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CHAPrER I 

INTRODUCTION 

Stannic Oxide is a member of the crystal ·system nl!• A number of 

previous studies of the electrical and optical properties of this ma­

terial have been reported (1-6). However, as yet, no attempt to corre­

late the available data via a band structure calculation using the one 

electron theory of solids has been made available. Such a study would 

attempt to predict mathematically soi:ne of the gross electrical and op­

tical properties of the material in question from existing self-consist­

ent data for the free atoms which make up the material. This type of 

"first principles" calculation has as its basic problem the mathematical 

formulation of the potential which will be seen by an electron as it 

traverses the real crystal lattice. However, the selection of a proper 

potential can be made thr.ough the usual self-consistent routine. Al­

though a sufficient amount of data for a first principles band structure 

calculation is now available, prior calculations of this type on other 

systems have been shown to be of sufficient error-to warrant another 

approach for a preliminary investigation. As a first step, then it has 

been decided to make an empirical pseudopotential calculation to test 

the general applicability of the one electron approximation for explain­

ing experimental data, and to act as a guide for future theoretical cal­

culations of a more fundamental nature. 

Since the study of the reflectance spectrum of a crystal for light 
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of energy larger than the band gap ~as proven to be of significent value 

in treating metals and other materials in which the one electron theory 

has been applied, it was felt that following the work of Van Hove (7), 

Phillips (8), Brui;t (9), and many others might prove to be of particular 

value in attempting to obtain further optical properties of stannic 

oxide which would lead to a better understanding of the type and 

strength of force seen by an electron within the lattice as it moves 

from one energy state to another. 

In this sense, the calculation should augment the experimental data 

and vice versa. The attempt to make the calculation self-consistent 

involves adjusting the pseudopotential parameters until as many of these 

measured quantities as possible may be predicted by the results of the 

calculation. After this situation has been optimized, it should be 

possible to inferr the type of potential seen by an electron as it moves 

through the lattice by Fourier transformation of the final pseudopoten­

tial used. 

To summarize, the problem under study involves three parts, 1) de­

termination of the optical reflectance for light of energy greater than 

that of the band gap, 2) utilization of the empirical pseudopotential 

formulation and other data in a first· attempt to describe a band struc­

ture for stannic oxide, and finally, 3) correlation of the reflectance 

spectrum and the calculated bands. 



CHAPTER II 

OPTICAL PROPERTIES OF MATERIALS 

A complete treatment of the optical properties of solids is beyond 

the scope of this paper. The reader. who is interested in the many theo-

retical implications and mathematical descriptions of such optical pro-

perties is referred to.several excellent review articles and texts a-

vailable on this topic (10,ll,12,13,14,15,16,17,18). 

A general mathematical treatmE:!nt of the optical properties of ma-

terials can have its basis in the theory of propagation of electromagne-

tic waves in conducting media. This theory will be briefly reviewed be-

low following Moss (12). 

When considering the propagation of electromagnetic waves in con-

ducting materials it is necessary to begin with the Maxwell equations 

which for this case have the form: 

(1) 

(2) 

.... ~ 

v'•H=O (3) 

.. ~ 

V· E = 0 (4) 

where 

C0 = dielectric permittivity of free space 
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A = pre.meability of free space 
0 

E= specific dielectric constant 

fa= specific permeability 

er= electrical conductivity. 

Taking the curl of equations (1) and (2) and applying the identity 

,,.}, ..... .... .,,:0,. -lo ..... 2-' 
t7x '1 x A = t'(\l•A) - 'fl A it is possible to obtain: 

The solution of one component of these equations may be written as: 

Tr; =i'"'u~' eiCt-x/v) where TI can stand fort or it. 

This implies that 

However, 

v = c/N 

4 

(5) 

( 6) 

( 7) 

( 8) 

(9) 

where c = velocity of light and N is the refractive index of the medium. 

Equation (8) may be therefore rewritten in the form 

(10) 

and if the conductivity is nonzero the index of refraction must be com-

plex and of the form 

N = n - ik. ( 11) 

This changes the form of Equation (7) to 
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(12) 

with 

(13) 

For cases of practical interest,)'.= 1, which implies that 

(14) 

(15) 

At this point it should be noted that~ is the conductivity of the medi­

um at the optical frequency concerned rather than the de or low frequen...;; 

cy conductivity. As such, it contains any and all loss mechanisms which 

may arise at any frequency. 

The absorption coefficient K is defined by the condition that the 

energy carried by the wave drops by a factor of e in a distance 1/K. 

Since energy flow is given by the Poynting vector, K is proportional to 

.the product of amplitudes of electric and magnetic field vectors. Both 

of these contain the term e .. Wkx/c as an attenuation factor. Thus the 

total attenuation in a distance xis given by e-2Wkx/c which implies 

that Kand k are related by 

K = 2Wk/c = 41Tk/~. (16) 

The next problem to be considered involves the behavior of an 

·electromagnetic wave as it strikes a surface. In this case, Snell•s and 

Fresnel's laws are still vaU.d. However, their interpretation is com-

plicated by the fact that the angle of refraction is sometimes imaginary 
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and, in the refracted wave, planes of constant phase ·and constant ampli-

tude no longer coincide. The treatment of this problem for any angle of 
··, 

incidence is given in detail by Stratton (18) and is quite lengthy since 

many·boundary conditions must be ,~tated, the wave must. be broken up into 

components with polarizations para'llel and perpendicular to the plane of 

incidence, each component must sati,sfy the Maxwell equations with the 

proper boundary conditions, and then Snell's lawmust be invoked to ob~ 

tain.a reflectance and transmittance,dependent upon the angle of inci-

denceQ · Such procedure when followed for both the elec.tric field and 

magnetic field vectors results in general expressions forangle-depen-

dent reflectance and transmittance which reduce to the·following simple 

forms in the .case of normal incidence: 

R= ( 17) 

T= (18) 

where R is the.reflectance, Tis the transmittance, and n1 .and n2 are 

the refractive indices of mediums one and two, respec_tively. 

If the medium containing the incident ~ave is air (nf = 1.0) and 

the second medium has a complex index of refraction gi'ren by 

(19) 

the reflectance, reflection coefficient, (or as it is called.here) the 

reflectivity, may be written as: 
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R = (n - ik - 1) 2 

(n - ik + 1)2 
= (n - 1)2 + k2 

(n + 1)2 + k2 
(20) 

Following Stern (19), this reflectivity relation may in principle 

be used in conjunction with the relation between the extinction coef-

ficient k and the absorption coefficient K to classify the possible 

electronic transitions by studying the absorption coefficient of the 

material in question, extracting the slope of the absorption coefficient 

curve as a function of energy, and from this slope, determining the den-

sity of states of the material as well as its energy-dependent refrac-

tive index. However, Stern noted that due to the lack of appreciable 

structure in the absorption curve, a treatment based upon measurements 

of the absorption alone is insufficient for a comprehensive study of 

the important electronic transitions. 

The problem itself is not insoluble, however, since other workers 

in this area (20,21,22,23,24) have indicated that many details of the 

eiectronic band structure in different types of solids can be obtained 

by critically studying the structure of the imaginary part of the com­

plex dielectric constant (2nk) which is related experimentally to the 

reflectance of the material being investigated. Philipp and Taft (25) 

have shown that the real and imaginary parts of the refractive index 

(n and k) can be obtained from the reflectivity spectrum at normal inci-

dence by calculating the integral 
IOO 

e(E ) = .l_ s d ln R(E) ln 
o 21T dE 

dE. 

Then n and k are given as the solution of the equation 

n.- ik - 1 _ R\ i9 
n - ik + 1 - e • 

( 21) 

(22) 

Thus with reflectance data on hand as a function of energy it is in prin-
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ciple .possible to determine all of the optical ~onstants of a material 

simply by·applying this argument to the·data·acquired at normal inci-

dence. Such Kramers-Krotrlg analysis (Equation 21) of reflectance. spectra 

have be·encarried out in several inves_tigations (Z0,21,22,25,26,28). 

However, as pointed out by Phillips (10) there is often less .than 0.4 

e.lectron.volt difference in the energy location of ther observed reflec-

tance peaks and th.e 2nk peaks using· values of n and k obtained as above. 

The-analytic singularities in the 2nk curve acquired via a Kramers-

Kronig analysis of the material's reflectance also show a correlation 

with those of the joint density-of"'!states function 

(23) 

where 

E· · = E.(k) - E-(k) lJ .. . i .. J 

is the energy difference between conduction and valence band states and 

the domain of integration covers constant momentum·surfaces. Thus the 

sameconclusiop.s regarding singularities may be drawn-simply by investi-

gating the structure of theacquiredreflectance spectrum. This effect 

of singularities in the joint density-o~ .. states due to tv'1< Eij' being 

zero has been studied in detail by Van Hove (7) and Phillips (18) and is 

quite amenable to further application regarding the optical-electrical 

properties of.solids. 

Many other workers have use9 the-aforementioned methods to study 

the optical properties of solid~ (27,28,29,30?• For a complete and com-

prehensive listing of the references.on this matter, the reader is re-



ferred to the review articles by Phillips (1) and Lax.(27). 

Another point noted by Phillips, Ehrenreich, and Philipp (33) and 

again by Phillips (34), is that a wide range of data indicates that the 

ultraviolet structure in the·reflecta~ce curve depends primarily on 

9 

. crystal structure and only secondarily on atomic. c,omposition. The char­

acteristic structure of ultraviolet• absorption is assig.ned to interband 

· transitions that are applicable at symmetry points of the Brillouin 

zone, and just as the energy bands of materials seem to·show some sort 

of consistent trend (35,36).for a given space group, the reflectance 

from any set of crystals with the same crystal structure appears to be 

somewhat alike. If these observations are coupled with the facts that 

anisotropic crystals have. polarization-dependent reflectiyities.and that 

the reflectance of rutile has been acquired by Cardona and Harbeke (37), 

a plan of attack to be followed in studying the optical properties of 

stan~ic oxide becomes apparent. 

This plan is-preliminary in nature-and rather-elementary in content 

at this time, but appears to be consistent with the type of optical in~ 

vestigation that has been carried out for many.other materials in a 

particular crystal class. The problem to be c-onsidered theoretically 

and experimentally involves acquiring some idea of the reflectance of 

stannic oxide as a· function of the incident photon energy, comparing 

this data with that of rutile (when polarization measureµients are possi­

ble), calculating-a tenative band structure in which the s~etry of 

the initial and final electron states may be classified, and as a fu­

ture problem, noting. if such a trend. of reproducibili.ty in both the 

optical reflectance data and the band structures of materials having 

·this type of crystal structure is evident. 



CHAPTER HI 

OPTICAL MEASUREMENTS 

The Monochromator 

The reflectivity measurements were obtained using an instrument 

built in the Chemistry-Physics Shop at Oklahoma State University. Al~ 

though several features of existing systems of this type were considered 

(38,39), an attempt was made to integrate the best features of the most 

favored system into·a single instrument of flexibility sufficient for 

studies in several different regions of the optical spectrum. 

Figure 1 shows the monochromator in. perspective. Upon viewing this 

figure, it may be seen that the· system consists of three distinct parts, 

sample chamber, grating chamber, and entrance & exit tubes. This fact 

may be used to advantage for later work in that should the sample chamg 

ber need modification, it may be easily removed. Similarly, the grating 

chamber may be altered, and the slit-to-grating distance may be in­

creased simply by the insertion of the proper length tubes or tube sec­

tions. The entire system was electroless nickel plated by the Kaningen 

process to avoid erosion. 

The grating chamber (Fig. 2) was constructed from a.steel tube of 

fourteen-inch diameter and length of six inches. At the base of this 

chamber is an exit tube which connects to an oil diffusion pump. The 

top and bottom plates which are fastened to the grating chamber have 

been sealed using 0-rings in order to insure keeping the chamber light 

10 
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Figure 2. The Grating Chamber 
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tight as well as allowing for vacuum measurements. The grating used was 

.a Bausch and Lomb replica 11 CP" grating with 6000 lines/cm which was 

blazed for 2760 angstroms at normal incidence. 'This grating was mounted 

using an off-center pivot similar to that dbcussed by Johnson ( 40). As 

pointed out by Johnson, the utilization of such a grating mount allows 

perfect focus for two different wavelengths in the first order and a 

near~perfect focus with deviation of less than two per cent for the 

wavelengths between the two focused wavelengths selected. For this sys­

tem it was felt that perfect focus would be desirable at a wavelength 

which correspondes to the approximate energy of the intrinsic band gap 

of the material being studied. Thus, the off-center pivot was construc­

ted in such a way as to allow perfect focus at 2260 angstroms and 3260 

angstroms. 

The relative position of the grating may be determined by reading 

the angle on.the horizontal vernier scale shown in Figure 2. The verti-­

cal vernier moves through an angle of 180 degrees for every degree on 

the horizontal scale. Thus, assuming no backlash, the grating may be 

placed at. any predetermined angle with respect to the entrance beam with 

an accuracy of twenty seconds of arc as read on the horizontal scale. 

However, upon propagating the error for such a setting experimentally, 

it was found that there was indeed some backlash in the gearing mecha­

nism. This error was not found to be serious since data were taken by 

sweeping out the entire spectrum r~ther than going to one point in the 

spectrum, backing up to another point, and then proceeding to a point 

past the initial one. Also, it was felt that the data acquired were 

good since the backlash could be virtually eliminated by turning the 

grating through an angle of 100 degrees on the vertical scale past that 
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used for the last data point, then ret4rning to that point and sweeping 

out the spectrum in the opposite direction. 

The entrance and exit tubes were made in sections as may be seen 

from Figure 1. This was done to increase the flexibility of the system 

in that should conditions warrant changing gratings, any larger Rowland 

circle may be used simply by inserting sections of tubing of the proper 

length. 

The entrance slit is shown in Figure 3. This slit may be aligned 

in two wayso Other than adjusting the slit width and its orientation 

relative to the ruled surface of the grating, it is also possible to 

adjust the slit-to-grating distance via rotation of the section contain­

ing the slit which has been attached by threads to the entrance tube. 

The detection chamber is shown in greater detail in Figure 4. This 

chamber was made to be flexible in that the entire system. is sealed to 

the exit tube by a double 0-ring arrangement. This allows vacuum meas­

urements without welding the exit tube to the chamber. The chamber it­

self was constructed of a tube at diameter 12 inches and length of fif~ 

teen inches. As was the case for the grating chamber, this tube is 

sealed to its top and bottom covers by an 0-ring arrangement. The de­

tection chamber is supported by a tube which rests on a stage as shown 

in Figure 1. This stage rests on 4 b.all bearings placed in grooves in 

the base plate. Thus, the system may be moved in any direction in the 

plane of the table upon which the base plate is fastened, and locked in­

to position by tightening the screws which make contact with the sides 

of the plate which supports the detection chamber. Such an elaborate 

arrangement turned out to be unnecessary for alignment of the slit with 

respect to the exit tube but could prove to be of significant value for 
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Figure 4. The Detection Chamber 



future use if it were found that the detection chamber. was not aligned 

properly with respect to the geometric center of the exit tube. 

17 

Only one detector was used (RCA phototube type 1P28) throughout the 

course of the experiment and its location inside the detection. chamber 

is quite important. This is true since the most desirable situation is 

one wherein the optical path from the exit slit to the detector may at 

all times be considered to be constant. If this be the case, the actual 

magnitude of the reflectivity may be ascertained from relative measure­

ments by using an argument based solely upon the geometry of the system. 

For this reason, the detector was mounted through the center of the top 

plate of the detect:i,.on chamber in such a manner that it could be rotated 

to any position within the chamber. The relative position of the detec­

~or could be readily ascertained by reading the vernier scale which was 

mounted upon its shaft. The sample was mounted so that it could be ro­

tated in and out of the beam using the knob shown in Figure 5, which al~ 

so shows the phototube,sample holder, and sample in inverted position. 

As has been noted by others (41,42), phototubes such as the RCA 

1P28 which do not have an appreciable spectral response in the ultra­

violet region of the spectrum may be made sensitive to radiation in this 

r.egion by spraying the glass envelope of the tube with a solution of 

sodium salicalyte in methapol. The complete details of the procedures 

for preparing a phototube in this manner are presented by Allison, 

Burns, and Tuzzolino (42). Briefly, the ultraviolet sensitivity arises 

due to the ability of the sodium salicalyte to absorb radiation in this 

spectral range and then reemit light at 4300 angstroms with a quantum 

ef.ficiency of nearly 100%. This latter·being the region of greatest 

spectral sensitivity for this tube allows measurements to be made 
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inexpensively while yielding a means of determining the output intensity 

of any source of ultraviolet radiation. 

Several different light sources were used at various stages of the 

experimental work. For purposes of calibration a mercury arc (Osram 

Hg3 Spectral Lamp) was used. However, this source is unsatisfactory for 

wavelengths below 2000 angstroms and due to its giving a line spectrum 

with very little overlap between lines, it is unsatisfactory for scanning 

a rather large range of energy in a continuous fashioi::i• This necessi­

tated the use of a light source which had a continuous spectrum in the 

region of interest with an intensity sufficient for the work desired. 

For this reason the preliminary measurements were made using a hydrogen 

arc. Hydrogen has a continuous spectrum in this wavelength range and 

was satisfactory for this purpose. A deuterium lamp (type OSRAM 0102-S) 

was used extensively throughout the latter stages of the experiment. 

This lamp is roughly three to four times brighter than the hydrogen 

lamp. For future work a hydrogen dischar~e arc following Phillip and 

Ehrenrich (6) has been built which should.increase both the spectral 

range covered and the intensity of the output tadiatio~. 

The apparatus was calibrated approximately by using the output of 

a Bausch and Lomb (Serial No. RD82) monochrometer as the input source 

of radiation. After roughly locating the mercury lines, the Bausch and 

Lomb instrument was replaced by the mercury arc and the lines were then 

located carefullyo The resulting calibration plot is shown in Figure 6. 

In this figure, the first line, 1 1 , represents the initial calibration 

plot while the second line, 1 2 , represents the calibration plot current­

ly being used. It was necessary to re-calibrate· when the grating was 

removed and then re-inserted into the system. At the time, it was sus-
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pected that if the 2536 angstrom line were found for the second case, 

the new calibration plot would simply be a line parallel to the first 

yet passing through this point. That such is the case is easily veri­

fied by inspection of Figure 6. 
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In an attempt to further check the calibration and become acquaint­

ed with the system, measurements of the reflectivity of single crystal 

silicon were made. The reflectance spectrum of the silicon was then 

compared with that of Ehrenreich and Philipp (43). Since the spectrum 

obtained agreed with their data, further confidence was gained as to the 

accuracy of the final calibration plot and the method of measurement. 

After checking the spectrum of silicon, several attempts were made 

to measure the reflectivity of stannic oxide. Although a number of 

natural samples of Bolivian cassiterite were available, only one of 

these was used. Phillip (10,34) has noted that for non-cubic materials 

there should be differences in the reflectance spectra for light inci­

dent parallel and perpendicular to their optic axes. The one sample 

used was the only sample of Bolivian cassiterite available which had 

been cut so the optic axis was well defined with respect to the sample 

surfaces. The reflectance spectrum of synthetic stannic oxide was also 

desired for comparison but was quite difficult to obtain due to the 

small size of the crystals on hand. For this reason, this spectrum was 

ultimately measured using a vapor-grown crystal furnished by Corning 

Glass Works. The results of these measurements are illustrated in 

Figures. 7 and 8. 

Samples and Their Surface Preparation 

As mentioned above, this work was carried out using two types of 
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stannic oxide samples. The natural cassiterite sample has the form of a 

triangular prism and was cut from one-half of a twin specimen in such a 

manner that the c .. axis is perpendicular to the triangular faces. For 

further discussion about the optical properties and the method of cutt­

ing this prism the reader is referred to the M.S. Thesis cited as refer­

ence (44). 

The other sample was furnished by Corning Glass Works and prepared 

by a vapor deposition technique. This crystal was used in preference to 

one grown by Kunkle and Kohnke (45) simply because of its larger surface 

area. The c-axis lies along its length, it is of 1 mm2 cross section, 

and has a length of 2 cm. Thus comparison between the data acquired for 

this crystal and for the cassiterite specimen must be made very careful­

ly due to the difference in orientation of the c-axes in the two in-

stances. 

A standard cleansing procedure for these crystals was adopted in 

order to assure reproducibility from one set of data to the next. This 

is extremely important s'r"'rlce it has been shown (46) that certain aspects 

of the reflectance spectrum may vanish and then reappear if a crystal is 

first cleansed and then allowed to become contaminated, 

The insolubility of stannic oxide in acids led to a method of 

cleaning the crystal in five steps as has been mentioned by Kunkle (47). 

This method was used when dealing with the electrical properties of 

stannic oxide and was felt to be adeqt,1ate for a.study of its optical 

properties, The procedure is given below: 

1) four hours in aqua regia 

2) four hours in hydrofluoric acid 

3) rinse (acetone) 
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4) rinse (methanol) 

5) rinse (distilled water). 

The times given are not truly representative of the various clean­

ing procedures used since when the crystals were extremely dirty and did 

not exhibit a reflectance spectrum that could be immediately reproduced, 

they had to be placed in the acids for periods of days or-even weeks be­

fore reproducible data was.again obtained. 

Reflectivity Results 

For the purposes of this· work the most imp.ortant difference be­

tween the stannic oxide crystals used is in the orientations of their 

optic axes with the plane of the·incident radiation. 

The data shown in Figure 7 were obtained for the natural_ sample 

while those of Figure 8 were acquired for the· grown sample. The current 

output of the phototube was read with a Keithley 610B electrometer for 

reflected light and also for· light that was simply transmitted from the 

slit (exit) to the phototube with the sample out of the beam. The ratio 

.of the currents measured at each poipt of the spectrum of interest yields 

the relative reflectance of the sample being studied in a direct manner. 

After acquiring the reflectance versus energy curve for each sample 

a number of times, the data was normalized to yield the curves indicated 

in Figures 7 and 8. For this normalization the energy of five electron 

volts was taken as reference-and at this point the reflectance was con­

sidered to have a magnitude of·lOOin arbitrary units. In this manner, 

-each curve-could be drawn with reference to the-others and any devia­

tions in shape or position of reflectivity noted immediately. 

As expected, the two sample types exhibit a difference- reflectance 
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vs energy structure. However, the curve obtained for the natural sample 

of stannic oxide agrees quite well in shape·with that obtained for the 

Elc data of rutile as given by Cardona and Harbeke (37). Apparently the 

oxides in the space group n!!behave as do the metals.and intermetallics 

in that the shape of the reflectance curve appears to be a function. of 

.the· structure of .the system .rath,er than a function of. the type of ion 

within the system being studied. This agrees with various theoretical 

proposals which have been advanced (10 ,34,4n. However, there is not 

enough data currently available for the members of this particular 

space group to state that such is always the case. If it were, the 

shape of the E//c curve given· by Cardona and Harbeke for rutile could 

be used to extract a similar stannic oxide curve. 

Thus, one must keep in mind that there is indeed a diffe'l'.'ence be­

tween the two spectra pbtained and that this is a rea.l and necessary 

difference arising from the difference in.polarization of the light in­

.cident upon the samples. with respect to their c .. axis orientations. 

From these curves, it should be possible to determine some of the energy 

differences for allowed optical transitions by correlation of the proper 

selection rules with the band structure calculation. 



CHAPTER IV 

GENERAL BAND THEORY FORMALISM 

Every theoretical treatment of a physical system has as its ulti­

ma.te goal the establishment of a model from which the properties of the 

system under study may be extracted. When dealing with a system which 

displays many different chemical and physical characteristics, it is not 

uncommon to have ·almost as many different models as there are research 

efforts. Thus, for example, the treatment of some of the gross optical 

and electrical properties of a solid may be handled very nicely using 

a flat band model; however, if all such properties are to be treated 

simultaneously, this model proves.to be of limited value. In general, 

the establishment of a good model requires that some details of the 

·actual order of magnitude of the forces which act on the microscopic 

level be known. Indeed, if all such forces were fully tabulated and 

.. categorized for any solid, it might be possible to b.uild. a 11,lathematical 

model of t:.he system which would predict exactly its gross physical and 

· chemical properties. However, at the· present time, so little is defi­

nitely known·about the forces actiilg on an electron as it t:.raverses a 

lattice .that such complete models for solids are not yet in sight. For 

this reason, the general approach for obtaining information pertaining 

·to the allowed electrop. energy bands of solids and the ultimate.applica­

tion of t~is information to give order-of-magnitude estimates and mathe- · 

matical forms for the forces acting on an electron in a periodicpoten-

27 
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tial has led to band structures that are seldom in agreement with experi­

ment. The reason for the lack of agreement between theory and experi­

ment (usually of an order of 25%) lies in an inaccurate determination of 

the mathematical form of the potential seen by the electron. As a re­

sult, several techniques for handling such problems have been proposed 

and exploited. Regardless of the approach, however, the plan of calcula­

tion ultimately revolves about some self-consistent effort wherein given 

a potential which predicts a few of the measureable properties of the 

system, the next step involves performing a calculation which is then 

used for checking the effectiveness of the chosen potential to predict 

another measureable property. Generally, the potential does not predict 

the property to the desired accuracy. As a result, the potential "is mod­

ified anew until this new property is predicted. After such modifica­

tion as is necessary, the prediction of a different effect is attempted 

and unless this effect is correctly predicted by the model, the poten­

tial is modified again. In this manner one attempts to build a mathe­

matical model of the system that predicts as many of its properties as 

are measureable and predictable within the framework of the theory being 

used. After ascertaining the final mathematical form of the potential 

which best satisfies the situation, some insight as to the overall force 

which acts upon an electron as it moves through the lattice may be ex­

tracted. This is the ultimate goal of any such calculation. 

As may be inferred from the above introduction, such calculations 

are not easily obtained unless a great deal is known about the physical 

system under study. Thus, the problem at first glance seems intractable. 

However, using the one electron theory of solids along with the avail­

able computer methods of calculation, some rudimentary ideas as to the 
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form and symmetries of the bands for any solid may be obtained. 

' Many different methods of calculation have been proposed by various 

workers. However, the details of calculation are usually of a complex-

ity sufficient to be omitted in a general expbsition. As an.example of 

the many different types of calculational approaches the reader is re-

ferred to the following references in which the various methods are 

treated in some detail (48,49,50,51,52,53). 

Although space will not allow an exposition of .the details of all 

of the different types of calculation currently being used, it is felt 

that the method of orthogonalized plane waves should be given a brief 

review at this point as it leads quite naturally into the method of 

psuedopotentials and ·thus lends·particular insight into the motivation 

for choosing a psuedopotential formalism for the calculation pertaining 

to stannic oxide. 

The m:ethod of orthogonalized plane waves (OPW) shall be treated 

following Herman (52), Callaway (48), and Jones (51). This method con-

sists of expanding the core wave functions in terms of linear combina-

tions of atomic orbitals. Further, the non-core wavefunctions are ex-

panded in terms of plane waves each .of which has been. orthogonalized to 

the core functions by the Schmidt process. The orthogonalizationprocess 

serves to introduce into the wavefunction a nodal structure ·which ap-

proximates the actual one quite closely. This leaves a slowly varying 

portion to be represented by plane waves. One may thus expect a rela-

tively small number of OPW 1 s to be·necessary to describe the wavefunc-

tions for valence andlow-lyingconduction bands. Although convergence 

. is rather slow for the electron states that are above the lowest valence 

band state, it is sufficient to make the method practical. 
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Although the approach requires no special assumptions to be made 

about the crystal potential except that it have the proper symmetry, 

there are inherent difficulties with the method which shall be mentioned 

later. It is now assumed for the sake of simplicity that the crystal 

system dealt with contains only one type of atom. Following the des-

cription given by Jones (51), let:k\n(!.) denote a Bloch wavefunction 

for one of the electronic states belonging to the core and let 

'JJ ki 
= (1) 

The summation. is over all electronic states in the core, i.e., over all 

states whose energies are less than the energy of the lowest state in 

the valence band of the crystal. The core wavefun~tions form an ortho-

gonal set and it will be assumed that they are. normalized so that 

( 2) 

The condition which determines the)(in is 

(3) 

or 

J ·ei(_k + liB) • r 'Y* 3 
- - hn(!.) d r. 

:JI/ 

( 4) 

S,ac.e. 

From the definition of.lB it will be observed that for every!_ there is 
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a complete set of functions'/tii, each member of the set being associated 

with a recriprocal lattice point lB. The required wavefunction.in the 

valence band, with wavevector k can be expressed as 

$!/· )b.k.(r). 
i i 'fL i -

(5) 

A very satisfactory feature of the method now becomes evident. Since 

allf!;_i are orthogonal to the core states, it. follows by the variation 

process that if~is regarded as a variation function, the energy of 

this state converges to the correct value as the number of terms in the 

summation is increased. 

Before applying the variational principle, it should be noted that 

the'Vki for different i are not orthogonal to .one another. Thus, by 

making use of the definition of'l'!,i and the definition of)(in' 

All 
SPACE 

= -2 .t Jl· • n ~Jn11 in 
( 6) 

If V(£) denotes the potential energy of any electron in the crystal and 

the Hamiltonian.has the form: 

H = i V 2 + V(r) 
2m -

the variation principle requires 

1 :rr (H - E)yik d3r = 0 

A:ll 
SPA,CE-

which in turn requires 

(7) 

( 8) 
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( 9) 

The degree of this equation for Eis determined by the number of varia­

tion parameter8/ i included when defining if. The usefulness of the 

method is largely due to .the fact that good results can often be ob-

tained with a small number of OPW 1 s when dealing with a metal. 

The matrix elements Hij are defined by(f~\ Hl'f1i') which simpli-

fies after multiplying out the factors. For example 

(10) 

The usual practice is to express th~.Jkn functions by the LCAO approxi-

mat ion as follows: 

(11) 

where the radial part of· the orbitalfn is obtained as a numerically 

tabulated function. 

This method is not without several troublesome features of which 

.two shall be mentioned. At first sight it might be·supposed that it 

would be possible to use existing Hartree functions for the core orbi-

talsJn• This is not the case, however, since it is essen.tial that we 

use orthogonal functions so that 

(12) 



if full advantage of the method is to be taken. H .. contains terms of 
1J 

the form <1ml H}f~ which vanish if the functions are orthogonaL Har-
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tree functions do not form an orthogonal set because different orbitals 

are determined by different Hamiltonians in the Hartree method. If 

such non~orthogonal functions are used, the integral (f m \ Hjftl :f= 0 and 

is far from being negligible in most cases. Thus, a great many terms 

in the variational function would have to be used to obtain satisfactory 

results. 

The second difficulty arises when solutions are required at syrrnne-

try points of the Brillouin zone. In practice, most calculations are 

made at such points. At these points, the wavefunctions have specified 

syrrnnetries and hence in place of the exponential in defining 'Jl, a syrrnne-

trized plane wave occurs. This causes a corresponding change in inte= 

grand forAin and hence solely from the syrrnnetry of the factor multi­

plying.X.:n many of the}J.. in vanish identically. This implies that many 

terms must be used in the sum forjp. , Therefore, in practice (at these 

points) the coefficients){ are chosen rather than calculated and are 

selected in such a way as to give the'f!ki a form near the nuclei which 

is rather like that anticipated for the crystal wavefunction. Due to 

this arbitrariness in the choice of trial functions, the reliability of 

the method then rests on the convergence of the variational procedure. 

Confidence in the result thus depends on showing that as the number of 

terms defining -J! increases, the eigenvalues converge to a well-defined 

limit. 

When these difficulties are coupled with the fact that the pre-

vious formalism was given for a monatomic lattice with only one valence 



electron, it may be·seen readily that the insertion of another atomic 

species as well as the taking ip.to consideration of all valence elec­

trons from both types of atoms would lead toa problem whose solution 

would be extremely difficult. 

As a result of the many difficulties encountered when using this 

method another approach which Gontains themerits of the past treatment 

yet avoids its more serious faults might be desired. Such an approach 

became available when Phillips and Kleinman (55) noted that the effect 
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of the orthogonalization terms.was to cancel part of the attractive 

potential. This cancellation arose through the difference in sign be­

tween the orthogonalization terms and the attractive potential. Although 

Phillips (54) was the first to investigate and utilize.this cancellation 

.to the utmost, it is interesting to notethat the sumof attractive and 

repulsive potentials so generated leads to a treatment of the electron 

in the lattice in terms of what is essentially a nearly-free-electron 

·approach. This idea (NFE) was advanced by Jones in his text (51) at 

about the same time as being the only approach which has any real corre 

lationwith experiment. 

The method now being considered is that of the psuedopotential. 

Since the earliest work·regardingthe treatment of electrons in a lat­

tice by this means (55), many other papers have been published which 

utilize this cancellation and attempt to use the resulting weak-poten­

tial to calculate the bands for metals. Many different psuedopotentials 

have been postulated for different cases but they have generally all 

been shown to be equivalent mathematically (59). For the sake of refer­

ence the reader is refer~ed to the text by Harrison (49) and the papers 

(56,57,58j59,60,61,62)63,64,65,66,67,68,69). 
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Following Phillips and Kleinman (55) the first assumption is that 

. all electrons move in the same potential. This assumption leads to 

what is known as the "local" psuedopotential and shall be explained when 

the limitations and overall character of the psuedopotential formalism 

are stated. At first only valence and conduction band wave functions 

having s or p atomic character at the center of the zone are considered. 

These restrictions may be removed later. Imagine that the exact crystal 

wavefunction 'PGt which has s or p atomic symmetry and transforms accord­

ing to an irreducible representation Q of the point group is known. 

Since lJ.-J... must be orthogonal to the core states of similar symmetry, 

"t_ = f~ + ~· a; f~ where (13) 

(14) 

Had j been chosen to be a single plane wave, Herring's OPW results would 

follow. However, equations (13) and (14) already show a trivial mathe-

matical but physically important, simplification, in that valence wave-

functions of a given symmetry type need be orthogonalized only to that 

syrmnetry type core function • 

.§Jcl. is defined to be the 11 smooth" part of1!t_ • Thus, since 

(15) 

substitution of (13) into (15) results in 

(16) 



36 

Now introduce V r = Za (En - E) ~n / l} and (16) as-
n n '1' 

sumes the desired form 

( H + v;) f ot = E t • (17) 

If His broken into its kinetic and potential energy operators the po-

tentials may be grouped together to define a new potential energy, the 

psuedopotentialo 

Although such a derivation appears to be quite simple, one must 

recall the several simplifying assumptions that have been made. The re-

sults obtained are often only approximately correct even at the center 

of the Brillouin zone due to the mixing of the sand p-like character 

atomic states when defining. the repulsive potential. For a complete 

treatment of this subject, the reader is referred to reference (55)o 

There are three fundamental physical approximations which enter 

·the theory and must be stated for the sake of completeness. The reader 

is referred to Harrison (49) for a more general treatment of these 

ideas. The first approximation is the 11 self-consistent-field11 approxi-

mation. This simply means that one replaces the interaction between 

electrons by a potential which is to represent some average interaction. 

This potential depends upon the states which are occupied by electrons, 

and these states, in turn, depend upon the potential; thus the potential 

must be computed self~consistently. Ultimately, the only important in~ 

teraction between electrons is the coulomb repulsion, but this can be 

conveniently divided into three distinct contributions. The first is 

the Hartree potential, obtained by computing the time average of the 

electron distribution and then using Poisson's equation to determine 



the corresponding potential. The second is the correction for the po­

tential seen by an electron due to the .Pauli principle; i.e., if an 

37 

.electron of the same·spin can lie at that point, simply because of the 

anti-syrmnetric nature of the wavefunctions. ·This effectively gives a 

hole in the electron distribution and gives rise to the exchange·inter­

action. Into the third contribution are lumped the remaining corrections 

which arise from the correlation motion of the electrons: this is the 

correlation energyo 

The second fundamental approximation is .the separation of electron 

energy levels into core states and conduction-band states and the treat­

ment of the core states as localized and small. This "small core 

approximation" is used in three distinct ways. Assuming that adjacent 

cores do not overlap, there is no direct interaction between ions ex­

cept their coulomb repulsion. Secondly,·the·variation over the core of 

potentials due to the conductionelectrons and adjacent ions is neglect­

ed. It follows then that the core wavefunctions are the same as in the 

isolated ion, although their·energies differ from those of the isolated 

. ion. Finally, in the integration of products of various smooth func­

tions and core wave functions, the variation of the smooth functions 

over the ion. is neglected, allowing them to be evaluated at the nucleus 

and taken out of the integral. This approximation is very good for the 

alkali and polyvalent metals. 

The third' fundamental approximation is the assumptiop. that it is 

proper to use perturbation theory in computing the conduction band 

states. 

Although the applicability of each of these approximations must be 

thoroughly investigated and estimated ina "good11 pseudopotential cal-
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culation, many of the aforementioned effects have been neglected in the 

present stannic oxide calculation in favor of utilizing an empirical 

pseudopotential technique wherein these effects are omitted in the first 

approximation for everything other than the calculation of the atomic 

form factors (the Fourier transforms of the assumed pseudopotentials). 

· With this in mind, the first calculation made is not expected to give 

results which agree with all of the data on hand but can be used as a 

starting point for a later attempt to predict some of the gross physical 

properties of the system in agreement with the self-consistent type of 

calculation mentioned in the introduction. 



CHAPTER V 

. THE CALCULATION 

The approximation. being used requires that the·form factors of the 

two atomic species be known. Since Weisz (70) has given the form fac-

tor of white tin which also has a tetragonal structure, his data were 

used as a starting point for this calculation. These data were supple-

mented by those of Harrison (49) in order that a better curve for the 

tin form factor could be drawn. However, the data extracted in this 

manner were not sufficient for this calculation due to the different 

unit cell volumes of white tin and stannic oxide. Since the form fac-

tor is defined to be the Fourier transform.of the assumed pseudopoten-

tial,' it may be seen that for a first approximation the adjustment neces-

sary in attempting to,utilize these data for the stannic oxide calcula-

tion involves a simple ratio of the unit cell volumes of white tin and 

stannic oxic;le. 

The Fourier transform.of the pseudopotential would normally be 

found by integration as: 

V( I~,) N = 
J\, J ik•r e--

.J\, 

(1) 

where J\, is the unit cell volume and N is the number of atoms per unit 

cell. At this point ;-a simplification is to be made in that the do-

main of integration will be taken to extend over all of space rather 

than over the unit cell of the crystal which· is by definition the unit 

39 
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of periodicity for the system under studyo This approach appears valid 

since the repulsive part of the potential is usually of a rather limited 

range due·to the finite extension of the·core wavefunctions throughout 
\ 

space. 

Since there are two tin atoms.per unit cell in both white tin and 

stannic oxide, it is possible to write: 

V l <hi ) ~ ! . .r i~:!. V l <r) d3r (white tin) 

All 
SPACE 

2 Cik•r ( ) 
= w,.,Je ·- - v 2 !. 

ALL 
Sf'ACf: 

(stannic oxide). 

( 2) 

(3) 

The next assumption is that the spatially dependent potential for 

tin in the two different environments is not appreciably different so 

that the two integrands are the same. If this be the case, 

( 4) 

Thus, with very crude assumptions, it is possible for an initial 

potential form factor for the tin atom in stannic oxide to be extracted 

from that given for white tin. 

The oxygen form factor may also be acquired by attempting a similar 

modification of the form· factor given for oxygen in thenµ1gnesium oxide 

·lattice (71). However, when the present calculation was initiated, 

these results were not available. Therefore, an attempt was made to 

calculate a form factor for· oxygen following Kleinman and Phillips (55). 
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Such a calculation requires that a few approximations be made pertaining 

to the repulsive part of the pseudopotential since.! priori, the elec-

tron wavefunction in the crystal is not known. 

The repulsive part of the pseudopotential was therefore calculated 

using (in terms of its Fourier transform) 

• (E - Eu) )! Alls [ Allr~s(£) 
J\., Space Space 

3jt ik.r 3 d r (r)e - - d r • 
.1s -

(5) 

The~ form factor was then found by the addition of the Fourier trans-

form of the self-consistent potential given by Herman and Skillman (72). 

In the above calculation the following parameters were used: 

TABLE I 

OXYGEN FORM FACTOR PARAMETERS 

E(Rydbergs) Eis(Rydbergs) N 

3.5 -39.456 6 

Unit Cell Volume 

475.289 (Atomic 
Units) 
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The approach given above is not sufficient in itself because it 

neglects an additional repulsive term which arises due to the valence 

electronso This additional term could be calculated from first princi-

ples if the valence band and conduction band wavefunctions were known. 

However, since this is not the case, it is required that the position 

of the resultant oxygen form factor be. adjusted until there is ( in the 

overall ~alculation) some degree of continuity between compatible elec-

tron states in the crystal. Figures 9 and 10 indicate the initial form 

factors used while Figure 11 contains the final shape and relative posi-

tioning of the two form factors as usedo. It should be mentioned at this 

point that the final oxygen form factor agrees quite nicely with that 

obtained for oxygen in magnesium oxide (71) although the oxygen form 

factor in this latter case is shifted somewhat wit.h respect to the data 

given in Figure llo 

After acquiring the initial ~orm.factors, the calculation of elec-

tron.energy bands proceeded by considering a secular equation containing 

fifty-five plane wave.so This secular equation was factored using stan-

dard group theoretical techniques which shall be illustrated via example. 

The results of the factorization can be compared with Herman's (73) re-

sults for the diamond structure to indicate differences in mathematical 

form for factored secular equations which are related to different 

space groups. However, before the various matrix elements are calcu-

lated 9 and the secular equation factored, it is necessary that a word 

be said about the notation which will be used in the following treat-

ment of the problem. 

The Hamiltonian operator may be written in standard form 

2 
= .£:. + V(r). 

2m 
( 6) 
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Using the usual techniques of associating an. operator with an observable, 

( 7) 

q~q. 

If normalized Bloch functions are used as a basis and k and k' differ 

by no more than a reciprocal lattice vector, the expectation, value of 

the energy may be found quite simply by 

( 8) 

where 

ik•r 
= e - - U(,E) ( 9) 

and U(_E) has the· same periodicity as the lattice. If the k re pre-

sent plane wavesj the result may be seen to have the form 

H 
2m + 4Jv{r)l 1_). ( 10) 

Utilization of the diffraction model (3) band theory. formalism makes 

the acquisition of matrix elements relatively·simple. This technique 

shall also be illustrated by example later in this section. 

If it were impossible to use any symmetry arguments, an N by N se-

cular equation could be solved which would yield both energies and 

eigenvectors along any axis of the first Brillouin zone. However, the 

results would be of questionable value since little could be said per= 

taining to the symmetry of the resultant eigenstates and thus the identi-

fication of possible electron transitions in stannic oxide·would be 
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hindered because the initial and final state symmetries would remain 

unknown. 

Therefore, the symmetry of the system shall be built into the cal-

culation by factoring the N by N secular equation. The resultant secu-

lar equation may be written in block diagonal form wherein each block 

has a particular symmetry associated with it. This process shall now 

be illustrated by using the (1,1,1) set of wavevectors and compared with 

Hermants work (73) on the diamond structure. 

At the center of the zone, the free-electron energy is given by 

E = 
2 2 2 2 

11 + 12 + 13 ( a/c) = 4.23 (11) 

Table II contains the D character system while Table III contains all 
· 4h 

of the elements of this system with the substitution appropriate for 

14 the o4h space group. In this analysis the body centered atom of the 

unit cell is considered to be located at the origin of coordinates; 

thus, the positions of the tin and oxygen atoms are those given by Wy-

ckoff (74) and yield the following structure factor: 

Tin Oxygen 

~ Cos :t·lrlA. (.,e, +J~\ .· + 

~ e~ f ;rt( .P, +-( +J3) J C a.s ~j"jU (-P.-J':i) 

The wavefunctions that are accidentally degenerate at this energy 

in the free electron approximation may be written as follows: 

a = (1,1,D e = (1,1,1) 

-b = (1,1,'l) f = ('l, 1 ,'1) 
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TABLE II 

014 CHARACTER SYSTEM 

Re pre-
s7nta- ,£1 ,£2 
tion 

.Q3 .Q4 _gs .26 .9.7 ..9a £9 £10 Substitution 

1 
1 ' 1 1 1 1 1 1 1 1 1 . l+\(x2+y2)-z2 

2 1 1 1 -1 -1 1 1 l -1 -1 xy(x2-y2) 

3 .1 1 -1 1 -1 1 1 -1 1 -1 x2 - y2 

4 1 1 -1 -1 1 1 1 -1 -1 1 xy 

5 
2 -2 0 0 0 2 -2 0 0 0 (yz,zx) 

1 1 1 1 1 -1 -1 -1 -1 -1 xyz(x2-y2) 
1 

2 1 1 1 -1 -1 -1 -1 -1 1 1 z 

1 1 -1 1 -1 .. 1 -1 1 -1 1 xyz 
3 

4 
1 1 -1 -1 1 -1 -1 1 1 -1 z(x2 - y2) 

5 2 -2 0 0 0 ... 2 2 0 0 0 (x,y) 

I I 
E C2 Tc1+ TR1+ R1+ J M3 TJC1+ Tml+ ml+ 

TCl -1 , TR2 R' TJC -l Tm2 
I 

2 1 m2 



Element 

E 

TC 1 

TC -l 
1 

R ' 1 

. R ' 2 

TABLE III 

SUBSTITUTIONS FOR o4h 
14 

Substitution No. 

xyz 1 

xyz 2 

y+a/2, x+a/2, z+c/2 3 

y+a I 2 , x+a I 2 , z+c I 2 4 

x+a/2, y+a/2, z+c/2 5 

x+a/2, y+a/2, z+c/2 6 

yxz 7 

yxz 8 

Element 

J 

TJC 1 

TJC -l 
2 

m' 1 

Substitution 

xyz 

xyz 

y+a/2, x+a/2, z+c/2 

y+a/2, x+a/2, z+c/2 

x+a/2, y+a/2, z+c/2 

x+a/2, y+a/2, z+c/2 

y,x,z 

yxz 
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Noo 

9 

10 

11 

12 

13 

14 

15 

16 

About this notation: Have herein used the Dk~ point group notation and 

this may be correlated with past notation. by: 

E = E 

TR2 = TmJ 

TCl = Tmm2 

. -1 
TCl = Tmml 

R ' R 1 = 1 

R 1 =R 2 2 

J=J 

Tm2 = TmC2 

TJC 1 . = TmR1 

TJC -l - TmR 1 - 2 

=m 
2 
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- --c = (1,1,1) g .F (1,1, 1) 

- .. -~ 
d = (1,1,1) h = ("1,'l ,'l) 

Each triple corresponds to a wavefunction obtained by substituting its 

components into the general wavefunction·at the center of the zone which 

has the following standard form 

( 12) 

The space group under considera.tion contains a diagonal glide which 

unlike the threefold glide of the diamond. structure, is twofold in nau 

ture in that it has glide planes which are perpendicular to the faces 

of the unit cell of area ac and loca.ted in the geometric center of the 

· faces, i.e· •. they bisect the faces mentioned. As .a result of the exis-

trence-of this.diagonal glide, there is in the ~pace group. an inherent 

nonprimitive translation that must be considered. Application.of this 

,translation. operation to the generalwavefunction at this point yields 

T(a/2,a/2,c/2) \I/=. e-21fi)\1(x'.+ c/ 2) + 
Tr · . l' a 

(13) 

. -1Ti£ill )h 
e t( ~ r;,• 

f1 = 

Thus, the effect of the translation operation. is to pre-multiply-the 

·wavefunction. by ± lo 

Table IV contains the effect of application of the sixteen opera-

tions to the functions previously listed .as triples. 
,'.\)i 

Using standard procedures, 't'he reducible representation and its 

irreducible representation sum is given for stannic oxide as 
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TABLE IV. . 

APPLICATION OF SPACE GROUP OPERATIONS TO (1,1,1) WAVEFUNCTIONS 

Wavefunction 
Operation a b c d e f g h R 

1 a b c d e f g h 8 

2 g h d c f e a b 0 

3 -c .. e -g -a -h '-b -d ... f 
0 

4 -d -f -a -g -b -h -c -e 

5 -f -d -h -b -g -a -e -c 
0 

6 . -e -c -b -h -a -g -f -d 

7 h g e f c d b .a 
0 

8 b a f e d c h g 

9 h g f e d c b a 0 

10 .b a e f .c d h g ·O 

11 -f -d -b -h -a .. g -e -c 
0 

12 .e -c -h -b ~g -h -d -f 

13 -c -e -a -g -b -h . -a -f 
0 

14 -d .f -g -a .h -b -c ··e 

15 g h c d e f a b 4 
· 8/2 = 4 

16 a b d c f d g h 4 
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(14) 

while for diamond one has 

The next step in the calculation involves using this result to ex= 

tract symmetrized combinations of plane waves that may be used in later 

calculations. The procedure is standard but shall be stated for the 

sake of completeness. The most syrrnne.tric orr l representation has only 

positive characters. However, the translation changes the sign of the 

· wavefunction since the· sum 11 + 12 + 13 is odd. As a result, the wave-

function of this symmetry has both positive and negative parts~ Table 

V contains the six irreducible representations and their corresponding 

wavefunctions, while Table VI contains the same result for the cubic 

system as derived by Herman. 

In a similar fashion, other sets of triples may be considered. 

The first nineteen of these are given in Table VII. These are now to 

be used to illustrate the factorization of the secu.lar equatio~. 

Using only.the eight triples in the degenerate (1~1,1) state, the 

secular equation is transformed into that shown in Figure 12. This re-

sult s·hould be compared with that of Herman which is shown in Figure 13. 

If the set of nineteen plane waves are to be utilized and the·se-, 

cular equation is to be factored, it may be seen that automatically a 

tremendous simplification occurs due to the orthogonality of the exist-

ing irreducible representations. This orthogonality results inthe 

vanishing of all matrix elements between plane waves of unlike symmetry 

and automatically factors the 19 x 19 secular equation into the form 
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TABLE V 

STANNIC OXIDE WAVEFUNCTIONS 

Symme-
try Wavefunction 

r 1 1/~ (~11) + (Jii) + <iii) + (1iI) - (111) - <Jn) - <111)- (ii~') 

r 4 1/f8 ~11) + (iif) + (ii1) + <ni) + <111) + (111) +(i11)+(1i~) 

r 5 1;2 [(<h1> + (ITI) ... (iI1) - (11J)); (\111) + (1ii) - (1I1)-Q1l>J 

r21 11181 ~11-1 + (n1> + (i1v + <111) - <11v - (111> - \11v -<1i~ 

r 3 1 1/ ~ (in> + <1i1) + (111> + <111> .. (iii) ., (iii) - <iiT)-v1v) 

rs, 112 (~1~ "' (iiv - 0u> + (111} , gi1v .. <1i1) - (1ii)+<i11.~ 

Symme­
try 

TABLE VI 

DIAMOND WAVEFUNCTIONS 

Wavefunction 

r 1 11rsC<111) -<11v _ <i11> _ <ir1>. +(iii)_ \ill, _ (1iv-<11i)J 

r 2, . 11 rs [<i1t> _ z1i1) .. <11i> _ 011> _<iii>+ (iq> + <11v+,11r2J 

r \. 11fs' [<111) + <i. 1v + \!ii) _ (:ii,> + (i1i) + (111> + <1iJ>-11VJ 
25 I 1/fa'[Q.1 p + (1 ii) + (i 1 i) - ~rv + <_fit) + <i 1 v + (1 iy -<11 i2) 

1rfa[<i11> + (111) - <'iii) + (ii~ + (iii) + 011> - (1ip+<111>J 

r {1;[8g:111) + (1ij) + (ili> - <iii> - (iTI> - (iu) - (1Iv+<11Q7 

. 15 . 1;fs(~1]) + (iii) - <J1i) + (iii> - <.iii> - (111> + (1i1). - ~1i>-] 

1 I (ff [(n 1) - (iii) + (i 1 i) + (ii 1) ., <iii> + 411) - (J_ i 1; - (1113 
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TABLE VII 

FREE ELECTRCN ENERGY lj:IGfflYALUES AND THEIR CORRESPONDJNG 
SYMMETRIZED COOINATIONS OF PLANE WAVES 

Plane Wave Group 

(ooo) 

(100)(010)(100)(010) 

Free Ehctron Symmetrized Combination of 
Energy Plane Waves (SCPW) 

O r 1 = (ooo) 

1.0 (Rydbergs) r 2,lz ( lOO+iOO-Ofo:.oio). 

r4 _,~ ( 1oo+ioo+oio+o10) 

r 5 -+1/ (2( 100-ioo , 010-oio ) 

(110) ,(110) ,(110) ,(110) . 2.0 Rydbergs rl ~\ (llO+lio+ilo+iio) 

r4~\ (llO+iio~i10-1io) 

(001) ,(001) 

(011)(101)(011)(011) 
(101)(101)(011)(101) 

< a I c) 2 = 2 • 23 · 
Rydbergs 

3.23 Rydbergs 

rs~l/(2 f 110-iio) ,(lio-i1ou 

r4-.l/(2 [(OOl)+(ooiil 

f; 1~11 ff [<ool)-(ooiD 

r1-!,t/ (8 (o11+101+oT1+o1i+io1+ 
10I+oii+iotJ 

r3~11vs Co11+o.i1-io1-101+o1i+ 
· oii-ioi-101J 

r S ~ (011-oi1;-0ii-01i, 

101-io11ioI-10T) 

r 2 '~11 rs ca11+oI1+101+101-01T­
oii-io1-10iJ 

r 4 1~1/ls' (011+oil-lOl-lOl-Oll­
Oii+ioi+10iJ 

r SI ~{91{-Qil-Oii+oli, 
2 

101-ioi2io1+1oi) 



~(Ix I) 

r;'(lxl) 

1";(3 x3) 

fs' ( I .x I} 

~'(I x I) 
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Figure 14~ Schematic Representation of the Factored Secular Equation Applicable 
to the Starmic Oxide Structure Using Nineteen Plane Waves 
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shown in Figure 14. Extension to the 55 x 55 secular equation follows 

the same procedure but includes all plane waves up through a free elec ... 

tron energy of 7.23 R.ydbergs. 

Leaving the center of the zone.and considering an axial wave vector 

group, it is necessary to follow the same procedures. However, due to 

the reduced symmetry of these groups, the block diagonal matrices are of 

a relatively large order when compared with those at the center of the 

zone. 

Considering the matrices for the center of the zone and for any 

axial wavevector group which has states compatible with center-zone 

states, it is evident that if the concept of continuity is to be main­

tained, the energies calculated for the compatible electronic states at 

the center of the zone must be the·same. Unfortunately, due to·the 

lack of an. infinite number of plane waves in the calculation, this is 

seldom the case. As a result, the number of plane waves is fixed, the 

energies are calculated for compatible states and compared; ·· If agree­

ment is not evident to within a few electron volts, the oxygen form fac­

tor must be changed. Thus, using t~e criterion of compatibility, the 

location of the oxygen form factor may be ascertained to a first appro­

ximation. 

At first glance, the means of reading some physical significance 

into the resultant situation would involve finding the inverse Fourier 

transform of the resultant fe>rm factors. This Fourier transform should 

have some meaning if a one-electron potential is to be calculated. 

However, such action should be·taken with a great deal of caution be­

cause the resultant configuration of form factors has meaning.only in 

that it is this set that allows the calculation to proceed on the basis 



of matching the energies of compatible electron states" As a result, 

this set of form factors implicitly rather than explicitly contains 

such things as electron-electron interactions, exchange, electron-nu­

clear interactions, and many other effeqts often brought into a "first 

principles" calculation. The difficulty herein is that the relative 

strength of each of these effects remains unknown, 
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CHAPTER VI 

DISCUSSION OF RESULTS 

In this first effort at making an energy band calculation for 

stannic oxide, primary emphasis has been placed upon developing the theo­

ry in terms of a local pseudopotential formalism. This has been done 

to test the practical utility and ccinsequent disirability for applica­

.tion of this type of treatment to the crystal system at hand. For ex­

ample, it was considered important to get an. estimate for a lower limit 

to the size of the plane-wave approximation necessary to obtain consis­

tent results. Another area of interest involved setting forth suitable 

criteria for examining the validity of the local approximation and for 

determining the best locations of the tin and oxygen form factors based 

on continuity of the wavefunctions and matching of compatible electronic 

state energies at both the zone center and zone boundary. As will be 

seen below, the calculation as performed has made emphatic the limita;.. 

tions of the method and of the approximations used. It has, however, 

also made it possible to identify the logical next steps which should 

be.taken in future calculations designed to refine the rudimentary band 

structure as obtained so that it can be subjected to realistic compari­

son with experimental data. 

The calculation attempted had its basis in a self-consistent, yet 

empirical, technique. The method used is self-consistent since the lo­

cation of the oxygen form factor was determined by adjusting its posi-

61 
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tion until compatible electronic states at.!$.== 0 had the same energy. 

However, the method is empirical because no att.empt was made to consid-
1 

er the effect of the existence of the oxygen valence electrons and their 

contribution to the pseudopotential. 

The general procedures outlined during the earlier chapters of this 

report are valid regardless of the crystal space group and ion species 

within the crystal. However, the fact must be accepted that there are 

stringent limitations to the range of validity of results acquired 

using a local approximation. In particular, the mixing of electronic 

states for~# 0 is of major concern. For a treatment of this topic, 

the reader is referred to Kleinman and Phillips (SS). Unless appropriate 

mixing is taken into account, severe discrepencies between theory and 

experiment are to be expected. This mixing of states may best be con-

sidered within the framework of 2nd order perturbation theory. Unless 

such precautions are taken, incorrect symmetry classification of allowed 

electron states. Due to the lack of the inclusion of the mixing leads 

to what is actually an incorrect potential for any point other than that 

at the center of the zone. Therefore, the resultant bands can be cor~ 

rectly classified within the framework of the theory being used yet in-

correctly classified when compared to similar bands acquired after a 

"better" calculation is made. }lowever, for this first calculation, it 

was decided that the utilization of 2nd order effects was premature. 

Another important consideration is the fixing of a lower limit to 

the size of the plane-wave approximation. A usual procedure is to plot 

electronic·state energies obtained at each symmetry point as a function 

of the number of plane-waves used in the calculation. When this curve 

levels for the least symmetric state it has in general already leveled 
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for states of a higher symmetry. Prior calculations utilizing such a 

criterion (641 have been carried out for cubic systems. The results pre­

sented here coupled with those of Staflen, et.al. (75) now suggest that 

it may be necessary to consider as many as two-hundred plane-waves to 

obtain the desired consistency for stannic oxide. 

With such a procedure it has been noted that in general, the more 

symmetric states, i.e. those obtained using the wavevector groups of 

highest order, converge to a final energy more quickly than do other 

states. Consequently, the calculation as performed should have a some­

what greater degree of validity at the center of the zone than else­

where. For this reason the agreement between compatible electronic 

states energies at this point appears to be a good criterion for deter­

mining the validity of such local approximation. At the center of the 

zone, the largest observed discrepency between compatible electronic 

state energies was less than three electron volts. However, discrepan­

cies as large as six and one-half electron volts occurred at the zone 

edge. This added amount of error has two different sources. The lack 

of a consideration a 2nd order effects is made evident by the nonvanish­

ing overlaps of plane-waves of different symmetry classifications. 

Thus, the bands which result must be scrutinized very closely 

along a syrrnnetry axis to see if they have the proper definition. In 

addition, the mixing of atomic-like states has been ignored as mentioned 

above and this can also contribute to the increased error as the zone 

edge is approached. Despite the problems encountered, the calculation 

done appears to have some merit in.a qualitative sense, since it illus .. 

trates the existence of some definite energy bands and predicts the 

presence of at least one large forbidden energy gap. As has been re= 
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peatedly emphasized, however, neither band shapes nor energy separa­

tions should be interpreted quantitatively at this time. The bands ob­

tained are illustrated in Figure 16 and were acquired by considering 

the nearly-free electron.energies at the surface of the zone (X point), 

syrmnetry classifying the resultant eigenvectors, and matching states of 

the same symmetry by taking a simple average of the two energies which 

aroseo The same procedure was followed with regard to compatible states 

at the center of the zone, although averaging was less important because 

the basic agreement was better. However, due to the mixing of atomic 

states, the size of the approximation being used, and the uncertainty 

in the relative location of the two resultant form factor curves, the 

axial calculations were of little use other than to indicate a lack of 

structure between rand X. Any structure shown was introduced to in­

sure that at the center of the zone and at the zone edge, the bands 

should have zero slope and thus be ess~ntially parallel. Since the 

bands in Figure 15 were drawn using only the energies at these two 

points and syrmnetry classified through a knowledge of the compatibility 

rela.tions between electronic states the reader should realize that they 

must be accepted only as a point of departure for improved calculations. 

There are two obvious indications that the bands as shown are not re-

presentative of the true physical situation: First, they have a center. 

zone forbiddgen gap separation which does not agree with experimentally 

observed band gaps or reflectance data. Secondly, they do not fulfill 

the usual condition that the uppermost valence band and lowest conduc­

tion band states have the highest degree of degeneracy possible within 

the space group. 

At this stage it would seem appropriate to outline a method by 



which the results of a.calculation similar to that already discussed 

may be improved and brought into ultimate agreement with experimental 

observations: 
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1) Calculate the energies of compatible states at the center of 

the zone using only 55 plane-waves.while·taking into considera­

tion 2nd order perturbation theory. Do this so the difference 

in energy between them is less than one electron volt for 

every energy of interest. 

2) Check this calculation by considering the axial bands which 

arise and the agreement between compatible electronic states 

occurring at the zone edge. If there is good agreement be­

tween these.energies it may be assumed that the axial calcula­

tion has some degree of validity. 

3) Assuming that these criteria have been met, the next step is 

to consider the separation in energy between valence and con­

duction bands and attempt to correlate this result with experi-

ment. 

4) If correlation between theory and experiment is poor, (Le., 

if the difference between allowed electron energies at the 

center of the zone does not agree with that observed optically) 

the next step is to change the position of the tin form factor. 

As an illustrative example, suppose this is indeed the case. 

The tin form factor would then be moved to the left by one unit 

and the calculation repeated for a range of oxygen form factor 

positions. When the resultant new set of bands is acquired it 

should also be compared with the experimental criterion 

mentioned. If the amount of disagreement is lessened, the pro-



cedure is evident. Simply move the tin form factotr even fur­

ther in the same direction. However, if the disagreement is 

increased, move the tin form factor in the opposite direc;:tion 

and reconsider the calculation. 
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5) If it becomes. impossible to match energies of compatible 

states at either zone center or zone boundary, or if a good 

match is achieved but the bandgap is of an obviously incorrect 

magnitude, increase the size of the plane .. wave approximation 

. and again follow the procedure outlined above. 

Once this total procedure has been followed; and a set.of bands 

has been acquired ha.ving. proper separation in energy, the pseudopoten-

t ia l coefficients used to obtain these bands should be further utilized 

to make corresponding calculations along the other synnnetry axes. These 

should provide better insight from.a purely theoretical point of view 

as to the energetically possible direct and indirect transitions which 

· can arise in the crystal. Of course, it is to be expected that the 

resultant calculation along all possible synnnetry axes will lead to a 

complete definition of the existing reflectance spectrum. This calcu­

lation should also indicate that there are some other possible transi­

tions which .are of importance but are of an energy beyond the present 

experimentally investigated region of the reflectance spectrum. 

The validity of these bands may also be checked in another unique 

way. This method has been utilized by others (67, 71) and consists of 

calculating the imaginary part of the complex dielectric constant via 

a Kramers-Kronig type analysis which utilized energies that are ac­

quired directly from the calculated bands. If the obtained curve of 

E.2 vs energy compares with the reflectance spectrum acquired experime~-
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tally, there must be li.tt le doubt that the bands are essentially correct. 

One of the goals of this work was to correlate the experimental 

reflectance data given in Figures 7 and 8 with the band structure cal­

culation. It is evident from the previous discussion that such a corre­

lation based on Figure 16 would have no intrinsic value. In anticipa­

tion of improved bands based on future calculation refinements, however, 

selection rules for polarization-dependent and. polarization-independent 

direct optical transitions at important symmetry points have been de­

rived and are tabulated in Appendix III. 

In perspective it must be realized that a complete and satisfying 

band structure calculation for stannic oxide still lies some distance in 

the future. It now seems clear, however, that fruitful results can be 

obtained by following the pseudopotential approach, improving the ap­

proximations, including 2nd order perturbation theory, and increasing 

the number of plane~waves considered. 



CHAPTER VII · 

SUGGESTIONS FOR FURTHER STUDY 

There are many different areas in which further study would be be­

neficial. Phillips ( 10) mentions some new and more fruitful means for 

experimentally studying solids and their reflectance spectra. Since 

the entire body of knowledge in this area has been mainly applied to 

cubic systems and the study of such effects for systems of a reduced 

symmetry has not been thoroughly exploited, many questions pertaining 

to the interpretation of experimental effects require additional in­

vestigation. 

There is a definite need to extend the·specific experimental in­

vestigation described in this paper. In particular, the monochromator 

as built has in it an inherent flexibility which allows for further 

work on the optical properties of materials. Future measurements should 

seek reflectance data at reduced temperatures, increased photon energies, 

and higher levels of light intensity. In each instance the reflectance 

spectra should be subjected to a complete Kramers-Kronig analysis in 

order to gain increased insight regarding the energies of electron tran-

sitions. 

Regarding the band structure calculation, it is quite evident that 

further work in this area is a must if.any consistent means of symmetry 

classifying electron transitions is to be attempted. In addition, to 

. innnediate refinements which were outlined in detail in the last chapter, 
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a band structure should also be acquired using an OPW or APW calculation 

so the similarities and differences between this type of approach and 

an empirical pseudopotential treatment can be ascertained. In either 

case, there is now strong evidence that the c-axis tin-tin interaction 

is of a sufficient order of magnitude to warrant study of the bands in 

terms of an approach which utilizes a Hamiltonian containing this inter~ 

action. In this respect, the work of Weisz 00) could prove quite help~ 

ful. 
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APPENDIX A 

SINGLE GROUP ANALYSIS 

Character systems for the ol~ space group given by Slater (76) and 

derivable from generators published by Olbryskii (77) show some disa­

greement at a few points in the first Brillouin zone. A prior report 

(78) on this project mentioned that the characters of the various wave­

vector groups could be extracted rather quickly and gave a tabulation 

which has now been discovered to contain errors at three symmetry points. 

To remove confusion, a complete and corrected set of characters for this 

system is given below. It should be emphasized that this set is in a­

greement with the work of Olbryskii. 

The first table indicates (using the notation.of the first report 

(78)), the wavevector group associated with each symmetry point, the 

·set of elements in each group, and the table which contains the charac­

ters appropriate to this particular wavevector group. The following 

ten tables contain the character systems and Table XII contains the 

compatibility relations which may be extracted simply by matching chara­

cters of compatible electronic states. For more detail as to the reason 

for, and means of, extracting the compatibility relations, the reader 

is referred to Jones (51). 
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Symmetry 
Point 

r 

A 

M 

z 

x 

R 

TABLE .VIII 

CLASSES AND WAVE VECTOR GROUP ELEMENTS AT r·, A, M, Z, X, R,..IL, U, W, S,£,~, V, Y, T 

Classes 

~=E; _s=C2; C3=~+~; .s.=TmJ+Tmm3; f.s=~+R2; ~=J; C7=m3; £s•TmR1+TmR2, 

Eg•Tm+Tmc2' c:1.o-U,.-+m2 

Ca=E, ~=Tmm3+QTmm3+TmJ+QTmJ; c 3=c2 , .s.·Q~+R2 ; .f.s=~+Q~+Tmm2+QTmm2 , 
. ' ' . . 

~=m3+Qm3, £,=Tm+QTm+TmCif--QTmC2, fa•J+QJ, .fg~~' c:1.o·~+TmR2+Q~+QTmR2. 

S1~~+Qin2, Ca.2":'~+QR2, ~j·QC2'. C:1.4=Q 

~=E, ~-c2 , %=Tmm3+TmJ, ~-Tmm2+Tmm1 , ~-~+R2 , ~=Q, ~=QC2 , -Cg•QTmm3+QTmJ, 

f.g=QTmm2+QTmml, ~o~QRl+QR2' ~1·J, ~2=m3' ~3=°Tm+TmC2~ s4=TmR1+l'mR2, Ss~~ 
- S.6=QJ,- S1=Qm3, ~s=Q'lln+QTmC2; £a.9=QTmR1+QTmR2; ~0·~~2 

Same as A 

~ =E' ~ =Q' . ~ =Tm+Q'l'm, ~ •J+QJ' %=TmJ+QRmJ' ~ =m3' c,=Qm3' Ca •Tmm3 +Q'l'mm3' 

£g-=C2+Qc2 , ~ 0-=Tm.C2+QTmC2 

c1=E, C2=Q, c3=Tm+QTm, ~=m3+Qm.3 , f.s=Tmm3+QTmm3 , ft,=J, c 7=QJ, fs=TmJ+QTmJ, 

.£g=C2+QC2, c:1.o='l'mC2+Q'l'mC2 

Table 

IX 

x 

XI 

x 

XII 

XII 

...... 
VI 



Symmetry 
p_oint 

..I\. 

u 

w 

s,r 

A 

v 

y 

T 

TABLE VI II (CONT'D) 

Classes 

c1=E; c2=c2 , c 3~im2 , ft.=~+Tmmz, f._s=Tm+TmC2 

Cl=E, C2=Q, C3=m3+Qm3, .s.=TmCz+QTmCz, C5=Tmm3+TmJ 

C1=E, c2=Q, c 3=C2+Qc2 , ,S.=Tm+QTm; c5=TmC2+QTmC2 

c1=E, c2=m2 , C3=R2 , ~=m3 

C1•E, ~=m3 , ·C:3=TmJ~ ~=TmC2 

Cl=E, E2=C2, C3=Tm+TmC2, .s+=~+Tmm2, C5=mlim2' ~=Q; cs+j=QC5 

c1==E, c2=m3 , c 3=Tm, ft.=Tmm3 

Cl;,.E, C2=Q, .£3=m3+Qm3, .s+=Tm+QTm, C5=Tmm3+QTmm3 

Table 

VIII 

IX 

IX 

x 

x 

XI 

x 

IX 

-.J 
0\ 



.£1 .£2 ..93 ~ 

r1 1 1 1 1 

r 1 1 l -1 2 

r3 1 1 -1 . 1 

r4 1 1 -1 -1 

rs 2 -2 0 0 

r, 
l 1 1 l 1 

r, 
1 1 1 -1 2 

r, 
3 1 l -1 1 

r, 1 1 -1 -1 4 

r, 
5 

2 -2 0 0 

TABLE IX· 

CHARACTERS AT r 

.95 ..£6 S1 .£a 

1 1 1 1 

-1 l 1 1 

-1 1 1 -1 

1 1 1 -1 

0 2 -2 0 

1 -1 -1 -1 

-1 -1 -1 -1 

-1 -1 -1 1 

l -1 -1 1 

0 .. 2 2 0 

77 

..99 ..910 
faint 

Symmetry Type 

1 1 l+\(x2+y2)-z2 

-1 -1 xy (x2 _ y2) 

1 -1 x2 - y2 

.. 1 1 xy 

0 0 ( J-Z ,,xz) 

-1 -1 xyz (x2 - y2) 

1 1 z 

-1 1 xyz 

1 -1 (2 z x - y2) 

0 0 ( x,y) 
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TABLE X 

CHARACTERS AT A 

£1 £2 .£3 £4 2.s £6 £7 £8 £9 £10 £11 £12 £13 £14 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 

1 -1 1 -1 1 1 -1 1 -1 ·1 -1 -1 1 1 

1 -1 1 1 -1 1 ... 1 1 1 -1 1 1 1 1 

2 0 -2 0 0 2 0 -2 0 0 0 0 -2 2 

1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 

1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 

1 -1 1 1 -1 -1 1 -1 -1 1 .. 1 1 1 1 

2 0 -2 0 0 -2 0 2 0 0 0 0 -2 2 

Al 2 0 2 0 0 0 0 0 2 0 -2 0 -2 -2 

A2 2 0 2 0 0 0 0 0 -2 0 2 0 -2 -2 

A3 2 0 -2 2 0 0 0 0 0 0 0 -2 2 -2 

A4 2 0 -2 -2 0 0 0 0 0 0 0 ·2 2 -2 
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TABLE XI 

CHARACTERS ATM 

1 1 i i 1 -1 al -i -i -1 1 1 i i 1 -1 -1 -i -i. -1 

1 1 i -i -1 -1 -1 -i i 1 1 1 i -i -1 -1 -1 -~i i 1 

1 1 -i i -1 -1 -1 i ·i 1 1 1 -i i -1 -1 -1 i -i 1 

1 1 -i -i 1 -1 -1 i i -1 1 1 -i -i 1 -1 -1 i i -1 

2 -2 0 0 0 -2 2 0 0 0 2 -2 0 0 0 -2 2 0 0 0 

1 1 i i 1 -1 -1 -i -i -1 -1 -1 -i -i -1 1 1 i i 1 

1 1 i -i -1 -1 -1 -i i 1 -1 -1 -i i 1 1 1 i -i -1 

1 1 -i i -1 -1 -1 i -i 1 -1 -1 i -i 1 1 1 -i i -1 

1 1 -i -i 1 -1 -1 i i -1 -1 -1 i i -1 1 1 -i -i 1 

2 -2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 2 -2 0 0 0 

Qr= E 

f.2 = C2 

£3 = TR1+TR2 

£4=fC1+Tc1-l 

.f6 = Q 

'Q7 =QC2 

. .2_a = QTR1+QTR2 

_£9=QTC1+QTC1-l 

£5 -- Rl I + ... R2' c ="R I + QR I . -10-----< 1 . 2 

.£11 = J 

..212 = m3 

_£ 13 = Tm1+Tm2 

Q14=fJC1+TJC1 -1 

C _ I+ I 
-15 - ml · m2 

.216 = QJ 

.£17 = Qm3 

.£18 = QTmrtQTm2 

.f19=QTJC1+QTJC1 -1 

.220 = Qm1, + Qm2, 

About this notation: Have herein used the D4ft point group notation and 

this may be correlated with past notation by: 

E=E 

£2 = C2 

TR2 = TmJ 

TC 1 · = Tmm2 

-1 
TC1 = Tmml 

Rl ' R = 1 

J = J 

i'm2 = TmC2 

TJC1 = TmRl 

TJC 1 -l = TmR2 

ml , - m - 1 
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TABLE XII 

CHARACTER SYSTEM AT X AND R 

Symmetry 
.2.1 .2.2 c .2.4 c c c c c c Type -3 -5 -6 -7 -s •--<j -10 

1 1 1 1 1 1 1 1 1 1 

1 1 1 -1 -1 1 1 1 -1 -1 

1 1 -1 1 -1 1 1 -1 1 -1 

1 1 -1 -1 1 1 1 -1 -1 1 

1 1 1 1 1 -1 -1 -1 -1 -1 

1 1 1 -1 -1 -1 -1 ... 1 1 1 

l 1 -1 1 -1 -1 .. 1 1 -1 l 

1 1 -1 -1 1 -1 -1 l 1 -1 

X1' R1 2 -2 0 0 0 2 -2 0 0 0 

X2, R2 2 -2 0 0 0 -2 2 0 0 0 

TABLE XIII TABLE XIV 

CHARACTER SYSTEM FOR CHARACTER SYSTEM AT s' 
THE POINT }I_ r: ,A, AND Y 

Syrinnetry 
.Q,i 9..2 c £4 c Symmetry 

£1 £2 £3 £4 Type -3 -5 Type 

1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 -1 1 2 1 1 -1 .. 1 

3 1 1 -1 1 -1 3 1 \ -1 .':;;/ -1 1 

4 1 1 -1 .. 1 ~1 4 1 -1 1 -1 
,_, 

5 2 -2 0 0 0 ·' 
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TABLE XV 

REPRESENTATION APPLICABLE AT U, W, AND T 

~4 

2 -2 0 0 0 

TABLE XVI 

ALLOWED REPRESENTATIONS ATV 

£1 .£2 .£3 .£4 .Qs .£6 .£7 .Qs .£9 .£10 

1 1 i i 1 -1 -1 -i ui -1 

1 1 i -i -i -i -1 -i i 1 

1 1 -i i -1 -1 -1 i -i 1 

1 1 -i -i 1 -1 -1 i i -1 

2 ~2 0 .0 0 -2 2 0 0 0 
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'l'ABLE XVIi 

COMPATIBILITY RELATIONS 

r1 r2 r3 '1 rs r1, 11, r3, r4, f's, 

41 ~2 ~ L\ ~34 4 <l 4 J:. . ~4 A3 .t\14 2 1 2 3 

~l 23 !'3 ~l ~224 L4 ~2 t.2 ~4 ~ 113 

.A1 ...lt.3 ..A.4 ..A.2 ../\..5 ..A.3 -A..1 ...A...2 .J\....4 J\... 5 

Ml M2 M3 M4 M Ml' M2' M3' M4, M I 
5 5 

f1 '); 3 '£ 3 t\ ~ 2!'4 t4 ~2 i2 24 '2 123 

v v2 v v v v v4 v v v 
1 3 4 5 3 1 2 5 

yl yl y4 y4 y2y3 y3 y3 y2 y 
2 yly4 

Xl X2 Rl R2 Zi Z2 Z3 Z4 Al A2 A3 A4 

"° 1Ll2 A3~4 Wl W1 _l,.l1. ~~ ~ ..J\_5 V1V4 V2V3 V5 V5 

W1 w,; Ul . Ul U1 Ul ,., Ul Ul Tl Tl Tl Tl 

Y1Y4 y2y3 Tl Tl . 8182 8384 8184 8283 8182 8384 8184 8283 



APPENDIX B 

DOUBLE GROUP ANALYSIS AND TIME REVERSAL 

The treatment of the crystallographic double groups was initiated 

by the work of Bethe (79). His treatment gave consideration to the 

splitting of atomic states of half-integral quantum number J. Opechow­

ski (80) was among. the first to generalize this result so it could be 

used to represent spin orbit interactions in solids of a given.period­

icity. However, it remained for Elliot (~1) to set down some definite 

rules for acquiring daub.le group irreducible representations in terms 

of direct product representations. 

Briefly, the method of considering spin-orbit interactions is to 

consider the fact that the spatial coordinates and the spin coordinates 

are quite distinct. Since there is no overlap between the two spaces, 

the double group may be considered in terms of a direct product repre­

sentation of the two existent groups of operators. With this in mind, 

very distinct rules of combination may be extracted from the mathemati­

cal formulation of the group of ordered pairs. Using such a formula­

tion, the additional representations for the stannic oxide space group 

were acquired and are given in Tables XIII thro~gh XXII. Table XXIII 

contains the necessary compatibility relations between these additional 

states. 

Wigner (82) has demonstrated that extra degeneracies often occur 

because of time-reversal symmetry. The effects of time reversal can 
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be seen for three distinct cases depending upon the nature of the complex 

matrices D which form an irreducible representation of the group. 

Following Elliot ~l), these cases ar~: 

(a) 

(b) 

(c) 

D is real 

* D and D belong to inequivalent irreducible representations 

Dando* belong to equivalent representations but are distinct. 

For electrons with spin Wigner has shown that for the various cases: 

(a) there is extra degeneracy and the representation D always 

occurs doubled 

(b) there is extra degeneracy and the representations D, o* always 

occurs together 

(c) there is no extra degeneracy. 

lf there is no spin, rules (a) and (c) i;tre reversed. Herring (8;'.}) has 

considered such problems for space groups and has developed a general 

criterion for determining the type of situation which will arise. Using 

his treatment, the concept of time reversal has been applied to the 

irreducible representations of the stannic oxide structure. For each 

wavevector group the type of time reversal degeneracy has been given in 

terms of (a), (b), or (c) for each irreducible representation. When 

type (b) occurs, it is of interest to determine which states are time 

reversal degenerate. Using the criterion set forth by Elliot (81), this 

may be done readily. Thus, each state of time reversal degeneracy type 

(b) has been further diagnosed by stating which two representations are 

equivalent. 
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TABLE XVIII 

DOUBLE GROUP IRREDUCIBLE REPRESENTATIONS AT r 

9..1 9..2 23 9_4 9..s 9..6 9_7 9..s 9_9 9..10 9..11 9..12 9_13 9..14 TR 

r1+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (a) 

r2+ 1 1 1 1 1 -1 -1 1 1 1 1 1 -1 -1 (a) 

r3+ 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 (a) 

r4+ 1 1 -1 -1 1 -1 1 1 1 -1 -1 1 -1 1 (a) 

rs+ 2 2 0 0 -2 0 0 2 2 0 0 -2 0 0 (a) 

r + 
6 

2 -2 (1-{2' 0 0 0 2 -2 12 - .µ' 0 0 0 (c) 

r + 
7 

2 -2 .. ..f21 {z 0 0 0 .2 -2 - ./21 (fl 0 0 0 (c) 

r6- 2 -2 'fi'-./2' 0 0 0 -2 2 _ ..(21 {z' 0 0 0 (c) 

r1· 2 -2 -.rT 12' 0 0 0 .. 2 2 -01-../2' 0 0 0 (c) 

r -1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (a) 

r -2 1 1 1 1 1 -1 -1 .. 1 -1 -1 -1 -1 1 1 (a) 

r3- 1 1 .. 1 -1 1 1 -1 -1 -1 1 1 -1 .. 1 1 (a) 

r -4 1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 (a) 

r' -5 2 2 0 0 -2 0 0 -2 -2 0 0 2 0 0 (a) 

~l = E ~9 = J 

.92 = E ~ 10 = TmRl + TmR2 

..93 · = Tmrn1 + Tmrn2 ~ll = TmR1 + TmR2 

-..94 = Tmrn1 + Tmrn2 £12 = m3 + m3 

..9s = c2 + c2 ~ 13 =Tm.+ Tmc2 + Tm + Tmc 2 

- -
_9 6 · = Tmrn3 + TmJ. + Tmrn3 + TmJ ~14 = ml + m2 + ml + m2 

I +R' +i' + R2 C = R1 -7 2 1 

.£8 .= J 
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TABLE XIX 

ADDITIONAL REPRESENTATIONS AT r 

£1 22 £3 £4 .£s £6 £7 £a £9 £10 £11 £12 £13 £14 TR 

r+ 6 2 -2 121 -ff 0 0 0 2 -2 tr -fi' 0 .o 0 (c) 

r1+ 2 ... 2 -'{21 It 0 0 0 2 -2 - (21' fi1 0 0 0 (c) 

r-6 2 -2 [21 _ (21 0 .o 0 -2 2 ~ '121 (21 0 0 0 (c) 

r-7 2 -2 a(z' (21 0 0 0 -2 2 fi! -\1'21 0 0 0 (c) 

TABLE XX· 

ADDITIONAL REPRESENTATIONS AT A AND Z 

Time Reversal 
64 Z5 Same for As z A 

1 E 4 (c) (c) 

1 E -4 

1 Q -4 

1 QE 4 

60 all others 0 

E, E, Q, QE, T(mr+;;:r+m2+;2) + QT(m1+;1+m2~2)' .£2+c2' QR 1-tQR '+R 1-t-R I 1 1 2 2 

- - - -- ,-,-, 1 R1+QTR1+TR2+QTR2+TR2+QTR2 , J+QJ, J+QJ, m1 1+m2 +m.1 +m2 , TJC 1+TJc 1-+QTJ 

1 - -1 - -1 I 1- -, -,£1-tQTJCl - , TJC1+TJC1 - +QTJC1+QTJCl - , Qml -tQm2 +Qml 1-tQm2 , R1+R1-tQR2-tQ 



.A.6 

.A7 

16 

1 

1 

2 

2 

2 

8 
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TABLE XXI 

ADDITIONAL REPRESENTATIONS AT .Jl. 

£1 £2 £:3 .Q.4 £s £6 £7 
2 -2 --n -fi' 0 0 0 Type (a) 

2 -2 -µ' f2' 0 0 0 

£1 = E, ..92 = E, £3 = Tmm1 + Tnnn2,-.Q4 = Tmm1 + Tmm2' Ss = C2 + C2, 

.£6 = Tm + TmC 2 + Tm + T;c 2 

TABLE XXII 

ADDITIONAL REPRESENTATIONS AT I),. 

£5 

0 0 0 Type (a) 

TABLE XXIII 

ADDITIONAL REPRESENTATIONS AT W, U, AND T 

zl z2 Z3 Z4 

(EjO) 1 1 1 1 Type (b) 

(Eltxy) -1 -1 -1 -1 

CE2zlO); cj 2zl txy) i i -i -i 

<.9 x Ir), ~xfr+txy) i -i i -i 

{9 ylT); <;ylr+txy) -1 1 1 -1 

©tla)x(z)O) ~o(faj 
W1 & Wz are time reversal degenerates .as are w3 , & W4. - .Q1=E, .f2=Q, 

QJ=C2-tQC2, f_4=fm+QTm, Q5=TmCztQTmC2: u1 & u3 , are time reversal degene-

rates as are Uz & U4. - .Q1=E, _g 2=Q, ..Q3~3+Qm3 , Q4=TmC2-t-QTmCz, Q5=TmJ-tQTmJ: 

T1 & T3 are time reversal degenerates as are Tz & T4 • -..9,1f=(E/o], 
£2= f Elq_} , .Q3"" f m3fO,Qj , _g4= (m li,1-tQ j, ..9.s= (mm3l1" ,'r+Q j O 
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TABLE XXIV 

ADDITIONAL REPRESENTATIONS AT s,l], ANDY 

Double Group Element S5;£5 Double Group Elements 

E 2 E 2 

E -2 E -2 

0 m3 + m3 0 

0 Tm+ Tm 0 

0 Tmm3 + Tmm3 0 

Time Reversal Types 

I; Type (a) 

s Type (c) 
y Type (c) 
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TABLE XXV 

AQDITIONAL REPRESENTATIONS AND DOUBLE GROUP ELEMENTS AT X 

Class X3 X4 

E 2 2 

E .. 2 -2 

Q -2 -2 

QE .2 2 

C2-tQC2 2i -21 

C2-tQC2 -2i 2i 

TR1+QTR.1-tQTR1+TRl 0 0 

TR2-tQTRz+QTR2+TR2 0 0 

J+QJ 0 0 

]-tQJ 0 0 

m3+m3 0 .0 

Qm3-tQm3 0 0 

Tm1 +irm1tQTm1tQTm 1 0 0 

Tm2+Tm2-tQTm2-tQTm2 0 0 

Type (b) x3 and X4 are Time Reversal Degenerate 



TABLE XXVI 

ADDITIONAL REPRESENTAT.IONS AND DOUBLE GROUP CLASSES AT R 

~1 .£:2 C.3 ~4 ~5 £6 ~7 fa ~9 ~10 £11 ~2 {;;13 £14 ~15 £16 ~17 £1a £19 £20 TR 

R3 1 -1 i i -1 -1 1 -i -i 1 1 -1 . i i -1 -1 1 -i -i 1 b 

R4 1 -1 i -i 1 -1 1 -i i -1 1 -1 i -i 1 -1 1 -i i ..:.1 b 

RS 1 -1. -i i 1 -1 1 i -i -1 1 -1 -i i 1 -1 1 i -i -1 b 

R6 1· -1 ~i -i -1. -1 1 i i 1 1 -1 -i -i -1 -1 1 i i 1 b 

R7 1 -1 i .. i -1 -1 1 -i -i 1 -1 1· -i -i 1 1 -1 i i -1 b 

RB 1 -1 i -i 1 -1 1 -i i -1 -1 1 -i i -1 i -1 i -i 1 b 

R9 

1: 
-1 -i i l -1 1 i -i -i -1 1 i -i -1 1 -1 -i i 1 b 

RlO -1 -i -i -1 -1 1 i i 1 -1 l i i 1 1 -1 -i -i -1 b 

- - -
~l=E, Q2=Q, ~3=C2+QC2' £4=Tm1+ QTml, £5=Tm2+QTm2, £6=E, £7=QE, fa=C2+QC2' f9=Tml+QTml' £1o=Tm2+QTm2 

- - - - - - -
E11=J, ~12=QJ, £13=m3+Qm3, £14=TR2+QTR2' £15=TR1+QTRl, f16=J, .917=QJ, Q.18=m3+Qm3, £19=TR2+QTR2, 

- -
E2o=TR1+QT~ 

Time Reversal Degenerate states (R3 , R5); (R4 , R6); (R7, R9); {Ra, R10) 

"° 0 
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TABLE I.XVII 

ADDITIONAL REPRESENTATIONS AND DOUBLE GROUP CLASSES ATM 

Mll M12 M13 M14 

~l 2 2 2 2 

£2 0 0 0 0 

~ 0 0 0 0 

c .-4 ,.Pi . -fli ,,Pi --Gi . 

£5 -Y2i 'if2i -~i 1"ii 

£6 0 0 0 0 

£7 -2 -2 -2 -2 

£s 2 2 2 2 

£9 0 0 0 0 

£10 0 0 0 0 

c -11 -fli {?.i -Y2i ,/ti 

£12 ,fli -lli ,.qi -~i 

c -13 0 0 0 0 

£14 -2 -2 -2 -2 

c -15 2 2 . -2 -2 

c ·-16 0 0 0 0 

£17 0 0 0 0 

£18 ,{1.i -fJ.i -/l.i ,lli 

£19 4?i ,fii ,Fli .· -/1.i 

£20 0 0 0 0 



£21 

£22 

£23 

c 
-24 

£25 

£26 

£27 

£28 

TR 
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TABLE XXVII (CONT'D) 

Mn M12 M13 M14 

2 2 -2 -2 

0 0 0 0 

0 0 0 0 

-Vii f,[{ ,Fli -fA 

,.,fli -~i. -fii. 4'fi 

0 0 0 0 

..:2 -2 2 2 

-2 -2 2 2 

b b b b 

- -
£1 = E, £2 = c2 + c2' £ 3 = TRl + TR2 + TRl + TR 2 , 9.4 = Tmm1+Tmm2 , 

£19 == TmRl + TmR2, £20'= ml+ m2 +ml+ m2' £21 = QJ' £22 = Q(m3 

+ m3, £23'·= QT (m+ m + mC2 + mC2' £24 = QT (mRl + mR2), £25 = 

QT (mRl + mR2)' 9.z6 = Q (ml+ m2 +ml+ m2)' fz7 = J, £28 ;= Q'J 

Time Reversal Type b; Degenerate States: (11,12); (13,14) 
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TABLE XXVII I 

ADDITIONAL REPRESENTATIONS AND DOUBLE GROUP CLASSES ATV 

.91 £.2 .93 c c -4 -5 9-(, .9.7 .9a £9 .910 2.11 .912 .Q13 £14 T.R. 

v6 2 -2 {2'i -f2i 0 0 0 -2 2 - ~i (2\ 0 0 0 b 

V7 .2 -2 -/li . fz'i .o 0 0 -2 2 +@i-~ Q. u 0 b 

- -· . £1.=E, _g2=E, .2.3=:rmm.1+Trmn2, _g4=:rrmn1+Trmn2 ,. £s=Tm+Ttrtc2+Ti-f.TmC2 , _9 6~ 2+c2 

v6 and V are Time Reversel Degenerates 
. 7 . 

TABLE mx 
COMPATIBLE ELECTRONIC STATES 

(DOUBLE GROUP) 

r + 6 r+ 
7 

r1 .. 
6 r -7 X3 X4 Z5 A5 

t1 5 Li 5 4!15 Ll5 A5 Li 5 -1.e/,-7 .. V6V1 

..lt..6 -A.7 -L6 ..L7 W1W2 W3W4 U1U2U3U4 T1T2T3T4 

fs fs ~5 ~5 Y5 Y5 8585 S5S5 

W2 W2 5 5 5 5 

U2 Vs U2 Vs Y5 Y5· 

T2 



APPENDIX C 

OPTICAL SELECTION RULES 

After the acquisition of the irreducible representations for the 

various wavevector groups, it is only natural to try to utilize these 

results to predict some further properties of the system. In particu-

lar, one may use a strictly group theoretical argument to predict the 

possible initial and final electron states for an electron that has been 

excited by radiation. For a completely general treatment of the possi-

ble selection rules applicable to a given crystal system the reader is 

referred to Lax and Hopfield (84). However, the simple treatment of the 

interaction of radiation with matter to stimulate direct transitions is 

quite straightforward in that the problem reduces to consideration of 

the integral~ 

J <f<r,tl) *-,P.rnt) 1jJ<r,t) 43r .. 

All Space 

'where")! = final electron state, yi = initial electron state and '?-Int) 

represents the interaction being considered which stimulates the tran­

sition. If the integral is nonvanishing, the transition is allowed. 

However, a vanishing of the integral insures that the transition is at 

least first forbidden. Rather tha~ performing this rather complicated 

integration, it is possible to extract the desired information simply 

by considering the nature of the interaction and the symmetry of initial 

and final electron statesa In particular, for interaction with the 

94 
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electromagnetic field 1 the interaction term must transform like a vec­

tor. This occurs since the electron-photon interaction is a vector in­

teraction. 

As a result of this idea, it is possible todetermine which transi­

tions are allowed simply by considering the direct product of the re­

presentations for the initial and final electron states with the repre­

sentation within the group of the wavevector which transforms like a 

vector. After this direct product representation is broken into its 

irreducible sum, this sum must contain the most symmetric representation 

of the wavevector group or the transition is not allowed. 

For the stannic oxide space group, there is no single representa­

tion which transforms like a vector~ Instead, two different represen­

tations must be considered. The simple point group representation of 

the nl~ crystal system contains one doubly-degenerate representation 

which transforms like a vector in the x,y plane and another singly-de­

generate representation which transforms like z. Thus, the entire in­

teraction term must contain a sum of these two representations. 

However, should one be interested in transitions that are energe­

tically possible using radiation polarized parallel and perpendicular 

to the c-axis, it is evident that for polarization perpendicular to 

this axis, it is necessary to consider only the representation which 

transforms like (x,y). Similarly, for polarization parallel to this 

axis, only that representation which transforms like z is applicable. 

With this in mind, the following set of tables have been construct­

ed in which the possible initial and final electron states have been 

listed for each type of polarization. The classification of transi­

tions for a random polarization of the incident radiation would require 
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that any one initial state could have many possible final stateso Since 

this is the case, the set of final states may be acquired simply by con-

sidering all possible states allowed for any given initial state, i.e., 

since the sum of two irreducible representations are necessary to com-

pletely describe a vector interaction, the final states for such an in-

teraction may be acquired by considering all states which result from 

summing the states due to both types of polarization. 

Tables X.XX through XXXIII give possible initial and final states 

which are indeed polarization dependent. As mentioned, the set of pos­

sible states for a random polarization may be seen to be that set of 

states acquired by considering both polarization types simultaneously. 



TABLE .XXX 

OPTICAL SELECTION RULES AT r 
Initial State Allowed Final State Initial State Allowed Final State r, 

2 Interaction rs' Interaction 

ri ri x n, ri ri x 5' 

r1 r 2' r. (' I 
5 

r2 r, r2 r5 1 l 

r3 
r, 4 11 rs' 

t\ r, 
3 r4 rs' 

rs r, 
5 rs r '+n '+i! '+/1' l 2 3 4 

r, 
l r2 rl, rs 

r 2' rr r, 
2 (1 

r, 
3 r4 11, rs 

r4, r3 r4, ~ 

rs' rs r. I 
5 l{+~+~+fl 



98 

TABLE XXYJ:., 

POSSIBLE ALLOWED TRANSITIONS 

Initial State Final States Initial State Final States 

r 1 r, or(' t::::(f' {' ') r , c r2 ,rs) 2 S 2 ' S 1 

r2 
er., fl,) 

1 ' S 
r. I 

2 cfl,rS) 

r3 cr4' ,rs') r3, c(,~) 

r4 (r3 I 'fs I) (14, (~,Ps) 

rs crl' ,/1' '~' ,fl+' ,fs') r.. I s (~,/1,/!,/l,f!) 

TABLE XXXII 

POSSIBLE ALLOWED TRANSITIONS AT 

~- .. .:::~\ x ~' 
1 

Ll 1 A3 

h2 L\4 

~3 L\1 

b.4 L12 

Pertinent Representations 

r2, 

rs' 

~I (t 7.- '1s tJ + 
1 -1 -1 

2 2 0 

Initial State 

.b 1 

~2 

~3 
~4 

1 

0 

A. ..6i x rs' 1 

Lil ~1 +~2 

bz ~1 +A2 

b,. 3 ..6.3 +~4 

b4 ..63 ~4 

Possible Final State 

(L\,~2,A3) 

(A1,Az ,~ 4) 

(...:T1,~3,~ 4) 

(.d 2 , .6 3 , ~ 4) 
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TABLE XX.IlII 

POSSIBLE ALLOWED TRANSITIONS AT_}\___ 

_j_ i -1-i x r2, _A_i ..Jl_i X rs I 

.J..1 ..A.1 A 1 _A_s 

.J.. 2 _.,A. 2 .Jl 2 .J..s 

JL.3 _fl 3 -1L 3 Jls 

)4 _;l4 Jl.4 _A_s 

...A-s Ji_ s ls .J..1 +..Jl.2. +J-3 +JL4 

Initial State Possible Final States 

_)._l (~ ,J\;) 

)\..2 CA.2 ,..A.s) 

J-3 0l3 ,)__s) 

J-4 5'l4'As) 

J\- s Q1,)l2 ,A3 ,)l4,)ls) 



100 

90 

60 

Q) 

..c: 
+:> 
bl) 

30 g 
r-l 
< 

1,1) 

'O 

ti ,:q 

~ 
i:.t 

0 
Q) 

&1 

- r.' ~ 
> 2 ..... 
(1) ~~ 

g· $<1 
o I 

>. 
Ol Ii P..c._ 

·~ .g 
~ -30 lj' ~ {f.} 

w '5 
Cl) ,rf 

~~-
'2 
Is' e 

[!' '3' .. '° 
2 r-1 

(!) 
H 

rs' &! 
-60 lj' ,rf 

r.; -
x. µ.., 

r.; A2 

x, 
-90 

r.' A2 
5 

Al X1 
lj' 

r AX 



VITA 

Bill P. Clark 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: ULTRAVIOLET REFLECTIVITY AND BAND STRUCTURE OF STANNIC OXIDE 

Major Field: Physics 

Biographical: 

Personal Data: Born in Bartlesville, Oklahoma, May 15, 1939, the 
son of Lloyd and Ruby Clark. 

Education: Attended grade school in Bartlesville and Dewey, 
Oklahoma; and High School in Dewey, Oklahoma; received a 
Bachelor of Science degree from Oklahoma State University, 
Stillwater, Oklahoma, in May, 1961; received a Master of 
Science degree in May, 1964, from Oklahoma State University, 
Stillwater, Oklahoma; completed requirements for the Doctor 
of Philosophy degree in May, 1968. 

Organizations: Member of Sigma Pi Sigma, Pi Mu Epsilon, American 
Physical Society, and the American Association for the Advance­
ment of Science. 


