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CHAPTER I
INTRODUCTION

Stannic Oxide is a member of the crystal system Dzﬁ. A number of
previous studies of the electrical and optical properties of this ma-
terial have been reported (1-6). However, as yet, no attempt to corre-
late the available data via a band structure calculation using the one
electron theory of solids has been made available. Such a study would
attempt to predict mathematically some of the gross electrical and op-
tical properties of thé material in question from existing self-consist-
ent data for the free atoms which make up the material. This type of
nfirst principles" calculation has as its basic problem the mathematical
formulation of the potential which will be seen by an elecgron as it
traverses the real crystal lattice. However, the selection of a proper
potential can be made through the usual self-consistent routine, Al-
though a sufficient amount of data for a first principles band structure
calculation is now available, prior calculations of this type on other
systems have been shown to be of sufficient error to warrant another
approach for a preliminary investigation. As a first step, then it has
been .decided to make an empirical pseudopotential calculation to test
the general applicability of the one electron approximation for explain-
ing experimental data, and to act as a guide for future theoretical cal-
cuiations of a more fundamental nature.

Since the study of the reflectance spectrum of a crystal for light



of energy larger than the band gap has proven to be of significent value
in treating metals. and other materials in. which the one electron theory
has been applied, it was felt that following the work of Van Hove (7),
Phillips (8), Brust (9), and many others might prove to be of particular
value in attempting to obtain further optical properties of stannic
oxide which would lead to a better understanding of the type and
strength of force seen by an electron within the lattice as it moves
from one energy state to another.,

In this sense, the calculation should augment the experimental data
and vice versa, The attempt to make the calculation self-consistent
involves adjusting the .pseudopotential parameters until as many of these
measured quantities as possible may be predicted by the results of the
calculation. After this situation has been optimized, it should be
'possible to inferr the type of potential seen by an electron as it moves
through the  lattice by Fourier transformation of the final pseudopoten-
tial used.

To summarize, the problem under study involves three parts, 1) de-
termination of the optical reflectance for light of energy greater than
that of the band gap, 2) utilization of the empirical pseudopotential
formulation and other data in a first attempt to describe a band struc-
ture for stannic oxide, and finally, 3) correlation of the reflectance

-spectrum and the calculated bands.



CHAPTER 1II

OPTICAL PROPERTIES OF MATERIALS

A complete treatment of the optical properties of solids is beyond
the scope of this paper. The reader who is interested in the many theo-
retical implications and mathematical descriptions of such optical pro=-
perties is referred to several excellent review articles and texts a=
vailable on this topic (10,11,12,13,14,15,16,17,18).

A general mathematical treatment of the optical properties of ma-
terials can have its basis in the theory of propagation‘oflelectromagne-
tic waves in conducting media, This theory will be briefly reviewed be-
low following Moss (12).

When considering the propagation of electromagnetic waves in con-
ducting materials it is necessary to begin with the Maxwell equations

which for this case have the form:

V x E =M pH 3¢ (1
-
> > Y
Vx H=<E +zgo7—}5 (2)
- -3
V- H=0 (3)
A
V-E=0 (%)
where
éio = dielectric permittivity of free space



”“0 = premeability of free space

£

I

specific dielectric constant
,&lm'specific permeability
g~ = electrical conductivity,
Taking the curl of equations (1) and (2) and applying the identity

- - e e Y
%xi’!x A =V(7-A) - VZZ it is possible to obtain:

A = 2>
V2R = e, (v%% + €&, g_g_) (5)
t
2 _ > O
Vo = - uu (V§E+£€oa_tqz> (6)

The solution of one component of these equations may be written as:
”ﬁi*=“ﬁ:*ei(t-x/v) where.ﬁ can stand for E or H. (7)
This implies that
1/v2 = A ME - 1Tk, /W, (8)
However,
v = c/N (9)

where ¢ = velocity of light and N is the refractive index of the medium.

Equation (8) may be therefore rewritten in the form

N2 = ?ug, {Mf' i?‘;} ’ (10)
(o]

and if the conductivity is nonzero the index of refraction must be com-

plex and of the form
N =n - ik. (11)

This changes the form of Equation (7) to



U, = U, ein o-inx/c -Wkx/c (12)
with
n? - k2 = AEand 2nik = it JLUE,. (13)
For cases of practical interest, 4= 1, which implies that
202 = 6{1 + (1 + vz/wzezsoz)%g (14)
k% = €31 - (1,+;2/wze,2€d=2_:)l/fé§, (15)

At this point it should be noted that § is the conductivity of the medi-
um at the optical frequency concerned rather than the dc or low frequen=
cy conductivity. As such, it contains any and all loss mechanisms which
may arise at any frequency.

The absorption coefficient K is defined by the condition that the
energy carried by the wave drops by a factor of e in a distance 1/K.
Since energy flow is given by the Poynting vector, K is proportional to
the product of amplitudes of electric and magnetic field vectors. Both

of these contain the term e’(ka/C

as an attenuation factor. Thus the
total attenuation in a distance x is given by e-2Wkx/c yhich implies

that K and k are related by

K = 2Wk/c = 4TTk/). (16)

The next problem to be considered involves the behavior of an
electromagnetic wave as it strikes a surface. In this case, Snell's and
Fresnel's laws are still valid, However, their interpretation is com-

plicated by the fact that the angle of refraction is sometimes imaginary



and, in the refracted wave, planes of constant phase -and constant ampli-
tude no longer coincide. The treatment. of this probiem for any angle of
incidence is given in detailuby Stratton (18) and is quite lengthy since
many boundary conditions must be stated, the wave must be .broken up into
components with polarizations parallel and perpendicular to the plane of
incidence, each component must satisfy the Maxwell equations with the
proper boundary conditions, and then Snell's law must be:invoked to ob=
tain a reflectance and transmittance dependent upon the: angle of inci-
dence. ' Such procedure when followed for both the electric field and
magnetic field vectors results in ggneral expreséions for angle-depen=
dent reflectance and transmittance which reduce to the following simple

forms in the:case of normal incidence:

2
n n
R= £2-"1 (17)
(n2 + nl)?
4
7= 12 (18)
(n2 + n1)2

where R is the reflectance, T is the transmittance, and_n1 and n, are

the refractive indices of mediums one and two, respectively.
1f the medium containing the incident wave is -air (ny = 1.0) and

the second medium has a complex index of refraction given by

n2,= n.- ik, ' (19)

the reflectance, reflection coefficient, (or as it is called here) the

reflectivity, may be written as:



p=(n-tk-1D% _ (- 12+
(n - ik + 1)2 (n + 1)2 + %2

. (20)

Following Stern (19), this reflectivity relation may in principle
be used in conjunction with the relation between the extinction coef-
ficient k-and the absorption coefficient K to classify the possible
electronic transitions by studying the absorption coefficient of the
material in question, extracting the slope of the absorption coefficient
curve as a function of energy, and from this slope, determining the den-
sity of states of the material as well as its energy-dependent refrac-
tive index. However, Stern noted that due to the lack of appreciable
structure in the absorption curve, a treatment gased upon measurements
of the absorption alone is insufficient for a comprehensive study of
thé important electronic transitioms. |

The problem itself is not insoluble, however, since other workers

in this area (20,21,22,23,24) have indicated that many details of the
electronic band structure in different types of solids can be. obtained
by critically studying the structure of the imaginary part of the com-

plex dielectric constant (2nk) which is related experimentally to the

reflectance of the material being investigated. Philipp and Taft (25)
have shown that the real and imaginary parts of the refractive index
(n and k) can be obtained from the reflectivity spectrum at normal inci-

dence by calculating the integral

OO «
E + E
Q(Ey) =L dIn R(E) , | °fqE. (21)
2 dE E-E,

Then n and k are given as the solution of the equation

n - ik - 1 _
n - ik + 1

%

R eie. (22)

Thus with reflectance data on hand as a function of energy it is in prin-



ciple possible to determine all of the optical constants of a material
simply by -applying this argument to the data acquired at normal inci-
dence. Such Kramers-Kronig analysis (Equapion'21) of reflectance spectra
have been carried out in several investigations (20,21,22,25,26,28).
However, as pointed out by Phillips (10) there is often less than. 0.4
electron volt difference in the energy location of the: observed reflec-
tance peaks and the -2nk peaks using values of n and k obtained as above.

The analytic singularities in the 2nk curve acquired via a Kramers-
Kronig analysis of the material's reflectance also show a correlation
‘with those of the joint density»of-statés function

d Ny d

where
Eij_ﬁ= El(k) - EJ<k)

is the -energy difference between conduction and valence band states and
the domain of integration cerrs constant momentum surfaces. Thus the
. same conclusions regarding singﬁlarities may be drawn simply by investi-
gating the structure of the acquired reflectance spectrum. This effect
of singularities in the joint density-of-states due to Fﬁk Eij‘ being
zero has been studied in detail by Van Hove (7) and Phillips (18) and is
quite amenable to further application regarding the optical-electrical
properties of solids.

Many qther'workers-have used the aforementioned methods to study
‘the optical properties of solids (27,28,29,30). For a complete and com-

prehensive listing of the references on this matter, the reader is re-



ferred to the review articles by Phillips (1) and Lax (27).

Another point noted by Phillips, Ehrenreich, and Philipp (33) and
again by Phillips (34), is that a wide range of data indicates that the
ultraviolet structure in the reflectance curve depends primarily on
.erystal structure and only secondarily on atomic composition. The char-
acteristic structure of ultraviolet: absorption 1is assigned to interband
transitions that are applicable at symmetry points of the Brillouin
zone, -and just as the energy bands of materials seem to show some sort
of consistent trend (35,36) for a given space group, the reflectance
from any. set of crystals witﬁ'the same crystal strucfure appears to be
somewhat alike. If these observations are coupled with the facts that
anisotropic crystals have polarization-dependent reflectivities and that
the reflectance of rutile has been acquired by Cardona and Harbeke (37),
a plan of attack to be followed in studying the optical properties of
stannic oxide becomes apparent.

This plan is preliminary in nature-and rather elementary in content
at this time, but appears to be consistent with the type of optical in-
vestigation that has been carried out for many other materials in a
particular crystal class, The problem to be considered theoretically
and experimentally involves acquiring some idea of the reflectance of
stannic oxide as-a- function of the incident photon energy, comparing
this data with that of rutile (when polarization measurements are possi-
ble), calculating-a tenative band structure in which the symmetry of
the initial and final electron states may be classified, and as a fu-
ture problem, noting if such a trend of reproducibility in both the
.optical reflectance data and the band structures of materials having

~this type of crystal structure is evident.



CHAPTER III
OPTICAL MEASUREMENTS
The Monochromator

The reflectivity measurements were pbtained using an instrument
built in the Chemistry=-Physics Shop at Oklahoma State University. Al-
though several features of existing systems of this type were considered
(38,39), an attempt was made to integrate the best features of the most
favored system into-a single instrument of flexibility sufficient for
studies in several different regions of the optical spectrum.

Figure 1 shows the monochromator in perspective. Upon viewing this
figure, it may be seen that the system consists of three distinct parts,
sample chamber, grating chamber, and entrance & exit tubes, This fact
may be used to advantage for later work.in that should the sample cham-
ber need modification, it may be easily removed. Similarly, the grating
chamber may be altered, and the slit-to-grating distance may be in-
creased simply by the insertion of the proper length tubes or tube sec-
tions., The entire system was electroléss nickel plated by the Kaningen
process to avoid erosion,

The grating chamber (Fig. 2) was constructed,frém a-steel tube of
fourteen-inch diameter -and length of six inches. At the base of this
chamber is an exit tube which connects to.an oil diffusion pump. The
top and bottom plates which are fastened to the grating chamber have

been sealed using O-rings in order to insure keeping the chamber light

10
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Figure 2, The Grating Chamber
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tight as well as allowing for vacuum measurements. The grating used was
‘a Bausch.and Lomb replica "CP" grating with 6006 lines/cm which was
blazed for 2760 angstroms at normal incidence. This gratiﬁg was mounted
using an off-center pivot similar to that discussed by Johnson (40). As
pointed out by Johnson, the utilization of such a grating mount allows
perfect focus for two different wavelengths in the first order and a
‘nearmpe;fect-focus with deviation of less than two per cent for the
- wavelengths between the two focused wa?elengths selected. For this sys-
tem it was felt that‘perfect focus would be desirable at a wavelength
- which correspondes to the approximate energy of the intrinsic band gap
of the material being studied. Thus, the off-center pivot was construc=-
ted in such a way as to allow perfect focus at 2260 angstroms and 3260
angstroms.

The relative position of the grating may be determined by reading
the angle on.the horizontal vernier scale shown in Figure 2, The verti--
cal vernier moves through an angle of 180 degrees for every degree on
the horizontal scale. Thus, assuming no backlash, the grating may be
placed at any predetermined angle with respect to the entrance beam with
an accuracy of twenty seconds of arc gs read on the horizontal scale.
Howevér, upon propagating the error for such a setting experimentally,
it was found that there was indeed some backlash in the gearing mecha-
nism., This error was not found to be serious since data were taken by
‘sweeping out the entire spectrum rather than going to one point in the
spectrum, backing up to another point, and then proceeding to a point
past the initial one. Also, it was felt that the data.acquired were
good since the backlash could be virtually eliminated by turning the

grating through-an angle of 100 degrees on the vertical scale past that
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used for the last data point, then returning to that point and sweeping
out the spectrum in the opposite direction.

The ‘entrance and exit tubes were made in sections as may be seen
from Figure 1. This was done to increase the flexibility of tﬁe‘system
in that should conditions warrant changing gratings, any larger Rowland
circle may be used simply by inserting sections of tubing of the proper
length,

‘The entrance slit is shown in Figure 3. This slit may be aligned
in two ways. Other than adjusting the slit width and its orientation
relative to the ruled surface of the grating, it is also possible to
-adjust the slit-to-grating distance via rotation of the:section contain-
ing the slit which has been'attaéhed-by'threads to the entrance tube.

The detection chamber is shown in greater detail in Figure 4. This
chamber was made to be flexible in that the entire system.is sealed to
the exit tube by a double O-ring arrangement, 'This allows vacuum meas-
urements without welding the exit tube to the chamber. The chamber it-
self was constructed of a tube at diameter 12 inches and length of fif-
teen inches,‘vAs was the case for the grating chamber, this tube is
sealed to its top and b§ttom covers by an O-ring arrangement, The de-
tection chamber is supported by a tube which rests on a stage as shown
in Figure 1. This stage rests on 4 ball bearings placed in grooves in

.the base plate, Thus, the system may be moved in any direction in the
plane of the table upon which the base plate is fastened, and locked in-
to position by tightening the screws which make contact with the sides
of the plate which supports the detection chamber., Such an elaborate
arrangement turned out to be unnecessary for alignment of the slit with

‘respect to the exit tube but could prove to be of significant value for
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Figure 4,

The Detection Chamber

16
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future use if it were found that the detection chamber was not aligned
properly with respect to the geometric center of the exit tube.

Only one detector was used (RCA phototube type 1P28) throughout the

course -of the experiment‘and its location inside the detection chamber
is quite important. This is true since the most desirable situation is
one wherein the optical path from the exit slit to the detector may at
. all times be considered to be constant. If this be the case, the actual
magnitude of the reflectivity may be ascertained from relative measure=
ments by using an argument based solely upon the geometry.of ‘the system.
F§r this reason, the detector was mounted through the center of the top
plate of the detection chamber in such a manner that it could be rotated
to any position within the chamber. The relaﬁive position of the detec=-
tor could be readily ascertained by reading the vernier scale which was
mounted upon its shaft. The sample was mounted so that it could be ro-
tated in and out of the beam using the knob shown in Figure 5, which al=
so shows the phototube, sample holder, and sample in inverted position.

As has been noted by others (41,42), phototubes such as the RCA
. 1P28 which do not have an appreciable spectral response in the ultra-

violet region of the spectrum may be made sensitive to radiation in this
region by spraying the glass envelope of the tube with a solution of
sodium salicalyte in methanol. The complete details of the procedures
for preparing .a phototube in this manner are presented by Allison,
Burns, and Tuzzolino (42). Briéfly, the ultraviolet sensitivity arises
due to the ability of the sodium salicalyte to abso?b radiation in this
spectral range and then reemit light at 4300 angstroms with a quantum
efficiency of nearly 100%. This latter being the region of greatest

spectral sensitivity for this tube allows measurements to be made



Figure 5.

The Sample Holder and Phototube
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inexpensi&ely'while yielding a means of determining the output intensity
_of ‘any source of ultraviolet radiation.

Several different light sources were used at various stages of the
experimental work., For purposes of calibration.a mercury arc (Osram
Hg3 Spectral Lamp) was used, However, this source is unsatisfactory for
wavelengths below 2000 angstroms and due to its giving a line spectrum
with very little overlap between lines, it is unsatisfactory for scanning
-a rather large range of energy in a continuous faéhion. This necessi-
tated the use of a light source which had a continuous spectrum in the
region of interest with an intensity sufficient for the work desired.
For this reason the preliminary measurements were made using a hydrogen
arc, Hydrogen has a continuous spectrum in this wavelength range and
was satisfactory for this purpose. A\deuteriﬁm lamp (type OSRAM D102-S)
was used extensively throughout the latter stagesiof the experiment.
This lamp is roughly three to four times brighter than the hydrogen
lamp. For future work -a hydrogen discharge arc following Phillip and
Ehrenrich (6) has been built which should. increase both the spectral
range covered and the inteﬁsity of the output radiationm.

The apparatus was calibrated approximately by using the output of
a Bausch and Lomb (Serial No. RD82) monochrometer as the input source
of radiation., After roughly locating the mercury lines, the Bausch and
Lomb instrument was replaced by the mercury arc and the lines were then
located carefully, The resulting calibration plot is shown in Figure 6,
In this figure, the first line, Ll’ represents the initial calibration
plot while the second line, L2, represents the calibration plot current-
ly being used. It was necessary to re-calibrate when the grating was

removed and then re-inserted into the system. At the time, it was sus-
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pected that if the 2536 angstrom line were found for the second case,
the new calibration plot would simply be a line parallel to the first
yet passing through this point. That such is the case is easily veri-
fied by inspection of Figure 6,

In an attempt to further check the calibration and become acquaint-
ed with the system, measurements of the reflectiQity of single crystal
silicon were made. The reflectance spectrum of the silicon was then
compared with that of Ehrenreich and Philipp (43). Since the spectrum
obtained agreed with their data, further confidence was gained as to the
accuracy of the final calibration plot and the method of measurement.

After checking the spectrum.of silicon, several attempts were made
to measure the reflectivity of stannic oxide. Although a number of
natural samples of Bolivian cassiterite were available, only one of
these was used, Phillip (10,34) has noted that for non-cubic matefials
there should be differences in the reflectance spectra for light inci-
dent parallel and perpendicular to their optic axes. The one sample
used was the only sample of Bolivian cassiterite available which had
been cut so the optic axls was well defined with respect to the sample
surfaces. The reflectance spectrum of synthetic stannic oxide was also
desired for comparison but was quite difficult to obtain due to the
small size of the crystals on hand. For this reason, this spectrum was
ultimately measured using a vapor-grown crystal furnished by Corning
Glass Works., The results of these measurements are illustrated in

Figures 7 and 8.
Samples and Their Surface Preparation

As mentioned above, this work was carried out using two types of
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stannic oxide samples. The natural cassiterite sample has the form of a
triangular prism and was cut from one-half of a twin specimen in such a
manner that the c-axis is perpendicular to the triangular faces. For
further discussion about the optical properties and the method of cutt-
ing this prism the reader is referred to the M.S. Thesis cited as refer-
ence (44).
The other sample was furnished by Corning Glass Works and prepared

 by a vapor depésition technique. This crystal was used in preference to
one grown by Kunkle and Kohnke (45) simply because of its larger surface

area. The c-axlis lies along its length, it is of 1 mm?

cross section,
and has a length of 2 cm. Thus comparison between the data acquired for
this crystal and for the cassiterite specimen must be made very careful-
ly due to the difference in orientation of the c-axes in the two in-
stances.,

A standard cleansing procedure for these crystals was adopted in
order to-assure reproducibility from one set of data to the next. This
is extremely important éfﬁce it has been shown (46) that certain aspects
of the reflectance spectrum may vanish and then reappear if a crystal is
first‘cleansed and then allowed to become conﬁaminated.

The insolubility of stannic oxide in acids led to a method of
cleaning the crystal in five steps as has been mentioned by Kunkle (47).
This method was used when dealing with the electrical properties of
stannic oxide and was felt to be adequate for a.study of its optical
properties. The procedure is given below:

1) four hours in aqua regia

2) four hours in hydrofluorié acid

3) rinse (acetone)
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4) rinse (methanol)

5) rinse (distilled water).

The times given are not truly representative of the various clean-
ing procedures used since when the crystals were extremely dirty and did
not exhibit a reflectance spectrum that could be immediately reproduced,
they had to be placed in the acids for periods of days or even weeks be=

fore reproducible data was. again obtained.
Reflectivity Results

For the purposes of this work the most important difference be-
tween the stannic oxide crystals used is in the orientations of their
optic axes with the pléne of the incident radiation.

The data shown in Figure 7 were obtained for the natural sample
‘while those of Figure 8 were acquired for the grown sample. The current
output of the phototube was read with a Keithley 610B electrometer for
reflected light and also for light that was simply transmitted from the
slit (exit) to the phototube with the sample out of the beam. The ratio
of the currents measured at each point of the spectrum of interest yields
the relative reflectance of the sample being studied in .a direct manner.

After acquiring the reflectance versus energy curve for each sample
a number of times, the data was normalized to yield the curves indicated
in Figures 7 and 8. For this normalization the energy of five electron
volts was taken as reference and at this point the reflectance was con=
sidered to have a magnitude of 100 in arbitrary units. In this manner,
-each curve could be drawn with reference to the others and any devia-
tions in shape or position of reflectivity noted immediately,

As expected, the two sample types exhibit a difference reflectance
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vs energy structure. However, the curve obtained for the natural sample
of stannic oxide agrees quite well in shape with that obtained for the

Elc data of rutile as given by Cardona and Harbeke (37). Apparently the

plé
4h

in that the shape of the reflectance curve appears to be a function of

oxides in the space group D behave as do the metals and intermetallics
the structure of the system rather than.a function of the type of ion
within the system being studied. This agrees with various theoretical
proposals which have been advanced (10,34,47). However, there is not
enough data currently available for the members of this particular

space group to state that such is always the case. If it were, the
shape of the E//c curve given by Cardona and Harbeke for rutile could

be used to extract a similar stannic oxide curve.

Thus, one must keep in mind that there is indeed a difference be-
tween the two spectra obtained and that this is a real and necessary
difference arising from the difference in polarizatien of the light in-
cident upon the samples.with respect to their c-axis orientations.

From these curves, it should be possible to determine some of the energy
differences for allowed optical transitions by correlation of the proper

selection rules with the band structure-calculation.



CHAPTER IV
GENERAL BAND THEORY FORMALISM

Every theoretical treatment of a physical system has as its ulti-
mate goal the establishment of a model from which the properties of the
system under study may be extracted. When dealing with a system which
displays many different chemical and physical characteristics, it is not
uncommon to‘have»almost as many different models as tﬁere are research
efforts. Thus, for example, the treatment of some of the gross optical
and electrical properties of a solid may be handled very nicely using
-a flat band model; however, if all such properties are to be treated
simultaneously, this model proves to be of limited value. In general,
the establishment of a good model requires that some details of the
-actual order of magnitude of the forces which act on the microscopic
level be known. Indeed, if all such forces were fully tabulated and
_categorized for :any solid, it might be possible to build a mathematical
model of the system which would predict exactly its groes physical and
chemical properties. However, at the present time, so little is defi-
nitely known about the forces acting on an electron as it traverses a
lattice that such complete models for solids are nof yet in sight.. For
this reason, the general approach for obteining.information pertaining
t0‘the‘allowed electron energy bahds of solids and the ultimate -applica=
tion of this information to give order~of-magnitude estimates and mathe-

matical forms for the forces acting on an electron in a periodic poten-

27
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tial has led to band structures that are seldom in agreement with experi-
ment. The reason for the lack of agreement between theory and experi-
ment (usually of an order of 25%) lies in an inaccurate determination of
the mathematical form of the potential seen by the electron. As a re-
sult, several techniques for handling such problems have been proposed
and exploited. Regardless of the approach, however, the plan of calcula-
tion ultimately revolves about some self-consistent effort wherein given
a potential which predicts a few of the measureable properties of the
system, the next step involves performing a calculation which is then
used for checking the effectiveness of the chosen potential to predict
another measureable property. Generally, the potential does not predict
the property to the desired accuracy. As a result, the potential 'is mod-
ified anew until this new property is predicted. After such modifica-
tion as is necessary, the prediction of a different effect is attempted
and unless this effect is correctly predicted by the model, the poten-
tial is modified again. In this manner one attempts to build a mathe=-
matical model of the system that predicts as many of its properties as
are measureable and predictable within the framework of the theory being
used., After ascertaining the final mathematical form of the potential
which best satisfies the situation, some insight as to the overall force
which acts upon an electron as it moves through the lattice may be ex-
tracted., This is the ultimate goal of any such calculation.

As may be inferred from the above introduction, such calculations
are not easily obtained unless a great deal is known about the physical
system under study. Thus, the problem at first glance seems intractable.
However, using the one electron theory of solids along with the avail-

able computer methods of calculation, some rudimentary ideas as to the
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form and symmetries of the bands for any solid may be obtained.

Many different methods of calculation have been proposed by various
workers, However, the details of calculation are usually of a complex-
ity sufficient to be omitted in a general exposition. As an example of
the many different types of calculational approaches. the reader is re-
ferred to the following references in &hich the various methods are
treated in some detail (48,49,50,51,52,53).

Although space will not allow an exposition of the details of all
of the different types of calculation currently being. used, it is felt
that the method of orthogonalized plane waves should be given a brief
review at this point as it leads quite naturally into the method of
psuedopotentials and thus lends particular insight into the motivation
for choosing a psuedopotential formalism for the calculation pertaining
to stannic oxide.

The method of orthogonalized plane waves (OPW) shall be treated
following Herman (52), Callaway (48), and Jones (51). This method con=-
sists of expanding the core wave functions in terms of linear combina-
tions of atomic orbitals. Further, the non-core wavefunctions are ex-
panded in terms of plane waves each .of which has been orthogonalized to
the core functions by the Schmidt process. The orthogonalization process
serves to introduce into the wavefunction a nodal structure which ap-
proximates the actual one -quite clcsely, This leaves a slowly varying
portion to be represented byrplane‘waves. One may thus expect a rela-
tively small number of OPW's to be necessary to describe the wavefunc-
tions for valence and low=-lying conduction bands. Although convergence
-1s rather slow for the electron states that are above the lowest valence

band state, it is sufficient to make the method practical.
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Although the approach requires no special assumptions to be made
about the crystal potential except that it have the proper symmetry,
there are ipherent difficulties with the method which shall be mentioned
later, It is now assumed for the sake of simplicity that the crystal
system dealt with contains only one type of atom. Following the des»v

cription given by Jomnes (51), let;Kkn(z) denote -a Bloch wavefunction

for one of the electronic states belonging to the core and let

_ i(k 4 1:B) -
\P Tl Ik 4 r -Zr':'ﬂinl}f-no (D

The summation. is over all electronic states in the core, i.e., over all
states whose energies are less than the energy of the lowest state in
the valence band of the crystal. The core wavefunctions form an ortho-
gonal set and it will be assumed that they are normalized so that

_y X;nz'lim a3r =Snm; (2)

all space

The condition which determines the/qin is

%
5 X koWt Sr =0 (3)

all space —

or

Min = ) etErIm oy o

al
Space

From the definition of 1B it will be observed that for every k there is
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a complete set of functions}kﬂi, each member of the set being associated

with a recriprocal lattice point 1B, The required wavefunction in the

valence band, with wavevector k can be expressed as

1/7‘5._(5) A MOP (5)

A very satisfactory feature of the method now becomes evident. Since

all‘j’}ki are orthogonal to the core states, it follows by the variation

process  that ifjpis regarded as a.variation function, the energy of
this state converges to the correct value as the number of terms in the
summation is increased.

Before applying the variational principle, it should be noted that

the\Pki for different i are not orthogonal to one another. Thus, by

making use of the definition of\yki and the definition of/qin,

* 3 _ 2 *
Yrit 47 T T4 MinMine (6)
ALL

SPACE
If V(r) denotes the potential energy of any electron in the crystal and

the Hamiltonian has the form:

2

H o= - 292+ v() (7)
2m -

the variation principle requires

%j?i(H-E)}Pk &r=0 (8)

ALL
SPACE

which in turn requires



32

det JH,, - EA = 0 (9)

The degree of this equation for E is determined by the number of varia-
tion parameteraﬂ.i included when defininng. The usefulness of the
method is largély due to the fact that good results can often. be ob=-
tained with a small number of OPW's When-deéling Qith-a metal,

The matrix elements Hij ‘are defined by(\Phj‘ H“’hl‘> which simpli-

fies after multiplying out the factors., For example

ng_n = E_k_n.XEn may be used. (10)

The usual practice is to express the functions by the LCAQ approxi=-
kn

mation as follows:
an = % elk_?& ?n(z - éﬂ) (]_]_)

where the radial part of the orbitalj?n is obtained as a numerically

tabulated function.

This method is not without several troublesome features of which
.two shall be mentioned. At first sight it might be-supposed that it
would be possible to use existing Hartree functions for the core orbi-
tals@,. This is not the case, howeVer, since it is essential that we

use orthogonal functions so that

<§)m<r>lg)n<r> = 0 S
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if full advantage of the method is to be taken. Hij contains terms of

the fonn<a%JHl9;> which vanish if the functions are 6rthogonala Har-

tree functions do not form an orthogonal set because different orbitals
are determined by different Hamiltonians in the Hartree method. 1If

such non-orthogonal functions are used, the integral.qynl\H'4Q> £ 0 and

is far from being negligible in most cases. Thus, a great many terms
in the variational function would have to be used to obtain satisfactory
results.

The second difficulty arises when solutions are required at symme-
try points of the Brillouin. zone. In practice, most‘c#lculations are
made at such points. At these points, the wavefunctions have specified
symmetries and hence in place of the exponential in definingq’, a symme-
trized plane wave occurs. This causes a corresponding change in inte-
grand fogﬁfin and hence solely from the symmetry of the factor multi-

*
plyingjckn many of th%/(in vanish identically. This implies that many

terms must be used in thebsum forjp,‘ Therefore, in practice (at these
points) the coefficients/ﬁ(are’chosen rather than calculated and are
selected in such a way as to give the’yki a form near the nuclei which
is rather like that anticipated for the crystal wavefunction. Due to
this arbitrariness in the choice of trial fﬁnctions, the reliability of
the method then rests on the convergence of the variational procedure.
Confidence in the result thus depends on showing that as the number of
terms definingiﬁ?increases, the eigenvalues converge to a well-defined
limit,

When these difficulties are coupled with the fact that the pre-

vious formalism was given for a monatemic lattice with only one valence
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electron, it may be seen readily that the insertion of another atomic
species as well as the taking into consideration of all valence elec-
trons from both types of atoms would lead to.a problem whose solution
would be extremely difficult.

As a result of the many difficulties encountered when using this
method another approach which contains the merits of the past treatment
yet avoids its more serious faults might be desired., Such an approach
became available when Phillips and Kleinman (55) noted that the effect
of the orthogonalization terms was to cancel part of the attractive
potential., This cancellation arose through the difference in sign be=-
tween the orthogonalization terms and the -attractive potential. Although
Phillips (54) was the first to investigate and utilize this cancellation
.to the utmost, it is interesting to note that the sum of attractive and
repulsive potentials so generated 1eadé to a treatment of tﬁe electron
in thé lattice in terms of what is essentially a nearly-free-electron
‘approach, This idea (NFE) was advanced by Jones in his text (51) ar
about the same time as being the only approach which has any real corre
lation with experiment.,

The method now being considered is that of the psuedopotential.
Since the earliest work regarding the treatment of electrons in a lat-
tice by this means (55), many other papers have been published which
utilize this cancellation and attempt to use the resulting weak poten-
tial to calculate the bands for metals. Many different psuedopotentials
have been postulated for different cases but they have generally all
been shown to be equivalent mathematically (59). For the sake of refer-
ence the reader is referred to the texr by Harrison (49) and the papers

(56,57,58,59,60,61,62,63,64,65,66,67,68,69).
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Following Phillips and Kleinman (55) the first assumption is that
.all electrons move: in the same potential, This assumption leads to
what is known as the "local" psuédopotential and shall be explained when
- the limitations and overall character of the psuedopotential formalism
.are stated. At first only valence and conduction band wave functions
having s or p atomic character at the center of the zone are considered.
These restrictions may be removed later, Imagine that the exact crystal
wavefunctionﬂqg.which has s or p atomic symmetry and transforms accord-
ing to an irreducible representation EZ of the point group is known.

Sinceﬂqa_must be orthogonal to the core states of similar symmetry,

\& = 4)4 + 21"1 aiq)i where (13)

am = °<‘P*Wf> (14)

Hadiy been chosen to be a single plane wave, Herring's OPW results. would
follow, However, equations (13) and (l4) already show a trivial mathe-
matical but physically important, simplification, in-that Qalence wave =
functions of a given symmetry type need be orthogonalized only to that
symmetry type core function,

gL_is defined to be the '"smooth" part of'%i. Thus, since

»H\k( = E\kk, (15)

substitution of (13) into (15) results in

H QL + z? ah, (&" - E) §0 = E 9« (16)
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n __ -0pn . = n _ n -
where HQ"L E ?-L' Now introduce V. gan(E E)é /é) and (16) as

sumes the desired form
(" r) 50( E Q{ * (17)

If H is broken into its kinetic and potential energy operators the po-
tentials may be grouped together to define a new potential energy, the
psuedopotential.,

Although such a derivation appears to be quite simple, one must
recall the several simplifying assumptions that.have been made, The re=
sults obtained are éften only approximately correct even at the center
of the Brillouin zone due to the mixing of the s and p-like character
atomic states when defining the repulsive potential. For a complete

- treatment -of this subject, the reader is referred to reference (55).

There are three fundamental physical approximations which enter
‘the theory and must be stated for -the sake of completeness, The reader
is referred to Harrison (49) for a more general treatment of these
ideass The first approximation is the "self-consistent-field" approxi-
mation. This simply means that one replaces the interaction between
electrons by a potential which is to represent some average interaction.
This potential depends upon the states which are occupied by electrons,
and these stateé, in turn, depend upon the potential; thus the potential
must be computed self-consistently. Ultimately, the only important in-
teraction between electrons is the coulomb repulsion, but this can be
conveniently divided into three distinct contributions. The first is
the Hartree potential, obtained by computing the time average of the

electron distribution and then using Poisson's equation. to determine
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the corresponding potential, The second is the correction for the po-
tential seen by an electron due to the Pauli principle; i.e., if an
electron of the same spin can lie at that point, simply because of the
antiusymmetric‘nature of the wavefunctions. This effectively gives a
hole in the electron distribution and gives rise to the exchange inter-
action. Into the third contribution are lumped the remaining corrections
which arise from the correlation motion of the electrons: this is the
correlation energy.

The second fundamental approximation is the separation of electron
_energy levels into core states and conduction-band states and the treat=
ment of the core states as localized and small., This "small core
approximation”" is used in three distinct ways. Assumiﬁg that adjacent
cores do not overlap, there is no direct interaction between ions ex-
cept their coqlomb repulsion., Secondly, the variation over the core of
potentials due to the conduction:electrons and adjacent ions is neglect=-
ed. It follows then that the core wavefunctions are the same as in the
. isolated ion, although their energies differ from those of the isolated
~ion. Finally, in the integration of products of various smooth func-
tions and core wave functions, the>variation of the smooth functions
over the ion is neglected, allowing them to be evaluated at the nucleus
and taken out of the integral. This approximation is very good for the
alkali and polyvalent metals,

The third fundamental approximation is the assumption that it is
proper to use perturbatién theory in computing the conduction band
states.

Although the applicability of each of these approximations must be

thoroughly investigated and estimated in a "good" pseudopotential cal-
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culation, many of the aforementioned effects have been neglected in the

present stannic oxide calculation in faver of utiliiing»an empirical

pseudopotential technique wherein these effects are omitted in the first
approximation for everything other than the ca1cu1ation of the atomic
form factors (the Fourier transforms of the assumed pseudopotentials).

' With this in mind, the first calculation made is not expected to give
results which agree with all of the data on hand but can be used as a
starting point for a later attempt to predict some of the gross physical

.proéerties of the system in agreement with the self-consistent type of

calculation mentioned in the introduction.



CHAPTER V
THE CALCULATION

The approximation being used requires that the form factors of the
two atomic species be known., Since Weisz (70) has given the form fac-
tor of white tin which also has a tetragonal structure, his data were
used as a starting point for this calculation. These data. were supple-
mented by those of Harrison (49) in order that a better curve for the
tin form factor could be drawn. However, the data extracted in this
manner were not sufficient for this calculation due to the different
unit cell volumes of white tin and stannié oxide. Since the form fac-
tor is defined to be the Fourier transform.of the assumed péeudopoten-
tial, it may be seen that for a first approximation the adjustment neces-
sary in attempting to utilize these data for the. stannic oxide calcula-
tion involves a simple ratio of the unit cell volumes of white tin and
stannic oxide.

The Fourier transform. of the pseudopotential would normally be

found by integration as:

virh) = Y \efkZ v(r) &x (1)
\A’ —" —
J
where JUis the unit cell volume and N is the number of atoms per unit
cell, At this point ra simplification is to be made in that the do-

main of integration will be taken to extend over all of space rather

than over the unit cell of the crystal which is by definition. the unit

39
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of periodicity for the system under study. This approach appears valid
since the repulsive part of the potential is usually of a rather limited
range due-to the finite sxtension of the core wavefunctions throughout
space.
Since there are two tin atoms per unit cell in both white tin and
stannic oxide, it is possible to write:
Vl(.\’i_lg\) = \%\; j;_i.]‘i'f. Vl(z:_) d3_r_ (white tin) (2)

AL
SPACE

V2(|kl) = {%} etker V2(£) d3£ (stannic oxide). (3)

A

ALL
SPACE

The next assumption is that the spatially dependent potential for
tin in the two different enviromments is not appreciably different so

that the two integrands are the same. If this be the case,

viOKD G,

=V, (4)
v,akp Sy

Thus, with very crude assumptions, it is possible for an initial
potential form factor for the tin atom in stannic oxide to be extracted
from that given for white tin.

The oxygen form factor may also be acquired by attempting a similar
modification of the form factor given for oxygen in the magnesium oxide
-lattice (71). However, when the present calculation was initiated,
these results were not -available, Therefore, an attempt was made to

calculate a form factor for oxygen following Kleinman and Phillips (55).
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Such a calculation requires that a few approximations be made pertaining
to the repulsive part of the pseudopotential since a priori, the elec-
tron wavefunction in the crystal is not known.

The repulsive part of the pseudopotential was therefore calculated

using (in terms of its Fourier transform)

v (k) = (& - Em) = AllS}, Allg}b (r) &r | (e =L g3y,

Space Space (5)

The net form factor was then found by the addition of the Fourier trans=
form of the self-consistent potential given by Herman and Skillman (72).

In the above calculation the following parameters were used:
i

TABLE I

OXYGEN FORM FACTOR PARAMETERS

E(Rydbergs) Eis(Rydbergs) N ' Unit Cell Volume

3.5 -39.456 6 475.289 (Atomic
Units)
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The approach given above is.not sufficieﬁt in itself because' it
neglects an additional repulsive term which arises due to the valence
electrons. This additional term could be calculated from first princi-
ples if the valence band and conduction band wavefuncfions were known.
However, sinée this is not the case, it iS required that the position
_of the resultant oxygen form facter be adjusted until there is (in the
overall calculation) some degree of continuity between compatible elec-
tron states in the crystal., Figures 9 and 10 indicate the initial form
vfactors used while Figure‘ll contains the final shape and relative posi-
tioning of the two form factors as used. It should.be‘mentioned at this
poinf that the finai oxygen form factor agrees quite nicely with that
obtained for oxygen in magnesium oxide (71) although the oxygen form
factor in this latter case is shifted somewhat with respect to the data
. given. in Figure 1ll.

After acquiring the initial form factors, the calculation of elec-
tron‘energy‘bands proceeded by considering a secular equation containing
fifty-five plane waves. This secular equation was factored using stan-
dard group theoretical techniques which shall be illustrated via example.
The results of the factorization can be compared with Herman's (73) re-
sults for the diamond structure to indicate diffefences in mathematical
form for factored secular equations which are related to different
space groups. However, before the various matrix elements are calcu-
lated, and the secular equation. factored, it is necessary that a word
be said about the notation which will be used in the following treat-
ment of the problem.

The Hamiltonian. operator may be written in standard form

2
Hp = %ﬁ + V(). (6)
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Using the usual techniques of associating an. operator with an observable,

£ )
P-%I-ﬁ;a
(7

q~>9q.

If normalized Bloch functions are used as a basis and k and k' differ
" by no more than a reciprocal lattice vector, the expectation. value of

the energy may be found quite simply by

. <E\H°plh> =<15\£Li]5> * <E\V<£>lh> @

where
| Vo = =Tuw (9

and U(r) has the same periodicity as the lattice. If the k repre-

sent plane waves, the result may be seen to have the form

H = LZ(_%'_@)_E +Lsvo] k). (10)

Utilization of the diffraction model (3) band theory formalism makes
the-acquisition of matrix elements relatively simple. This technique
-shall also be illustrated by example later in. this section.

If it were impossible to use ahy symmetry arguments, an N by N se=
cular equation could be solved which would yield both energies and
eigenvectors along any axis of the first Brillouin zone. However, the
-results would be of questionable value since little could be said per-
téining to the symmetry of the resultant eigenstates and thus the identi-

fication of possible electron transitions in stannic oxide would be
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hindered because the initial and final state symmetries would remain
unknown,

Therefore, the symmetry of the system shall be built into the cal-
culation by factoring the N by N secular equation. The resultant secu-
lar equation may be written in block diagonal form wherein each block
has a particular symmetry associated with it. This process shall now
be illustrated by using the (1,1,1) set of wavevectors and coﬁpared with
Herman'!s work (73) on the diamond structure.

At the center of the zone, the free-electron energy is given by

2
E = 1, + 122 + 132 (a/e)? = 4.23 (11)

Table II1 contain$ the D4h character system while Table TII contains all

of the elements of this system with: the substitution appropriate for

the Diﬁ space group. In this analysis the body centered atom of the

unit cell is considered to be located at the origin of coordinates;
thus, the positions of the tin and oxygen atoms are those given by Wy=-

ckoff (74) and yield the following structure factor:

Tin Oxygen

1+ exp[i(1; + 1, + 1,)) 2 Cos aww (8, +42) +

2 exp SHL(Y, +—P,_+«03)} C os iU (4-4)

The wavefunctions that are accidentally degenerate at this energy

~in the free electron approximation may be written as follows:

a = (1,1, e = (1,1,
b = (1,1,1) £ = (1,1,1)



TABLE II

D, CHARACTER SYSTEM
Repre- _
E?gﬁa~ gl Qz =3 §4 25 26 -7 —08 Eg 910 Substitution
, 111 1 1 1 1 1 1 1 1+5(x24y2) 22
5 11 1 -1 -1 1 1 1 -1 =1 xy(x2-y2)
5 11 -1 1 -1 1 1 -1 1 -1 x2 . y2
s 11 -1 101 1 1 a1 -1 1 xy
s 2 =2 0 0 0 2 =2 0 0 0 (yz,zx)
, Lo 1 1 -1 -1 -1 -l -1 xyz(x®-y?)
, 1.1 1 1 el -1 el .l 1 1 z
, 11 -1 1 -1 -1 -1 1 -1 1 xyz
, 111 101 -1 -1 1 1 -1 z2(x? - y?)
5 2 =2 0 0 0 =2 2 0 0 0 (x,y)
EC, TCj+ TR+ R+ J M, TIC;+ T+ m,+
¢, "l TR, R} e, "t T, m
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TABLE 11T
SUBSTITUTIONS FOR D?-']Z
Element Substitution No. Element Substitution No.
E XyZz 1 J XyZ 9
CZ Xyz 2 .m3 Xy2z 10
TC, yta/2, xta/2, z+tc/2 3 TJCq y+a/2, xta/2, ztc/2 11
Tcl”l yta/2, xta/2, z+c/2 4 TIC,"1 y+a/2, xta/2, zc/2 12
TR, xta/2, yta/2, z+c/2 5 Tm, xta/2, yta/2, z+c/2 13
TR, xta/2, yta/2, ztc/2 6 Tm, xta/2, yta/2, z+c/2 14
Rl' VX2 7 ml' V,X,2 15
R2' yXz 8 my' VX2 16

About this notation: Have hérein used the Dkﬁ point

this may be correlated with past notation by:

E=E
Cyp=C
TRl-.-— Tmm3
TR, = TmJ

TC]. = Tmmz
-1l -

TC]. = Tmml
' c—

Rl = Rl
' —

R, =Ry

J =J

my = Mg
Tm1<= Tm
Tm2 = TmC2

group notation and

TJCl‘= Tle

TJCl'l = TmR

' —
ml -

my
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-y — —

¢ = (1,1,1) g = (1,1,1)

i = (1,1,1) &

i
~
-
[d
-
-
s

Each triple corresponds to a wavefunction obtained by substituting its
components into the general wavefunction at the center of the zone which

has the following standard form

1.x 1 1
YoomfEaz s
rl a a (o4

The space group under consideration contains a diagonal glide which

unlike the threefold glide of the diaﬁond,structure, is twofold in na=-
ture in that it has glide planes which are perpendicular to the faces
of the unit cell of area ac and located in the geometric center of the
;faces, i.e. they bisect the faces mentioned. As a result of the exis-
tence of this. diagonal glide, there is in the space group an inherent
nonprimitive translation that must be considered. Application of this

.translation operation to the general wavefunction at this point yields

-2‘n'i§_11(x-»+..c/2) .

T(a/2,a/2;c/2)\%f = ‘e -
r -

(13)

a - [

1,(y + a/2) 4 13(z + ¢/2) st
2 + 13 j . 11((2&1}).
= n

Thus, the effect of the translation operation is to pre-multiply: the
‘wavefunction by + 1.

Table IV contains the effect of application of the sixteen opera-
tions to the functions previously listed as triples,

Using standard procedures,’Eﬁe‘reducible representation and its

irreducible representation sum is given for stannic oxide as
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APPLICATION OF SPACE GROUP OPERATIONS TO (1,1,1) WAVEFUNCTIONS

Wavefunction

Operation a b c d e f g H R
1 a b c d e f g h -8
2 g h d c f e a b 0

-3 =C -e -g -a =h -b -d -f
4 -d -f -a -g =b -h -C -a °
5 -f -d =h -b -g -a -e =C
6 -e -C -b =h -8 -g -f -d °
7 h g e f c d b .a
8 b a £ e d c h g °
9 h g f e d c b a 0
10 b a e f c d h g 0
11 -f -d -b -h -a -g -e -C
12 -e -C -h -b -8 -h ~-d -f °
13 ¢ ~e -a =g b <h -a  af
14 -d -f -g -a =h -b ~C -2 °
15 g h c d e f a b
: -8/2 = 4
16 b d c f g
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[ R{(l,],l)} =T+ f'4+[‘5 +'12' + M+ (14)
while for diamond one has

FR{(I,I,I)} = rll._+V2v +r’25' +f’15 (Cubic System). (15)

The next step in the calculation involves using this result to ex-
tract symmetrized combinations of plane waves that may be used in later
calculations, The procedure is standard but shall be stated for the
sake of completeness, The most symmétric orr‘1 representation has only
positive characters. However, the translation changes the ‘sign of the

-wavefunction since the'sum‘l1 +-12 + 13 is odd. As a result, the wave-

function of this symmetry has both positive and negative parts., Table
"V contains the six irreducible representations and their corresponding
wavefunctions, while Table VI contains the same result for the cubic
system as derived by Herman.

In a similar fashion, other sets of triples‘may be considered.

The first nineteen of these are given in Table VII. These are now to
be used to illustrate the factorization of.thg secular equation.

Using only the eight triples in‘the degenerate (1,1,1) state, the
secular equation is transformed into that shown in Figure 12, This re-
sult §hou1d’be compared with that of Herman which is shown.in Figure 13,

If the set of nineteen‘plagé waves are to be utilized and the se-
cular equation is to be factored, it may bevseen‘that automatically a
tremendous simplification occurs due to the orthogonality of the exista
ing irreducible representations. This orthogonality results in.the
vanishing of all matrix elements between plane waves of unlike symmetry

‘and automatically factors the 19 x 19 secular equation into the form
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TABLE V

- STANNIC OXIDE WAVEFUNCTIONS

try ‘ Wavefunctlon

M ure iy + r Qi+ <111> Q1 - 4id - 41y v.-<‘Tﬁ>— (1Y)
Mo 108 @) + GTD + G + (o) + iy + (Tt +{T1) i)
2 §iy + <D - G0 - ) (Gd + D - Iy -G
1/ @1y + <IID + D + A1) - Q1D - (T - @ -1
Myt uRap + A + Qi + Ep - O - D - (i)
Moz ([ - G - GID + @f L Q1 - GId - Q1D+

A
!

N

TABLE VI

DIAMOND WAVEFUNCTIONS

S ymme -
try = Wavefunction

M L B -1 - (i) - (i + i) - (1)) - Gip -
P uBRRKaD - Qi - <D - A5 - <D + (I + Aip+ind)]
1 {1/r‘[:<111> + @D + ) - Giy +@GID + (11 + Qip -Gl

1B[A1D + QID + (T11) - AP + {1y + i1p + (1) -duD)
GeLa) + QI - D + QI + 1 + {11d - Qid+Qp

( B[y + Qip + Q1D - i) - 41D - Q1) - QIp+<rl
15 {1/B[<1u> + QD LT+ 41D - OID - Q1 + Gin-d1iy
YRR - Q1) + Ui + JID - QI + J1bd - (111%(11‘;}]
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TABLE VII

FREE ELECTRON ENERGY EIGENVALUES AND THEIR CORRESPONDING
SYMMETRIZED CCMBINATIONS OF PLANE WAVES

Free Electron

Symmetrized Combination of

Plane Wave Group Energy . Plane Waves (SCPW)
{000 0 Pl = {000)
(100)(010)(100)(010) 1.0. (Rydbergs) T12-;% (100+IOO-0i0;0i0)

n

4% (100+100+010+010)

Ps—vl/ré"( 100-100 , 010-010 )

(110),(110),(110),(110)

2.0 Rydbergs

r'l-,% (110+110+110+110)
r‘4_,1/2 (1104110-110-110)

P5_>1/r2 Ello-'ifo) ,(1io-.'110)]

(001),(001)

(a/e)? = 2.23
Rydbergs

Q»l/rz [(001)-+(001)]
r; 11/ 12 [(001)-(001}]

(011)(101)(011)(011)
(101)(101)(011)(101)

3.23 Rydbergs

I"l-»l/v%' [01141014+011+01T4+T01+

101+01T+10T]
1_'3-91/{8' [011+011-T01-101+01T+
 011-ToI-101]

Ps"’ 011-0114011-011,
2

101-1014101-101 5

N

rzva/uﬁ;‘ [011+011+101+701-011-
011-I01-101]
rl4v-;1/f§' (o11+071-101-T01-011-
~ 011+101+101]
T‘ 5! eﬁn-oh-oﬁmlf,
2

101-101-101+10T )
3
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shown in Figure 14, Extension to the 55 x 55 secular equation follows
the same procedure but includes all plane waves up through a free elec-
tron energy of 7.23 Rydbergs.

Leaving the center of the zone and considering an axial wave vector
group, it is necessary to follow the same procedures. However, due to
the reduced symmetry of these groups, the block diagonal matrices are of

.a relatively large order when compared with those at the center of the
zone,

Considering the matrices for the center of the zone and for any
axial wavevector group which has states compatible with center-zone
states, it is evident that if the concept of continuity is to be main-
tained, the energies calculated for the compatible electronic states at
the center of the 2zone must be the same. Unfortunately, due to the
lack of an. infinite number of plane waves in the calculation, this is
seldom the case. As .a result, the number of plane waves is fixed, the
energies are calculated for compatible states and compared. . If agree-
ment is not evident to within a few electron velts, the oxygen form fac-
tor must be changed. Thus, using the criterion of compatibility, the
location of the oxygen form factor may be ascertained to a first appro-
ximation,

At first glance, the means of reading some physical significance
into the resultant situation would in;olve finding the inverse Fourier
transform of the resultant form factors. This Fourier transform should
have some meaning if a one-electron: potential is to be calculated.
However, such action should be taken with-a great deal of caution: be-
cause the resultant configuration of form factors has meaning.only in

that it is this set that allows the calculation to proceed on the basis
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of matching the energies of compatible electron states. As a result,
this set of form factors implicitly rather than explicitly contains
such things as electron-electron interactions, exthange, electron-nu-
clear interactions, and many other effects often brought into a "first
principles" calculation, The difficulty herein is that the relative

strength of each of these effects remains unknown,



CHAPTER VI
DISCUSSION OF RESULTS

In tﬁis first effort at making an energy band calculation for
stannic oxide, primary emphasis has been placed upon developing the theo-
ry in terms of a local pseudopotential formalism. This has been done
-to test the practical utility and. consequent disirability for applica- -
tion of this tjﬁe of treatment to the crystal system at hand. For ex-
ample, it was considered important to get an estimate for a lower limit
to the size of the plane-wave approximation necessary to obtain consis-
tent results. Another area of interest inyolved setting forth suitable
criteria for examining the validity of the local approximation.and. for
determining the best locations of the tin and oxygen form factors based
on continuity of the wavefuﬁctions and matching of compatible electronic
state energies at both the zone center and zone boundary. As will be
seen below, the calculation as performed has made emphatic the limita=-
tions of the method and of the approximations used. It has, however,
also made it possible to identify the logical next steps which should
be taken in future calculations designed to refine the rudimentary band
structure as obtained so that it can be subjected.to realistic compari-
son with experimental data.

The calculation attempted had its basis in a. self-consistent, yet
empirical, technique. The method used is self-consistent since the lo-

cation of the oxygen form factor was determined by adjusting its posi-
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tion until compatible electronic states at k = 0 had the same energy.

However, the method is émpirical because no attempt was made to consid-
i

er the effect of the existence of the oxygen valence electrons and their

contribution to the pseudopotential.

The general procedures outlined during the earlier chapters of this
report are valid regardless of the crystal space gfoup and ion species
within the crystal. However, the fact must be accepted that there are
stringent limitations to the\rénge of validity of results acquired
using a local approximation. In particular, the mixing of electronic
states for k # 0 is of major concern. For a treatment of this topic,
the reader is referred tb Kleinman and Phillips (55). Unless appropriate
mixing is taken into account, severe discrepencies between theory and
experiment are to be expected. This mixing of states may best be con-
sidered within the framework of 2nd order perturbation theory. Unless
such precautions are taken, incorrect symmetry classification of allowed
electron states, Due to the lack of the inclusion of the mixing leads
to what ‘is actually an incorrect potential for any point other than that
at the center of the zone; Therefore, the resultant bands can be cor-
rectly classified within the framework of the theory being used yet in-
correctly classified when compared to similar bands acquired after a
"better" calculation is made. However, for this first calculation, it
was decided that the utilization of 2nd order effects was premature.

Another important consideration is the fixing of a lower limit to
the sizé of the plane-wave approximation. A usual procedure is fo plot
electronic state energies obtained at each symmetry point as a function
of the number of plane-waves used in the caléulation. When this curve

levels for the least symmetric state it has in general already leveled
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for states of a higher symmetry. Prior calculations utilizing such a
criterion (64) have been carried out for cubic systems, The results pre-
sented here coupled with those of Staflen, et.al. (75) now suggest that
it may be necessary to consider as many as two-hundred plane-waves to
obtain the desired consistency for stannic oxide.

With such a procedure it has been noted that in general, the more
symmetric states, i.e. those obtained using the wavevector groups of
highest order, converge to a final energy more quickly than do other
states. Consequently, the calculation. as performed should have a some-
what greater degree of wvalidity at the center of the zone than else-
where., For this reason the agreement between compatible electronic
states energies at this point appears to be a good criterion for deter-
mining the validity of such local approximation. At the center of the
.zone, the largest observed discrepency between compatible electronic
state energies was less than three electron volts, However, discrepan=
cies as large as six and one-half electron volts occurred at the zone
‘edge. This added amount of error has two different sources. The: lack
of a consideration a 2nd order effects is made evident by the nonvanish-
ing overlaps of plane-waves of different symmetry classifications,

Thus, the bands which result must be scrutinized very closely
along a symmetry axis to see if they have the proper definition., In
.addition, the mixing of atomic=like states has been ignored as mentioned
above and this can also contribute to the increased error as the zoﬁe
edge is approached., bespite the problems encountered, the calculation
done appears to have some merit in.a qualitative sense, since it illus=
trates the existence of some definite energy bands and predicts the

presence of at least one large forbidden energy gap. As has been re=-
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peatedly emphasized, however, neither band shapes nor energy separa-
tions should be interpreted quantitatively at this time. The bands ob-
tained are illustrated in Figure 16 and were acquired by considering

the nearly-free electron energies at the surface of the zone (X point),
symmetry classifying the resultant eigenvectors, and matching states of
the same symmetry by taking a simple average of the two energies which
.-arose, The same procedure was followed with regard to compatible states
at the center of the zone, although averaging was less important because
the basic agreement was better. However, due to the mixing of atomic
states, the size of the approximation being used, and the uncertainty

in the relative location of the two resultant form factor curves, the
axial calculations were of little use other than to indicate a lack of
structure between[—Tand X, Any structure shown was introduced to in~
sure that at the center of the -zone and at the zone edge, the bands
should have zero slope and thus be essentially parallel. Since the
bands in Figure 15 were drawn using only the energies at these two
points and symmetry classified through a knowledge of the compatibility
relations between electronic states the reader should realize that they
must be accepted only as a point of departure for improved calculations.
There are two obvious indications that the bands as shown. are not re=-
presentative of the true physical situation: First, they have a center-
zone forbiddgen gap separation which does not agree with experimentally
observed band gaps or reflectance data., Secondly, they do not fulfill
the usual condition that the uppermost valence band and lowest conduc-
tion band states have the highest degree of degeneracy possible within
the space group.

At this stage it would seem appropriate to outline a method by



65

which the results of a.calculation similar to that already discussed

may be improved and brought into ultimate agreement with experimental

observations:

L

2)

3)

4)

Calculate the energies of compatible states at the center of
the zone using only 55 plane-waves.while taking into considera=
tion 2nd order perturbation theory. Do this so the difference
in energy between them is less than one electron volt for
every energy of interest.

Check this calculation by considering the axial bands which
arise and the agreement between compatible electronic states
occurring at the zone edge. If there is good agreement be-
tween these. energies it may be assumed that the axial calcula-
tion has some degree of validity.

Assuming that these criteria have been met, the next step is

to consider the separétion.in-energy between valence and con-
duction bands and attempt to correlate this result with experi=
ment.

If correlation between theory and experiment is poor, (i.e.,

if the difference between.allowed electron energies at the
center of the zone does not agree with that observed 6ptically)
the next step is to change the position of the tin form factor.
As an illustrative example, suppose this is indeed the case.
The tin form factor would then be moved to the left by one unit
and the calculation repeated for a range of oxygen form factor
positions. When the resultant new set of bands is acquired it
should also be compared with the experimental criterien

mentioned. If the amount of disagreement is lessened, the pro-
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cedure is evident., Simply move the tin form factog even fur-
ther in.the same direction., However, if the disagreement is
increased, move the tin form factor in the opposite direction
and reconsider the calculation.

5) 1If it becomes impossible to match energies of compatible
states at either zone center or zone boundary, or if a good
match. is achieved but the bandgap is of an obwviously. incorrect
magnitude, increase the size of the plane-wave approximation
and again follow the procedure outlined above.

Once this total procedure has been followed, and a set of bands
has been acquired having proper separation in energy, the pseudopoten=
tial coefficients used to obtain these bands should be further utilized
to make corresponding calculations along the other symmetry axes. These
should provide better insight from a purely theoretical point of view
as to the energetically possible direct and indirect transitions which

can arise in the crystal. Of course, it is to be expected that the
resultant calculation along all possible symmetry axes will lead to a
complete definition of the existing reflectance spectrum. This calcu=-
lation should also indicate that there are some other possible transi-
tions which are of importance but are of an energy beyond the present
experimentally investigated region of the reflectance spectrum.

The validity of these bands may also ‘be checked in another unique
‘way., This method has been utilized by others (67,71 ) and consists of
calculating the imaginary part of the complex dielectric constant via
a Kramers-Kronig type analysis which utilized energies that are ac-
quired directly from the calculated bands. If the obtained curve of

EZ vs energy compares with the reflectance spectrum acquired experimen-
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tally, there must be little doubt that the bands are essentially cdrrectn

One of the goals of this work was to correlate the experimental
reflectance data given.in Figures 7 and 8 with the band structure cal-
culation. It is evident from the previous discussion that such a corre-
lation based on Figure 16 would have no intrinsic value. In anticipa-
tion of improved bands based on future calculation refinements, however,
selection rules for polarization-dependent and polarization-independent
direct optical transitions at important symmetry points have been de-
rived and are-tabulated in Appendix TIII.

In perspective it must be‘realiied that a complete and satisfying
band structure calculation for stannic. oxide still lies some distance in
the future. It now seems clear, however, that fruitful results can be
obtained by following the pseudopotential approach, improving the ap-
proximations, including 2nd order perturbation theory, and increasing

the number of plane-waves considered.



CHAPTER VII -

SUGGESTIONS FOR FURTHER STUDY

There are many different areas in which further study would be be-
neficial. Phillips (10) mentions some new and more fruitful means for
experimentally studying solids and their reflectance spectra. Since
the entire body of knowledge in this area has been mainly applied to
cubic systems and the study of such effects for systems of a reduced
symmetry has not been thoroughly exploited, many questions pertaining
to the interpretation of experimental effects require additional in-
vestigation,

There is a definite need to extend the specific experimental in-
vestigation. described in this paper. In.particular, the monochromator
as built has in it an inherent flexibility which allows for further
work on the optical properties of materials. Future measurements should

. seek reflectance data at reduced temperatﬁres, increased photon energies,
and higher levels of light intensity. In. each instance the reflectance
spectra should be subjected to a complete Kramers-Kronig analysis in
order to gain: increased insight regarding the energies of electron tran-
sitions.

Regarding the band structure calculation, it is quite evident that
further work in this area is. a must if any consistent means of symmetry
classifying electron/transitions is to be attempted. In addition, to

-immediate refinements which were outlined in detail in the last chapter,
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a band structure should also be acquired using an OPW or APW calculation
so the similarities and differences between this type of approach and
an empirical pseudopotential treatment can be ascertained. In either
case, there is now strong .evidence that the c-axis tin-tin interaction
is of a sufficient order of magnitude to warrant study of the bands in
terms of an approach which utilizes a Hamiltonian containing this inter-
‘action. In this respect, the work of Weisz (70 ) could prove quite‘he1p~

ful.
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APPENDIX A

SINGLE GROUP ANALYSIS

Character systems for the Diﬁ space group given by Slater (76) and

derivable from generators published by Olbryskii (77) show some disa-
greement at a few points in the first Brillouin zone, A prior report
(78) on this project mentioned that the characters of the various wave-
vector groups could be extracted rather quickly and gave a tabulation
which has now been discovered to contain errors at three symmetry points.
To remove confusion, a complete and corrected set of characters for this
system is given below., It should be emphasized that this set is in a-
greement with the work of Olbryskii,

The first table indicates (using the notation of the first report
(78)), the wavevector group associated with each symmetry point, the
‘set of elements in each group, and the table which contains the charac-
ters appropriate to this particular wavevector group. The following
ten tables contain the character systems and.Table XII contains the
compatibility relations which may be extracted simply by matbhing‘charaa
cters of compatible electronic states. For more detail as to the reason
for, and means of, extracting the compatibility relations, the reader

is referred to Jones (51).,

74



Symmetry

TABLE VIII

CLASSES AND WAVE VECTOR GROUP ELEMENTS AT |7, A, M, Z, X, R,A, U, W, $,$,4, V, Y, T

Pg;nt Classes _ , - Table
I C,=E; C =cz- 4=Tmm, +Tom, ; €, =TmJ+Tmm,; C =R +R,; Cc=J; C.=m,; C,=TuR,+TuR,, X
99=Tm+TmC lo=m1+m
A £1=E, C,= 3+QTmm +TmJ+QTmJ c3 20 &, =QR1+.RZ., _gs=1\mm1+gmm1+:rmm2+qmmm s X
Ce=myHQm,y, q=mwmmczﬂmc2? _sti-Q;, Cy=m,+m,, glo=MR1+M2ﬂMR1mM2
Cy170myHmy, Cp=RyHQRy, §37QC5» S48
M C,=E, C,=C,, 9_3='I_‘mm3+TmJ, C,=Tmm,+Tmm, , C,=R,+R,, C.=Q, L =QC,, QB=Q'I‘mm3+Q'I‘mJ, X1
&0 2‘*‘3"’“’“_l » G0 RyFRy, Cy4=T, Cgy=my, G =TodTuCy, G =TuR)+InR,, C =m,+m,
+ Cy6=Q35 C3,=my5 Cyg=QTmtQTuC,, €y g=QTmRy HATmR) 5 So0 =Qm, +om,
Z Same as A X
= . == = = = = = = XII
X C,=E, C;=Q, C4=TmHQTm, C,=J+QJ, C;=TmJ+QRuJ, Cc=m,, C,=Qm,, Co=Tmm,+QTmm,,
€g=C,#QCy, Cy(=TmCyHQTmC,
R XII

.9_1=E, £2=Q ’ £3='.[‘m+QTm, §4=m3+Qm3a _Q5=Tmm3+Q'I‘mm3 s £6=J . £7=QJ, £8=TmJ+QTmJ,

£g=C,HCy, L (=TmC,+QTnC,

el



TABLE VIII (CONT'D)

Symmetry
point Classes Table
s €1=E, C,=C,, Co=m;im,, C,=Tmm, +Trm, , C.=Tur+TmC, VIII
U C,=E, C;=Q, g3=m3+Qm3, C,=TuC,+QTuC,, _C;5>=Tnnn3;l-TmJ IX -
W C,=E, C,=0, _c_3=c2+Qc2, C,=TmHQTn; C,=TmC,+QTnC, IX
S, £1=-E’ _C_2=m2, C3=R2, 94=m3 X
a C,=E, £2=m3, c3=TmJ; Q4=Tm02 X
v €)=E, E,=C,, Cy=Tm+TuC), C,=Tum +Tam,, Co=m,+m,, C;=Q, Cs+j=QCy X1
Y C=E, C,=m,, c3' Tm, £4='fnun3 | X
T gleg, C,=Q, Cy=m +qm,, £4=Tm+QTm Co=Tmm,-+QTum,, IX

9L



TABLE IX.

CHARACTERS AT [

77

S & & & 85 L Ly L L Ly symz:i;trfype
[’1 1 1 1 1 1 1 1 1 1 1 @ 14(x%y2)-z2
‘12 1 1 1 -1 <1 1 1 1 <1 -1 xy (x2-y2)
f13 1 1 <1 1 -1 1 1 =1 1 =1 x%2_.42
i14 1 1 -1 <1 1 1 1 =1 -1 1 =xy
f15 2 =2 0 0 0 2 =2 0 0 0 (yz ,x2z)
r11* 1 1 1 1 1 =1 -1 -1 <1 -1 xyz (x2 - y2)
nz‘ 1 1 1 -1 «1 -1 -1 -1 1 1 z
pB‘ 1 1 -1 1 -1 <1 -1 1 -1 1 xyz
514r 1 1 21 -1 1 -1 -1 1 1 -1 z(x-y?
rg' 2 =2 0 0 0 2 2 0 0 0 (x,y)
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78

TABLE X

CHARACTERS AT A

C6 C7 C8 C9 Cio C11 Ci12 C13 Cis

1 1 1 1 1 1 1 -1 1
1 1 1 -1 =1 -1 -1 1 1
1 -1 1 -1 1 -1 -1 1 1
1 -1 1 1 -1 1 1 1 1
2 0 -2 O 0 0 0 -2 2
-1 -1 -1 -1 -1 -1 1 1 1
-1 -1 -1 1 1 1 -1 1 1
-1 1 -1 1 -1 1 -1 1 1
-1 1 -1 -1 1 -1 1 1 1
-2 0 2 O 0 0 0 -2 2
0o 0 0 2 0 -2 0 =2 -2
0 0 0. -2 0 2 0 -2 =2
0O 0 0 O 0 0 -2 2 -2




- TABLE XI

CHARACTERS AT M

79

C1 £2C354C5C5C7C5C9C10C11C12C13 %14 %15 %16 C17 C18 C19 C20

1 1 1 i 1 2l =1 =i =i -1 1 1 i
1 1 i =i -1-=1-1-1i i 1 1 1 i

1 1 i i =1<121 1 «i 1 1 1 -i

1 1 -i i«1-1-1 4i-i 1 -1 =1 i

1 l1-i-1i 12141 i i -1 -1 =1 i

~1

¢, =G, 'C7 =QCy C12 =mg

C3 = TR1+TR2 Cg.= QTR11QTRy C13 = Tm+Tmp

Cy4=TC1+TC1~1 g9=QT01+QTcl“1 G14=TICy+13C, "t

_ ! T 1 1 —_ 1 1

About this notation: Have herein used the Dkﬁ point

this may be correlated with past notation by:

E=E TC1-= Tum, J=J

€y =0y TCl-1 = Tmm; m3 = mg

TRy = Tmm, Ry =Ry Tm; = Tm
— '— : —

TR, = TmJ Ry' =R, Tmy = TmC,

TJC,

TJC1 = TmR,

-1

= TmR2

-1 -1 -l
-1 i1
-1 i1
-1 i =1
2 0 0
1 i o1
1 -i =1
1 i -l
1 -i 1
-2 0 o0
L16=QJ
C17 =Qmy
S18 = QIm+QTm,
Elg=QTJC1+QTJcl°1

Lo = Qt-“1' + Qmy'

group notation and



TABLE XII

CHARACTER SYSTEM AT X AND R

Symmetry . c. | c c c c c c c C

Type -1 =2 =3 =4 =5 = =7 =g 9 =10

| 1 1 1 1 1 1 1 1 1 1

1 1 1 -1 -1 1 1 1 -1 -1

1 1 -1 1 -1 1 1 -l . |

1 1 -1 -1 1 1 1 -1 -1 .1

1 1 1 1 1 -1 -1 -1 .1 -1

1 1 1 -1 -1 -1 -1 -1 1 1

1 1 -1 1 -1 -1 .l 1 -1 1

1 1 -1 -1 1 -1 -1 1 1 -1

X5 Ry 2 .2 0 o 0 2 22 0 0 0

’Xz:sz 2 =2 0 0 ) 2 0 0 0
TABLE XITI | TABLE XTIV

CHARACTER SYSTEM FOR
THE POINT A~

CHARACTER SYSTEM AT S,
5] ,A, AND Y

Symmetry C c C. c C Symmetry

Type -1 =2 =3 4 -5 Type =1 =2 93 94
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 -1 1 2 1 1 o
3 1 1 1 1 -1 3 1o -1 -1 1
4 1 1 -1 -1 -1 4 1 -1 1 -1

-
e



TABLE XV.

REPRESENTATION APPLICABLE AT U, W, AND T

Co - C3 Ca

-2 0

TABLE XVI

ALLOWED REPRESENTATIONS AT V

C1 &) L3 Cq Cs Ce C7 Csg C9 C10
1 1 i i 1 -1 -1 -i -i -1
1 1 i =1 =1 -1 =1 =1 i 1
1 1 -i i -1 -1 -1 i -i 1

1 1 -i -i 1 -1 -1 i i -1
2 =2 0 0 0 -2 2 0 0 0




TABLE XVII

st

COMPATIBILITY RELATIONS

M, M, M, M, My, M,

>l 3 4(.1 1 Y 22'4 f 4 22 S
Vs Yy Vs Vs V4 Yy
Y4 Y4 Y2Y3 Y3 Y3 Y2

Ry Ry 21 Zp Z3 Z, Ay A

v e by Ay ANy vy vy

Uy By B 5 U U, T, T

T, 818, 838, 875, Sy83 S1S; S35, S5, S;S3



APPENDIX B
DOUBLE GROUP ANALYSIS AND TIME REVERSAL

The treatment of the crystallographic double‘grﬁups was initiated
by the work of Bethe (79) . His treatment gave consideration to the
'splitting of atomic states of half-integral quantum number J. Opechow-
ski (80) was among the first to generalize this resuit so it could be
used to represent spin .orbit interactions in.solids of a given.period=-
icity. However, it remained for Elliot (81) to set down some definite
rules for acquiring double group irreducible representations in terms
of direct product representations.

Briefly, the method of considering spin~orbit interactions is.to
consider the fact that the spatial coordinates and the spin coordinates
are quite distinct. "Since there is no overlap between the two spaces,
the double group may be considered in.terms of a direct product repre-
sentation of the two existent groups of operators. With this in mind,
very distinct rules of combination may be extracted from the mathemati-
cal formulation of the group of ordered pairs. Using such a formula-
tion, the -additional representations. for the stannic oxide space group
were. acquired and are given in Tables XIIT through XXII. Table XXIII
contains the necessary compatibility relations between these additional

states.

’

Wigner (82) has demonstrated that extra degeneracies often. eccur
because of time-reversal symmetry. The effects of time reversal can
2

83 -
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be seen for three distinct cases depending upon the nature of the complex
matrices D which form an irreducible representation of the group.
Following Elliot (81), these cases are:

(a) D is real

(b) D and D* belong to inequivalent irreducible representations

(¢) D and p* belong to equivalent representations but are distinct.

For electrons with spin Wigner has shown that for the wvarious cases:

(a) there is extra degeneracy and the representation D alwayé

occurs doubled
(b) there is extra degeneracy and the representations D, D*.always
occurs together

(¢) there is no extra degeneracy.
If there is no spin, rules (a) and (c) are reversed. Herring (83) has
considered such problems for space groups and has developed a general
criterion for determining the type of situation which will arise. Using
his treatment, the concept of time reversal has been applied to the
irreducible representations of the stannic oxide structure. For each
wavevector group the type of time reversal degeneracy has been given in
terms of (a), (b), or (¢c) for each irreducible representation., When
type (b) occurs, it is of interest to determine which states are time
reversal degenerate., Using the criterion set forth by Elliet (81 ), this
may be done readily., Thus, each state of time reversal degeneracy type I
(b) has been further diagnosed by stating which two representations are

-equivalento



TABLE XVIII

- DOUBLE GROUP IRREDUCIBLE REPRESENTATIONS AT [

C2 S35 S4 S5 S S7 S8 S9 C10 S11 S12 &13 S14 TR

1 1 1 1 1 1 1 1 1 1 1 1 1 (a)
1 1 1 1 -1 =1 1 1 1 1 1 -1 -1 <(a)

1 -1 -1 1 1 -1 1 1 =1 =1 1 1 =1 (a)

2 o 0 -2 0 0 2 2 0 0 -2 0 0 (a)

2 242 0 0 0 2 -2 2§ 0o 0o 0 ()

2 97-42 0 0 0 -2 2-42 2 0 0o 0 ()
2= 17 0 0 0 -2 2 *=2'-4fT 0 0 0 (o)
1 1 1 1 1 1 =1 -1 =<1 «1 =1 <1 =1 -(a)

1 1 1 1 =1 =1 «1 «1 =1 -1 =1 1 1 (a)

1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 (a)

i

]

2 0 0 -2 0 0 -2 -2 0 0 2 0 0 (a)

E C10 = TmRy + TmR,

Tmmy .+ Tmm, Gy = Tﬁﬁl + Taiz

Tmmy + T'nﬁz Gy, =m3 + my

c, +-62 Cq3 = Tm + TmC, + Tm + TmC,
Tm3+mu+ﬂﬁ + TmJ c.=m-hn+51+@

3 —-14 1 2

o ! I -
Ry +—R2 + R1 + R2

J
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TABLE XIX

ADDITIONAL REPRESENTATIONS AT f’

S1 % C3 Cu G5 % C7 C8 Co C10 C11 C12 C13 C14 TR
Mt 2 =2 22942 0 0 0 2 =2 2 42 o 0 0 (o
Mt 2 2 @ 7o oo 2 2.2 o o o
-2 2 @2 0 0 0 -2 2 ¥ Bl o 0o o0 (
-2 2 1o o o0 -2 2 ﬁ'-ﬁ' o 0 0 (o)

TABLE XX

ADDITIONAL REPRESENTATIONS AT A AND Z

Time Reversal

64 Zsg ‘Same for A5 7 A
1 E 4 (c) (c)
1 E -4
1 Q =4
1 | QE 4

60 all others 0

E, B, Q, QF, T(mj+m+mp+my) + QT(my+mp+mytmy), C,4C,, QR1'4QR; 4R, 4R, ",
TCl+QTCI+QTCI“;]‘+Tcl=1, T61+T61“1+QT01+QT61'1, my+QmyHnyHQmy , TRy+TR,4QT

= P N AT U Fedt W -1
R +QTR; +TR HQTR +TR,#QTR,y , JHQT, T4QT, m, '+m, '+my "+m, ", TIC,+TIC, " 4QTJ

c 1+QTJ(;1'1 , TJ51+TJ61°1+QTJ61+QTJEI“1, Qmy '+Qm, '+Qm, '+am, ', R;+R HQR,HQ

Rys QC,HQR,
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TABLE XXI

ADDITIONAL REPRESENTATIONS AT Ju

g1 Ca S3 S Cs Cs Sy
“’A“é 2 -2 42 - 0 0 0 Type (a)

_A7 2 ") -‘? '/2‘ 0 0 0

€ =E, &, =E, C3 = Tmmy + Tmmyp, C, = Tmmy + THZ, L5 =Cy + 62,

Cp = Tm + TmC, + Tm + TmC,
TABLE XXTI
ADDITIONAL REPRESENTATIONS AT [\
) 3 s G5
4. 2 -2 0 0 0 Type (a)
€1 =E, G =E, G3 =TmJ + TmJ, G, = TmCy + TmCy, C, = my + my
TABLE XXIII
ADDITIONAL REPRESENTATIONS AT W, U, AND T
.16 Zl 22 Z3 | Z4
1 (Ef0) ' 1 1 1 1  Type (b)
1 (E]tygy) -1 -1 -1 -1
2 (F 221005 @ )ty i i -i -i
2 @xlrys @x|re, ) i -1 i -
o - AV
2 PyiT)s (Pyh+txy) 1 -1

8 @la) x (210) )([oa]

Wi & W2 are time reversal degenerates .as are’ W3, & Wyo = £1=E, C,=Q,
C3=CyHQCy, Cp=TmiQTm, C5=TmCy+QTmC2: Uy & U3, are time reversal degene-

rates as are Uy & Uy. - C1=E, C,=Q, C3=m3+Qm3, C4=TmCoHQTmCy, C5=TmJ+QTmJ:

T, & T4 are time reversal degenerates as are Ty & T - C1= {E 102

Gy gEgQ} : C3~=€m3|0,Q} Lt +Q3, Cg= {mahv TR



TABLE XXIV

ADDITIONAL REPRESENTATIONS AT 8,2, ‘AND Y

Double Group Element 85515 " Double Group Elements Y5

E “ 2 E 2

E -2 E -2

R, + R 0 Tm + Tm 0
2 2

mg +‘m3 0 Tmomq -+ Tmm3 0

Time Reversal Types

2 Type (a)
S ¢ Type (c)
Y : Type (c)



TABLE XXV

ADDITIONAL REPRESENTATIONS AND DOUBLE GROUP ELEMENTS AT X

Class v o X3 | X 4

E 2 2

E -2 -2

Q ) )

QE 2 2

C,1QC, 2i , -2i
C,1QC, -2i 21

TR QIR {HQTR{+TRy | 0 0
TRy4QTR QIR TR, 0 0
JHQJ 0 0

J4QT , 0 0

‘mgtmg 0 0
Qmg+Qms 0 0

Tm 1+r_i?{1%QTm1+QTZl 0 0
Tm2+TZEZ+QTm2+QT‘E2 - 0 0

Type (b) X3 and X4 are Time Reversal Degenerate




TABLE XXVI

ADDITIONAL REPRESENTATIONS AND DOUBLE GROUP CLASSES AT R

& & €3 &, & S & L5 G G S Lo G3 &4 S5 K6 S97 S G9 S0 w
1 -1 4 4 -1 -1 1 -4 -4 1 1 -1 1 i -1 -1 1 -1 -1 1 b

i -1 4 -4 1 -1 1 -4 i -1 1 -1 i -i 1 -1 1 -4 i -

1 -1 -4 i 1 -1 1 4 -i -1 1.-1 =-i i 1 -1 1 i - -1
1° =1 =4 -4 -1.-1 1 4 4 1 1 -1 -4 - -1 -1 1 1 4 1
1 -1 1441 -1 -1 1" -4+ 1 -1 1 -4 -4 1. 1 -1 i 1 -1
1 -1 4 -4 1 -1 1 -1 i -1 -1 1 -i i -1 1 -1 i -i 1
i -1 -4 i 1 -1 1 4 -4 -1 -1 1 4 -i -1 1 -1 -i i 1

i -1 -4 -4 -1 -1 1 4 4 1 -1 1 1 4 1 1 -1 -i -1 -1

€17Es €3=Q, C4=C,#QC,, €, =Tmy+ QImy, Co=Tm,+QTm,, Cg=E, C;=QF, Cg=C,+QC), Co=Tm;+QTm), C,)q=Tmy+QTm,

£y179» §15=Qds Gjq=myHQmy, Gy, =TR, IR, C)5=TR)HQTR), Gy =T, C),=QJ, Cyg=myHQmy, G, o=TR,HQIR,,

Cop=TRyHATR

Time Reversal Degenerate states (R3, Rs); R,, R6); (R7, Rg); (RS’ RlO)

06



‘TABLE XXVII

ADDITIONAL REPRESENTATIONS AND DOUBLE . GROUP CLASSES AT M

M1y Mio | M3 | Mi4
1 2 | B 2 | 2
Cy 0o 0 0 0
Cy 0 0 0 0
c, A7 A AJ71 Y
c. 7t 2i ARy 424
Ce 0 0 | 0 0
o8 -2 -2 -2 -2
Cq 2 2 2 2
Cq 0 0 0 0
Cip O 0 0 0
¢y 21 L2 21 V71
¢y, Y7 21 V71 4?1
€14 0 0 0 0
Gy -2 -2 -2 -2
Cis 2 2 -2 -2
Sie 0 0 0 0
C17 0 0 0 0
Ciq ~71 AP i /21
Sl +71 A2 421 A7
Sy0 0 0 | 0 0
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TABLE XXVII (CONT'D)

M1y ‘ M1 M3 _ M4
2 2 ) )
0 0 0 0
0 0 0 0
24 ey A2 A2
A/EH —45& -fE&b 461
0 0 0 0
) -2 2 2
) -2 2 2
b - , : b | b b
¢, =E, G, =G, +C,, Gy = TRy + TR, + TR, + TR,, 194: Trmmy +Tmm, ,

C .=TE1+TEZ', g6:=R1,+R2+'1€1+'R'2, ¢, =Q, Gg = QE,

C, =QIm (m3 +J +m, + 3),,910 =q (¢, +'62), ¢, = QIm(m+my)

=9 3
Gyp = Qi + W), €y = QR + Ry ¥Ry + R, 0y, = F, g5 =3
Cig=m3.F my, G, = Tm + TmCy + Tm + TE'C"Z, Cyg = ToRy + TmR,,
Cyg = TmRy + Tmﬁz, oy =mpt my +m + 52,,9_21 =QJ, C,, = Q(mg
.+'E3,,923 .= QT (m&ﬁ +mC, + Rz‘, Gy, =QT (mRy + mR)), C 1=
QT (mR; + mR,), ¢ =Q (m +m, + m; +‘r-nz),.-(_)_27‘= J, Cog = 5

1 Time Reversal Type b; Degenerate States: (11,12); (13,14)
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TABLE XXVIII

ADDITIONAL REPRESENTATIONS AND DOUBLE GROUP CLASSES AT V

8o 83 84 O5 S & Bg & S0 &1 L1p S13 S14 - 1.R.

Ve 2@ o 0o 0 -2 2 -4 o 0 0 b
v, 2-Pi 71 0o o o0 -2 2414 o -0 0 b
C1=E, Gy, Gy=Tmmy+Tmm,, Cy=Tmm+Tam,, Cs=TarHInCy+TatTnG,, G=C,+C,
Symmptmytmytmy, C4=QC; 7 if i Y
: V6 and V7 are Time Reversel Degenerates
TABLE XXIX
COMPATIBLE ELECTRONIC STATES
(DOUBLE GROUP)
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APPENDIX C

OPTICAL SELECTION RULES

After the acquisition of the irreducible representations for the
various wavevector groups, it is only natural to try to utilize these
results to predict some further properties of the system. In particu-
lar, one may use a strictly group theoretical argument to predict the
possible initial and final electron states for an elect;on that has been
excited by radiation. For a completely general treatment of the possi-
ble selection rules applicable to a given crystal system the reader is
referred to Lax and Hopfield (8%4). However, the simple treatment of the
interaction of radiation with matter to stimulate direct transitions is
quite straightforward in that the problem reduces to consideration of
the integral:

j (qf(r,t))*wlnt)\Pi(r,t) &r
All Space
where‘q; = final electron state,'y; = initial electron state and}é{lnt)
represents the interaction being,considered which stimulates the tran-
sition, If the integral is nonvanishing, the transition is allowed.
However, a vanishing of the integral insures that the transition is at
least first forbidden, Rathervthaﬁ performing this rather complicated
integration, it is possible-to extract the desired information simply
by considering the nature of the interaction and the symmetry of initial

and final electron states. In particular, for interaction with the
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electromagnetic field, the interaction term must transform like a vec-
tor, This occurs since the electron=photon interaction. is a vector in-
teraction.

Ags a result of this idea, it is poésible to.determine which transi-
tions are allowed simply by considering the direct product of the re-
presentations for the initial and final electron states with the repre-
sentation within the group of the wavevector which transforms like a
vector, After this direct product representation is broken into its
irreducible sum, this sum must contain the most symmetric representation
of the wavevector group or the transition is not allowed.

For the stannic oxide space group, there is no single representa-
tion which transforms like a vector, Instead, two different represen-
tations must be considered. The simple point group representation of
the Diﬁ crystal system contains one doubly-degenerate representation
which transforms like a vector in the x,y plane and another singly-de-
generate representation which transforms like z, Thus, the entire in-
teraction term must contain a sum of these two representations,

However, should one be interested in transitions that are energe-
tically possible using radiation polarized parallel and perpendicular
to the c-axis, it is evident that for polarization perpendicular to
this axis, it is necessary to consider only the representation which
transforms like (x,y). Similarly, for polarization parallel to this
axis, only that representation which transforms like z is applicable,

With this in mind, the following set of tables have been construct-
ed in which the possible initial and final electron states have been
listed for each type of polarization. The classification of transi-

tions for a random polarization of the incident radiation would require



that any one initial state could have many possible final states. Since
this is the case, the sét of final states may be acquired simply by con-
sidering all possible states allowed for any given initial state, i.e.,
since the sum of two irreducible representations are necessary to come
pletely describe a vector interaction, the final states for such an in-
teraction may be acquired by considering all states which result from
summing the states due to both types of polarization.

Tables XXX through XXXTIT give possible initial and final states
which are indeed polarizatiéﬁ dependent. As mentioned, the set- of pos-
sible states for a random polafiiation may be seen to be that set of

states acquired by considering both polarization types simultaneously.



TABLE XXX

OPTICAL SELECTION RULES AT l1

Initial State Allowed Final State

2' Interaction

Initial State Allowed Final State
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Initial State

TABLE XXXL,

POSSIBELE ALLOWED TRANSITIONS

Final States

Initial State

Final States
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TABLE XXXIT
POSSTIBLE ALLOWED TRANSITIONS AT ‘5
A Aixrlz' A4 Aixrls'
‘ﬂl /53 zjl 431 +é32
4, 4, A, A, +4,
A 4, ) A, +4,
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Pertinent Representations
é‘/ g?— 6)3 64-
’72' 1 -1 -1 1
f151 2 2 0 0
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TABLE XXXIII

POSSIBLE ALLOWED TRANSITIONS AT 'Jﬂ“‘

A B N LY A A=
A M A s
N, A2 A 2 s
A Ny /N M
. A A, A,
i . s s IS R NS
Initial State Possible Final States
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