J+E[ (µ.s "'µiS )2} 1,n ,n 9 n 9n ,n 1,n~ 1 n n 

+ 2E{ (ai. =a.· )(µiS ""µiS ))E(~i 1} 1,n 11,n n n ,n-

A a1*· a' 1.n u 11 n *· 
µ, = v * µ + a µ,·· 
i,n aii,n+o'119n 1 n av +a* i,n 

' ii,n 11,n 

A l . * * r r r * 
" • = ( i · * ) ( u . * ){o-11 a 'j a. . +o:. 1 aj. "· . J iJ n . · "O',i +aii · aj·. +ajj ,n J .n 1J,n ~ ,n J 9 n 1J,n , 1 ,n 9 n J,n ,n 

{3o5o9) 

Equations 3.3.41 and 3.3.42 would be the same as Equations 3.5.7 and 

v 3 • .508 if the covariances between the elements of~ and the cova:ri-

* ances between the elements of 1!:.n were zero 9 i.t., if the off diagonal 

v * tel"l11s of 'I);, and~ were zero. n n 

In the case where a.i is known Equations 3.5.5 and 3.5.6 become 
· 1 ,n 

If in addition µiS = Q this one dimensional development is carried 
n 

out by Papoulis (10), although he does not reduce his results to the 

same form as Equations 3.5.10, 3.5.11, 3 • .5.7. and 3 • .5.8. 

This simplification of Equations 3.5 • .5 and 3.5.6 is analogous to 

Case III of Section 3.3. There likewise are one dimensional analogies 
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for each of the o.ther four cases presented., 

b d i 1 * {* 1· Since 9 as has een discusse prev ous Yo '1tn = aij
9
n is un-

known, Equations 3 .. 5 .. 70 3 .. 5 .. 8J and 3 .. 5 .. 9 must use estimates of 

* ai. .. These estimates are .taken to be the corr.esponding elements 1,n 
A* A* A* 

of 'Un = ( O'ij,nl, Le .. o o110 no Then Equations 3.5.,7, 30508 and 3.,5.,9 

become 

A 

a. i 
J. ,n (3.,5 .. 13) 

A 1 · ;A* "* n n a /\* 
0 · · = ... ,.. La· i a · · 0 i · +aii a · · aij J 1J,n (a~ ~!. )(an ta~. ) 1 ,n JJ,n J,n ,n JJ,n ,n 

·it,n 11 0 n · jj,n .. JJ,n (3 .. 5.14) 

Thereforeu to alleviate some of the difficulties encountered in 

the recursive moment estimatio~ scheme of Section 3 .. 3 .. 0 namely, that 
A* A . 
'Vn may not be positive definite and that if~+ 'it~ may not ·b~ invertable, 

either theoretically or practically, it is proposed that Equations 

3 .. 5.12 through 3 .. 5 .. ·14 be used in place of Equations J.3.41 and 3.3.42 .. 

Equations 3o5ol2 and 3 .. 5 .. 13 are very similar in form to the 

results of combining two unbiased estimators so as to minimize the 

variance of the resulting unbiased estimator. See Fraser (6), 

Probl~ 6, Po 244 .. This similarity leads to the phrase "pseudo-

:minimum variance recursive moment estimationn to identify this 

alternative reou:r•sive moment 13stimat:l.on procedttre .. 

Thus far no comments have been offered as to how this recursive 

scheme begins O 

a v A!:!suming that .Y:.o and ..;t,0 are the a priori estimate of 



.b!:.o and its error covariance mat:rix 0 Equations 3o5ol2 through 3o5,,i4 

V U * l* A A* 
are used to combine 1!.o and 'io with !!:.a and iio to determine !:!:.a and 'ioo 

From Equation 3o5ol2 it is observed tha.t 9 if the confidence in the 

a priori estimateµ.~ 0 is grea.t, as would be reflected by a small 
l.9 

v I\ 
mean squared, error, crii,O' 1,1100 would.be 

r 
influenced mostly by µ.i,Oo 

u while if there is little confidence, a large a1100o 

influenced mostly by µ.~,oo 

A 
µ.i,O would be 

In order to summarize the results ·ot this section and this 

chapter the following pseudo-minimum variance recursive moment 

estimation algorithm is presentedo Case V, An known, ~S knowp. 0 is 
n 

usedo However the same procedure holds by changing only the equa-
A . t A 

tions involving LL r and .!:!:. 1 and ii: and ~ 1o -n n- n n-
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The Pseudo-Minimum Variance Recursive Moment Estimation Algorithm: 

(1) 
n A 

Determine the prediction estimate, ~n' from E:.n-l; 

u A 
µ.n = !nL!'-n-1 + .l£s 

n 
and the error covariance matrix of ,l:!:.~ 9 

n A 
'Vn' from \lin-l; 

(2) From the observations of Xn 9 ~ 9 the data estimate or 

observation of .l:!:.no is computed according to Equations 3o2o4· 

and 3o2o5 and the estimated error covariance matrix of 

(3) 

~ 9 ;: 0 is determined using the UMV-RUE 8s of moments and 

products of mome~ts 9 Equations Co4o5 9 in Equations Co4o4o 
I\ 

The pseudo~minimum variance estimate, .14i 0 is determined· 

fro:m. 



and its error covariance matrix is calculated from 

--.:and 

u A* 
A 0ii n°ii n a - ' 1) 

ii,n.. - O'v 4* 
ii 0n iil)n 

i==l,ooo,6 

i::: 1,ooo,6 
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(3~·,.17) 



CHAPTER IV 

STI1ULATION AND DISCUSSION OF RESULTS 

4~1 Introductiono This chapter is concerned with a discussion 

of a computer aided simulation of the pseudo~min:imum variance re-

cursive moment estimation algorithm and some results of several 

simulationso Only the :important points of the simulation are pre­

sented with major emphasis placed on the results. 

492 Simulating Program. In order to demonstrate the pseudo-

minimum variance recursive moment estimation algorithm and to investi-

gate its moment learning ability a Fortran IV computer program was 

written and implemented on an IBM 7040 computer. For comparison 

purposes the Bayesian recursive moment estimation algorithm 9 devel-

oped in Appendix D1 was included in the programo 

The program simulated the system model 0 Xn = CnXn-l + Sn' by 

recursively constructing a number of its sample functions. The sample 

functions were then recursively sampled without replacement 9 i.,e. ~ 

rio one sample function was used more than once at one sampling time 9 

* A* and fr~m these samples .1!:.n and 'Vn were determined. The number of 

sample funct~ons and the number of samples taken at each sampling 

were specified in! tially. Using the initial assumptions for .1!:.o and 

u u . * "'* w0 1 i.e. o !!o and Woo and 1&.n and 1Ji11, determined at each sampling 0 the 

pseudo-minimum variance and Bayesian recursive moment estimation 

.53 
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algorithms 0 Equations 3.5.15 through 3.5.19 and Equations D.6,1 

through D,6 0 30 respectively, were programed to determine the estimates 
A A 

11. 8 and u 9 and the corresponding error covariance matrices, w.1 and ii:. ~n -n n n 

To support these estimates and to aid in evaluating their accuracies 

the augmented moment model,o l!n = ~n-l + ~S , 
n 

computed. 'Ihen for each of the estimates, 14i 1 

was also recursively 
A 

~ andl!n, the ratios 

of each of their elements to the corresponding elements of~ was 

determined. 

In order to construct the sample functions the initial random 

variable x0 wa.s assumed to be normally distributed with mean µ.1 and . ,n 

variance µ. 2 0 i,e, 0 N(µ 1 n0µ2. ). By sampling this distribution (by ,n o on 

means of a random number generator) the initial values of the sample 

functions were determined. Then for each n? 1 0 Cn and Sn were 

assumed to bt N(µ10 0µ2C) and N(µ 15 0µ25 ) 0 respectively. By r~~ 
n n n n 

cursively sampling these two distributions and using the resulting 

values with the initial values of the sample functions the sample 

functions were constructed. 'Ihe program was written so that 

It should be noted that, although x01 C and S were normally 
n n 

distributed random variables 0 for n > 1 9 X was not a normally dis-
- n 

tributed random variable, Also by setting the values of (µ.1C 0µ20 ) 
n n 

and (µ.15 oµ.25 ) for all n the simulation was restricted to Case V of 
n n 

Section J. 3 where !n and .l!s are known. In particular ~ = !j 
n 

and .l!s 
O 

:::; !:.a 
O 

9 i D j ::'.l l O 2 D o o o o 

J. J 

4,3 Simulation Results and Discussio.E.£, Figures 6 through 14 
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present some typical results from simulations performed using the com-

puter program described in the previous section. In each case 1,000 

sample functions were generated. From these 1,000 sample functions 

50 samples were taken at each sampling time, n = 0 01,2, •••• In 

each of these simulations ~- 0 , (µ.lC ,µ. 2C ) 0 and (µ.lS ,µ 2S ) remained 
-? n n n n 

constant with µ1 0 = 10;(µ.lC ,µ 2C) = (1.0,0.01), and 
' n n 

(µ.18 ,~2s) = (0.0,0.01). Also the a priori estimate of~ was set at 
n n 

~ = Q. 

In Figures 6 through 14 the subscript v on an estimate refers to 

an estimate determined by the pseudo-minimum yariance recursive moment 

estimation algorithm. The subscript B refers to one determined by the 

]ayesian recursive moment estimation algorithm. In each figure the 

ratio of the estimate to the corresponding element of ll.n is presented. 

In the first set of simulations 0 Figures 6 through 12, ith was 

r 10 fixed at w0 = 0.1 x 10 I. This has the effect of removing the 
a 

a priori estimate, ~O = Q, from the pseudo-minimum variance estimate. 

Three simulations were performed with values for µ290 of 0.01 0 1, and 

4, respectively. Figures 6 through 8 depict.the results of the 

simulation with µ200 = 0.01. A complete set of curves is presented 

showing the estimates of µ1 9 µ2 and µ 3 • In Figures 9 and 10 
0 n ,n ,n 

only estimates of µ2 and ~L 3 are presented when µ2 0 = 1 since the ,n ,n , 

estimation of µ1 in this case was, pictorially, essentially the same ,n 

as that in Figure 6. Likewise, for the same reason when µ. 200 = 4 only 

estimates of µ2 and µ3 are presented. See Figures 11 and 12. ,n vn 

The last set of figures, Figures 13 and 14, present the results 

of a simulation in which µ. 200 = 1.0 and w~ ~ I. This value of w~ 



causes the pseudo-minimum variance recursive moment estimation algo-

rithm to weight the a priori estimate of l!.o so highly that the data 

estimates of µ20 n and µJon are considered only slightly. Again 

pictorial presentation of the estimates of µ10 n was so much like 

Figure 6 that it was omitted. 

In Figure 6 where µ200 = 0.01 and'¥;= O.l x 1010r 0 the fact that 

the Bayesian estimation algorithm is an averaging of the projections 

of the a priori estimate 0 ~ 9 and the data estimates 0 ~~ 1 

i = 0 0 l 0 ••• 0 n, is clearly demonstrated. From Equation D.6.3 with 

wn = l 
0 

A _l u 1 * 
µ1,0 - 2 µ1~0 +2 ul,O 

From the simulation µ~ 00 = 0.0 and µi 00 = 9.998 so that 

and 

which is verified in Figure 6. From the augmented moment model 

From the simulation µlC = 1.0 and µ15 = 0.0 0 so that 
1 1 

and 

µ 8 = 1.0(4.999) + O.O = 4.999 
1 0 1 

Then since µ~ 01 = 10.06 



so that 

etc. 

Likewise the fact that the larger a priori error covariance 

matrix 'IJ!; causes the a priori estimate µ.i 00 to be of little effect 

in the pseudo-minimum.variance estimate is obvious since the data 

estimate µ~ 00 and the pseudo-minimum variance estimate ~190 are the 

same value of 909980 

57. 

In the pseud0aominimum variance estimate 9 since the sample mean~ 

µ~ 000 is such a good estimate of µ100 (the estimated error covariance 

between µ.i,o and µ100 is 0.002) 0 its value of 9.998 is essentially 

projected through the augmented moment model and used.as the esti­

mate of µ1 at each value of n. Note in Figure 6 that there is a 
an . 

slight change in µ1u /µ 1 at n = 3 and n = 20. At these values of 
,nv an 

n the estimated error covariance of µ~
9
n is small enough in comparison 

to the estimated error covariance of µ.1w tha.t µ.1* slightly modifies 
,n ,n . 

the estimate of µ. 1 • Otherwise µ1* produces no noticeable change ,n ,n 
A 

in µ u and µ. u becomes µ1 • 
l 9 n l 0 n ,n 

In each of the other two estimations, Figures 7 and 9 in this 

simulation, the averaging property of the Bayesian a.lgori thm is not 

quite so obvious 9 since the projection of the estimates through the 

augmented moment model a.lso involves the estimates of the augmenting 



moment terms I-~~ 9 µ, 13 and µ2 µ,1 o It is noticeable that the data 
··on on on on 

estimates 9 ~12* and µ,3* 0 vary much more from µ,2 and µ 3 than 
on on on on 

* . ° F' 6 i ' t' 0 
" µ, 10 n does from µ. 10 n in 1.gure 9 caus ng more varia ion in µ,20 n and 

a3on· This is to be expected since µ;on and µ;on have larger variances 

* than µ, 1 o 
on 

Figure 7 does show that in the pseudo=minimum variance estimation 

It also indicates that at n = 1 

u o A 
the estimate µ,201 is such a good estimate of µ201 that µ201 is essen-

tially ~1t 1 and that for n = 2 0 300 00 the estimate of µ. 2 ,n is essen-
A 

tially µ, 2 1 projected through the augmented moment model. 
9 

In Figure 8 as in each figure depicting the estimates of µ._, , 
.J» n 

the estimates at n = 0 are not accurately presentedo The figures 

indicate that the estimates of p. 300 are all zero. This occurs since 

the presentation is that of the estimate divided by µ. 300 0 Since it 

was assumed that x0 was normally distributed µ. 300 = O. In the simula­

tion the computer tried to divide by zero but instead of giving an 

answer of infinite or stopping the simulation the ratio was evaluated 

as zero., Thus µ300v/µ. 3000 µ 300B/µ. 300 and µ,_3oo/µ 300 all appear to be 

zeroo However for larger values of n the presentation is accurateo 

Figure 8 indicates that at n ::i:: 2 the pseudo=minimum variance 

i estima.te µ, 392 :Ls such a good estimate of µ, 392 that the following 

estimates of µJ
9
n are essentially the projections of µ 302 0 Notice 

that for some larger values of n 9 eogo 9 n = 23 and 43 0 the value of 

* A µ 30 n exerts a slight influence on the value of µJon in the combination 

u * of µ3 and µ3 o 
9 n 9 n 

Figures 9 through 12 present results from simulations in which 
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µ200 = 1 and µ,290 = 4. These are similar to Figures 7 and 8. However, 

it is obvious that the increased variance on x0 affects the pseudo-

minimum variance estimates of µ20 n and µJ»n· These estimates do not 

approach µ2 andµ~ as quickly as they did in the first simula-9n Jon . . 

tion. In fact the pseudo-minimum variance estimates ofµ~ in J,n 
Figures 10 and 12 appear to be following the trend of µ3* below and on 

away from µ3 for large values of n. 11n In Figures 9 and 11 both the 

Bayesian and the pseudo-minimum variance ~stimates -0f µ29 n appear to 

reach a fairly steady percentage error for large values of n. In 

Figure 11 the Bayesian estimate of µ2 has a smaller error than the 
9n 

pseudo-minimum variance estimate for values of n above n = 1.5. This 

is also true for the estimates ofµ~ in Figures 10 and 12. J,n . 

In Figures 13 and 14 the results with w~ = I indicate. that the 

pseudo-minimum variance estimates of µ20 n and µJ
9
n approach values 

which are approximately 3.5i and .5% of µ.2 ,n and µJ,n' respectively •. 

This algorithm has taken the a priori estimate~= .Q as a good 

estimate of .b!:.o and essentially projected this value through the 

" " augm.ented momint model to determine µ2 and µ~ • '.fue slope;~ ·Of the on Jgn 

curves depicting the early estimates of µ2 and µ3 appear to be 
• 11 n 9 n 

' " negative. '!his is not actually the case. For example µ2111 increases 

to µ~ 111 but it does not increase &S much as µ201 to µ2112 • So that 

~2111v/µ 2111 is actually larger than µt 2v/µ. 2112 • 

It is interesting to note in Figure 1411 that even though 

i µ39 0 =: 0 and µ 30 0 == 0 the .'estimate of µJon for large n is not at a.11 

near the value of µJ
9
no This is due to the fact that µf

9
o a.nd 

µ,200µ190 a.re not zeroo but the a priori estimate of each is zero and 
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with w~ = I a false confidence is maintained in th,ese estima. tes o 

/\ . A 
These estimates essentially become the estimates µ.f 9o and (µ. 290µ.1 ,0) 

• /\ 8 which a.re used in the augmented moment moqel to proJect µ390 to µ3, 1• 

The error covariance of µ.j
0 0 is determined mainly from w~ and thus 

g 
µ. 301 is considered a good estimate of µ. 301• This error remains and 

is compounded as n increases. 

Other simulations were performed for various parameter values. 

One simulation with µ200 = 1 and 'I}!~= 1,000 I and all othe~ paramete~s 

the same as in Figures 6 through 14, produced results in which the 

pseudo-minimum variance estimates of µ.l,n were within 4% of µ.l,n• 

the estimates of µ.2 within 10% of µ.2 , but the estimates of µ.3 n ,n 9 n , 

for n greater than 20 were only about 50% of µ.3 • 
.n 

In another set of 

1 and ,:p~ = Ool x 1010r all simulations with µ.2 0 = 
0 

othe?' parameters 

:remained the same except. for µ. 25 o. Simulations were performed for 
. n 

values of µ. 25 of lp 10, 100. Since µ. 25 was a known value the 
n n 

results of these simulations were very similar to Figures 60 9 9 and 

10 9 except that the curves for µ.1* /µ 1 o µ.2* /µ. 1 , and µ.3* /µ. 1 n 
0 n 0 n ,n ,n 11 n , 

exhibited much more variation than they do in Figures 6, 9, and lOo 

Thus for Case V of Sectio~ 3.3 where~ and l!:.s are known, as 
n 

simulated, µ. 20 n the variance of the initial random variable x0 and 

iJI~ the estimated error covariance matrix between ~O and~ appear to 

be critical parameters to the pseudo-minimum variance recursive 

moment estimation algorithm. Conversely, since the moments of C 
n 

and Sn are known in this case~ they are apparently not very criticalo 
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CHAPTER V 

SUMMARY Ji.ND·· CONCLUSIONS 

5~ 1 Summary, · The objecH.Je of this stu.dy was to develop a 

procedure for the estimation of the distribution function of a random 

variable representi:rig time-varying equipment outputs. The Gram­

Charlier or Edgeworth series expansions of the distribution function 

in terms of the moments of the random variable are often used to 

approximate the distribution function. For this type of approxima­

tion the problem was reduced to one of estimation of the moments of 

the time-varying random variable. 

'!'W'o methods for the estimation of moments w~re.developed. · These 

make use of not only unbiased sample moments determined from system 

observationsu but also a system model and a priori information, 

Chapter II presents the development of a system model of time­

varying equipment outputs and the subsequent derivation of a ~oment 

model& The system model used was a first-order linear difference 

equation and the resulting moment model was a first-order vector­

matrix difference equation, 

Chapter III presents the theoretical development of the recursive 

moment estimation schemeo This scheme makes use of the sample moments 

and the moment model to determine the best linear mean squared error 

estimate of the moments in terms of the a priori estimates and all the 

unbiased data. estimates computed through the estimation time. Several 
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difficulties which appeared in this development are discussed and an 

alternative approach, the pseudo=minimum variance recursive moment 

estimation scheme, is presentedo 

The other method for the estimation of moments, the Bayesian 

recursive moment estimation scheme, is presented in Appendix D. The 

Bayesian approach was an attempt to m&ke use of a reproducing a priori 

density function in Bayes' Rule to. estimate the moments. 

Chapter IV discusses a simulating COl!lputer program and presents 

some typical results of simulations of the two methods of recursive 

moment estimation. 

5o2 Conclusions. The procedure presented in Chapter II for the 

development of a system model is an appraoch which is useful in the 

modeling of time=varying equipment outputs. The form of the model is 

not unique 0 but with informati.on on system behavior av.iilable only 

from life tests and system tests 0 the procedure is restricted to the 

development of a model with only two parameters. 

For the derivation of the moment model from the system model it 

was assumed that the random variables of the system model were inde-

pendent. This assumption may not always hold. In fact 9 in the 

example used in Chapter II to demonstrate the system model develop-

ment 0 it is obvious that X 1 and S are not independent. 
n- n 

Pseudo-minimum variance recursive moment estimation provides a 

means to make use of a system model 0 a priori information9 and system 

observations to estimate moments. It makes use of at least estimates 

of the error covariance matrices between the estimates and the moments 

to be estimated in the weights necessary to combine estimates. In 
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Bayesian recursive moment estimation the weights are predetermined 

constants. The pseudo=minimum variance recursive moment es~imates 

are modified minimum mean squared error estimates 0 while the Bayesian 

recursive estimates are averages of projected estimates. As a result 

of this the pseudo-minimum variance estimates tend to approach the 

moments faster than the Bayesian estimates. 

The derivation of the pseudo-minimum variance recursive moment 

estimation algorithm is not unique to the system model chosen or the 

resulting moment model. However the form of the algorithm no doubt 

will change with a change in models. 

The pseudo-minimum varianc.e recursive moment estimation algorithm 

is easily implemented on a digital computer~ both for simulation and 

actual use with a system in operation. 

The pseudo=m:l..nimum variance estimates are better estimates than 

the sample moments in a modified mean squared error sense. Thus the 

pseudo~minimum variance moment estimates will 0 in this same sense 9 

yield better results in Gram-Charlie:r or Edgeworth series approxima= 

tions to the distribution function. 

When the pseudo=minimum variance moment estimation is used some 

thought should be given to the choice of the system model., It may 

well be that a system model different from that used in this study is 

more realistic and may even produce a simpler algorithm. See 

Section 5o3, 

The pseudo=minimum variance recursive moment estimation algorithm 

does have some limitations which should be noted. The algorithm is 

no better than the system model. The model can reflect only the 
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variations which are observed in life test and system test. Changes 

in the system during operation which depart from these, such as cata-

strophic failures, can not be modeled. When it becomes apparent that 

something of this nature has occurred other tests are required to 

determine the necessary model changes before continuingo Just as with 

sample moments the moment estimates are more accurate wl:).en determined 

from more datao This is reflected both in the moment model develop-

ment and the computation of sample momentso In Chapter II it is 

indicated that higher order moments of the system random variables 

are difficult to obtaino Using a fixed amount of data in many cases 

the higher order sample moments will be less accurate estimates than 

the lower order sample momentso. This inaccuracy of higher order 

estimates is clearly indicated in the simulation results presented 

in Chapter IVo 

The sample moments were used to develop unbiased data estimateso 

Several unbiased estimates of higher order moments and products of 

moments were derived in Appendix Co These estimates, which as far as 

the author could find are not available in the literature 0 may be of 

some use in other area.s · of,.endeavoro 

5.) Recommendations for Further Study. As indicated in earlier 

remarks of. this chapter some consideration should be given to the 

development of other system models and the resulting moment models. 

For example if the system model developed was of the £0:rm 

X =X 1 +c +S n n- n n 

and the random variables Xn~lo Cn 0 and Sn were independent the result-



74 

ing moment model (for three moments) would be 

where 

µ.l,n µ.lC 
n 

µ,ls 
n 

~n = µ.2 n ~n = µ,2C "and !!:.s :::; µ.2S 
9 n n n 

11Jgn µ.JC 
n 

µ.38 
n 

In this moment model the moment vectors are not augrnentedo The error 

n * ,... covariance matrices 9 Wno ~no and wn are all (3 x 3)o Thus the 
,... 

estimate 'if!.* would be easier to obtain; requiring fewer unbiased 
n 

estimates of higher order moments and proqucts of moments. 

-Even though it is felt that when using ·a se?'ies expansion to 

approximate the distribution function the pseudo-minimum variance 

estimation scheme produces the best moment estimates some considera-

tion should be given to other approaches. Approximation of the dis-

tribution function might be accomplished by constructing an empirical· 

distribution function., Either this empirical distribution function 

could be constructed from all system observations at all sampling 

times through the present by projection of the observations through ·· 

the system model 9 or empirical distribution functions could be con-

strJ1cted at each sampling time and then through some fonn of the sys~ 

tem model these distribution functions projected and combined. 
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APPENDIX A 

THE GRAM-CHA.RLIER·SERIES AND THE EDGEWORTH SERIES 

EXPANSIONS OF A DISTRIBUTION FUNCTION 

x - µ.l 
Consider the standardized random variable y = ~ where 

"' µ.2 
µ. 1 = E{X} and µ.2 = E([X - µ1]2}o The density function, f(y), of Y 

is given by Cramer (2) expanded in a Gra.m-Charlier series as 

c c c 
f(y) = c ~(y) + -1 ~(l) (y) + 2 ¢<2 ) (y) + .2 ~(3) (y) + 0 0 0 

0 11 2! · 31 

where Cr 0 ,r == 1 02 0 000 9 are constant coefficients, 

~(y) 
1 --?-/2 =-e ,/2Ti 9 the normal density function, N(0,1)., 

and 

The derivatives of the normal density function are given by 

where H/y) 0 r = 1, 2p o o O are the Hermite polynomials., The Hermite 

polynomials are defined by 

the first few of which are given by 
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H = 1 0 

H = y 
1 

H3 = y3 - 3Y 

H = y4 - 6y2 + 3 
4 

The constant coefficients 9 cr are given by 

+co 
c = (-l)r f H (y)f(y)dy r _00 r 

the first few of which are 

C = 1 
0 

Since c0 = 1 and c1 = c2 = 0 0 the Gra.m-Charlier series expansion of 

f(y) becomes 
C'"-< (3) C4 (4) 

f(y) = ¢(y) + Ji' ¢ (y) + 4K ¢ (y) + 0 0 0 

It can be shown that under certain conditions 9 Equation A .. 2 

will converge to the true density function of Y (2)o However 

Carmer (2) shows that generally the Gram-Charlier series is not 

77 

an asymptotic.expansion 0 i.,eo 9 addition of another term to an approxi-
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mation using a finite number of terms in the Gram-Charlier series does 

not necessarily reduce the error between the approximation and the 

true density functiono 

The Edgeworth series expansion of f(y) is given by 

f(y) = ~(x) 

- ..l. µ.3 ¢( 3) (x) 
3K (µ.2 j3/2 

+ .1.. (-µ4 - 3) ¢(4)(x) + 10 ( µ.3 • )2 ¢(6)(x) 
4X ~ 61 (µ. 2 )J/2 

+ ooo 

The development and additional terms of the Edgeworth series may be 

found in Cramer (2)o The Edgeworth series, unlike the Gram-Charlier 

series 9 is, under fairly general conditions, an asymptotic expansiono 

Since in this study only the first three moments are used, only 

the first two terms (through the third order terms) of either the 

Gram-Charlier or the Edgeworth series can be usedo Under this 

restriction the approximations of f(y) by both the Gram-Charlier and 

the Edgeworth series are identicalo Therefore f(y) is approximately 

given by 

and the distribution function of y is 



where 

Before such an approximation~ Equation Ao4 o;r Ao5 9 can be used 

in the context of this study a modification must be madeo Th.is 

modification is necessary; for since the mean and the variance of X, 

the random variable under consideration~ are unknown a standardized 

random variable can not be usedo This modification is accomplished 

. - x - µ.1 by performing a change of variableso Since Y - 'r,;;:;- 9 

"I .2TT 

x = JTi;, y = µ.l 

fy(y) 

fz'x) = 1:1 1 x - µ.l = - f (y = ) . 
. ~ y JTi;, 
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(Ao6) 

·and 

where 

and 



dz 

Equation Ao7 can be used to approximate F(x) by using the 

estimates of IJ.p 1,120 and µ. 3 developed in the body of this thesiso 
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APPENDIX B 

MOMENTS THROUGH THE SYST.EM MODEL 

B.l Introduction., The System model 

X =CX +S n n n-1 n (B.1.,1) 

can be considered as a model of the transition of the random variable 

Xn-l to the r~ndom variable In. In this appendix, assuming that en, 

Xn .. P and Sn are independent random variables, the relationships· 

between the first (mean), second (variance), and third central moments 

of X and X 1 are established. n n-

B.2 Since en, X 1, and S are independent n- n 

random variables 

where µle is the mean of en, µl.n-l is the mean of X 1, etco 
n • . n-

B.3 The Variance 2 ~2 .. The variance, the second central ,n-

µ2 n = E([~-µl n]2) .= E[[enxn-l+sn-µle µl n-1-µlS ]2) 
11 9 n 9 n 

= E[((en1n-rµ1e µl n ... 1)+(Sn-µ1s >J2) (B.3.1) 
n ' n 
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which due to the independence of Cn, Xn-lo and Sn is the variance of 

CnXn_1plus the variance of Sn 

82 

Recalling the relations between the variance of the product of two 

independent random variables and the moments of each random variable, 

µ. 2 becomes ,n 

µ.2,n = µ.2C µ.2,n-1 + Ilic µ.2,n-1 + 112C µ.i,n-1 + µ.2S 
n n , n n 

= [112c + µ.fc J µ.2 n-1 + u2c 1J.21 ~. 1 + µ.2s 
n n ° · n · ,.- n 

where µ2C is the variance of C 9 µ.2 1 is the variance of X 1 , etco 
n .~ ~ 

X is 
n 

n 

B.4 The Third Central Moment 2 H:3 o The third central moment of 
on-

which due to the independence of C, X 1, and S is the third central n n- n 

moment of C X 1 plus the third central moment of S 
n n- , n 

E( [cnxn-1 - µ.lCl'l,n-1J3} = E{ c~x~-1 - 3c~x~-1µ.1cnl11 11 n-l 

. 2 2 3 3 
+ 3Cn1n-l~lCnµ.l,n-1 - µ.lC~l 0 n-1l 



Recalling that 

and 

µ . = E( X2 ) - µ, 2 
2 0n.i n-1 l,n-1 

and using the same relations for µ,JC and µ, 2c 
n n 

= E( C~}µ,J,n-1 + J(E[ C~} - E( c!} µ,lCn] µ,2,n-lf.11,n-l 

+(E[C~} - JE(C~}µ1c + 21Jifc J IJif,n-1 
n n 

- 3 - µ.3C µ3 n-1 + Jµ.2C µ.lC µ.J n-1 + µ.lC µ.3 n-1 
n ' n n ' n ' 

Therefore the third central moment of X is 
n 

- [ J J µ.J n - µ.-:i,. + »2c µ.lC + µ.lC µ.J n-1 
0 -""n n n n ' 
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APPENDIX 9 

UNIFORM, MINIMUM VARIANCE, MINIMUM RISK, UNBIASED ESTIMATORS 

Col Introductiono In this appendix some useful theorems are 

presented which lead to the development of OMV-RUE 1 s (uniform, mini­

mum variance, minimum risk, unbiased estil!iators)o Some discussion of 

the interpretation of these theorems and their application to the 

determination of UMV-RUEBs is madeo The proced,ure for the construc­

tion of UMV-RUE 1s is then presented in the form of examples and, 

finally, some useful relationships for the development of UMV-RUE 1s 

·are presentedo 

The theorems and procedures of this appendix are essentially 

taken from Fraser (5) with modifications so that they agree with the 

content and notation of this thesis o The reader is ref e.rred to 

Fraser (5), Chapter land 2, for a more comprehensive and theoreti­

cal presentationo 

Co2 The Rao-Blackwell and Lehmann-Scheff' Theorem.so Very 

fundamental to the development of UMV-RUE's are the Rao=Blackwell 

and Lehman-Scheffe Theoremso These two theorems are presented here 

in forms suitable to the purpose of this thesis. 

Rao-Blackwell Theorem. If t(,:£) is a sufficient statistic for the 

family of.distribution functions indexedby,iil, parameter vector, 

0, (Fx(x;j,!9 e iei}, and f(.2£) is an unbiased estimator of g(~), 
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then h(t) = E(f(X)lt(zs)} is an unbiased estimator based on t(,!)o 

The variance of h(t) is less than the variance of f(.2£), 

~(J!.)~(j!,), unless f(.2£),= h(t(,2S)) almost everywhere (FX(x;_2))o 

With a strictly convex loss function, R(!), the inequality 

Rf(!)>~(!!) holds unless f(.2£) = h(t(,2S)) almost everywhere 

(FX(x;~.)), in which case Rf(!)= Rh(j!). 

Lehmann-Scheff~ Theorem. If there is a complete and sufficient 

statistic t(asJ for (Fx(xi!)li eta,, then every estimable real 

para.meter g(!) has a unique unbiased estimator with minimum 

variance and minimum risk (strictly convex loss); the estimator 

is the only unbiased estimator which is a function of t(.2£)• 

The Rao-Blackwell Theorem indicates that if there exists a 

sufficient statistic for the class of probability distribution func­

tions, one of which is under consideration, and if an unbiased esti­

mator of a para.meter is known, then the conditional expectation of 

that estimator given the sufficient statistic is also an unbiased 

estima.tor of the parameter. Furthermore the conditional estimator 

has smaller variance and risk than the unconditional estimator. The 

Lehmann-Scheffe Theorem further indicates that, if the sufficient 

statistic is also complete 9 the conditional estimator is a unique 

unbiased estimator and has smaller varianqe and risk than any other 

unbiased estimator of the para.meter. 

c.3 · UMV~RUEns of the Parameters of an Absolutely Continuous 

Distribution. Consider the k independent samples x = (x10x2, ••• 9 Xk) 

of a random variable X having the absolutely continuous distribution, 
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. 1 
~1(x;i) on R 9 the real lineo In Chapter II 9 Problem 14 of Fraser (5) 

it is shown that the order statistic 9 t(x)= (x(l) 9 ooo 9 X(k)L is a 

complete sufficient statistic for the cla~s of absolutely continuous 

distributions on R1 o In the following examples UMV-RUE 8s of some of 

the parameters of FX(x;i) will be determinedo 

Example 3ol The OMV-RUE of µ.l2 the Mean of Xo This example can be 

fou~d in Fraser (5) 9 PPo 58-590 Let f(,!) = x1o Then 9 since 

E{f(!)} = E(X1} = µ19 f(,?£) is an 'unbiased estimator of µ1 o Therefore 

by the Rao-Blackwell Theorem h(t) = E(f(,!)!t(_!~} is an unbiased 

estimator of µ19 and by the Lehmann-Scheff~ Theorem, h(t) is the UMV­

RUE of µ. 1 o So, h(t)~ the conditional expectation of x1, must be 

determinedo 

The conditional probability9 given the order statistic 9 assigns 

equal probability to each of the kl permutations of (x(l) 9 ooooX(k))o 

Then if one is fixed 9 say x(i) = x19 there remain (k - 1)1 permuta­

tions with x(i) = x1o Thus 

and 

= Ck = 1H _ 1 
kl - k g 

k k 
µ~ = h(t) = E{X It}= Ex O l = 1 Ex.= x 

1 l i=l (i). k k i=l 1. 

* -Therefore µ1 = x is the UMV=RUE of µ 1o 

In th~ body of this thesis UMV-RUEBs of several moments and.pro-

ducts of moments are usedo The UMV-RUEffs used are presented in Equa-

tion c.4o5o It would be somewhat redundant and serve no useful purpose 

to present. t.he development of each of these UMV-RUE 8s. Example c.3.2, 



however 9 does present the development of a somewhat typical UMV-RUEo 

Example Co 3o2 The OMV-RUE of P.4J!v the ~reduct of the Fourth and 

Second (Variance) Central Moments of X. µ.4 can be expressed as 

where °'r = E(Xr) is the r.!,h non-central moment of Xo 

·similarly 

·c J2 . 2 µ.2 = E( X - µ.l ) = °'2 - °'1 

Then 

Let 

Therefore f(.25) is an unbiased estimator of IJ,4,IJ.zo The conditional 

expectation, given the order statistic 0 off(,!) is the UMV-RUE of 

µ.4µ.2 o Proceeding as in Example Co3ol out fixing six elements of 

t(_!), say x(e) = x10 x(f) = x2, x(g) = x3, x(h) = x, x(i) = x5, 

x(j) = x6, There remain (k - 6)g permutations of t(,!)o Thus 

87 



88 

and 

(µ~ 2)*=h(t) = Ef r<!) I tJ 

_ .. 1 . k ~r4·24 32 
- k(k-l)(k-2)(k-3),(k-4)(k-5) ;,Frirtrtr1"xe~f-XeXfCg-4xexrg 

which will reduce to 

. -:t;k( 4k3-2ak2+80k-80) a~-k2_( 6k2-27k+30) a~+k( 6k3-24k2+66k-48) a 5al 

2 3 . . 2 . · 2 3 2 2 3 2 2 2 -k (4k -12k -t44k-60)a3a2a1-k (k +6k -7k+30)a4a1+k (6k -15)a2a1 

3 . 2 3 5 4 5 6] +k (4k +20)a3a1-9k a2a1+Jk a1 

k 
where ar ~ 1 t xr .. 

k i;.l i 
(µ4µ2)* can be reduced further to 

+k( 4k3 .. 28k 2 +80k-80 )m; ... k 2 ( 6k2 -27k+30 )m~] 
... k 

where m ~ -k1 t (x1. - µ1*), r = 2,3, •• , 
r i;;;l 

(c.,3 .. 10.) 

(CoJ.11) 

Verification of the UMV-RUE•s was perfo?'llled by taking the ex ... 

pectation of the UMV-RUE 1so This was accomplished by using Equations 

c.4.; to express UMV-RUE 1s in terms of sample momentso Then Equa­

tions c.4.1 0 Co4.2, and c.4.3 were used to determine the expectations 

of the sample moments and thus the expectations of the tJMV .. RUE's. 



C.4 Some Relationships Helpful in the Development of UMV-RUE 1 so 

u 
.!r in terms ofµ~ In order to determine E[mr} 9 the expectations of 

the sample moments 0 it is helpful to first express the sample moments. 

l k 
rn1 = k E x. 0 

i=l J. 

u in terms of µ,r 9 where 

k 
l (. . )r rn = k E x. - m1 , 

r i=l i 
r = 2, 3, ..... , 

r = 1,2,ooo 

The sample moments in terms ofµ,;, r = 1,2, ...... , are given by 

[~ ~ [: -:1 [µ:!J + µl [ :J + µf [:] 
m3 1 -3 2 g 

0 0 µ,3 

= 0 1 -1 
v n 

+ µ,1 + µ2 0 + µ,3 m2~ µ,2µ,l m2 1 1 
m3 

l 
0 0 1 {µ,~)3 I >2 3(µ1 311 v 

l 

1 -4 0 6 -3 
a 

0 m4 114 

mj'11 0 1 0 =3 2 v v 
m3 µ,ll \ = +µ,1 

m2 0 0 1 -2 1 (µ,;)2 0 2 
2 0 0 0 1 -1 u ( g )2 V I ( 8)3 

m2ml µ,2 P·1 µ21,1,1- µ.1 -11nzn1 

{µ, u )4 
1 

(c.4.la.) 

(C.4.lb) 

0 

0 

1 

(c.4.lc) 

(C .. 4.ld) 
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m5 1 -1 0 10 0 -10 4 I 
µ.5 

m4m1 0 1 0 -4 0 6 -J ' I 

µ.~1 

m3m2 0 0 1 -1 -3 5 -2 µ'µ' 
= 3 2 

2 
0 0 0 1 0 -3 2 µ.j(µ.~)2 m:fl 

m~l 0 0 0 0 1 -2 1 ( I )2 t 
µ2 µ.l 

, 3 
m2ml 0 0 0 0 0 1 -1 µ.2(µ.i) 3 

(µ.').5 
1 

0 0 

m4 0 

0 0 
+ µ.1 

r r '( ')2 ( ')4 
+ µ.2 (C.4.,le) 

µ.3µ.1-3JJ.2 µ.1 +2 µ.1 +m3m 
1 0 

m2 
2 

0 

t ( I )2 ( I )4 2 2µ.2 µ.1. - 2 µ.1 +mzm1 
I I ( l)3 

µ.2µ.1- µ.1 

With!! given by 

1 -6 0 15 0 0 -20 0 0 15 -5 

0 1 0 -5 0 0 10 0 0 -10 4 

0 0 1 -1 0 -4 4 0 6 -9 3 

0 0 0 1 0 0 -4 0 0 6 -3 

1! I:. 0 0 0 0 1 -6 4 0 9 -12 4 

0 0 0 0 0 1 -1 0 -3 5 -2 

0 0 0 0 0 0 1 0 0 -3 2 

0 0 0 0 0 0 0 1 -3 3 -1 

0 0 0 0 0 0 0 0 1 -2 1 

0 0 0 0 0 0 0 0 0 1 -1 



m6 

m5m1 

m4m2 
2 

m4ml 
m2 

3 = l! 
M-J1zD-

M-J1f 
m3 
2 

2 2 
m2ml 

4 m2ml 

n 
µ6 
u f 

µ.5µ.1 
µ.uµ.u 
4 2 

µ.4 (µ.~)2 

(µ.;)2 
u u i 

µ.l2µ.1 
I ( I )3 µ.3 µ.1 

(µ;)3 

(µ;)2(µ.i)2 

I { i )4 µ.2 µ.1 

(µ.{)6 

-o 

0 

0 

0 

+ µ.1 

0 

m5 

0 

µ.4µ.i-4µ.3(µi) 2+6µ.;(µi) 3-3(µi) 5-+m4m1 

0 

m3m2 

2µ.3( µ.1) 2-6µ~ (µ.l) 3f4( µ.l) 5-1n13mi 

0 

(µ.2) 2µ.i- 2µ.1(µi) 3+(µi) 5-1"7n~ml 

3µ.2<µi) 3-3(µi) 5-tmzm1 

0 

0 

0 

0 

0 
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+ µ.3 
1 0 

(c.4.lf) 

µ. U µ. I ~l. f (µ. I )2+2(µ. r )4 3 1-~~2 1 1 0 

0 0 

0 0 

3µ.; (µ.i)2_ 3(µi)4 

2~1:. The expec~t-io~s o~ µ.~ in terms of the moments µ.r are given by 
-- µ.l O 

v µ.2 µ.2 
(µ.i)2 1 

E[ 
le µ.2 (c.4.2a) µ n } = 

3 µ.3 
µ.~µ:l i ll3 
(µ. i) 3 

1 -~ µ.3 
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I k3 0 

[:;] µ.4 
I t k2 0 µi'l 

E( (µ. I )2 } - 1 k2 k2(k-l) (c.4.2b) 
2 - i3 

µ. f (µ. I )2 
2 1 k k(k-1) 

(µ~)4 1 3(k-1) 

t k4 0 

~~J µ5 

' ' k3 0 IJ,4!J.1, 

µ~µ.I 
3 2 

k) kJ(k-1) 

E{ µ.;(µ.~)~ ) ::: .l.. 
k4 

k2 k2(k-l) (C.4o2c) 

(µ')2µ' 2 1 k2 2k2(k-1) 

µ;(µ.i)3 k 4k(k-l) 

(µ.i)5 1 lO(k-1) 

I k5 0 0 0 µ6 µ.6 
t I k4 0 0 0 µ5µ1 µ.~2 
V I 4 k4(k-l) 0 0 2 P,4µ·2 k !13 

µ'(µU)2 
4 1 

k3 k3(k-l) 0 0 µ3 
2 

(µ. t )2 
3 

k/.j, 0 k4(k-l) 0 

E[ µ'µ'µ.' ) :::~ 
k3 k3(k-1) k3(ki-1) 0 (9.4o2d) 3 2 1 

µ.'(µ.')) k2 Jk2(k-l) k2(k-l) 0 
3 1 
(µ.' )3 k3 Jk)(k-1) 0 k)(k-l)(k-2) 

2 •:· 
(µi)2(µi)2 k2 Jk2(k-l) 2k2(k-l) k2(k-l) (k-2) 

I I 4 
µ.2 (µ.l) k 7k(k-1) 4k(k-l) Jk(k-l)(k-2) 

(, ')6 . µ.l . 1 15(k-1) lO(k-1) 15(k-1) (k-2) 
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The computations involved in the tedious task of determining Equa­

tions Co4o2 were eased somewhat by the'use of several relations 

developed by Tchouproff (12)o Note that E(µi} = 0 and 

E(µ 1} = µ • r = 2,30000• r r 

li:fm }• E(m ), the expectations of the sample moments, are determined 
.:::;.i.::r_ r 

by using E(µ~} of Equations Co4o2 in the expectations of mr of 

Equations c.4.1. These results are 

E[m1} = µ,1 (C.,4.3a) 

~[~} 

3 ~ [:l :J~~ (c.4.Jb) 

m3 (k-l)(k-2) 0 0 µ3 

E( mt111} = ..1. (k-1) k(k-1) 0 µ2µ1 (c.4.Jc) 
k2 

m3 1 3k k2 µ3 
1 1 

(k-1) (k2-3k+3) 0 '.3(k-1) ( 2k-3) 0 

- 1 
(k-l)(k-2) k(k-l)(k-2) -3(k-i)(k-2) O µ3µ1 

-0 (k-1>2 Q (k-1) (k2-2k+3) 0 µ2 
2 

(k-1) 2k(k-l) (k-l)(k. .. 3) k2(k-l) µ.2µi 

(c.4. Jd) · 
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m6 µ.6 

,m.?11 µ. 5µ.1 

m4m2 µ.4µ.2 

m4mf 
2 

J.141,J,1 

E( m.2 
3 

J- l ~ - k) µ. 
µ.2 

3 
(c.4.3r) 

m3m2ml µ.3µ.2µ.1 

3 
m3ml 

3 
µ.3µ.l 

m3 
2 µ.1 

m?f 2 2 
U.2J.11 

mzmf 4 
u.21,.1,1 

where K5 and K~ 1 are given in Figure 15. 
mµ. m'"" 



(k-1) (k-2)(k2 -2k+2) 0 

(k-l)(k2-Jk+J) k(k-l)(k2-Jk+J) 

(k-li2(k-2) 0 
K5 = 

mu 
(k-l)(k-2) 2k(k-l)(k-2) 

(k-1) 2 k(k-1)2 

(k-1) Jk(k-1) 

(k-1) (k 4-5k3+ 10k2-10k+5) 0 

(k-1) ( k-2)(k2-2k+2) k(k-l)(k-2) (k2-2k+2) 

(k-ll(k2 -3k+3) 0 

(k-l)(k2-Jk+J) 2k{k-l)(k"-Jk+J) 

{k-1) 2{k-2l2 0 

K!. = I 
(k-1) 2(k-2) k(k-1)2(k-2) 

(k-l)(k-2) Jk(k-1) (k-2) 

(k-1)3 0 

(k-li2 2k{k-li2 

{k-1) 4k{k-l) 

lO(k-l)(k-2/ 

-2(k-l) ( 2k2-12k+l5) 0 Jk(k-1)(2k-J) 

(k-1) (k-2) (k2-5k-rl0) 

(k-1) (k-2) (k-10) k2 (k-l)(k-2) -6k(k-l)(k-2) 

2(k-l) (k2-4k+5) 0 k(k-l)(k2-2k+J) 

2(k-l) (2k-.5) 3k2(k-l) Jk(k-ll<k-3) k3(k-l) 

15(k-l) ( kJ-4k2+7k-5) -lO(k-1) ( 2k2-6k+5) .o 

-5(k-l) (k-2) (k2-4k+6) lO(k-l){k-2)2 10k{k-l)(k-2i2 

( k-1) ( k4-5k3+3ok"-6Jk+45) -2{k-l) ( 2k3-8k2+ lBk-15) 0 

(k-l){k-J)(k2-9k >15) k2(k-l)(k2-Jk+J) -2(k~l) (2k2-12k+l5) ..4k{k-l) (2k2-12k+l5) 

-J{k-1) {k-2)2( 2k-5) (k-l){k-2/(k2-2k+l0) 0 

(k-1) (k-2) (k2 -10k+l5) ( k-1) ( k-2 )( k2-5k+l0) k(k-l){k-2) (k2-5k+l0) 

J(k-l)(k-2){k-5) 3V<k-1Hk-2J (k-l)(k-2)(k-10) Jk( k-ll<k-2) ( k-10) 

J(k-1)2(k2-2k+5) -2(k-l)(Jk2-6k+5) 0 

(k-l)(k-J)(Jk-5) k2{k-li2 2(k-l)(k2-4k .. -5) 4k(k-l)(k2-4k+5) 

(k-1) (7k-15) 6k2{k-l) 2{k-l) {2k-5) 8k(k-1)(2k-5) 

Flgull:"e 15 0 K5 and K6 
mµ. mµ. 

0 15{k-l) (k-2)(Jk-5) 

0 -JO(k-l){k-2J2 

0 J(k-1) { k-2)(2k2-9k+l5) 

0 9(k-l) (k-2){2k-5) 

0 J{k-1) {k-2)( Jk"-12k+20) 

0 -J(k-l){k-2)(k2-5k+l0) 

k3(k-l)(k-2) - J{ k-1) ( k-2) ( Jk-10) 

0 {k-1) (k-2) (k3-Jk2+9k-15) 

0 {k-1) {k-2) {k2-6k+l5) 

4k3(k-l) J{k-l)(k-2) (k-5) 

0 

)k2{k-1)(2k-J) 

0 

0 

-9k2(k-l)(k-2) 

0 

k2{k-l){k"-2k+J) 

6k2{k-l){k-J) 

0 

0 

0 

0 

k4{k-l) 

'-0 
\J,, 



oµ.*µ* k-1 0 =3(k-l) 0 µ.4 
1 3 

0 0 0 0 3(k-1) µ,il µ*µ3* 
1 1 

a * * 0 k-1 k-1 0 µ.2 
µ.1(µ2µ.l) 2 

:::: 1 
0.2 k(k-1) k-1 0 -(k-3) 0 

2 

µ. * µ2µ'1 
2 

a * 2* 0 2(k-l) -2 0 (C.4o4c) 
µ2µ1 

2 0 0 2 4(k-l) a 2* 
µ.l 

CJ * * µ.5 
µ2µ.3 

O' * 3* 
µ2µ1 

µ4µ1 

a *( ) * 1 K5 µ.3µ2 
µ2 µ2µ'1 = cc.4.4d) 

k(k-1) crµ 

C1 * 2* 
2 

µJµ'l 
~13Ul 

a 2* 3* 
2 

\J,2µ'1 
µl p,l 

a 2* * 3 
µ,l (µ2µ,1) µ2µ1 
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a2 * 
µ3 

µ,6 

CJ* 3* 
µ.i'1 

µ,5µ'J.. 

C} * )* µ.4µ,2 
µ.3' µ2µ1 

l 6 (c.4.4e) = k(k-l)(k-2) KCJl.1 
a23* 

2 

µ.l 
f.14}11 

0 3* * 
µl (µ2µ1) 

2 
f.13 

02 * 
(µ2µ,l) 

µ,3µ2µ,1 

1J,31J,f 

µ) 
2 

2 2 
µ2µ1 

4 
µl1 

where K~ and x! 1• a.re given 1.n Figura l.6, 
µ "'"" 

UMV~RUE's of 'Moments ans...f.toduots of Moments. Th' UMVERUE's of~· 
' T 

where~= (µ1,1,1,2,µ,:,,~•µ.1~1,1, 21,1,1], and the UMV .. RUE'1 required to 

determine i"'o the tJMV,.,R'!JE ot t*, a.re given 1n te:rmm of the sample 

mom1nt1 by 

~J[~] (c.4,.5b) 



(k-1) 0 -2(2k-5) 0 0 0 

Q 0 0 3(k-l) -6 0 

0 (k-1) (k-3) 0 -(k-3) 0 
K5 = aµ 

0 2(k-l) -6 0 -6(k-1) 0 

0 0 0 0 6 6(k-l) , 

0 0 2 2(k-l) 2(k-2) 0 

(k-l)(k-2) 0 -3(k-2)(2k-5) 0 -(k-2) (k-10) 0 0 30k2-12k+20) 0 0 

0 0 0 3(k-l)(k-2) 0 -18(k-2) 0 12 .,.9(k-l)(k-2) 0 
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APPENDIX D 

BAYESIAN ESTIMATION 

D.l Introduction.· This appendix is concerned with the develop-. 

ment of a procedure whereby the prediction estimate,~ and the 

observation or data estimate, .Yr.~P are combined to produce the estimate, 
,.. 
~no This development is based on the use of Bayes 1 Rule in what is 

commonly called Bayes 1 learning. 

D.2 Bayes' Learning. Let.§. be a vector valued random variable 

(an unknown parameter set modeled as a vector valued random variabie) 

and! a vector valued random variable statistically related to·e. The 

a posteriori density function of! given! according to Bayes 1 Rule is 

given by 

where f.§. is the a priori density function of ..@_ 9 f!ii is the con­

ditional density function of! given f and fy is given by 

An iterative 9 or recursive 9 approach to the computation of an 

a posteriori density function can al.so use Bayes 1 Ruleo Let e be a -n 

vector valued random variable and Y0 Y19 ••• 9Y vector valued random 
- p- -n 

variables statistically related toe. The a posteriori density 
-n 

101 
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function of Qn given Io ,I1 , ••• ,In, where Io ,I19 ..... ,.In are conditional 

independent given e, is -n 

fy I e fe IXr.,Y1,···,Y 1 
f = -n -n -n -v - -n-
-ne j.X.,.,,!1,···•-ny fy IY Y . Y 

-v O' 1' 000 ' -n- - -n 

where r 0 IY y y is the a priori density function of~ given 
-n -0'-1' • • • '-n-1 

I 0,!1, •.. ,Xn_1 , fy le is the conditional datisity of In given~ and 
-n -n 

is referred to as the liklihood of,!, and fy IY y y is given 
n -n -=-0'-1' 000 '-n-l 

by 

If in Equation D.2.1 fejY is of the same family of density 
--n 

functions as f 0 and in Equation D.2.2 fe. IY y ••. y is of the 
- -n· .=.o'-1' '-n 

family of density functions as f 0 IY y y , then f 0 and 
-n .=.o'-1' • • • '-n-1 - · 

f 
Qnl!o,I1···· 0In-l 

functions (11), 

are said to be reproducing a priori density 

When Bayes 0 Rule is used as in Equations D.2.1 and D .. 2.2 to 

same 

estimate or learn the parameter set! or l!n' respectively, and the 

a priori density functions are reprodu~ing densities, the estimation 

or learning process is called Bayesu learning. 

Ideally the use of Bayes' learning to estimate .l:n would be to 

determine the density of .l:n given ~ ,!a 0,!1 , ••• ,.!n by 

(D,2.J) 

where .!n = [Xi,nl• i = 1 1 ••• ,k, n = 0,1, ••• ~ is a vector valued random 

variable for each n representing the k observations of the random 
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variable Xn and~ is the initial esti.IJiate of B:.oo The difficulty 

in using Equation D.2o3 is that fx ·,LL is unknowno Since the k obser-
-n .c;.n k 

vations of X are considered to be independent, fX I == n fX I • 
n -n ~ i==l i,n ~n 

Then, since fx. I is the unknown density function which is to be 
1 0 n 1!!.n 

approximated with estimates of its moments (See Section 2o2 and 3.1). 

fx I is also unknown. 
-n~ 

Instead, the approach here is to ass'Qllle that~ is a normally. 

(Gaussian) distributed random vector and to use Bayes 1 learning to 

estimate the parameters of its Gaussian distributiono From these 

estimates an estimate of l!.n is formed. 

By making the assumption that~ is a normally distributed random 

vector some obvious contradictions are overlooked. It is highly 

unlikely that in any particular case the elements of~ will ever be 

jointly normally distributed. Certainly this is not generally true·. 

For instance, consider the case where~ is normally distributedo ~: 

is formed from the k samples of X. The estimate µ1* 0 the sample mean, 
n n 

is normally disti-:1.buted but the estimate µ;no the unbiased sample 

variance, is chi-s(!Uare distributed; so that~ can not be a normally 

distributed random vector. However the assumption here is that the 

normal distribution will yield a good approximation to the density 

* of E:.n" 

D.J Gaussian-Wishart: A Reproducing Density Functiono If the 

likelihood 0 f.Ili' of Equation Do2ol is the Gaussian density function 

with i the unknown parameter set composed of the mean vector,~. and 

the inverted covariance matrix, f., Le .. , ! '\. N(J:10f-1) 9 then Keehn (8) 

has shown that the reproducing a priori density function f 09 for 
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Q = (l;i,f) is the composite Gaussian-Wishart density function, 

If I is a r-dimensional vector which is normally distributed then 

fIIM,!:(.zjli,!:) = N(~,!:-1) 
- r 1 

= (2rr) 2 ltl' exp[- i (z - !',!) T !:(z .. H)] 

(D.Jol) 

where Mis the r-dimensional mean vector and Pis the (r x r) inverted - . -
covariance matrixo The composite Gaussian-Wishart density function 

on (M,!:) is 

fM p(!!!u.E.) = G.W.(w1 ,vn ,!!/ ,.9, 8 ) _,_ 
1 

lw'.E.12 exp[- i (,!!!-,B.n)T w'.E.C!!!-.B.')] 

vn ,~l v 1 -r-2 I~ .9. ni Z-IE I 2 exp[ - ~ tr vu£ n :e.J (D.J.2) 

where R8 is a r-dimensional vector, £1 is a (r x r) positive definite 

matrix, wu and vn are real numbers associated with 111 and £8 
9 respec­

tively, such that wn > 0 and v 8 > r + 2, Ck vis given by 
9V 

and 11 tr •" represents the trace of u O "o 

The Gaussian-Wishart density implies that the random covariance 

matrix E,-1 is distributed according to the inverted Wishart law with 

n n n n parameters v and .9. where~ is a covariance matrix and v is a con-

fidence factor which measures how concentrated the inverted Wishart 

law is about .Q.o The concentration is greater when vu is larger. The 
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random mean vector His then distributed according to the Gaussian law 

with mean E,v and covariance matrix 1., J:.~l where w' is a confidence 
w 

factor which measures how concentrated the Gaussian law is about E_' o 

The concentration is greater whe~ w0 is la.rgero w' and v' can be 

thought of as constants reflecting the confidence that g,' and .Q.1 are 

the true mean vector and covariance matrix, respectively, of the 

Gaussian distributed random vector I (8)0 

Since the Gaussian-Wishart density function is a reproducing 

a priori density with respect to the Gaussian density function with 

unknwon mean vector and covariance matrix 9 the a posteriori density 

function is also a Gaussian-Wishart density functiono If the a priori 

density function is given by Equation DoJo2 then the a posteriori 

density function is of the same form as Equation Do3.2 with different 

para.meterso Thus fH,E.II is given by 

where, from Keehn (8) 9 

ff 
w = w + 1 v = v' + 1, 

,· 

and y_ is the observation of the random vector I· 

In the iterative form of BayesF Rule 9 Equation Do2o2 9 if the 

likelihood, fy le 9 is Gaussian, In, N(Hn,E.;1) 9 then the reproducing 
-n-n 

·a priori density of 0 given "X.n 9Y1, ••• ,Y 1 is 
--n -v - -n-



and the a posteriori density of Qn given Xo,11,o.•v1n-l is 

where 

w = w1 + 1 n n v = v 8 + 1 n n 

w1R1 + y 
R = rr-n -n 
-n w1 + 1 

n 

Q l [. v 1 Qu + 1R1R1 T + y yT - R ·RT] -n = vn + 1 :n-:'n wn-n-n ~n wn-n-n 
n 

and y is the observation of Y. 
-n -n 
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(D.3.5) 

(D.3.6) 

D.4 Learning the Augmented Moment Vector 2 µ • As indicated in 
rr-

Section D.2 the approach here is to assume that·~ is a normally dis-

tributed random vector and to use Bayes 8 learning to estimate the 

parameters of the normal distribution and then form an estimate of .l:!:.n• 

Assuming that!:!::.:~ N(Mnvf~1 ) whereg recalling that~~ is a 

6-d:imensiona.l vector 9 M is the 6,,.,dimensiona.l mean vector and p-l is -n -n 

the (6 x 6) inverted covariance matrix of .1±,; 0 Bayes' Rule for the 

density function of (Mnofn) is 

where [ 
n 

= ( 8 · * * *) 'th 8 th · it' 1 tim t f d l:!:,o o~ 01!:.1 o O O " p~ W1 . l:!!.o . e in ,1a es a e O .b!:.o an 
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~ the observation of 1!:.io i = 0 0 l 0 0 •• 0 n. Then the reproducing a priori 

density of (M 0 P-1) is 
-n -n 

and the a posteriori density of (M 9 p-1) is 
-n -n 

where 0 as in Equations D.J.4 0 

=w u +l = vv w v n n n n 
u Ru + 1:.* 

R 
wn -n n = -n w' +l 

n 

(D.4.2) 

(D.4. 3) 

+l 

Recall that the fonn of the Gaussian-Wishart (G.W.,) density function 

is given in Equation D.Jo2. 

From the discussion of Section D.3 Rn and .9.n are estimates of 

the mean vector and covariance matrix of!!~ given Eh with wn and vn 

:reflecting the confidence in E.n and .Sno respectively. However the 

objective is to determine an estimate of .l!n not estimates of the mean 

vector and covariance matrix of 1.J. * The desired estimate is taken to .c:.n • 

be l such that~ = g(~b 0~ 01:.i 9 ••• 9~) and the mean squared error 
A 

between ~ and l:.!:.n is minimized. The estimate which minimizes the . 

mean squared error is the conditional expectation. 
A 

Therefore 1-!n = E[.!!n I E,n}. 

In Chapter III * .U.n 

i.e. 0 E(£~j~ } = U a na -n 

is developed as an unbiased estimate of .l:!::.no 

Then 



where ~*(n) is the observation of~? ioe•P the random variable~* n n 

is observed to have the val~e ~*(n). Then using the properties of 

conditional expectation 

and since~ given~a is conditionally independent of .the initial 

estimate~ and the observations .b!:.*(0) 9 ••• ,J!*(n) 

Therefore 

= ~ .!! f ~~ I Gn (J!) dl:!:, 
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I\ 
Equation D.4.5 indicates that ~n is the mean vector of the con-

ditional density function 0 fl!:.~ I 4i· The conditional density function, 

f.b!:.~I tn' is called the post-sampling density of!:!:.~ and is determined 

from 



where fM ,P I~ is the a posteriori density of (!'.!n,.f.n) given by 
-n-n n 
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Equation Do4.J and f *I. ~. is the conditional density of~ given 
~ !b,.f.nvvn 

its mean vector 9 M • and inverted covariance matrixt P andt.,n• Since -n -n 

u* is assumed to be normally distributed given M and P -n . -n -n 

to that Equation Do4o6 becomes 

f * I ~ == J J f *IM f I~ dm cl.£ !!:.n t...;n !!! _e .l.!:.n -n ,.f.n !in ,.f.n vn -
(D.4.7) 

The integration in Equation D.4.7 can be performed using the pro-

parties of the Gaussian-Wishart density as presented by Cram~r (2). 

where r == 6. Equation D.4.8 corresponds to the post likeliho.od 

developed by Keehn ( 8) • 

The meant which is somewhat obvious from inspection of Equation 

D.4.8 but which can be verified by performing the onerous integrations, 

of the post-sampling density» f~ I E.n' is .B.n• 

estimate of l!:.n given E.,n is 

Therefore the best 
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From Equations Do4o4 

To complete the development of the Ba.yesian estimate the relation-
v . 

ship between~ and the prediction estimate!#.~ must be esta.?lished and 

the value of w~ must be determinedo It will be shown here that ~ = ~ 
and wu = w o 

n n=l 

The estimate which minimizes the mean squared error is the con-

ditional espectation of ~ given c.,n-P E(.b!:.n I €,n_1} o 

Using the augmented moment model, Equation 2.4.5, 

Therefore since E(J::.~ I f.,n-l} = E[ll:.n I tln-l} (as in 1*e deveiopment of 

E(~ I Gn} = E(J::.n I tn} ) 

E[~ I_ ln_1} = ! J! f * I [, (1::.) tj!:, = ~ 
Y:. ~ n-1 

As in the development of f * I t, , f * I > 0 the pre-sampltng density 
Y:.n n .!!n '-'n-1 

* of !!:.no is determined from 

f * I c ~ J J f *1 M p fM p I(' elm d£ 
.!!n vn-1 m p .!!n -n°-n -n°-n vn-1 - . --
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where fM p I c is the a. priori density of (Mn ,E.n) given by Equa-
-n0-n C....n-1 

. tion D.4o2 and fu. *IM p = N(Hn,.!:n). Upon perfoming the integration 
.i;;.n -no-n 

fµ.*.IE, is of the same form as Equation D.4.8 with wn,vn,E.n•.9.n re-
-n n-1 

Placed ,-..,. wu , vu ,Ru , Ou • Thus since the mean of f * I ~ is R the mean 
"".:J n n -n -=n ~ vn -n 

of the pre-sampling density, f *IC , is E_~. Therefore from Equa­
l:!:.n C....n-1 

tion D.4.ll 0 

R' = µ.' 
-n -n 

(D.4.13) 

The constant w~ comes from the a priori density of (Hn·.f~1), 

Equation D.4.2, GoWo(w~,v~,E,~,9.~)o 

Since 

then 

Similarly .Q.~ is given by 

The a priori density of (~ 0,!:~1) i.s the a posteriori density of . 

(!n-i o.!:~:1 ) with the parameters E.n=l and .9.n_1 replaced by ~ and ~ 

respectively (See Section D.5). 

where 

Ru = A R + u. Ou - A o AT 
-n -n -n-1 .i;.;.5 ' -=n - -:n -=n-1 -n ° n 



A 
Thus using Equations Do4o13, .Do4o16, and Do4o10 ~ becomes 

A w:V 1 u :-ll!!:.' +-IJ,* 
-n w n wn-n n . 

where wn = w and w = w1 
n n-1 · n n-1 

Equation D.4.17 is then the Bayesian estimate of !!:.n• 
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It should be noted that Equation D.4.l? does not use the error 

covariance matrices,~· 
n 

"* f or wn' of !;i and~' respectively, in deter-
A 

mining~· Therefore there is no need to determine a relationship 
A 

between w~ and .9.~ or i'n and ~ o Thus the selections of .9.~ and v~ used 

in the a priori Gaussian-Wishart densities of Equations D.4.2 and 

D.4.16 are arbitrary and useful only to the theoretical development 
A 

of~· 

Equation D.4.17 can be developed in a simpler manner by assuming 

that the a priori density on Hn, fM I [, 9 is N(~, -,J;.. I) and that 
-n n-1 wn 

the likelihood of ~ 9 f * . 9 is N(Hn 9 I). Under these assumptions 
~nl~ 

Bayes 8 Rule, Equation D.4.1 becomes 

r~~I !!n f 11n I c.,n-1 · = ____ ........ _....._ _____ __ 

r~ I e.n-1 

where the a priori density is the reproducing normal density function. 

The a posteriori density on M O fM I " 9 then becomes N(fln• .1.. I). 
-n -n vn Wn 

~-l, wn-1' !!:~ , w~, En, and wn are still defined and related by 

Equations Do4.4 and D.4.16. 

The assumption is made here that the projection of w 1 I is 
n-1 

J... I, so that w8 = w This is not the actual case unless A is a:ri w' n n~l 0 · ·. -n 
n 

orghogonal matrix. The projection of -4, I is given by 
wn 
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A J... I AT = ..1. A AT 
-n w' -n . 1 -n-n 

n wn 

which is ni1't equal to -.~· I unless A-1 = AT i e A is an orthogonal . -n -n. 0 • r -n 
wn 

matrix. Section D.5 shows that such an assumption is not necessary 

in the Gaussian-Wishart fonnulation. 

This sj . .mpler procedure . is adapted from what is sometimes ref erred 

to as learning the mean vector of nonnal patterns (9). 

D.5 The Density Function of the Projection of (M -l~-lL:. In 

this section it is shown that if (M 1,P-11) 0 is projected to (M. ,P-1) -n- -n- -n -n 

according to 

and 

M=AM +11. -n -n -n-1 .i;;.5 
n 

(D .. 5.1) 

and if the density function of (M P ) is the Gaussian-Wishart 
-n-1 9-n-l 

density function then the density function of (M 0P) is also the -n -n 

Gaussian-Wishart density function. 

In order to ease the presentation the notation is simplified. 

Let A = A0 M l = M0 11.8 = B0 M = M10 P. l = Pr and P. = P1• With -n - -n= - .i;;.. - -n - -n- - -n -n 
this simplified nota.tion it is shown that if 

(D.5o4) 

and 
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/ 

p-1 = A p-1 AT 
-1 .... ... -

then 

(D.5.6) 

where 

(D.5.7) 

Note that if f 11 = ! f-1 ! T then 

(D .. 5.8) 

As indicated in Section D.J 

where 

f!ilf (!!!IE) = N(!·, ; I(l) 

- _r l _ -2 ! -1 -·T - < Zrr) I w ,e I e,q,[.. 2 <m ... !\) ·- w ,a <m ... ~) J 
(D.,5.10) 

and 

where the oonstant C~ vis defined in Section D,J • .. . . 
Sinee Equations DoSo4 and D.s.e are linear transformatiQnS Qf 

Mand P the density tun.etion fM p (m~,.E,1) can be ~ressed as 
- - """1! ""'l ....... ·----
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First consider fp(£ = !T E.i ,!). - v-1 v-r-2 

fE.(.E = !l .E1 !) = cr,~f .QIT I! T .E1 ! I 2 exp[- } tr ~ ! T .E1 !] 

(D.5.13) 

From the properties of the trace of a matrix 

tr v .S .! T .E.i .! = tr v .! .S .! T .E.i (D.5.14) 

From the properties of determinants 

I ~? .E1 ! I = I ! T II .E.1 II ! I = I ~? 11 .! I I .E1 I = I .! T ! II .E1 I 
(D • .5.15) 

and 
v-r-2 v-r-2 v-r-2 · v-r-2 

l!T .E.1 !I 2 = [l!T !II.E.1IJ 2 = l!T !I 2 I.E.11 2 

v-1 -r-1 v-r-2 

= 1,? !l2 l!T !,~ I.E1I 2 

then 

Using Equations Do.5..,14 and D.,5!!17 in Equation D • .5.13 
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fl: (I?. = 1._T l?.1 !) 

-r-1 v-1 v-r-2 
= l!T !IZ- Crpvlf ! .Q !TITl!?.11 2 exp[-} tr v A .Q !T 2.iJ 

(D.5.18) 

With g1 as given in Equation D.5.7 fE_(I?. = !T .E.i !) becomes 

- -r-1 

exp[-} tr v ~ £1] 

(D.5.19) 

whicht except for the constant 'AT A,z-, is of the same form as 

Equation D.5.llo 

Now consider f!!j.f (!!! = !-l [!!!1 - .§] j .E. = ! T .l?.l !) • 

flil!:(!!! = £1C!!!1-ill I I?. = !TI?.1!) 
-r l 

= (2rr)Tlw!TI?.1!l2 exp{- l<!-lU!1-ru-Ji)Tw!.T.E.1!(~l[!1-ill-!!)} \ 

(D.5.20) 

Again from the properties of determinants 

1 1 1 

lw AT E1 Al'Z = jAT Al2 lw E112 (Do5o21) 

The exponential of Equation D.5.20 contains 

(A-lU!!i - ill - £i) T w ! T .E.1 !(~tlCmi - .§] - £i) 

= (LJ!!i - ~1'](!,-1) T - g'l') ! TW;l?,l !(!-lLl!!l - ill - £i) 

(D.5.22) 
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Using Equations Do5o21 and Do5o22 in Equation Do5o20 

With 1!1 as given in Equations Do5.7, Equation Do5o23 becomes 

fl I.!:<!!! :: !-1[!!!1 - ]] l E. ::: ! T E.1 !) 
1 -r l · 

= I.! T ! 12 ( 211) 2 lw E.112 exp(- !<!!! - 1!1) T w E.1 <!!!1 - !i1) J 
(D.5.24) 

1 
which, except for the constant jAT Al~• is of the same form as 

Eq~ation p.5.100 

Using Equations D.5.19 and D.5.24 in Equation D.5.12 the joint 

density function of ! 1 and j:1 becomes 

Therefore 

where 
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and 

exp!;! tr v 1 .9.1 .E.1 J 
(D • .5.28) 

with w1,v1,E,1, and .9.1 given in Equations D • .5.7., 

Equation D • .5 .. 26 with Equations D • .5.?7 and D .. 5.28 is the Gaussian-

Wishart density function, so that 

(~1,.!:.11) 'G.W.(w1tV1p!1,.Q1) 

Returning to the original notation it i~ concluded that if 

and 

then 

where 

(M. l'p 1) 'G.W.(w l'v l'R. l'Q 1) -n- -n- -n- -n- -n- -n-

v 

M = A M + II. -n -n -n-1 ;;;.5 
n 

w = w n n-1 
vi = v 

n n-1 

R8 =AR +11. -n -n -n-1 .... 5 
n 

D.6 Bayesian Recursive Moment Estimation Algorithm and Summary. 

In order to summarize the results developed in this Appendix a Bayesian 

recursive moment estimation algorithm is presented and some comments 
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are offered on the inadequacies of Bayesian moment estimation. 

The Bayesian Recursive Moment Estimation Algorithm: 

(1) 
f I\ 

Determine the prediction estimate, l:!!.n1 from l:!:.n-lt 

and w:9 the confidence factor in~' from.wn-l' the 
• A 

confidence factor in l:!!.n-lt 

(2) * From the observations of X, µ, the data estimate, or n -n 

observation of ~' is computed by Equations J .. 2.4 and 3,.2.5. 

( 3) 
I\ 

Using Equation D.4.17 the Bayesian estimate, 14i, is deter-

mined from l:!!.~ 9 l:!!,~ ~ and w~ 0 

a 
I\ wn 1 * 
~=w~+;-~ 

r 
where w = w + 1 n n 

n n 
(D.6.3) 

I\ a 
Then the, algorithm begins again with .l::.n projected to !:.n+ p etc. 

Actually Equation D.6.3 is an average of µ,* with the projections -n 

of all the previous observations and the initial estimate of l:!!.o' 

l:!!.~ol:!!.~ol;!,.io "•. o~• For example let w~ = 1, 

then 

From Equation D.6.1 
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then using Equation D.6.3 

~ =&µ.'+1u.*=1A '+lA u.*+ 1 ,t*+ 2 µ. 
J;;.1 3 -1 3 .._1 3 -1 .b!:.o 3 -1 J;;.o 3 .i:;.1 3 -s1 

Similarly 

r A 1 t 1 * 1 *2 
.!:!!.2 = !2 1!:.1 + .l:!!.s2 = J !1 !2 1!:.o + 3 !1 !2 .!!o + j !2 .!!1 +J !21!:.s1 iJ:!:.s2 

A _3 t 1 *-1 r 1 * 1 * 1 * 
.!::.2 - '4 1!:.2 .+ 4 .!!2 - 4 !1 !2 .b!:.o + 4 !1 !2 1!:.o + 4 !2 l:!1 + 4 !::.2 

0 

0 

0 

~ _ n-1 I+ 1 * -n-n~ n.b!:.n 

1 r 1 * 1 * = - A1•••A u.- +~A ••• ! u.O + - Az•••A µ.·1 + n - -n -v · u -1 :..-n i:;;. n - -n -
0 0 0 + 1 * 

'ii l.!!.n 

+lA •••A u.,... +.lA •••A 11.6 + • 0 • +!l::111. (D.6.4) 
n -2 -n ""',:)l n -3 -n .i:;. 2 n -=-sn 

A 
There are some obvious deficiencies in determining .l!n in the 

manner of Equations D.6.3 or D.6 .. 4. The weight attached to~ is 

always u1 • Although in this study the number of observations of 
Wn + 1 

Xn used to determine~ is implicitly considered to be a constant k 

for each n, k could vary with n. In either case the weight attached 

to~ would be a better measure of how good 1!:.: is as an estimate of 

µ.n if it was a function of k. If k is large then il should be - . +l wn 
large. If k is small then v1 1 should be small. 

w: +· 
n "'* As indicated at the end of Section D.4 neither w.' or '1( as 

n n ,.. 
developed in Chapter III enters into the actual determination ofµ.. 

-n 
e "* * Since "1fi and Wn are measures of the goodness of~ and .b!:.n' respec~ 
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tively, it would be desirable for the weights attached to!!.~ and~ to 
a A* A* A* 

be functions of~ and'¥.. ~ is a function of k so that use of \V 
n n n n 

in the weight of~ would make use of k also 9 which is desired as 

indicated above. 

The recursive moment estimation scheme developed in Chapter III 

possesses these desirable properties. 
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