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INTRODUCTION

In 1947 Steenrod (9) introduced the Steenrod squaring operations as

a sequence of homomorphisms

n+i (

sq e Hn(K,L;Zg) - H (K, L32,)

defined for finite simplicial pairs (K,L) and all n 2 0. He used it for
the homotopy classification of continuous maps. In 1953 Serre (5)
gave an axiomstization of these squaring operations valid for all pairs

(X,A) by using spectral sequences. In Cohomology Operations by N.E.

Steenrod (8) there appears a proof also of the existence and uniqueness
of the squaring operations. This proof is long involved and difficult
for a newcomer to the field to follow. In this paper we will present

a proof of the existence and uniquéness'of the Steenrod squaring opera-
tions that is direct, short and much different.

The main part of the paper is Chapter IIT where the cohomology sus-
pension is shown to be an isomorphism in small dimensions. The tocl used
to do this is Brown's (1) generalization of the Eilenberg-Zilber theorem
for fiber spaces in terms of the twisted tensor product.

In Chapter I we state the axioms for the squaring operations and con-
sider some necessary preliminaries. In Chapter II we show the existence
of the.squaring operations and prove the uniqueness theorem. In both
Chapters I and II we anticipate the results of Chapter III and assume the
cohomology suspension to be an isomorphism in small dimensions. In

Chapter IV a summary of the paper is given and a problem for further

iv



research is suggested. Numbers appearing in parentheses, ( ), refer to

an entry in the bibliography.
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CHAPTER I

PRELIMINARTES

Axioms for ﬁhe Stéenrod’Squafing Operations

The Steenrod squaring operations are a sequence of homomorphisms

0 1 i
Sq 5 8G 5 wee 5 8Q 5 e _
' i n i
sq : H (X‘,Y;ZE) -H (X,Y;Ze)

defined for all pairs (X,Y) of topological spaces and integers n, i = O.

The sql satisfy the following axioms:

1. (Naturality) Iff : (X,Y) - (A,B) is a continuous mapping then

% 1 i %
bl sql = sqlf

2. (Dimension) sqo = identity map, sq (x) = O if
sq (x) = £ if deg(x) = 1. Here deg(x) = i means
3. (Cartan Formula) For x in HP(X,Y,ZE) and y in

5.

i : k,
sqa (xxy) =% sq (x)x sq
k=0

deg(x) < 1 and
that x is in Hl'(X,Y;Zg).-

1(4,B;2,)

This. is the axiomatization as given by Steenrod (8).

Complexes, Homology, and Cohcmology

Let R be a commutative ring with unity, Z the additive group of

integers, and Zm the cyclic group of integers modulo m.

Definition 1.1: A chain complex K of R-modules is a family {Kn,an} of

R-modules Kn and R—homdmorphisms an HE (G Kn-l’ defined. for all in

n

integers, such that anan+l = 0 for each n.

1



Definition 1.2: The homology H(K) is the family of R-modules Hn(K) =
Keran/Iman+l{\ The members of Keran are called n-cycles and the members
of Imy ., are called bounding cycles. If x is an n-cycle then cls(x)

is the member of Hn(K) which contains x.

Definition 1.3: The chain complex K ehL is the family
n n ‘ i
+ (- .

(£ K. &L ; go 3, ® 1+ ( 1). 1®3 ;!

2
=0 "=

In this definition we agree ai(x) = 0 if x is in Kj or-Lj’and i3,

| Remark 1.1: If x is a n-cycle K and y is a m-cycle.of L then x ® y is a
(m + n)-cycle of K & L. Also the tensor product of a n-cycle and bounding
cycle is a bounding cycle and the tensor product of two bounding cycles
is a bounding cycle. Hence for a n-cycle x and a m-cycle y

plecls(x) ® cls(y)) = cls(x ® y)
is a well determined homology class in K 8?L' So p defines a homomorphism

p:%@)%HﬁqumﬁK%m.

Theorem 1.1: (The Kunneth Tensor Formula) If K and L are chain complexes

of R-modules satisfying Keran : Kn - K

. end if Hn(K)'are projective

R-modules for all n, then for each n

-p:.go Hi(K) ®& H (L) - Hn(K @hL)

is an isomorphism of R-modules.
A proof appears in (3). Note if R is a field then thé hypothesis
of this theorem is satisfied. |
Let K be a chain complex of R-modules and G be an R-modulé. For

each n Hom(Kn,G) is a R-module. We have the following sequence of R-

modules and homomorphisms:



5n-l 6n

Hom(K,G): ... - Hom(K G) - Hom(K ,G) -~ Hom(K ,.,G) = ...
n ntl

n-1’°

where 5n(f) = 3 We see that § ,, § = O for all n.

ntl’

Definition 1.k: The n®® cohomology of K with coefficients in G, H (K,G),

is the R=module

Ker 5n/Im5n_l°

Theorem 1,2: Let K be a complex of free abelian groups and A be any
abelian group. Then for each n the abelian groups H (K,A) and

Hom(Hn(K),A)g&}Ext(Hn_l(K),A) are isomorphic.
This is a consequence of the Universal Coefficient Theorem.(3).

Let (X,Y) be a pair of topological spaces with Y a subspace of X.
Let S(X) denote the singular chain complex of X. The chain complex.of
the pair (X,Y) is defined to be S(X)/S(Y). It is well known that S(X)
and S(X)/S(Y) are free abelian groups. If Y = ¢ then we define

s(Y) = o.

Definition 1.5: Let K be a chain complex of R-modules and G be an R-

module. The homology H(K,G) of K with coefficients in G is H(K ghG)'
G is regarded as the trivial chain complex.‘ Namely G = {Gh’an} where
GO = G, Gi =0 1if 1 % 0, and an = 0 for all n. For an abelian group
A the homology of the pair (X,Y) with coefficients in A is

H(s(X)/8(Y) ®,A).

Let G be a R-module. We can also regard G as a Z-module. Hence
H(X,Y;G) is defined. The R-module structure of G can be used to define
an R-module structure for eéch member of the family H(X,Y:G). First
for each n (S(X)/S(Y))n ®,G can be made an R-module by defining rx® g) =

X ® rg where r is in R, x is in (S(X)/S(Y))n and g is in G. With this



definition of scalar multiplication the boundary operators {an ® 1} of
the chain complex of Z-modules, (S(X)/S(Y) ®,G are each R-linear homo-
morphisms. Thus (S(X)/8(Y) QkG) is a chain complex of R-modules.

Hence H(X,Y;G) is a family of R-modules.

Definition 1.6: The nth cohomology H (X,Y;A) of the pair (X,Y) with

coefficients in a R-module A is H (S(X)/S(Y),A).
Eilenberg - Maclane Spaces

Definition 1.7: Let G be an abelian group and n a natural number. An

Eilenberg-Maclane space of type (G,n) is a topological space whose
nth homotopy group is isomorphic to G and whose other homotopy groups

are trivial.

Theorem 1.3: For each pair (G,n) an Eilenberg-Maclane space of type
(G,n) exists which is a C.W. complex. Furthermore any such two Eilen-

berg-Maclane spaces of type (G,n) have the same homotopy type.
This is Corollary 2.10.2 of (10).

We will be concerned with the case G = Z2° For each n 2 1 let Xn
denote one Eilenberg-MacLane complex of type (Zg,n)a The proof of

Theorem 1.3 demonstrates that Xn is connected.

Proposition 1.1: Ho(Xn) =7, Hn(Xn) =7, and Hi(Xn) =0 if 0< i< n.

2

If n > 1 this follows from the Hurewitz theorem. The casen =1
follows from Remark 2.10.9 of (10). Since X  has one path component it

follows that Ho(Xn) > 7 for all n.

Proposition 1.2: Hl(xn,zg) =7 if i = 0, n and Hl(xn,zg) =0if 0< i< n.

2



From Theorem 1.2 we have
i
H (Xn’Zz)'— Hom(Hi(Xn), ze)gg;Ext(Hi_l(xn),z ).
From Proposition 1.1 we see that Hi-l(xn) is either trivial or free on
one generator. Thus the right hand summand is trivial when i = n. The

conclusion follows now from Proposition 1.1.

Theorem 1.4: Iet (X,Y) be a pair of C.W. complexes, n = 1, ¥ be in X
and x be in Hn(X,Y;ZZ). Let ./ be the generator of Hn(Xn, * 'Z2) 5
There is a mapping f£(X,Y) - (Xn,*) such that f*(bé) = x and furthermore
any other mapping with this property is homotopic to f. Similarly if

z, is the generator of Hn(Xn,Zg), X is a C.W. complex, and x is a member

*
of HY(X,Z,), then there is a map f: X - X such that f (z) = x.
This is Corollary 2.8.10 of (10).
Definition of the Cohomology Suspension

The cohomology suspension is a homomorphism

*

. 1
o't H (X ,*32,) - H

Xn-l’Z2)

defined for i, n 2 2. Let EXn be the space of paths in Xn'based at-*, i.e.
EX = {a @ I, =X : a(r) = ¥}, Here r is any non-negative real number
and Ir is the closed interval from O to r. In Chapter III a suitable
topology will be defined for EXn.' Let pﬁEXn - Xn be defined by

pla) = «(0). We see that p_l(*) = QXn is the space of loops based at *,

1 Hence it

1 — QXn be

It is well known that QXn has the same homotopy type as Xn_
is an Eilenberg-Maclane space of type (Zg,n—l). Let h: X _
a homotopy equivalence. It is also known that EXn is acyclic. Consider

the following diagram where the middle row is the long exact cohomology

sequence of the pair (EXn,QXn).



*
Now Hk(Eang) = O when k =z 1, thus the coboundary § is an isomorphism
* * *¥.=1 * * R R
for i 2 2. Defineg =h (6§ ) p . DNote that h is an isomorphism since

h is a homotopy equivalence.
The Geometric Realization of a Semi-Simplicial Complex

Let (X,Y) be a pair of topological spaces. Using Milner's construction
* _*
in (4) a pair (X ,Y ) of C. W. complexes is constructed. The pair
* ¥ . .
(X', Y ) is the geometric realization of the pair (5(X),S(Y)) of semi-
simplicial complexes. If X is itself a C. W. complex then we take

X =X,

' * %
Theorem 1.5: There is a mapping j: (X ,¥ ) - (X,Y) such that for all
* n,. S PO . . .
nz0J : H(XY3;Z,) -H (X ,Y 522) is an isomorphism. Furthermore
- * % ¥ _%
each map f: (X,Y) - (A,B) induces a mapping £ : (X ,Y ) = (A",B") such

that jf = f£j.

These facts are shown in (4).



CHAPIER II
UNIQUENESS . AND EXTSTENCE THEOREMS
The Uniqueness of the Steenrod Squares

In this section we will assume that the Steenrod squaring operations
exist and satisfy the axioms. It is shown in:Chapter III that the co-

hoﬁology suspension

*

ot BN (X ,%32,) - mL(

Xp-13%0) -

for each n > 1 and 1 < 1 < 2n.is”an:isomorphism. " Hené¢eforth all cohomology
groups. will. have-coefficients in Zgn

* n +1 . : - \
Lemma 2.1: If 6§ : H (A) - " (X,A) is the coboundary map for the pair

L iy 1
(X,A) then for each i‘Sqla = § sq.

This is Lemma 1.2 of (7).

-1 .n-1

. *
Lemma 2.2: Let n > 1. Consider the mapping (o) ~: H (Xn_l) -
n , 1, %=1 _o%-1 i,
H (Xn’*)° If O0< i < n then sq (o ) (Ln-l) = (o) $q (Ln_l).

* *, ¥ =1 ¥ T I T T N e
Recall that ¢ =h (§ ) lp . Therefore (o ) 1. (p) 1(6 Y(h) l,
The lemma follows now by application of ILemms 2.1 and the naturality

axiom.

Theorem 2.1: The Steenrod squaring operations are uniquely determined

for all pairs (X,Y) of topological spaces.

7



The proof is by mathematical induction. Let P be the set of natural
. . . . i J i+] . .
numbers for which n in P implies sq : HY(X,Y) - H “(X,Y) is uniquely
determined for all i,j = n and all pairs of topological spaces. From the
dimension axiom we see that O and 1 are in P. Suppose that n > 1 and
n-1 is in P. We need to show that n is in P. From the dimension axiom
. . . i J J+i .

and the induction hypothesis we see that sq : H° (X,A) - H° ~(X,A) is
uniquely determined when j < n, i = n and when j =n, i = O,n. There-
fore suppose j =n, 0< i< n. Let x be in Hn(X,Y). We construct the

following diagram
3 * %, °F
(%,Y) & (X,Y) 5 (x,%)

where j 1s the mapping described in Theorem 1.5 and f is a mapping such
* * %\ = *
that f (L'n) =3 (x). Thus x = () 1 (bé)’ Hence

/

. C g1 x
sql(x) =sq°(3) 1 e (Ln). Therefore it is necessary that sqi(x) =
¥ ¥ i 3 ' :
(i) ol sql(bn_l) because sql satisfies the naturality axidm. Now ¢’ =
%, -1 1, 0 i, %=1 P NS
() "(z,_{)- Ths sq7(z)) =sa (o) (¢, 1) = (6) "sa (e _{) b¥
lemma 2.2. But sql(Ln_l) is uniquely determined by the induction
hypothesis hence so is sql(Lé) and consequently so is sq (x). Therefore

n is in P.
The Existence of the Steenrod Squaring Operations

In this section we show the existence of the Steenrod squaring
operations. Again we will use the result in Chapter III that for
. * i i-1 . . .
n>land 1<i<?2n, g: H (Xn,*) - H (Xn-l) is an isomorphism.
First the Steenrod squaring operations will be defined as a set
theoretic function and then will be shown to satisfy the axioms. Let

(X,Y) be a pair of topological spaces and let x be in Hn(X,Y). Define



sqo(x) = x, sqn(x) = x2, and sqi(x) = 0if i > n. In these instances
it is clear the squaring operations satisfy the axioms. It remains to
define sqi(x) for 0< i < n and verify that the axioms are satisfied.
Mathematical induction will be used to do this., Let P be the set of
natural numbers for which n in P implies that sqi(x) is defined for
0< i < n and satisfies the axioms. We see that 0 and 1 are members
of P. Suppose now that n > 1, n-1 is a member of P and 0< i < n.
Construct the following diagram:

f

®0) &Y L)

where j is the mapping of Theorem 1.5 and f is selected so that

* *, *el %
f (Z«rll) =Jj (x). Tus x=j °f (Lr'l)o

. i =1 ¥, ¥ =1 i
Define sq (x) = (j ) f (¢ ) “sq (Ln_l)°

. . . .
We see that sq  (x) is well defined because (o ) 1. l(Xn_l) - Hl(Xn,*)

is an isomorphism for i < 2n and sql(bn_l) is defined by the induction
hypothesis. We see immediately that the dimension axiom is satisfied;.‘
The remainder of this chapter will be a verification that sql(x) satis-

fies the remainder of the axioms.

Theorem 2.2: If nz 2 and 0< i < n then sql(x) satisfies the naturality

axiom.

' J *  *
Let g : (S,T) - (X,Y) be a mapping of pairs. Let (S,T)Q—EKS ,T )
J.2 * % - * %
(X,Y) «— (X,Y ) be the maps given by Theorem 1.5 and g : (S,T ) —
*_ ¥ . i *
(X,Y ) be the map induced by g. We need to show that sq~ g (x) =

.
g sq (x), where x is in H'(X,Y), n 2 2. By definition



10
sat g (x) = (37K (0) Tsa (e _y) (4)
where k (z)) = J; € (x). ()

Also by definition

=1.%, ¥.-1
)

g'sa (x) =g (35) 7 (o) Tsat () (c)

where £ (2)) = 35(x), (n)

—% % —% % —% % * %
From (D) above we see g f (Lé) =g jg(x) but g jg(x) = 3.8 (x)

by Theorem 1.5. Comparing this with (B) we concluded that k and fg are
—% % *
homotopic by Theorem 1.4. Consequently substituting g £ for k¥ in  (A)

we have

V¥

=] =% %, ¥.=1
(3) "8

f (o)

i i
sqg (x) sq (z,_q)

%, %=1 %, ¥, =1 1
g (Jg) f (o) Sql(Ln_l) by Theorem 1.5

g*sql(x) from (B),

We will next verify that sql is a homomorphism. To do this we need

to know the nth 22 -~ cohomology group of a space in terms of its nth Z2—

homology group.

Proposition 2.1; Let X be a topological space. For each n Hn(X,Z2) =

Hong(Hn(x,ze),zg),

We will define a mapping ¢ and show that it is an isomorphism. Let
f: S(X)n - Z, be a cocycle and cls(f) be the member of Hn(X,Z2) which
contains f, By definition Hh(X’ZE) = Ker(3n ® l)/Im(an+l ® 1). We see

that
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Ker(3_ ® 1) = {x @ 1 : 3_(x) is in 2(s(x)__ )},
Define
¢ cls(f) (cls(x® 1)) = f(x)'.

We see that

@ cls(f) (els(x ® 1) + cls(y ® 1)) = @ cls(f) cls((x +y) ® 1)

= f(x +y) = f(x) + £(y) = ¢ cls(f) (cls(x ® 1) + cls(f)(cls(y ® 1)),
Similarly

@ cls(f+g)(cls(x ® 1) =@ cls(f)(cls(x ® 1)) +¢ cls(g)(cls(x ® 1),

We need to show this definition is independent of the choice of repre-
sentatives for cls(f) and cls(x ® 1). Therefore suppose cls(x ® 1) =

cls(y ® 1). Then

cls(x ® 1) - cls(y ® 1) = cls((x-y) ® 1) =
cls(an+l ® 1)(z® 1) = cls(an+l ® 1) for some z in
S(X)n+L
Therefore
@ cls(f)(cls(x ® 1)) - @ cls(f)(cls(y ® 1)) =
@ cls(f)(cls(x® 1) - cls(y ® 1)) =0 cls(f)(an+lz ® 1)
= fan+lz = O'because f is a cocycle,

Therefore it follows that ¢ cls(f) is a well defined member of
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%

cls(f-g) = cls(sh) = cls(han) for some cochain h. Therefore

Hom (Hn(X,Z2) Z2)e Now suppose cls(f) = cls(g). We have that
>

@ cls(f) cls(x ® 1) - ¢ cls(g) cls(x ® i) =
o (cls(f) - cls(g)) cls(x ® 1) = ¢ cls(f-g) cls (x ® 1)
= cls(han) cls(x ® 1) = han(x) = h(2y) = 0.
‘Therefore ¢ is a Z,-linear map of Hh(X,Z2) and HomZ(Hn(x,zg),zg).

We show next that ¢ is a surjection. Consider an element f in the range
of ¢. Let G be the subgroup of S(X)n whose members are x sﬁch that
an(x) is in,2(S(X)n-l)“ A homomorphism f’/ is defined on G by f’(x) =
flcls(x® 1)). Since S(X)n is a free abelian group f’ can be extended

to a map f: S(X)h -7, .

5 We see that T is a cocycle because -

T(3z) = £/(3z) = f cls(3z ® 1) = O,

Also

® cls(F) cls(x @ 1) - T(x) = £/(x) = flels(x ® 1) so o (f) = f.

We need to show next that ¢ is an injection. Suppose
pels(f) els(x ® 1) = £(x) = 0 for all x such that
an(x) is in 2(S(X)n_l)o In particular f(x) = 0 for all x in Ker 3,- We

have the following diagram:
f

S(X)n - Zo

» v : _
l . 7 where Ker anC Ker f.
N,/ h

s(x)n_l
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Therefore there is a homomorphism which makes the diagram commute. Hence

= han and thus f is a coboundary, cls(f) = O, and ¢ is an injection.

n R
. . . X ~ .
Proposition 2,2: Hn(X Y, 22) =T Hi(X,Zg) ®, Hn_i(Y,zg), K
i=0 2 ,
Let £ : S(X* Y) -»8(X) ® S(Y) be a chain equivalence. It follows
then that
f®l : S(X*Y) ® 7, - 8(X) ® s(Y) ® 7,

is a chain equivalence“( ® means 82).
Consider the mapping
g : S(X)®s(Y) ®z, - (5(X) ® zé) @Zé_(s‘_(Y) ® zg)'
given by g(x ® y® 1) = (x®1)® (y®1).

Clearly g is an isomorphism of 22 - modules.

It follows too that g is a chain mapping because

xeoyel) =3((x®l1) ®(yo1l))

(xol) @ (yol) + (xal) e (3o 1)

and

xeyel) =g(3dxey®1l) + (x® 3y ®1))

(xel)e(yol) + x®1) ® (3vy ® 1).

Hence g is a chain equivalence. The conclusion follows now by applica-

tion of Theorem 1.1 to the complex which is the range of g.



1L

In the following let Hom mean HomZ and ® mean 8&
2 _ 2

Proposition 2.3: Let V and W be Z,-modules, then Hom(V ® W, Z2) =

Hom(V,Z2) ® Hom(W,Z2).
By ‘Theorem 3.1 of (3) we have that
Hom(V ® w,zg) = Hom(V, Hom(W,Zg)).

Now Hom(W,Z2) =) Z2(a) for some set of indexs ¢ because Hom(W,Z2)
o

is a vector space over Z2.

Hence it follows

Hom(V ® W,Z2) EEHom(V,g Z2)

=z Hom(V,Z,) == z (Hom(V,Z2) ® 22))

5)

== Hom(V,Z2) ®Z Z, == Hom(V,Z2) ® Hom(w,z2),
h i n-i ‘
Lemms 2.3: H (X * Y, Z2) =3 H (X,Z2) ® H (Y,Z2)_
i=0

By Proposition 2;i we have that
Ny x -~ X
H(X* Y, 22)‘ = Hom (Hn(X Y, 22), 22).

By Proposition 2.2

n

X )
Hn(X Y, 22) = ;_ Hi(X,Zg) ®H _; (Y,Z2).

i=0

Substituting this in the expression above and applying Proposition
2.3 we have
n

n .
H (XX Y,vZ'2) =~ 3 Hom(Hi(X,Z2),Z2) ® Hom(Hn_i(Y,Z2),Z2).
i=0 :



15

n ., n-i .
=5 Hl(X,ZZ) ® H (Y,2,) by Proposition 2.1.
1=0

Lemma 2.3 is also true in the relative case. If by the product

of pairs (X,A), (Y,B) we mean
(X,A) * (Y,B) = (X* ¥, XX BUVWAXY)

then the Eilenberg-Zilber theorem holds for these pairs whenever
{Xx* B, AX Y} is an excisive couple in X * Y. Namely the chain com-
plexes S((X,A) * (Y,B)) and S(X,A) ® S(Y,B) are chain equivalent,

(cf (6), p.23h). We have therefore
Lemma 2.4: H'((X,A) X (Y,B), z,) =

n .
X Hl(X,A,ZE) ® Hn-l(Y,B;Z2) whenever
i=0

{x* B, Y* A} is an excisive couple in X * Y.

. . X — * — X +. X .
Lemma 2.5: Let u: X Xn X be such that y (Ln) 1% e, z, 1,

i *
then if z is in Hl(Xn), n<i<2n,p (z) =1%z+z*1.
By Lemma 2.3 and Proposition 1.2 we have that
B x ¥ x) =8(x) @ B (X)) RE (X)) & B(x )
n n’ — n n n n’’

% .
Therefore p (z) = x* 1 + 1% y for some x and y in Hl(Xn). Consider the
following diagram
kl,k2 "
X = X XX =X
n n n n

where kl and k2 are the injections into the first and second coordinates

respectively. We have
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* — * X X —
(}J: kl) (an) - kl(l ZIn + an l) =0+ Zzn‘

Tence kl is homotopic to the identity mapping by Theorem 1.4, Similar-

1y

xl)=z, + 0

*‘ *
X — X
(uky) (2) =k, (1% 2 +2 , t O,

n

Hence uk2 is homotopic to the identity mapping.

Therefore

. * * % *
z = (id) (z) = k) p (z) = kl(l X x+y* 1) =x
and similarly

* * % *
2= (1) (2) =3 () =50 K x ey r D) =y

*
Hence p(z) = 1% z + z* 1,

Corollary: Let 51’52:(Xn XXn,*x*) - (Xn,*) be the projections into
the first and second coordinates respectively and E:(Xn, X Xn,*x*) -

—% O R . C s
(Xn’*) be such that (bé) =_pl(zé)fhp2(bé).‘Then if n< i< 2n and x isin
i —% —% —¥
H (an*)s ") (x) = pl(x) + pz(x).
Consider the following diagram

X P12 X *x) X
n n n n
baiss s b

P1Po . x
(an*) e (Xn an **) - (an*)

1 F

where p,sp, are the projections into the first and seéond coordinates

*
respectively, i, j are the injections and p (Ln) =2, X 1 +1% 2, =

Pl(z;n)- + Pg(bn) .

We see that the left-hand square of the diagram commutes. Considering



now the right hand portion we have

UG 1Bl B, )

1l

(3,1) (2)) + <g§;)<ag>

X

(39" (21) + (3p,)" (2)

]

D) (2.) * py(z,)

wd (e

Therefore we conclude that Ei and jp are homotopic by Theorem (1.4).

*
Now we know that the map i 1is an isomorphism in dimensions larger than

zero. Iet xe Hl(Xn,*), 0 < i < 2n. We have

7 (3,(x) + D, (x)) = py3 (x) + ppd (x)

by the commutivity of the left-hand portion of the diagram.

K * %
iy (x) =p j (x) from above

* % * *
=Dp,J (x) + pyd (x) by Lemma 2.5.

Therefore we conclude that

— ¥

B(x) =3 (0 + 3, (),

Theorem 2.3: Let n > 1 and O < 1 < n then

, b _
sq s H'(X,Y) - H' “(X,Y) is a homomorphism.

Let x and y be in H (X,Y), then by
definition

satx + 1) = ()T RN

*, % % *
where j (X ,Y ) - (X,Y) is the map of Theorem 1.5 and k (z/)

(x +y). Consider the following diagram

n

Hence

17

0y
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N % % x. T “ g . ' E
() & K A e K, R ()

wnere £ (22) = (1)@, € () = ()7

d(p) = (p,p). We note that §l(f Xg)d = £ and Eg(f X g)d = g.

—% —% —%
()5 w () =21(2)* py(z.), and

We have now that

e e) L) =d (e 8) (@) + o))

=2 () v e ()

* -l(X + yL

Therefore in (A) above we can take k = w(f X g)a.

Hence we have

sa () = ()7 (€ @) 5 (o) ed (o)
= (e @) (B0 Teat () + Bale)) e (o)

-* -* !

(1) () s e _y) + () e (0

1

) Ysa’ (2 )

sq’(x) + sq’(y).

We will show next that sql, O< i < n, satisfies the Cartan formula.

The proof of this will be preceded by several lemmas.

Lemma 2.6: Let I be the unit interval and I = {0,1} its boundary.

, and 1 be the element of Ho(f)

corresponding to the point 1 of T. If G:Hl(f X A) - H

Let I be the generator of Hl(I, I) =2
A . _

SR (CRIRY

is the coboundary map for the pair (I,I) X A then §(1* y) =1 Xy for

each y inﬁHl(A).
The proof of this a?pears in Lemma 1.2 of (7).

Lemms 2.7: Let n =z 2 and O < i < n, then the following diagram commutes
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n-1 8 n
H (an) — H ,(Exn,an)

i i
l sq % i sq
nti-1 n+i
(X)) — B 7(BX ,0X )-

o

By definition we have that for n= 2, 0< i< n

sq (b ) = (o )—lsq.(b )° Thus

i *=1 *.=1 i
sqo (2, q) = (o) Tsa (e, ) SQ '

i, * ¥, % -1 ~l * * 1 i
sa*(p )78 (1) (2,.1) = (0) sq (2, ;)
By using naturality we have
¥ =1 1 ¥, ¥.=1 %=1 ¥ -1, .
(0 Fsat 87 ()M ) = (@) sat () e, )

: S
Now (p ) 1is an isomorphism so we can cancel it yielding

sat 87 () e ) =87 sdt () )

' * *, -
(QXh)EsZ2 and h~ is an isomorphism so- (h ) l(bn-l) generates

Hn-l(QXn), thus the lemma follows.

Definition 2.1: Suppose Al’ A2 are subséts of a space Xc {Al,A2} is an
excisive couple in X if the inclusion chain map of S(A,) + S(AE) and

S(AlL/AE) induces an isomorphism of homology. Here + means group sum.

Let (X,A) and (Y,B) be pairs of topological spaces.. Suppose x is
in Hn(X A) and y is in Hm(Y,B), Their cross produét, x X y, is defined and
is a member of H" ((X A) * (Y,B)) provided {A X Y, X* B} is an excisive
couple in X * Y(cf. (6), pp. 249-255). We see from Definition 2.1.that

if A=¢g or B=g then {AX Y, X* B} is an excisive pair in X * Y.
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The following two lemmas are standard; their proofs appear in (6),

page 189.

Lemma 2.8: Let A, >A, be subsets of a space X. {Al’Ag} is an excisive
couple in X if the excision map (Al’qu'Ag)C:(Aﬁ‘/Ag’Ag) induces an

" isomorphism of singular homology.

Lemma 2.9: Let UCACX be such that c1(U) C interior A. Here cl1(U)
means the closure of U. Then the excision map (X - U, A - U)C (X,A)

induces an isomorphism of singular homology.

The following lemma will be useful in the proof of the Cartan

formula.

Lemma 2.10: Iet (X,A), (Y,B) be pairs of spaces. Suppose A is finite
and X is locally contractable. Suppose too that if x is a point of X
and U is a contractable neighborhood of x then the homotopy can be
chosen to leave x fixed. Suppose further that X is Hausdorf and normal
and B is closed, then {X * B,A X Y} is an excisive couple in X * Y.

. Since A is finite and X is Hausdorf there is a finite collection
O, of open sets of X which are pairwisekdisjoint, which eqch

19 cecy k

contain exactly one point of A, and such that each point of A is in one

0

of them. Further if 0 = 0,U ... L_}Ok then there is a homotopy f

t:

0) = A and £, restricted to A is the

1
0 = O such that f_ = identity, f

\

1

identity for each t in I. Consider the following diagram
i i’

(A* Y,AX B) - (AX YUOX B,AX BUOX B)

o

k

(A*X YuX X B, XX B)

where i and i’ are the inclusion maps. k is defined as follows. Note
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that A y 0% B=AX B, Define kl:A X Y »AX Y to be the identity

s . X R X — X . . .
map. Define k2.0‘ B-oA® Y by k2 fl 1. kl and k2 coincide on
AX YUOX Band AX Y and O%X B are each closed subsets of AX Y

0 ¥ B, consequently k.,k_ defines amap k:A* Y 0*X B-AX y. We see

l,

that ki = identity. We will show that ik is homotopic to the idenfity

mapping. Define g, A X YUOX B-AX YUO X B by gt restricted to A X Y

to be the 1dent1ty map and g4 restricted to 0 * B to be ft 1. These

maps agree on A X YNQO X B =AX B for each t in I. Therefore these

two maps defin¢ a map gt:A X YVUOX B-> A x»YWJO X' B ﬁith g = ik and-

gy = identity. Iherefore iis a homptopy equivalence;j | |
Consider ﬁow the mapping i/. We will use Lemma 2.9 to show that

it induces éﬁ isomorphism of singuiar ﬁomology. Let

X/ =A% YVYX* B, A’ =X X B, andU=‘(x- 0) ¥ B. We 'svee that

UC€A’cX’. Now c1(U) = U because U itself is closed being the product

of closed sets. Also it is true that

x - 0) X BCinterior. XX B
because by the normality of X there is an open set O’ containing X - 0
containing no points of A. Consequently 0’ X B = (A X iWJX * B)N(0/ X Y)
is an open set of A X Y X X B. Therefore U = ¢1(U)C0’* Bcinterior
X * B. Thus we conclude by Lemma 2.9 that i’ induceé'isomorphism of
singular homology because X/ - U = AX YUO X B and A’ -FU =A% B v
0* B, vConsequently‘i'i induces isomorphism of homoiogy and therefore
it follows by Lemma 2.8 that {A * ¥, X * B} is an excisive couple in
XX Y.

Lemma 2,11: Let h:X _'an be a homotopy equivalence and g:QXn - X

n-1 n-1 -

-

x i —
be a homotopy inverse for h. The maps (1 * g) :H ((I,I) X Xn-l)
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H((1,T) * X ) end (2% b)" : B ((L,T) * o) - B ((1,T) ¥ x__ are

1
isomorphisms.
By Lemma 2.k4
i Ty X l =\ - i-l i Ty X l =
H((I,I) * X ) =H(I,I)® H ~(X__.) and H ((I,I)* 0X ) =H (I,I) ®
n-1 n-1 n
i-1
H (an_l).

Therefore each element of H ((I,I) X Xn-l) has the form I X y for some

y in Hl-l(

* ¥* *
X ;) and (1% h) (1% g) (ITXy)=I%(gh) (y) =I%y.
Also each element of Hi((I,T) x QXn) has the form I ¥ z for some z in
] - * ¥* *
H* l(an) and (1% g) (1* h) (I* z) =I% (hg) z =I* z. Therefore

(1% g)" X n)" are i i
g and (1 h) are inverses of each other, and as a result each is

an isomorphism.

Lemma 2.12: Let n2 2 and O < i < n. If I is the generator of HY(I,I),

then sq (1% o ) =T sqa (e _,)-

First we note that I X ¢ is defined. Define a map ¢: (T % QXn,

n-1
I X Xn) - (EXn,QXﬁ) by ¢(t,¢) = o restricted to [0,tr] where @ is a map
@:[0,r] = X with o(0) = g(r) = *. Associated with this map is the

following commutative diagram ..
*
&

L ., _
(T % ox ) L 5" (@,T) X

% *
Pl ‘ 0
*
wx) ; It (Ex ox )
Q n’ n”Q n
‘ = : T X X - =
wherevPl ¢ restricted to I X OX . We see Pl( {0} QXn) constant and

-Pl( {11 * QXn) is the projection into the second coordinate and is a homeo-

; *
morphism. Therefore for j = 1 and y in HJ(QXn) we have Pl(y) = 1% y where



1l is the element of Ho(f)corresponding to the point 1 in I. Thus
*_% *
= X = X
8,P1(y) =6,(2% y) =TI %y,

% ,
Now let O < i < n and take x = g (bn-l) where g is a homotopy inverse
for the homotopy equivalence h:Xn_l -'QXnB

We have

sq (1% x)

1, % %
sq (6,7 x)

1 * x
Sql(@ § x)

* % 1
NG Sql(x)

I* sq (x),

The lemma follows now because

*

sa (1% %) = 8" (1% € (2, ;) =g (1% @) (1% 2, )=

* 1
X X
(1* g ) sq (I Ln_l)

and TX sq (x) =I% sq" g (Ln_l) =I% g sq (Ln-l) =

* i
X X
(1% @) 1% sq' (2, )

i
Therefore I ¥ sq (Ln-l)

by Lemma 2,11,

Lemma 2.13: Let n Z 2, o’ . be the generator of Hn'l(Xn_ls*)o It
. i 1
0< i< n, then sq (I X bln-l) =I1%X sq (L,n-l)°

We see by Lemma 2.10 that I X .’ i1s defined. The identity map

n-1

jiX - (X *) induces the map j*°Hi(X *) = Hi(X ) which is an
n-1 n-1° ’ n-1’° n-1 :

isomorphism for i > O. Consider the following diagram:

23

' *
= sqI(I x Ln-l) because (1 %X g) is an injection
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le,j

(1) * x _;, =~ (L,I)* (X

*).

n-1’
mW}Fqu)xx )mH(II)@Hk m.,)mm

» _ % .
Hk((I,I) X (X ) =~ Ht (1,I) ® Hk l(X ,*). The map (1 X j) ecorresponds
to 1 ® j in this identification so (1* j) is an isomorphism when k > 1.

Therefore if n2z 2 and 0 < i < n, we have

R i NP i, ,
(1% 3) sa (T o) ) =8 (1% 3) (TX 2/ ;) =sq(T” Lnfl)

=17% sqlbn_l by Lemma 2.12 and
i
“n-1

/

¥ i Fooi,
(1% 3) T*sqz, ;=I% J(saz) 1) =1% sq

. : * R - B
Hence the conclusion follows since (1 * j) is an injection.

Lemma 2.14: Let p = 1. The map g:(I,T) X X1 ﬂﬁ(xp,*) determined by

* N * 3 . N - —_— ’

g (/) =1%, has the property that g : Hl(X',*) ~'Hl((I,I) X)),
P p-1 _ \ - p-l

is an injection for i < 2p. In case p = 1 we take X {*}

For any p we have that

H ((1,I) * X ) =~ H (I I) ®>H (x ) =0 and

0
H (X %) =
()

*

Thus g 1is always an isomorphism in dimension O. For p = 1 we need-only
' * : ‘ * 1.

consider g in dimension 1. Consider therefore g : H (le*) -

O)° Now Hl(Xl,*) = 7, and is generated by Li. Also
Hl((I,f) ><‘Xo) 35Z2 ® Z2 and is generated by I * 1. By definition

Hl((I,f) * X

* *x

g (Li) =I1%X 1sog is an injection in dimension 1 for p = 1. Suppose
. *x

now that p 22, Consider first the case i = 1. We have g : Hl(Xp,*) -

Hl((I,E) X Xp_l). If p 2 2 then Hl(Xp,*) %le(Xp) = 0 by Proposition

* .
l.2. Thus g is necessarily an injection in dimension 1. Now suppose
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p=2and iz2., Consider the following diagram

* *
8; (1% h)

Trax) - B(LD*ax) -  E@ED*x

P, 5 @ p* g

i-1 i i
H X - H (EX_,0X — H (X ,*).
@) (B ,0%.) (X5%)

Hl-l

)

The left-hand portion of the diagram appears in Lemma 2.12 and is known

to be commutative. For the right-hand portion we see that

W K K Kookl %, o
(1% h) 5l,pl(5 ) p (Lp) because the diagram commutes

(1% 0o ()

]

*, % =1 %
I*Xh () lp -Lé by Lemma 2012

]

¥ 4
I* o (Lp) by definition of the cohomology suspension

=T% 4 because the cohomology suspension is an.

p-1

: *
isomorphism in dimensions less than 2p. Also we have g (Lé) = IX Lp-l’

therefore by Theorem 1.4 the maps g and pp(1l * h) are homotopic. Now
* *
(1% h) is an isomorphism by lemma 2.11. Also p is an isomorphism

when 2 = i < 2p because the cohomology suspension is an isomorphism in

: * * % %o
these dimensions. Consider now the map 0 =_5l pl 8 1 for dimensions

i * *
iz 2. It was shown in Lemma 2.8 that for each x in Hl(QXp), 8, pl(x) =

* ¥ i = i, = i -
IX x, The range of 8, Py is H ((I,I) * QXp) =1 (I,I) ® H l(QXP) so

* ¥ .
we conclude that I * x = O only when x = 0. Therefore 51 Py is an in-

* * * ¥ *
Jection when i & 2 hence so is ¢ , We have shown that g = (1% n) @ P

*
therefore g 1is an injection when p 2 2 and 2 g 1 < 2p.

Therorem 2.4: (The Cartan Formula) ILet (X,A) and (Y,B) be pairs of

topological spaces such that {A X Y, X * B} is an excisive pair in X * Y.
Let x be in HP(X,A) and y be in HY(Y,B) with p+ g =nz 2. If0<1i<n

1% oy =k, \y  i-k
then sq (x X y) = £ sq (x) X sqg” (¥).
k=0
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Let p = 1 and construct the following diagram:

g* 1

(I,I) * X__, *(V,c) - (X %) ¥ (v,c)

p-1

‘ * :
where g (Lé) =1 X X 5= {*} and (V,C) is a pair of C.W. complexes.

Lp_ls
We note that the cross product operation is defined for the cohomology

of the pairs appearing in the diagram.. This follows from Lemma 2,10 and
the fact that every C.W. complex is locally contractable and the homofopy
can be chosen to satisfy Lemma 2.10, (11, p. 230). Let v be in“Hq(V,C)

and p + q = nz 2. Consider now sql(bé *v), o<i<n, Itisa

member of

H -((Xp,*) X (7,0)) =¥ HY(X * ®Hn+i‘k(v,c).:‘

Therefore sql(b’ X v) =%
P ' k=-p

' + +i-

is in HP k(Xps*) ® H (v,0)

where Ap+k,q+i—k

We have now that

X

sat (g * 1) (/% v)

x ¥ 1, .« ’
1 v
(6% 1)"sa" ) * v) ;

sqi<g*<b£ X v))

sq (I X ) X £)

I X sql(zp_l X v) by Lemma 2.9

i
k
I* (2 sqa (e

) * sa>7®(v)) by the
k=0 p-1 .

induction hypothesis
i

k
5 (I* sq (g
k=0

) % sqE(v)),

p-1

Similarly we have that
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- - i, -
(g% 1) (2 sq™(z) ¥ s ™" (v)) =5 &sq (/) * sq” ~(v)
i .
=z T% sd®(_,) % saT TN,

*
Now from Lemma 2.10 we know that g 1s an.injection in dimension less than-
% .
2p. It follows therefore (g* 1) is an injection whenever g¥ is an in-
Jection because the cohomology groups are all vector spaces over Z2 and

* *
(g * 1) corresponds to g ® 1. Therefore we see that

Ap+k,q+i-k= O when k <« O and -

- Sk, 4y oy ik, _
Ap+k,q+i—k = sq (Lp) sq- " (v) when O = k < p.

Here we will agree that sqk-= 0 whenever k is a negative integer so that
the above fbrmulas always makes sense., Note that i may be less than k.

Therefore we have that

% v) = 2 el () % satE(w) o | (a)
8 v) =32 sq{z’) X sq- (v) +t 3% A . A
q LP k=g q D q k:p P+k,q+1-k .

Note that if we take n = p then g = 0 and (A) becomes
Sql(bé X v) = sql(bﬂ) *v, 0<i<mn. (B)
Consider now the following diagram
. L x

— g
(V,C) X (IyI) X Xq-_l - ' (V:C) (an*)

*
where g (Lé) =IX, _, (V,C) is again a pair of C.W. complexes, and

Q-1 ,
XO = {*}, Ilet p + g =n and v be in HP(V,C). By the same procedure
as above we argue that

i

* i * Kk i-k
(1% g)sqg (v*g)=(1%g) £ sq(v)*sqg (z.).
i a*i
X 1y =
Suppose that sq (v * Lq) Y Bt g+ ke

k=-p
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+ +i-
where | is in H(V,0) @ HOT k(xq,*),

ptk’qti-k
*
Now g is an injection in dimensions less than 2q so
. = k X i-k . 4+ s v .
Mot q ok 59 (v) ¥ sq (Lq) if-q+ti<ksi

A i s < bt
and Bpc, g+ -k 0 if 1 < k = gqti. Therefore we have that

~qti

1% oy
sq(v o) = I . o, qHi-k

i i
k i-k
+ 5 sq (v) ¥ sa (1), (c)
k=- k = - q+i +1 . 4

Note in this case if we take g=n, then p=0 and (C) becomes
i X 4 = X i ¥4 . (D)
sq (v Lq) v X osq (Lq), 0< i< n. ,

Now let p + ¢ = n with p,q =z 1. Consider sql(bé x Lé).' From (A) we
see that it is the sum of terms and that terms for the index k -are
specified for -p = k = p~1. From (¢) we see that the last 2g-1 terms are

specified, namely those terms for which -q+titl = k

1A

i+gq, But
-gti+l=3i+1l+p-p-g<n+tl=-n+p=p+t1l, Therefore
-q¢ 1+ 1=p. Thus the terms are specifiea for all values of the in-
dex k., Hence
i . k i-k
sq (2% 2f) =% sq ()" sqa (). (E)
b q k= Y d :
The Cartan formula follows now from (B), (D), (E) and Theorem 1.5,
Consider first the case p,q =z 1. Let (X,A), (Y,B) be pairs of spaces
such that {A XY, X A } is an excisive couple in X X Y, Suﬁpoée x is
in B°(X,A) and y is in H3(Y,B). Construct the following diagram
s X s . X -
(om) x (rn) 22t @ fen e
where the middle pairs are the geometric realizations of the first pairs

and jl,j2 are the maps of Theorem 1.5. Also f and g are selected so that
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* * * ¥,
f (Lé) = jl(x) and g (Lé) = j2(y). It follows from the fact that

* * % *
{A* Y, X* A} is an excisive couple that {A * Y , X * A} is an ex-

* X ' *
cisive couple in X * Y and consequently that (jl X j2) is an isomor-

phism, (cf.(6),p.493,497).

We have

) % i i, ¥
(Jl X 3,) sq(x* y) = Sql(Jl *3,) (X y) =

s (3300 ¥ 5,)) = sa™ (€76 ¥ 7)) -

i * ' * 3 .
sgt(f X ’X 1y = (X A A
q (f* g) (LP aq) (£% g) sq (ap aq)
. x» 1 k : i-k, -
(£% g)" £ sq (/) * sqa7 (") vy ().
k=0 1Y q

Also

N " I ik *
(3, 35) = sq(x)* sq (y) =% sq 3(x) % sq” "5,(y)

k?l 0 k=0
i k ¥\ i~k ¥, , * i k, /v« i-k, ,
=5 s8¢ £ (/) *sq g()=(%g) 5 sq(f)* sqa ().
k=0 P q k=0 1Y a
i 1 k i-k
Therefore we conclude sq (x X y) =% sq (x) X sq” (y).
k=0

In the case p =0, q=n (or p =n, q =0) a similar argument using

(B) (or (D)) shows that

X xsql(y) if p =0, g =n and

i
sq (x* y)

sq'(x) X yif p =n, g = O.

i
sq (x* y)



CHAPTER IIT
THE COHOMOLOGY SUSPENSION.

The cohomology suspension is a map

* i i-1
o tH(X,*) -H (X _,)

defined for each n 2 2 and 1 2 2. Using Brown's generalization of the
Eilenberg-Zilber Theorem in terms of the twisted tensor product (1) we
will show that the cochomology suspension is an isomorphism for each

nz2and 2=1<2n, The cohomology suspension has been defined in

Chapter I. We will still write H (K) for Hl(K,ZE).
Path Spaces

+ - .
Let R denote the non-negative real numbers and Ir denote the
N :
closed interval from O to r, r being in R . The space of paths P(B)

in ‘a topological space B is defined by

P(B) = {(aor) : o : I, S B, T in R+}°

Let h : P(B) = Bl

+
X R (I = Il) be given by h(g,r) = (¢’,r) where ¢’ (t) =
.a(tr),.t'in I, BI is given the compact open topology and BI'x R is

given the'produét topology.

_Proposition 3.1: h is an-injéction.

Let (w,r) #(B,s). Suppose r # s. Then (o’,r) #(BJs) since r and s

30
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are different. Suppose next that r = s and o # B; Then a(to) #-B(to)
for some tO in Ir; There are two cases to consider, namely r = 0 and
r # 0. |

Case 1. r =0. Then o(0) # 8(0). In this case o'(t) = (o) for
all t in T and 8/(t) = 8(0) for all t in I hence o’ # B’.

Case 2. r #0. Let t =1t /r. Then
o’ (t) = a((to/r)r) = o,(to) and B/(t) = s((to/r)r) = B(to). Therefore
o'(t) # g’(t) and it follows that o/ # B’. Hence we have shown that h
is an inJjection. |

'P(B) is given a topology by requiring that h be homeomorphism of
~P(B) and its image, |

It is possible to define a multiplication for certain pairs of
paths in P(B). Paths (g,r) and (8,s) such that o(r) = B(0) are

multiplied as follows:

(a>r)(B,s) = (y5r f s) where

and

1A
]

v(t) = a(t) ifo st

B(t-r) if r r +s.

1iA
o+
1A

v(t)

Usually we will surpress r and s and Wrife af for the multiplication of
‘the paths (¢,r) and (8,s).

‘Let b ¢ B. We will let e, denote the_pair‘(eb,o) where eb«}) = b,
Then ea(O) and ea(i) are respectively a left and right identity for,(q,r)
with respect to the multiplication defined above., .

E(B) and Q(B) will denote respectively the subspacesvof.P(ﬁ) con-
sisting of all paths ending at b and the subspace. of all paths beginning
and ending at b. The multiplication in P(B) defines an associative

multiplication with unit in Q(B) and defines an action of Q(B) on the
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right of E(B).
Fiber Spaces

Suppose p : X » B is continuous.

Let Up(: P(B) ¥ X be defined by

U, = {(a;x) alr) = p(x)}.

A lifting function for the map p is a map A : U? - X such that

p Ma,x) = (o). A lifting function )\ is transitive if

x for x in X, b = p(x)

i) X(ebyx)

11) 2(aB,x) = M, A(B,x)) when of is defined and (g,x) is in

U_.
Y

Definition 3.1: A transitive fiber space is a quadrupie (X,B,p,\) where

p : X » B and )\ is a transitive lifting function for p.

Consider the guadruple (EXn,Xn,p,x) where p EXn'-»Xn is defined

by pla) = o(o) and 3 : Ub —*EXn is given by A(a,B) = (aB).

Propositibn 3.2: (EXn,Xn,p,h) is a transitive fiber space.
By definition we have
U, = (@) : alr) = 2(6) = 8(0)}

so the composition of paths of 1s always defined and hence A\ is well de-
fined. In this case A is also a transitive lifting function for p be-

cause

i) if ¢ is in EX  then A(ea(o),a) = ea(o)(a)_= o and
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i1) A(eB,y) = (aB)y = a(By) = Alasn(B,y))

whenever o8 is defined and (B,y) is in Up, Note that (8,y) being in Up
is equivalent to By being defined. Thus (EXan,p,A) is a transitive

fiber space.
Twisted Tensor Products

The reader is referred to Homology by S. Maclane (3) for the defini-
tions of DGA module, DGA algebra, DGA module over a DGA algebra, and
DGA coalgebra. DGA means differential graded augmented. In all cases

we will assume the ground ring to be the field Z Hom will mean

o°
HomZ and ® will mean @h .
2 2

Let K be a DGA coalgebra with d : K - K ® K as coproduct. Let
-G, N, and H be Zg—modules and u : G ® N -Hbe a 22 -homomorphism.  Let

U be in Hom(X,G), V be in Hom(K,N), and ¢ be in K ® N,

Definition 3.2: We define the cup product UV and the cap product

¢ ~U as follows:

[SRadY

wW(U®V) d

c™U

1eouw)(leUuel)(dae®l)(c)

where 1 denotes the appropriate identity map. We see that UM™YV is a

member of Hom(K,H) and that ¢ ™ U is a member of X ® H.

Definition 3.3: Let K be a DGA coalgebra and A be a DGA algebra. A

twistiﬁg cochain is a member © of Hom(XK,A) such that if © = qu then

1) Py is in Hom(Kq,A), 04 = 0, cpq(Kq)C Aq_l

| a-1
2) mpy = OEnddp ey 3D 9 ogy
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where a : A - Z2 is the augmentation and the cup product is formed us-

ing the multiplication in A,

Definition 3.4: Let K be a DGA coalgebra, A an DGA algebra, and L an

DGA A-module. Let ¢ : K -» A be a twisting cochain. Webdefine a Z2 -

homomorphism qp: K® L oK ® L as follows:
'acp(k®h)=ak®h'+k®ah+(k®h)"cp (B)

where k is in K, h is in L, and the cap product is formed using the
pairing A ® L » L defined by the A-module structure of L. We see from

Definition 3.2 that acp can be written as
acp=a®1+1®a.+(1®u)(1®cp®1)(d®1)

where d : K - K ® K is the coproduct and u : A ® I ='A is scalar multipli-
cation. Since 8 and ¢ each lower dimension by one and u, d preserve di-

mension we see that 3 lowers dimension by one in K ® L,

Proposition 3.3: Let qp be as defined in definition 3.3 then qup = 0,

From (B)

33 =(391+103+(1eu)(lepel)@e1)a®1+1®3+

P
(1ou)(loop®1)(del))

VR®L+T1®NW+Ta®d3+to®d ™+

e1)(1euw(lee®l)(dael) + (i)
1le3)(leou)(leoee®l)(d®l) + » (ii)
leuwlepel)(de1)de1) + (iii)
1leouw(leepel)(dae 1)(1®3) + (iv)

1ew)(leeel)(del)(leu)(lee®l)(de 1). (v)
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Because 30 = 0 and Z,. is the ground ring we see that the sum of the first

2
four terms is O. The remaining five terms have been assigned numbers so

that we may easily identify them.
From (i) we have
(del(1euw)(leel)(del) = 1euw(2elel)(leoe®l)(de®1l),

From (iii) we have

1ew(1lee®l)del)(3®l) = (1®u)(1®cp®i)(é‘®1®1+
| 1923 ®1)(de 1)

because the coproduct-d is a chain mapping

)

leouw(lepel)zsl ®1)(dae 1)+ (1eu)(l ® ¢ ® 1)(1‘ ® d él}

(a®1)

il

(1@ WEepel)(del) + (1ou)(1ogd e l){del)

]

leouw@elel)(leeeljldael) + (1euw(leqg e 1){del),
Therefore we have (i) + (iii) = (1@ u}(1 ® 3 ® 1)(d ® 1),
From (v)

(1ouwlege)deli(teu){(lge® 1){d® 1) =
leuw(leoepel)(i1eleuw(lei®l)(l®e®1)(da® 1) =
_(1®u>‘(1®.1®u)(1®¢@i@1)(1®1®cp®1)(d®1®1)(d®1)‘=
loew(leousl)(lepgeeel)lledei)dsl)

bécause u and d are associative,

=(1ouw)(leu(p®elde 1)(d®1l) =

(1®uw(le (pvy) ®1)(a® 1) by definition 3.2

where we use the pairing u : A® L - L to form the cup product
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= (1 eu(led +od@1)(d®1l) from‘Definition 3.3
=u®ux1®@®1xa®pw<1®w<;g®®1ﬂd®n.
Therefore we have
(1) + (111) + (v) = 18w e pe(as 1)
Looking at this last term we have

1ew(lowel)(@el) - lLew(lead )(loosl)(dsl)
=((1euw)(1e1ea) +(1e3)(1eouw))(leogpe1)(del)

because u is a chain mapping | | |
=(1leuw(leled(lesel)del) + (18 a)(léu)(l@cp ®1)(d e 1)
S lew(legsa@sl) + (11) = |
lew(lepel)lelealdel) + (i) -
(leuw(lee®l)(del)(1ed) + (ii) =

(iv) + (ii).
Therefore (i) + (ii) + (iii) + (iv) ¥ (v) =0,

Definition 3.5: Let K be a DGA coalgebra, A be a DGA algebra, and.L be

a DGA A-module. Let @: K - A be a twisting cochain. The twisted tensor
product of K and L with respect to the twisting cochain @ is the DGA
Zg-module K¢ ® L defined as follows: with respect to grading and aug-
mentation ¥$ ® L = K ® L. The differentiation a@ on K¢ ® L is defined

in definition 3.4. From Proposition 3.3 we see that 3 is a differenti-

ation.
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The Topology of (EXn, Xn,p) in Terms of

the Twisted Tensor Product

Let * be in X . Let s(xn) denote the chain complex with Z, coeffi-

cients generated by singular simplices taking the vertices of the standard
simplex into ¥. Since Xn is arcwise connected it follows by a well known
» pheorem that S(Xn) is chain equivalent tp the complex of chains with Zg-
coefficients generated by all singular simplicies whose image is in Xno
FS(Xn) is a coalgebra if the coproduct is defined as follows. Let o
be a singular simplex of dimension q whose vertices are all mapped to ¥,
Suppose 0 = k = q. Let ¢(0,1,...,k) be the singular k-simplex defined

by
o(o,l,,,.,k)(to,,..,tk) = g(to,..a,tk,o,,.;,o).
Let o(k,...,q) be the singular (q-k)-simplex defined by
g(k,,.t,q)(to,,..,tq_k) = c(o,aa.,o,to,,,.,tq_k),

Here (t .,tp) is the usual representation for a member of the standard

02"
p-simplex. We see that ¢(0,...,k) and g(k,...,q) are members of S(Xn).
Define d(g) by
q
d(c) =z U(O:°°°:k) ® 0(k3°°°:Q).

k=0
This defines d on the generators of S(Xn) hence by extending linearly we
have a Z,-homomorphism d: s(xn) - s(xn) ® s(xn). It is well known that

S(Xn) is an associative DGA coalgebra with d as the coproduct.

The transitive fiber space (EXn,Xn,p,A) has for its fiber

p(*)

]

QXn. Let the continuous map m:QXn % QXn.—»QXn be defined by

= gf. Let

2

Q

™
1
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g : 8(0x ) ® 8(0X ) - 8(X x X))

be the Eilenberg-Zilber map. Here S(an) and S(QXn.x QXn) is the chain
complex with Z2-coefficients generated by all singular simplices.

We have the following diagram
g m#
s(ax ) ®s(ex ) - s(x x ax ) 's@x )

where m# is the Z_-homomorphism induced by m.

2

Let 1 denote the O-simplex in s(gxn) whose image is e,. Then S(QXn) is

a DGA algebra under the multiplication m#g.

Theorem 3,1: There is a twisting cochain
3 s(xn) - S(an) which satisfies

i) If w is a constant ‘simplex in S(Xn), &(w) = 0,
This is Theorem 4.1 of (1).

For the transitive fiber space (EXn,Xn,p,x) the lifting function
A Uy - EX  defines a map X 10X x QX -QX by taking A to be the
restriction of )\ to QXn % QXn. Notice that x = m (defined above).
Therefore we can use ) to define a DGA S(QXn)-module structure on the
DGA Zz-module SQ}XH). We see that this S(QXn)-module structure is Just
the structure obtained by regarding the DGA algebra S(QXn) as a DGA

S(QXn)-modulee

Using the twisting cochain described in Theorem 3.1 we can form

the twisted tensor product
s(xn)é ® s(gxn).

The following theorem is the main theorem of Brown's (1) and gives the
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relation between s(xn) (the base) S(QXn)(the fiber), and S(EXn)(the

total space). Let S(EXn) denote the chains with Z,-coefficients gen-
erated by those singular simplices whose vertices are mapped to

QXno It is well known that S(EXn) is chain equivalent to the chain com-
plex with Z2-coefficients generated by all singular simplices whose image

is in EX .
n

Theorem 3.2: Let 3 be the twisting cochain in Theorem 3.1. There is a

chain equivalence
$:8(x ), ® S(QX) ~ S(EX ),

This is Theorem (L4.1) of (1). The definition of § 1s given in the
proof of this theorem, but will be omitted because 1t is complicated and
will not be needed.

Let D C'S(Xn) be the subcomplex consisting of all degenerate chains.
See (3), p. 236 for the definition and properties of D. Let 10X - EX
be the inclusion mapping and let
Wﬁ@&)~3@&§®sm%)md
ﬁ,:S(Xn)é ® S(QXn) - S(Xn) be defined as follows:

Let 1 be the zero simplex of S(Xn) and let a be the augmentation of S(QXn)u
h'(8) =1®X S in S(QXn) |

7’ (T ® 8) = a(s)T T in s(xn), S in S(an)

Lemma 3.1: q;:S(Xn)§ ® S(QXn)~can be chosen so that th' =
i# and P#¢ = 7/(mod D),

This is Lemma 7.4 of 1. We will assume hereafter that { is always
chosen to satisfy this lemma.

Let Sn(Xn) denote the chains generated by singular simplexes taking

the n-1 skeleton of the standard simplex into * and let j:Sn(Xn) -
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S(Xn) be the inclusion map. Iet &’ = éj:Sn(Xn) - S(QXn). §’ is obvious-

ly a twisting cochain. Let 1 be the identity map on S(QXn).

Lemma 3.2: (j ® 1) : Sn(Xn)é' ® S(QXn) - S(EXn) is a chain equivalence

and éé = 0 for q < n.
This is Corollary 4.3 of (1).

Let h’ and m’ be as in Lemma 3.1. Define m=n'(j ® 1).
We see that Im(h’) is contained_in sﬁ(xn) ® S(an) so take h: s(gxn) -

Sn(Xn)é' ® s(an) to be h’/ with its range restricted.
Lemma 3.3: ¢(j ® 1)h = iy and py $(j ® 1) = m(mod D).
This is an immediate consequence of Lemma 3.1.

Dyt Hi(EXn’QXn;ZE) - Hi(Xn’ * Z2) is an Isomorphism

for2=1i<2n, nz 2.

Henceforth we will assume that all homology groups have Ze-coeffi—
cients. From Lemma 3.3 we have that Im(h) = 1 ® S(QXn) is a subcomplex
of Sn(Xn)Q' ® s(gxn), that §(j ® 1)(1 ® (SQXn)) is contained in S(an),
and §(J ® 1) restricted to 1 ® S(QXn) is a chain equivalence of 1 ® S(QXn)

and S(QXn). We have proved therefore

Lemma 3.4: The chain equivalence §(j ® 1) induces a chain equivalence
r - 4 ive-
pl o sn(xn)é, ® S(QXn)/l ® s(gxn) (S(EXn)/S(QXn). §/ maps the equiva
lence class containing y to the equivalence class containing w(J ®'l)(y)°
Tet W Sn(Xn) be the subcomplex generated by the constant singular

simplexes. Denote by Wq the constant simplex of dimension q.

Lemma 3.5: W ® S(QXn) is a subcomplex of Sn(Xn)é' ® S(QXn).
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We S(QXh) is generated by elements of the form LA ® T, T in S(QXﬁ).
We need to show that aé,(wq ® T) is a member of W ® S(QXh).

By Definition 3.4
T) = T + T+w @ T™g'
a@,(wq® ) v, ® wq®a .

=W ®T +w ®3r + Lleme)(1es’ @1)(ae 1)(wq®T).

v q
By definition d(w =3 W, ® w. . therefore
v (q)i=01 -1

q
— 4
3 (W, @ T) =3 ®T +w, ®3r PE v @ (g3 (T)
(We write (T)(T’) for mug(T ® T’)). But by Theorem 3.1 &’(w) = O, hence
#

aé,(wqqa T) = v, ®T *w, ®3l which is in W ® s(aX;).

We have 1 ® S(QXn)CW ® S(QXn), so the identity map induces a
chain map

I: Sn(Xn)§, ® 8(x,)/1®s@x) -8 (X ), ® SQX )W ® S(an).

I is an onto mapping so the following is a short exact sequence of com-
plexes:
i I
O »Ker I -» Domain I —» Range I =0 (a)

where i is the inclusion map.

Lemma 3.6: I, : H(Domain I) - H(Range I) is an isomorphism,

Associated with the short exact sequence (A) is the long exact se-

quence

i (1) d
n’* . n’* *x ‘
. - Hn(Ke?I) — Hn(Domaln I) - Hn(Range I) - Hn_l(Ker I)) - ...

.We see therefore that I, will be an isomorphism if

H(Ker I) = 0. From the definition of I
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*
Ker I =W ® s(nxn)

* * *
where (W )_ = 0 and (W )i =W, if 1 > 0. The differential for W ® S(an)

0
is %' but in this case it is also the usual differential for the tensor
product of two complexes. This is a consequence of the proof of Lemma 3.5

*
and the fact that a(wl) = 0. Hence by Theorem 1.1 H(W ® S(an)) =

H(w*) ® H(S(an)). But H(w*) = 0, hence H(Ker I) = 0.

The Z,-module Sn(Xn) ® S(QXn)/W ® S(QXn)l;,ls isomorphic. to.the Z,

(Sn(le/W) ® S(QXn) by the correspondence A[S ® T] = [S] ® T where S is

=module

in Sn(Xn), T is in S(QXn), and [ ] is the appropriate equivalence class.
Let S denote the differential for Domain (A). It is induced by 5@'- We
can use A to define a differentiation 3’ on Range (A) by

-1
Ada ([s]®T)

Definition 3.6: 3'([s]®T)

A[S ® T]
A3, (88 T)]

Al QT+S8 I +S®T~§')

[3S]® T + [S]® aT + A[S ® T~s'],

where S is in sn(xn) and T is in s(nxn). It is clear that 3’3’ = 0 and

A = 3’A. We have proved therefore

Lemma 3.7: A is a chain equivalence of the complexes Sn(Xn)é’ ® S(QXn)/
e S(an) and (sn(xn)/w) ® s(gxn) with the differentiation of Definition
3.6.

Next we will compute the homology of the complex (_Sn(Xn) /W) ®
S(QXn) in dimensions smaller than 2n. The computation rests on the

following lemmas.

Lemma 3.8: If q < 2n then 38’ = &’ v.
—- 4 q q-1°
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This is a consequence of Lemma 3.2 because since 3’ is a twisting co-

chain we have

!/ _ 4
' =’

But éi =0 if i <« n by Lemma 3.2. The conclusion follows now because if

g < 2n then either i < n or g-i < n.

From Proposition 1.1 we conclude that Hn(sn(xn)) = Z2(n > 1). From
Theorem 1.3 and Proposition 1.1 we conclude that Hn_l(S(QXn)) = Z,. Denote

by e a fixed fundamental n-cycle of Sn(Xn), i.e. e is such that cls(en)

£ 0.

Lemma 3.9: Let n= 2, @é(en) is a fundamental cycle of S(QXn).

We see from Lemma 3.8 that éé is a chain mapping in dimension n.
Hence it is sufficient to show that there exists one n-cycle in Sn(Xn)
which is mapped to a fundamental (n-1)-cycle in S(QXn) by 8.

By Lemma 3.2: Sn(Xn)é' ® S(QXn) is acyclic. Let x be a fundamental
(n-1) - cycle of S(QXn). Consider the chain 1 ® x.

3/ (1®x) =3l@x+183x+* (1®x) =0,

Thus 1 ® x is an (n-1)-cycle. There exists an n-chain y of Sn(Xn) ®

S(QXn) such that BQ/(Y) = x. We can suppose

n
y=X Wi ® Tn—i +3¥s@®@T
1 oo

o

where T . is an (n-i)-chain of S(QXn), each s, is an n-simplex in
Sn(Xn), and each ?a is a zero simplex in S(QXn). Therefore
n-1

— 4
35/ (v) = §=0(awi ®T , +w, ®3 . +(w, ®T .)"e’)

+37(ds T +s ®3T +s ®T~3’').
o o o] o o o o
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Now (wi ® Tn_i)"@’ =0, 0= 1i=n-1and aTd = 0 for all . Also for each

n-simplex s we have
o

n
a(s ) = z s (0,...,1) ® sa(i,.‘...,n)
i=0
n-1
=l®sa +sa®l+; wi®wn_i.
i=1
Therefore
n-1
a@'(y) - ; awi ® Tn—i * Wy ® aTn--i
i=0
‘ 1 .

* T, ¥ ! + ! + “Gw )T
Z(as, @ T *1@3'(s )T +s ®2' ()T +T w 88w ;)T)
o i=1

n-1l
= + + + ‘ .
§=O ow, ® T . *tw, ®3T . 5 asa ® TQ 1®% (Sa) ?y

But aé,(y) = 1 ® x also. Therefore we conclude
1®x=10®3T +21® %'(s )T and hence
n o o
o
x=3T +y§'(s )T . Now x is a fundamental

n g o’ o
cycle and aTn is a bound so ¥ @’(sa)?y is a fundamental cycle. Iet 1

o
be the unit in S(an). Therefore the O-simplex whose ‘image is the path e,

is 1. BSince QXn is arcwise connected there is a one-simplex T; such that

aT’ =1+ T for each ¢. Now
o o

é’(sd)Tw + @"(sa,) = @'(sd)(Ta +1) =

]

§'(Sa)(aTo§) 0+ @f(fsg-(atﬂ’)'

14 2 z
g (asa) + 8 (S&)<6Ta) by Lemma 3.2

i}

1l

? I’ ¥
aé (Sa) + 3 (sa)(awa) by Lemma 3.8

it

/ T’)). Th hif
3(8/(s ) (1)) Therefore
@’(s&)?} and @’(su) are members of the same homology class.

Thus z @’(sa) = Q(z(sa)) is a fundamental (n-1) cycle.
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The proof of the lemma is complete if we can show ZSQ is an n-cycle

in Sn(Xn). Now B(ZSQ) =0orw If a(zsd) =y then n must be even.

n-1° n-1

In that case §¥s + w_1is a cycle and 3'(fs +w ) = &/(Zs ). Thus for
o n o n o
each n 2 2 there is at least one n-cycle whose image under 3’ is a funda-

mental (n-1) cycle.

Let 38 denote the usual differentiation for the tensor product

(s, (x )/W) ® s(ax ).
Lemma 3.10: a{ = S? for i < 2n.

(Sn(Xn)/W) ® S(QXn) is generated by elements ¢ ® T where ¢ is a p-

simplex in Sn(Xn)/W and T is a g-simplex in S(QXn). Suppose p + q < 2n.

Then
P n-1
d(O') =z O'(O:-”:i) ®O'(i:--->P) =z Wi ®O‘(i:'°-:P) +
i=0 i=0
1Y
T c(O,...,i)®wi.
i=n

Therefore by definition

3'(c®t) =[d0]®"T + [0] ® ar +alo ® T"é']
=[x]®r t[c]®dr +
n-l p .
Az w; ®@es(i,..p) T+ T 0(0,..0,1) @ 8 (v L) 7]
i=0 i=n P

=[o]®T+[c]®ar +0+0=2(®").

Let e denote a fundamental cycle in Sn(Xn) and e denote the cor-
responding fundamental cycle in Sn(Xn)/W. let e | = Q'(en). We showed

in Lemma 3.9 that e is a fundamental cycle in S(QXn). Let Zg(gﬁ ® e,

n-1

denote the subspace of (Sn(Xn)/W) ® S(QXn) generated by e ®e .

; e e _
Lemma 3.11: Imd) = Imd, P Z,(e ®e .).



L6

We will show first that the set on the left is a subset of the one
on the right. .Let ¢ be a p-simplex of Sn(Xn)/W and T be a g-simplex of
S(QXn). Suppose p * @ = 2n., If p < 2n we see from the proof of Lemma
3.10 that aén(c ®rT) = ag;(c ® ). Therefore suppose p = 2n. We wish

to compute aén(c ® tv). We have

2n
d(o) = £ 0(0,...,1) ® o(i,...,2n) =
i=0
n-1 on
S w, ®c(i,....2n) + ¢ o(0,...,i) ®w + 5(0,...,n) ® o(n,...,2n).
s~ 1 . 2n-1
i=0 i=ntl

By definition
dc®r)=[0o]l®er +[c]®r +tAloc ® T~8']

= a?n(c ® 1) + Alo(0,...,n) ® @’c(n,...,eﬁ) ]
= ag;(c ® t) + [c(0,...,n)] ® 8’ o(n,...,2n) T.
Now [0(0,...,n)] is a cycle in §,(X )/W and 8g(n,...,2n) v is a cycle in

S(QXn). This follows because every n-chain in Sn(Xn)/W is a cycle and

because

3(d’c(n,...,2n) 1) (38" (on,...,2n))r + &’c(n,...,2n)ar

1

8’(3c(n,...,2n))r + 0 = 0 = O.

Therefore we can write

[0(0,...5n)] = ¢ En'+ dv where ¢ = 0 or 1

and v is some (n + 1)-chain. Also

8'c(ny...,2n)r = ¢’ e 1t dv’ where ¢/ = 0 or 1 and

v’ is some n chain. Therefore

—_ - L— - 1
3'(c @) = agn-(c ®r) tee e, ®e ,tee ® TAIV®e'e ) tave
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_ ® - ‘ ’ ’ o
—azn(c®'1'+een®v +ev®en_l+av®v)+ee(en®en_l)-
, . ® o, =
Therefore 3’ (c ® ) is a member of Imagnég;zz(en ® e

n-l)'

We need now to show the set on the right is a subset of the one on
the left. First we need to do a preliminary computation. Let 2 be the
generator of Hn(Xn). It is well known that there is a space Y and a
member y in H(Y) such that ;y"2 # 0. Choose a map £:Y — X so that
f*(bn) = y. Then f*(;i) = f*(bn)f*(bn) = y2 # 0. We conclude there-
fore thgt Li # 0. In Proposition 2.1 we have shown that Hi(Xn,Ze) and

Hom,, (H. (X _,Z.),Z.) are isomorphic as vector spaces over Z Therefore
o 171 2 2

X
we will regard Li.as a member of HomZ (H2n(xn’z2)’22)' Because bi # 0,

. . 2
there is a 2n-cycle, e, , of SnQXn) for which ;n(cls(egn)) = 1. Also

2n
any T ¢ HomZZ(Hi(Xn’ZZ)’Z2) determines a cocycle f of Hong(Sn(Xn)i,ZE)

as follows: If ¢ is a cycle in Sn(X )i define f(g) = f(cls(s)). The

n
cycles are a subspace of Sn(Xn)i so T can be extended to a Z2—linear

map of Sn(Xn)i. Thus we will write z& or (Zi) for this cocycle de-

termined by 2y or.bi. Consider now the chain e, ® 1. Let u:

2n
Z, ® Z, = 2, be the Z,-homomorphism defined by uw(l ® 1) = 1. We have
n-1 2n
“de, ) =% w.®s. +3% s, ®w, + T o, ®o0,
2n s=0 I i f=p+] T i k k k
s . —al 1
for some i-chains, s, of Sn(Xn) and some n-simplexes g, and o, of Sn(Xn).

We can assume too that Oy and cﬁ are n-cycles for each k. This is be-

cause of the fact that if ck(or cﬁ) is not a cycle then g, +w, is. So

I

e -+ 3v’ where ¢ ‘=0 or 1 and v

= .+ 4 ! =
T T €xp T A BMd oy T e ) k k> €k K’
v, are n + 1 chains of S_(X ). Thus
k n'n
n-1 2n

dle, ) =% w.®s., +% s, @w., + Z(e,e *T3v,)® (e}e + av’)
2n i=0 1 f=n+1 i i ¢k k k™n k
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n-1 2n
=Y w,®s, +2X s. 0w, *tZec’ (e ®e)
1=0 i i {=n+1 i i k k’k*™n n

+ 4 + s + 7
E(eken ® BVk aVk ® € € avk ® avk).
We note that Zn(en) = 1 because e, is a fundamental n-cycle and that

Zﬁ(avk) = 6(25) = 0, Zﬁ(avﬁ) = 5(Zn) = 0. We define Zn(g) =0 if g is a

chain of dimension other than n. By the definition of the cup product

operation we know that

Pey) =ule, ®7 ) dle, )

In this case we have

~5 _ _ n-1 2n :
= + +
Ln(e2n) IJ‘(Ln ® Ln)(;_ Vi ® S5 ;_ Si ® Wi)
i=0 i=n+l
r Z +
0 E €. €x Ln(en) ® Ln(en)

- - ’ - r = - - .l'
u(g ekan(en) ® Ln(aVk) + ah(avk) ® € Ln(en) + an(avk) ® an(avk))

=0 + % +0 = ' =
0+Ze ek(l)(l) 0 E € € ';. HePce
n-1 2n
dle, ) =2 w.Q®s, + % s.Qw. te Qe
o yeg 1T i 1T mTom
+ 4 + i + 4
Z (e, ® 3V + 3V, ® e + AV ® V).

k

We have therefore by definition

4 4
a2n(e2n ®1) ae2n ®L+ ®on ® 3l ~ A[e2n ®1787]

n-1 2n
— / 4 I3
=AMz w; ®8'(s;) *2 s, @8 (wy)te, ® 3% +
i=0 i=ntl

Int 4 ¢ 1. —
I)E(ekerl ® 8'av, tav ®8'e e tav, ® 8'3v)))

+ T e
k

e ®e

- 1.t : N
n n-1 k °n ® o2 Yk " |:aVk] ® 2 €x°n

Hav, 1@ BQ'V£ by Lemma 3.8
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- R - ’ it
= + +
e ®e agh i(eken ® §v, [v,]®2 €x e,
1.1
Hov 1@ 8'v).
=e ®e + 38 (x) where x is the argument of 38
n n-1 2n 2n

in the line above. "We also see aén(e2n ® 1) = gﬁ ® e + aén(x) because

n-1
the terms of x have homogeneous degrees (n,n), (n + 1, n-1) and (n,n) re-
spectively.
We will show now that Imgg Pz (e ® e .) is a subset of Im3/ . Let
2n 2''n n-1 en
p+q=2n, o be a p-simplex of sn(Xh)/W and T be a g-simplex of S(QXn).

Consider an element of the form 3§n(c ®7T) + e(Eﬁ ® e where ¢ = O or 1.

n-l)

To complete the proof it is sufficient to show that if is a member of

Imd. . There are four possibilities to consider.
2n

i) p<2n, ¢ = 0. In this case

a?%(c ®T) én(c ®T).

3
1. We have

ii) p< 2n, ¢

® —
3 (o®T) te ®e .

*a),(x) + 3] (x)

= 3’ +e
d3'c®r) te ®e

- 621’1(0- ® T) aén(e2n ® l) " aé.n(x)"

= + + 3
agn(cr@'r egn®l X).

iii) p = 2n, ¢ = 0. We have already shown that

3, (c®r) = a?n(c ®r1) +3 (v) + e’(gn ®e ;)

for some y and ¢’/ = O or 1. Therefore

3 (0 ®1) = (o o) T agly) it el =0
= agn(c ® T +y) and

3 (@) = agn(c @)+t ®e L+ (y)ife =1
=3, (cor+y)+3) (e, ®1+x)
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= aén(c ®r +tyte, ®1+ X).

iv) p =2n, ¢ = 1. From (iii) we have

& - ’ ’ (= + o
agn(c ®r) + e, ®e 4 agn(c ®T) + agn(Y) te (en ® en-l) e, ®e 1

3 (c®@r ty)if e’ =1

H

! + v + + if 4=
Bgn(c ®Ttyte, ©1 x) if ¢ =0

Lemma 3.12: The map r: Hi(sn(xn)/w) ® Ho(s(an) - Hi((sn(xn)/w) ® s(gxn))

defined by r(cls(x) ® cls(y)) = cls(x ® y) is an isomorphism for i < 2n.
Let 1 < 2n-1. Then by definition
H ((5_(X.)/W) ® S(QX_)) = Ker 3’/Imy’. . = Ker 3>/Im3>
i nn n i i+l i i+l
by Lemma 3.10. The Kunneth Tensor formula (Theorem 1.1) gives that for
i< 2n-1
i .
PiE B (S ()W) @R (SEX)) = A ((5. (X)) & s@x)

k=0

is an isomorphism. In this case the domain of r is
Hi(sn(Xn)/W) ® Ho S(QXn) because each of the terms in the direct sum is
trivial except for the value of the index k = 1.

Let i = 2n=1. By definition

By (B, (X ))/W) @ s(aX ) = Ker 3f . /Imd]

= ® ® =
= Ker p; ,/Imy, PZ,(e ®e ) by Lenma 3.10 and Lemma 3.11.
Consider the following sequence:

1 J
o ® ® X ’
0 ~Zy(ey ®e, ) = Ker 3y /Imgy, = Ker 3y ,/ Tmdg, =0
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where i is the map induced by the inclusion map and j is the projection.
The map J is a surjection. Now by the Kunneth Tensor formula (Theorem 1.)
we have a map

2n-1 .

7. -
r't o p  H(s (X)/W) eH, . (s(X))
k=0
Ker a® /Im a® which is an isomorphism.
2n-1 2n

In this case the domain of r’ is

B (S )W) @8 (580X ))ER, (s (X)/W) & E(s(x )).

Therefore the above is a short exact sequence. Thus we conclude

that the lemma is true for i = 2n-1,

Consider now the following diagram for 2 = i < 2n:

¥x
Hi(Sn(Xn)él ® s(ax)/1 @ x(@x_)) - H (S(Ex_)/s(x;))
. iI* N lP
Hy(s,(X )5 ® S@X )M o s(ax)) \ X
J(A* H, (8(X)/w)
.
H (s, ()W) ® s(ax)) X 1q*
Hi(sn(xn)/w) ® H S (an) - Hi(S(Xn)/D)

where ' is the isomorphism induced by ¢’(Lemma 3.1), I, is the isomorph-
ism of Lemma 3.6, A, 1s the isomorphism of Lemma 3.7, and r is the isomor-
phism of Lemma 3.12. Define E; as follows: Let

T sn(xn) ® S(QXn) - S(Xn) be the map of Lemma 3.3. We see that

7(l ® S(QXn)) = { 0,1 }. Therefore m induces a map
m: s, (X)esx)/ 1es@x) - s(x)/p

in dimensions larger than zero and is a chain map in dimensions larger

than one. Define-ﬁ;, to be the map induced by 7. The map q, is the one
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induced by the identity map on S(Xn). Each constant simplex is de-
generate in the dimensions larger than zero, hence the identity on S(Xn)
induces a map q: S(Xn)/W - S(Xn)/S in dimensions larger than zero which
is a chain mapping in dimensions larger than one. It is well known that
4y is an isomorphism in dimensions larger than one. To define the map
m, we use that fact that the inclusion map i: Sn(Xn) - S(Xn) induces an

isomorphism i,: H,(S_(X )/W - H,(S(X )/D) for i =2 2. We recall that
P 1 n n 1 n

*°

HO(S(QXn))sz Z.. Let S be in sn(xn) such that [S8] is an i-cycle in

X
sn(xn)/w. We define m(cls[S]® 1) = cls[S]{ where 1 is the nontrivial
member of HO(S(QXh))' Here [ ] again means the appropriate equivalence
class. Since the map i, defined above ié an isomorphism it follows that
m is an isomorphism,

From Lemma 3.3 we know that the right hand portion of this diagram
commutes, i.e. F* = QyDyly

The map F; is defined as follows. By definition n(W ® S(QXh)) D
in dimensions larger than zero because n(Wq Q®T) = a(I)Wq which is a
degenerate chain if q > 0. Therefore m induces a chain mapping in di-
mensions larger than one. We have

! 8, (X)), ® s(ax )/ @ s(aX) - s(x,)/.

Define 74 to be the map induced 7’.

Lemma 3.13: The upper left hand portion of the diagram commutes, that

. - _
18 ﬂ* I* = ﬂ*.

Let [y] be an i-cycle in the domain of I with y in sn(xn) ® s(gxn).

We haVe
-, -, -,
my Iy cls[y] = my cls(Ify]) = my clsy]

= cls(n’ [y]) = cls[my]. Also
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F*cls[y] = cls(m [y] = cls[my].

Lemma 3.14: The lower left hand portion of the diagram commutes, that
is ;; A:i r = m. Therefore F; is an isomorphism, ;* is an isomorphism,
and consequently p, is an isomorphism.

Let cls[8] ® cls(T) be a generator of Hi(sn(xn)/w ® Ho(s(an))
where S is in Sn(Xn), [8] is an i-cycle of Sn(Xn), and T is a non-

trivial zero cycle of S(QXn). We have

-1 -1
M &, r(cls[S] ® cls(T)) =Ty A, cls([S]®T)

=Ty, cls([S ® T]) = cls(n’[S ® T]) = cls [n(§ ® T)]

= cls[a(T) S7 = cls[8]. Also by definition
m(cls[S] @ cls(T)) = cls[s].

. * i i-1
Theorem 3.2: The cohomology suspension ¢ : H (Xn,*) - H (Xn_l)
is an isomorphism for n =z 2 and 2 = i < 2n.
* * % -] ¥
From Chapter I we have by definition that ¢ =h (§ ) p . We have
* -

already seen that h and (§) 1 are isomorphisms in the correct dimensions.

* i i .
Now p : H (Xn,*) - H (EXn, an) is the dual of the map

' *

Dy ! Hi(EXn,QXn) - Hi(Xn,*) because of Proposition 2.1. Therefore p is

an isomorphism if p, is, but p, is an isomorphism when 2 = i< 2n, nz 2

by Lemma 3.14.



CHAPTER IV
SUMMARY AND CONCILUSIONS

This paper is concerned with finding a new approach to the axio-
matization for the Steenrod squaring operations. Using Brown's
generalization of the Eilenberg-Zilber theorem for fiber spaces, a

proof is given that the cohomology suspension

*

ot H(X_,*32,) - H

X Z

n-1’ 2)
is an isomorphism for 2 = i <« 2n if n = 2, The Steenrod squaring

operations can then be defined inductively and the axioms verified by

classical methods.

For each prime p > 2 there is a sequence
i +2i(p-1
s Hn(X,A;Zp) L gtei(p -)(X,A;ZP)

known as the pth reduced powers. An axiomatization similar to that of
the squaring operations has been given in (8) for the pth reduced powers,
The author believes that the method used here for the axiomatization of

the Steenrod squares can be generalized to give that of the pth reduced

powers.
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