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INTRODUCTION 

In 1947 Steenrod (9) introduced the Steenrod squaring operations as 

a sequence of homomorphisms 

i n( ) n+i(. ) sq : H K,L;Z2 ~ H K,L;Z2 

defined for finite simplicial pairs (K,L) and all n ~ 0. He used it for 

the homotopy classification of continuous maps. In 1953 Serre (5) 

gave an axiomatization of these squaring operations valid for all pairs 

(X,A) by using spectral sequences. In Cohomology Operations by N.E. 

Steenrod (8) there appears a proof also of the existence and uniqueness 

of the squaring operations. This proof is long involved and difficult 

for a newcomer to the field to follow. In this paper we will present 

a proof of the existence and uniqueness of the Steenrod squaring opera-

tions that is direct, short and much different. 

The main part of the paper is Chapter III where the cohomology sus-

pension is shown to be an isomorphism in small dimensions. The tool used 

to do this is Brown's (1) generalization of the Eilenberg-Zilber theorem 

for fiber spaces in terms of the twisted tensor product. 

In Chapter I we state the axioms for the squaring operations and con-

sider some necessary preliminaries. In Chapter II we show the existence 

of the squaring operations and prove the uniqueness theorem. In both 

Chapters I and II we anticipate the results of Chapter III and assume the 

cohomology suspension to be an isomorphism in small dimensions. In 

Chapter IV a summary of the paper is given and a problem for further 

iv 



research is suggested. Numbers appearing in parentheses, ( ), refer to 

an entry in the bibliography. 
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CHAPTER I 

PRELIMINARIES 

Axioms for the Steenrod Squaring Operations 

The Steenrod squaring operations are a sequence of homomorphisms 

0 1 i sq , sq , . . . , sq , 

sl : Hn(X,Y;Z2 ) _,.':Hn+\X,Y;Z2 ) 

defined for all pairs (X,Y) of topological spaces and integers n, i ~ 0. 

i The sq satisfy the following axioms: 

1. (Naturality) If ·f : (X,Y) --, (A,B) is a continuous mapping then 

* i i * f sq = sq f 

2. (Dimension) sqo identity map, sqi(x) = 0 if deg(x) < i and 

sqi(x) = x2 if deg(x) = i. Here deg(x) = i means that xis in Hi(X,Y;Z2). 

3. (Cartan Formula) For x in HP(x,Y,Z2 ) and yin Hq(A,B;Z2 ) 

i 
sl(x xY) = t: 

k=O 

k( ) i-k( ) sq x x sq y . 

This is the axiomatization as·given by Steenrod (8). 

Complexes, Homology, and Cohomology 

Let R be a commutative ring with unity, Z the additive group of 

integers, and Z the ~yclic group of integers modulo m. m 

Definition 1.1: A chain complex K of R-modules is a family [K ,o .} of 
· n n 

R-modules K and R-homomorphisms o : K --> K 1 , defined,for all in n n n n-

integers, such that ~non+l = 0 for each n. 

1 



Definition 1. 2: The homology H(K) is the family of R-modules H (K) = 
n 

The members of Ker0 are called n-cycles and the members 
n 

of Iman+l are called bounding cycles. If xis an n-cycle then cls(x) 

is the member of H (K) which contains x. 
n 

Definition 1.3: The chain complex K ®RL is the family 

n n . 
[t K. ®R. L i' t. o.@ 1 + (-1) 1 1@ o .}. 
i=O 1 n-.. i=O 1 . n-1 

In this definition we agree 0. (x) = 0 if xis in K. or ·L. ·and if j. 
1 J J 

2 

Remark 1.1: If x is a n-cycle K and y is a m-cycle of L then x @ y is a 

(m + n)-cycle of K ~L. Also the tensor product of an-cycle and bounding 

cycle is a bounding cycle and the tensor product of two bounding cycles 

is a bounding cycle. Hence for an-cycle x and am-cycle y 

p(cls(x)@ cls(y)) = cls(x@ y) 

is a well determined homology class in K ®RL. Sop defines a homomorphism 

Theorem 1.1: (The Kunneth Tensor Formula) If Kand Lare chain complexes 

of R-modules satisfying Ker0n: Kn~ Kn-land if Hn(K) _are projective 

R-modules for all n, then for each n 

n 
p: t H, (K) ~ H . (L) ~ Hn (K ~L) 

i=O 1 n-1 

is an isomorphism of R-modules. 

A proof appears in (3). Note if Risa field then the hypothesis 

of this theorem is satisfied. 

Let K be a chain complex of R-modules and G be an R-modulEi. For 

each n Hom(K ,G) is a R-module. We have the following se(luence of R
n 

modules and homomorphisms: 
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5n-l 5n 
Hom(K,G): ... ~ Hom(Kn_1 ,G) ~ Hom(Kn,G) ~ Hom(Kn+l'G) ~ .•. 

where 5n(f) = fan+l' We see that 5n+l 5n = 0 for all n. 

Definition 1.4: The nth cohomology of K with coefficients in G, If-(K,G), 

is the R-module 

n n-1 
Ker 5 /Im5 , 

Theorem 1.2: Let K be a complex of free abelian groups and A be any 

abelian group. Then for each n the abelian groups Hn(K,A) and 

Hom(Hn (K) ,A) EB Ext (Hn-l (K) ,A) are isomorphic. 

This is a consequence of the Universal Coefficient Theorem (3). 

Let (X,Y) be a pair of topological spaces with Ya subspace of X. 

Let S(X) denote the singular chain complex of X. The chain complex of 

the pair (X,Y) is defined to be S(X)/S(Y). It is well known that S(X) 

and S(X)/S(Y) are free abelian groups. If Y =¢then we define 

S(Y) = O. 

Definition 1,5: Let K be a chain complex of R-modules and G be an R-

module. The homology H(K,G) of K with coefficients in G is H(K ®RG). 

G is regarded as the trivial chain complex. Namely G = (G ,o} where , n n 

G0 = G, Gi = 0 if if O, and on= 0 for all n. For an abelian group 

A the homology of the pair (X,Y) with coefficients in A is 

H(S (X) /S (Y) ®zf ). 

Let G be a R-module. We can also regard Gas a Z-module. Hence 

H(X,Y;G) is defined. The R-module structure of G can be used to define 

an R-module structure for each member of the family H(X,Y:G). First 

for each n (S(X)/S(Y))n ®zG can be made an R-module by defining r(x ® g) = 

x ® rg where r is in R, xis in (s(x)/S(Y)) and g is in G. With this 
n 



4 

definition of scalar multiplication the boundary operators (0 ® 1} of 
n 

the chain complex of Z-modules, (S(X)/S(Y) ®zG are each R-linear homo

morphisms. Thus (s(x)/S(Y) ®zG) is a chain complex of R-modules. 

Hence H(X,Y;G) is a family of R-modules. 

Definition 1.6: The nth cohomology Hn(X,Y;A) of the pair (X,Y) with 

coefficients in a R-module A is Hn(S(X)/S(Y),A). 

Eilenberg - MacLane Spaces 

Definition 1,7: Let G be an abelian group and n a natural number, An 

Eilenberg-Maclane space of type (G,n) is a topological space whose 

nth homotopy group is isomorphic to G and whose other homotopy groups 

are trivial. 

Theorem 1.3: For each pair (G,n) an Eilenberg-Maclane space of type 

(G,n) exists which is a C.W. complex, Furthermore any such two Eilen-

berg-MacLane spaces of type (G,n) have the same homotopy type. 

This is Corollary 2.10.2 of (10). 

We will be concerned with the case G = z2 . For each n ·~ 1 let X 
n 

denote one Eilenberg-MacLane complex of type (z2 ,n). The proof of 

Theorem 1,3 demonstrates that X is connected, 
n 

If n > 1 this follows from the Hurewitz theorem. The case n = 1 

follows from Remark 2.10.9 of (10). 

follows that H0 (xn) ~ Z for all n. 

Since X has one path component it n 
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From Theorem 1.2 we have 

Hi(x ,z2) =: Hom(H. (X ) , Z2) ffi Ext(H. l(X ) ,z2). n 1 n CD 1- n 

From Proposition 1.1 we see that H. 1 (x) is either trivial or free on 
1- n 

one generator. Thus the right hand summand is trivial when i ~ n. The 

conclusion follows now from Proposition 1.1. 

Theorem 1.4: Let (X,Y) be a pair 

and x be in Hn(X,Y;Z2). Let i' be 

There is a mapping f(X,Y) _, (X ,*) 

of C.W. complexes, n ~ 1, * be in X, 
n 

the generator of Hn(Xn' * ·z2) == z2 . 

n 
* such that f (i') = x and furthermore 

n 

any other mapping with this property is homotopic to f. Similarly if 

i is the generator of Hn(X ,z2), Xis a C.W. complex, and xis a member 
n n 

n * of H (x,z2), then there is a map f: X-, X such that f (i) = x. n · n 

This is Corollary 2.8.10 of (10). 

Definition of the Cohomology Suspension 

The cohomology suspension is a homomorphism 

defined for i, n ~ 2. Let EX be the space of paths in X based at<f,. i.e. 
n n 

EX = [er : I _, X : a,(r) = *}. Here r is any non'."negative real number n r n 

and I is the closed interval from Oto r. In Chapter III a suitable r 

topology will be defined for EX . Let p: EX -, X be defined by 
n n n 

p (QI ) = QI ( 0) . We see that p-1 (*) = QX is the space of loops based at*· 
n 

It is well known that OX has the same homotopy type as X . Hence it 
n n-1 

is an Eilenberg-MacLane space of type {z2 ,n-1). Let h: X l _, QX be 
n- n 

a homotopy equivalence. It is also known that EX is acyclic. 
n 

Consider 

the following diagram where the middle row is the long exact cohomology 

sequence of the pair (EX ,OX). 
n n 



r 
* h 

* 0 

i-1( ) i-1( ) • • • -+ H EX , z2 -+ H OX , Z 
n n 2 

...... Hi(Exn,oxn,z2 ) ...... Hi(EXn,z2 ) 

. l p* 

Hi(xn, *;Z2) 

Now If'"(EXnz2) = 0 when k ~ 1, thus the * coboundary o is an isomorphism 

* * * -1 * * 

6 

for i ~ 2. Define a = h (o ) p. Note that h is an isomorphism since 

his a homotopy equivalence. 

The Geometric Realization of a Semi-Simplicial Complex 

Let (X,Y) be a pair of topological spaces. Using Milner's construction 

* * in (4) a pair (X ,Y) of C. W. complexes is constructed. The pair 

* * (X, Y) is the geometric realization of the pair (S(X),S(Y)) of semi-

simplicial complexes. If Xis itself a C. W. complex then we take 

* x = x. 

* * Theorem 1.5: There is a mapping j: (X ,Y ) --, (X,Y) such that for all 

n ~ 0 t : Hn(X,Y;Z2) -+ Hn(x·* ;i.* ;z2 ) is an isomorphism. Furthermore 

- ( * *) ( * *) each map f: (X,Y) -+ (A,B) induces a mapping f : X ,Y --+ A ,B such 

that jf = f'j. 

These facts are shown in (4). 



CHAPTER II 

UNIQUENESS AND EXISTENCE THEOREMS 

The Uniqueness of the Steenrod Squares 

In this section we will assume that the Steenrod squaring operations 

exist and satisfy the axioms. It is shown in·Chapter III that the co-

homology SlJ.Spension 

for each n >. l and l < i < 2n" is an::isomorphism. · .Henihefor.th all conomology 

groups wilLhave coef:f'iqients in z2 . 

Lemma 2 .1: If 6 *: Hn(A) -> ~+l(X,A) is the cobounda.ry map for the pair 

i * * i (X,A) then for each i sq 6 = 6 sq. 

This is temma 1.2 of (7), 

Lemma 2.2: Let n > 1. ( *)-1 n-1( ) Consider the mapping cs : H X -> 
·· n-1 

n i * -1 * -1 i ) H (Xn)*). If O < i < n then sq (a) (in_1) =(a) sq (ln-l, 

The lemma follows now by application of Lemma 2.1 and the naturality 

axiom. 

Theorem 2.1: The Steenrod squaring operations are uniquely determined 

for all pairs (X,Y) of topological spaces. 

7 
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The proof is by mathematical induction. Let P be the set of natural 
. . ·+· 

numbers for which n in P implies sq1 : HJ(X,Y) ~ H1· J(X,Y) is uniquely 

determined for all i,j ~ n and all pairs of topological spaces. From the 

dimension axiom we see that O and 1 are in P. Suppose that n > 1 and 

n-1 is in P. We need to show that n is in P. · From the dimension axiom 

and the induction hypothesis we see that sqi: ~(X,A) ~ ~+i(X,A) is 

uniquely determined when j < n, i § n and when j = n, i = O,n. There-

fore suppose j = n, 0 < i < n. Let x be in Hn(X,Y). We construct the 

following diagram 

(x, Y) ~ (x*, y*) f 
~ (X ,*) 

n 

where j is the mapping described in Theorem 1.5 and f is a mapping such 

that f*(~') = j*(x). Thus x = (j*)-l f*(~'). Hence 
n n 

i( ) i( *)-1 *( I ) i sq x = sq j f ~ . Therefore it is necessary that sq (x) = 
n 

* -1 * . .. 
(j ) f sq1 (~ 1) because sq1 satisfies the naturality axi6m. 

n-

( *)-1( ) i i * -1 ) * -1 i ) cr ~n-l. Thus sq(~~)= sq (cr) (~n-l =(a) sq (~n-l 

NOw Z, 1 = 

by 

Lemma 2.2. But sqi(~ 1 ) is uniquely determined by the induction n-

hypothesis hence so is sqi(~') and consequently so is sqi(x). Therefore 
n 

n is in P. 

The Existence of the Steenrod Squaring Operations 

In this section we show the existence of the Steenrod squaring 

operations. Again we will use the result in Chapter III that for 

n > 1 and 1 < i < 2n, a*: Hi(X ,*) ~ Hi-l(X 1) is an isomorphism. 
n n-

First the Steenrod squaring operations will be defined as a set 

theoretic function and then will be shown to satisfy the axioms. Let 

(X,Y) be a pair of topological spaces and let x be in ~(X,Y). Define 
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sq0(x) = x, sqn(x) = x2, and sqi(x) = o if i > n. In these instances 

it is clear the squaring operations satisfy the axioms. It remains to 

define sqi(x) for O< i < n and verify that the axioms are satisfied. 

Mathematical induction will be used to do this. Let P be the set of 

natural numbers for which n in P implies that sqi(x) is defined for 

O < i < n and satisfies the axioms. We see that O and 1 are members 

of P. Suppose now that n > 1, n-1 is a member of P and O< i < n. 

Construct the following diagram: 

(X,Y) J_ (x*,y*) 
f 
__, (X ,*) 

n 

where j is the mapping of Theorem 1,5 and f is selected so that 

* ( I ) * ( ) . *-1 * ( I ) f L = j x. Thus x = J f L • n n 

i ( ·*)-1 *( *)-1 i( ) Define sq (x) = J f 0 sq Ln-l. 

We see that sqi(x) is well defined because (cr*)-l: Hi-l(X 1 ) __, Hi(X ,*) 
n- n 

is an isomorphism for i < 2n and sqi(L 1 ) is defined by the induction 
n-

hypothesis. We see immediately that the dimension axiom is satisfied., 

The remainder of this chapter will be a verification that sqi(x) satis-

fies the remainder of the axioms. 

Theorem 2.2: If n ~ 2 and 0< i < n then sqi(x) satisfies the naturality 

axiom. 

Let g: (S,T) __, (X,Y) be a mapping of pairs. 

j2 * * (X, Y) .....___ (X, Y ) be the maps given· by Theorem 1. 5 

jl * * Let (S,T) ~ (S ,T ) 

- ** and g : (S, T ) __, 

* * (X,Y) be the map induced by g. i * We need to show that sq g (x) = 

g* sqi(x), where xis in ~(X,Y), n ~ 2. By definition 



i * ) ( *)-\*( *)-1 i( ) sq g (x = jl cr sq ~n-l 

Also by definition 

* I * * where k (~n) = jl g (x). 

-* * -* * -* * * * From (D) above we see g f (~~) = g j 2 (x) but g j 2 (x) = jlg (x) 

10 

(A) 

(B) 

(c) 

(D) 

by Theorem 1.5. Comparing this with (B) we concluded that k and fg are 

homotopic by Theorem 1.4. -* * * Consequently substituting g f fork in (A) 

we have 

( ·*)-1--* *( *)-1 i( ) 
Jl g f cr sq ~n-1 

* * -1 * * -1 i ) 
= g (j 2 ) f (cr) sq (in-l by Theorem 1,5 

* . 
= g sq1 (x) from (B). 

We will next verify that sqi is a homomorphism. To do this we need 

to know the nth z2 - cohomology group of a space in terms of its nth z2-

homology group. 

Proposition 2.1: Let X be a topological space. For each n Hn(x,z2 )""" 

Homz (Hn(x,z2),z2 ). 
2 

We will define a mapping~ and show that it is an isomorphism. Let 

f: S(X)n ~ z2 be a cocycle and cls(f) be the member of If(x,z2 ) which 

contains f. By definition Hn(x,z2 ) = Ker(on ® 1)/Im(on+l ® 1). We see 

that 
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Ker(on ® 1) = [x ® 1 on(x) is in 2(S(X)n_1)}. 

Define 

cp cls(f) (cls(x ® 1)) = f(x). 

We see that 

cp cls(f) (cls(x ® 1) + cls(y ® 1)) = cp cls(f) cls((x + y) ® 1) 

= f(x + y) = f(x) + f(y) = cp cls(f) (cls(x ® 1) + cls(f)(cls(y ® 1)), 

Similarly 

cp cls(f+g)(cls(x ® 1) = cp cls(f)(cls(x ® 1)) + cp cls(g)(cls(x ® 1t 

We need to show this definition is independent of the choice of repre

sentatives for cls(f) and cls(x ® 1). Therefore suppose cls(x ® 1) = 

cls(y ® 1). Then 

Therefore 

cls(x ® 1) - cls(y ® 1) = cls((x-y) ® 1) = 

cls(on+l ® l)(z ® 1) = cls(~n+l ® 1) for some z in 

s (x)n+l. 

cp cls(f)(cls(x ® 1)) - cp cls(f)(cls(y ® 1)) = 

cp cls(f)(cls(x ® 1) - cls(y ® 1)) = cp cls(f)(on+lz ® 1) 

= fon+lz = 0 because f is a cocycle. 

Therefore it follows that cp cls(f) is a well defined member of 



HoIDz2 (Hn(x,z2) ,Z2). Now suppose cls(f) = cls(g). 

cls(f-g) = cls(6h) = cls(hon) for some cochain h. 

We have that 

Therefore 

~ cls(f) cls(x ® 1) - ~ cls(g) cls(x ® 1) = 

~ (cls(f) - cls(g)) cls(x ® 1)::: ~ cls(f-g) els (x ® 1) 

= m cls(ho) cls(x ® 1) ~ ho (x) = h(2j) = o. 
T n n 

We show riext that~ is.a surjection. Consider an element fin the range 

of~· Let G be the subgroup of S(X)n whose members are x such that 

~n(x) is in 2(S(X)n_1). A homomorphism f' is defined on G by f'(x) = 

f(cls(x ® 1)). Since S(X) is a free abelian group f' can be extended n 

to a map f: S(X)~ .~ z2 . We see that f is a cocycle because 

f(oz) = f'(az) = f cls(az ® 1) = o. 

Also 

~ cls(f) cls(x ® 1) - f(x) = f'(x) = f(cls(x .® 1) so~ (f) = f. 

We need to show next that-~ is an injection, Suppose 

~cls(f) cls(x ® 1) = f(x) = 0 for all x such that 

0 (x) is in 2(S(X) 1). Iri particular f(x) = 0 for all x in Kero . We n n- n 

have the following diagram: 

where Ker o C Ker f. 
n 
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Theref'ore there is a homomorphism which makes the diagram commute. Hence 

f' = ho and thus f' is a coboundary, cls(f') = O, and~ is an injection. 
n 

Proposition 2,2: 

Let f' S(X x Y) ..... S(X) ® S(Y) be a chain equivalence. It f'ollows 

then that 

f' ® 1 s(x x Y) ® z2 ..... S(X) ® S(Y) ® z2 

is a chain equivalence (®means ®2). 

Consider the mapping 

g S(X) ® S(Y) ® z2 ..... (S(X) ® Z2) ®z,(S{Y) ® z2) 
2 

given by g(x ® y ® 1) = (x ® 1) ® (y ® 1). 

Clearly g is an isomorphism of' z2 - modules. 

It f'ollows too that g is a chain mapping because 

og(x ® y ® 1) = o((x ® 1) ® (y ® 1)) 

=(ax® 1) ® (y ® 1) + (x ® 1) ® (oy ® 1) 

and 

go(x ® y ® 1) = g((ox ® y ® 1) + (x ® ~y ® 1)) 

=(ax® 1) ® (y ® 1) + (x ® 1) ® (oy ® 1). 

Hence g is a chain equivalence. The conclusion f'ollows now by applica-

tion of' Theorem 1,1 to the complex which is the range of' g. 



In the foll.owing let Hom mean Homz and® mean® 
2 . z2 

Proposition 2.3: Let V and W be z2~modules, th~n Hom(V ®W, z2) == 

Hom(v,z2) ® Hom(w,z2). 

By Theorem J.l of (3) we have that 

Now Hom(w,z2) == I: ~2 (a) for some set of indexs a because Hom(w,z2) 
a 

is a vector space over z2 . 

Hence it follows 

n . . 
Lemma 2.3: If(X x Y, z2) == ~· H1 (X,Z2) ® If- 1 (Y,Z2) •. 

.1.=0 

By Proposition 2.l we have that 

By Proposition 2.2 

n 
Hn(X x Y, z2) == I: H. (X,Z2) ® H . (Y ,z2) . 0 1 . n-1 • 

1= 

l4 

Substituting this in the expression above and applying Froposition 

2.3 we have 



n . n-i 
== ~ H1 (x,z2) ® H (Y,z2) by Proposition 2.1. 

i=o 

Lemma 2.3 is also true in the relative case. If by the product 

of pairs (X,A), (Y,B) we mean 

(X,A) x (Y,B) =(Xx Y, Xx BUA x Y) 

then the Eilenberg-Zilber theorem holds for these pairs whenever 

[Xx B, Ax Y} is an excisive couple in Xx Y. Namely the chain com-

plexes S((X,A) x (Y,B)) and S(X,A) ® S(Y,B) are chain equivalent, 

(cf (6), p.234). We have therefore 

Lemma 2.4: 
n .. 

H ((X,A) x (Y,B), z2) == 

n . . 
~ H1 (X,A,z2) ® ~- 1 (Y,B;z2) whenever 
i=O 

[X x B, Y x A} is an excisive couple in Xx Y. 

Lemma 2.5: * Let µ.: X x X -+ X be such that µ. (z, ) = 1 x z, + z, x 1, 
n n n n n n 

then if z is in Hi(X ) , n < i < 2n, µ. * (z) = 1 x z + z x 1. 
n 

By Lemma 2.3 and Proposition 1.2 we have that 
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Therefore µ. * ( z) = x x 1 + 1 x y for some x and y in Hi (X ) • Consider the 
n 

following diagram 

kl,k2 µ. 
X _, X xx -+X 

n n n n 

where k1 and k2 are the injections into the first and second coordinates 

respectively. We have 
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* * (µ, kl) (z, ) = kl(l x z, + z, x 1) = O + z, n n n n· 

~nee µ, k1 is homotopic to the identity mapping by Theorem 1.4. Similar-

ly 

1) = Z, + o. 
n 

.Hence µ,k2 is homotopic to the id.entity mapping. 

Therefore 

* * * * z = (id) (z) = k1 µ, (z) =. k1 (1 x x + y x 1) = x 

and similarly 

* * * * (id) (z); k µ, (z) = k (1 x z = 

* Hence µ,(z) = 

2 2 

1 x z + z x 1. 

x + y x 1) = y. 

Corollary: Let p1 ,p2 : (X xx ,#*) -+ (X ,*) be the projections into 
n n n 

the first and second coordinates respectively and µ:(X, x X ,#*) .,-, 
.. n n 

( ) -* ( I ) -* .·· I )' -* I Xn,* be such that µ, z,n = p1 (Z,n +.p2 (in). · Tnen if n < i < 2n and x is in 

i -* -* -* H (X ,*), µ, (x) = P1 (x) + p2 (x). n 

Consider the following diagram 

P1P2 µ, 
x (X x x ) .... x n n n 

Jn + j P1P2 
J.i µ, 

j 

(X ,*) ~ (x x X *x·*) -> (X ,*) n n n' .n 

where p1 ,p2 are the projections into the first and second coordinates 

* respectively, i, j are the injections andµ, (z,n) = Z,n x 1 + 1 x z,n = 

We see that the left-hand square of the diagram commutes. Considering 



now the right hand portion we have 

i * -µ* ( 7 I ) == • * (-* ( I ) + -* ( I ) ) vn 1 P1 2,n P2 2,n 

*·*( ') = µ. J u • 
n 

Therefore we conclude that µi and jµ are homotopic by Theorem (1.4). 

* Now we know that the map i is an isomorphism in dimensions larger than 

Let xe Hi(X ,*), O < i < 2n. We have 
n 

zero. 

by the commutivity of the left-hand portion of the diagram. Hence 

*-* * * i µ (x) = µ. j (x) from above 

* * * * = p1j (x) + p2j (x) by Lemma 2.5. 

Therefore we conclude that 

Theorem 2.3: Let n > 1 and O < i < n then 

Let x and y be in Hn(X,Y), then by 

definition 
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sl(x + Y) = (j*)-l k*(cr*)-1 sl(u 1 ) (A) 
n-

where j*(x*,y*) .... (X,Y) is the map of Theorem 1.5 and k.*(z.,') = (/)-l 
n 

(x + y). Consider the following diagram 
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* * d * * * fx g 
(X ,A ) ..... (X x X , A* x A ) ..... (Xn x Xn, * x *) 

µ, 
..... (X '*) n 

where f*(2,~) = (j*f1 (x), g*(2,~) = (j*(1 (y), ·~t(2,~) = p~(2,~)+ p;(2,~), and 

d(p) = (p,p). We note that p 1 (f Xg)d = f and p 2 (f x g)d = g, 

We have now that 

* * d (f x )* -*( ') g µ, "n = d (f x g)* (p: (2,~) -*( ')) + P2 2,n 

f*(2,') * 
+ g Ci~) n 

* -1 
= (j ) (x + y), 

Therefore in (A) above we can take k = µ(f x g)d. 

Hence we have 

i * -1 * ) * -* ( * -1 i ( ) s q ( x+y) = ( j ) d ( f x g µ, a ) sq 2, n _ 1 

= (j*(1d*(f x g)*(p:(cr*)-1sl(2,n-l) + P;(c/)-1sl(2,n-l) 

* -1 * * -1 i . · * -1 * * -1 i ) 
= (j ) f (a ) . sq (2,n-l) + (j ) g (cr ) sq (2,n-l 

- sqi(x) + sqi(y). 

i 
We will show next that sq, 0< i < n, satisfies the Cartan formula, 

The proof of this will be preceded by several lemmas, 

Lemma 2,6: Let I be the unit interval and I= {o,l} its boundary, 

1 - 0-
Let I be the generator of H (I, I) ::::Z2 and 1 be the element of H (I) 

corresponding to the point 1 of I. If o :Hi(I x A) ..... Hi+l((I,I) x A) 

is the coboundary map for the pair (I ,I) x A then o (1 x y) = I x y for 

each y in Hi (A). 

The proof of this appears in Lemma 1.2 of (7). 

Lemma 2,7: Let n ~ 2 and O < i < n, then the following diagram commutes 



* 
Hn-1 (ox) 8 Hn(EX ,OX ) ~ n · n n 

J 
n+i-1 

H 

sq i 

8 l i 
* 

sq 

By definition we have that for n ~ 2, 0 < i < n 

i * -1 i sq (z-~) = (cr) sq (z-n_1 ). Thus 

i *-1 * -1 i ) 
sq cr ("n-l) = (cr ) sq ("n-l . · So 

i * -1 * * -1 ( * -1 * *-1 i ) 
sq (p) 8 (h) (Ln~l) = p) 8 h sq (z-n~~ • 

By using naturality we have 

( *)-1 i *( *)-1( ) p sq 8 h " 1 n-
= ( *)~1 * i( *)-1(. ·) p 8 sq h .. z.,n- l • 

Now 0 (p *f 1 is an isomorphism so we can cancel it yielding 

i * * -1 * i * -1 
sq 8 (h ) ("n-l) = 8 sq (h ·) (z-ri_1), 

n-1 * * 1 H (ox11)·~ z2 and h is an isomorphism so (h )- (z..n_1 ) generates 

Hn-l(OX ), thus the lemma follbws, 
n 
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Definition 2.1: Suppose A1 , A2 are subsets of a space X, [A1 ,A2} is an 

excisive couple in X if the inclusion chain map of S(A1 ) + S(A2) and 

S(A1lJA2) induces an isomorphism of homology. Here+ means group sum. 

Let (X,A) and (Y,B) be pairs of topological spaces .. Suppose xis 

in If(X,A) and y is in ~(Y,B). Their cross product, xx y, is defined and 

is a member of Hn+m( (X,A) x (Y,B)) provided [A x Y, X x B} is an excisive 

couple in xx Y(cf. (6), pp. 249-255), We see from Definition 2.1.that 

if A = ¢ or B = ¢ _then [A x Y, X x B} is an excisive pair in X x Y •. 



The following two lemmas are standar~; their proofs appear in (6), 

page 189. 

Lemma 2.8: Let A1 ,A2 be subsets of a space X. [A1 ,A2} is an excisive 

couple in X if the excision map (A1 ,A1(1A2 )C.(A1\_/A2 ,A2) induces an 

isomorphism of singular homology~ 

Lemma 2. 9: Let UC ACX b'e such that cl(U) C interior A. Here cl(U) 

means the closure of U. Then the excision map (X - U, A - U) C (X,A) 

induces an isomorphism of singular homology. 

The following lemma will be useful in the proof of the Cartan 

formula. 

Lemma 2.10: Let (X,A), (Y,B) be pairs of spaces. Suppose A is finite 

and Xis locally contractable. Suppose too that if xis a point of X 

and U is a contractable neighborhood of x then the homotopy can be 
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chosen to leave x fixed. Suppose further that Xis Hausdorf and normal 

and B is closed, then [X x B,A x Y} is an excisive couple in X x Y. 

Since A is finite and Xis Hausdorf there is a finite collection 

o1 , ,,,, Ok of open sets of X which are pairwise disjoint, which each 

contain exactly one point of A, and such that each point of A is in one 

of them. Further if O = o1 V , , . L.) Ok then there is a homotopy ft: 

0 .... 0 such that f 0 = identity, f 1 (o) = A and ft restricted to A is the 

identity for each tin I. Consider the following diagram 

i • I 
]. 

(Ax Y,A x B) ;;:! (Ax yuox B,A x BUO x B) .... 
k 

(Ax YUX x B, xx B) 

where i and i' are the inclusion maps. k is defined as follows. Note 
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that Ax y Ox B =Ax B. Define k1 :A x Y ..... Ax Y to be the identity 

map. Define k2 :o x B -, A x Y by k2 = f 1 x 1. k1 and k2 coincide on 

A x YUO x B and A x Y and Ox B are each closed subsets of A x Y 

O x B, consequently k1 ,k2 defines a map k:A x Y O x B -, A x y. We see 

that ki = identity. We will show that ik is homotopic to the identity 

mapping. Define gt :A x YLJO x B ..... A x Y UO x B by gt restricted to A x Y 

to be the identity map and gt restricted to O x B to be ft x 1. These 

maps agree on A x Yf"\ 0 x B = A x B for each t in I. Therefore these 

two maps define a map gt : A x Y v O x B -, A x Y t.J O x · B with g1 = ik and · 

g0 = identity. Therefore i is a homotopy equivalence •. 

Consider now the mapping i'. We will use Lemma 2.9 to show that 

it induces an isomorphism of singular homology. Let 

X' = A x Y vx x B, A' = X x B, and u = (X - o) x B. We see that 

UC A 'c X'. Now cl(U) = U because U itself is closed being the product 

of closed sets. Also it is true that 

(X - o) x B Cinterior Xx B 

because by the normality of X there is an open set o' containing X - O 

containing no points of A. Consequently o' x B = (Ax yux x B)r\(O' x Y) 

is an open set of A x Y X x B, Therefore U = cl(U) C O' x B c interior 

Xx B. Thus we conclude by Lemma 2.9 that i' induces isomorphism of 

singular homology because X 1 - U = A x Y UO x B and A' - U = A x B U 

O x B. Consequently i 'i induces isomorphism of homology and therefore 

it follows by Lemma 2. 8 that [ A x Y, X x B} is an excisi ve couple in 

xx y. 

Lemma 2.11: Let h:X 1 ->OX be a homotopy equivalence and g:OX -, X 1 n- n n n-

be a homotopy inverse for h. The maps (l x g)*:Hi((I,I) x Xn_) _, 
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isomorphisms. 

By Lemma 2.4 

Hi((I,I) x xn_1 ) ~ H1 (r,r) ® Hi-l(xn_1 ) and Hi((I,I) x oxn) ·~ H1 (r,r) ® 

Hi-1 (ox ) . 
n-1 

Therefore each element of Hi ( (I ,I) x X 1 ) has the form I x y for some 
n-

i-1 * * * y in H (Xn-l) and (1 x h) (1 x g) (Ix y) = I x (gh) (y) = I x y. 

Also each element of Hi ( (I ,I) x OX ) has the form I x z for some z in 
n 

. 1 * * * Hi- (OX ) and (1 x g) (1 x h) (Ix z) = I x (hg) z = Ix z. Therefore 
n 

* * (1 x g) and (1 x h) are inverses of each other, and as a result each is 

an isomorphism. 

Lemma 2.12: Let n ~ 2 and O < i < n. If I is the generator of H1 (I,I), 

. then sq\I x z,n_1 ) = I x sl(z-n_1 ), 

First we note that I x z,n-l is defined. Define a map .cp: (I x OXn, 

Ix X ) ... (EX ,OX ) by cp(t,O') = °' restricted to [O,tr] where Q' is a map n n n 

O':[O,r] ... Xn with C¥(0) = ot(r) = * Associated with this map is the 

following commutative diagram .·. 

* cp 

where P 1 = cp restricted to I x oxn. We see P1 ( f o} x oxn) = constant and 

P1 ( fl} x OXn) is the projection into the second coordinate and is a homeo-

. * 
morphism. Therefore for j ~ 1 and y in HJ (oxn) we have P1 (y) = 1 x y where 



1 is the element of H0 (r)corresponding to the point 1 in I. Thus 

* * * 8 P (y) = 8 ( 1 x y) = I x y. 
1 1 1 

* Now let O < i < n and take x = g (vn_1) where g is a homotopy inverse 

for the homotopy equivalence h:X 1 ~nx. 
n- n 

We have 

sl(r x x) . * * = sq1(81P1 x) 

. * * = sq1 (cp 8 x) 

= Cf)*e,* sl(x) 

= I x sqi(x). 

The lemma follows now because 
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Therefore I x sl(vn_1 ) 

by Lemma 2.11. 

I * = sq (I x vn_1 ) because (1 x g) is an injection 

Lemma 2.13: Leth~ 2, v' 1 be the n-

0 < i < n, then s l (I x v 'n-) = I x 

generator of ~-1 (x 1 ,*). 
n-

sl(v' 1), n-

If 

We see by Lemm.a 2 .10 that I x L' 1 is defined. The identity map 
n-* . . 

j:X 1 ~ (X 1 ,*) induces the map j :H1 (X 1 ,*) = H1 (X 1 ) which is an n- n- n- n-

isomorphism for i > 0. Consider the following diagram: 
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1 x 'j 
(I,I) x Xn-1 _, (I,I) x. (Xn-1'*). 

Now If ( (I ,I) x X 1 ) == H1 (I ,I) ·® If-1 (x c-1 ) and 
n- n-

rf-((I,I) x (Xn_J)*) == H1 (I,I) ® rf-1cxn-l'*). The map (1 x j)\orresponds 

* * to 1 ® j in this identification so (1 x j) is an isomorphism when -k > 1. 

Therefore if n ~ 2 and O < i < n, we have 

sqi(I x ~ ·) 
"'n-1 

=Ix sqiz., 1 by Lemma 2.12 and 
n-

(1 x J. )* I x i I 
sq_ z.,n-1 X *c i I ) = I j sq z.,n-1 I x i ' 

= sq z.,n-1' 

. * . 
Hence the conclusion follows since (1 x j) is an injection. 

Lemma 2.14:. Let p ~ 1. The map g: (I,I) x X 1. -> (X ,*) determined by 
' p- p . . 

* * i . i -g (z.,;) = I x z.,p-l has the property that g : H (Xp,*) .-. H ( (I,I) x Xp_1 ) 

is an in,i ection for i < 2p·. In. case p = 1 we take x0 = [ *} • 

For any p we have that 

* 

0 
H (X ,*) = O. 

p 

Thus g is always an isomorphism in dimension 0, For p = 1 we need only 

* ' * 1 . 
consider g in di:rp.ension 1., Consider therefore g : H (X1 ,*) .-. 

H1 ((I,I) x x0 ). Now H1 (x1 ,*) == z2 and is generated by z.,{· Also 

H1 ((I,I) x x0 ) == z2 ® z2 and, is generated by Ix 1. By definition 

g*(z.,') =Ix 1 so g* is an injection in dimension 1 for p = 1, Suppose 
1 

now that p ~ 2. 

1 -
H ((I,I) x X 1 ). 

p-

* 1 Consider first the case i = 1. We have g: H (X ,*) _, 
p 

If p ~ 2 then H1 (X ,*) == H1 (X ) = 0 by ._Proposition p p .. . 

* 1.2. Thus g is necessarily an injection in dimension 1, Now suppose 
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p ~ 2 and i ~ 2. Consider the following diagram 

* 

Hi-l(I x 
01 

H\ (I,I) x 
(1 x 

ox ) ..... ox) ..... 
p p 

r * l * 
pl * cp * 0 p 

* h) . 
H1 ( (I ,I) 

Hi-1 (ox) ..... Hi(EX ,OX) 
p p p 

The left-hand portion of the diagram appears in Lemma 2.12 and is known 

to be commutative. For the right-hand portion we see that 

(1 x h)* * *( ') . cp p z..n 
* * * * -1 * (1 x h) 01 p (0 ) p (z..') because the diagram commutes 

1 p 

*( *)-1 * / = I x h O p z.. by Lemma 2 . 12 
. p . 

·* I 
= I x 0 (z.. ) by definition of the cohomology suspension 

p 

=Ix z.. because the cohomology suspension is an 
p-1 

* isomorphism in dimensions less than 2p. Also we have g (z..;) =Ix z..p-l' 

therefore by Theorem 1. 4 the maps g and p:p (1 x h) are homotopic. Now 

* * (1 x h) is an isomorphism by lemma 2. 11. Also p is an isomorphism 

when 2 ~ i < 2p because the cohomology suspension is an isomorphism in 

* * * *-1 these dimensions. Consider now the map cp = o1 p1 o for dimensions 

. * * i ~ 2. It was shown in Lemma 2.8 that for each x in H1 (0XP), o1 p1 (x) = 

Ix x. The range of o~ p~ is Hi((I,I) x ox)== Hi(I,I) ® Hi-l(ox ) so 
p . p 

* * . we conclude that Ix x = 0 only when x = O. Therefore o1 p1 is an in-

* * * * * jection when i ~ 2 hence so is cp. We have shown that g = (1 x h) cp p 

* therefore g is an injection when p ~ 2 and 2 .:Si< 2p. 

Therorem 2.4: (The Cartan Formula) Let (X,A) and (Y,B) be pairs of 

topological spaces such that 

Let x be in HP(x,A) and y be 
. i k 

then sq1 (x x y) = ~ sq (x) x 
k=O 

[Ax Y, Xx B} is an excisive pair in Xx Y. 

in Hq(Y,B) with p + q = n .~ 2. If O < i < n 

i-k( ) sq y • 
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Let p ~ 1 and construct the following diagram: 

g x 1 
(I,i)XX lx(v,c) .... (X,*)X (v,c) 

p- p 

where g*(z,;) =Ix z,p-l' x, 0 = (*} and (V,C) is a pair of C.W. complexes. 

We note that the cross product operation is defined for the cohomology 

of the pairs appearing in the diagram. This follows from Lemma 2.10 and 

the fact that every C.W. complex is locally contractable and the homotopy· 

can be chosen to satisfy temma 2.10, (11, p. 230). Let v be in Hq(v,c) 

and p + q = n ~· 2. Consider now sqi(z,' x v), o < i < rt~ It is: a 
. p 

member of 

+· n~ -~ 
~ 1 ( (xP,*) x (v ,c)) == I: ir-(x ,*) '°' ~+i-k(v c) . 

k=O p · ~ ' 0 

Therefore 
q+i 

scl(z,' x v) = !: .. A p+k,q+i-k 
p k=-p 

where A +k +· k is in Hp+k(X ,*) ® Hq+i-k(v,c). p. ,q J.- p 

We have now that 

' * . 
(gx 1) sq1 (z,' xv)= 

p 

. * = sq1 (g (i.,'.x v)) 
p 

= sl(r x z,p-l x f) 

= I x sl(z,p-1 x v) by Lemma 2.9 

Similarly we have that 

I x 
i k 

sl-k(v)) = (I: sq (z, ·l) x 
k=O p-

induction hypothesis 

i 
= !: (I x sqk(z, 1) x sl-k(v)) 

k=O P- • 

by the 
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i 
= r; I x 

k=O 

k ) i-k ) sq (z., 1 x sq (v • 
p-

* Now f'rom Lemma 2.10 we know that g is an injection in dimension less than 

* 2p. It f'ollows theref'ore (g x 1) is an injection whenever g* is an in-

jection because the cohomology groups are all vector spaces over z2 and 

* * (g x 1) corresponds to g ® 1. Theref'ore we see that 

71.p+k, q+i-k = 0 when k < 0 and · 

Sqk(. ') x sqi-k(v·) h O k 71.p+k,q+i-k = vp wen ~ < P· 

k Here we will agree that sq = 0 whenever k is a negative integer so that 

the above f'ormulas always makes sense. Note that i may be less thank. 

Ther-ef'ore we have that 

. p-l k i-k( ) q+i 
sq1 (z.,' xv}= r; sq (z.,') x sq- v + r; 71. 

P P P+k q+i-k • 
k=o k=p ' · 

Note that if' we taken= p then q = o and (A) becomes 

sl(z.,' xv)= sl(z.,') xv, O< i < n. 
· n n 

Consider now the f'ollowing diagram 

(v,c) x (r,r) x x 
q""'.l 

1 x g 
_, (V,C) x (X ,*) 

q 

* where g (z.,~) =Ix z.,q-l' (v,c) is again a pair of' c.w. complexes, and 

x0 = [*}. Let p + q = n and v be in HP(v,c). By the same procedure 

as above we argue that 

* ,· 
(1 x g) sqi(v x z.,) 

. . q 
* i k . k 

= (1 x g) r; sq (v) xsq1 - (z., ). 
k=o q 

Suppose that sl(v x z.,~) 
q+i 

= r; µp+k'q+i-k 
k=-p 

(A) 

(B) 



+k +· k 
h . 1· n Hp (V,C) '°' Hq l- .(X ,*), were µp+k'q+i-k is 16' q 

* Now g is an injection in dimensions less than 2q so 

. - k( ) x i-k( ) . µ +k' +· k- sq v sq z, if -q + i < k ~ i p q l- q 

andµ +k +· k = O if i < k ~ q+i, Therefore we have that p ,q l-

-q+i i 
sl(v x z..q') = I:_ µp+k,q+i-k+ r; 

k sq (v) x i-k( ') sq z, • q k--p k = -q+i+l 

Note in this case if we take q=n, then p=O and (C) becomes 

Now let p + q = n with p,q ~ 1. 

see that it is the sum of terms 

Consider sl (z, 1 x z, -'). From (A) we 
p q 

and that terms for the index k are 
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(c) 

(D) 

specified for -p ~ k ~ p-1. From (C) we see that the last 2q-l terms are 

specified, namely those terms for which -q+i+l ~ k ~ i+q. But 

-q + i + 1 = i + 1 + p - p - q < n + 1 - n + p = p + 1. Therefore 

-q + i + 1 ~ p. Thus the terms are specified for all values of the in-

dex k. Hence 

The Cartan formula follows now from (B), (D), (E) and Theorem 1. 5. 

Corisider first the case p,q ~ 1, Let (X,A), (Y,B) be pairs of spaces 

such that [A x Y, X x A } is an excisive couple in X x Y. Suppose x is 

in HP(x,A) and y is in Hq(Y,B). Construct the following diagram 

(X,A) i< (Y ,B) jl x j2( * *) * * 
X ,A x (Y ,B ) 

f x. g 

--, (X , *) x (X , *) 
p q 

(E) 

where the middle pairs are the geometric realizations of the first pairs 

and j 1 ,j2 are the maps of Theorem 1.5. Also f and g are selected so that 
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f*(z,;) = j~(x) and g*(z,~) = j;(y). It follows from the fact that 

* * * * {A x Y, X x A} is an excisive couple that {A x Y , X x A } is an ex-

* x . * 
cisive couple in X x Y and consequently that (j1 x j 2 ) is an isomor-

phism, (cf.(6),p.493,497). 

We have 

* . . * (j x j ) sl(x x y) = sl(j x j ) (x x y) = 
1 2 1 2 

. * * . sqi(f x g) (z,' x z,') = (f x g) sqi(z,' x i.') = 
p q p q 

* i k . k 
( f x g) E . sq (z, I ) x s ql - ( z, :' ) by ( E) . 

k=o P q 

Also 

* i k i-k . i k * '-k * 
(jl x j2) E sq (x) x sq (y) = ~ sq jl (x) x sql j2(y) 

k=,O k=O 

i k * . . k * 
= E sq f (z,') x sqi- g (z,') 

k=o P q 

* i k . k 
= (f x g) i: sq (z.') x sqi- (z,'). 

k=O p q 

i 
Therefore we conclude sl(x x y) = ~ sqk(x) x sqi-k(y). 

k=O 

In the case p = o, q = n (or p = n, q = 0) a similar argument using 

(B) (or (D)) shows that 

sl (x x y) = x x sl (y) if p = O, q = n and 

sl(x x y) = sl(x) x y if p = n, q = 0, 



CHAPTER III 

THE COHOMOLOGY SUSPENSION. 

The cohomology suspension is a map 

* (J 

defined for each n ·~ 2 and i ·~ 2. Using Brown's generalization of the 

Eilenberg~Zilber Theorem in terms of the twisted tensor product (1) we 

will show that the cohomology suspension is an isomorphism for each 

n ~ 2 and 2 ~ i < 2 n. The cohomology suspension ha.s been defined in 

Chapter I.. We will still write H1 (K) for Hi(K,z2 ). 

Path Spaces 

Let R+ denote the non-negative real numbers and I denote the 
r 

+ 
closed interval from O to r, r being in R • The spa'ce of paths P(B) 

in a topological space Bis defined by 

P(B) = ((a,r) : a 
. . + 

I ...... B, · r in R } • 
r 

Let h : P(B) : ..... BI x R+(I = I 1 ) be given by h(a,r) = (a',r) where a'(t) = 

a ( tr ) , t . in L 
I I· . 

B is given the compact open topology and B x R is 

given the product topology. 

Proposition 3.1: his an injection. 

Let (a,r) i(13,s). Supposer(= s. Then (a',r) (=(13:s) since rands 
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are different. Suppose next that r =sand a~ S· Then a(t0 ) ~ S(t0) 

for some t 0 in I . There are two cases to consider, namely r = 0 and . r 

r .-:J. o. 

Case 1. r = o. Then a(O) ~ s(o). In this case a'(t) = a(o) for 

all tin I and S'(t) = S(O) for all tin I hence a' -:j. S'· 

Case 2. r ~ 0. Lett= t /r. Then 
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a'(t) = a((t0 /r)r) = a(t0) and S'(t) = S((t0/r)r) = s(t0 ). Therefore 

a'(t) ~ s'(t) and it follows that a' -:J. s'. Hence we have shown that h 

is an.injection. 

P(B) is given a topology by requiring that h be homeomorphism of 

P(B) and its image, 

It is possible to define a multiplication for certain pairs of 

paths in P(B). Paths (a,,r) and (s,s) such that a(r) = S(O) are 

multiplied as follows: 

(a,r)(s,s) = (y,r + s) where 

y ( t) = a ( t) if O ~ t ~ r and 

y(t) = s(t-r) if r ~ t ~ r + s. 

Usually we will surpress rands and write aS for the multiplication of 

the paths (a,r) and (s,s). 

Let b e B. We will let eb denote the pair ( eb ,o) where eb (o) = b. 

Then ea(O) and ea(r) are respectively a left and right identity for (a,r) 

with respect to the multiplication defined above. 

E(B) and O(B) will denote respectively the subspaces of P(B) con-

sisting of all paths ending at band the subspace of all paths beginning 

and ending at b. The multiplication in P(B) defines an associative 

multiplication with unit in o(B) and defines an action of O(B) on the 



right of E(B), 

Fiber Spaces 

Suppose p: X-> Bis continuous. 

Let U C P(B) x X be defined b.Y 
p 

U = [(a,x) a(r) = p(x)}. 
p 

A lifting function for the map pis a map A : U ->X such that 
p 

p A(a,x) = a(o). A lifting function A is transitive if 

i) A(eb,x) = x for x in X, b = p(x) 
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ii) A(as,x) = A(a, A(S,x)) when aS is defined and (S,x) is in 

u . 
p 

Definition 3,1: A transitive fiber_ space is a quadruple (X,B,p,A) where 

p : X-> Band A is a transitive lifting function for p. 

Consider the quadruple (EX ,X ,P, A) where p EX -> X is defined n n n n 

by p(01) = a(o) and;\ : U _. EX is given by 11.(a,S) = (aS). 
P n 

Provosition 3,2: (EX ,X ,p,;\) is a transitive fiber space. 
n n 

By definition we have 

so the composition of paths af3. is always defined and hepce A is well de-

fined. In this case A is also a transitive lifting f'unction for p be-

cause 
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whenever aS is defined and (s,y) is in u. Note that (S,y) being in U 
p p 

is equivalent to Sy being defined. Thus (EX X ,P,A) is a transitive . n n 

fiber space. 

Twisted Tensor Products 

The reader is referred to Homology by S. MacLane (3) for the defini-

tions of DGA module, DGA algebra, DGA module over a DGA algebra, and 

DGA coalgebra. DGA means differential graded augmented. In all cases 

we will assume the ground ring to be the field z2 • Hom will mean 

Ho!llz and® will mean ®z , 
2 2 

Let K be a DGA coalgebra with d: K ~ K ® K as coproduct. Let 

G, N, and H be z2-modules and u: G ® N ~ H be a z2 -homomorphism. Let 

Ube in Hom(K,G), V be in Hom(K,N), and c be in K ® N. 

Definition 3.2: We define the cup product U .._V and the cap product 

c "U as follows : 

U ,.._,, V = u (U ® V) d 

c -u = (1 ® u)(l .® U ® l)(d ® l)(c) 

where 1 deno~es the appropriate identity map. We see that U '-' V is a 

meniber of Hom(K,H) and that c - U is a member of K ® H. 

Definition 3,3: Let K be a DGA coalgebra and A be a DGA algebra. A 

twisting cochain is a member cp of Hom(K,A) such that if cp = r.cp then 
q 

1) Cf'q is in Hom(Kq,A), cp O = O, cp (K )CA l q q q-

q-1 
2) acpl = O and ~ = cp o + I: cpk'""" cp q-k q q-1 k = 1 
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where a: A - z2 is the augmentation and the cup product is formed us

ing the multiplication in A. 

Definition 3.4: Let K be a DGA coalgebra, A an DGA algebra, and Lan 

DGA A-module. Let cp: K -A be a twisting cochain. We define a z2 -

homomorphism O : K ® L - K ® L as follows: 
cp 

o (k ® h) == ok ® h + k ® ah + (k ® h) - cp 
cp 

where k is in K, his in L, and the cap product is formed using the 

(B) 

pairing A® L - L defined by the A-module structure of L. We see from 

Definition 3.2 that o can be written as 
cp 

o == o ® 1 + 1 ® o + (1 ® u)(l ® cp ® l)(d ® 1) 
cp 

where d: K - K ® K is the coproduct and u: A® L -A is scalar multipli-

cation. Since a and cp each lower dimension by one and u, d preserve di-

mension we see that o lowers dimension by one in K ® L. 
cp 

Proposition 3,3: 

From (B) 

Let ocp be as defined in definition 3,3 then o o 
cp cp 

a o == (o ® 1 + 1 ® o + (1 ® u)(1 ® cp ® 1)(d ® 1)Xa ® 1 + 1 ®a+ 
cp cp 

( 1 ® u)(l ® cp ® l)(d ® 1)) 

== aa ® 1 + 1 ® aa +a® a+ a® a+ 

(a® 1)(1 ® u)(l ® cp ® l)(d ® 1) + 

(1 ® o)(l ® u)(l ® cp ® l)(d ® 1) + 

(1 ® u)(l ® cp ® l)(d ~-1)(0 ® 1) + 

(1 ® u)(l ® cp ® l)(d ® 1)(1 ® o) + 

(1 ® u)(l ® cp ® l)(d ® 1)(1 ® u)(l ® cp ® l)(d ® 1). 

== 0. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
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Because aa = 0 and z2 is ~he ground ring we see that the sum of the first 

four terms is O, The remaining five terms have been as.signed numbers so 

that we may easily identify them, 

From (i) we have 

(o ® 1)(1 ® u)(l ® ~ l)(d ® 1) = (1 ® u)(~ ® 1 ® 1)(1 ® cp ® l)(d ® 1), 

From (iii) we have 

(1 ® u)(l ® cp ® l)(d ® l)(c ® 1) = (1 ® u)(l ® cp ® l)(a ® 1 ® 1 + 

1 ® ~ ® l)(d ® 1) 

because the coproduct dis a chain mapping) 

= (1 ® u)(l ® ~ ® l)(a ® 1 ® l)(d ® 1) + (1 ® n)(l ®' ® 1)(1 ®a® 1) 

(d ® 1). 

= (1 ® u)(o ® ~ ® l)(d ® 1) + (1 ® u)(l ® cpo ® l)(d ® 1) 

= (1 ® u)(a ® 1 ® 1)(1 ® ~ ® l)(d ® 1) + (1 ® u)(l ® cpo ® l)(d ® 1). 

Therefore we have (i) +(iii)= (1 ® u)(l ® cpo ® l)(d ® 1). 

From (v) 

(1 ® u)(l ® cp ® l)(d ® 1)(1 ® u)(l ® cp ® l)(d ® 1) = 

(1 ® u)(l ® cp ®.1)(1 ® l ® u)(d ® 1 ® 1)(1 ® cp ® l)(d ® 1) = 

(1 ® u)(l ® l ® u)(l ® cp ® l ® 1)(1 ® l ® cp ® l)(d ® 1 ® l)(d ® 1) = 

(1 ® u)(l ® u ® 1)(1 ®cp ® cp ® 1)(1 ® d ® l)(d® 1) 

because u and dare associative, 

= (1 ® u)(l ® u(cp ® ,)d ® l)(d ® 1) = 

(1 ® u)(l ® (cp'-',) ® l)(d ® 1) by definition 3,2 

where we use the pairing u: A® L ~ L to form the cup product 



= (1 0 u)(l 0 ~ + 0 l)(d 0 1) from Definition 3.3 

= (1 0 u)(l ® cpcl ® 1) (d 0 1} + (1 ® u) ( 1 0 ~ ® 1) (d ® 1). 

Therefore we have 

( i) + (iii) + ( v) = ( 1 ® u) (1 ® ·~ ® 1) ( d 0 1) 0 

Looking at this last term we have 

(1 ® u) (1 0 ocp ® 1) (d ® 1) = (1 0 u)(l ® 2l ® 1)(1 0 cp ® 1) (d ® 1) 

= ((1 0 u)(l ® 1 ®a)+ (1 ® a)(l ® u))(l 0 cp ® l)(d ® J) 

because u is a chain mapping 
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= (1 ® u)(l ® 1 ® o)(l ® cp ® l)(d 0 1) + (1 ® o)(l ® u)(l ® cp ® l)(d ® 1) 
•. ' 

= (1 ® u)(l ® cp ® a)(d ® 1) +(ii)~ 

(1 ® u)(l ® cp ® i)(l ® 1 ® a)(d ® 1) +(ii)= 

(l®u)(l®cp®l)(d®l)(l®o) +(ii)= 

(iv) + (ii). 

Therefore (i) +(ii)+ (iii)+ (iv)+ (v) = o. 

Definition 3,5: Let K be a DGA coalgebra, A be a DGA algebra, and 1 be 

a DGA A-module, Let cp: K ~A be a twisting cochain. The twisted tensor 

product of Kand 1 with respect to the twisting cochain cp is the DGA 

z2-module K ® 1 defined as follows: with respect to grading and aug
cp 

mentation K 0 1=K01. The differentiation 2l on K ® 1 is defined 
cp cp cp 

in definition 3.4. From Proposition 3,3 we see that o is a differenti
cp 

ation. 



The Topology of (EX, X ,p) in Terms of 
n n 

the Twisted Tensor Product 
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Let* be in Xn, Let S(Xn) denote the chain complex with z2 coeffi

cients generated by singular simplices taking the vertices of the standard 

simplex into* Since X is arcwise connected it follows by a well known 
n 

theorem that S(Xn) is chain equivalent to the complex of chains with z2-

coefficients generated by all singular simplicies whose image is in X, 
n 

S(X) is a coalgebra if the coproduct is defined as follows. Let CJ 
n 

be a singular simplex of dimension q whose vertices are all mapped to*· 

Suppose O ~ k ~ q. Let CJ(O,l, •. ,,k) be the singular k-simplex defined 

by 

Let CJ(k, ... ,q) be the singular (q-k)-simplex defined by 

CJ(k, ..• ,q)(t0 , .••• ,t k) = CJ(o,, .. ,o,t0 , ..•. ,t k) q- q- • 

Here (t0 , ... ,t) is the usual representation for a member of the standard 
. p 

p-simplex. We see that CJ(O, ... ,k) and CJ(k, .•. ,q) are members of S(X ). 
n 

Define d(CJ) by 

q 
d(CJ) = ~ CJ(o, ••. ,k) ® CJ(k, ..• ,q), 

k=O 

This defines don the generators of S(X) hence by extending linearly we 
n 

have a z2-homomorphism d: S(X) ~ S(X) ® S(X ). It is well known that n n n 

- S (X ) is an associative DGA coalgebra with d as the coproduct. 
n 

The transitive fiber space (EX ,X ,P,A) has for its fiber 
n n 

P-1(*) = ox . 
n 

Let the continuous map m:OX x OX ~ ox be defined by 
n n n 

m(a,,13) =OIS· Let 
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g : s (ox ) ® s (ox ) .... s (ox x ox ) n n n n 

be the Eilenberg-Zilber map. Here s(oxn) and s(oxn x oxn) is the chain 

complex with z2-coefficients generated by all singular simplices. 

We have the following diagram 

s (ox ) ® s (ox ) :, s (ox x ox ) ~# s (ox ) 
n n n n n 

where m# is the z2-homomorphism induced by m, 

Let 1 denote the 0-simplex in s(oxn) whose image is e*, 

a DGA algebra under the multiplication ill,jg. 

Theorem 3.1: There is a twisting cochain 

t : s(x) .... s(ox) which satisfies n n 

i) If w is a constant simplex in S(X ), t(w) o. 
n 

This is Theorem 4.1 of (1), 

Then S(OX) is 
n 

For the transitive fiber space (EX ,X ,P,A) the lifting function 
n n 

A : · U .... EX defines a map A : OX x OX -1 OX by taking A to be the 
p n n n n 

restriction of A to OX x OX. Notice that i = m (defined above). n n 

Therefore we can use A to define a DGA s(ox )-module structure on the 
n 

DGA z2-module s(oxn). We see that this s(oxn)-module structure is just 

the structure obtained by regarding the DGA algebra S(OX) as a DGA 
n 

s (ox )-module ' 
n 

Using the twisting cochain described in Theorem 3.1 we can form 

the twisted tensor product 

s (x ) "' ® s (ox ) . n ~ n 

The following theorem is the main theorem of Brown's (1) and gives the 
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relation between S(X) (the base) s(ox )(the fiber), and S(EX )(the n . n n 

total space). Let S(EXri) denote the chains with z2-coefficients gen-

erated by those singular sim.plices whose vertices are mapped to 

OX. It is well known that S(EX) is chain equivalent to the chain com-
n . n 

plex with z2-coefficients generated by all singular simplices whose image 

is in EX. 
n 

Theorem 3.2: Let~ be the twisting cochain in Theorem 3,1, There is a 

chain equivalence 

,i, : s (X ) ;i; ® s (ox ) .... s (EX ) • n ~ n n 

This is Theorem (4.1) of (1). The definition of ,i, is given in the 

proof of this theorem, but will be omitted because it is complicated and 

will not be needed. 

Let D CS(X) be the subcomplex consisting of all degenerate chains. n 

See (3), p. 236 for the definition and properties of D. Let i:OX .... EX n n 

be the inclusion mapping and let 

h': s (ox ) .... s (x ) ;i; ® s (ox ) and n n ~ n 

TT':S(Xn)~ ® S(oxn) .... S(Xn) be defined as follows: 

Let 1 be the zero simplex of S(X) and let a be the augmentation of S(OX ). 
n n 

h'(s) = 1 ® x sin s(ox) n . 

TT'(T ® s) = a(S)T Tin s(x ), sin s(nx) n n 

Lemma 3.1: ,i,:s(xn\ ® s(oxn) ·can be chosen so that ,ith' = 

i# and P#,i, = TT'(mod D). 

This is Lemma 7,4 of 1. We will assume herea~er that ,i, is always 

chosen to satisfy this lemma. 

Let S (X) denote the chains generated by singular simplexes taking n _n 

the n-1 skeleton of the standard simplex into* and let j:S (X) -n n 
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S(X) be the inclusion map. Let gj' = gjj:S (X) ~ s(nx ). gj' is obvious-n n n n 

ly a twisting cochai~. Let 1 be the identity map on S(OXn). 

Lemma 3,2: ·,11(j ® 1) : s (X ) ... , ® S(OX ) ~ S(EX ) is a chain equivalence 
"' n n \I! n n 

and gj 1 = 0 for q < n. 
q 

This is Corollary 4.3 of (1). 

Let h I and TI' be as in Lemma 3 .1. Define n"= TI' ( j ® 1) , 

We see that Im(h') is contained_in Sn(Xn) ® s(nxn) so take h: s(nxn) __, 

S (X ) ... , ® s(nx) to be h' with its range restricted. n n \I! n 

Lemma 3,3: w(j ® l)h = i# and p# t(j ® 1) = ,r(mod D). 

This is an immediate consequence of.Lemma 3,1. 

p*: H. (EX ,OX ;z2) ~ H. (X , * ; z2) is an Isomorphism 
1 n n · 1 n 

for 2 ~ i < 2n, n ~ 2. 

Henceforth we will.assume that all homology groups have z2-coeffi

cients. From Lemma 3.3 we have that Im(h) = 1 ® s(nx) is a subcomplex . n 

of S (X ) ... , ® S(OX ), that w(j ® 1)(1 ®(SOX)) is contained in S(oX ), n n\l! · n n n 

and w(j ® 1) restricted to 1 ® s(nx) is a chain equivale~ce of 1 ® s(nx) n n 

and s(nx ). We have proved therefore n 

Lemma 3.4: The chain equivalence w(j ® 1) induces a chain equivalence 

w' : S (X ) ... , ® S(OX )/1 ® S(nx) ~ (S(EX )/S(OX ). w' maps the equiva-n n \I! n n n n 

lence class containing y to the equivalence class containing w(j ® l)(y). 

Let W Sn(Xn) be the subcomplex generated by the constant singular 

simplexes. Denote by w the constant simplex of dimension q. 
q . 

Lemma 3. 5: W ® s (nx ) is a subcomplex of s (X ) ... , ® s (nx ) n nn\l! .n• 
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W ® s(ox) is generated by elements of the form w ® T, Tin s(ox ). 
n q n 

We need to show that 0"',(w ® T) is a member of W ® S(OX ) . 
.,.. q n 

By Definition 3.4 

O;i; I ( wq ® T) = ow ® T + w ® oT + w ® T ,-,. ~ I 
~ q q q 

= ow ® T + w ® oT + (1 ® m~g)(l ®iii'® l)(d ® l)(w ® T). q q # . q 
q 

By definition d(w ) = ~ w. ® w . therefore 
q i = 0 l q-1 

q 
o;i;1(w ® T) = o ® T + w ® oT + ~ w. ® i!i'(w .)(T) 
~ q q q i=O i q-1 

(We write (T)(T') for m#g(T ® T')). But by Theorem 3.1 i!i'(w) = O, hence 

O;i;t(W ® T) = ow ® T + w ® oT which is in w ® s(ox ). 
~ q q q n 

We have 1 ® S(OX )CW® S(OX ), so the identity map induces a 
n n 

chain map 

r : s (x )"', ® s(ox )/1 ® s(ox) ..... s (x )"', ® s(ox )/w ® s(ox) n n.,.. n n n n~ n n• 

I is an onto mapping so the following is a short exact sequence of com-

plexes: 

i I 
0 ..... Ker I ..... Domain I ..... Range I ..... b (A) 

where i is the inclusion map. 

Lemma 3.6: I*: H(Domain I) ..... H(Range I) is an isomorphism. 

Associated with the short exact sequence (A) is the long exact se-

quence 

(i)* (I)* o* 
-> H (Ker!) ~ H (Domain I) ..... n H (Range I) ..... H 1 (Ker I)) ........ 

n n n n-

We see therefore that I* will be an isomorphism if 

H(Ker I)= 0. From the definition of I 



* . Ker I= w ® s(nx) 
n 
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* * * where (w )0 = O and (W )i = Wi if i > o. The differential for W ® s(nxn) 

is oip, but in this case it is also the usual differential for the tensor 

product of two complexes. This is a consequence of the proof of Lemma 3,5 

* and the fact that 0 (W1 ) = o. Hence by Theorem 1.1 H(W ® s(nxn))""" 

* * H(W) ® H(S(OX )). But H(W) = O, hence H(Ker I)= O, 
n 

The z2-module S (X) ® S(OX )/W ® S(OX.),is isomorphic to.the z2-module 
n n n n . 

(Sn (xi/w) ® S(OX n) by the correspondence A[S ® T] = [SJ ® T where S is 

in S (X ), Tis in s(nx ), and [ J is the appropriate equivalence class. n n n 

Let o denote the differential for Domain (A) . It is induced by ocp,. We 

can use /\.i t9 d~fine a differentiation ~' on Range (A) by 

-1 
Definition 3,6: o'([SJ ® T) =A~· A. ([SJ® T) 

= A ~[S ® TJ 

= A(ocp,(S ® T)J 

= .L\[ as ® T + s ciT + s ® T ..... <P 'J 

= [oSJ ® T +[SJ® oT +.A[S ® T"cp'J. 

where Sis in S (X) and Tis in S(OX ). It is clear that o'a' = 0 and n n . n 

.Ac' = o 'A· We have proved therefore 

Lemma 3,7: A. is a chain equivalence of the complexes S (X ) ,'!; , ® S (OX ·) / n n lt' n 

W ® S(OX) and (S (X )/W) ® S(OX) with the differentiation of Definition n n n n 

3.6. 

Next we will compute the homology of the complex (S (X )/W) ® 
n n 

S(OX) in dimensions smaller than 2n. The computation rests on the n 

following lemmas. 

Lemma J.8: If q < 2n then ~,1;' ,1;i ~ 
Olt' q = lt' q-1 go 
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This is a consequence of Lemma 3,2 because since § 1 is a twisting co-

chain we have 

q-1 
= §' o + E §,.....,iii' 

q-1 i q-i' i=l 

But§~= 0 if i < n by Lemma 3,2, The conclusion follows now because if 
l 

q < 2n then either i <nor q-i < n. 

From Proposition 1.1 we conclude that H (S (X )) == z2 (n > 1). From n n n 

Theorem 1,3 and Proposition 1.1 we conclude that H 1 (s(ox )) == z2 . Denote 
n- n 

bye a fixed fundamental n-cycle of S (X ), i.e. e is such that cls(e) n n n n n 

"f O. 

Lemma 3,9: Let n ~ 2. p'(e) is a fundamental cycle of S(OX ). n n n 

We see from Lemma 3,8 that § 1 is a chain mapping in dimension n. 
n 

Hence it is sufficient to show that there exists one n-cycle in S (X) n n 

which is mapped to a fundamental (n-1)-cycle in S(OX) by§'. 
n 

By Lemma 3.2: S (X )~, ® S(OX) is acyclic. Let x be a fundamental 
n n ':II n 

(n-1) - cycle of s(ox ). Consider the chain 1 ® x. 
n 

Thus 1 ®xis an (n-1)-cycle. There exists an n-chain y of s (x ) @ 
n n 

s(ox ) such that 0§ I (y) = X, We can suppose n 

n-1 
y = E w. ® T n-i 

+Es® T 
i=O l Ct 

Ct Q' 

where T . is an (n-i)-chain of S(OX ), each s is an n-simplex in n-1 n et 

S (X ), and each T is a zero simplex in S(OX ). Therefore n n et n 

n-1 
E (ow. ® T . + w. ® oT . +(w. ® T . )- § ') 
i=O 1 n-1 1 n-1 1 n-1 

+ E(os ® T + s ® oT + s ® T "~'). 
Ct Q' Q' Q' °' Ct Ct 
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Now (w. ® T . )" t' = o, O ~ i ~ n-1 and 0T O f'or all <X• Also f'or each i n-i ot 

n-simplex s we have 
(X 

Theref'ore 

n 
d(s) = r: s (o, ... ,i) ® s (i, ... ,n) 

ct i=O ct <X 

= 1 ® s 
(X 

n-1 
= r: 

i=O 

n-1 
+ s ® 1 + E w. ® w .• 

ot . 1 i n-i i= 

oW. ® T . + w. ® oT . i n-i i n-i 

n-1 
+ E(os ® T + 1 ® t'(s )T + s ® t'(l) T + E w. ® ~'(w .) T) 

ot <X <X <X ot ct ot i=l i n-i ct 

n-1 
= E 

i=O 
ow.® T . + w. ® oT . + E os ® T + l ® t'(s ) T, i n-i i n-i ot <X ct ct 

(X 

But ot,(y) = 1 ® x also. Theref'ore we conclude 

1 ® x = l ® 0T + E 1 ® t'(s )T and hence 
n ot ot 

Of 

x = oT + r; j 1 (s )T. Now xis a f'undamental 
n ct ot ct 

cycle and 0T is a bound so E §'(s )T is a f'undamental cycle. Let l 
n ct a 

a 
be the unit in s(nxn). Theref'ore the 0-simplex whose image is the path e* 

isl. Since OX is arcwise connected there is a one-simplex T' such that 
n ot 

eT' = l + T f'or each ot• Now 
a ot 

j'(s )T + t'(s) = t'(s )(T + 1) = 
a a a ot ot 

~ ' < s )( aT ' ) = o + , ~ ( s ) ( oT ' l 
ct a & 

= §'(os) + t'(s )(oT') by Lemma 3,2 
a ot ot 

= oj'(s) + ~'(s )(oT') by Lemma 3,8 
ot ot ot 

o(t'(s )(T')). Theref'ore 
ot Q' 

~'(s: )T and §'(s) are members of' the same homology class. 
ot a ct 

Thus E t'(s) = t(r:(s )) is a f'undamental (n-1) cycle. 
ot a ot 
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The proof of the lemma is complete if we can show Es is an n-cycle 
O! 

in S (X ). Now o(Es) = O or w 1 . If o(Es) = w 1 then n must be even. 
n n Q! n- °' n-

In that case Es + w is a cycle and §'(Es + w ) = §'(Es ) . Thus for 
ot n ot n °' 

each n ~ 2 there is at least one n-cycle whose image under t' is a funda-

mental (n-1) cycle. 

Let a® denote the usual differentiation for the tensor product 

(s (x )/w) ® s(ox ). n n n 

Lemma 3,10: o~ = a~ for i < 2n. 
l l 

(S (X )/W) ® S(OX) is generated by elements cr ® 'l" where cr is a p-n n n 

simplex in S (X )/wand 'l" is a q-simplex in S(OX ). Suppose p + q < 2n. n n n 

Then 

p n-1 
d(cr) = E a(o, ... ,i) ® cr(i, ..• ,p) = E w. ® cr(i, •.. ,p) + 

i=O i=O 1 

p 
E cr(O, •.. ,i) ® w .. 
i=n 1 

Therefore by definition 

o'(cr ® T) = [ocr] ® r + [cr] ® o'l" +.A[cr ® T"'@'] 

= [ocr] ® r + [cr] ® oT + 

n-1 p 
.A(E w. ® @'cr(i, ... ,p) 'l" + E cr(O,, .. ,i) ® t'(w · .) r] 

l p-1 i~ i~ 

= [ocr] ® T + [cr] ® o'l" + O + O = a®(cr ® T). 

Let e denote a fundamental cycle in S (X) and e denote the cor-n n n n 

responding fundamental cycle in S (X )/W. Let e 1 = §'(e ). We showed n n n- n 

in Lemma 3,9 that e l is a fundamental cycle in S(OX ). Let z2 (e ® e 1) n- n n n-

denote the subspace of (Sn(Xn)/W) ® S(OXn) generated by en® en-l. 

·® 
Lemma 3,11: Imo~n = Imc2n Ef' Z2 (en ® en-l) · 
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We will show first that the set on the left is a subset of the one 

on the right. ,Let cr be a p-simplex of S (X )/Wand T be a q-simplex of 
n n 

s(nxn). Suppose p + q = 2n. If p < 2n we see from the proof of Lemma 

3,10 that a~n(cr ® T) = a~n(a ® T), Therefore suppose p = 2n. We wish 

to compute o~n(cr ® T), We have 

2n 
d(cr) = E cr(O, ••• ,i) ® a(i, ••• ,2n) = 

i=O 

n-1 2n 
E w. ® cr(i, ..• ,2n) + E cr(O, ••. ,i) ® w2n-l + cr(O, ••. ,n) ® cr(n, •.. ,2n). 
i=O 1 i=n+l 

By definition 

o'(cr ® T) = [ocr] ® T + [cr] ® T + A(cr ® T ~t'] 

= O~n(cr ® T) +.A(a(O, ... ,n) ® t'a(n,, .. ,2n) T] 

= o~n(cr ® ,.) + [cr(O, ... ,n)J ® t' a(n, ... ,2n) T· 

Now [cr(O, .•. ,n)J is a cycle in S (X )/Wand ta(n, •.• ,2n) Tis a cycle in n n 

s(nxn). This follows because every n-chain in S (X )/Wis a cycle and 
n n 

because 

o(t'a(n, ... ,2n) T) = (at'(crn, ... ,2n))T + t'cr(n, ... ,2n)oT 

= t'(ocr(n, .•• ,2n))T + 0 = 0 = 0, 

Therefore we can write 

[cr(O, •.• ,n)J = e en + av where e = 0 or l 

and vis some (n + 1)-chain. Also 

t'cr(n, .•. ,2n)T = e' e + av' where e' = 0 or 1 and n~l 

v' is some n chain. Therefore 
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= o®2 (cr ® T + e e ® V 1 + e 1V ® e 1+ av® v')+ ee'(e ® e 1). n n n- n n-

Therefore o' (cr ® r) is a member of Imo~n E9 z2 (en ® en-1), 

We need now to show the set on the right is a subset of the one on 

the le~. First we need to do a preliminary computation. Let z.. be the n 

generator of If(x ). It is well known that there is a space Yanda 
n 

member yin If(Y) such that y2 .,_ 0, Choose a map f:Y ~ X so that 
n 

f*(z.. ) = y. Then f*(z.. 2 ) = f*(z.. )f*(z.. ) = y2 .,_ o. We conclude there-n n n n 

fore that z..! .,_ 0. In Proposition 2.1 we have shown that Hi(Xn,z2) and 

HoIDz2 (Hi(Xn,z2),z2) are isomorphic as vector spaces over z2 • Therefore 

we will regard z..2 as a member of Hom... (H_ (X ,z2),z2). Because z..2 .,_ o, n z. ~~n n n 
2 2 

there is a 2n-cycle, e2n' of Sn \Xri) for which .z..n (els (e2n)) = 1. . Also 

any f e HoIDz (H. (X ,z2 ) ,z2) determines a cocycle f of HoIDz (S (X ) . ,z2) 
2 i n · 2 n n i 

as follows: If cr is a cycle in S (X ). define f(cr) = f(cls(cr)). The 
n n i 

cycles are a subspace of S (X ). so f can be extended to a z2-linear n n i 

map of S (X ) .• Thus n n i 
we will write~ or (;2) for this cocy9le de-n n 

termined by z..n or z..!, Consider now the chain e2n ® 1. Let u: 

z2 ® z2 ~ z2 be the z2-homomorphism defined by u(l ® 1) = 1. We have 

n-1 2n 
d(e2n) = E w. ® s. + E s. ® w. + E crk ® cr~ 

i=O 1 1 i=n+l 1 1 k 

for some i-chains, s. of S (X) and some n-simplexes crk and crk' of S (X ). 
i n n n n 

We can assume too that crk and cr~ are n-cycles for each k. This is be-

cause of the fact that if crk(or cr~) is not a cycle then crk + wn is. So 

v' are n + 1 chains of S (X ). Thus 
k n n 

n-1 2n 
d(e2 ) = E w. ® s. + E s1 ®w. + E(eke + ovk) ® 

n i=O 1 1 i=n.+l 1 k n 
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n-1 2n 
= E w. ® s. + E s. ® w. + E eke~(e ® e) 

i=O l l i=n+l l l k n n 

+ ~(eken ® oV~ + oVk ® €~ en + oVk ® ov~). 

We note that; (e) = 1 because e is a fundamental n-cycle and that n n n 

; (ovk) = 6(;) = O,; (ovk') = 6(;) = 0. We define; (a)= 0 if a is a n · n n n n · 

chain of dimension other than n. By the definition of the cup product 

operation we know that 

In this case we have 

µ.Eek e~ ;n(en) ® ;n(en) + 
k 

µ.(E ek;n(en) ® ;n(ov~) + ;h(ovk) ® e~ ;n(en) + ;n(ovk) ® ;n(ov~)) 
k . 

= 0 +Eek e~(l)(l) + 0 =Eek e~ = 1. Hence 
k 

n-1 2n 
=E w. ®s. +t s. ®w. +e ®e 

i=O i i i=n+l l i n n 

We have therefore by definition 

n-1 2n 
A(E w. ® ~'(s.) + E s. ® ~'(w.)+e ® ~'e + 

i=O l i i=n+l i i n n 



in the line above. We also see a~n(e2n ® 1) = ;n ® en-l + o~n(x) because 

the terms of x have homogeneous degrees (n,n), (n + 1, n-1) and (n,n) re-

spectively. 

We will show now that Im0~n EB z2 (;n ® en_1) is a subset of Imo~n. Let 
l 

p + q = 2n, er be a p-simplex of s (X1 ) /w and T be a q-simplex of S (OX ) • n n n 
® -Consider an element of the form 02n(cr ® T) + e(en ® en_1 ) where e = 0 or 1. 

To complete the proof it is sufficient to show that it is a member of 

Imo~n· There are four possibilities to consider. 

i) p < 2n, e = 0. In this case 

® 
02n(CJ ® T) = o~n(CJ ® T). 

ii) p < 2n, e = 1. We have 

o~n(cr ® T) +en® en-l = o'(cr ® T) +en® en-l 

+ a~n(x) + o~n(x) 

= a~n(CJ ® T) + o~n(e2n ® 1) + o~n(x). 

= o~n(CJ ® T + e2n ® 1 + x). 

iii) p = 2n, e = 0. We have already shown that 

O~n(CJ ® T) = o~n(cr ® T) + O~n(y) + e'(;n ® en-1) 

for some y and e' = 0 or 1. Therefore 

o~n (er ® T) = 

= 

O~n(CJ ® T) 

= 

0 1 (er® T) + O~n(y) if e' = 0 
2n 

o~n(CJ ® T + y) and 

O~n(CJ ® T) +;n ® en-l + o~n(y) if e' = 1 

C~n(CJ ® T + y) + ~~n(e2n ® 1 + x) 
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iv) p = 2n, s = lo From (iii) we have 

o~n (cr ® ,. ) + e ® e = o~n(cr ® ,-) + 0 I (y) + € I (e @ e ) + e ® e n n-1 2n n n-1 n n-1 

= o~n(cr ®,. + y) if € I = 1 

= o~n (cr ® ,. + y + e ® 1 + x) if f = 0 2n 

Lemma 3,12: The map r: H. (s (x )/w) ® H0(s(ox) - H. ((s (x )/w) ® s(ox )) 
1 n n n 1 n n n 

defined by r(cls(x) ® cls(y)) = cls(x ® y) is an isomorphism for i < 2no 

Let i < 2n-l. Then by definition 

H. ((S (X )/W) ® S(OX )) = Ker o~/Imo'.+l = Ker o~/Imo~+l 
1 n n n 1 1 1 1 

by Lemma 3.10. The Kunneth Tensor formula (Theorem 1,1) gives that for 

i < 2n-l 

i 
r : ~ Hk(s (x )/w) ® H. k(s(ox )) - H.((s (x )/w) ® s(ox )) 

k=O n n 1- n 1 n n n 

is an isomorphism. In this case the domain of r is 

H.(S (X )/w) ® H0 s(ox) because each of the terms in the direct sum is 
1 n n n 

trivial except for the value of the index k = i. 

Let i = 2n=l. By definition 

H2 1 ((s (x )/w) ® s(ox )) = Ker 021 1/Imo2' n- n n n n- n 

® I ® EB <- ) = Ker o2· 1 Imo2 z2 e ® e 1 by Lemma 3,10 and Lemma 3.11. 
n- n n n-

Consider the following sequence: 
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where i is the map induced by the inclusion map and j is the projection. 

The map j is a surjection. Now by the Kunneth Tensor formula (Theorem 1.) 

we have a map 

2n-l 
r I: ~=O ~(sn(Xn)/w) ® H2n-l-k(s(oxn)) _. 

Ker a~n-l/Im ~:n which is an isomorphism. 

In this case the domain of r' is 

H (s (x) /w) ® H 1 (s (ox ) ) ti' H2- 1 (s (x ) /w) ® H0 (s (ox ) ) • n n n- n Q:; n- n n n 

Therefore the above is a short exact sequence. Thus we conclude 

that the lemma is true for i = 2n-l. 

Consider now the following diagr~m for 2 ~ i < 2n: 

t: 
H. (s (x )a.,® s(ox )/1 ® x(ox )) -- H_. (s(Ex )/s(nx· )) 

1 n n ~ n n 1 n n 

Jr* t'' iP* · 
H.(s (x )a.,® s(ox )/w ® s(ox )) 

i n n ~ I n n H.(s(x )/W) 
. ,L,-AiE- ~... 1 n 

Hi ((Sn(Xn)/w) t~(ClX)) ~ l '4 

Hi(sn(xn)/w) ® H0s(oxri) ..... Hi(s(xn)/D) 

where t' is the isomor~hism induced by t'(Lemma 3,1), I* is the isomorph

ism of Lemma 3.6, ~ is the isomorphism of Lemm.a 3,7, and r is the isomor-

phism of Lemm.a 3,12. Define TI* as follows: Let 

TI: S (X) ® s(ox) ..... S(X) be the map of Lemma 3,3. We see that n n n n · 

TI(l ® S(OX )) = [ 0,1 }. Therefore TI induces a map 
n 

; : s (x) ® s(ox )/ 1 ® s(ox) _. s(x )/D. n n n n n 

in dimensions larger than zero and is a chain map in dimensions larger 

than one. Define TI*' to be the map induced by TI, The map~ is the one 



induced by the identity map on S(X ). Each constant simplex is de
n 
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generate in the dimensions larger than zero, hence the identity on S(X) 
n 

induces a map q: S(X )/W ... S(X )/Sin dimensions larger than zero which n n 

is a chain mapping in dimensions larger than one. It is well known that 

~ is an isomorphism in dimensions larger than one. To define the map 

m, we use that fact that the inclusion map i: S (X ·) ... S (X ) induces an n n n 

isomorphism i*: H.(S (X )/W ... H.(S(X )/D) for i ~ 2. We recall that i n n i n 

H0 (s(nxn)) == z2 . Let S be in Sn(Xn) such that [SJ is an i-cycle in 

S (X )/W. We define m(cls[SJ ® 1) = cls[SJ, where 1 is the nontrivial 
n n 

member of H0 (s(nxn)). Here [ J again means the appropriate equivalence 

class. Since the map i* defined above is an isomorphism it follows that 

mis an isomorphism. 

From Lemm.a 3,3 we know that the right hand portion of this diagram 

, - I 
commutes, i.e. TI*= ~P*W*· 

The map;; is defined as follows. By definition TI(W ® S(oX )) D 
n 

in dimensions larger than zero because TI(W ® T) = a(T)W which is a . q q 

degenerate chain if q > 0. Therefore TI induces a chain mapping in di-

mensions larger than one. We have 

Define ;; to be the map induced ; '. 

Lemma 3,13: The upper left hand portion of the diagram commutes, that 

Let [y] be an i-cycle in the domain of I with yin S (X) ® s(nx ). n n n 

We have 

TI; I* cls[y] = ;; cls(I[y]) 
-, 

= TI* cls[y] 

= els(;' [y]) = cls[TIY]· Also 



53 

;*cls[y] = els(; [y] = cls[TIY]· 

Lemma 3,14: The lower left hand portion of the diagram commutes, that 

-1 -is TI; A* r = m. Therefore TI; is an isomorphism, TI* is an isomorphism, 

and consequently p* is an isomorphism. 

Let cls[S] ® cls(T) be a generator of H.(S (X )/W ® H0 (S(OX )) 
1 n n n 

where Sis in S (X ), [SJ is an i-cycle of S (X ), and Tis a non-n n n n 

trivial zero cycle of s(ox ). We have 
n 

-1 . -1 
;; ~ r(cls[SJ ® cls(T)) = ;; ~ cls([SJ ® T) 

= ;; cls([S ® T]) = cls(;'[S ® T]) = els [TI(S ® T)] 

= cls[a(T) SJ= cls[SJ. Also by definition 

m(cls[SJ ® cls(T)) = cls[SJ. 

Theorem 3,2: The cohomology suspension cr*: Hi(X ,*) __, H1-1 (x ) 
n n-1 

is an isomorphism for n ~ 2 and 2 § i < 2n. 

* * ( *)-1 * From Chapter I we have by definition that cr = h 5 p. We have 

* ( )-1 already seen that h and 5 are isomorphisms in the correct dimensions. 

* Now p : Hi(X ,*)--, Hi(EX, OX) is the dual of the map 
n n n 

p*: H. (EX ,OX)__, H. (X ,*) because of Proposition 2.1. 
1 n n 1 n 

* Therefore p is 

an isomorphism if p* is, but p* is an isomorphism when 2 § i < 2n, n ~ 2 

by Lemma 3,14. 



CHAPTER·IV 

SUMMARY AND CONCIDSIONS 

This paper is concerned with finding a new approach to the axio-

matization for the Steenrod squaring operations. Using Brown's 

generalization of the Eilenberg-Zilber theorem for fiber spaces, a 

proof is given that the cohomology suspension 

. is an isomorphism for 2 :=§ i < 2n if n ~ 2. The Steenrod squaring 

operations can then be defined inductively and the axioms verified by 

classical methods. 

For each prime p > 2 there is a sequence 

i 
p : Ifl(X A·Z) ~ If1+2i(p-l)(X A·Z) 

' ' p ' ' 'P 

known as the pth reduced powers .. An axiomatization similar to that of 

the squaring operations has been given in (8) for the pth reduced powers 9 

The author believes that the method used here for the axiomatization of 

the Steenrod squares can be generalized to give that of the pth reduced 

.powers. 
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