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CHAPTER I 

INTRODUCTION 

In beginning college mathematics one is asked to solve many types 

of problems and one type is the following. Is there a closed differ= 

ential 2~form a in Euclidean two spaces, E2 , such that 

f QI = c 
·s 

where s is a surface and c is any constant? Clearly, any 2 .. form is 

closed in E2 . Then a= X dx dy, A is the area of s, satisfied the a in 

the problem. 

Suppose ot is a i =fotm on E2 with d QI = 0. Then is QI exact, that 

is~ is there a S such that ot = d S? The answer to this problem is a 

result calle.d Poincare' s Lemma: Let ot be a differential form defined 

in an open ball of radius r, Bn, contained in En. Let one assume 
r 

further that dw = 0. Then, there exists a function f, defined in Bn 
r 

such that df a. A proof of this is given in Chapter JJ/. 

1 



The problems we have looked at have been answered in Euclidean 

space and in the case of a space that is deformable to a point. Let 

one now consider a space that is not deformable to a point. Let the 

t'(lanifold M consist of E3 with the origin removed, 

Suppose Wis a one-form on M such that dW = O. Then is W exact? In 

this case one cannot use Poincare Lemma as clearly the manifold cannot 

be shrunk to a point. Nonetheless, W = df, where 

x 
f(x) - I w - (1,0,0) . 

The above integral is taken along any path C that avoids 0. To see 

2 

this is independent of the path one uses Stokes Theorem, which is stated 

and proved in Chapter III. If C' is any other path, avoiding O, in M 

from (1,0,0) to x, then the chain C - C' is the boundary of a piece of 

surface tin Mand 

since dW = O. 

f dW = 0 
l'; 

But now one asks the global question: Is there always a fl. on all 

of M such that dW = A? The answer in general is no. 

The thing that the mathematician would now bring to mind would be 

when and under whnt conditions will the answer be yes. A mathematician, 

G. de Rham. answered these questions [6]. This paper develops the back-

ground necessary to prove the existence theorems of de Rham and gives 

examples of the.se theorems. 

The idea of the Proof is due to A. Weil [10]. The method is the 
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theory of Sheaves due to Leroy. The cohomology developed is a general~ 
,,,...., 

ization of the classical Cech definition of cohomology. 



CHAPTER II 

HISTORY AND DEFINITIONS 

The main purpose of this chapter is to establish the mathematical 

language and definitions necessary throughout the rest of the paper. 

Another purpose is to give some history and background on the develop

ment of geometry in general and the existence theorems of de Rham in 

particular. 

Until the end of the eighteenth century, Euclidean geometry stood 

forth as the most solidly established body of truths known to man and 

as the necessary and indubitable geometry of space, Immanuel Kant af

firmed that the laws of Euclidean geometry were necessary, he maintained 

that the space of Euclid is a fundamental intuition. 

However, geometry underwent a profound revolution in the nineteenth 

century. The creation of non-euclidean geometry i.n the early part of 

the nineteenth century cast doubt on the Euclidean character of physical 

space and showed the mind is not restricted to think in Euclidean terms. 

Projective geometry was built up to a full-fledged independent subject. 

It was shown that the Euclidean geometry and several basic non

Euclidean geometries, namely, the hyperbolic goemetry of Gauss, Bolyai, 

and Lobatchevsky, the spherical or double elliptic geometry of Riemann, 

and the elliptic of Felix Klein, can be derived as a special case of 

projective geometry; however, some formulations of projective geometry 

exclude spherical geometry. 

4 
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In 1897 Bertran Russell wrote an essay on the foundations of geom

etry. Since Russell lived in the shadow of Authur Cayley and Klein, we 

can understand why Russell believed projective geometry was all of geom

etry. Just as Russell's forerunners may have committed error because 

they did not know projective geometry, Russell could not have known 

twentiety-century developments. One of these is a new branch of geom

etry, topology, which generalizes on projective geometry as projective 

geometry in turn generalizes on Euclidean and the basic non-Euclidean. 

Since the introduction of differentials by Newton and Leibniz in 

the Seventeenth century, there has been a large amount of written liter

ature on differential geometry. In 1847 H. Grassman derived an algebra 

A for analyzing subspaces of vector spaces. The covariant tensor 

fields form a submolule of A (if non-restrictive), which inherits a 

multiplication from A, the exterior multiplication. Through E. Cartan 

the Grassman algebra has become an indispensable tool for dealing with 

submanifolds. 

Much modern differential goemetry to a large degree has become 

differential topology, and the methods employed are a far cry from the 

tensor analysis of the differential geometry of the 1930's. This de

velopment, however, has not been abrupt as might be imagined. It has 

its roots in the movement toward differential geometry in the large to 

which mathematicians such as Hoff and Rinow, Cohn-Vossen, de Rham, Hodge, 

and Myers gave importance. The objectives of their work were to derive 

relationships between the topology of a manifold and its local differ

ential goemetry. Other sources of inspiration were Cartan and M. Morse 

and his calculus of variations. One of the major new ideas was that of 

fibre bundle, which gave a global structure to a differentiable manifold 
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more general than that included in older theories. Methods and results 

of differential geometry were applied with 04tstanding success to the 

theories of complex manifolds and algebraic varieties, and these'in 

turn, have stimulated differential geometry. The discovery by Milnor 

of invariants of the differential structure of a manifold that are not 

topological invariants establish differential topology as a discipline 

of major importance, 

G. de Rham has done much work in modern differential goemetry, we 

are able to determine the cohomology of a manifold by use of his 

theorems. De Rham's theorems state there are precisely two cohomology 

theories. Moreover, if our differentiable manifold is compact there is 

only one. 

Now let us look at some definitions and properties necessary for 

the rest of the paper. Ann-dimensional manifold which is a space not 

necessarily Euclidean space nor is it a domain in an Euclidean space, 

but which, from the viewpoint of a short-sighted observer living in the 

space, looks just like a domain of Euclidean space. As an example, 

2 
consider the two spheres, S This cannot be considered a part of the 

. 2 2 
Euclidean plane E , However, to an observer on S, he can describe his 

immediate vicinity by coordinates and so he fails to distinguish between 

this and a small domain on E2 • 

An n=dimensional manifold consists of a space M together with a 

collection of local coordinate neighborhoods u1, u2 , . , , such that 

each point of M lies in at least one of these U. On each U is given a 

coordinate system. 

1 n 
x • . . . ' x 

so that the values of the coordinates 



1 n 
(x (P), ... , x (P)), 

where P ranges over U, make up an open domain in Euclidean n-space En. 

Suppose that U with coordinate system 

1 
x ' . . . ' 

n 
x 

and.V with coordinate system 

overlap. 

1 n 
y ' • • • ' y 

1 We may express the V coordinates y, n 
, y of a point P 

in terms of the U coordinates 1 
x J • • D J xn of this point 

i 
y i ( 1 n) . 1 = y x , • • • , ~x , i = , ' n. 

As a part of the definition, we assume that the functions are differ-

entiable as often as we please. 

A manifold M together with an equivalence class of differentiable 

structures on Mis called a differentiable manifold. 

An associate algebra /\(v) over R containing the vector space V 

over R is called a Grassman, or exterior, algebra if 

(i) I\ (V) contains the unit element 1 of R, 

(ii) /\ (V) is generated by 1 and the elements of V, 

(iii) If x e: V, x Ax= o. 

(iv) The dimension of /\cv) is 
n 

All the elements, e. e: v' ]. 
r 

e. /\. 
].1 

(\e. ' 
]. 

p 

for a fixed p span a linear subspace of (\(V), which we denote by 

/\P(v) and whose elements are called £~vectors. 

7 

Let v* be the dual space of V and consider the algebra /\(v*) over 

R. The linear space (\P(v*) is called the space .2.£ exterior p-forms 



over V; its elements are called p-forms. We note at this point that 

/\0cv*) =Rand· /\1 (v*) = v* and so on. 

Let M be a differentiable manifold of dime~sion n, Associated 

with each ppint PeM, there exists the tangent space Tp and its dual 

8 

T ~~ f • • p T b b p o covariant vectors at a point . ""let U ea coordinate neigh or-

1 n hood containing P with local coordinates u, . , u and natural 

1 
dual du , . ' d n f T *. u or the space 

p 

the following representation in U: 

i1 . 
O!(P) = a (. . )du (P) A. • • f\duiP(P), il . . . ip ,, 

where the a ( . 
i 1 

. ) are of class r. 
. . ip 

Then O! is said to be a differential~ of degree! .fil!Q. class.!. 

or simply a p-form. 

Again, let M be a differentiable manifold of class k ;;,: 2. Then, 

there exists a map 

d: 

sending exterior forms of class r into exterior forms of class 1.1-1-l with 

the properties 

(i) For p = 0 df is a covector 

(ii) d is a linear map such that d( f\P(T~())C( (\p+l(T*)) 

(iii) For O!e /\P(T*), Se /\q(T*), then 

a (O! /\ s) = aO! As + c-1 l O! f\as, 

(iv) d(df) = O. 

It can be shown that d is unique as an operator, also 

dO! = 



The elements of /\P (T'"'), the kernel of d, are called closed .E,
c 

9 

AP ,'<' (\P ,'<' (\p-1 ·'<' forms and the images,,c(T) = d(T) of (T') under dare called the 

exact p-forms. By considering the quotient space of the closed forms 

of degree p by the subspace of exact p-forms will be called the p-

dimensional cohomology rn of M obtained using differential forms 

and denoted by: 

DP (M) == 
(\~ (Ti() 

/\~ (T"<) 

A differentiable manifold M of dimension n is said to be orien-

tiable if there exists over Ma continuous differential form of degree 

n that is nowhere zero. 

The carrier, carr a, of a differential form a is the closure of V 

written, V, where Vis the set of points where a is not equal zero. 

Now one will look at two examples of exterior products. First, 

consider the linear space based on the differentials dx, dy, . and, 

as is customary, omit the exterior multiplicati 1n sign between dx 1 s, 

that is dx /\ dy is denoted by dx dy. 

Let 

a= Adx +Edy+ Cdz 

and 

S = E dx + F dy + G dz 

then 

cxf\S = (BG - CF) dy dz+ (CE - AG) dz dx + (AF - BF) dx dy, 

illustrating the vector - or cross-product of two ordinary vectors, 

Next, let us consider a as above and 

~ = P dy dz+ Q dz dx + R dx dy 
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then 

~A~= (AP+ BQ + CR) dx dy dz, 

illustrating the dot - or inner-product. Mostow, Sampson, and Meyer 

in their book have a complete development of exterior algebra and ex-

terior products. 

By a locally finite open covering U = [u.1 of a manifold M we 
l.. 

shall mean, for each PeM, Pis contained in only a finite number of the 

u .. 
l. 

a map 

A covering V = [V.} of Mis called a refinement of U if there is 
l. 

¢: v~u 

defined by associating with each V.eV a set U.eU such that V. U,, A 
l. l. l. l. 

refinement V of U is called a strong refinement if each Vi is compact 

and contained in some U,, In this case we write V << U. 
l. 

A covering U = [Ui} of Mis said to be simple if (a) it is strong 

locally finite and (b) every non-empty intersection u0('), . ,()up of 

open sets of the covering is homeomorphic with a star shaped region in 

an n-dimensional affine space with a distinguished point. Then-

n 
dimensional affine space with a distinguished point is denoted by R. 

Now, we shall discuss some of the properties that we shall need 

from singular homology theory. By a P-simplex [¢ 
p 

S ], p = 0, 1, 2, 

. , , on a differential manifold Mis understood an Euclidean p-

simplex sP together with a differentiable map¢ of Sp into M. Consider· 

the ordered sequence of points (PO.' P1, . , Pp), linearly independ-

ent, in [ (x1 , x2 , ... , xn, ... ) \xi 'f O for only a finite number 

of i} denoted by 6(P, •. , , P) the convex hull containing them. 
O p 

By a singular p-simplex on M we mean a map¢ of class 1 of 
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6(P0 , ••• , Pp) into M. A singular p-chain is a map of the set of 

all singular,p-simplexes into R usually written as a formal sum t gitf, · 

g1 an integer, 'tfith singular simplexes ti indexed in some fixed manner. 

The support of tp is the set of points ¢(~(P0, ... , PP)). A 

chain is call~d locally finite if each compact set meets only a finite 

number of supports with g.~O. We consider only locally finite chains. 
]. 

A chain is finite if there are only a finite number of non-vanishing 

g .. The support of a chain t g. t~ is the union of the support of all 
]. ]. ]. 

the t~ where g.fO. 
]. . l. 

Assume we have the definition of the operator 0, cycles, and 

boundaries from chapter three. Let S denote the vector space of. all 
p 

finite p-chains, Sc the subspace of p-cycles and Sb the space of bound-
p p .. 

aries of finite (p+l)-chains. Tpe quotient 

Sc 
_p,=SH 
Sb p 

p 

. 11 d h th . 1 h 1 . f M is ca e t e .I?.-.- singu ar omo ogy space or group o . 

In many parts of this paper we will use the circumflex to indicate 

1 2 0 n 1 2 
omission, that is (x , x , , x , . , x ) means (x , x , . . 

i-1 i+l 
. , x x 

n 
x ) . 



CHAPTER III 

INTEGRATION AND STOKE'S THEOREM 

We shall develop a method of integration by use of building blocks 

called Euclidian simplices of various dimensions; we shall omit the 

repetition of th_e adjective Euclidean in this part and it will be under

stood that everything takes place in Euclidean space. A 0-simplex -is 

a single point denoted by (P0). A 1-simplex is a _directed line segment 

on a straight line. It is completely determined by its ordered pair of 

vertices (P 0 , P1). 

Po 

A 3-simplex is a closed triangle with vertices takep in some def

inite order. It is completely determined by its ordered triple of 

vertices in the proper•order, (P0 , P1 , P2), 

p 
2 

Similarly, one has a 3-simplex based on an ordered quadruple (~, P1 , 

P2 , P3) of four points, no three collinear. Geometrically it represents 

a tetrahedran and its interior. 

Finally, an n"'simplex is the closed conves hull (P0 , . , . , Pn) 

12 
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of independent points taken in a definite order. We mean by indepen-

dent points that the n vectors (P 1 - Pp), (P2 - Pp), ... , (Pn - Po) 

are linearly independent. The geometrical set so spanned consists of 

all points 

p 

n 

tpPq + t 1P1 + ... + tnPn' t 1 ~ O,~ ti 

i-0 

1, 

We might say all possible centroids of systems of non-negative masses 

t 0 , ... , tn located at P0 , ... , Pn respectively, 

The boundary of a simplex Sis a formal sum of simplices of one 

lower dimension with integer c9efficients: 

o (P0 , 
/"\ 

' p. ' 1. 
(I O p ' 

p ) 

Example l · ' 
Consider then 

PO pl 

o(P0 , p ) = 
1 

(-1)0 (Pl) + (-1) 1 (PO) (P ) -
0 (P 1) 

Example 2: Consider 

then 

o(P0Pl2.) = (-1)0 (Pl2) + (-1)1 (POP2) + (-1/ (Pa,,Pl) 

:::: (PoP1) - (PoP2) + (P/2), 

n 

where one thinks of each minus sign in 0S as representing a reversal in 

the rotation sense. 

Ann-chain is a formal sum C 

and S. are n-simplices. 
1. 

i i 
=ta S. where the a are constants 

1. 

Since one would like O to be a linear operation it will be defined 



by 

i i 
Looking at o(oC) = o(~ a oS1) =ta 

i 
o[a(P0 ..• Pn)l = ar(-1) (P 0, 

,Cl ~ 

then looking at o(as.) = 
1 

P ), which has 
n 

14 

(P "'' • • • ' p. , . . . ' P . , • . 
v 1 J 

, Pn) twice, once from 0 (P 0 , . , 

~i' ... , Pn) and also from 0 (P0 , . 
~ . . , P., • • . P ) • In the first 

J n 

h . . ( l)i+j-l d ' h 1 t e sign is - an int e ast 
·+· 

(-1) 1 J; therefore, they differ 

in sign. From this one concludes c,( 08.) = 0, which implies 0 (0C) = 0, 
J. 

This gives one a baiic result that the boundary of each chain itself 

has zero boundary. 

Given any two n-simplices (P0 , •.. , Pn), (Q 0 , ... , Qn) there 

is a unique linear correspondence between them tha.t p,reserve the 

ordering of the vertices. · It is given by 

n n n 

~ t.P. ~ ti Qi, t. ;;::: 0 z t. = L. 
1 1 J. 1 

i=O i=O i=O 

The standard n-simples sn is the simplex in En based on 

RO = (0, 0, 0) 

Rl = (1, 0, O) 

R 
2 

(O, 1, O) 

R (O, ' n ' 
o, 1). 

Example: In E3 

~~==--"-:a>-.--Y 

(0,1,0) 

x 



l ·~ ,) 

n -n Let w be an n-form defined on an open set U of E and S CU. We 

may write win the unique way 

1 n -IA 2 /\ n w = A (x . . . x ) dx· I\ dx A . . , dx • 

With the variables in their natural order now we may define 

f J A(x1 
• ,. 0 

n 1 2/\ An x ) dx (\dx . . , / \dx 

where the right hand side is now standard ordinary n•fold integration. 

Example: If w = dy dx then 

1 1-y 
J dy f\dx J dx (\.dy = r·· r dx j\dy 
-2 -2 s s 0 0 

1 2 1 1 - J (1-y) dy 1 [y - LJ 
2 '0 2 

0 

Now consider an n-dimensional manifold Mand shall define an n~ 

simplex in M. Consider a smooth mapping 

where U is an n-dimensional neighborhood of ~n in Euclidean space. 

Denote the preliminary simplex by 

n 
(S,U,¢). 

If one is given a second one, 

(Tn, V, ~) 

it will be considered the same as the first provided 

¢ Ct t.P.) = ~ (t t.Q.), t. ~ 0, t t. = 1 
i i i i i i 

We have set up the natural order preserving linear equivalence between 



then¢ (P) = w (Q) whenever P and Qare corresponding points. 

The equivalents so generated will be called an n-simplex in M, 

n 
denoted by a. 

16 

The open neighborhoods U we have introduced merely serve to elimi-

nate difficulties with dif{erenti.;ibility on 

Let 
n (Sn u, ¢) a = . ' 

t = (P 1' . 
0 

tl = (PO, pl' 

tn:::; (Po, pl' 

and one has 0Sn = ~ ± t .. 
1 

and Sn have faces 

p ) 
' n 

. . 
' 

p ) 
n 

. ' p ) 
n 

the boundary. 

Now restrict¢ to a neighborhood V. oft. such that V. 
1 1 1 

n 
define faces of a each represented by 

T. = (t. , V. , ¢) 
1 1 1 

and the corresponding boundary 

ocrn = ~ ± T.' 
1 

U and 

this is an (n 1) - chain in M. By an n~chain C of Mone means a 

formal sum 

n 
C = ~ aiai 

i 
with cpnstant coefficients 

One denotes by 

C (M) 
n 

n 
a. and n-simplices a .. 

1 1 

the set of all ordered singular differentiable n-chains on M. As be-

fore 



n oC = r: ai ::,O'i , 

thus o : C (M)--+C 1,(M), n = 1, 2, •• , 
n n-

Also a~ before in the Euclidean situation 

a (ac) = o. 

Now consider a manifold of any dimension,a p-form won Mand a 

p~chain Con M where 

17 

where the a. are constants and a· are P-simplices. As one would like ~ 
1 1 J 

to be linear in both respects, one has 

So we have now reduced the problem of defining 

One may represent O'i in the form 

(SP, u, ¢). 

Now one defines 

J w = J ¢*w 
O'i -P s 

where 

This is ordinary integration as discussed above. 

This is still not a satisfactory integration theory of differen-

tial forms over a differentiable manifold. What must be done is the 

piecing together of the local th~ory and making it global. To do this 

the following theorem of J, Dieudonne is of great importance. 

Theorem 3.1: To a locally finite open covering [u~J of a 
1 



differentiable martifold of class k ~ 1 there is associated a set of 

functions (gi} with the properties, 

(i) Each gj is of class k and satisfies the inequality 

Os:g.s:l 
J 

(ii) 

(iii) 

everywhere. Moreover, its carrier is compact and 

is contained in one of the open sets Ui. 

I:g. = 1 
j J 

Every point of M has a neighborhood met only by a 

finite number 0£ carriers of g., . J 

18 

The gj are said to form a partition of unity subordinated to (Ui}' 

that is, a partition of the function 1 into non-negative functions with 

small carriers. Property (iii) states that the partition of unity is 

locally finite, that is, each point PeM has a neighborhood met only by 

a finite number of carriers of g .. 
. J 

To show that the locaHy finite open covering U = [U.} of a dif-
1. 

ferentiable manifold M there is associated a partition of unity. 

Consider: 

(a) Mis normal, that is, to every pair of disjoint closed sets, 

there exist disjoint open sets containing them 

(b) Sihce Mis normal, there exist locally finite open coverings 

.V = tV~], w0 = (W. 0 }, W = (W~}, and W' = [Wi'} 
1. 1. 1. 

such th1:1t 
I - . 

- 0 - 0 -w. c w.cw.cwi cw. cv.cv.cu. 
1. 1. 1. 1. 1. .1. 1. 

for each i. 

Let one assume, with no loss of generality, that each Ui is conp 

tained in a coordinate neighborhood and has a compact closure. 
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In constructing a partition of unity we employ a smoothing func

tion in En, that is, a function ge ~ 0 of class k corresponding to an 

arbitrary e > 0 such that: 

(i) Carr (g )C:{r ~ e} where r denotes the distance from the 
E: 

(ii) 

(iii) 

origin; 

g > 0 for r < e; 
€ 

S ( l 2 n) dµ.ldµ.2 
En g € µ. ' µ. ' . . . ' !J, dµ. n = 1. 

For each U., let f. be the continuous function, 
1 1 

f.(P) = 1 {
l, PeW.' 

1 0, Pe the complement of W. 
1 

0 ~ f.(P) ~ 1 
1 

PeW. - W.' • 
1 1 

1 2 n 
Letµ.=(µ., µ., ... , µ.) be a local coordinate system in Ui and 

define "distance" between points of U. to be the ordinary Euclidean 
1 

distance between the corresponding points of Bi where Bi is the ball 

in En homeomorphic with U .. Let e. be chosen so small that a sphere 
1 1 

of radius e. with center Pis contained in U. for all PeV. and does 
1 1 1 

not meet W. for Pev.-w. 0 • 
1 1 1 

Consider the functions 

h.(P) = h 1.(µ.) = J f.(u) g .(µ.-v) dv, PeV., 
1 1 ei 1 

since g~. is of class k so is h. of class k. Since f.(v) g (µ.-v) 
"'1 1 1 I €i 

;:::: 0 

for every PeVi, this implies hi~ 0 also since for PeWi fi(P) = 1 and 

- 0 g > 0 for r < e. then h. (P) > 0 where PeW.'. If Pe;V. - W. , then 
ei 1 1 1 1 1 

0 1.f - 0 - 0 either f. (P) = VeV. -w. or if PeW. then g = 0 by choice of 
1 1 1 1 e1 

e .. In either case h. = O. If one defines h. to be O in the comple-
1 1 1 

ment of V., it is a function of class k on M. 
1 

In the above one has shown the following, 



(i) 

(ii) 

(iii) 

h. if of class k 
1 

h. ~ 0, h.(P) > 0, PeW.', h.(P) 
1 1 1 1 

- 0 
W. C Carr (h.)CW. C'U .• 

1 1 1 1 

- 0 = 0, Pe:V. ~ W. 
1 .1 

Now define for each :PeM h(P) = r; h. (P). One may do this since U 
. i 1 

is a locally finite covering. Since each h. is of class k, so is the 
1 

sum or h(P) is of class k. Also since W' is a covering of M, some 

h. (P) 
1 

> O; therefore, h(P) > o. 

One,may conclude that the function 

h. (P) 
g. (P) 

1 
= 

1 h(P) 

forms a partition of unity subordinated to the covering u, that is, a 

partition of the function 1 into non-negative functions with small 

carriers. 

If Mis an oriented manifold of dimension n, then there exists a 

20 

unique functional which associates to a continuous differential form a 

of degree n with compact carrier a real number denoted by 

and called the integral of a over M with the following properties: 

(i) IM (a + S) = I a + 
fM 8 

M 

(ii) If the carrier of a is contained in a coordinate neighbor-

hood U with local coordinates 
1 2 n 

such that µ, ' µ. ' ' µ. 

1 /\ 2 A . A,dµn > O 
1 n) dµ. . dµ. . in U and a a(µ ' ' µ 

dµ.' /\ ... /\d1.t, then J a= r a(µ,l, µ.2, . 
M ,Ju 

1 2 dµ /\dµ /\ . . . (\dµ n where the n- fold integra 1 on the 

. ' µ,n) 

right is the standard integration developed above. 

In order to define the integral of an n-form a with compact 

carrier S, consider a locally finite open covering [U.J. Since every 
1 
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point PeS has a neighborhood met by only a finite number of carriers 

of the g., these neighborhoods for all PeS form a covering of s. There J . 

exists a finite sub~covering, which tells one there is at most a finite 

number of non-zero g j. As the Carr gj is contained in a coordinate 

neighborhood, then J g j et is defined• Nqw 

JM ot = ; s g j Ot ' 
J 

The integral of ex over M so defined is independent of the choice 

of neighborhood containing the Carr (g.) as well as the covering (U.}, 
J 1 

Also, it is unique, covergent, and satisfies the properties (i) and 

(ii) above. 

A domain D with regular bo~ndary is a point set of M whose points 

may be classified a~ either interior or boundary points. 

Now let D be a compact domain with regular boundary and let h be a 

real-valued function on M with the property that h(P) = 1 if PeD and 

zero otherwise. Now define the integral of a (p - 1) - form ex over D, 

J ct = J, hex. 
D M 

Theorem 2.2: (Stokes' Theorem) Let w be a p-form on a manifold 

M and D a (P + 1) domain. Then 

J w = J dw, 
oD D 

Select a countable open covering of M by coordinate neighborhoods 

[ui} in such a way that either Ui does not meet O D or Ui is a coordi

nate neighborhood of a boundary point P such that u.n D consists of 
1. 

Let [g.} be a partition 
1. 

of unity subordinated to this covering. Since D and its boundary are 

both compact, each meets only a finite number of carriers of g .. 
J 
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Therefore, 

w=r:f g.w 
j 'oD J 

and 

JD dw = ~ r d ( g . w) • 
j JD J 

Since both s~ms are finite, one needs only establish that 

r g. w = I d g. w 
' oD 1. 'D J 

for each i, which reduces to a p-form on a (p + 1)-chain c, Thus, one 

must show 

J w = J dw , 
oC C 

Now since c is the sum of (p + 1)-simplices with constant co-

efficients, it suffices to prove 

dw 

where cr is a (p + 1)-simplex. According to a representation 

of crone has from the definition 

r dw = ,J 
cr 

r ¢i( dw = f d (¢>'( w) , 
'-P+l '-P+l s s 

This reduces the problem to a Euclidean one. Let N be a p-form on a 

neighborhood U of SP+l in EP+l. To prove 

S N = f dN 
-P+l '-P+l 

c)S S 

1 2 P+l 1 /"i 
consider N = !; A. (x , x , . , . , x ) dx , , . , ,- dx ,- . . , , 

l. 

dxP+l, therefore, one needs the formula for the case of Na monomial 

only. Since we may permute coordinates provided one is careful about 

signs, it suffices to take the case 



Then 

Thus 

Now 
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1 p 
N = A dx . , . dx . 

d.N (-l)p 9 A 1 P+l = P+l dx ... dx . ax . 

r dN = (- 1) P J . ?I A 1 P+ 1 P+l dx ... dx 
'-P+l P+l s s ox 

investigate 

-P+l s :::: 

RO.= 

Ri = 

R2 = 

:::: (-1/ s 
( j 

p . 
x. ~or; x1 ~ l} 

0 

p 
1 ~ ~ xi 

.r 0 M dxP+l 
oxP+l 

0 

:::: (-1/ .r 

p 
1 - r; 

i=o 

-P+l oS , 

(RO Rl . . 

(O, . . . ' 

(1, o, . . 
(O, 1, 0, . 

. p . 
{xJ ~ 0 t x 1 ~ l} 

0 

xi) 1 2 - A(x 
' x 

' 

. RP+l) 

O) 

' 
O) 

. . 
' 

O) 

RP+l = (O, .. , 0, 1). 

dx 
1 dxp . . . 

1 2 p 
[ A (x , x , . . . x , 

p 1 p 
x , 0) J dx . . . dx . 



All R. are points in Ep+l. 
1 

Therefore, 

faces where N = 0 on the other faces since one of the 

constant there. Thus 

J - !1 = 
J(R 

N + (~l)p+l 
J(Ro ~ RP+l) asP 1 

The face (RO . R ) is the standard -p it P+l . . s ' on x p 

. R) + other 
p 

1 p . 
X , , , X 18 

Rp) 

O and so 
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(- l)p+l 
J(R 

N (- l)p+l .r A(x 1 2 xp O) = x . . . 
' ' ' ' 

0 . R ) p -p s 

dx 
1 p . . . dx, 

which is the second term in the expansion for J dN above. The first 

t . bt . d b ' . d d · h P+l d · · erm 1s o a1ne y pr0Ject1ng ownwar 1n t ex 1rect1on 

s(R 
N 

RP+l) 1 
. . {Rl. 

. A (x1, = . . . 
RPRO) 

dx1 . ' . dxp 

= c-1/ I A(x 

1 dx, 

(RO, Rl, 

= (-1/ S A(x1, 

rl 
1 p 

dx · d:ic , 

p 

' 
x , 

1 , 
. 

1 - i:x.) 1 

p . . 
' 

x ' 1 -

' RP) 

p 
p 

x ' 1 - ~ x.) 
1 1 

p 
I: x.) 
1 1 

which is the first term in the expression for J dN above. Therefore, 

Stokes theorem is proven. 



CHAPTER IV 

COHOMOLOGY AND HOMOLOGY 

The intuitive ideas of homology and cohomology are simple and 

straightforward. The idea is to study the nature of a manifold by de-

fining chains of cells of different dimensions with coefficients in 

some group, ring, or field, a boundary operator or coboundary operator, 

and an algebraic structure on the collection that will yield certain 

invariants of the process that will then have geometric significance, 

If e is the collection of chains of dimension n, or en the co
n 

chains, then these form an abelian group, module, or vector space de-

pending on the coefficients; 0 is a homomorphism, or linear function, 
n 

called a boundary operator, on en to Cn-l' and 6n is a homomorphism, or 

11 b en en+l linear function, ca ed a co oundary operator, on to , Those 

chains B0 in en that are images of on+l are called bounding cycles, and 

those chains Zn in en for which 00 gives the zero chain in en-l (ker 

0 ) are called cycles. 
n 

fined by Bn = & en-l 
n 

n Similarly for the coboundary cycles B are de-

n 
and the cocycles by Z = ker 6 · In both cases 

n 

it is always required that onon+l = 0 and 6 6 = 0 so B C:Z and n n-1 n n 

BnC. Zn. Some of the invariants are the measure of how much cycles or 

cocycles of each dimension fail to be the bounding cycles or cobounding 

cocycles as determined by the factor groups, H = Z /B, called the 
n n n 

n n n 
homology groups, or H = Z /B, called the cohomology groups. 

The boundary and coboundary operators are related in a manner 

25 
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similar to that of a linear operator and its adjoint. If yn is a co

chain in Cn, that is, a homomorphism on en to the group of coefficients, 

n n 
On in en and the notation< crn' y > is used for the value of y at crn' 

similar to that for a vector in the dual space and its value at a vector 

in the space, then 

Notice the similarity of this.and Stoke's theorem J w = J d w 
- ocr cr 

n 
when written in the form J w = < cr, w·>· If o = 

a 
an, 0 = O"n+l' w = y ' 

and d = ~ then Stoke's theorem could be written Vn• 

n n 
< ocr, w > = < cr, dw >or< on+l crn+l' Y > = < crn+l' 8n Y >· 

This leads to the anticipation of an isomorphism between the geometric 

cohomology and that of exterior differential forms. 

In the next two chapters we will develop a proof of the existence 

Theorem of de Rham. The idea of the proof is due to A. Weil. The 

method is the theory of sheaves due to Leroy. 

The cohomology being developed is a straightforward generalization 
,...., 

of the classical Cech definition of cohomology. One will use the idea 

of cohomology with 'coefficients' in a sheaf r, which is a genera liza-

tion of Steenrods cohomology with 'local coefficients'. 

Let U = [Ui} be any countable open covering of a differentiable 

manifold M and consider chi:lins and forms defined only in U .n U .. 
1 J 

The nerve of U, denoted by N(U) is the simplicial complex whose 

vertices are the elements of U and where any finite number of vertices 

u. ' u. ' . io 11 

... nu. 
1p 

. . ' U. span a simplex of N(U) if and only if U.l)U. n 
1p 1.0 11 

By a p-simplex cr = A(iq, . . , i) one means an 
p 

ordered finite set (i0 , ... , ip) of indices such that 
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U. () U. (') ..• 11 U. =r ¢· If U. , ... , U. are the vertices of a 
10 11 1p 10 1p 

p-·simplex er, then n er = U. () U. () . • • /JU. • For any open sets U 
10 11 1p 

and V, vc u, let Puv denote the restriction map on differential forms, 

Puv Aq(U) --~(\q(V) q = 0, 1, 2, ... , n 

defined by 

Puv<a) = cJ v' 

If U, V, and W are open sets such that WCVCU, then Puw 

A p-cochain of N·(u) is a function f tha.t assigns to each p-simplex 

CJ an element of an abelian group or vector space f(/)cr), In the sequel 

f(U) will be one of the following: 

(i) R: the real numbers 

(ii) /\q = f?<u) 
(iii) /\q =f\q(U) 

c c 

the space of q-forms over U 

the space of closed q-forms over U. 

This generalizes the usual definition. This gives (a) for every open 

set U there is a vector space f(U) and (b) if V U, then 

Puv : r(u),_ ___ ._r(v) . 

The value f(i 0 .. 

element of r(u.() 
10 

\) ;::: f(A(i0 , 

.. (1 u. ) . 
1p 

. . • , i )) of a p-cochain is an 
p 

Much as was done in the Euclidian simplex, if CJ 

ip), let the faces of O be the simplices crj = 6(10 

j = 0, 1, 

p j 
o cr 

. ' p' 

re 
Then, n clC n cr and there is a homomorphism 

crj )-?" r < cr) 

defined by the restriction map above, that is p j 

er cr 
is an element of the vector space r<n er), 

. ' 

i ), 
p 

If f and g are p-cochains of N(U) with values in the same abelian 

group r(ncr), then cochains f + g and a . f, a e Rare defined by 

(f + g) er= f(cr) + g(cr) 
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(a · f) cr = a(f(cr)) 

for each simplex cr e N(U). Thus, the p-cochains form a vector space 

over the reals, will be denoted by 

cP (N(u), r). 

The coboundary operator 6 assigns a cochain of to each p-cochain; 

f is defined by 

~ (-l)j p j 
i 

f <o ) , a = 6(i, , .. , i ). 
O p 

j=O cr cr 

Thus, 

o : cP (N(U), r)--- cp+l (N(U), r). 

P0 ji cr and in a manner similar to that for boundary of Euclidian simplex 

one gets zero. In the usual way define p~dimensional cohomology group 

Hp(N(U), r) as the quotient of Zp(N(U), r), the ~et of p-cochains whose 

coboundarys vanish, by Bp(N(U), f), the set of p-cochains that are the 

coboundary of (p + 1)-cochains: 

Hp (N(U)' f) = z: (N(U) a r) , 
B (N(U), f) 

In particular if Mis connected 

Hp (N(U), r) = r(M). 

For, a 0-cochain f assigns to each U. eU an element au 
l. i 

condition of= O requires that if f(U.) = Qiu er (U.), 
. J j J 

u.() u. f ¢ then 
l. J 

Pu. u .() u. au= Pu. 
Jl. Ji l. 

u. n u. Qiu .• 
l. J l. 

of f(U.). The 
l. 

U. e U and 
J 

Conversely, for any globally defined a e q(M), a O~cochain satisfying 

of = 0 is given by defining f(Ui) = pMU.QI' Ui e U and f(cr) = 0 for all 
l. 



other o e N(U). That the map r(M) 
.0 

H (N(U),. r) is a monomorphism 

follows from above. 

A 1-cochain is defined by f(Ui, Uj) = aUi,Uj e r(uin Uj). 

It is a cocycle if Pu II U U n U ri U au U - Pu() u U () u ()· U au U 
I' I J' i j1 I k i j K' j ' i j . k k j 

= 0 

au U , Q'U U, and ctu U e r(U.() U,l')Uk). 
i j k j k i i J 

If U. = U. = Uk, we conclude that au U = au U ; the cocycle au U is a 
i J i j j i i j 

co-boundary if it can be expressed as QIU .. au .. 
j l. 

In this part, we shall write (6f)(cr) 

ity. 

A covering V = {V.1 of Mis called a refinement of U if there is 
1· 

a m,;:tp 

¢ : v----.--... u 

defined by associating with each V. e: Va set {)'. e u such that V. C u .. 
i i i i 

If cr = (Vo, . . ' v ) e: N(V), let ¢r:J = (¢Vo, 
. ' ¢V ), Then 

p p 

() ¢ a 
j 

::) (j 1' ¢ and ¢CY is an element of N(U). Hence, there is a map 

¢ : N(V) -->N(U). 

This map in turn induces a map¢ sending each cochain .f e Cp (N(U), r) 

,...., p 
to a cochain ¢ f e C (N(U), r) where for each O e N(V) 

P f (¢cr) •• 
¢cr, cr 

The map¢ is not unique •. However all such¢ induce the same 

homorphisms 

¢ * : Hp (N (U) , r) ----,--..:, Hp (N (V) , r) • 

Moreover, if W = {Wi} is a refinement of V, the combined homorphism 
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Hp {N(U), f) 

is the same as the direct HP(N(U) ~ r) 

Hp (N(W), r) 

Hp {N(W), r) • 

* One will use the notation ¢uv for¢ • 

The set of all converings of Mis partically ordered by inclusion 

where Vis contained in U if and only if Vis a refinement of U. If V 

is a refinement of U, one writes V < U. If W < V < U, it can be shown 

The direct limits 

Hp (M, r) = lim Hp(N(U), r) 

of the 
p u 

groups H (N(U),f) P = 0, 1, •. are defined by the following: 

Two elements h. e Hp(N(U~), r), i = 1, 2 are said to be equivalent if 
l. l. 

p 
there exists an element h3 e H (N(U3), r) with u3 < Ui, i = 1, 2 such 

that h3 = ¢uiu3 hi' i 

equivalence classes. 

1, 2; the direct limit is the set of these 

Now one develops a theory dual to the above. As before with every 

open set U, e U one associates a vector space which is again denoted by 
1 

r(u.). 
l. 

If U. C U., then Pu U 
J 1 i j 

r (u. )--> r (u. > . 
J l. 

By a p·~ cha in is meant a forma 1 sum 

g = E g (io, . . 
(i) 

, i ) t. (i 0 , 
p 

g ( i o' · . . , i ) e f (U. fl 
P io 

II a o ) i ) 
p 

. 11 u. ) 
1 

p 

where b.(i 0, ... , i) is a p-simplex on N*U) and (i) implies summation 
p . 

The coefficients .of_ a p-.chain lie in.· f(Ui () • ,, • 
0 

() U. ). In the applications r will be either 
l. 

p 

(i) R : the real numbers 

(ii) S (U) : the space of finite singular chains with support in 
q 

U or 



(iii) S~(U): the subspace of finit~ singular cocycles. 

A bqundary operation O iµapping p-chains into (p-1) .. chains is de-

fined on p-simplices as follows: 

. o[A(i0, ..• , i )J = 
p 

. . . ' i ) . 
p ' 

p 
I: 

k=O 

and on p-chains by linear extension, 

ag = ~ g(i0 , ... , i) a[A(i0 , ... , iP)J 
(i) p 

where g(i 0 , ..• , ip) for the corresponding images p •• g(i0 , 

' i ) . p 

gets ag(jo, 

Denoting the coefficients of ag(j 0 , 

' jp-1) t I: (-.1/ g(jO' 
k=O i 

• , , j 1) one 
p-
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jk, ; .. , jp+l) where i runs over all indices for which the corre

sponding intersection is not empty. In order for the $um to be finite 

one assumes the. covering U to be locally fipite. 

Once again it can be shown 00g = O. Then define the p-dimensional 

homology group HP(N(U), r) as the quotient of Zq(N(U), r), the set of 

q-chains whose boundary vanish, by B (N(U), r), the set of q•chains that 
q 

are the boundaries of (q+l)-chains, 

Z (N(U),. f) 

H (N(U)' r) = B (N(U). r) 
q q ' 

Let V = [Vi} be a refinement of U. Then as for the cohomology 

there is a map¢ : V~~----~U defined by associating with each Vi€ Va 

set U. € U such that V.C: U .. To the p-chain g on V one may assign a 
1 1 1 

,...,.,. . 
chain¢ g on U as follow$: 

rv 
¢ : E g Cio, . . . 

' 
i ) t g (io, . . 

' 
i ) 

(i) p (i) p . -;',::'' 

A(¢Ci 0), . . . ' ¢<ip)) = ¢(V ) • r 
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Cycles are mapped into cycles and boundaries into boundaries. Hence¢ 

induces a homomorphism 

lip (N (U), f) 

As before this homomorphism does not depend on¢ but rather on V and U 

and so one denotes¢* by ¢uv· Also, if W < V < U, ¢wu = ¢vu¢wv· 

The inverse limits 

Hp (M, f) = lim Hp (f:.l(U), r) 
u 

of the groups Hp(N(U),r) p O, 1, ... are defined as follows: Two 

elements hi€ Hp(N(Ui), r) i = 1, 2 are equivalent if there exists an 

element h3 € Hp(N(U}, r) with u3 < Ui' i = 1, 2 such that h3 = ¢u3uihi, 

i = 1, 2; the inverse limit is the set of these equivalence classes. 

With the obvious definitions of addition and multiplication by a scalar 

H (M, _[) is a vector space. 
p .. , 

A refineme.nt V of U ii;; called a strong refinement if each V. is 
l. 

compact and contained in some U .. One writes V<<U for Vis a strong 
J 

refinement of U and for the pair V. and U. we write V. (£. U .• 
l. J 1 J 

Theorem 4.1: For a compact differentiable manifold M, 

for all p > O, and q = 0, 1, .•. (we are not implying this is true 

for all r). 

Let V be a locally finite strong refinement of the open covering 
\".!:', ;·.'· 

u of M and { e .1 a partition of unity subordinated to v. For an element 
]·' 

f € Cp (N(V), /'?) let f. = e.f. Then 5f. = 5(e.f) = e. 5 f = (6f). 
J J J J J J 

and so if f is a cocycle so :i,.s f .• 
J 

Let f be a p-cocycle, p > Oby definition, f :::: I: f. is a locally 
J 

finite sum, now prove that each cocycle f. is a coboundary, that is, 
J 



intersect Vj. This being the case g = 

t fj = ~ 8 gj = 8 g. 

t g. is well defined and f = 
J 
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Co·nsider a fixed j and put g/V0 , , •• , Vp_ 1) = f/Vj, v0 , 

.,VP~l) if vjn V{'J ... fl VP-l "f¢ and gj = 0 otherwi.se, In the 
. i A 

first case (6(gj))(V0, ••• , VP)= E (-1) fj(Vj, v0 , ••• , ·vi, 

.•. , Vp)• Since fj is a cocycle, 

~ ~ (-l)i f (V V 
LJ j j' 0' . . . 

hence, f. = 8g .. 
J :L 

..-.'.'.'.\ 
, V.' 

:L 

In the second case Vj() v0 1) ... /'/VP=/: ¢,fj(v0, .•. , VP) 0, 

but &gi also vanishes for in 8gj(V0, ... , VP)= E (-l)j gj(v0, 

D. 
, 'VP) each the right is either by defini-.. 

' 
v., . . term on zero, 

:L 

tion of else it is the restriction of f. (V., Vo, 
./..'::-,. 

gj, or . . . ' v., 
J J J 

. . . ' VP) to the set v0 /J . . . n VP. Since ej vapishes outside v.' J 
-·5-. 

so must f.; thus, the value is again zero. 
J 

One concludes that f. = 5g. in all cases; therefore, the proof is 
J J 

complete, 

Theorem 4.2: For a differentiable manifold M 

for all p > 0, and q = 0, 1, 2, ..• , moreover, in order that a 0-

chain be a boundary it is necessary and sufficient that the sum of its 

coefficients be zero. 

Consider all singular q-simplices. Divide these simplices into 

class~s so that all those simplices in the jth class are contained in 

Uj. For each cycle g const~uct a singular chain gj by deleting those 
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singular simplices not in the 
,th 

class. J One knows gj is a cycle since 

c,(gj) ::;: (c,g) .• Since g ::;: I:: gj it suffices to show that gj is a bound-
J 

ary. For simplicity take j = o. Define a (p + 1)-chain h as follows, 

or 

Now since 

ch E go (i1 '· . .,iP+l) 6(il . . iP+l) -
(i) 

P+l 
(~l/ gO(il, I:: I:: . . . ' iP+l) 

(i) k=l 

6(0, io, 
/>. 

iP+l) ' 1.k' . . ' 

and 

where 

6 ( i 1' . . . ' ik' . . . ' iP+ 1) 

gO = ( t) go ( i 1' . ' . ' iP+ 1) ti ( i l' ' ' . ' iP+ 1) ' 

go= oh, 

for by comparing the expression ago with the last sum in oh they are 

the same; therefore, one concludes g. is a boundary, so g is a boundary. 
J 

For p = 0 

and thus 

oh= I:: g0 (i) 8. (i) - L g0 (i) A (O) 

where g0 = L g0 (i) 8 (i); 



therefore, it is necessary that r g0 (i) vanish in order for~ to be a 

boundary. On the other hand suppose t g(i) vanishes, then since 

t g(i) = tt gj(i), then r g0 (i) = 0 by the choice of the gj. Therefore, 

a 0-chai,n is a boundary, if and only if, the sum of its coefficients 

is zero. 

Although an exact form is closed, the converse is not true. The 

following theorem is a partial converse called Poincare Lemma. 

Theorem 4.3: On a star shaped region 6 in Rn every closed p-form, 

p > O, is exact. 

First define a homotopy operator 

p p-1 
I : /\ (6)--~--A (/:.), p > 0 

with the property that dia +Ida= a for every p-form a defined in a 

neighborhood of 6, Eence, if a is closed in 6, then Id = 0 and a= 
a 

dia = dS, where S = Ia. 

1 
Let u , 

2 
u ' • • . ' ur be a coordinate system at the origin. Let 

1 tu denote the vector (tu , . 
(u 1 2 

a(' i ) • u 
' 

. . . , 
1.1 . . p 

Ia 

Thus, 

dla = p fl tp-1 a(. 
' 0 1.1' 

p n 
+ t E (-l)k-1 

k=l j=l 

. ui:kduj I\ duil/\ 

. , 

un) 

n tu ) , 0 

du 1 

::;;; t ::;;; L Then for a = 

d i·p 
u ' put 

i ) (tu) dt , uikauiiA 
p 

• i ) (t;u)dt • d1}l/\ • . • Aauip 
p 

aa (' i ) 
rl tp 

1.1° . 
0) 

. t(u)dt• 
·o 

. . . ~A- . /\auip . 



Now looking at 

n 
Ida = I: f1 tp 

j=l '0 

i . i 
(tu)dt • u l\iuJ /\du 1/\ 

"
~A A i·p 

• • • du /\ ••• /\du • 

· Thus by adding 

= a 

i ) 
p (tu)dt] 

. )(tu)Jdt· a/ 1 
• l. 

p 
.. •. 

dui 1/\ izA A i· i ) (u) du I\ . . . du .p 
p 
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In analogy with Poincare Lemma on states the following theorem without 

proof. 

Theorem 4.4: The singular homology groups H (A), p > 0 of a star 
p 

shaped region in Rn are triv~al. 

Let. f e cP(N(U), /\q) and g e Cp(N(U)~ Sq) and define the inner 

product 

(f(i0, i 1 , ... , \), g(i0 , i 1 , 

= J f ( i Cil', • • • • ' ip ) 
. g (i O' • • • ' i ) . . p 

. . . ' i )) 
p 



Either for g is assumed to be finite, in this case, the sum 

is finite. The elements f e Cp (N(U), /\q) and g e CP (N(U), Sq) are 

said to be of type (p, q). 
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Theorem 4.5: For elements f e Cp(N(U),Aq) and g e CP+l(N(U), Sq) 

since 

by: 

<at, g) = Cf~ ag). 

Sinc;:e inner product is linear in each variable, we may assume that 

g = g(O, 

J f (0, 

g Co, • 

. . . , p+l) A (O, 1, . . 

, ![, . . . , p+l) 

. ' p+l) 

. , p+l). Then, <af,g) = 

= (f, ag) 

<ag) co, • . • , If, . . . ' 
i p+l) = (~1) g(O, ... , p+l). 

Denote by d the operator on the cochain groups Cp (N(U), Aq) defined 

d : cp (N(U)' /\q) ) cp (N(U)' q+l) 

where to an f e Cp(N(U), /\q) one associates the element df whose values 

are obtained by applying the differential operator d to the forms 

f (i 0, • 

dd = o. 

. . . i ) P e 

An operator 

Aq (U. () . • • n U. ) • 
I\ 1 0 . 1. 

p 
It can be shown that 

is defined as follows: Dis the operator replacing each element 

g e Cp(N(U), Sq) by its boundary. Clearly DD= O. 

Theorem 4.6: For elements f e Cp(N(U), Aq) and g.e Cp(N(U), Sq), 

(f , Dg) = (dg, g) . 

Theorem 4.7: id d5 and oD = Do. 



CHAPTER V 

Pe RHAM THEOREM 

A covering U of M is said to be simple if, (a) it is strong locally 

finite and (b) every non~empty intersection u0() u1() 

open sets of the covering is homeomorphic with a star shaped region in 

n 
R. It can be shown that such a covering exists. 

Let fo € z0 (N(U), A:), qo € Co (N(U), Sq) and consider the system 

of equations 

Qf 1 = df 
q- q Dg 1 q-

fi, i = 1, 2, ... is of type (i - 1, q - i) and qi' i = 1, 2, , , . 

is of type (i, q-i). In the event there exist cochains f. and chains 
]_ 

g. satisfying these re lat ions it follows from theorem 4. 6 that 
]_ 

(fo, go) (dfl' go) = (fl, DgO) (fl' og1) 

( 6£1' gl) = (df2' gl) (f2' Dg2) 

(f2, Qg2) = (of 1 , q- gq-1) 

= (df' gq-1) = (f ' Dg 1) = (f 6gq) q q q- q' 

(of' q gq) 

38 



· Since d6f = ;6df = ;66f 1 = 0, the coefficients of 6f are . q - q q- q 

constants. It follows that 6f may be identified with a cocycle zq 
q 

with constant coefficients. 
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For a chain of type (p, 0) let D0 be the operator denoting addition 

of the coefficients in each singular 0-chain. Evidently, 0D =Do and 
0 0 

D D = 0. Thus, since 0g = Dg 1, oD g vanishes, that is D0 gq is a 
O q q- . 0 q 

cycle Z, one concludes that 
q 

(-6f , g ) = (Zq 1 ) q q , q 

or 

r ct = (z\ 1 ) . 
. r q 

11:he problem of computing the period of a closed q-form over a q-

cycle has been reduced to that of integrating a closed 0-form over a 

0-chain. 

If fo is closed, then there exists a (q-1)-form f 1 such that f0 = 

df 1, and since 6f1 is closed, there exist f 2 such that 5f1 = df2 , etc. 

The dual argument shows that g.eC. (N(U), S .) exists. 
i i q-i . 

Suppose that a cocycle Zq, of type (q, O) with constant coeffi~ 

cients, and a cycle L, of type (q, O) are given. Since U is strongly 
q 

finite, Hp(N(U), /\q) = (O}. Therefore; there exists fq such that 

Zq = 6f ; now since Zq has constant coefficients, d5f must vanish. 
q - q 

Since Hq(N(U), /\q) = (O} and 0d = do, then there exists fq-l such that 

df 
q &fq-l. By a continuation of this process one gets fq-Z' ... , 

f 1 , From above dOif1 = o.df1 = 0 implying that if one lets fp = df1 it 

is a cocycle. Now 

dfo = ctdf1 = o, 

implying f 0 is a closed q-form. In a similar manner g0eCP(N(U), s:) 
can be constructed from 1 . 

q 



40 

We have shown that cochains £i of type (i - 1, q = i) exist satis

fying the system of equations above.. Let 

A. = [f. dofi = O} 
],. l. 

x. = [fi df. = O} 
], l. 

Y. = [f:i, of1 ;:: O} 
],. 

The values of f. on N(U) are (q-i)-forms. d is ·.;1 map that maps homo-
l. 

morphically onto 

d A.- Zi-1 (N (U), A q.:.i+I) 2 s; i ~ q 
l. c ' 

d x.~[O} 2. s; i s; q 
l. 

d Y:. -~Bi-1 (N (U), /\~-i+l) 2 s; i s: q 
l. 

Since q ... i + 1 > O, we can apply Poincare Lemma tq d operating 

on Ai and get it to be a homomorphism onto. For f.eY., 0f. = O. Since 
l. l. l. 

the cohomology is trivial for :i, > 0, there exists f' such that f. = of' 
l. 

from which dfi = d&f' = odf' = 0, which implies dfieBi-l(N(U), A~-i+l). 

To show dis onto, let f' be ap element of B1~1(N(U), A~-i+l). Since 

i-1 Aq-i f' = 0f. for some f.eC (N(U), /\ ) and since q ~ i + 1 > 0 we can 
l. l. c 

again apply Poincare Lemma, fi = df''. Now f' = 6df'' = d6f' 1 and 

since 6(6f') = 0, 6f'eY., dis onto. That dis a homomorphism from X. 
. l. l. 

onto [O} is clear. We note X. is the kernel of the homomorphism. 
l. 

The following isomorphisms are, a consequence of the above: 

A • r-J • 1 . +l 
~ = zi.- (N(U), /\qc-1. ) x. 

l. 

Xi+ Y.,... _______ l. = 

thus we know 

x. 
l. 



Consider 

A./X. 
1 1 

(X. + Y.)/X. 
1 1 1 

0 A. 
1 

0 x. 
1 

0 Y.-
l. 

= 

zi 

Bi 

A. 
1 

X. + Y. 
l 1 

....... 
= 

(N(U), A~-i) 

(N(U)' A~-i) 

[O}, 

zi-1 (N(u), A~-i+l) 

Bi-1 (N(U), A~·i+l) 

Thus by using an argument similar to the above one ford we can get O 

to be a homomorphism onto for 1 ~ i ~ q - i and we may conclude that 

and thus 

X. + Y. "'J 
l. l. 

Y. 
l. 

A. /Y. 
l. ' l. 

(X. + Y.)/Y. 
l. l. l. 

x. 
l. 

x.nY. 
l. l. 

(N(U) A q-i) 
' I\ c 

"- A. r- zi (N(U), f\~-i) 
1 

x. + Y. Bi (N(U) /\q-i) l. 1 
' c 

/\, 

Hi (N(U),/\ ~-i). = 

We have shown the fol lowing 

A. 
l 

x. + Y.. 
l. l. 

,-..,,· ' i 
= H 

i A. 1 (N(U), f\ qc.;. ) r---- __ l_-__ 

, c x. -1 + y. 1 
1.-. 1.-

We represent this by the following diagram 

A1 _ A2 _ _ Ag-l _ Ag X1[/1 -i:+\/:y+~xq+Yq 
H1 (N(U),l\~-l) ... Hq-l (N(U),f'..~) 

41 
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We must show t:he following two things: 

Al r- A~ A r-,......,, 
Dq g Hq = = and = (N(U), R), 

xl + Y1 "~ x +Y 
q q 

which will give us 

Dq ,:- Hq (N(U), R) t 

Let f€A 1 then d£1ez0 (N(U),/\~) and therefore may be identified 

with a clpsed q-form. As before one needs only consider d operating 

on Y1 . If feY, then dy represents an exact form. On the other hand 

by Poincare's Lemma a closed q-form may be represented df and an exact 

form as df with of= o, thus 

Let f €A then d0f = 0, which implies.of has constant coefficient q q q q 

and thus an element of Zq (N(U), R). Now as before one needs only con-

sider 6 on X. But an element xeX has constant coefficients which q q 

implies 6x€Bq (N(U), R). Now 

A 
9 ~ Hq (N(U), R) x + y 

q q 

which gives 

By a dual argument it can be shown that the singular homology is 

dual to the groups H (N(U), R). 
q 

Let gibe of type (i, q-i) exist satisfying the system of equations 

(2.1.1). Now let 

X~ = [g./ Dg. = O} 
1. l; 1. 



yt = (gijogi = OJ 

1 
(N (U), Sc . ) D A.~z. 

]. ]. q-1.-l 

D x: (O} 
]. 

D Y: B. (N (U), Sc ) 
]. ]. q-i-1 

and we note D is a mapping homomorphically onto 

0 A7 > zi-1 (N(U), Sc .) 
]. q-1. 

0 X7 :> B. 1 
]. 1.-

(N (U), Sc .) 
q-1, 

0 Y7 {O} 
]. 

and note a is a mapping homomorphically onto. 

This gives 

I 

A A 1 

~ 2 '";;, -:;-- g-2 
I I I I I I 

I 

A 
g-1 

I I 
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xl ~ ~t + \ /}~ +s,c\-)2 

x + y 
q-1 q-1 

each 

and 

Hl (N (U), S 2 ) • • . H 2 (N (U), l q- . q- q- . 

Let a be the operator denoting addition of the coefficients of 
0 

chain in CO (N (U), s ) . 
q 

Let Zoo be the space annihilated by 00 

put Hoo = z00 /B0 . 

Then, 

= 

and on the other end 
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D 

R). 

Then frt>m the complete sequence we get 

Sc 
....9. r.,/ 

b H (N(U), R). 
s q 

Q 

Now we will extend De Rham's isomorphism theorem from a simple 

covering to that of any covering. 

Theorem 5,1: For any covering U = (U.} of a differentiable mani-
1. 

fold M there exists a covering W = (Wi} by means of coordinate neighbor-

hoods with the properties (a) W < U and (b) there.exists a map¢ 

U. such that W. () . 
i. io 

u. I) ... /} u .. 
io i.P 

.. n w. 'F ¢ implies wi u 
l.p O 

. Uw. c 
l. p 

First there exists locally finite coverings V and U' such that 

V << U' < U. For any point PeM, there exists a ball W(P) around P 

such that 
I 

(i) PeU. implies W(P) u.' l. l. 

(ii) Pev. implies W(P) v. 
l. l. 

( iii) - 'F ¢. PeV. implies W(P) v. 
l. l. 

I 

w~ 
l. 

For since Pis an element of only a finite number of u1 and Vj, 

(i) and (ii) are satisfied. If PeV0 eV, then either Vi(} v O = ¢ or 

V n v0 ,f, ¢• In the first case, (iii) is fulfilled. As in the second 

case, since V is locall.y finite there is only a finite number of Vi 

such that V. fl V ,f, ¢ and. by choosing W(P) small (iii). may be satisfied . 
. l. 



Let W. = W(P) be a covering of M by coordinate neighborhoods. 
]. 

Then there exists open sets v1 with P.eV. and by (ii) above W,C V. I? 
]. ]. ]. ].~ 

I 

U./1U., which implies part (a) of the theorem. Suppose that W.{) W. 
]. ]. .l. J 

= ¢; th~n w.n V. 'f ¢· l3y (ii,i) P.eV.CU~ and so by (i) W.CV.CU., 
L J . J J . J J J J 

thus by symmetry W. U W. C U. /1 U. and by an inductive process we get 
]. J ]. J 

part (b) of the theorem. 

Let A. be the direct limit of the A. = A.(U) and X., Y. the cor-
1. i ]. ]. ]. 

responding direct limits. 

Theroem 5.2: The maps d and O induce homomorphisms 

d ~--~> Hi-1 (N(U)' (\~-i+l) 

Ai --->Hi (N (U)' A~"' i) 

Moreover these maps are homomorphisms onto. 

Let f.sA.(U), df. and 0f. are defined as the cohomology classes 
]. ]. ]. ]. 

containing df. and of. respectively, They are well defined from the 
]. ]. 

notion of direct limits. 
i-1 

To show O and dare onto, let ZeZ (N(U), 

/\ ~-i+l) and W be a refinement of U as in the above theorem: 

¢ : w. ~ u. 
J J 
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then the values of¢''( z are defined on wo(J •.. /1 wi_lc uo and may be 

i-1 Aq-i extended to w0 , By Poincare's Lemma there exists yeC (N(W), /\ ) 

for which q/(Z = dy on w0 and consequently on w0 n .. ,(}Wi-l~ thus d 

is onto. Since the cohomology is trivial, any zeZi (N(U), /\~-i) is of 

the form SY, yeCi-l (N(U), /\q-i), the element y represents any element 

Ai; thus, o is onto. 

Theorem 5.3: 

Kernel d = Kernel o = Xi t Yi 

Let us first consider the images of x.(U.) + y.(U.) under d and O 
i J . ]. J 



d[x.(U.) + y.(U.)] = d(xi{U.)] + d[y.(U.)] 
lJ lJ J lJ 

= 0 + d[yi{Uj)j 

1111 d(yi(Uj)] 

6[x1 (tlj) + yi(uj)] = s[xi(Uj)J + s[yi(Uj)J 

= s[x.(U.)] + O 
. l J 
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Since we are working in t;he space of closed forms, the lemma is true for 

a. Now considering o[xi(Uj)] there exists a refinement.W of U, as in 

the above proof, such that ¢x. (U) = dz(W) •. Thus Sx. (Uj) will be in the 
l l 

same equivalence class as &dz(W) = d5Z(W) = O; therefore, x.(U.) + 
l. J 

Y. (U'.) e ~erne 1 -; • 
l. . J v 

On the other hand let ~Z(U) represent [O}i Then for a suitable 

refinement t, tdz = 6U where dU = 0, since U is closed. Now by· 

Poincare's Lemma, for further refinement of¢, ¢U = dV. From the above 

we get 

d(¢tZ - oV) = ¢tZ - odV 

= ¢~U - ¢oU 

= o. 

And now by considering ¢tZ.= (¢tZ - 5V) + oV, Z is an element of X. + 
l. 

-Yi since clearly ¢tZ - 0VeX1 and 0VeXi. Analogous reasoning applies 

to S. 

Theorem 5.4: (de Rham's isomorphhm theorem) Let M be a compact 

differential manifold then 

A. 
l 

X. + Y. 
l. l. 
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This is a direct result of the previous theorems and elementary 

theorem from algebra about isomorphisms. 

The rank of H (~, R) as a vector space over R is called the pth 
p 

betti number bi, (M) of the differentiable manifold M. Thus bp (M) or 

just bp is the dimension of the vector space Hp that is, the maximum 

number of p-cycles over R~ linearly independent of the bounding p-cycles. 

Stnce the pth betti ~umber b1 of Mis the dimension of the group 
p 

Hp(M), it follows that b (M) is equal to the number of linearly inde
p 

pendent closed differential forms of degree p module the exact forms of 

degree p. 

Let W be a closed p-form. To each p-cycle Z on M corresponds a 

period of W 

J W = (W, Z) • 
z 

If Z happens to be a boundary, Z = b = 0C the period vanishes, 

since by Stokes theorem 

f w - f w 
'z 'b 

= r w = r dW = r o = o . 
.Joe .Jc ·1c 

Because of this there is a relation between periods. 

then 

,• 

Lemma 5.1: Whenever cycles z1, ... are related by: 

~ a.Z. = boundary, 
1 1 

t ai Jz. w = o. 
1 

~ ;, 

Let us stop at this point and consider an example in the 1-

dimensional case. The existence theorems of de Rham's are concerned 

with the ~eriods of a closed differential form over the sipgular cycles 

of a compact differentiable form over the sin~ular cycles of a compact 



differentiable manifold. Let a be al-form and r a singular 1-cycle. 

We shall show how the period 

J a 
r 

is related to an indefinite integral. 

Let U = [U.} be a countable open covering of M by coordinate 
l. 
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· hb h d h th t U d to an open ball 1.·n Rn, nei.g or oo s sue a . correspon Subdivide 
l. 

r until each 1-simplex i~ contained in some U .• Then 
l. 

r =Er. 
l. 

where each r. is a chain in some U .. Each O r. is a 0-chain which may 
l. l. l. 

also be subdivided into parts each of which belong to a U .. 
l. 

Example: 

Let r be the closed curve. Then a has an integral in each U .• By 
l. 

Poincare's Lemma°'= df. in each U, for some function f. depending on 
l. l. l. 

a and U., thus l. . 
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r Q!=E [f.(P.+1) - f.(P.)] = t (f. l ~ f.) (P.) ~r 1 1 1 1 1- 1 1 

by regrouping. So in this way we are able to reduce the integration 

to the trivial case of integrating closed 0-forms over 0-chains. 

Similarly the problem of computing the period 6f a closed q-form 

O:', with compact carrier, over .a singular q-cycle r is now considered. 

One may again write f = ~ f. with f. contained in U .• If O:', de-
1 1 1 l 

notes the restriction of O:' to Ui and £0 the 0-cochain whose values are 

O:'i' that is, f0 (Ui) = ai' then denote by g0 the chsin whose coeffi-

C.ientS are f. I 
1 

One notes at this point the independence of the subdivision. 

Let rand f' be q-cycles such that of= 0 f'. Now choose a 

common finite open covering, U = {Ui}' and let O:' be a closed q-form, 

then in every U. a= dy. by Poincare's Lemma, 
1 1 

Therefore 

(a' r) = >:(ay., r.) 
1 1 

and 

(O:'' r') = ~(dy.' r'.) = ~(yi, ar.) 
1 1 1 

by Stokes theorem. If one considers 

I: (y.' 0 r. )=E J Yi = .r O 
8 1 1 r. r 0 1 

since the inner product is linear. In the same manner 

~ (y. , o r.) = r s 
1 1 .I O r 

therefore 
I 

(a, r) = (a, r ). 



Theorem 5.5: (De Rham' s first theorem) Let [ri} (i = 1, 2, 
q 
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• , b (M)) be a basis of the singular q-cycles modulo the singular 
q 

boundaries of a compact manifold M and W~ (i = 1, ••• , b,q(M)) be bq 

arbitrary real constants. Th~n, there exists a regular, closed q-form 

a on M having the Wi as periods, that is 
q 

i = 1, ... , b • 
q 

Due to the isomorphism theorem, one needs only establish this for 

cycles and cocycles, with real coefficients, on the nerve of a given 

covering U. 

Let L be a linear functional Z (N(U), R) that vanishes 
q 

R). Now extend L to C (N(U), 
q 

R) in the following way: Let 

on B (N(U), 
q 

[sd be a 

basis of Cq(N(U), R)/Z (N(U), 
q 

R) let 1;.e1; .• 
l. l. 

Then every se C (N(U), R) 
q 

has a unique representation in the form 

I 

I;=~ r.l;. + r, fe Z (N(U), R), r. e R. 
l. l. q l. 

Now the extension of L to C (N(U), R) ia complete by putting L(~;) 
q 

i 

L er ) . 
There exists a unique cochain x e C (N(U), R) such that (x, I;) 

q 

L(I;), x would be the c;:ochain whose values are L(ti(i 0 , .•. , iq)). 

Now 

(6 x, I;)= (x, oi;) = L(oi;) = 0 

by theorem [4.5] and L vanishes on B (N(U), R). I; is an arbitrary 
q 

chain, therefore ox vanishes. Now (x, 61;) = (dx, 1;) = (ox, I;) = 0 

therefore dx = 0, 

Theorem 5.6: (De Rham's second Theorem) A closed form is exact 



if and only if all of its period$ vanish, 

Let us suppose that (x, o~) = 0 for aU ~eC +l (N(U), R). We now 
p 
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consider the cochain x and its properties. '.Let L be a. linear functional 

on B (N (U) , R) de fiped by 
.q-1 

L(0N) = (x, N), Nee (N(U), R). p ' 

Since from above 0N = 0N' implies (x, N) = (x, N'), Lis well defined. 

Extend L to all ;the (q-1)-<;:hains. We may find a y such that 

(y, ~) = L(~), ~eeq_ 1(N(U), R). 

Therefore since yeeq-l(N(U), R), we may consider 

(x - oY, N) = (x, N) - (5y, N) 

= (x, N) - (y, oN) 

= L(oN) - L(oN) 

= 0 

since Lis linear and by theorem [4.5]. Sipce this holds for all 

Nee (N(U), R), then 0x vanishes; hence, xis a coboundary, If all of 
q 

the periods of x vanish, then 

and 

(x, N) = 0 

(x, N) = (5y, N) 

= (y, oN) 

= (dy, N). 

Since this 1$ true for all N, then x = dy. On the other hand if x = dy, 

then clearly for al] q-cycles N 

(x, N) = (dy, N) = 0 • 

We note at this time that our work has been with respect to an 

orientable manifold M. Although we did not state de Rham's Existence 

Theorems for orientable manifolds, they are valid only on orientable 



manifolds [6]. 

It is now time to explore some examples of De Rham's theorems. 

L k M h . i 1 s1 . E2 et us ta e t e unit c re e, , 1.n ·. • We may take the central 

angle e (mod 2n) as parameter. A 1-form 

w = f(e) de, where f(e+2nn) = f(e), 

. 1.· f th . . di f . h that f (e) - ~ 1.s exact ere 1.s a per1.o c µnct1.on g sue - de' 

Now 
2rr d 

f OF f .£Ei d9 = g(2n) - g(O) = 0. 
. 1 • o de 
s 

The above shows that the condition is necessary. If the integral 

vanishes, then we may set 

s<e) = .J3 f(t) dt, .IO 

and this relation is well defined e mod 2n. Then, the condition is 

sufficient. 

Any 1-form on Mis closed. Let w = kd9 where k is a constant. 

Then we may ask can we find k such that for any real number a 

J 1 w .r 1 kd9 = a? 
s s 

Clearly 

r d9 
a 

= -
. 1 k 
s 

would be the same as 

J 1 
kde = a 

s 

f de fTT de 2TT 
a = = -

• 1 • 0 k 
s 
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if and only if 

1 
on S . 

a 
k = 2rt' Therefore, we have De Rham's second theorem 

As another example take the cylinder (-1, 1) X s1 = ((t, e)I 
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~1 < t < 1, e mod 2TI}; Let a' denote the unit circle in the xy-plane. 

Theorem: Let w be a closed 1-form on the cylinder. Then w is 

exact if and only if 
(.t) 

f = o. 
•CI 

If f is a 0-form on the cylinder and,w = df, then 

f - f df = f f = O; 
' CI (.t) - ' C I ' c)C I 

therefore, the condition is neces~ary, 

Now consider the mapping 

¢: (-1, 1) X E1---~ (-1, 1) X s1 

¢(t, e) = (t, cos e. sin 9), 

which gives a covering of the cylinder by the infinite strip. Then let 

w be a closed 1-form on the cylinder such that 

I w = o. 
I c 

If O < t < 1, then the 2-chain 

2 1 
c = [O, t] X S 

has boundary 

2 1 
c)C = [t} XS - C 1 

hence 

= r w 
' CI 

= I ~ oc 
= J dw = O 

c2 

which implies that the integral of w tak~n over any circle parallel to 

c' vanishes. With this, consider the fprm ¢*w, a 1-form on the infinite 



strip, which from a differentiable structure alone, is indistinguish

able from E2 • We know d(¢*w) = ¢*(dw) = ¢*(0) = 0, and hence ¢*w is 

a closed 1-form on the strip. By the converse of the Poincare Lemma, 

there exists a function g on the strip such that ¢*w = dg. 
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Is there a function f on the cylinder satisfying ¢*f = g? Clearly, 

for this condition it is necessary and sufficient that g be periodic 

of period 2rr in 9. But 

g(t, e+2rr) - g(t, e) = ~+Zn dg(t, s) ds 
. e ds 

= I dg = J ¢*w 

[t] x [e, e+2rr] [t] x[e, e+2rr] 

= J U) 

[t] x (e, e·~ 2rr] ~ o. 

Thus, g has the required periodicity, so there is a function f on the 

cylinder satisfying ¢*f ~ g. Hence, dg = d¢*f = ¢*(df), and ¢*w = ¢ df. 

·Since¢* is locally 1-1 with a smooth inverse; hence¢* is 1-1 and 

w = df. 

Let us now turn to some examples without any proof but just an 

apr lication of De Rham' s theorems. 

Let us consider a torus,~. in E3 . The only significant 2-cycle 

is~ itself. By De Rham's first theorem, a 2-form a on~ is exact if 

and only if I OL = 0 . 
. l: 

~--
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There are two significant one-cycles c1 and c2 , Here c1 and c2 cross 

once. De Rham' s first theorem asserts that if w is a close<;l 1-form on 

t, then w is an exact differential if and only if 

De Rham's second theorem asserts that if real numbers a 1, a2 are 

given there exists a closed 1-form a such that 

J a= a 2 . 
c2 
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