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CHAPTER I
INTRODUCTION

The name 'test of significance! appears»fo have been first
introduced by Fisher (5) in 1925 to describe a procedure for assessing
the conformity or "goodness of fit" of a set of observations to a 'null
hypothesis', that is, the significance of an apparent discrepency
between the‘observétions and the hypothesis, According to Anscombe (1),
the first clear use of such a procedure was as early as 1735 when
Bernoulli (2) considered the closeness of the orbital planes of the
planets to one another and to the equatorial pleane of the Sun. Anscombe
further claims that the first clear proposal for the general use of
such a procedure in & broad class of situations was by Karl Pearson (12)
in 1900, culminating in his j? goodness of fit tests, but that the
concept of significance tests was first considered in a general way by
Fisher. 1In these and other -early developments of the subject, such as
Student's t-test (14), statistical tests do not appear to have been
regarded as strict formal decision rules, and in fact, Fisher argued
strongly against regarding a test of significance as a formal decision
rule.

In the basic paper of Neyman and Pearson (11) in 1933, they derive
a general theory for finding '"most efficient tests of statistical
hypotheses" and this theory is based on the development of decision

rules for accepting or rejecting the hypothesis in question. In



describing these test procedures they use the term '"test of signifi-
cance' in a decision making context. In a later paper by Fisher (6),
he claims that Neyman had no concept of a test of significance simply
as a means of learning but conceived of it only in the form of an
acceptance procedure. Thus, when Neyman and Pearson thought they were
correcting and improving his earlier works on tests of significance,
they were in fact reinterpreting them in terms of that "technological
and commercial apparatus known as an acceptance procedure', i.e.,
formal decision rule.

However, in spite of Fisher, since Neyman and Pearson published
their paper in 1933, the concept of a statistical test as a decision
meking device has gained almost universal acceptance in statistical
textbooks, It 1s generally presented as a formal decision rule for
deciding which of two hypotheses to accept. The development of
statistical decision theory in recent years has emphasized a more
general approach, but it has not affected the presentation of statisti-
-cal tests as decision meking devices.

Taking Fisher's point of view, a distinction will be made between
a test of hypothesis and a test of significance. A test of hypothesis
is a formal decision rule in which one is committed to taking an action,
that being either accepting or rejecting the null hypothesis. A test
of significance simply consists of calculating the tail probabilities
of a test statistic, called the test criterion, under a given null
hypothesis. This tall probability is called the significance level and
is such that the smaller the significance level, the more inconsistent
with the data is the null hypothesis judged to be. The significance

test consists only of evaluating the significance level and the



experimenter is in no way forced to take any action for or against the
null hypothesis.

Although significance testing is seldom described in statistical
textbooks, a casual survey of some research journals indicates that it
is an extremely common and apparently useful procedure. However, the
accompanying description of such tests is nearly always in terms of the
decision meking ideas of hypothesis testing. Applied statisticians
therefore seem to be in the unfortunate position of giving in to deci-
sion making ideas and concepts whiie actually subscribing to practice
that which might better be described and recognized as data analysis
and description techniques, such as significance testing.

Since significance testing seems to be widely practiced it seems
that a theory of significance testing which is independent of decision
rule techniques is needed. The immediate concern in developing such a
theory is that of choosing a test criterion or test statistic to use in
performing the significance test. Dempster and Schatzoff (3) state
that perhaps the reason Neyman and Pearson formalized statistical tests
into decision rules for accepting or rejecting the null hypothesis was
in order ‘to compare different tests. That is, in some way compare
tests so-as to arrive at a '"best! test for a particular hypothesis
problem. As is well known, the Neyman-Pearson theory compares tests by
looking at operating characteristics of these decision rules under
alternative hypotheses, in particular by looking at the power function.

It seems appropriate at this time to give a more formal definition
of a test of significance as viewed in this presentation, to compare the
-significance test with the classical Neyman-Pearson theory involving

size and power of a test, and to discuss the possibilities of choosing



a test statistic for a test of significance.
Degecription of a Test of Significance

Let X denote a random variable, either vector or scalar, and
assume that X has a probability density function fe(x) , or cumula-
‘tive distribution function, hereafter abbreviated c.d.f. , given by
Fe(x) , where 8 1is a parameter, vector or scalar, belonging to some

parameter space Q . .Let the null hypothesis in question be given by
$ s o
Ho 8 € ®o where @Do cQ

Thus, the hypothesis may be either simple or composite. .Let T(X)
denote a test statistic calculated from X with c¢.d.f. Ge(t) o 1T
will be required that Ge(t) be completely specified when 6 € CQ)Q

Anscombe (1) suggests some alternatives to the above reguirement.
He suggests finding the distribution of T conditional on the para-
‘meters, i.e., 0O € (:% , and then introducing a prior distribution for
the parameters involved. The resulting significance test would then
relate jointly to HO and to this prior distribution. He also
suggests that some kind of bounds for the aggregate of conditional
distributions of T , agaln conditional on the parameters involved,
might be used, rather than the conditional distribution itself,

The approach taken here means that the null hypotheslis must be a
simple hypothesis as far as T is concerned. For 6 € (:% then,
denote Ge(t) by Go(t)o Suppose further that T dis chosen in such - a
way that small values are inconsistent with the null hypothesis. Then

the sigrificance level associated with T , denoted by SL(T) , is



defined by

SL(T) = GO(T) .
An observed value for the significance level, say « , is computed by
a:G(t)o
ol

A test of significance of the given hypothesis problem then consists of
observing a value of T , say t , and computing o = Go(t) o
Now, the significance level, SL(T) , is a random variable and

hence has a c.d.f. which will be denoted by He(a) - Thus,

(@) = Py, (1) < o] - jso) < ] -

A further discussion of the above notation. seems appropriate at

this time. If tw§ different statistics, say T and S , or T(l) and
T(z) , are under consideration, then the respective c.d.f.s will be
denoted by

Hg(af) = PG[SL(T) < oz] and Hg(ez) = Pe[SL(S) < on ,
or ’

Hél)(a) =P

G[SL(T(]')) < oz] and Hé2>(oz) - Pe[SL(T(2>) 5% .

Whenever no -confusion arises as to what statistic is involved, no
superscript will be used. Similarliy, for specific values of 6 , say

ei . He (@) may be denoted by Hi(a) o Also, for '8 € C%)g He(a)
i

will be denoted by Ho(a) o
If T 1is a continuous random variable, then under the null
hypothesis,

Ho(a) =qg for 0<og<l.



That is, SL(T) is & uniform random variable distributed between

zero -and one, . More generally,
i (a) =PO[SL(T)5Q:]_<_Q: for 0<aog<1.

The question of whether or not it is necessary to specify the
~ alternative hypothesis for a test of significance has been studied (1).
Bven though the question seems to remain open, it is a fact that tests
are in use where the alternative hypothesis is not clearly specified,
prime examples being goodness of fit tests. However, it is also true
that in certain situations specification of the alternative hypothesis
seems like an essential ingredient. For example, it seems necessary to
specify the alternative hypothesis in order to choose between the one
tailed and two tailed Student's t-test.

| Here the point of view that an alternative hypothesis is necessary

will be adopted and it will be given by
HA: 8 € @%_ where HA.C-Q )

with @)o n ®A = (i> -and ®o v ®A < . Thus, the alternative

hypothesis may be either simple or composite.

A Correspondence Between Significance

Testing and Hypothesis Testing

Suppose one has given a test of hypothesis of a given size @ for

‘the hypothesis preblem
E:0¢€ @ wversus H:0¢€ @ -

ILet X denote the observation, either vector or scalar. The test of



hypothesis will be assumed toqbé non-randomized. Thus, there exists a
size o -‘critical region R such that Ho is rejected if X € R and
Ho is accepted if X £R o

For the above hypothesis then, a test of significance could be
constructed by defining the significance level for an observed’ X to
be

SL(X)

@, if X €R,

1,if X £R.

Next, suppose there is a whole class, say A , of sizes avallable,
so that the given 'test of hypothesis could be performed at any size
for which o € A . Then, cérresponding»to A, there exists a class of
critical regions A = {%d ‘ o € %}o That is, each @ determines
‘uniguely a critical region Ra o For this situation there appears to
be a number of ways in which one could define a test of significance.
The most appropriate seems to be as follows: For observed X , define
SL(X) to be the smallest value @ such that X belongs to every

critical region of size greater than or egqual to ¢ , that is,
SL(X) = Min{% ] X € Ra* for all g* 2 ¢,¢* and @ E!{},

Note that for the one and two tailed tests usually encountered in
statistical methods the above value of SL(X) gives that value of «
at which the cobservation, or data, "would have been. significant'.
Another feature of this significance test is that the set of possible
values for ‘SL(X) dis the same as the set A of admissable sizes.
Conversely, suppose a test of significance, with-associated test

statistic T , i1s given. If one were to adopt the decision rule to



reject the null hypothesis if the observed significance level is less

than or equal to some pre-specified « , then
3 19 { tr = 3 < =
Pr [re;]ectl.ng H | H true] P, [SL(T) < a:l Ho(oz) )

and since Ho(a).i @ , equality if T 1is continuous, this constitutes
-a test of hypothesis of size « .

With this association between a decision rule and a significance
test, an interpretation of the power of a tesf of hypothesis in the test

of significance context can be obtained. Thus, the power is given by

[}

Be(a) Iﬁ‘Eﬁjeoting E ] B falsé]

Pe [rejeoting Ho] y 8 € ®A )

PGSL(T)goZI, 6 € @, ,

i

He(a) , B € @%Xo

In thinking about the situation, the following sketches may be helpful.

A

He(a)ae E H

Be(a) = He(a)___

gize = Ho(a) = ¢

!
I
1
o

Continuous Case

Be(a) = He(a)
o

i () Sal

Discrete Case



In hypothesis testing attention is focused on a specific value of
the significance level, say « , and He(a) is considered as 8 varies
over G@X « .In significance testing He(a) must be considered as a
function of both €& and & simultaneously. That is, the family of
Coedofos He(a) , rather than the values of this family for a specified

o , are of interest.
Comparisen of Test Statistics

The discussion in the preceding section was given merely to
establish a correspondence between significance tests and the classical
theory of hypothesis testing, and in order to do so it was necessary to
regard a significance test as a decision meking device. It should be
-emphasized again that a test of significance is not to be viewed as a
formal decision rule but more as a means of data analysis and data
interpretation. The significance test consists solely of evaluating
the significance level corresponding to the observed value of the test
statistic used with no commitment as to what use, i1f any, is to be
made of the computed significance level.

In performing a significance test one may use any test criterion
he chooses, that is, any statistic could be regarded as a test statistic
for the given hypothesis pfoblemo A particular statistic.might be
chosen over another because it seems to measure some characteristic of
the observaticns which is of interest or perhaps there is simply some
intuitive basis which suggests its use. Of immediate concern then, is
the problem of providing a more precise method for comparing test
statistics, even though no predictable use may be made of the resulting

significance level. Thus, exactly what test statistic should be used in
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order to evaluate the significance level?

Several criteria are available to help answer the above question.
In simple situations it may be possible simply-to graph the He(a>
curves for various statistics and compare these curves as 6 and ¢
vary over @%_ and the unit interval respectively. Dempster and
Schatzoff (3) investigate the properties of the single criterion
"expected significance level', defined by

ESL = jl o dH(e)
o

as a basis for comparison of test statistics. They also suggest that
a theory of tests might be built on the basis of comparing He(a)
curves which parallels the Neyman-Pearson theory of hypothesis testing.
Rigorous developments of the Neyman-Pearson theory of hypothesis testing

may be found in Fraser (9) or Lehmann (10) .
Statement of the Problem

The main purpose of‘this investigation is to study the problem of,
and difficulties which arise in, providing a rationale for significance
testing which avoids commitment to any decision rules. The approach
taken will be that suggested by Dempster and Schatzoff, namely, to build
a theory which parallels the Neyman-Pearson theory of hypothesis testing.

In Chapter 1T a criteriocn for comparing test statistics is
developed and the problem of evaluating the significance level for a
problem involving a simple null hypothesis and a simple alternative
hypothesis is discussed. In later chapters the scope of the study is
extended to include different types of composite alternatives. Most of

these extensions are restricted to one-parameter families of
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distributions so that much is still left to be desired as far-as
providing a complete rationale for significance testing is:concerned.
There appear to be a number of tools available in the Neyman-
-‘Pearson hypothesis testing theory that help the theory flow smoothly,
for example, the randomized decision rule and the trivial test function,
which do not seem to have analogs in the test of significance context.
It may certainly be that Neymen and Pearson realized these limitations
and thus purposely '"mis-interpreted" Fisher's concept of a significance

test.



CHAPTER ITI
COMPARABLE STATISTICS AND SIMPLE HYPOTHESES
Criteria for Comparing Test Statistics

Consider the comparison of two test statistics T(l) and T(E)

in the case of a simple alternative hypothesis H): 6 =8

seem that T<l) should be deemed preferable to T(E) if

Hil)(a) 2 HiE)(a) for all % with strict inequality for at least one

It might

¢ , This seems reasonable if both statistics are continuous random

variables, for they would both admit the same set of possible values
for the significance level, nawmely, O < alfvl . But if either or both
of the statistics are discrete it is not .obvious that this procedure is

optimal.

(L) (2)

As an example, consider two discrete statistics and T

whose corresponding Hil)(a) and Hig)(a) graphs are in Figure 1.

B ()
i L» Hiz)(a)
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It does not seem clear  that T(l> -should be judged preferable to T(2>

even though Hil)(@) 2 HiZ)(OO for all « with strict inequality for

(2)

at least one « , The statistic T might be more useful to the
experimenter because more distinct significance levels are actually

achievable,

(1) (2)

Consider ‘as a second illustration statisties T and T

with H(l)(a) and Hia)(a) curves as given in Figure 2.

1

(1)
Hl‘f (o)

:::éiﬁr*

gww — Hia)(a)

L]

i 3 i 4
¥ T L4 ¥

bl al b2 a2 b3 a3

L J

Figure 2
Note that T(l)

while T(a) admits significance levels a

admits possible significance levels bl’ba’ and b, -

3

a5, and a Both statistics

v 3°
give rise tc the same number of achievable significance levels but have

(1)

‘no achievable significance levels in common. Should T be regarded
as better than T(2) since Hil)(d) 2 Hia)(@) for all achievable
e _ (1) (2)

significance levels of T , or should T be regarded as better

since H<2)(@) z Hil)(&) at all achievable significance levels of

T(a)?

In order to -avert situations such as those indicated in the
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previous illustrations it appears that the comparison of two statistics
must be restricted to those which admit the same set of achievable

significance levels,

(1) (2)

and T are said to be

Definition 2,1 Two statistiecs T
comparable if and only-if they have the same set of achievable

significance levels.,

As mentioned earlier, no difficulty arises in the comparison of
two statistics 1f they are both continuous. That is, by the’definition,

any two continuous statistics are comparable. As a further -consequence

of the above definition, if T<1) and T<2) are comparable, then
2 (@) - 1) @ (2.1)
o) o

for all o, O0<ao<1. Moreover, each member of Equation (2.1) is

equal to ® for all achievable ¢ ,

Definition 2.2  If T<1) ~and T<2) are comparable statistics,
then T<l) is said to be more sensitive than T(Z) if
B @) 2 1% @ (2.2)

for-all @ , with strict inequality holding for at least one « .

Definition 2.3 If a statistic T dis a most sensitive test

statistic for all 8 € @D , then T 1is said to be a uniformly most

sensitive test statistic.

In choosing a statistic for evaluating the significance level for

‘a problem invelving a simple alternative, say HAz 8 = 91 , one would
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thus hope to find a statistic which is a most sensitive test statistic.
If the alternative is composgite, say HA:‘G € sz’ then ‘a uniformly
most sensitive test statistic would be desirable, altheough such may not
always exist, as will be seen later.

The preceding definitioms involving most sensitive test statistics
do not assure a unigue most sensitive test statistic for a given
problem. In particular, for discrete statistics the property of being
most sensitive applies only to a class of comparable statistics. In
this sense there may be many most sensitive test statistics which are
simply not comparable. For the continuous case however, since all
continuous statistics are comparable, a most sensitive test statistic
is unique in that any other statistic which .is also most sensitive must

actually be equivalent.
Simple Hypotheses

As mentioned by Dempster and Schatzoff (3), it is an immediate
consequence of the Neyman-Pearson fundamental lemma of hypothesis test-
ing applied to the whole range of sizes & , O < & <1 , that the
likelihood ratio statistic is more sensitive than any other statistic,
in the sense of Definition 2.2, for testing a simple null hypothesis
" against a siople alternative hypothesis. However, this requires one to
‘interpret a significance test as a decision rule., It seems desirable
then, to state a theorem and give the proof in the present context of

significance testing.

Theorem 2,1  Neyman-Pearson Lemma for Significance Testing:

The likelihocod ratio statistic is a most sensitive test statistic for
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evaluating the significance level for a simple null hypothesis versus

a simple alternative hypothesis,
Proof: Let the likelihood ratio statistic be given by
m = 1M = 2 Go/e, @)

where fo -and fl are densities, fo E fl , with respect to a measure
p , under the null hypothesis .and alternative hypothesis respectively.
(2)(X) be any other statistic comparable with IR , i.e., such

that

H(l)(a) _ H(e)(a)
0 o)
for-all @ ., To prove the theorem it is necessary to show

iY@ 25 @

or

PI[SL(T(D) 50{! 2 Pl[sL(T(a)) < c;»] ,

or equivalently

,PI[GO(T(D) 5({! = PIETO(T(E)) '<'°J (2.3)

for all & , where GO -and Fo are the corresponding c.d.f.s of

() and T(a) under -the null hypothesis. If T(l) and T(a) are

T
continuous, GO rand FO ‘have inverses for all & ., .If they are
discrete, define GO -and Fo only-at the points of positive probabil-

‘ity, that is, those points that admit achievable @ values. Thus,

=1 - :
GO“ and Fol exist and (2.3) is equivalent to

Pl[T(l)(X) < G“l(a)} 2p [T(E)(x) < F_l(@):] ,
= 0 1 - "0
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or
Pl[fo(x)/‘fl(x) < G;l(oz)] 2 Pl[T<2)(x) < F;l(a()} .
.Let
5, = {rs 2,60/8,0 s 6@}
and
5, ={x: 7@ () < F;1<a>} .
Then
Pl[GO(T(l)) < o{l - Pl[Fo(T(a)) ioﬂ
= jé fl(x) dulx) - fs fl(x) dulx)
1 )
= fo(x) dulx) - fo(x) dw(x)
t&rﬁz 1 1k££l 1
1
2 f (%) dplx) - £ (%) dp(x)
G;l(a) ‘{jgl—sa o M jgz-sl o R i}
1
= f (%) dulx) - f (%) du(x)
G;—1@1) {}gl o M jgz o K t}
- = {E P @ - 58P
G (&) ° ©
@]
=0,
Thus,

Hil)(a> 2 Hia)(a) (2.4)

for all achievable o . However, if both statistics are discrete,

Hél)(a) and Hia)(a) are step functions so that (2.4) holding for all

achievable ¢« 'would imply it holds for 2ll o, O <o <1l.
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The Neyman-Pearson lemma for significance testing gives a
sufficient condition for a most sensitive test statistic. The question
naturally arises as to whether or not it also gives a nécessary condi~
tion for a most sensitive test statistic. That is, given a statistic
T which is known to be a most sensitive test statistic, is this
statistic equivalent to the likelihood ratio statistic? The -answer, of
course, is negative. The statistic T could be most sensitive among a
class of statistics which does not contain the likelihood fatio‘statis—
tic, i.e., the étatistics in this class do not have the same achievable
significance levels as the likelihood ratio statistic. The likelihood
ratio statistic would be the "unique' most sensitive test statistic
within the class of all statistics which are comparable to it in the
sense that it is at least as sensitive as any other statistic in this
class.

In hypothesis testing an immediate result of the Neyman—Pea?son
lemma is that the power B of the most powerful level « test for a
simple null hypothesis versus a simple alternative hypothesis is such
that B > o . An analogous result for significance testing is given in

the following corollary.

Corollary 2.1 For a simple null hypothesis versus a simple

alternative hypothesis the likelihood ratio statistic 1s such that
) >
H (@) > H (o)
forall ¢, O0<g<1l, and

Hl(a) > o

for 211 achievable o -
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Proof: Let the likelihood ratio statistic be given by
IR = T(x) = fo(x)/fl(x) ,

where fo -and fl are densities, fo E fl , with respect to a measure
w , under the null hypothesis and alternative hypothesis respectively.
Let GO denote the c¢.d.f. of T wunder the null hypothesis. It is

necessary then to prove that

Pl[SL(m 30[} >PO|:SL(T) f_oﬂ )

for all o, O <g <1, or equivalently

Pl[GO(T) 5_{] >PO|:GO(T) 5{] : (2.5)

forall o, O0<og<l. If T is discrete, define GO only at the
points of positive probability, that is, points which give achievable
o values. Thus, G;l ‘exists, and the inequality in (2.5) is

eqguivalent to

Pl[rr(x) < G;l(a)] > POET(X)'S_ G;l(o»] ,

or
£ (%) : £ (x)
0 =1 o -1
Pl[leXS‘i % (aﬂ > Po[flzxs'i % (aﬂ ’
Let

lfo(x) 1
S =<x <G (@)
flzxs o
-1
If 0<G () <1, then

f (=)

jS [?l(X) =-1.:E’O(x):] du(x)\z js [Gzl(a) - fo(xi} du(x)
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E;f%z- --q fs £ (x) du(x) >0 .

«)

If G;l(W) 21, then

INEXS

2,60 aut) < L (a0 -gle go] ae

H

[} - Ggl(a{} iﬁ £, () dplx) <0

implies

ig [fl(x)

Thus, since the above integral plus the integral over S sums to zero,

-fo(x)J du(x) <0 .

js [fl(x) —-fo(x)J au(x) >0 .

Therefore, for all G;l(a) , and since G = was defined only at points

which gave achievable values of « ,
H (o) >H () =« (2.6)
1 o :

for all achievable @ . But, if T is discrete Ho(a) and Hl(d) are
step functions and (2.6) holding for all achievable « implies it holds

forall &, O0<g<1l. Hence, in general
7 (o
Hl( ) > Ho(a) )
forall o, O<a<1l, and
o Fol
Hl()>

for-all achievable .« , as was to be proved.
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When applying the Neyman-Pearson fundamental lemma for finding a
most sensitive test statistic for evaluating the significance level, one
might generally find it moere convenient to use some function of IR

rather than LR itself.

Theorem 2.2 Let T be a most sensitive test statistic for
evaluating the significance level for Ho: 8 € C%) versus HA: B € (:k.
Then any increasing function of T is also most sensitive for the
given hypothesis problem.

Proof: Let T have c.d.f. Go(t) under Ho , and let 8§ = £(T)
be any increasing function of T with c¢.d.f. under Ho of Fo(s) .

Thus, T = £ (g) implies Fo(s) = Go(f'l(s)) = Go(t) so ‘that

n

Py [SL(T) < a} - B, [SL(s). < oz]

PeE}O(T) 504 - Pe[GO(T) 50&

= O =]

g (@) - Eo(a)

i

Therefore,

T

H (o)
¢}

1!

S

E (o)
o)
for all o -and

H§<a> = Hg(a)

for all o and 8 € C% implies that S 1is a most sensitive test

statistic since T was given as most sensitive.
An inmmediate result of the theorem is the following corollary.

Corollary 2.2 For a simple null hypothesis versus a simple

alternative hypothesis,any increasing function of the likelihood ratio
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statistic is also most sensitive.

To 1llustrate previous definitions and theorems, consider the exam-

ple of five independent binomial trials with

H:p=.2 versus H,:p = Lo

Application of Theorem 2.1 and Corollary 2.2 yields
M) - x

as a most sensitive test statistic. Thus, the significance level when

¥ 1s observed is given by

G (-x) = PO[—X < —;E‘J = PO[X 2 X] .

A calculation of the significance level for all possible values of x

along with the corresponding Hil)(a) values is given in Table 1 .

Table 1
x fx;p=.2) flx;p=.4) @ Hil)(a)
5 ,00032 .01024 a; = .00032 .01024
4 -00640 .07680 a, = .00672 .0870k
3 -05120 - 23040 a; = 05792 031744
2 - 20480 - 34560 a), = .26272 . 66304
1 40960 .25920 ay = 67232 L9222k
0 32768 07776 ‘ag = 1.0000 1.00000

The lack of uniqueness of a most sensitive test statistic was
discussed earlier. To emphasize this point consider a second test
statistic, say

7@y - |z -~ 3] .
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Calculations of the significance level and the corresponding values

of Hiz)(d) are given in Table 2.

Table 2
t = |x - 3| £(t3p=.2) f(tsp=.l)
0 .05120 223040
1 .21120 «42240
2 -140992 - 26944
3 32768 07776

A graphical comparison of

Figure 3.

Hil)(a) and H)

(1)(a)

(2)

o
b, = .05120
b2 = 26240
b3 = 67232
b, = 1.0000

2 (o)

«23040

.65280

92224

1.00000

(w) 1is represented in

=b4:1
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(1)

Although T is the 1ikelihood statistic and as such is a most

sensitive test statistic, it is not evident that it is better than

(2) (1) (2)

T o That is, T and T are not comparable. Certainly
(1) . N (@)

0y (¢) is not greater than or equal to Hy (@) for all o , for

example, .0512 < o < ,05792 ‘and .2624 < o < 26272 . It is true

however, that Hil)(a) > HiZ)(a) for all o which are achievable

values of SL(T(]'))o

Another difficulty here seems to be that the class of statistics
comparable to the likelihood ratio contains only the likelihood ratio
itself, or equivalent statistics, and in this respect there may be
some apprehension about using the likelihood ratio statistic as the
optimum test criterion for evaluating the significance level. One
advantage of the likelihood ratio statistic in this example is that no
other statistic ylelds more possible achievable significance levels.

The likelihood ratio statistic does possess some properties which
in a sense make it more 'admissable' as a test criterion than any other
statistic, even though the statistics may not be comparable. Consider,

for example, the value ¢ =D for T(z)’e Now if it happened that

1

HEZ)(bl) > Hii>(a3) this would certainly present some doubt as to the

validity of the likelihood ratio as a best statistic. However, note

that for all b <a, , H(z)(b ) < H(l)(a.) - This result, which was
k 3 1 k” = "1 J

first brought to the attention of this writer by Oscar Kempthorne, is

presented in the following theorem.

Theorem 2.3  Suppose T = fo(x)/fl(x) is discrete with possible

significance levels ay < a, < 0o and that S is any other discrete
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statistic with significance levels bl < b2 < ese , Then for no

X S T
by < a; 1is Hl(bk) >Hl(aj) .

Proof: Let tj denote that value of T which gives rise to aj

and s, that value of S -giving rise to b

" and -Go and Fo the

k

-corresponding c.d.f.s of T and S . Thus,

1l
s

T S P : ‘
HGa) - B0 =7 [, <a] 7,7, <]

=P |T < G;"l‘(a_jg" - -PlEs < F;l(bk)]

Then

§ f1(x) —-g fl(x)
1 2

av]
'_I
M3
IA

&
.

1

ke
I,_l
Tl
1A
mp
[ I

i

v

T fo(xi

l-[i £ (x) -
t._s 0 g
ksl 2

%—j[HZ(aj) - Be)]

1 A
- ’c'j[aj - b.kJ_ .

T S L '
Tt < 1 2 : i .
hus for bk aj , Hl(aj) Hl(bk) and the theorem is proved

Hence, even though the two statistics may not be comparable, it
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seems like the likelihood ratio statistic i1s more admissable in that
even though S might admit to smaller significance levels the corre-~
sponding Hi(w) value can not be as large as that associated with any
larger significance level of the likelihood ratio. If there are common
achievable significance levels for the two statistics then the likeli=~
‘hood ratio gives values of Hl(a) which are at least as large as the

Hl(a) values for the statistic S .



CHAPTER TIIT
ONE SIDED ALTERNATIVES
Introduction

The case where both the hypothesis and the class of alternatives
are simple is mainly of theoretical interest since problems arising in
the applications typically involve a parametric family of distributions
depending on one or more continuous parameters. In this chapter,
consideration is resfricted to the situation where the distributions
involved depend only on a single real valued parameter 8 .

Although, for the one parameter case, one is restricted in signi-
ficance testing to a simple null hypothesis he may wish to consider a
composite alternative hypothesis, say HA: 8 E'qu. Here, attention
will be confined to one sided alternatives, and hence, hypotheses of
the form

HO: g = eo versus HA: 8 >-eo )

or

H:8 =28 versus H,: 8 <8 .
o) o A o)

A uniformly most semnsitive test statistic will not always exist
for the above hypothesis problems. For example, if the alternative
8 > 90 is considered, one will generally be unable to find a statistic
which is independent of 8 > eo , in which case one would not really

have a statistic. A uniformly most sensitive test statistic will exist

27
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if additional assumptions are made about the distributions involved.

Distributions with Monotone Likelihood Ratio

Definition 3.1 A real parameter family of distributions is said

to have strict monotone likelihood ratio . if densities exist and if there

exists a function T(X) such that for 6. < 8 the ratio

1 2’

fy (X)/fe (X) 1is an increasing function of T(X) on the set of X
2 1

for which the ratioexists.

Theorem 3.1 Let 6 Ybe a real parameter and let the random
variable X have probability density fe(X) with strict monotone like-
-lihood ratio in T(X) . Then,

(i-a) For all 8, -T(X) is a uniformly most sensitive test
statistic for evaluating the significance level of the hypothesis
problem

H:8=28 versus H . : 8 >86 .
o] o A o)

(i~b) H;T(a) is strictly increasing in 6 for all points 6 for

~which H;T(a) <1, forall ¢, O0<g<1l.

(ii-a) TFor all 0, T(X) is a uniformly most sensitive test
statistic for evaluating the significance level of the hypothesis
problem

H:8=20 versus H,: 8 <86 .
o) o A o)

(1i-b) Hg(a) is strictly decreasing in 8 for all points 6 for

which Hg(a) <1, forall @, O<g<1l.
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Proof: (i-a) Let 8, be arbitrary and consider

Ho: 6 = eo versus HA: B = el

where el is arbitrary except that Gl > GO . .Then by Theorem 2.1,

fO(X)/fl(X) is a most sensitive statistic for 6 versus 8, . But

since 91 > eo , fl(X)/fo(X) is increasing in T(X) so that
fo(X)/fl(X) is increasing in ~T(X) . Thus, by Corollary 2.2, -T(X)

is most sensitive. Furthermore, ~T(X) is independent of 6 (as long

1

as el > eo) , hence, -T(X) is a uniformly most sensitive test
statistic for evaluating the significance level of HO versus HA .

Thus, for observed X , say x ,

SL(-T(x) ) PO[-T(X) < —T(X):l

PO[T(X) > T(x)] .

(ii~b)  Let 6, and ej be any two values of 6 with ei<ej .
Consider

H:6=8. wversus H,: 8 =6, .

o} i A 3
=T =T .
Then, by Corollary 2.1, = He (o) < He () for all ¢ » Thus, since
i j
6, and ej were arbitrary, HgT(a) is strictly increasing in 6 .

The proof of (ii) is omitted since it is analogous to that of (i).

An important class of families of distributions that satisfy the
assumptions of Theorem 3.1 is the class of one-parameter -exponential

families.
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Corollary 3.1 Let 6 be a real parameter, and let X have

probability density, w.r.t. some measure u ,

Q(8) T(X)

f&X)=C®)e h®X) ,

where @ 'is strictly monotone.

(i) Consider H : 8 =6 versus H,: 6 >8 ;
o) o} A o

a) If Q is increasing in 6 , -T(X) is.uniformly most
sensitive.

b) If Q is decreasing in 6 , TQX) is uniformly most
sensitive. *

(11) Consider H : 8 =6 versus H,: 8 < o, i

o o A
a) If Q is increasing in 6 , T(X) is uniformly most
-sensitive.
b) If Q 4is decreasing in 6 , -T(X) is uniformly most
-sensitive,

Proof (i~a): Consider -the ratio

f (X) c(e )
0 B o T(X)| Qe ) - q(e)
£~ C® © L ° ]°

If @ is increasing in 6 , then Q(@O) --Q(8) <0, so that the ratio
is strictly increasing in -T(X) . Applying Theorem 3.1(i-a) gives
-T(X) as uniformly most sensitive.

The rest of the Corollary is proved similarly by direct applica-

tion of Theorem 3.1,

As examples; consider two of the well known hypothesis problenms

involving one parameter normal distributions.



31

Example 3.1: Consider a random sample of size n from N(O,ca) ,

and the hypothesis problem

2 2 2.2
Ho. ¢ = g, versus HA' g > va.
' 22,2
Here, f (X)/f (X) is increasing in TX) = I, X./¢" , for
o] % ‘ i=l "1 Yo

52 > oi . Hence -T(X) is uniformly most sensitive for'evaluatQ
ing the significance level and for observed x = (xl,---, Xn)

one obtains the observed significance level
2.
s.16) = B [ 2 760)]

Example 3,2: Consider a random sample of size n from N(u,og) ,

02 known, and the hypothesis problem

HO: b= u,o versus HA: u,<ru,o .

Here fH(X)/fu (X) is increasing in X for W<, so that X
o

is uniformly most sensitive, hence, T(X) = Vu& -'uo)/c is
uniformly most sensitive., Thus, for an observed X , say

X = (xl,ooo, xn) , the observed significance level is given by

SL(T(x)) = Pr[%(o,l) variate < T(Xﬂ .

Locally Most Sensitive Statistics

Significance tests developed earlier for one sided-alternatives
dnvolved a family of distributions where the distributions were
sufficiently well behaved, i.e., a family of distributions which had

striect monotone likelihood ratio. Suppose the random variable X has
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density fe(X) , W.r.t. & measure  , but does not have monotone

likeliheod ratio .and consider
H:8=28 versus H.: 8 >86 .
o) A o)

Let T* be a statistic with distribution Go under 'Ho ‘and let
R = {%: GQ(T*).S a}»- Then

OB jR £, () apG)

Suppose HS(a) possesses contlnuous derivatives wl.r.t. © and that

the differentiation can be carried out under the integral so that
¢ 1
(o) = § i aptx)
6 R C]

where primes indicate differentiation w.r.t. 6 . If T* were to be

most sensitive it would be necessary that

1]
ST
(o]

H;'(a) >0 (o)

for any other statistic which is comparable with T* . However, the
inequality would not imply T* most sensitive, but it would imply
T* most sensitive in some one sided neighborhood of 90 , say

@O » 8, + € . TInthis case T* will be said to be locally most

sensitive.

Theorem 3.2 Let T*(X) = =fé(X)/fo(X) , and let S be any other
statistic which is comparable with T* ., Let GO and FO denote the
codofos under Ho for ‘T* and S respectively. Then, for all ¢ ,
O0<aogc<1l,

- s'
Ho () 2 Ho (o) -
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Proof: Define GO only at points of positive probability so that

o * = : * -1

{X : G (T )5@}—{X P T* <G (a/)}
. ! _l i

={x P20 2 - 6 (o) fO(X)}

G;l exists. . Let

and
5, :{x P F (8) < a}.
Then .
B (@) - B (a) = js £1 () () -_js £1 () ap)

1 2

1l

[ 2 am -] 2@ e

Sl-82 SE_Sl

> -7 Ha) U ) au - [ £ G du@
Sl—S2 SE—Sl

- jSlfom au(x) - jszfo@c) e

= mG;l(a) H;(a) - Hi(a)]

]
Therefore H;'(a) = Hi () for-all o .

A similar -theorem could be given for Ho: 6 = So versus

HA: g8 < eo in which case T* = fg(X)/fo(X) is such that

1

S

o () for all o -

¢
» <
H (@) < H



CHAPTER IV
TWO SIDED ALTERNATIVES
Introduction

When considering composite alternatives for significance tests
attention has previously been restricted to one sided alternatives. In
this chapter a one parameter family of distributions 1s considered

where the hypothesis is of the form
H:9 = o, versus HA: 8 # eo .

Special attention will be given the one parameter exponential family.
Since the distribution of the test statistic T 1is required to be
completely determined under the null hypothesis other types of two

sided problems such as

: 8 2 : :
H:8<#06, or © 62 ,» where 8, < 6, , versus H

A” el <8< e2

H:8. <8<8 versus H,: 68 < 8

ot 12 2% A or 8 >89,

1

would have no place in the present context of significance testing.

The ultimate goal in determining a test statistic for evaluating
the significance level for the hypothesis 6 = 90 versus 8 # 90 would
be, of course, to find a statistic which is uniformly most sensitive.

However, in general, such a statistic will not always exist. For

3k
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example, let the observable random variable X have the density

eT (X)

fe(X) = C(8) e h(X)

where X and T(X) are continuous random variables. For the given
hypothesis, suppose that T* is a uniformly most sensitive test
statistic. But also, from Corollary 3.1, for 6 > eo the statistic
~T is such that

HgT(oﬁ 2 1 (a) .

Hence, -T and T* would have to be equivalent. Similerly for
B < eo , Corollary 3.1 would imply T and T* equivalent, thus -~T
and T -equivalent, which leads to a contradiction that T* is most
sensitive.

So in determining what statistic to use for evaluating the
significance level for a two sided hypothesis problem, since a uniformly
most sensitive statistic will not exist, one may wish to find a statis-

tic which is "'best" among a smaller class of test statistics.
Unblased Significance Tests

In hypothesis testing a simple condition that one sometimes

imposed on a test of hypothesis of the form
Ho; B € C%) Versus HA: B € ng

was that for no alternative in HA was the probability of rejection
less than the size of the test, that is, the power of the test was such

that

B(e) <o if © € @ -and B(L) 20 it 6¢ @ .
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A test satisfying this condition was called unbiased. Thus,for some
hypothesis testing problems, although-a uniformly mest powerful test
might not exist, one could possibly find a test which was uniformly
most powerfﬁl among the smaller class éf unbiased tests.

With the correspondence between hypothesis testing and significance
testing established éarlier»the above definition would translate

immediately to
Hy(@) <o for 8 € @ and Hyla) 2a for o € @ .

As tests of significance have been formulated the first of these condi-
tions is satisfied fqr'all o O.f @< 1l ., In defining the concept of
unbiasedness for significance testing it might be presumed that the
second condition should hold for all ¢ as well. But this condition is
somewhat too strong, since if a statistic T is discrete Hg(a) is
only meaningful at points .¢ which are achievable values of SL(T) ,
i.e., points of increase of Hg(a) . It would be possible to have

Hg(a) 2g, 8 € @ , for all achievable o -and still have Hg(a) < a,

6 € Q@ , for some @ which was not an achievable ¢« .

Definition 4.1 For the hypothesis problem Ho: 6 € C% versus

HA: 8 € CEA the significance test corresponding to a statistic T is

said to be unbiased if

HT(a) 2y for 8 € @
] A
for all achievable « , or eguivalently,

B () = ()

fwan.a,05ail@



37

Throughout this investigation the statistic used for an unbiased
significance test will be referred to as an unblased statistic. This
terminology should not be confused with the usual definition of an
unbiased estimator.

Whenever a uniformly most sensitive test statistic exists for-a
given hypothesis problem then this statistic is unbiased. TFor the most
sensitive test statistics derived in Corollary 3.1 this is easily seen

by referring to parts (i-b) and (ii-b) of Theorem 3.1.
One Parameter Exponential Families

Special attention will now be given to the one parameter exponen-
tial family. Let 8 be a real parameter and X a random observable

vector with probability density

8T (X)

fe(X) = C(8) e nX) , (4.1)

with respect to a measure y . It might be recalled here that T(X)
is sufficient for ‘8 . It was seen earlier that a uniformly most

sensitive test statistic for the hypothesis

H:8 =86 versus H,: 8 # 9 (4o2)

does not exist. This presents the need to investigate the existence
of unbiased significance tests.

Let T* be a test statistic with distribution GO(T*) under Ho )
where for convenience if T* dig discrete Go is defined only at points

of positive probability. Then for T* +to be unblased one needs

H*(y) = ¢ and H*(w) 2o for 6 # 8
o} 6 o]
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for all achievable & . Now SL(T*) = GO(T*) and

B la) = PQ[G(T*) < a/] = Py [T* < t*:l

where t* = G_l(a) . Let R = {% l G (T%) < &1 = {% ] ™* < t{} .
o o =7 = |
Then '

B2 (@) = [ o) T no apo .
R

It will be assumed further -that Hg(a) possesses continuous derivatives
with respect to -8 and that the differentiation can be carried out

under the integral. Thus,

3 () - gt
% He(a) = H (&)
= [ otz % n0 4 ore) X non]auto
R
- jRToo £, 06 au(n) + Sl ijeoo 4 (X)
= EQ[T | G (@) < a/:l {Pe[GrO(T*) < a]}
C1L8) v (g) ; | (4.3)
tote) o =
or
B () = H*(a){% [% | 6 (T%) <ol + g%i%é} (4.14)
0 S e o — c(s, ° °
But E@(T) = - C"(G)/C(G) so that (4.4) becomes
B2 () = Hé‘(a){Ee!:T | sL(T*) < a] - Ee(T)} (4.5)

or
HE () = Hg(a){Ee[T | T+ < t*] - Ee(T)} ° (4-6)

Equation (4.5) holds for all achievable ¢ and (4.6) for all possible
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values ‘t* din the range of T* 4if T* is continuous or all values
t* which have positive probability if T* is discrete.

Now if T* is to be unbiased, then
H;(a) = o and Hg(a) 2 g

for all achievable « . That means, as a function of 8 , HS(a) must
have its minimum value at 6 = Go for all achievable ¢ . Thus, it is
necessary that

a * - *‘ —_
55 5 (@) |e=eo‘ B (@) =0 . CHD)

Applying condition (4.7) to (4.5) and (4.6) gives
E I:T | sn(T*) <oz:| = E_(T)
o - o

for-all achievable ¢ and

E[TlT*<t*]=E(T)
0 - o
for all possible values t* of T* . These results are stated in the
following theorem.
Theorem 4.1 TFor the density

8T (X)

fe(X) = C(8) e h(X)

and the hypothesis problem

Ho: 8 = eo versus HA: 6 # OO

a necessary condition for a statistic T* <to be unbiased is that

Eo|:T | sL(T*) SQJ = E_(T) (4.8)
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for all achieveble @ and
Eo{% | T < tf] =E (1) TR
for all possible values t* of T* .

It should be noted here that if in the density used in Theorem 4.1
8 were replaced by a strict monotonic function of ‘9 , say q(8) ,
the theorem will again follow. In this. case Eg(T) = - ¢ ©)/q (8) cla),
but condition (4.7) again reduces to equations (4.8) and (4.9).

Since equation (4.9) must hold for all +t* a more direct relation-
‘ship between the sufficient statistic T and the unbiased statistic
T* can be obtained which may sometimes help in determining likely
candidates for -an unbiased statistic. In particular, T and T* must

be uncorrelated. In order to show this the following theorem is needed.

Theorem 4.2 Let X and Y be random variables and suppose that

x| v <] - 50
for all y . Then X and Y are uncorrelated.

Proof: The proof is given for X and Y continuous random
variables. The theorem can be proved for the discrete case by induction .
on the y values. Furthermore, the existence of the proper partial
derivatives of the c.d.f.s F(x) , F(y) , and F(x,y) will be

assumed so that all necessary densities exist. Thus

E[? | ¥ < j] = j ®x J Y £(x,y) dy dx / P(Y < y)

=§ﬁ%?ﬁxLifW)£iX£%§@dxdy



L1

TD'(Tl_{;W I_ZE[X | y:} £(y) ay

E(X)

n

implies

jy EE( ] y:| £(y) dy = E[X_] F(y)

for all y . Taking partials with respect to 'y gives

i 1]

i | v = 5]
| E\[x | v] == .

fierd)

E{(EE(X | Y):I}
E% :@(X)]}

EX) E(Y) .

E[x) £(y) for a1l y
or

£[x] forall y .

1}

Hence

.Therefore

E[X v]

1

I

Hence, X and Y are uncorrelated.

Applying the results of this theorem to the conditions in Theorem

L,1 gives:

Theorem 4.3 For the density

8T (X) h(xj

fe(X) = C(8) e
and the hypothesis problem

H:6 =9  versus H,: 8 # %
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-a necessary condition for a statistic T* to be unbiased is that T

and T* be uncorrelated.

It is useful to note that the condition for unbiasedness, namely

EO[T \ T* < t*]’: EO(T) for all possible values t* , implies that

E TIT*>t*:|

E (T) ,
(o] (o]

and also

i

5 [ | T* = t*] E_(T)

for all possible t* .,

The conditions in Theorems 4.1 and 4.2 are necessary conditions on
the test statistic for an unbiased test of significance. The problem
.remains to determine a sufficient condition and a more exact nature of
the statistic T* . At times it might help to look at the second
derivative of HS(@) with respect to 6 . Thus

.l

.n
H* (@) = H* (@)
892 <] $]

- [ o) % new qu +2 [ er® 1@ % nm ap)
R R

NORS 8T 1) apx)
R

+E9[T | T* < x| Py T <t

or
Hg(a)

= 2 - 2 - * *]
i 2EL(T) = B (T9) - 2B, (T) Bg|T [ T* < ¢

2
+ Ee[T | T*_<_t*:l .
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' 1
Now ‘if the necessary condition is satisfied, i.e., Ho(a) = 0 for all

achievable o , then at 6 ::90 , the above reduces to

H (a)
e 2
szozj =% Ll til ) EO[T | < t*] i {EO(Ta) i EO(T)} ,

or

1
Ho(a)
= * * -
ﬁ;zay Varo(T | <t ) Varo(T) .

1]
The statistic T* +then must be chosen so that Ho(a) =0 for all

achievable o and such that

Var (T | T* < t*) > Var (T) (4.10)
o - o

for-all possible t* .

In looking for a uniformly most sensitive unbiased test statistic,
if the theory is to parallel the Neyman Pearson theory, one would
perhaps try finding T* as a function of the sufficient statistic T .
Recall that in hypothesis testing for any test function there always
exists a test based on the sufficient statistic which has the same
power as the given test function. Although this writer has not been
able to derive a proper analog -to this theorem, the search for T*
will none the less be restricted to a function of T . If T* is a
function of T the unbiased condition does put some immediate
restrictions on the nature of T* .

Let t* be any value of T* and let R = {% | ™* < t{} ;

Then

H;(a) = IR po(t) dt

where po(t) is the density of t wunder Ho , and one must have
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j t po(t) dt

E (T | T* < t*) = = E (T) .
(e} - (e}

R
p () dt
R (o]

For -every achievable e« , or equivalently for all possible t* , the

corresponding set R must be of the form R = RlLJ R2 where Rl and

R2 each have positive probability and where Rl contains points t

such that t < EO(T) and R, contains points t such that

t > EO(T) . If this were not the case, that is if for some t* the
set R contained only points greater than EO(T) or only points less

than EO(T) , then one would have either
E(T | T*<t*) >E (T) or E (T | T* <t*) <E (T)
o - o o - o

and the unbiased condition would not be satisfied.

Furthermere suppose that a0y and ¢, are any two achievable

2

values of SL(T*) corresponding to values t* and t* respectively,

1 2

where oy < « Then

%

11

J

p.(t) dt + p.(t) dt
EACE R

Hs(al) = fR pe(t) at

1 2
and ‘
H* = j t = f t f
ala) . pg (t) dt . pg(t) dt + . pg(t) at ,
1 2
where Rl and R2 and Sl and 82 are decompositions of the sets R

and S as indicated in the preceding paragraph. Then Rl C‘Sl and

R2 Cr52 where C denotes "proper subset of'". This last statement can

be proved as follows: Obviously R, €S, and R2 S Suppose

2"

1 1

Rl = Sl and RECS2 » .The unblased condition
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E(T | ™ <t*) =B (T | T* <t*) = E (T)
o} - o} - (e}

1 2

implies that
j t p (t) dt f t p (t) dt
R ° s

Jé po(t) dt

J% po(t) dt

or

f f po(t) dt + f t po(t> dt

Ry B
J% po(t) dt  + j% po(t> dt
1 2

J% t po(t) dt + IR t po(t) dt + j t po(t) dt

__1 2 5
j p () dt + f p (£) dt + f p (t) dt
R, © R, ° S.-R.°
1 2 272

which becomes, upon simplification,

f ‘t,po(t) at
R
E (T | T* <) = == ‘ . (4o11)
° j p (t) at

But, for t € $,-R, one has t > EO(T) , hence (4.11) implies

2

E(T | T* <t*) >E (T) ,
o -1 o

which contradicts the unbiaséd condition. Thus, Rl < Sl and R2 c 82 o
Moreover it seems reasonable that T* should in fact be a unimodal
function of T, since for earlier one-sided alternatives large values
of T , small values of -T, indicated evidence against HO when the
"alternative was 6 < @O and small values of T gave evidence against

HO when the alternative was 6 > 90 s So, although complete justifica~

tion is not given here, in looking for an unbiased test statistic
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attention will be focused on unimodal functions of T , that is, two
tailed tests. As will be seen however, there will not always exist an
unblased test statistic which is a two tailed function of T.. This
situation arises when T 1is discrete. When T 1is continuous it
appears that a unimodal function of T should exist which is uniformly
most sensitive unbiased. This conjecture is formally stated as follows:
For the continuous one-parameter exponential family, equation (4.1),
there exists a uniformly most sensitive unbiased test statistic
T* = g(T) , where g 1is a unimodal function of T , for evaluating the
significance level of the hypothesis problem HO: 6 = eo versus
HA:e;éeo°

This writer has not been able to prove the above conjecture in the
direct context of significance testing as has been adopted in this
paper. It can be proved however, by considering the significance level
as a decision meking device as follows:

Suppose the statement is false. Then for some @, say o

there is no unimodal function T* of T such that both

H;(ao) 2 H;(ao) , (unbiased condition) , (4.12)
and

Hg(ozo) = Hél)(qo) , (most sensitive condition), (4.13)
for any other continuous statistic T<l) » Consider a unimodal function

T* and reject Ho if SL(T*)‘g o, e This test has the form reject if
T < Cl or T >-C2 , since T* is unimodal. But it was gssumed that not
both (4.12) and (4.13) held simultaneously, i.e., no uniformly most
powerful unbiased size ¢ test has this form. This contradicts

Lehman's proof (10) that there exists a uniformly most powerful unbiased
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test of the form reject if T < Cl or T > 02 for -the hypothesis
problem § = 8  versus 8 # o, -
For the discrete case the situation is summed up in the following

theorem.

Theorem 4.4  Consider the exponential family (4.1) where T is
discreteob Then, in general, there does not exist a unimodal function
of T which is an unbiased test statistic for evaluating the signifi-
-cance level for the hypothesis problem 86 = 60 versus 6 # 60 , for

all 8 .
o

The -theorem can be proved by exhibiting a counter example that
there does exist a unimodal function of T which is unbiased for

H: 8 = Go versus HA: e # 60 R

Example 4,1 Consider n trials of a point binomial and the
; - . - 2 :
hypothesis HO. p =p, versus H,:p # P, « Then X = i Xi is
sufficlent and

(0 = Q@ -t

This is a form of the one parameter exponential (n known) with p = 8 ,
q(8) = log p/l-p and T(X) =X . Suppose T* is a unimodal function
of X and denote an arbitrary achievable significance level by ajk
so that

A* (., ) = % Mp* (@) & % Mp* Q-

p ik x=0 X k X

n-Jj+

Writing the above sums in terms of the Beta distribution. gives
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_ T(n+l) L3 n-j-1 |
3 T T TRy ) AT

[(n+l) P on-j+k-1 j-k
T To-3+k) T(3-k+1) J; t (1-t) at .

Now differentiating with respect to p -and simplifying gives

o a I“(n+l)p'](l-p)j_k n+k~=23j-1
1 (q., ) = 7= -
p ik (F=k)! (n=3j+k-1)1

(n-3+k-1) 1 (4-k) ! n+k—2j-l]
- ST 4w

!
Setting H; (ajk) = 0 gives the solution (other than the trivial

solutions p =0, 1)
1
- _h... where b __ [(n—j+k_1) 1 (j—k) !] n+k~23+1
o IR TICes g .

So, in general, the solution p 1is a function of j eand k . That is,
the value of p that minimizes H;(ajk) depends on the particular
significance level and for different o there is not one value P,
that will minimize H;(a) for every achievable ¢« . Therefore, in
.general, there can not exist an unbiased two tail test statistic for

H:p=p, versus H :p # p, for arbitrary p_ .

If k = 0O , then one obtains p =% which is independent of j
and does give a minimum for H;(a) s Thus, if one uses an equal tails
test there does exist an unbiased test of significance for Ho: p =72

versus H,: p £

The preceding results are stated in the following theorem
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and corollary.

Theorem 4,5 For the binomial distribution with n known and
parameter p , for P, £ 0 ,¥5,1 , there does not exist a unimodal
function of X which is an unbiased test statistic for evaluating the
significance level of the hypothesis problem Ho: p = p, versus

HA: P # P, -

Corollary 4.1 TFor the binomial distribution there does exist an

unbiased unimodal test statistic for the hypothesis problem
Ho: p = % versus HA: p#%, and T*X) = - lX -~%] is.such a

statistic.

Consider now another example which illustrates the non-existence

of a unimodal unblased test of significance,

Example Lo2 Let (xl,o--, xn) denote a random sample from a

n
Poisson distribution with parameter A . Then for X = 3 Xi s
1=
X -nhA
A
f(X) :._(2_-).——2_-— 5 X = 0’1’2,.00 s

X1

is of exponential form with T(X) =X and q(A) = log nA . The

N hesi 1 g)\:}\. 3}\. }\..
hypothesis problem is Ho , versus Hy P4 .

Because of the nature of the range on X , for any test of
significance based on T(X) =X +to be two tailed and unbiased it would
have to admit to a finite number of achievable significance levels
(see the discussion associated with equation (4.11)). Suppose there
are R+l attainable values of X which are less than EO(T) = n>\o

-and that for the Jj-th achievable significance level, say aj )
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: X -nA o WX mnh
H(e)= g b e g he ._,... ga,
J X=0 x! 2R+2-3 x!

This form would also give the maximum number of achievable significance

levels. Writing the sums in terms of the Gamma distributions gives

©

[»-]
_ 1l .7 -z 1[ 1
Hh(dj) = j N T z¥ e dz + 1 " T(3R+o-3 Z

n

2R+1-] 2 4y

Then differentiation with respect to A yields

. 2R-2j+1
' ~ 3 -ni [_ l__ (nA) :l
H}\(aj) = n(M)* e J1 PR -3 ¢ ! a

Setting the derivative equal to zero and solving for A gives the

unique solution
1

A_;[@R~1+1M]%Q”l
T n j!

k]

and this value of A does in fact minimize Hk(ai) . Notice, however,
that M depends on: j so that the same value of A does not minimize
Hh(a) for-all achievable « . Thus, the corresponding significance
test can not be unbilased.

In the preceding examples the nonexistence of a unimedal unbiased

test statistic resulted from the fact that %E He(a) = 0O did net give

the same solution of © for every achievable @ . One final example
seems appropriate, that being a continuq?s situation where there does
exist a unimodal test statistic T* such fhatk,gg.Hg(a) = 0 admits
the same solution of & for every o, O <o <1l. 'Fupthermore, it

will be seen that the test statistic T* which is used is, in fact, an
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unblased statistic for the given two sided hypothesis problem.

Example 4.%: Let X = (X,,***, X ) denote a random sample of size

2y .

n from N(O,¢ The hypothesis is

2 2 .. 2,2
HO. ¢ = ¢, versus HA' o # o, -

The density of X is then

00 - [ &2
Vom o
4.2
where T = ‘21 Xi . This is a one parameter form of the exponential
i=:

with T = g X% and © = o° where a(g) = '-1/20'2 . Now T has

probability density (1/02) fn(t/az) where

1 tn/2 -1 e-t/Z

£ (%) = S
n o I(n/2)

, t >0,

is the vx? distribution with n degrees of freedom, i.e., {3.
02 2 . . .
Under HO , T/ S has a %, distribution.

If T* is to be a unimodal unbiased function of T then for
every « , that means every possible value t* , there must exist

values tl and t2 such that

— * * — —
H() =P (T* <) =P (T <t,) +P (T 2¢%) =«

or

1

2 2 2
b * -
PO(T >t*) = Po(tl <T< t2) Po(tl/co < < tz/co) .

Consider the unbiased condition

E (T | T*>¢*) =B (T) = o n
o} e} e}
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or equivalently

E (T | T >t%) = HB(E | t,/00 < £ < ta/cé} = o n

)

which reduces to

2 2
tE/Cb ta/cb
f 5t fn(t) dt = n f 5 fn(t) at . (4a1k)
tl/cb tl/cb

Consider the integral

Jb y_n/2 e-y/2 ay

a
Then integrating by parts, letting u = yn/2 and dv = e—y/2 ay ,
yields
S n/2 -y/2 n/2 -y/2 b » n/2 -1 |
¥ e dy = -2y e l + n j Y e—y/2 a
a a ‘a Jo-
(4.15)
Applying this result to the left hand member of equation (4.14)
gives
2 2 2
o2 mt/2 t/, t2/% t/,
=73 5 +m o f,(8) dat =n 5 £,(8) at
27T (n/2) tl/cb tl/cb tl/cb
and hence
2 2
tg/a e_tl/aob = tg/E e“t2/2ob . (4.16)

Therefore, the necessary condition for unbiasedness implies that T*

be chosen so that equation (4.16) holds. The statistic

T+ - Tn/2‘e—T/2o§ (4.17)

would satisfy this condition.
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It remains to show then, that for ‘T* as defined in equation

d
H;z(a) = 0 is satisfied at o = o , for
802 ©

(4.17), the equation

all ¢ , and that this value ci does actually minimize H;e(a)'.

Minimizing
Ho(@) = P o T*.s-tﬂ'

is equivalent to maximizing the function
6(e”) =1 - Ho(a) = Pca[T* > t*:l. (4.18)

But, by choice of T* , an observed value t* uniquely determines

values t, and t. such that equation (4.16) holds and

1 2

G(c?) = Polty <T< té] = Pc2[}l/°2 <T/5F < tz/oa] . (4419)

Now, when the parameter is 02, T/c-2 has a *i distribution, hence,

t

/0‘2 |

2 n/2-1 -t/2

G(O’Z) - I t e
t

1/02 I'(n/2) on/2

dt .

Differentiating we.r.t. 02 and simplifying gives

' p) 2
Vo 2y _ 1 n/2 -t./2¢ n/2 -t /2¢
G (C' ) - F(n/z)zn/Z(GE)n/2+l [tl e I - t2 © 2 ] °

(4.20)
On comparison with equation (4.16), it is seen that G'(ci) =0 . Thus,

also, H;z(a) = 0 . Furthermore,
Q

2 2
@ (2) = (n/2 +1) (/2 -ty /2d | n/2 -t./20 ]
M(n/2)2%2 (6% 2+ = !
1 n/2+1 -t /20-2 n/2+1 =t /2<3-2
+ t e I -t e 2 .
F(n/Z)Zn/z(og)n/2+3 [ 1 2 ]

(4.21)
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Evaluating equation (4.21) at & = ci gives

2 2

G"(cz) = 5 tn/2+l e_tl/zob - tn/2+l e_t2/2°6 .
1,(n/z)zn/z(crz)n/ag I: 1 2 ]

° (4.22)

Therefore, G"(cﬁ) < 0 , since t; <t, and equation (4.16) imply the

difference in equation (4.22) is negative. Also, the results
G'(o‘i) =0 and G"(ci) < 0 are independent of the

value t* , by choice of T* , thus independent of « . Thus, G(ca)

is maximized at c;-2 = ci for all @ , i.e., Hgg(a) is minimized at
02 = ci . Hence,

H;a(a) P H;(a) , for all « ,

so that T* is unbiased.
The conjecture made earlier would seem to suggest that T* is
uniformly most sensitive unbiased for the given hypothesis problem.

For observed T* , say t* , t* uniquely determines constants ¢, and

X

c5 such that the corresponding observed significance level is

: %
* = * < * - < P
o =P (T* <t*) =Pr(x <c;) + Pr({ 2 02)
The following graphical representation of how an observed significance

level is obtained may be helpful. The value ¢* is represented by the

shaded area.




It might also be noted in passing that T*

and T do satisfy

Theorem 4.3, That is, T* and T are uncorrelated.
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CHAPTER V
EXTENSIONS

After completion of this study many questions still remain
unanswered and there is certainly a need for further investigation of
this topic. There appear to be numerous possibilities for extension of
the theory, but at the same time the theory seems to have some
limitations.

In the consideration of composite alternatives, this investigation
has been restricted to hypothesis problems invelving a single real
parameter. The immediate need would be to extend the development to
multi-parameter situations. For example, it would be of special
interest to show that the test statistics ordinarily used in the
familiar normal theory tests of hypothesis problems considered in
elementary statistical methods courses are also the optimum statistics
for significance testing. For example, how would one justify the use
of the t statistic for evaluating the significance level for a hypo-
thesis involving yu when 52 is an unknown nuisance parameter?

The role of the sufficient statistic in significance testing seems
‘to be a mystery. Although the significance tests developed in this
investigation for the exponential distribution were based on a suffi-
cient statistic, the sufficiency condition was really not used. In
hypothesls testing the use of a test function based on the sufficient

statistic S 1is justified by the fact that for any test function ¢(X)

56
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there exists a test function, namely E(¢(X)‘ s) , based on the suffi-
-cient statistic which has the same power function as ¢(X) « The analog
to this theorem for significance testing would appear to be: If S is
a sufficilent statistic and T 1s any other statistic, then there exists
a function of S , say f(S) , such that Hg(a) 2 Hg(a) , 8¢ @®@ ,
for-all achievable ¢ . However, this statement can readily be proved
false for the statistics T and S discrete. For the continuous case,
the natural candidates for f(S) , namely f(S) = PO(T‘S t|S) and

£(S) = EO(TlS) do not give the desired result.

When widening the scope of the Neyman-Pearson development to multi-
parameter situations a number of new concepts and devices are
introduced; for example, similar tests, tests of Neyman structure,
invariant tests and stringency. -Perhaps analogs to these concepts éan
be given and used in extending the theory of significence testing as
described in this paper. In conclusion, one such analog will now be

considered.
Similarity and Neyman Structure

In hypothesis testing a test function @(x) was sald to be similar

of size ¢ 1if B®(8) = ¢ for all distributions of X belonging to a

given family QPX:::{%g ., B € @%} of distributions, i.e., 8 € C% o

That is

P6 rejecting H;] = o

for-all 6 € G% o Furthermore, if T was a sufficient statistic for

%)X , and WT denoted the family {Pg , 8 € ®O} of distributions
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of T as 8 ranged over CQ) , Then any test satisfying

s[peo] t] = o, ae. PT,

where &a.e. 5)T means the equation holds except on a set N with

PT(N) = 0 -for all PT € ﬁpT , was similar with respect to 89}( . A
test satisfying this condition was said to have Neyman structure with
respect to T .

With the correspondence established earlier between hypothesis
testing and significance testing, a test statistic T* , or equivalently
the test of significance corresponding to T* , would be similar if

SL(T*) was such that

it

o, O € ® .

p [sneT*) < o,]
8 -— (6)

that is,

i
R

H;(a>

Now, if T* is continuous this condition is automatically satisfied for
all &w . If T* 1is discrete the condition is satisfied for all achiev-
-able o o Thus, similarity was essentially incorporated into the
formulation of significance testing when it was required that the
distribution of a test statistic be completely specified under the null
hypothesis. As far as using similarity then to extend the theory of
significance testing it appears to be a somewhat "empty" concept since
similarity was actually built into the definition of a significance test
to begin with.

Suppose next that T dis sufficient for 8 € @% .« Then a test

statistic T* would be said to have Neyman structure with respect to
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Pe[SL(T*) < of t:l v, 8€@ . ae.t,

that is if

o, a.e. ZPT .

i

H* (o l t)
o)

Since, by the formulation of significance tests given here, every
test statistic is similar it would follow trivially that any test
statistic which is of Neyman structure with respect to.a sufficlent
statistic T is also similar.

Lehman (10) proves the following theorem: ILet X be a random
variable with distribution P € (P ={P)é | o ¢ @O} and let T be a
sufficient statistic for ZP « Then a necessary and sufficient condition
for all similar tests to have Neyman structure with respect to T is
that T Dbe boundedly complete.

Consider the analogous result for significance tests.,
Theorem 5.1 If T is sufficient and boundedly complete for the

family of distributions {%é l 8 € (E%} then all test statistics:are of

Neyman structure with respect to T .

Proof: Let T* be any test statistic with distribution GO under

H:8 € @O and T sufficient for 8 € @O . Then

1l

H;(a/) PO'E}O(T*) < a/] = PO ESL(T*) < oz] = o

{x | SL(T*) < o and

for all achievable o and any T* . Let A
define the function

IA(X)

il

1 if X €A,

QO if X £A .

fl
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Then

H () = B [IA(X)] = o

EO[IA(X)] = EO{EOI:IA(X) | t:l =,

EO[EO(IA(X) | £) - a] =0 .

implies that

hence

Now EO[}A(X) | t] is actually independent of 8 € G% , since the
integral representation of Eo[}A(X) | #] involves only IA(X) and
the conditional distribution of X given t , which is independent of

8 since T was sufficient for 8 € G% o Thus, let
£(t) = E[IA<X) | t] -,

which is strictly a function of t and also is bounded. Therefore

E[£(t)]

H
O

implies

£(t)

m
O

since T was boundedly complete. Thus, one has
E[IA(X) | t] = o

H;(a | t) = o

for all achievable ¢ o

The converse of Theorem 5.1 would be: If all test statistics have
Neyman structure with respect to a sufficient statistic T , then T is
boundedly complete.

The writer has not been.able to prove the above conjecture but at

the same time could not exhibit a counter example.



CHAPTER VI
SUMMARY

In this paper a study of providing a rationale for significance
testing which avoids any commitment to decision rules is made. The
approach taken is to attempt to bulld a theory of significance tests
which perallels the classical Neyman-Pearson theory of hypothesis
testing; theat is, define a criterion for comparing significance tests,
or equivalently statistics used in performing the significance test,
then find a statistic which is in some sense "best" for a problem
involving a simple null hypothesis and a simple alfernative hypothesis,
and then to extend the scope of the theory to include special classes
of composite hypotheses.

In Chapter II a determination of a criterion for comparing test
statistics is given and the concept of a most sensitive test statistic
is discussed. It is shown that for a simple null hypothesis and a
simple alternative hypothesis the familiar likelihood ratio statistic is
a most sensitive test statistic. Other desirable properties of the
likelihood ratio are considered.

In Chapter III consideration is given to one sided alternative
hypotheses. Special attention is given to distributions with monotone
likelihood ratios. Uniformly most sensitive test statistics are
obtained for this class of distributions and in particular for the one

varameter exponential family of distributions. Statistics which are

61
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most sensitive in a neighborhood of the hypothesized value -of the
parameter are also discussed.

The theory is extended to two sided alternatives in Chapter IV.
The concept of unbiased significance tests is discussed and a number
of necessary conditions for the existence of an unbiased significance
test are given with special attention again being given to the one
parameter exponential distribution. Uniformly most sensitive unbiased
test statistics are also discussed.

Chapter V concludes the investigation with some suggestions for

extensions and further study.
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