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CH.APTER I 

INTRODUCTION 

The name "test of significance" appe-ars to have been first 

introduced by Fisher (5) in 1925 to describe a procedure for assessing 

the conformity or "goodness of fit" of a set of observations to a "null 

hypothesis", that is, the significance of an apparent discrepancy 

between the observations and the hypothesis. According to Ansoombe (1), 

the first-clear use of such a procedure was as early as 1735 when 

Bernoulli (2) considered the closeness of the orbital planes of the 

planets to one another and to the equatorial plane of the Sun. Anscombe 

further claims that the first clear proposal for the general use of 

such,a procedure in a broad class of situations was by Karl Pearson (12) 

in 1900, culminating in his x2 .goodness of fit tests, but that the 

concept of significance tests was first considered in a general way by 

Fisher. In these and other early developments of the subject, such as 

Student's t-test (14), statistical tests do not appear to have been 

regarded as-strict formal decision rules, and in fact, Fisher argued 

strongly against regarding a test of significance as a formal decision 

rule. 

In the basic paper of Neyman and Pearson (11) in 1933, they derive 

a general theory for finding "most efficient tests of statistical 

hypotheses" and this theory is based on the development of decision 

rules for accepting or rejecting the hypothesis in question. In 
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describing these test procedures they use the term "test of signifi­

cance" in a decision making context. In a later paper by Fisher (6), 

he claims that Neyman had no concept of a test of significance simply 

as a means of learning but conceived of it only in the form of an 

acceptance procedureo Thus, when Neyman and Pearson thought they were 

correcting and improving his earlier works on tests of significance, 

they were in fact reinterpreting them in terms of that "technological 

and commercial apparatus known as an acceptance procedure", i.e., 

formal decision rule. 
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However, in spite of Fisher, since Neyman and Pearson published 

their paper in 1933, the concept of a statistical test as a decision 

making device has gained almost universal acceptance in statistical 

textbooks. It is generally presented as a formal.decision rule for 

deciding which of two hypotheses to accept. The development of 

statistical decision theory in recent years has emphasized a more 

general approach, but it has not affected the presentation of statisti-

cal tests as decision making devices. 

Taking Fisher's point of view, a distinction will be made between 

a test of hypothesis and a test of significance. A test of hypothesis 

is a formal decision rule in which one is committed to taking an action, 

that being either accepting or rejecting the null hypothesise A test 

of significance simply consists of calculating the tail probabilities 

of a test statistic, called the test criterion, under a given null 

hypothesiso This tail probability is called the significance level and 

is such that the smaller the significance level, the more inconsistent 

with the data is the null hypothesis judged to be. The significance 

test consists only of evaluating the significance level and the 



experimenter is in no way forced to take any action for or against the 

null hypothesis& 
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Although significance testing is seldom descrtbed in statistical 

textbooks, a casual survey of some research journals indicates that it 

is an extremely common and apparently useful procedure. However, the 

accompanying description of such tests is nearly always i~ terms of the 

decision making ideas of hypothesis testing. Applied statisticians 

therefore seem to be in the unfortunate position of giving in to deci­

sion making ideas and concepts while actually subscribing to practice 

that which might better be described and recognized as data analysis 

and description techniques, such as.significance testing. 

Since significance testing seems to be widely practiced it seems 

that a theory of significance testing which is independent of decision 

rule techniques is neededQ The immediate concern in developing such a 

theory is that of choosing a test criterion or test statistic to use in 

performing the significance test& Dempster and Schatzoff (3) state 

that perhaps the reason Neyman and Pearson formalized statistical tests 

into decision rules for accepting or rejecting the null hypothesis was 

in order to compare different tests. That is, in some way compare 

tests so·as to arrive at a "best" test for a particular hypothesis 

problemo As is well known, the Neyman-Pearson theory compares tests by 

looking at operating characteristics of these decision rules under 

alternative hypotheses, in particular by looking at the power function. 

It seems appropriate at this time to give a more formal definition 

of a test of significance as viewed in this presentation, to compare the 

significance test with the classical Neyman-Pearson theory involving 

size and power of a test 1 and to discuss the possibilities of choosing 



a test statistic for a test of significance. 

Description of a Test of Significance 

Let X denote a random variable, either vector or scalar, and 

assume that X has a probability density function f 9 (x) , or cumula­

tive distribution function, hereafter abbreviated cad.f. , .given by 

F8 (x) , where 6 is a parameter, vector or scalar, belonging to some 

parameter space no Let the null hypothesis in question be given by 

H : 6 E @ where @ c Q • 
0 0 0 

Thus, the hypothesis may be either simple or composite. Let T(X) 

denote a test statistic calculated .from X with c.d.f. G9(t) e It 

will be required that be completely specified when e E ® e 
0 

Anscombe (1) suggests some alternatives to the above requirement. 

He suggests finding the distribution of T conditional on the para-

meters, ioeo, e E@ , and then introducing a prior distribution for 
0 

the parameters involveda The resulting significance test would then 

relate jointly to H 
0 

and to this prior distributione He also 

suggests that some kind of bounds for the aggregate of conditional 

distributions of T, again conditional on the parameters involved, 

might be used, rather than the conditional distribution itself. 

The approach taken here means that the null hypothesis must be a 

simple hypothesis as far as T is concernedo For 9 E @. then, 
0 

4 

denote G0(t) by G (t)o Suppose further that T is chosen in such a 
0 

way that small values are inconsistent with the null hypothesis. Then 

the significance level associated with T, denoted by SL(T) , is 
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defined by 

SL(T) = G (T) 
·o 

An observed value for the significance level, say ~, is computed by 

~ = G Ct) 
0 

A test of significance of the given hypothesis problem then consists of 

observing a value of T, say t , and computing ot = G Ct) • 
0 

Now, the significance level, SL(T) , is a random variable and 

hence has a Codof. which will be denoted by H9 (~) o Thus, 

A further discussion of the above notation seems· appropriate at 

this timeo If two different statistics, say T and s ' or T(l) and 

T(2) 

' 
are under consideration, then the respective Codof•S will be 

denoted by 

or 

Whenever no confusion arises as to what statistic is involved, no 

superscript will be usedo Similarly, for specific values of 9, say 

may be denoted by H. Cot) • 
1 

will be denoted by H Cot) a 
0 

Also, for e E @ , 
0 

If T is a continuous random variable, then under the null 

hypothesis, 

H (~) = ot for O < ot < 1 
o. 



That is, SL(T) is a uniform random variable distributed between 

zero and oneo More generally, 
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The question of whether or not it is necessary to specify the 

alternative hypothesis for a test of significance has been studied (1). 

Even though the question seems to remain open, it is a fact that tests 

are in use where the alternative hypothesis is not clearly specified, 

prime examples being goodness of fit tests~ However, it is also true 

that in certain situations specification of the alternative hypothesis 

seems like an essential ingrediento For example, it seems necessary to 

specify the alternative hypothesis in order to choose between the one 

tailed and two tailed Student's t-test. 

Here the point of view that an alternative hypothesis is necessary 

will be adopted and it will be given by 

Thus, the alternative 

hypothesis may be either simple or compositeo 

A Correspondence Between Significance 

Testing and Hypothesis Testing 

Suppose one has given a test of hypothesis of a given size ~ for 

the hypothesis problem 

Let X denote the observation 9 either vector or scalar. The test of 
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hypothesis will be assumed to be non-randomized. Thus, there exists a 

size ot ·critical region R such that H ,is rejected if XE R and 
0 

H is accepted if X ~ R. 
0 

For the above hypothesis then, a test of significance could be 

constructed by defining the significance level for an observed X to 

be 

SL(X) = ct if X ER 

= 1 if X ~ R 
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Next, suppose there is a whole class, say A, of sizes available, 

so that the given·test of hypothesis could be performed at any size ot 

for·which ot·E A. Then, corresponding to A, there exists a class of 

critical regions A- = {ROI I a E 1· That is, each OI determines 

uniquely a critical region R 
(!)! 

For this situation there appears to 

be a number of ways in which one could define a test of significance. 

The most appropriate seems to be as follows: For observed X, define 

SL(X) to be the smallest value 0! such that X belongs to every 

critical region of size greater than or equal to ·O!, that is, 

SL(X) = Minf I X ER * 
O! 

for all QI* :.!: O!' ot* 

Note that for the one and two tailed tests usually encountered in 

statistical methods the above value of SL(X) gives that value of ot 

at which the observation, or data, "would have been significant''~ 

Another feature of this significance test is that the set of possible 

values for SL(X) is the same as the set A of admissable sizese 

Conversely, supp0se a test of significance, with associated test 

statistic T, is giveno If one were to adopt the decision rule to 
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reject the null hypothesis if the observed significance level is less 

than or equal to some pre-specified a, then 

Pr Eejecting H0 

and since H Ca)< a, equality if T is continuous, this constitutes 
0 -

.a test of hypothesis of size °' o 

With this association between a decision rule and a significance 

test, an interpretation of the power of a test of hypothesis in the test 

of significance context can be obtainedo Thus, the power is given by 

~e<a) = Pr ~ejecting H l Ho false} 
0 

= P 9 ~ejecting Hal' e E ®A' 

= Pe ~L(T) _:: a] , 9 E ®A' 

= H9Ca) ' 9 E ®Ao 

In thinking about the situation, the following sketches may be helpful. 

size= H Ca)= a 
0 

Continuous Case 

~9 Ca) = H9 Ca) 
Qi 

H0 Ca) .::: ot 

()( 

Discrete Case 
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In hypothesis testing attention is focused on a specific value of 

the significance level, say ~, and H9 (a) is considered as 9 varies 

over <iDA. In significance testing H9 (a) must be considered as a 

function of both 9 a.Dd a simultaneouslyo That is, the family of 

c.d.f.s H9 (a) , rather than the values of this family for a specified 

a, are of interest. 

Comparison of Test Statistics 

The discussion in the preceding section was given merely to 

establish a correspondence between significance tests and the classical 

theory of hypothesis testing, and in order to do so it was necessary to 

regard a significance test as a decision making device. It should be 

emphasized again that a test of significance is not to be viewed as a 

formal decision rule but more as a means.of data analysis and data 

interpretation. The significance test consists solely of evaluating 

the significance level corresponding to the observed value of the test 

statistic used with no commitment as to what use, if any, is to be 

made of the computed significance levelo 

In performing a significance test one may use any test criterion 

he chooses, that is, any statistic could be regarded as a test statistic 

for the given hypothesis problemo A particular statistic might be 

chosen over another because it seems to measure some characteristic of 

the observations which is of interest or perhaps there is simply some 

intuitive basis which suggests its useo Of immediate concern then, is 

the problem of providing a more precise method for·comparing test 

statistics, even though no predictable use may be made of the resulting 

significance levelo Thus, exactly what test statistic should be used in 
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order to evaluate the significance level? 

Several criteria are available to help answer the above question. 

In simple situations it may be possible simply to graph the H9 (a1) 

curves for various statistics and compare these curves as e and a1 

vary over ®A ar:i.d the unit interval respectivelyo Dempster and 

Schatzoff (3) investigate the properties of the single criterion 

"expected significance level", defined by 

ESL= tat dH(01) 
0 

as a basis for comparison of test statistics. They also suggest that 

a theory of tests might be built on the basis of comparing H9 (0I) 

curves which parallels the Neyman-Pearson theory of hypothesis testing. 

Rigorous developments of the Neyman-Pearson theory of hypothesis testing 

may be found in Fraser (9) or Lehmann (10) o 

Statement of the Problem 

The main purpose of this i.nve,stigation is to study the problem of, 

and difficulties which arise in 1 providing a rationale for significance 

testing whi.ch·avoids commitment to ·any decision ruleso The approach 

taken will be that suggested by Dempster · and Schat:wff 9 namely j to build 

a theory which parallels the l\Teyman-·Pearson theory of hypothesis testing. 

In Chapter II a criteriori for comparing test statistics is 

developed and the problem of evaluating the significance level for a 

problem. involving a simple null hypothesis and a simple alternative 

hypothesis is discussedo In later chapters the scope of the studyis 

extended to include different types of composite alternatives. Most of 

these extensions are restricted to one-parameter families of 



distributions so that.much is still left to be desired as far·as 

providing a complete rationale for significance testing is concerned. 
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There appear to be a number of tools available in the Neyman­

Pearson hypothesis testing theory that help the theory flow smoothly, 

for example 1 the randomized decision rule and the trivial test function, 

which do not seem to have analogs in the test of significance context. 

It may certainly be that Neyman and Pearson realized these limitations 

and thus purposely "mis~interpreted" Fisher's concept of a significance 

test® 



CHAPTER II 

COMPARABLE STATISTICS AND SIMPLE HYPOTHESES 

Criteria for Comparing Test Statistics 

Consider the comparison of two test statistics and 

in the case of a simple alternative hypothesis HA: e ~ e1 . It might 

seem that should be deemed preferable to if 

Hi1 )(a) ~ Hi2 )Ca) for all a with strict inequality for at least one 

a ·This seems reasonable if both statistics are continuous random 

variables 1 for they would both admit the same set of possible values 

for the significance level, namely, 0 <a< 1. But if either or both 

of the statistics are discrete it is not obvious that this procecl:u:re is 

optimaL 

As an example, consider two discrete statistics and 

. H1(· 1) (,") whose correspond1.ng "' and graphs are in Figure 1. 

Figure 1 

12. 
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It does not seem clear that 
(1) (2) 

T should be judged preferable to T 

even thou.gh .Hl(l) ("') " H1(
2 ) ('"") f . 11 . th t . t . 1· t f "' "" "" or ·a °' w1. . s r1.c 1.nequa 1. · y · or 

at least one Q' 0 The statistic might be more useful to th~ 

experimenter because more distinct significance levels are actually 

achievable a 

Consider as a second illustration statistics and 

with and curves as given in Figure 2a 

Figure 2 

Note that admits possible significance levels b1 ,b2 , and b3 

while admits significance levels a1 ,a2 , and a3 o Both statistics 

give rise to the same number of achievable significanc~ levels but have 

no achievable significance levels in commono Should T(l) be regarded 

as better than T(2 ) since for all achievable 

significance levels of 
(1) (2) 

T 7 or should T be regarded as better 

since at all achievable significance levels of 

In order to avert situations such as ·those indicated in the 
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previous illustrations it appears that the comparison of two statistics 

must be restricted to those which admit the same set of achievable 

significance levels. 

Definition 2.1 Two statistics and are· said to be 

comparable if and only if they have the same set of achievable 

significance levelso 

As mentioned earlier, no difficulty arises in the comparison of 

two statistics if they are both· contim1ouso .That is, by the definition, 

any two continuous statistics are comparable. As a further consequence 

of the above definition, if 
(1) 

T and are comparable, then 

(2.1) 

for all QI, 0 <QI< 1. Moreover, each member of Equation (2.1) is 

equal to QI for·all achievable QI a 

Definition 2o2 If are comparable statistics, 

then T(l) is said to lDe more sensitive than if 

for·all a 9 with strict inequality holding for at least one QI. 

Definition 2o3 If a statistic T is a most sensitive test 

statistic for all e E @A , then T is said to be a uniformly most 

sensitive test statistico 

In choosing a statistic for evaluating the significance level for 

a problem involving a simple alternative, say HA: @ ~ e1 , one would 
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thus hope to.find a statistic which is a most sensitive test statistic. 

If the alternative is composite, say HA: ·9 E ®A , then ·a uniformly 

most sensitive test statistic would be desirable, although such may not 

always exist, as will be seen latero 

The preceding definitions involving most sensitive test statistics 

do not assure a unique most sensitive test statistic for a given 

problem. In particular, for discrete statistics the property of being 

most sensitive applies only to a class of comparable statistics. In 

this sense there may be many most sensitive test statistics which are 

simply not comparable. For the continuous case however, since all 

continuous statistics are comparable, a most sensitive test statistic 

is unique in that any other statistic which is also most sensitive must 

actually be equivalento 

Simple Hypotheses 

As mentioned by· Dempster · and Schatzoff ( 3 ) , it is an immediate 

consequence of the Neyman-Pearson fundamental lemma of hypothesis test-

ing applied to the whole range of sizes a 0 ~ a ~ l , that the 

likelihood ratio statistic is more sensitive than any other statistic, 

in the sense of Definition 2.2, for testing a simple null hypothesis 

against a simple alterRative hypothesis. However, this requires one to 

interpret a significance test as a decision ruleo It seems desirable 

then, to state a theorem and give the proof in the present context of 

significance testingo 

Theorem 2ol Neyman-Pearson Lemma for Significance Testing: 

The likelihood ratio·statistic is a most sensitive test statistic for 



16 

evaluating the significance level for a simple null hypothesis versus 

a simple alternative hypothesisa 

Proof: Let the likelihood ratio statistic be given by 

where f 0 and f 1 are densities, f 0 "/= f1 , with respect to a measure 

µ, under the null hypothesis and alternative hypothesis respectively. 

Let T(2 ) (x) be any other statistic comparable with LR, i.ea, such 

that 

for·all O:' To prove the theorem it is necessary to show 

or 

or equivalently 

for all O:' i where G a.nd F are the corresponding c.d.fos of 
0 0 

(2) 
and T under the null hypothesis~ If 

continuous, G and F have inverses for all 
0 0 

discrete 9 define G and F only at the points 
0 0 

ity9 that is, those points that admit achievable 

G-l and F~l ,exist and (2o3) is equivalent to 
0 0 

and are 

QI . If they are 

of positive probabil-

Qi values. Thus, 
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or 

Let 

and 

Then 

= Js -s fl(x) dµ.(x) - Js -s fl (x) dµ.(x) 
1 2 2 1 · 

:.e 11 {ss. -S f (x) dµ.(x) - Js -S f o (x) dµ.(x)} 
G- (OI) . 1 2 o 2 1 

0 

Thus, 

= 1 {Ho(l) (Cl') - Ho(2) (OI)} 
G-l(0t) 

0 

= 0 0 

for ·all achievable QI o However, if both statistics are discrete, 

C2.4) 

(1) C2) 
Hl. Ca) and H1 Ca) are step functions so that (2,.4) holding for all 

achievable ot ·would imply it holds for all ot, 0 ,:S QI~ 1 .. 
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The Neyman-Pearson lemma for significance testing gives a 

sufficient condition for a most sensitive test statistic. The question 

naturally arises as to whether or not it also gives a necessary condi­

tion for a most sensitive test statistic. That is, given a statistic 

T which is known to be a most sensitive test statistic, is this 

statistic equivalent to the likelihood ratio statistic? The answer, of 

course, is negative. The statistic T could be most sensitive among a 

class of statistics which does not contain the likelihood ratio statis­

tic, i.eo, the statistics in this class do not have the same achievable 

significance levels 'as the likelihood ratio statistic. The likel-ihood 

ratio statistic would be the "unique" most sensitive test statistic 

within the class of all statistics which are comparable to it in the 

sense that it is at least as sensitive as any other statistic in this 

class. 

In hypothesis testing an immediate result of the Neyman-Pearson 

lemma is that the power 13 of the most powerful level ct test for a 

simple null hypothesis versus a simple alternative hypothesis is such 

that 13 > ct o An analogous result for significance testing is given in 

the following corollaryo 

Corollary 2al For a simple null hypothesis versus a simple 

alternative hypothesis the likelihood ratio statistic is such that 

for all a, 0 <ct< 1, and 

for all achievable ct o 
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Proof: Let the likelihood ratio statistic ~e given by 

where f 0 and f 1 are densities, f 0 ~ f 1 , with respect to a measure 

µ., under the null hypothesis and alternative hypothesis respectively. 

Let G0 denote the c.dof. of T under the null hypothesis. It is 

necessary then to prove that 

for all .QI, 0 <QI< l, or equivalently 

for all QI, 0 <QI< l. If T is discrete, define G only at the 
0 

points of positive probability, that is, points which give achievable 

QI values. Thus, -1 G ·exists, and the inequality in (2.5) is 
0 

equivalent to 

or 

Let 

If O < G-1 (a) < 1, then 
0 

f (x) 
dµ.(x) ~ J [ ~l - f O (x)l dµ.(x) 

S G (01) 'J 
0 
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= [G-~C~) - ~ SS f 0 Cx) dµ(x) > 0. 
0 

implies 

Thus, since the above integral plus the integral over$ sums to zero, 

Therefore, for all G-1 Ca) , and sin~e G was de!i~ed only at points 
0 0 

which gave achievable values of a, 

H Ca)> H ca)= a 
1 0 

C2.6) 

for all achievable But, if T is discrete H Ca) 
0 

are 

step functions and C2.6) holding for all achievable a implies it holds 

for all a, 0 <a< 1. Hence, in general 

for all a, 0 <a< 1, and 

for all achievable a 9 as was to be proved. 
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When applying the Neyman-Pearson fundamental lemma for·. finding a 

most sensitive test statistic for evaluating the significance level, one 

might generally find it more convenient to use some function of LR 

rather than LR itself. 

Let T be a most sensitive test statistic for 

evaluating the significance level for H: 0 E @ 
O p 

v~rsus 

Then any increasing function of T is also most sensitive for the 

given hypothesis problem. 

Proof: Let T have cod.f. G (t) under H , and let $ = f(T) 
0 0 

be any increasing function of T with c.d.f. under H of F (s) 
0 0 

Thus, T = f-1 Cs) implies F Cs) = G Cf-1 Cs)) = G Ct) so that 
0 0 0 

T s 
Pe [sLCT) ~ a] - Pe ~L(S) ~ a] H0 Ca) - H0 CCi) = 

= Pe@oCT)~~ -P9~oCT)<~ 

= 0 0 

Therefore, 

for all a ·and 

for all a and 0 E <H1_ implies that S is a most sensitive test 

statistic since T was given as most sensitive. 

An immediate result of the theorem is the following corollary. 

Corollary 2.2 For a simple null hypot~esis versus a simple 

alternative hypothesis,any increasing function of the likelihood ratio 
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statistic is also most sensitive. 

To illustrate previous definitions and theorems, consider the·exam-

ple of five independent binomial t~ials with 

H: p = .2 versus HA: p = .4. 
0 . 

Application of Theorem 2.1 and Corollary 2.2 yields 

T(l) (X) = -X 

as a most sensitive test statistic. Thus, the significance level when 

x is observed is given by 

A calculation of the significance level for all possible values of x 

1 . t . Hl(l)(=.) a ong with he corresponding ~ values is given in Table 1. 

Table 1 

x f(x;p=.2) f(x;p=.4) OI Hil)(OI) 

5 000032 001024 al = .00032 .01024 

4 .00640 .07680 a2 = .00672 .08704 

3 005120 023040 a3 = .05792 .31744 

2 020480 .34560 a4 = .26272 .66304 

1 040960 025920 a5 = .67232 .92224 

0 .32768 .07776 ·a 
6 = 1.0000 1.00000 

The lack of uniqueness of a most sensitive test statistic was 

discussed earliero To emphasize this point consider a second test 

statistic~ say 



Calculations of the significance level and the co~responding values 

of H(2 )(~) are given in Table 2. 
1 

Table 2 

t = Ix - 3 I f(t;p=.2) f(t;p=.4) 

0 005120 

1 021120 

2 .40992 

3 .32768 

A graphical comparison of 

Figure 3. 

LO 

al 

I a 1 

023040 

.42240 

026944 

007776 

2 

Figure 3 

~ H~2) (~) 

b = 1 .05120 .23040 

b2 = .26240 .65280 

b3 = .67232 .92224 

b4 = 1.0000 1.00000 

is represented i~ 

23 



24 

Although is the likelihood statistic and as such is a most 

sensitive test statistic, it is not evident that it is better than 

That is, are not comparable. Certainly 

is not greater than or equal to for all Cl!, for 

example, .0512 < ~ < .05792 and .2624 <Cl!< .26272 ~ It is true 

however 1 that Hi1 )(~) > Hi2)(~) for all Cl! which are achievable 

values of SL(T(l))" 

Another difficulty here seems to be that the class of statistics 

comparable to the likelihood ratio contains only the likelihood ratio 

itself 1 or equivalent statistics, and in this respect there may be 

some apprehension about using the likelihood ratio statistic as the 

optimum test criterion for evaluating the significance level. One 

advantage of the likelihood ratio statistic in this example is that no 

other statistic yields more possible achievable significancelevel(:l. 

The likelihood ratio statistic does possess some properties which 

in a sense make it more "admissable" as a test criterion than any other 

statistic 1 even though the statistics may not be comparable. Consider, 

for example 1 the value for Now if it happened that 

· (2) (1) 
H1 (b1 ) > H1 Ca3) this would certainly present some doubt as to the 

validity of the likelihood ratio as a best statistic. However, note 

that for·all This result,which was 

first brought to the attention of this writer by Oscar Kempthorne, is 

presented in the following theorem. 

Theorem 2a3 Suppose T = f 0 (x)/f1 (x) is discrete with possible 

significance levels a1 < a2 < oo• and that S is any other discrete 
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statistic with significance levels b1 < b2 < .••. Then for no 

Proof: Let t. denote that value of T which gives ;rise to a. 
J J 

and sk that value of s giving rise to bk and .G and F the 
0 0 

·corresponding c.d.f.s of T and s . Thus, 

Then 

1 ~· --, 
= t. a. - bkJ 8 

J J .. 

Hence 9 even though the two stattstics may not be comparable, it 
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seems like the likelihood ratio statistic is more admissable in that 

even though S might admit to smaller significance levels the corre-

spending value can not be as large as that associated with any 

larger significance level of the likelihood ratio. If there are common 

achievable significance levels for the two statistics then the likeli-

hood ratio gives values of H1 (~) which are at least as large as the 

H1 (a) values for the statistic S. 



CHAPTER III 

ONE SIDED ALTERNATIVES 

Introduction 

The case where both the hypothesis and the-class of alternatives 

are simple is mainly of theoretical interest since problems arising in 

the applications typically involve a parametric family of distributions 

depending on one or·more continuous parameters. In thj.s chapter, 

consideration is restricted to the situation where the distributions 

involved depend only on a single real valued parameter e. 

Although, for the one parameter case, one is restricted in signi-

ficance testing to a simple null hypothesis he may wish to consider a 

composite alternative hypothesis, say HA: 0 e·(Hl. ~ere, attention 

will be confined to·one sided alternatives, and hence, hypotheses of 

the form 

H: 0 = 0 versus HA: 0 > 9 
0 0 0 

or 

A uniformly most sensitive test statistic will not always exist 

for the above hypothesis problemso For example, if the alternative 

e > e is considered, one will generally be unable to find a statistic 
0 

which is independent of e > 90 , in which case one would not really 

have a statistico A uniformly most sensitive test statistic will e:JQ.st 

27 



28 

if additional assumptions are made about the distributions involved. 

Distributions with Monotone Likelihood Ratio 

Definition 3al A real parameter family of distributions is said 

to have strict monotone likelihood ratio.if densities exist and if there 

exists a function T(X) such that for e1 < e2 , the ratio 

f 9 (X)/f9 (X) is an increasing function of T(X) on the set of X 
2 1 

for which the ratio existsa 

Theorem 3al Let 0 be a real parameter and let the random 

variable X have probability density r 9(X) with strict monotone li~e­

lihood ratio in T(X) • Then, 

(i-a) For all 90 , -T(X) is a uniformly most sensitive test 

statistic for evaluating the significance level of the hypothesis 

problem 

-T ) (i-b) He (Ct' is strictly increasing in 9 for all points .· 9 

which H~T(OI) < 1, for all 0/, 0 < 0/ < 1. 

(ii-a) For all 9 
0 

T(X) is a uniformly most sensitive test 

statistic for evaluating the significance level of the hypothesis 

problem 

H: 9 = 9 versus HA: 9 < 90 • 
0 0 

(ii-b) T H0 COi) is strictly decreasing in e for all points e 

T which H9 (0/) < 1 ' for all .r;t ' 0 <·Q' < 1 . 

for 

for 



where 

Proof: (i-a) Let e be arbitrary and consider 
0 

e 1 

H: 9 = 9 vers~s H · 9 = 9 o o A" l 

is arbitrary except that Then by Theorem 2.1 1 

f 0 (X)/f1 (X) is a most sensitive statistic for ·90 versus e1 • But 

since e1 > 90 , f 1 (X)/f0 (X) is increasing in T(X) so that 
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f 0 (X)/f1 (X) is increasing in -T(X) • Thus, by Corollary 2.2, -T(X) 

is most sensitiveo F1il'thermore, -T(X) is independent of e 
l 

(as long 

as e1 > 90 ) , hence, -T(X) is a uniformly most sensitive test 

statistic for evaluating the significance level of H0 versus HA. 

Thus, for observed X, say x, 

(ii-b) Let 

Consider 

SL(-T(x) ) = P0 ~T(X) ~ -T(x)J 

= P O ~ (X) ;;.: T (x) J . 
e. 

]. 
and e. 

J 
be any two values of 9 

H: e = e. versus - e. 
0 ]. J 

with e. < e .• 
]. J 

Then, by-Corollary 2ql, a= H;~(a) < H;~(a) for all a. Thus, since 
]. J 

9. and 9. were arbitrary, H-9T(a) is strictly increasing in 9. 
]. J 

The proof of (ii) is omitted since it is analogous to that of (i). 

An important class of families of distributions that satisfy the 

assumptions of Theorem 3.1 is the class of one-parameter exponential 

families. 



Corollary 2·1 Let 9 be a real parameter, and let X have 

probability density, w.r.t. some measure ~, 

f (x) = c(e) eQ(e) T(X) h(X) , 
e 

where Q is strictly monotone. 

(i) Consider H : 9 = 9 versus HA: 9 > 9 
0 0 0 

a) If Q is increasing in 9 , -T(X) is uniformly most 

sensitive. 

b) If Q is decreasing in 9, T (:X) is uniformly most .. 
sensitive. 

a) If Q is increasing in 9 T(X) is uniformly most 

sensitive. 

b) If Q is decreasing in 9 , · -T(X) is uniformly most 

sensitive. 

Proof (i-a): Consider the ratio 

f (X) 
0 

f 9 (X) = 
cce) 

0 T ex) [ QC e ) - Q c e >] e o • cCe) 
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Q is increasing in e 'then Q(e) - Q(e) < 0, so that the ratio 
0 

is strictly increasing in -T(X) • Applying Theorem 3.l(i-a) gives 

-T(X) as uniformly most sensitive. 

The rest of the Corollary·is proved similarly by direct applica-

tion of Theorem 3.1. 

As examples, consider two of the well known hypothesis problems 

involving one parameter normal distributions. 
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Example 3 .. 1: Consider a random sample of size 2 n from N(O,a) , 

and the hypothesis problem 

2 
H : a 

0 

2 
= C:To versus 

n 2, 2 
Here, f (X)/f (X) is .increasing in T(X) = .I:1 X./a , for 

~ ~ :i.= J. 0 .., ""o 

2 2 ) a > a • Hence -T(X is 1U1iformly mQst·sensitive for evaluat­e 

ing the significance level and for observed 

one obtains the observed significance level 

:x; = (x , • • • , x ) 
1 n 

Example 3.2: Consider a random sample of size n from N(µ.,cf) , 

2 a known, and the hypothesis problem 

Here f (X)/f (X) is increasing in X for 
µ. µ.o 

µ. < µ. so that X 
0 

is uniformly most sensitive, hence,. T (X) = fri('X - ·1,M )/ a is 
0 

uniformly·most sensitivea Thus, for an observed X, say 

x = (x1 , • 0 • , x ) ·, the observed significance level is given by 
. n 

SL(T(x)) = Pr ~(O, 1) variate _:: T (:x;~ • 

Locally Most Sensitive Statistics 

Significance tests developed earlier for one sided alternatives 

involved a family of distributions where the distributi0ns·were 

sufficiently well behaved, ioeo, a family of distributi0ns which had 

strict monotone likelihood ratio .. Suppose the random varial:;lle X has 



density f 8 (X) , w.r.t. a measure µ, but does not have monotone 

likelihood ratio and consider 

H: 8 = e versus H · e > e o o A" o 

Let T* be a statistic with distribution G under H and let 

{x: 
0 Q 

R = G (T*) ~ ~}. Then 
0 

Suppose H9 (~) possesses continuo1,.1.s ded,. vati ves w. r • t. e and that 

the differentiation can be carried out under the integral so that 
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where primes indicate differentiation w.r.t. e • If '.11* were to be 

most sensitive it would be necessary that 

H*, c~) > Hs, c~) 
0 0 

for any other statistic which is comparable with T* • However, the 

inequality would not imply T* most sensitive, but it would imply 

T* most sensitive in some one sided neighborhood of e ' say 
0 

8 + e:) • In this case T* will be said to be locally most 
0 

sensitive. 

Theorem 3a2 Let T*(X) = -f' (X)/f (X) , and let S be any other 
0 0 

statistic which is comparable with T* a Let G and F denote the 
0 0 

Codofos under H for T* and s respectively. rhen, for all ~' 
0 

I s' 
H* (~) ~ H (~) • 

0 0 
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Proof: Define G only at points of positive probability so that 
0 

G-l ,exists. Let 
0 

s1 

and 

s2 

Then 

= {x 
= {x 

·{x 

G (T*) < "} c {x : T* < G-1(c,)} 
0 - - 0 

f'(X) ~ - G-1 (~) f (x)} 
0 0 0 

F (S) ~ "}. 0 

H* 1 (a) - H81 (a)= 
0 0 S f' (x) dµ.(x) - J f 1 (x) dµ.(x) s O . s O 

1 2 

= J r;<x) dµ.(x) - f . f~(x) dµ.(x) 
Sl-S2 S2-Sl 

~ -G~1 (a) U f 0 (x) dµ.(x) - J f 0 (x) dµ.(x~ 
s1-s2 s2-s1 

= 0 0 

s' Therefore H*' (a)~ H (a) for all a o 
0 0 

A similar theorem could be given for H : e = 9 versus 
. 0 0 

T* = f'(X)/f (X) is such that 
0 0 

v 

H* 1 (a)< If (a) for all a o 
0 - 0 



CHAPTER IV 

TWO SIDED ALTERNATIVES 

Introduction 

When considering composite alternatives for significance tests 

attention has previously been restricted to one sided alternatives. In 

this chapter a one parameter family of distributions is considered 

where the hypothesis is of the form 

Special attention will be given the one parameter exponential family. 

Since the distribution of the test statistic T is required to be 

completely determined under the null hypothesis other types of two 

sided problems such as 

and 

would have no place in the present context of significance testing. 

The ultimate goal in determining a test statistic for evaluating 

the significance level for the hypothesis e:;:: e versus 
0 

e I e would 
0 

be, of coursei to find a statistic which is uniformly most sensitive. 

However 9 in general 9 such a statistic will not always exist. For 



example, let the observable random variable X have the density 

f (x) = c(e) eeT(x) h(X) e 

where X and T(X) are continuous random variables. for the given 

hypothesis, suppose that T* is a uniformly most sensitive test 

statistic. But also, from Corollary 3.1, for 

-T is such that 

e > e 
0 

the statistic 

Hence, -T and T* would have to be equivalent. Similarly for 

9 < 90 , Corollary 3.1 would imply T and T* equivalent, thus -T 

and T equivalent, which leads to a contradiction that T* is most 

sensitivee 

So in determining what statistic to use for evaluating the 
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significance level for a two sided hypothesis problem, since a uniformly 

most sensitive statistic will not exist, one may wish to find a statis-

tic which is "best" among a smaller class of test.statistics. 

Unbiased Significance Tests 

In hypothesis testing a simple condition that one sometimes 

imposed on a test of hypothesis of the form 

was that for no alternative in HA was the probability of rejection 

less than the size of the test~ that is, the power of the test was such 

that 

~Ce)~ o: if e E @ and 
0 

~Ce) :.:: o: if 
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..• 
A test satisfying-this-condition was called unbiased. Thus,for some 

hypothesis testing problems, although a uniformly most powerful test 

might not exist, one could possibly find a test which was uniformly 

most powerful among the smaller-class of 1,1nbiased tests. 

With the correspondence between hypothesis testing and significance 

testing established earlier the above definition wo1,1ld translate 

immediately to 

for e E @ 
0 

As tests of significance have been formulated the first of these condi-

tions is satisfied for all a, O < ~ < 1. In defining the concept of 
-, -

unbiasedness for significance testing it might be presumed that the 

second condition should hold for all a as well. But this condition is 

T 
somewhat too strong, since if a statistic T is discrete H9 (a) is 

only meaningful at points .a which are achievable values of SL(T) , 

i.e., points of increase of T H Ca) • It would be possible to have 0 . 

ot and still have 

e E (H)A, for some a which was not an achievable a. 

Definition 4ol For the hypothesis problem H: e E@ 
0 0 

versus 

HA: e E GDA the significance test correspondin~ to a statistic T is 

said to be unbiased if 

for·all achievable ot, or equivalently, 

for·all .ot, O ~a,::: 1 0 
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Throughout this investigation the statistic used for an unbiased 

significance test will be referred to as an unbiased statistic. This 

terminology should not be confused with the usual definition of an 

unbiased estimator. 

Whenever a uniformly most sensitive test statistic exists.for·a 

given hypothesis problem then this statistic is unbiased. For the most 

sensitive test statistics derived in Corollary 3.1 this is easily seen 

by referring to parts (i-b) and (ii-b) of Theorem 3.la 

One Parameter Exponential Families 

Special attention will now be given to the one parameter exponen-

tial family. Let e be a real parameter and X a random observable 

vector with probability density 

f Cx) = c(e) eeT(X) h(X) , e (4.1) 

with respect to a measure µ. It might be recall~d here that T(X) 

is sufficient for 9. It was seen earlier that a uniformly most 

sensitive test statistic for the hypothesis 

(4.2) 

does not existo This presents the need to investigate the existence 

of unbiased significance tests. 

Let T* be a test statistic with distril:)ution G (T*) 
0 

under H 
0 

where for convenience if T* is discrete G is defined only at points 
0 

of positive probability. Then for T* to be unbiased one needs 

for e I e 
C) 



for all achievable a. Now SL(T*) = G (T*) a;nd 
0 

H*(a) = P IG(T*) < al = P IT* < tJ 
e eL - 'j el - J 

where t' = G~1 (") • Let R = f I G0 (T') S "'} = {x I T'S t•}. 

Then 

He(a) = I c(e) eeT(X) h(X) dµ,(X) • 
R 

It will be assumed further that H9(a) possesses continuous derivatives 

with respect to e and that the differentiation can be carried out 

under the integralo Thus, 

= SR [cce) T(X) eeT(X) h(X) + C' Ce) eeT(X) h(x)J dµ,(x) 

S C'(e) s = T(X) fe(X) dµ,(X) + c(e) fe(X) dµ,(X) 
R R 

or 

HS'("') = HS (")~e § I Go (T') S "'] + g~~~)} · (4.4) 

But E9(T) = - C' (e)/c(e) so that (4.4) becomes 

Ha'(.,) = H,j(01{Ee~ SL(T') S <>] - E/T~ 

or 

Equation (4.5) holds for all achievable a and (4.6) for all possible 
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values t* in the range of T* if T* is continuous or all values 

t* which have positive probability if T* is discrete. 

Now if T* is to be unbiased, then 

for all achievable ~. That means, as a function of 9 , H8(~) must 

have its minimum value at e = e for all achievable ·~. Thus, it is 
0 

necessary that 

Applying condition (4.7) to (4Q5) and (4.6) gives 

E0 ~ I SL(T*) ~ ~] = E (T) 
0 

for all achievable ~ and 

E (T) 
0 

for all possible values t* of T* • These results are stated in the 

following theorem. 

Theorem 4"1 For the density 

f 9Cx) = c(e) eeT(X) h(X) 

and the hypothesis problem 

a necessary condition for a statistic T* to be unbiased is that 

E (T) (4.8) 
0 



40 

for all achievable ~ and 

E (T) 
0 

(4.9) 

for all possible values t* of. T*. 

It should be noted here that if in the density used in Theorem 4.1 

e were replaced by a strict monotonic function of e, say q(e) , 

the theorem will again follow. In this.case 
I· I· = --c (e)/q Ce) c(a), 

but condit~on (4.7) again reduces to equations (4.8) and (4.9). 

Since equation (4.9) must hold for all t* a more direct relation-

ship between the sufficient statistic T and t~e unbiased statistic 

T* can be obtained which may sometimes help in determining likely 

candidates for an unbiased statistic. In particular, T and T* must 

be uncorrelated. In order to show th.is the following theorem is needed. 

Theorem 4.2 Let X and Y be random variables and suppose that 

E ~ I Y ~ yJ = ~ [x] 

for all y. Then X and Y are uncorrelated. 

Proof: The proof is given for X and Y continuous random 

variables. The theorem can be proved for the discrete case by induction 

on the y values. Furthermore, the existence of the ~roper partial 

derivatives of the c.d.f.s F(x) , F(y) , and F(x,y) will be 

assumed so that all necessary densities exist. Thus 

Ee I y ~ YJ = s_: x s_: f(x,y) dy dx I P(Y ~ y) 

1 Sy rcy) J (X) x ric'r) dx dy = P(Y _<'y) Y 
-(X) -00 



41 

= E(X) 

implies 

J y E G I y J f ( y) dy = E [ xJ F ( y) 
-00 

for all ye Taking partials with respect to y gives 

EG I y] f(y) = E[x] f(y) for all y 

or 

E [x I Y = y J = E [x J for all y • 

Hence 

· E [x I Y J = E [x J . 
Therefore 

::o E(X) E(Y) • 

Hence, X and Y are uncorrelated. 

Applying the results of this theorem to the conditions in Theorem 

4al gives: 

Theorem 4o3 For the density 

r 9 Cx) = c(e) eeT(x) h(X) 

and the hypothesis problem 

H: e = 9 versus HA: 9 1 90 0 0 



a necessary condition for a statistic T* to be unbiased is that T 

and T* be uncorrelated. 

It is useful to note that the condition for unbiasedness, namely 

E0 [T IT*,.::: t*] = E0 (T) for all possible values t* , implies that 

and also 

T*·= t*] = E (T) 
0 

for all possible t* • 
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The conditions in Theorems 4.1 and 4.2 are necessary conditions on 

the test statistic for an unbiased test of significance. The problem 

remains to determine a sufficient condition and a more exact nature of 

the statistic T*. At times it might help to look at the second 

derivative of H9(a) with respect to 9. Thus 

or 

= J C11 (9) eeT(x) h(x) dµ,(x) + 2 s C'(e) T(x) eeT(x) h(x) dµ,(x) 
R R 

+ s C(e) T2 (x) eeT(x) h(x) dµ,(x) 
R 
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Now if the necessary condition is satisfied, i.e., H (OI) = 0 for all 
0 

achievable OI, then at e = e ' the abbve reduces to 
0 

or 

" H (01) 
O T - Var (T IT*< t*) - Var (T) • H (QI - o - o 
0 

I 

The statistic T* then must be chosen so that H (01) = 0 for all 
0 

achievable 01 and such that 

Var (T 
0 

for all possible t* • 

T* < t*) > Var (T) 
0 

(4.10) 

In looking for a uniformly most sensitive unbiased test statistic, 

if the theory is to parallel the Neyman Pearson theory, one would 

perhaps try finding T* as a function of the sufficient statistic T. 

Recall that in hypothesis testing for any test function there always 

exists a test based on the sufficient statistic which has the same 

power as the given test functiono Although this ~riter has not been 

able to derive a proper analog to this theorem, the search for T* 

will none the less be restricted to a function of T If T* is a 

function of T the unbiased condition does put some immediate 

restrictions on the nature of T* ~ 

Let t* be any value of T* a:.r1d let R = ~ I T* ~ t*} •. 

Then 

where p (t) 
0 

H*(01) = I p Ct) dt 
o R o 

is the density of t under H , and one must have 
0 



E (T 
0 

T* ~ t*) 

t p (t) dt 
0 

p (t) dt 
0 

= E (T) 
0 

For every achievable a, or equivalently for all possible t* , the 
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corresponding set R must be of the form R = R1 U R2 where R1 and 

R2 each have positive probability and where R1 contains points t 

such that t < E0 (T) and R2 contains-points t such that 

t > E (T) & If this were not the·case, that is if for some t* the 
0 

set R contained only points greater than 

than E (T) , then one would have either 
0 

E (T) 
0 

or only points less 

and the unbiased condition would not b~ satisfied. 

Furthermore suppose that Q'l and 0!2 are any two achievable 

values of SL(T*) corresponding to vall;les t* 
1, 

and t* 2 respectively, 

where O!l < 0!2" Then 

H9(0!l) = J Pe<t) dt = s. Q9(t) dt + J p9(t) dt 
R Rl R2 

and 

H9(0!2) = J p9(t) dt = J Pe Ct) dt + J p1/t) dt 
s s1 s2 

where R1 and R2 and s1 l;Ul.d s2 are decompositions of the sets R 

and S as indicated in the preceding paragraph. Then R1 c; s1 and 

R2 c s2 where c de;notes "proper subset of". This last statement can 

be proved as follows: Obviously R1 5= s1 and R2 S s 2 • Suppose 

R1 = s1 and R2 c s 2 • The unbiased condition 



implies that 

or 

E (T) 

S t p ct) dt s 
R o S 

t p ct) dt 
0 

------ = ...,.... ____ _ 
I p Ct) dt s 
R O S 

p Ct) dt 
0 

SR t p Ct) dt + f t p Ct) dt 
0 

R2 
0 

1 

JR p Ct) dt + I poCt) dt 
0 

R2 1 

0 

which becomes, upon simplification 7 

one hast> E CT) , hence C4all) impl~es 
0 

C4.ll) 

which contradicts the unbiased condition. Thus, R1 c s1 and R2 c s2 • 

Moreover it seems reasonable that T* should in fact be a unimodal 

function of T ~ since for earlier one-sided alternatives large values 

of T , small values of -T, indicated evidence against H when the 
0 

·alternative was e < e and small values of T gave evidence against 
0 

H when the alternative was 9 > 9 
0 0 

So, although complete justifica-

tion is not given here, in looking for an unbiased test statistic 
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attention will be focused on unimodal functions of T, that is, two 

tailed testse As will be seen however, there will not always exist an 

unbiased test statistic which is a two tailed function of T. This 

situation arises when T is discrete. When T is continuous it 

appears that a unimodal function of T should exist which is uniformly 

most sensitive unbiased. This conjecture is formally stated as follows: 

For the continuous one-parameter exponential family, equation (4al), 

there exists a uniformly most sensitive unbiased test statistic 

T* = g(T) , where g is a unimodal function of T, for evaluating the 

significance level of the hYJJothesis problem H 
0 

e = e 
0 

versus 

This writer has not been able to prove the above conjecture in the 

direct context of significance testing as has been adopted in this 

paperQ It can be proved however, by considering the significance level 

as a decision making device as .follows: 

Suppose the statement is false. Then for some ct , say °"o , 

there is no unimodal function T* of T such that both 

H9*Cct) ~ H*(ct) ~ (unbiased condition) , 
0 0 0 

a,nd 

(4al3) 

for any other continuous statistic T(l) e Consider a unimodal function 

T* a.rid reject H 
0 

if SL(T*) < ct 
- 0 

This test has the form reject if 

T < c1 or T > c2 i since T* is unimodal. But it was assumed that not 

both (4.12) and (4ol3) held simultaneously 9 ieee, no uniformly most 

powerful unbiased size ct test has this form. This contradicts 

Lehman's proof (10) that there exists a uniformly most powerful unbiased 
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test of the form reject if T < c1 or T > c2 for the hypothesis 

problem e = e versus e I e 0 

0 0 

For the discrete case the situation is summed up in the following 

theoremo 

Theorem 4.4 Consider the exponential family (4.1) where T is 

discrete. Then, in .general, there does not exist a unimodal function 

of T which is an unbiased test statistic for evaluating the signifi-

oance level for the hypothesis problem e = e 
0 

versus e I e , for 
0 

all e 
0 

The theorem can be proved by exhibiting a counter example that 

there does exist a unimodal function of T which is unbiased for 

Example 4ol Consider n trials of a point binomial and the 

hypothesis H : p = p 
0 0 

.sufficient and 

versus 
n 

Tb.en X = . ri_ X, 
J.=!.l J. 

f (X) = (Xn)pX (1 - p)n-X. 
p . 

is 

This is a form of the one parameter exponential (n known) with p = 9 , 

q(9) = log p/1-p and T(X) = X o Suppose T* is a unimodal function 

of X 

so that 

and denote an arbitrary achievable significance level by ~jk 

H* (~. ) = 
p Jk 

j 
t 

x=o 

Writing the above sums in terms of the Beta distribution gives 



H*(Q'.k) 
p J 

= r(n+l) JP tj (l-t)n-j-1 dt 
l - rCj+l)T(n-j) 

0 

rCn+l) JP tn-j+k-1(1-t)j-k dt • 
+ T(n-j+k)r(j-k+l) 

0 

Now differentiating with respect to p ,and simplifying gives 

I 

H* Ccx.k) 
p J 

I 

_ (n".".i+k-1) ! (j-k) ! (l,..p)n+k-2j-1] • 
j I (n-j~l) ! . 

Setting H; Cajk) = 0 gives the s9lution (other·than the trivial 

solutions p = 0, 1) 
1 

h 
p = I+ii .where 

. [( -· k-1)1(·-k)'] n+k-2j+l h = n J+ , J . 
j!(n-j-1)! 
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So, in general, the solution p is a function of j and k. That is, 

the value of p that minimizes H*(a.k) 
p J. 

depends on the particular 

significance level and for different ~ there is not one value p0 

that will minimize H;Ca) for every achievable a. Therefore, in 

·general, there can not exist an unbiased two tail test statistic for 

H: p = p versus HA: p I p0 for arbitrary p • 
0 0 0 

If k = 0, then one obtains p = % which is inde~endent of j 

and does give a minimum for H*(a) • Thus, if one uses an equal tails 
p. 

test there does exist an unbiased test of significance for H:p=% 
0 

The preceding results are stated in the following theo+em 



and corollary. 

Theorem 4.5 For the binomial distribution with n known and 

parameter p, for p0 IO ,%~1, there does not exist a unimodal 

function of X which is an unbiased test statistio for evaluating the 

significance level of the hypothesis problem H : p = p o ·o versus 

Corollary 4.1 For the binomial distribution there does exist an 

unbiased unimodal test statistic for the hypothesis problem 

H0 : p = % versus HA: p I%, and T*(X) = - IX - ~I is.such a 

statistico 

Consider now another example which illustrates the non~existence 

of a unimodal unbiased test of significance. 

Example 4.2 Let (x1 ,···, xn) denote a random sample from a 

Poisson distribution with parameter "A.. Then for 
n 

X = !: X. , 
i=l 1 

f(X) = , X = 0,1,2,··· , 

is of exponential form with T(X) = X and q(A) = log nA The 

Because of the nature of the range on X, for any test of 

significance based on T(X) = X to be two tailed and unbiased it would 

have to admit to a finite number of achievable significance leveis 

(see the discussion associated with equation (4.11)). Suppose there 

are R+l attainable values of X which are less than E (T) = n"A. 

·and that for the j-th achievable significanQe level, say 

0 0 

O!. , 
J 
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j (nA)x e -nA co (nA)x e -nA 
H,(~) ~ t + ~ j = O,•··· R+l. 
~ j x=o x! 2R+2-j x! • 

This form would also give the maximum number of achievable sigµifica.nce 

levels. Writing the sums in terms of the Gamma distributions gives 

co co ( ) s 1 · j -z I 1 2R+l-j -z 
HA aj = n11. j ! z e dz + 1- n11. r(~R+2-j) z e dz • 

Then differentiation with respect to 11. yields 

· -nA [ 1 (nA)2R-2j+l] = n· (nA)J e - - + j ! (2R - j + 1) ! •. 

Setting the derivative equal to zero and solving for 11. gives the 

unique solution 
1 

11. = _nl [ ..... C ... 2R_-_·...,j_+ ___ l __ )...,! J 2R-2j+l 
j ! 

and this value of 11. does iµ fact minimize HA(ai) • Notice, however, 

that 11. depends on, j so that the same value of 11. does not minimize 

H11.(Q1) for all achievable a. Thus, the corresponding significance 

test can not be unbiased. 

In the preceding examples the nonexistence of a unimodal unbiased 

0 test statistic resulted from the fact that di H@(a) TO did not give 

the same solution of e for every achievable Q'. One final example 

seems appropriate, that being a continuous situation where there does 
. ~-

exist a unimodal test statistic T* 

the same solution of @ for every Q', 0 ~ Q' < 1. · Fu,:r::thermore, it 

will be seen that the test statistic T* which is used is, in.fact, an 
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unbiased statistic for the given two sided hypothesis problem. 

Example 4.3: Let X = (X ,•••, X) 
1 n 

denote a random sample of size 

n from N(O,cr2 ) • The hypothesis is 

The density of X is then 

f (X) = ( 1 )n -T/2,j 
"V2rr cr e 

where T = ~ X~ 
i=l 1. 

This is a one parameter form of the exponential 

with T = ~ x? and 
1. 

9 = cr2 where q(e) = -1/2a2 • 

(1/~) f (t/ef) where 

Now T has 

probability density 

f (t) 
n 

n 

tn/2 -1 -t/2 t > 0 e ' . ' 

is the . ...f distribution with n degrees of freedom, i.e., 

Under H 
0 

T/~ has a ~ distribution. 

2 ~-

If T* is to be a unimodal unbiased function of T then for 

every a, that means every possible value. t* , there must exist 

values t 1 and t 2 such that 

H Ca)= P (T* < t*) = P (T < t 1 ) + P (T ~ t 2 ) = a 
0 0 - 0 - 0 

or 

Consider the u._~biased condition 

E (T IT*> t*) = E (T) = ,j n 
0 0 0 



or equivalently 

E (T I T* > t *) 
0 

which reduces 

Consider the integral 

Then integrating by parts, letting u 

yields 

n/2 = y 

f (t) dt. 
n 

2 cr n 
0 

and dv = e-y/2 dy 

fb n/2 -y/2 d _ 2 n/2 -y/2 lb Jb n/2 -1 / 
y e y - - y e + n y e-y 2 dy 

a a a 

Applying this result to the left h~c;l. member of equation (4.14) 

gives 2 2 2 
t /cr t I cr 2 0 
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(4.15) 

-Ztn/2 e-t/2 r/"o ~/\ 2nl2rcn/2) 
2 + n ft /.2 

f Ct) dt = n f Ct) dt ' n n 
t I cr 1 0 1 cro 

and hence 

1 O'o 

2 
-t2/2cr e o • (4.16) 

Therefore, the necessary condition. for unbiasedness implies that T* 

be chosen so that equ~tion (4al6) holds. The statistic 

(4.17) 

would satisfy this conditiono 
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It remains to show then, that for T* as defined in equation 

o 2 2 
(4.17), the equation ocl- H~(~) = 0 is satisfied at r;r = c:r0 , for 

all ~, and that this value ~: doas actually minimize H&2(~) • 

Minimizing 

is equivalent to maximizing the function 

But, by choice of T* , an observed value t* uniquely determines 

values t 1 and t 2 such that equation (4.16) holds and 

G(/) = P c,2[t1 < T < t 2] = P rf- ~1/i < T// < t 2/ cl] . 

(4.18) 

(4~19) 

Now, when the parameter is 2 r;r , T/i has a 2 
'X.ti distribution, :P.ence, 

2 G(O' ) 

Differentiating w.r.t. 

dt • 

2 a and simplifying gives 

/· 

[ 2 2] · G' (r:/) = 1 tn/2 e -t1/2c:r _ tn/2 e -t2/20' • 
re /2)2n/2( 2)n/2+1 1 · 2 

n · O' (4.20) 

On comparison with equation (4.16), it is seen that G' (i) = 0 • 
0 

Thus, 

also 1 H~(~) = 0. Furthermore, 
0 

_ t~/2+1 e~t~2~2J. 
(4.21) 
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Evaluating equation (4 .21) at 2 2 
cr = cr0 gives 

tn/2+1 
2 

- t2/2i J e o • 

(4.22) 

Therefore, G"( cr; ) < 0, since t 1 < t 2 and equation (4.16) imply the 

difference in equation (4.22) is negative. Also, the results 

G' (/) = 0 
0 

and G" (/) < 0 
0 

are independent of the 

value t* , by choice of T* , thus independent of a. Thus, G(cr2 ) 

is maximized a t 2 2 er = cr O for all a , i • e • , is minimized at 

2 2 
(J = (J 

0 
Hence, 

so that T* is unbiased. 

The conjecture made earlier would seem to suggest that T* is 

uniformly most sensitive unbiased for the given hypothesis problem. 

For observed T* , say t* , t* uniquely determines constants 

c2 such that the corresponding observed significance level is 

and 

The following graphical representation of how an observed significance 

level is obtained may be helpful. The value a* is represented by the 

shaded area. 
2 
~ 

t 



It might also be noted in passing that T* and T do sat:j_sfy 

Theorem 4.30 That is, T* and T are uncorrelated. 
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CHAPTER V 

EXTENSIONS. 

After completion of this study many questions still remain 

unanswered and there is certainly a need for further investigation of 

this topico There appear to be numerous possibilities for extension of 

the theory, but at the same time the theory seems to have some 

limitations. 

In the consideration of composite alternatives, this investigation 

has been restricted to hypothesis problems involving a single real 

parameter. The immediate need ~ould be to extend the development to 

multi-parameter situations. For example, it would be of special 

interest to show that the test statistics ordinarily used in the 

familiar normal theory tests of hypothesis problems considered in 

elementary statistical methods courses are also the optimum statistics 

for significance testings For example, how would one justify the use 

of the t statistic for·evaluating the significance level for a hypo-

thesis involving µ. .when 2 cr is an unknown nuisance parameter? 

The·role of the sufficient statistic in significanc;::e testing seems 

to be a mysterye Although the significance tests developed in this 

investigation for the exponential distribution were based on a suffi-

cient statisti~, the sufficiency condition was really not usedq In 

hypothesis testing the use of a test function based on the sufficient 

statistic ·. S is justified by the fact that · for any test function ~ (X) 
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there exists a test function, namely E(~(X) Is) , based on the suffi­

cient statistic which has the same power function as ~(X) • The analog 

to this theorem for significance testing would appear to be: If S is 

a sufficient statistic and T is any other statistic, then there exists 

a function of S, say f(S) , such that 

for all achievable a. However, this statement can readily be proved 

false for the statistics T and S discrete. For the continuous case, 

the natural candidates for f(S) , namely f(S) ~ P0 (! ~ tis) 1?,nd 

f(S) = E (TIS) do not give the desired result. 
0 

When widening the scope of the Neyman-Pearson development to multi~ 

parameter situations a number of new concepts and devices are 

introduced; for example, similar tests, tests of Neyman structure, 

invariant tests and stringency. Perhaps analogs to these concepts can 

be given and used in extending the theory of significance testing as 

described in this paper. In conclusion, one such analog will now be 

considered. 

Similarity and Neyman Structure 

In hypothesis testing a test function t<x) was said to be similar 

of size a if S¢(e) = a 

Q()x __ fiP! 
0 given family er L O , 

That is 

for all distributions of X belonging to a 

of distributiqns, i.e., e E ® . 
0 

for all e E ~ • Furthermore, if T was a sufficient statistic for 
0 

YJ'X , and ?PT denoted the family f~ , e S @0} of distributions 



of T as e ranged over @ , then any test satisfying 
0 

aoeo ~T, 

where a.e. rJ)T means the equ~tion holds except on a set N with 

PT (N) = 0 for all PT E ~T , was similar with respect to ~X • A 

test satisfying this condition was said to have Neyman structure with 

respect to T. 

With the correspondence established earlier between hypothesis 

testing and significance testing, a test statistic T* , or equivalently 

the test of significance corresponding to T* , would be similar if 

SL(T*) was such that 

that is, 

H*(Q1) = O! • 
0 

e E fi1'\ \810 , 

Now~ if T* is continuous this condition is automatically satisfied foF 

all QI. If T* is discrete the condition is satisfied for all achiev-

able QI o Thus 1 similarity was essentially incorporated into the 

formulation of significance testing when it was required that the 

distribution of a test statistic be completely specified under the null 

hypothesi.sa As far as using similarity then to extend the theory of 

significance testing it appears to be a somewhat "empty" concept since 

similarity was actually built into the definition of a significance test 

to begin witho 

Suppose next that T is sufficient for e E ® 
0 

Then a test 

statistic T* would be said to have Neyman structure with respect to 



T if 

that is if 

H*(a I t) = Cl' , a.e. 'fPT • 
0 
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Since, by the formulation of significance tests given here, every 

test statistic is similar it would follow trivially,that any test 

statistic which is of Neyman structure with respect to,a sufficient 

statistic T is also similar. 

Lehman (10) proves the following theorem: Let X be a random 

variable with distribution P E fP • {~ I e E @J ·and let T be a 

sufficient statistic for f?. Then a necessary and. sufficient condition 

for·all similar tests to have Neyman structure with respect to T is 

that T be boundedly complete.· 

Consider theanalogous result for·significance tests. 

Theorem 5ol If T is sufficient and boundedly complete for the 

family of distributions {~ I 0 E @J then all teat statistics are of 

Neyman structure with respect to T. 

Proof: Let T* be any test statistic with distribution G under 
0 

H : 9 E ® and T sufficient for · e E ® . Then 
0 0 0 

H~Ca) == P0 .~0 (T*) ~a]= P0 ~L(T*) ~aJ = a 

for all achievable o, and any T' • Let A = {x I SL(T') !; o,} . and 

define the function 

I A (X) = 1 if X E A , 

= 0 if Xi A • 



60 

Then 

implies that 

hence 

Now E0 (:A (X) I t] ,is actually independent of 9 E ®c, , since the 

integral representation of E0 [rA(X) It] involves only IA(X) and 

the conditional distribution of X given t r which is independent of 

6 since T was sufficient for e E ® . Thus, let 
0 

which is strictly a function of t and also is bounded. Therefore 

implies 

f(t) = 0 

since T was boundedly complete. Thus, one has 

or 

for all achievable ~ a 

The converse of Theorem 5al would be: If all test statistics have 

Neyman structure with respect to a sufficient statistic T , then Tis 

boundedly completea 

The writer has not been able to prove the above conjecture but at 

the same time could not exhibit a counter example. 



CHAPTER VI 

SUMMARY 

In this paper a study of providing a rationale for significance 

testing which avoids any commitment to decision rules is made. The 

approach taken is to attempt to build a theory of significance tests 

which parallels the classical Neyman-~earson theory of hypothesis 

testing; that is, define a criterion for comparing significance tests, 

or equivalently statistics used in performing the significance test, 

then find a statistic which is in some ~ense "best" for a problem 

involving a simple null hypothesis and a simple alternative hypothesis, 

and then to extend the scope of the theory to include special classes 

of composite hypotheses. 

In Chapter II a determination of a criterion for comparing test 

statistics is given and the concept of a most sensitive test statistic 

is discussed. It is shown that for·a simple null hypothesis and a 

simple alternative hypothesis the fa~iliar likelihood ratio statistic is 

a most sensitive test statistic~ Other desirable properties of the 

likelihood ratio are considered. 

In Chapter III consideration is given to one sided alternative 

hypotheses. Special attention is given to distributions with monotone 

likelihood ratios. Uniformly most sensitive test statistics are 

obtained for this class of distributions and in particular for the one 

parameter exponential family of distributions. Statiqtics which are 
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most sensitive in a neighborhood of the hypoth.esized value of the 

parameter are also discussed. 

The theory is extended to two sided alternatives in Chapter IV. 
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The concept of unbiased significance tests is discu.ssed and a nl!.mber 

of necessary conditions for the existence of an unbiased significance 

test are given with special attention again being given to the one 

parameter·exponential distribution. Uniformly most sensitive unbiased 

test statistics are also discussed. 

Chapter V concludes the investigation with some suggestions for 

extensions and further study. 
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