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PREFACE 

The advent of spacecraft and ICBM's has made the problem of reentry 

communications blackout a very important one. This thesis proposes a 

novel approach to alleviate this problem. The preliminary evaluation 

of the system is done theoretically, because of the difficulty in du

plicating a reentry plasma in a laboratory. It is found that the pro

posed communications system has some promising aspects, but that exper

imentation is needed to define some portions of the problem sufficiently 

for engineering purposes. 
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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

The region of ionized gas which envelops a space vehicle during 

hypersonic entry into an atmosphere interrupts radio communication, 

thereby creating a 11blackout" condition. Such communication blackout 

gives rise to many problems in space technology, and, therefore, much 

research has been directed toward defining and alleviating the blackout 

condition. For example, because of loss of ground support during black

out periods, additional vehicle payload may be needed for navigation, 

guidance, and redundancy in case of an onboard system failure. Real

time terminal-phase systems may be compromised, such as altimeters, ICBM 

homing devices, and decoy discrimination systems. The cause of blackout 

is now understood in a large measure, and progress is being made in pre

venting it. 

The intense heating that occurs in the bow shock wave ionizes the 

gas in the shock layer between the bow shock and the vehicle surface. 

Because of the high temperatures and nonzero chemical reaction times, 

this ionization may persist as the gas flows over the vehicle and into 

the wake region, thus engulfing the vehicle in a layer of high concen-

tration of free charge which can impair electromagnetic transmission 

from either direction because of attenuation and reflection. The fol

lowing model of the interaction of an electromagnetic wave with a 

1 



plasma has usually been used to explain the blackout process, 

Given a plane wave propagating in a plasma with a space variation 

-ikx 
of e , a knowledge of the wave number, k, in terms of the parameters 

of the plasm.a will determine whether or not the wave is attenuated. If 

k is a real number, the wave propagates unattenuated in space; however, 

if k has an imaginary component, the exponential term is of the form 

2 

-O!x 
e and the wave is attenuated, perhaps severely. A fashionable theory 

predicts that the wave number for a wave of frequency win a plasma is 

given by 
ul!u? 

p ~ 
1 " iU/w} (1.1.1) 

where w is the electron plasma frequency, u is the average collision 
p 

frequency of electrons with other particles in the plasma and k is the 
0 

wave number in free space. 

The plasma frequency is the characteristi.c oscillating frequency of 

a charged particle in a plasma, and is determined by 

(1.1.2) 

where N is the density of charges, e and mare the charge and mass of 
0 

the particle, and e is the free space permittivity. An heuristic ex
o 

planation of the plasma frequency may be visualized by first assuming 

that the plasma contains an equal number of positive and negative charges 

and may be considered macroscopically neutral. Consider, for simplicity, 

that the average spacing maintained by these particles due to their el-

ectrostatic fields is an equilibrium spacing. If one of the charged 

particles were perturbed from its equilibrium position and all other 

charges remained fixed, the electrostatic force of the neighboring 
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charges would tend to restore the perturbed charge to its equilibrium 

position. If the perturbed charge were released, the restoring electro-

static force would cause the charged particle to oscillate about its 

position of equilibrium at the characteristic oscillating frequency like 

a mass on a spring. The collision of the oscillating particle with 

other particles provides a damping force. 

If collisions are neglected, the wave number for the plasma be-

comes 

(1.1.3) 

Note that if w is less than the signal frequency w, the term in paren
p 

theses is positive, and k is real. -ikx From e , one sees that the wave 

will propagate for this condition. However, if the plasma frequency is 

greater than the signal frequency, the wave number is imaginary and pro-

pagation is cut off. This is the blackout coQdition. 

By considering Equation 1.1.2 for the electron plasma frequency, 

one sees that it is proportional to the square root of the average elec-

tron density. The mechanism of blackout is now apparent. The increase 

in temperature in the shock layer causes an increase in charged par-

ticle density, which raises the plasma frequency, thereby bringing con-

ditions closer to the cutoff at w = w. Blackout becomes more severe 
p 

as electron densities go ~ven higher. 

1.2 Previous Work in the Area 

The literature related to the reentry blackout problem is much too 

voluminous for detailed listing in this thesis. However, the general 

approaches being taken toward alleviation have been summarized by Huber 

and Sims (1964). The research. approaches discussed in their paper are: 



(1) signal frequency selection, (2) aerodynamic shaping, (3) imposed 

magnetic fields, (4) material addition, and (5) laser communication. 

All of these schemes are directed at modifying the wave number kin a 

beneficial manner. Strictly speaking, the imposition of a static mag

netic field creates an anisotropic plasma with two distinct wave num

bers, one of which may allow propagation under conditions that would 

normally cause blackout; however, the assumptions used in developing 

the theory for magnetoplasmas are the same as those used in deriving 

4 

the wave number kin Equation 1.1.1. In fact, Equation 1.1.1 results 

from magnetoplasma theory if the magnitude of the imposed static magne

tic field is set equal to zero. Therefore, all of the above research 

approaches rely upon the same theoretical model of an electromagnetic 

wave in a plasma. In 1967 Dunphy, Kahn, and Mintzer wrote a paper on 

energy coupling at a plasma density discontinuity and mentioned the pos

sibility of using electroacoustic modes to penetrate the plasma sheath; 

however, the idea is not developed. 

1.3 Outline of the Method of Solution 

The subsequent text will present some basic material on electro

magnetic phenomena in plasmas in an attempt to show that the usual set 

of simplifying assumptions concerning reentry plasmas appear to have ob

scured the existence of a mode of energy propagation through the reentry 

sheath which will, in theory, propagate for all signal frequencies and 

electron densities. If two of these assumptions are eliminated, the 

theoretical model is a better approximation to an actual reentry plasma. 

Some interesting phenomena are predicted by the more general theory 

which might be employed in a reentry communication system. The 
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development of the more general theoretical model of a reentry plasma, 

the proposal of a communication system based on this model, and a theo

retical investigation of the practicality of the system comprise the re

mainder of this thesis. 



CHAPTER II 

THE Har TWO-FLUID PLASMA MODEL OF A REENTRY SHEATH 

2.1 Basic Equations and Plane Wave Propagation 

If an equilibrium plasma is assumed to be an ideal isotropic gas 

composed of equal numbers of electrons and singly-charged ions, both of 

which are free to move in the presence of a force field, and, if local 

perturbations of the field quantities are assumed to be time-harmonic 

and small with respect to the overall average, one may derive the fol-

lowing equations to describe the behavior of a collisionless plasma. 

These equations are derived in Appendix A and .are due to Oster (1960): 

where, 

~ -) -+ -+ 
7xH = iwe E + N e( v . - v ) o 1. e 

..... ..... ..... e 7xE + iwµ. H = 0 
0 

7·E =-
e 

0 

..... ..... 
im.u:iN v. = N eE - m.u~ 7n. 

l. 0 l. 0 l. l. l. 

..... ..... 
im u:iN v = - N eE - m u2 7n 

e o e o e e e 

. ..... 
iwn. + N 7 • v. = 0 

l. 0 l. 

--> 
iwn + N 7·v = 0 

e o e 

.......... 
E, H = electric and magnetic fields, 

..... 
v = particle velocity, 

m = particle mass, 

6 

..... 
7·H = 0 

(n. - n ) 
l. e 

(2.1.1) 

(2 .1. 2) 

(2.1.3) 

(2.1.4) 

(2 .1. 5) 

(2.1.6) 



n = variation in particle density, 

e = magnitude of electronic charge, 

E; ' II. o l""o permittivity and permeability of free space, 

w radian frequency, 

u = mean thermal velocity in particle gas 

N steady state particle density, 
0 

k 
= (3kT/m) 2 , 

7 

and the subscripts "e" and "i" refer to electron and ion quantities, re-

spectively. 

Equations 2.1.3 and 2.1.4 may be rewritten using the linearized 

equation of state for an ideal gas, P 

We then have 

-> 

im.wN v. = 
1 0 1 

-> 
im wN v = e 0 e 

2 = mnu. 

-> 
N eE 7P. 

0 1 

-> 
-N eE 7P 

0 e 

where Pis the variation in pressure in the particle gas. 

Likewise, Equations 2.1.5 and 2.1.6 may be written as 

-u~m.N 
-> 

7·v. = iWP. 
1 1 0 1 1 

2 -> 

-u m N 7•v = iWP 
e e 0 e e 

(2.1.7) 

(2.1.8) 

(2.1.9) 

(2 .1. 10) 

The basic equations .will now be arranged to show that a compres-

sible, two-fluid plasma will support three mode's of propagation, an op-

tical or electromagnetic mode and two plasma or electroacoustic modes. 

The basic procedure to be followed is due to Cohen (1961), and begins by 

applying the Helmholtz Principle to decompose the fields into solenoidal 

and irrotational fields. All necessary constraints are assumed to be 

satisfied. 
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Assume 

.... -+ -+ -+ -+ 
E E +E 7·E = 0 7xE = 0 

0 p 0 p 

-+ ..... -+ -+ -+ 
H = H +H 7·H = 0 7xH = 0 

0 p 0 p 

..... -+ -+ -+ ..... 
v = v +v pe' 7·v = 0 7xv = 0 e oe oe pe 

..... -+ -+ -+ -+ 
v. = v +v pi' 7·v 0 7xv = 0 

1. oi oi pi 

By sub st itut ing these re lat ions into Equations 2 .1. 1 through 2. 1. 10 

and following procedures similar to those involved in deriving 

equation in free space, the following result is obtained: 

where 

and 

72 tt 
0 

_ .. 
72 E 

0 

-> 
E = p 

-+ -+ 
H = H 

0 

+ K2H = 
0 0 

+ K2E = 
0 0 

N e(l -
0 

-+ -+ -+ 
E = E + E 

O p 

0 

0 

1 [x 7P 
- x.) x e e e 1. 

K2 w2 µ e (1 - x - x.) o o o e 1. 

x 
e 

= w2 I a 
pew 

x. = w2 • /w2 
1. p 1. 

- x.7P.] 
1. 1. 

w2 = N e 2 /m e (electron plasma frequency) pe o e o 

w2 . = N e2 /m.e (ion plasma frequency) 
pl. 0 1. 0 

-+ 
The optical or electromagnetic mode fields are given by E 

0 

the wave 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2 .1.14) 

-+ 
and H 

0 
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which satisfy the familiar wave equation with wave number k. The plas
o 

ma mode field is determined from the pressure gradients ryp and 1P.; if 
e l. 

P and P. are determined, a solution may be obtained for the plasma 
e l. 

.... 
field E . It is interesting to note at this point that the magnetic 

p 
.... 

field, H, is entirely associated with the optical mode and that the free 

..... 
charge density is entirely associated with the plasma modes (7·E = O). 

0 

The optical mode is, of course, transverse; however, the plasma mode is 

a longitudinal field, hence the designation "electroacoust ic ". 

To determine the pressure terms, Equations 2.1.11 and 2.1.14 are 

substituted into Equations 2.1.7 and 2.1.8 to yield 

where 

where 

or, 

..... ..... ..... .... -+ -> 
v.=v.+v. v = v + v 

.... 
v pe 

.... 
v pi 

l. Ol. pl. e oe pe 

..... 
v oi 

.... ie --+ 
-E v 
(lJll. 0 oe 

l. 

x. - 1 
l. 
m 

__ i_ e 

wN E: 
0 x e 

m. l. 

e = 1 - x - x. 
e l. 

..... 
v pe 

.... 
v . pl. 

i A _. 

= - wN e A7P 
0 

= ie .... 
E 

(J.'ille 0 

x. 
...!. 
m 

e 

x - 1 
e 
m. l. 

7 

From the continuity Equations 2.1.9 and 2.1.10 we have 

p 
e 

P. l. 

(2.1.15) 

(2. 1. 16) 

(2.1.17) 

(2.1.18) 
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where the relationship 

has been used. 

= -

2 = u.m. 
1. 1. 

3kT 

Now, Equations 2.1.17 and 2.1.19 may be combined to yield 

or 

1 - x x. 
e -1 p Pe e 

IJ?m. 
m. m 

1. e 
72 + 1. 

..... 
~ 0 

e x 1 - x. 
P. 

e 1. 
pi 1. m. m 

1. e 

10 

(2.1.19) 

(2. 1. 20) 

(2.1.21) 

Therefore, the pressure terms P and P. satisfy two coupled wave 
e 1. 

equations (see Equation 2.1.21). It is interesting to note that if the 

assumption m. = m is made, both equations in Equation 2.1.21 reduce to 
. 1. e 

the equation describing pressure in a one-fluid electron plasma. 

It is 

Writing Equation 2.1.21 as 

noted that T is real and 

x. 

..... 
= 0 

symmetric. 

x N e2 
e 0 _1, =- = 

m m. m m.w 
e 1. e 1. 

This is because 

E: 
0 

(2.1.22) 

Therefore, the matrix T may be diagonalized by a unitary transformation 

which will decouple the two wave equations. Losses caused by particle 
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collisions were not included in the plasma equations, because in that 

" case T would not be symmetr'ic. The equations for the lossy case follow 

from Equation 2.L.21 by substituting 

x 
e 

xe = 1 - iu /w 
e 

x. 
1 

xi= 1 - iu./w 
1 

where u = electron collision frequency 
e 

u. = ion collision frequency. 
1 

Generally speaking, u and u. are quite a bit different in a plasma 
e 1 

so the resulting matrix in the lossy case will not be symmetric. For 

this reason, losses are ignored. Some consideration of losses is given 

in Chapter VL 

" To diagonalize T, define the following transformation 

(2.1.23) 

Then, 

The matrix Mis chosen so that 

" where A1 and A2 are the eigenvalues of T, found by solving the determi-

" " nantal equation det(T - AI)= O. After some algebra, the eigenvalues of 

" Tare found to be 

_ w2mi {1 - x 1 - x. 
+ [Cl - x 1 - xi)2 4(1 - x - xi)J} A1 

e + 1 e + e 
- 27" m. m m. m .. mm. e 1 e 1 e e 1 

(2.1.24) 

_ w2mi {1 - x 1 - x. 
- [(1 

- x 1 - X., 2 4(1 - x - xi)]~} A2 
e + 1 e + m i) e 

-27 m. m m. mm. e 1 e 1 e e 1 
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Thus, for source free regions, 

(2.1.25) 

where K~ = A1 , K~ = 

Note that K2 = Oat 1 - x - x. = O, which means that the mode of 
e l. 

propagation described by P2 is evanescent or nonpropagating for frequen-

cies less than the plasma frequency. However, K~ is always real and 

positive, so the P1 mode always propagates. 

Thus, we have seen that a warm, two-fluid plasma will support three 

modes of propagation: (1) the optical or electromagnetic mode, (2) the 

P1 mode, and (3) the P2 mode, The P modes are called electroacoustic 

or plasma modes. The optical field may be found from a vector potential 
.... n, and the field due to plasma modes may be found from the transformed 

pressures P1 and P2 which may be considered as scalar potentials. The 

fields are thus determined by solution of the three simultaneous Helm-

holtz equation: 

72n + K20 = 
0 

0 

72p 
l + KfP1 = 0 

72 P2 + K~P2 = 0 

together with boundary conditions that remain to be presented. 

Seshadri (1965) has investigated the phase velocity of the three 

modes with wave numbers K, K1, and K2, Figure 1 illustrates his re
o 

sults. It is seen that although the optical and P2 mode suffer cutoff 

at the electron plasma frequency, the P1 mode propagates for all signal 
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frequencies. In the limiting case of high signal frequency, the P2 mode 

phase velocity approaches the mean electron thermal velocity, and the P1 

mode velocity approaches the ion thermal velocity; therefore, the P1 and 

P2 modes will be called the ion and electron modes, respectively. How-

ever, it is pointed out that the ion and electron modes are actually 

·both linear combinations of electron and ion waves and are not purely 

due to the motion of one specie of particle as the names might imply. 

i~ c 

108 I 
I 
I 

v2 v I 
106 I 

I 
I 

104 I v1 

0.01 0.1 10.0 

Figure 1. Phase Velocity in a Two-Fluid Plasma 



Application of boundary conditions in later work will require ex-
..... 

pression of E in terms of P1 and P2 . To accomplish this, recall that 
p 

and them .. are chosen such that 
1.J 

where 

1>2m. 
T 1. 
=~ 

e 

Now, 

1 - x e 
m. 

1. 

x e 
m. 

1. 

,..,.. 
MD[A1, TM = /\.2 J 

[tll <12] [mll m1~] ~m11 = 

t21 t22 m21 m22 m21 

or, 

x. 
_!. 
m 

e 

1 - x. 
1. 

m e 

m12] [~1 
m22 0 :J 

14 

[tll <12 J [,m1j = A1 r111 (2.1.27) 

t21 t22 m2lJ. m21_ 

and 

(2.1.28) 

,.. 
Considering the matrix T as an operator, the vector (m11 , m21 ) is an 
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" eigenvector of T corresponding to the eigenvalue A1 , Likewise, the vec-

" tor (m12 , m22 ) is an eigenvector of the operator T corresponding to the 

eigenvalue A2 • 

It may be shown that a real self-adjoint matrix can be transformed 

into a diagonal matrix by an orthogonal transformation (Friedman, 1956). 

" The transformation for T may be determined by finding an eigenvector of 

T from Equation 2.1.27. Because the eigenvectors of a self-adjoint op-

erator which correspond to different eigenvalues are orthogonal, a vec-

tor orthogonal to the eigenvector for A1 will be an eigenvector corres-

ponding to A2 , 

Therefore, from Equation 2.1.27 

(2. 1. 29) 

These equations have nontrivial solutions for ~11 and m21 since A1 

" is an eigenvalue of T. One such solution will be taken for the first 

" column of Mand normalized. A unit vector orthogonal to the first vec-

" tor will be chosen for the second column of M. 

Thus, from Equation 2.1.29, 

To normalize, 

or, 

~l 
= A.1 - t 11 

t12 

m~1 + m~1 = 1 

2 + -l).., - t,,J2 2 l 
m11 t m11 = 

. 12 



Therefore, 

And the first normalized eigenvector is 

The second eigenvector must satisfy 

or 

Solving, 

= t, 1 - )I., 

t12 

After normalizing, the second eigenvector is 

so, 

where )1.1 is given by Equation 2.1.24 and 

16 



Note that 

From the definition 

we have 

Substitution into 

uix 
e 

t12 = ~ u 
e 

det M = 1 

..... 1 
E = ~ [x 7P - x.7P.] p O e e i i 

reveals the desired result 

or, 

where 

17 

(2.1.32) 

(2.1.33) 



To determine the velocities in terms of P1 and P2 ~ recall 

where 

Substitution 

-> 
v pe 

for (P ' e 

-> 
v pe 

-> 
v . pl. 

A11 

A21 

p.) 
l. 

= 

x. - 1 x. l. 
A12 

l. 
= =-

m m e e 

x x - 1 e 
A22 

e =- = m. m. l. l. 

reveals 

18 

= - 7 2.1.34) 

or, 

v . pl. 

-> 
v 1311 1312 pl pe 

= 7 

-> 
v pi 1321 1322 P2 

-

2. 2 Boundary Condit ions and Mode Coup ling 

(2 .1. 35) 

By including the effects of ion motion and a nonzero plasma temper-

ature, it is seen that- three modes of propagation may exist, one of 

which is electromagnetic, the others, electroacoustic. To apply this 

model of a plasma to a reentry sheath, two types of boundaries must be 

considered: (1) the solid boundary between the surface of the space 

vehicle and the plasma, and (2) the boundary between plasma and air 
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defined by the bow shock wave. 

The physics of actual boundaries is a complicated matter, and the 

boundary conditions commonly used in the theory of compressible plasmas 

are, regrettably, not entirely realistic. However, in the interest of 

having a tractable mathematical model, and for lack of a more realistic 

understanding of boundary processes, the following boundary conditions 

are adopted for the case of two continuous plasmas. The derivation of 

these boundary conditions is given in Appendix B. 

A [--> --> 
nx Ei - E2] = 0 

A [--> nx Hi - H2J = 0 

(2.2.1) 
A 

[ 0cn v' ii no2v'i2 J 0 n . = 

A 

[noiv'ei no 2v'e2 J 0 n . - = 

For the case of a boundary between a perfect conductor and the compres-

sible two-fluid plasma, we have: 

--> n x E = 0 

A --> 
(2.2.2) n . v = 0 

e 

--> 
ft . v . = 0 

l. 

For the boundary between the plasma and air, no 2 = O, and the conditions 

are: 
--> . --> 

nx[Ei - E2] = 0 
A [--> nx Hi - H2] = 0 

A --> 
n v. = 0 

l. 

A 
--> 

{) n . v = 
e 
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~ 

If one recalls that the total electric field E and velocity field 

v are composed of terms from both the optical and plasma modes, it is 

apparent that a discontinuity in the plasma will allow coupling between 

the modes. From a mathematical standpoint, the solutions of the three 

wave equations must be adjusted so that the boundary conditions on the 

total field are satisfied. This coupling between modes has been studied 

for the one-fluid plasma by a number of workers. Gallawa (1965, 1966) 

has studied the case of a plasma mode wave incident upon a plasma-free 

space interface; and, it is noted that the incident plasma mode converts 

partially into an optical mode on the free space side of the boundary. 

The plasma in Gallawa's investigation did not include ion motion; how-

ever, the principle of mode conversion should hold true for the case of. 

an ion mode wave incident upon a plasma-air interface. That is, one 

would expect that a portion of the power in the incident ion mode would 

be transmitted through the boundary in the form of an optical mode; the 

magnitude of this conversion is the subject of Chapter V. 

2.3 Justification of Assumptions 

The preceding material on compressible two-fluid plasmas has been 

· presented with the intent of applying the theory to the reentry plasma 

sheath. Before doing so, it seems fitting to examine the assumptions 

involved in terms of what is known about reentry plasma. 

Considering the assumption of a compressible plasma, recall that 

the basic differential equations showed compressibility to become more 

significant as the temperature was increased. Whale (1963, 1964) pub-

lished results of rocket soundings that indicate that the ionosphere is 

significantly compressible. Electroacoustic waves in warm plasmas also 
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appear to have been demonstrated experimentally by Chen, Judson, and Lin 

(1967); Sessler (1967); and Aksornkitti, Hsuan, and Lonngren (1967). Be-

cause a typical reentry sheath is very much hotter than the plasmas in 

these experiments, one would expect the reentry plasma to be compress-

ible. 

Inclusion of ion motion may be justified by recalling that the ion 

plasma frequency is actually the characteristic oscillation frequency of 

an ion in the plasma, and is given by 

l.l) • 
pi 

(2.3.1) 

In the case of the ionosphere, N is low enough so that w. is of the 
O pl. 

order of 100 to 1000 Hz.; the signal frequency is usually well above the 

ion plasma frequency, and the ions should not respond to the signal. 

However, for a reentry plasma, the blackout pxoblem itself results from 

the fact that charge densities are much too high - say on the order of 

1014 cm-3 • Under these conditions, the characteristic response fre-

quency of the ions is in the microwave spectrum, i.e., usual communica-

tions frequencies are near the ion frequency, and significant ion motion 

will probably occur. 



CHAPTER III 

THE ION MODE REENTRY COMMUNICATION SYSTEM 

3.1 Theory of Operation 

It has been shown to this point that a reentry plasma may support 

an ion mode which will propagate for all signal frequencies and that an 

ion mode incident on the bow shock will convert partially to an electro

magnetic wave on the outside of the sheath. The possibility of an ion 

mode reentry communication system is now apparent: place an antenna on 

the reentry body which will radiate significantly in the ion mode in 

such a manner that acceptable conversion to e.lectromagnetic radiation 

takes place at the boundary of the sheath. 

Because of the intense aerodynamic heating during the reentry phase 

one would expect that the antenna would be of the aperture type in order 

to survive. The technology of antenna survivability is probably well

developed by now, so this factor will not be considered further. 

The problem of antenna location must be studied, because the ion 

mode is essentially acoustical and, therefore, sensitive to motion of 

the supporting medium. In most cases, the phase velocity of the ion 

mode is of the same order of magnitude as the vehicle reentry velocity. 

Figure 2 illustrates a simplified description of the flow field sur

rounding two common reentry shapes (Pope and Goin, 1965). Note that the 

plasma is hypersonic in most of the sheath and quite turbulent in the 
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Figure 2. Typical Reentry Flow Fields 
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wake; one would therefore expect that an ion mode signal propagating in 

such a plasma would suffer wholesale destruction of phase fronts and be

come unintelligible. Therefore, unless the hypersonic regions can be 

avoided, the ion mode cannot be used. 

Fortunately, the bow region of the sheath is close to the stagna

tion point, and the plasma velocity in this region is low subsonic. The 

plasma remains subsonic until it crosses the sonic line (see Figure 2) 

where a rapid transition to hypersonic flow occurs. Therefore, an ion 

mode signal should propagate with little interference in the bow region. 

Because the ion mode is not driven into cutoff by high electron 

density, the fact that the bow region has the highest electron density 

of any location in the sheath is not important. Moreover, two factors 

in addition to low gas velocity make the bow region attractive. First, 

the bow region has the highest temperature, and thus, the greatest com

pressible plasma behavior. Second, the shape of the normal bow shock is 

usually not extremely sensitive to changing angle of attack during re

entry; this has implications on the mode conversion at the shock front 

(see Chapter V). 

3.2 Formulation of the Theoretical Model 

Having discussed the theory of operation of the ion mode reentry 

communication system, a theoretical performance study will now be made. 

A sketch of a blunt reentry body with a detached bow shock wave is shown 

in Figure 3. The antenna aperture operates into the hot stagnation re

gion of the plasma. 
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~SHOCK FRONT 

AIR 

Figure 3. A Blunt Reentry Vehicle with Ion Mode System 

Because the stagnation region gas velocity is at least an order of 

magnitude below the phase velocity of the ion mode, the plasma in the 

theoretical model is assumed to be stationary. The great portion of the 

previous work in plasma theory has neglected the motion of ions, mainly 

because the inclusion of ion motion greatly increases the amount of te

dious algebra. In order to compensate for the inclusion of ion motion 

in the present problem, a simple geometry will be chosen. 

Because the wave length of the ion mode is usually very short, it 

is probably not a bad approximation to neglect curvature of the reentry 



vehicle and shock wave; therefore, a rectangular coordinate system is 

chosen and the boundaries are assumed to be planar and infinite in ex

tent. 
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A first step in the investigation of radiation in a compressible 

plasma is to consider elemental sources such as a Hertzian dipole (Se

shadri, 1965) or a slot of infinitesimal width (Wait, 1964 a & b). 

Therefore, to gain understanding of the basic phenomena of aperture ra

diation into, a two-fluid plasma, the problem of an infinitesimal slot 

will be considered. Assuming that the heat shield can be made conduc

tive within several wavelengths of the aperture, the slot will be as

sumed to be situated in a perfectly conducting ground plane of infinite 

extent. The solution of this problem may be taken as the radiation from 

an aperture of very narrow width or as the Green's function for treating 

more complicated apertures. 

Because of the need for a tractable theoretical model, the shock 

front forming the outer boundary of the plasma sheath will be assumed to 

be a sharp discontinuity between equilibrium plasma and free space. 

Furthermore, a rigid boundary condition will be used (vanishing normal 

particle velocity). Although this assumption seems necessary to be able 

to handle the mathematics, it is not realistic. Chapter V discusses the 

physics of real hypersonic shock fronts and the qualitative behavior of 

an ion mode wave encountering the shock. 

The.geometry of the theoretical model at this point is shown in 

Figure 4. 
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Figure 4. Slab of Plasma Over a Ground Plane 
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While the geometry of a homogeneous slab of plasma over a perfectly 

conducting ground plane certainly seems simple, the mathematics involved 

in the evaluation of the.radiation pattern is quite burdensome. To el-

aborate, the above problem was formulated using Fourier transform tech-

niques. The field potentials were expressed as integrals of the form 

co a 
-i(K. -

nj(x1y) = I A.(ll.)e J 
_co J 

where the A.(ll.) are determined from the boundary conditions at y = 0 and 
J 

y = d. Because the plasma region supports outgoing and reflected waves 
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in all three modes and the free space region supports a single outward 

traveling mode, seven coefficients must be determined. Application of 

the boundary conditions yields a 7x7 matrix equation of the form 

[a .. ] 7 7 • (A.(A.)) = (e) 
l.J x J 

The solution for the transmitted field coefficient will be of the form 

where D(A) = det [a .. ]. Because the determinant of a 7x7 matrix has 7! 
l.J 

or 5,040 terms, a formal solution for Ak(A) seems almost unmanageable. 

This does not consider the difficulties in evaluation of the Fourier in-

version integral. Therefore, further approximations will be made to ar-

rive at a reasonable problem. 

To be more exact, the problem of the plasma slab over a ground 

plane should be solved; however, conditions in an actual reentry sheath 

during communications blackout support to some extent the division into 

two simpler problems: (1) radiation by a slot into a plasma half-space, 

and (2) mode conversion at a plasma-vacuum boundary. 

It is likely that physical processes existing in the actual reentry 

sheath will produce attenuation of the ion mode signal which is not pre-

dieted by the linearized, collisionless plasma model used in the present 

analysis. Because the wavelength of the ion mode at radio frequencies 

is short, a typical plasma sheath will be many wavelengths thick for a 

reasonable shock detachment of ten centimeters. If a moderate amount 

of attenuation occurs over the distance to the shock, then ion mode re-

flections from the plasma boundary will not interfere with radiation 
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from the aperture. Because the electron and optical modes are highly 

attenuated under blackout conditions, these fields will not be signifi

cant at the boundary; this statement was tested by calculating attenua• 

tion at d = 10 cm for electron and optical mode wave numbers in the 

blackout spectrum. Therefore, relying on the heuristic argument of ion 

mode losses due to the nonideal character of an actual reentry plasma, 

the aperture will radiate very nearly as it would into an infinite half

space of hot, two-fluid plasma. The approximation of lossy materials by 

an infinite region of the material has been used with success in wave

guide measurement of dielectric properties and in calculation of radar 

cross section of lossy dielectric bodies. In evaluating practicality of 

the ion mode communication system, the attenuation over the path through 

the sheath must be included; however, this must be determined by experi

ment. 

In retrospect, the solution of the problem of the aperture raGiat

ing into a plasma half space revealed the possibility of a surface wave 

bound to the ground plane with wave number close to the ion mode number. 

However, calculations showed that the amplitude of the surface wave was 

severely attenuated at typical shock detachment distances. Therefore, 

in blackout conditions, the illumination of the plasma-vacuum boundary 

may be essentially due to the ion mode space wave. This being the case, 

the slab problem has been separated into two simpler problems. The ion 

mode radiation from the aperture into a half-space can be assumed to 

illuminate the plasma boundary, and the fields in the free space region 

will approximate those in the original slab problem. 

Because the boundary is separated from the aperture by a large num

ber of ion mode wave lengths, the constant phase surfaces will be nearly 
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planar; thus, it will be assumed that the plasma boundary is illuminated 

by ion mode plane waves with phase and amplitude origin at the aperture 

and an angular variation given by the radiation pattern of the aperture 

in the plasma half space (see Figure 5). 

PLASMA K1 

FREE SPACEK 

Figure 5. Ray Path Through Plasma Slab 

Assume that the ion radiation pattern in the half-space of plasma 

is given by 
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with attenuation included in the ion mode wave number as 

Therefore, the boundary illumination is 

where it is apparent that the phase and amplitude of the field distribu-

tion on the boundary will vary as a function of both the aperture radia-

tion pattern F(K,6) and the distance, r, from the aperture to the boun-

dary point. The radiation pattern in the optical mode may be found ap-

proximately using the above ion mode illumination. 

Generally speaking, the conversion from ion to optical mode will 

depend on the. wave number and angle of incidence of the illuminating 

waves. Moreover, the conversion process will produce a change in am-

plitude and direction of the energy density; let this change in energy 

" density distribution be represented by the operator L(K,6) such that the 

electric field at a typical free-space point Q (see Figure 5) is given 

by 

Solution of the boundary problem (see Chapter V) yields the Snell's law 

relation 

K1 sin e. = K sin ip 
l. 

where 

Ki = ion mode wave number 

e. = angle of incidence for ion mode 
l. 
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K = free space wave number 

~=angle of optical mode transmission. 

In the reentry plasma, K1 is .orders of magnitude greater than K. Due to 

familiar Brewster angle effects, conversion to the optical mode at a 

sharp boundary will not occur if 91 exceeds 

which is a very small angle. Because no optical mode radiation field 

will be produced by ion mode radiation that impinges on the boundary at 

angles greater than 9 , it may be assumed that the boundary is not illu
c 

minated at angles greater than 9 without affecting the radiation field 
c 

distribution in free space. This assumption is represented by 

+ Kl;) je. j < e 
l. c 

Otherwise 

Because 9 is so small, r is essentially invariant in the range 
c 

< 9 , and may be closely approximated by r = d. 
c 

Letting E 
0 

E(r, ~) = E L(K,9)F(K,9)e-iKI; 
0 

Thus, 

Therefore, the very burdensome problem of radiation from the aper-

ture covered by the plasma slab may be treated approximately by consid-

ering the two simpler problems of radiation into the half-space to de

termine F(K,9) and mode conversion at the boundary to find L(K,9). 

These two problems will now be treated in detail, and engineering 
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recommendations will be based on the results. 



6. 

CHAPTER IV 

RADIATION FROM A SLOTTED GROUND PLANE INTO A 

TWO-FLUID, COMPRESSIBLE PLASMA HALF SPACE 

4.1 The Formal Solution 

The geometry chosen for the ground plane problem is shown in Figure 

y 

z 

Figure 6. Geometry of the Ground Plane Problem 
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The region y > 0 is filled with a compressible two-fluid plasma, and the 

excitation slot is assumed to be rigid and of infinitesimal width. 

The excitation is assumed to be 

Ei = E o(x)u on y O 
O X 

From earlier sections, the following equations must be solved in the re-

gion y > O. 

7 2fi + K2rl = 0 
0 

72p 2 0 + K1P1 = l 

~P2 + K~P2 = 0 

such that the following boundary conditions are met at y = 0: 

" 
--> --> " ~ n x (E + E ) = n x 

O p 

" --> --> 
n . (voe + v ) = 0 pe 

(4.1. 1) 

" --> --> 
n . (voi + v .) = 0 pl. 

and such that the fields behave properly at infinity. 

There is no field variation in the z-direction and E = 0 over the z 

entire ground plane, therefore the solution for the optical mode will be 

constructed TE to z. 

Let fi =nu be chosen as the vector potential so that 
z 

--> --+ 
E = - 7xn 

0 

--+ 
H = 

0 

Expanding in rectangular coordinates, 

The total field is 

E = ox 
on 
oy 

E on 
oy = ox E = 0 oz 

(4.1. 2) 
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--> --> --> --> --> --> 
E = E + E 

O p v = v + v 
O p 

or 

E an oP oPa = - - + 0:'1 ~ - 0:'2 x ay ax ox 

E 
an oP, L = - + Q' - Q'2 y ox l ay ay 

(4.1.3) 

v. 
LY 

v = ie an+ 1311 oPJ + i3 oP2 
ey Wm. ox oy . 12 oy 

e 

With no z-variation, the potentials must satisfy 

(]
2 02 " 
~ + ~ + K 2 j'n(x,y) = 0 
oX oY O,. 

If the basic solution is taken to be of the form 

* = F(y)e -i11.x 

±i/K2 - 11.2 
substitution into cf*+ K2* = 0 shows that F(y) - e Y 

Choosing the minus sign to ensure outgoing waves, the general solu-

tions for the three potentials are taken to be superpositions of the 

basic solutions, or 

co -i/K2 - 11.2 y .. ~ n (x,y) = f A (11.)e O e -i11.xd11. 
• 0 

-co 

00 

P1(x,y) = j A1(11.)e-i/Kf - 11.2 ye-i11.Xd11. 
-co 

(4.1.4) 
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co 

P2(x,y) = f A2(A)e-i/K~ - A2 ye-iAXdA 
-co 

where the A.(A) are determined from the boundary conditions at y = O: 
J 

(4.1.5) 

(4.1.6) 

co 

(4.1. 7) 

Substituting Equation 4.1.4 into Equation 4.1.5 
co -~ 

co 

r ( •Jk2 a () -iAx + fl22 .I -1. 2 - A )A2 A e dA = 0 
-co 

It follows that the sum of the integrands must be zero, and 

From Equation 4.1.6 

co co 

~ j (-iA)A0 (A)e-iAXdA + S11 f (-i/K~ - A2 )A1(A)e-iAXdA 
e -co -co 

co 

+ S12 J. (-ilk~ - A2 )A2(A)eiAxdA = 0 
-co 

or, 

~ AAO(A) + S11h<1 2 - A2 A1(A) + S12vi.<.~ - A2 A2(A) = 0 (4.1.8) 
e 

And, from Equation 4.1.7 
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CXl CXl CXl 

I (-i/K~ 
-oo 

11.2)A 0 (11.)e-A:Xd11. + CY1 j (-i11.)A1e-i11.xd11. - CY2 J(-iA)A2e-A:XdA = 
-oo -oo 

CXl 

or, 

-/K2 - A2 A (11.) + a1 M1 (A) - 0!2M20.) = iE 
0 0 0 

Therefore, the three A. 0.) may be found by solving 
J 

ieA -- f321IK~ - 11.:21 f322fiz~ - A2 A 0.) 0 
(IJD.i 0 

iL A f311fi<:~ - A2 f312IK; - A2 Ai (11.) -··- 0 -
wm e 

-fi_z2 - 11.2 0\ II. 
0 

-CY2 !I. A2 (11.) iE 

Straightforward use of Cramer's Rule reveals: 

A (11.) 
0 

where 

-E 
0 

Ci 

C2 

Cs~ 

ie [3 ie [3 = - 0!2 ll + -- 0!2 21 
CJ.m. (Jjlle l. 

ie ie 
= - 0!1f312 + - CY11:\22 

wmi wm e 

(4.1.9) 

(4.1.10) 

0 

(4.1.13) 
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Cs = .:fu_ + ~ 
wm. wm 

l. e 

Recall the integral solutions for the three mode potentials: 

co 

n (x,y) = I AOO.)e-i/K~-A.2 ye-iAxdA 
-co 

co 

P1(x,y) = J A1(A)e-iJK~-A2 ye-iAXdA 
- co 

co 

Pz(x,y) = J A2(:>c)e-i/K~-Aa ye-i\xd:>c 
-co 

where the A. have been determined. 
J 

In cylindrical coordinates, 

x = R cos 9 

y = R sin 9 

Therefore, 

co 

n (R, 9) = f Ao(A)e-iR[/K~-A.2 sin e + :>c cos eJdA 
-co 

co 

P1 (R, 9) = J A1(:>c)e-iR[/Kt-:>c2 sin 9 + :>c cos eJd:>c 
-co 

co 

P2(R,9) = J A2(A)e-iR[/K~-A2 sin 9 + A cos 0Jd:>c 
-co 
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The contributions to the above integrals will arise from the poles 

of the A. which may indicate surface waves, and from the saddle points, 
J 

which give the space waves. The space waves are the only ones that con-

tribute to the desired radiation; therefore, they will be given greater 

emphasis. 

4.2 Evaluation of Integrals 

The formal solution of the ground plane problem has produced three 

integrals of the form 

I(R,9) = J G(\)eR~(A)dA 
-oo 

Because G(\) has branch points at ±K1 , ±K2 , ::l::K, representation of 
0 

all values of G(A) requires a Riemann surface .of eight sheets. The 

eight sheets represent all values of G(\) by including all possible com-

( 2 2)\ binations of values of the K. - A • 
J 

table below. 

TABLE I 

These are given in detail in the 

ARGUMENTS OF RADICALS ON THE RIEMANN SURFACE 

Sheet 

1 

2 

3 

4 

5 

6 

7 

8 

Si§n of 
(K _\2)~ 

0 

+ 

+ 

+ 

+ 

Si§n of 
(K1-A2)~ 

Si§n of 
(K2-\2)~ 

+ + 

+ 

+ 

+ + 

+ 

+ 
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However, the integration must be performed on a sheet where the inte-

grals converge, that is, on a sheet where ~(A) has a negative real part. 

Therefore, we require 

Im 11. < 0 

Im 11. > 0 

All integrations will be performed on the spectral sheet where the above 

conditions hold for K2 = K~, K~, K~; therefore, all three integrals will 

converge on the spectral sheet. 

The branch cuts in the A-plane may be located by the loci 

Letting A= cr + iw, 

2 Consider the branch cuts for K1 • 

Assuming small losses, K1 = K{ - iK~' where K{ and K~' are positive, 

Therefore, the branch cut. is the hyperbola crw = - K{K~'. Similar results 

occur for the K and K2 branch cuts as shown in Figure 7. As losses ap
o 

proach zero, the branch cuts approach the dotted lines on the axes. In 

the blackout spectrum, K and K2 are imaginary, and their branch cuts 
0 

coincide with the imaginary axis. 
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Figure 7. Branch Cuts in the A-Plane 

The singularities of the integrands must be known to complete the 

picture of the A-plane. Recall that all three integrands are of the 

form 

where 

D(ll.) 

- filll G(ll.) - D( ll.) 

The singularities of the integrand occur where D(A) = O. Locating the 

42 
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zeros of D(\) requires a great deal of algebraic detail; in fact, a com-

plete formal solution is probably impossible. However, the general 

character of the zeros was determined by using a specific numerical cal-

culation in the blackout spectrum. The numerical method involved: (1) 

expanding D(A) into a polynomial equation in A, (2) evaluating all roots 

of the polynomial using a standard computer method, and (3) testing the 

roots to see which ones were actual poles on the spectral sheet and 

would therefore contribute to the field structure. 

The polynomial equation was of the form 

where the coefficients are complicated functions of the wave numbers and 

the C .• The high degree of many of the terms in the A. expressions re-
J J 

quired that great pains be taken in precise computation. All possible 

t t d f U) -- 1010 where roo s were compu e or 

C1 = 0.29346661 x 10-3 

C2 = -. 71670240 x 10-7 

Cs = o. 61530723 x 10-7 

K8 = -.52964758 x 107 

K2 . l = .50224426 x 1012 

·2 
K2 = -.43657346 x 1013 

The valu~ w = 1010 was chosen because it is close to both the assumed 

ion plasma frequency and the usual microwave voice conununication fre-

quencies. The resulting roots of the polynomial equation were directly 

substituted into the original expression D(A) = 0 to determine if they 

2 k 
were roots on the spectral sheet where Im(K2-A ) 2 < O. Only one of the 



roots was found to be a true pole of the integrand on the spectral 

sheet, with the remaining roots corresponding to virtual poles. The 

computed true pole was 

A2 = 0.50224456 x 1012 
p 

The solution for P1 (R,9) includes the residue at this poie which 

describes the field structure of a surface wave propagating along the 

ground plane with a wave number slightly greater than K1 • This seems 

quite plausible from a physical standpoint; however, in order to prove 

that a surface wave indeed exists, we must demonstrate that the group 
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velocity (energy flow) is directed away from the aperture. This was not 

done because a surface wave would not contribute to the radiation; the 

wave number was used only to show that the wave amplitude would be high-

ly attenuated at typical shock detachment distances. This being so for 

the example, illumination of the plasma-air boundary may not be affected 

by a surface wave. The complexity of the integrand of 

I(R,9) = J G(A)eR§(A)dA 
-oo 

forces exact solution to- be abandoned in favor of a useful approxima-

tion. If the function G(A) is well behaved in the region of integra-

tion, I(R,9) may be approximated in the radiation zone by the saddle 

point method of analysis, which is generally accredited to Debye. A de-

tailed development of the saddle point technique is omitted here, be-

cause excellent discussions have appeared elsewhere (Felsen and Marcu-

vitz, 1959). 

If G(A) is well behaved, the saddle point of the integrand is given 



by 11. such that 
0 

' 

= 0 
/1. = /1. 

0 
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Assume that the original path of integration is transformed to the con-

tour of steepest descent on which Im~(11.) = Im~(A ). By expanding G(11.) 
0 

in a power series on the contour and evaluating the resulting integral 

term-by-term, a power series expression for I(R,8) may be developed. 

Provided G(11.) is well behaved near 11., I(R,8) may be approximated by the 
0 

first term in the series, namely: 

R~("-) [ -TI ]~ lim I(R, 8) ~ G(11.0 ) e o 2R~"O, ) 
R->CO O 

If, however, G(11.) has unusual behavior near the saddle point, more terms 

of the series must be retained; the reader is .referred to Felsen and 

Marcuvitz for a detailed discussion of such special cases. Because the 

blackout spectrum is of primary interest, the ion mode integral will be 

studied in detail. We have 

co 

P1(R,8) = J G(11.)eR~(11.)d11. 
-co 

where 

and 

G("-) 

The integration will be simpler if we make the transformation 



so that 

P1(R,e) = I G(~)e-iK1Rsin(e + ~)Kl cos~ d~ 

c 

To study the transformation in some detail, let~= cr + iw, then 
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A= K1[sin cr cash w + i sinh w cos cr] (4.2.1) 

The imaginary axis of the A-plane maps onto the imaginary axis of the~-

plane, and the real axis is mapped as 

If O < 9 < n/2, Im A< 0 is required for convergence and the con-

tour of integration is indented around the poles so that the pole on the 

positive real axis is enclosed in the first quadrant of the A-plane and 

the pole on the negative axis is not enclosed. This ensures that the 

residue of the enclosed pole describes an outward traveling wave. For 

n/2 < e < n, the opposite indentation is chosen. 

By considering the signs of the trigonometric and hyperbolic func-

tions in Equation 4.2.1, it is seen that the A-plane is mapped onto the 

fundamental strip of the ~-plane -TI< cr < n, -oo < w < oo in the following 

manner. 



TABLE II 

KAPPING OF THE A-PLANE 

A-plane ~-plane 

O <a< n/2 n/2 <a< IT 
First Quadrant 

0 <(ii<"' -"' < w < 0 

-IT/2 < a < o -n <a< -n/2 
Second Quadrant 

0 < w < "' -"' < w < 0 

-n/2 <a< O -IT< a< -n/2 
Third Quadrant 

-"' < w < 0 0 < w < 00 

O < a < n/2 n/2 < a< n 
Fourth Quadrant 

-"' < w < 0 0 < w < 00 
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Because sin~ is periodic with period ZIT, the A-plane maps similarly on-

to any vertical strip of width 2IT centered at 0 = 2KIT K = ±1, ±2, 

in the ~-plane. However, only the fundamental strip is of interest for 

the integration. 

The transformed contour C is shown in the ~-plane in Figure 8. 
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Figure 8. ~-plane for Ion Mode Integration 

Branch points are located at 

~l = ± IT 
2 

~2 sin -l (±~) = 

~ sin -1. (±t) = 
0 
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with branch cuts following the axes as in the A-plane. The poles are at 

A = ± (K1 + 6) 
p 



or, in the ~-plane 

where e is a small quantity. 

The saddle point is located at ~ where sp 

Therefore, 

Hence for 

for 

d~(~) = K1 cos (9 + ~) = 0 
d~ 

o < 9 < n 

The path of steepest descent is found from 

or, 

Im {-iK1R[sin 9 cos~+ cos 9 sin ~J} = -K1R 

Im {-iK1R[sin 9 cos (cr + iw) + cos 9 sin (cr + iw)J} = -K1R 

Therefore, the path of steepest descent is 

cash w sin (cr + 9) = 1 

49 

which is a much simpler expression than would be derived in the A-plane. 



Investigating the behavior of the steepest 

imaginary axis crossing occurs at U) where c 

We see that 

1 = cosh wc sin 

lim w = 0 
c 

e __. rr/2 

lim w = - 00 
c 

e __. o 
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descent contour (SDC), the 

(] = o, or 

e 

As 9 varies from Oto rr/2, the imaginary axis crossing of the SDC varies 

over the entire negative axis. Therefore, branch cuts are crossed and 

must be accounted for in the saddle point evaluation. By letting w = O, 

it is easily seen that the real axis crossing is at the saddle point. 

To investigate the asymptotic behavior, 

lim cr = {-e 
:rr - e 

Choose 

lim (] = -e 

lim cr = TI -9 

U) --+ 00 

The steepest descent contour may be shown as in Figure 9. 
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Figure 9. Steepest Descent Path in ~-plane for the Ion Mode 

Because of the pole, special consideration must be given to the 

point where the SDC crosses the line cr = TI/2. By letting cr = TI/2, the 

expression for the SDC reveals a crossing at 

1 
cosh w = ---cos e 

Ase approaches zero, both the saddle point and the SDC approach the 

pole, which is very slightly removed from cr = TI/2. In this limit, the 

assumption of regularity of G(A) in the region of the saddle point is 

violated and the usual first-order asymptotic evaluation will be 
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inaccurate. Although the literature includes methods for dealing with 

poles near the saddle point through inclusion of higher order terms 

(Felsen and Marcuvitz, 1959), the radiation at angles near 9 = O is not 

of much practical interest for the communication system; therefore, 

little concern will be shown for this inaccuracy. As 9 approaches TI/2, 

the saddle point approaches the origin and is well removed from the 

pole; therefore, the first-order evaluation should suffice in this re-

gion. 

Consider the effect of the branch cuts on 

where 

2 2 .l.: 
On the spectral sheet, all the radicals (K -A ) 2 have a positive 

sign; however, if the SDC crosses a branch cut, the associated radical 

changes sign, (see Figure 9). In the blackout spectrum, K1 lies on the 

real axis and the SDC crosses the associated branch cut twice before 

reaching the saddle point; therefore, no change in sign occurs for the 

f 1 (~) terms. For 9 near·n/2, the SDC crosses the imaginary axis well 

above either the -K and -K2 branch points; thus, the r (~) and f 2 (~) 
0 0 

terms are positive for these angles. However, as 9 decreases from n/2 

the SDC will eventually cross the -K and the -K2 branch cuts, changing 
0 

the sign of the r (~) and f 2 (~) terms. 
0 

In order to locate the critical values of 9 for which the SDC 

crosses the branch cut for K., recall that the imaginary axis crossing 
J 



is at 

cosh we = 1 
sine 

and the branch point in the blackout spectrum is at 

Form the difference 

K. 
-sinh w. = .....1. 

J Ki 

Since wc = wj at the critical ej, 

and we find 
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= 1 

){j )k 
Recalling that f/il?) = (xr - sin2 il? 2, we have the ion mode radiation in-

tegral 

. ~ ~ (~) -iK1 R sin(P + 9)d~ sin~ cos ~r2 ~ e ~ 

where the signs of the f.(P) are given in Table I. 
J 
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TABLE III 

SIGNS FOR THE ION MODE RADIATION INTEGRAL 

Range of 9 

+ 

+ + 

Recalling that the first-order asymptotic evaluation of 

00 

I(R, 9) = J G(tc) eRgi(tc).dA 
-oo 

is 

the radiation zone solution for the ion mode is 

P1 (R, 9) == - [~1] . 

where the signs on the radicals depend on 9 as given in Table I. 

The time-average power density (Seshadri, 1965) is 



Finally, writing P1 = F1 (K,9) 
-iK R e l 

R\ we have 

For w > w, we have electron mode radiation given by p 

00 

P2(R,9) = J G(A)eR~(A)dA 
-co 

where 

Choose the mapping 

so that 

A = K2 sin ~ 

P2(R,9) = J G(~)e-iK2R sin(9 + ~)K2 cos~ d~ 

c 
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The mapping is essentially that studied previously for the ion mode in-

tegral. The real axis is now mapped as 

A= K2 sin cr cosh w 

and branch points occur at 



K· 
gj = • -J. (± 0) s1.n -

0 K2 

gji = . -i (± Ki) s1.n IC:: 
2 

gj2 = ±n 
2 

Since for w > w, Ki> K2 > K0 , the gj-plane is now as shown in Figure p 

10. 

I fJ m 

SDC 

Figure 10. gj-plane for Electron Mode Integration 
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The saddle point is again at ~ = 1!2 - 9 with the SDC being sp 

cash w sin(cr + 9) = 1 

Again the first-order asymptotic evaluation is inaccurate for 9 ~ O. 
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To consider branch cuts, the SDC always crosses the cuts for K1 and 

K2 twice before encountering the saddle point, so no net effect on the 

associated radicals takes place, However, the branch cut for K0 may be 

crossed either once or twice, depending upon 9. Investigating this, the 

branch point satisfies 

K 
0 sin ~ - -o - K2 

and the real axis crossover is the saddle point ~ = 1!2 sp 9. The cross-

over coincides with the branch point ~o when sin ~o = sin ~sp or, 

= cos a 
0 

Therefore, in the P2 (R,9) integral, the term (K2 -A2 )~ has the sign 
,0 

denoted in Table II. 

TABLE IV 

ELECTRON MODE RADIATION INTEGRAL 

Range of 9 Sign of (K~-A)~ 

+ 
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Using the same method employed for the ion mode integral, the sad-

dle point evaluation for the electron mode is 

where the sign on (K2 - K~cos2 9)\ is chosen according to Table II. 
0 

The time-average power density vector is 

Finally, writing P2 = F2 (K,9) 
-i~R 

e R\ , we have 

For w > w, the optical mode radiation potential is . p 

00 

n (R, 9) = I G(11.)eR<.P{11.) d11. 
-co 

where 

and 

G(11.) 

With the transformation 



we have 

11. = K sin <.I? 
0 

n (R,9) = I G(<.l?)e-iKOR 

c 

sin (e + <.l?)K cos <.I? di.I? 
0 

Branch points occur at 

<.I? = ±.II 
0 2 

<.1?1 sin -1. (± Ki) = \__: r. 
0 

<.1?2 = sin-1. r± K2) 
\. K 

0 

The saddle point and SDC are the same as before, so the integration 

plane for the optical mode is shown in Figure 11. 
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Figure 11. i!i-plane for Optical Mode Integration 
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Because all branch cuts are crossed twice before the SDC encounters the 
1 

saddle point, all terms of the form (K2 -\2 ) 72 have a positive sign. 

Here the saddle poiqt result is 

• O 72 [ TTK J 1 n (R, 9) = - i ZR • 

which is valid except for 9 ~ 0. 



Writing n(R,9) = F (R,9) 
0 

-iK R e o 
R~ 
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we will determine the Poynting 

vector for the optical mode. Recall that we constructed the solution TE 

to z, so 

..... 

.... .... 
E = -7xn 

0 

..... 
H 

0 

..... 1 ..... 
= -iwen + - 7(7.n) 

i~ 
0 

Becausen has only a z component and no z-variation, 

..... ..... 
E = -7xJ1 

0 

.... .... 
H = -iwen 

0 
e = e (1 - x - x.) 

o e 1. 

In cylindrical coordinates, the radiation zone fields may be shown to be 

..... 
H -iwenu 

O Z 

According to Poynting's theorem, the time-average power density vector 

is 

Since we have 

n = F (K,9) 
0 

the Poynting vector becomes 

.... 
s 

0 

W€K 
0 

=-
2 

-iK R e o 
R"2 
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4.3 The Radiation Patterns - Numerical Results 

The formal solutions for the radiation patterns were evaluated on a 

digital computer for conditions approximating a dense reentry sheath. 

The parameters used in the computations were: 

T = 10,000 K 

u2 = 2 x 101.l m2 /sec 2 
e 
2 u. = 
]. 

2 x 107 m2 /sec2 

M. = 2.34 x 10-26 kg (oxygen) 
]. 

N = 1.5 x 1014 cm-3 
0 

E = 2rrv/m (excitation) 
0 

Radiation patterns were computed for a number of frequencies above 

and below the critical frequency w • Although the ion mode radiation 
pe 

for w < w is the only item of interest in the practical ion mode compe 

munication system, numerous patterns for all three modes are given in 

the following pages, both for academic interest and to demonstrate that 

the computed results are physically reasonable. All power levels are 

referred to 1 watt/m2 • 

The optical mode patterns shown in Figures 12 through 16 are all 

isotropic. Moreover, th~ intensity of the radiation increases with in-

creasing signal frequency above w pe Although the patterns are not 

given here, it was also shown that the optical mode radiation approaches 

zero as w approaches w from above. These results correspond well with pe 

the radiation from an infinitesimal slot into a semi-infinite region of 

dielectric of permittivity e = e (1 - x - x.). Therefore, the solution o e l. 

for the optical mode seems reasonable. 
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To assist in considering the patterns for the electroacoustic modes 

recall that the so-called "electron" and "ion" modes are actually lin-

ear combinations of both particle motions, i.e. 

One may show formally that for w << w , the ion mode is composed of pe 

both P and P. with equal amplitudes. However, for w ~ 00 the electron 
e l. 

mode is due only to P, and the ion mode to P .. Therefore, one might 
e l. 

reasonably expect that the character of the radiation patterns would be 

different for the two limiting values of signal frequency. Further, be-

cause both modes are essentially due to pressure of a single specie of 

particle for high w, one would expect the electron and ion mode patterns 

to have the same characteristics for w >> wpe"· 

The ion mode patterns are shown in Figures 17 through 27. For sig-

nal frequencies less than wpe' a very substantial broadside lobe occurs 

near e = n/2 with a sharp null ate= n/2. This is in the range of fre-

quencies where the ion mode is composed of both particle pressures. As 

w approaches w from below, the lobe becomes much sharper and the rest pe 

of the pattern, nearly is.otropic; this reflects th-ei' approaching re son-

ance condition at w pe Finally, as w increases through w , the sharp pe 

lobe disappears, and the pattern is nearly isotropic with the exception 

of a null ate= n/2. The overall intensity of the ion mode radiation 

is much greater for w < w. where both particle species may easily fol
p1. 

low variations in the applied fields. The intensity decreases for in-

creasing w, except for a local increase or "hump" for w slightly greater 



than w . 
pe 
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The patterns for the electron mode appear in Figures 28 through 32. 

Note that the electron mode intensity also exhibits a hump for w slight-

ly greater than w . This hump is characteristic of the resonance at pe 

w , and has been demonstrated in a number of compressible plasma probpe 

lems, e.g., Cook and Edgar (1966) considering a cylindrical dipole and 

Wait (1965) on the slotted sphere. As w increases still further, the 

electroacoustic radiation decreases monotonically due to the effects of 

particle inertia. The substantially uniform amplitude over a broad 

range of angles with a null at broadside agrees in character with the 

ion mode patterns for w > w 
pe 

Having established the physical plausibility of the numerical re-

sults of the solution for slot radiation into a two-fluid plasma half-

space, the results will be combined in the final chapter with those on 

mode conversion at the shock front to support engineering recommenda-

tions for the ion mode reentry communication system. 
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CHAPTER V 

BOUNDARY PROCESSES AT THE SHOCK FRONT 

5.1 Background and Technical Approach 

It is apparent from the study of the slotted ground plane that the 

ion mode may be used for transmitting a signal to the shock front form

ing the outer boundary of the reentry sheath. Recent studies such as 

Field (1956), Gallawa (1965), and Dunphy, Kahn, and Mintzer (1967) have 

shown that an electroacoustic wave may be partially converted into an 

electromagnetic wave at a discontinuity in plasma density. These 

studies have employed the condition of a rigid boundary, i.e., the nor

mal particle velocity is zero at the boundary. This does not seem to be 

completely realistic; unfortunately, there seems to be no satisfactory 

substitute. 

In addition to the usual difficulties associated with a normal 

plasma discontinuity, the nonequilibrium flow of a real gas mixture a

cross a hypersonic three~dimensional shock front is a vastly complicated 

process. Even if the complete thermodynamic properties of such a flow 

were known with precision, there could be major difficulty in solving 

the associated electromagnetics problem. Therefore, an accurate theo

retical analysis of the conversion process at the boundary seems impos

sible at the present time. 

Owing to this, a two-part study was made to hopefully distinguish 
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the qualitative features of the boundary process as a guide to later ex

perimental work. The first part is an analysis of a sharp, rigid boun

dary between a hot, two-fluid plasma and free space. An ion mode plane 

wave is assumed to impinge on the boundary and the power transmitted in 

the optical mode is derived. The second part of the study involves: 

(1) a qualitative description of a real hypersonic shock front, (2) a 

discussion of gradient coupling vs. rigid-boundary coupling, and, (3) 

heuristic consideration of an ion mode wave incident on a real shock 

front with some experimental support. 

5.2 Mode Conversion at a Rigid Boundary 

Assume that a semi-infinite region of two-fluid compressible plasma 

is separated from a similar region of free space at a plane boundary and 

that an ion mode wave is incident upon the boundary. Coupling between 

the various modes occurs at the rigid boundary so that the incident ion 

mode plane wave may cause transmitted and reflected optical mode waves 

and reflected electron and ion mode waves. The transmitted optical mode 

is of special interest here. The geometry of the problem is shown in 

Figure 33. 



FREE SPACE 

K =w{µE 'V. 0 0 

/\ 
1J 

PLASMA 

z 

Figure 33. Coordinate System Showing the Two Media 

88 

By employing simplifications discussed in Appendix B, the following 

linearized boundary conditions apply to a sharp, rigid boundary between 

two contiguous compressible plasmas. 

" -+ -+ 
nx(E1 - E2 ) = 0 

A -+ -+ 
nx(H1 - H2 ) = 0 

-+ -+ 

11.• (Nol V11 - No 2V12) = 0 

The field quantities are repres·ented in terms of the optical and 

plasma mode structures as before: 
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--> --> --> 
E = E +E 

0 p 

--> --> 
H = H 

0 

--> --> --> 
v = v +v e oe pe 

--> --> --> 
v. = v +v i oi pi 

7 2E + K2E = 0 
0 0 0 

2 
+ Kf 2P1 2 0 7 Pi 2 = 

' ' ' 

Recalling that the so-called ion and electron modes (P1 and P2 ) are ac-

tually hybrid modes, we have 

--> 
E = Q'l 7P1 - 0'2'7P2 p 

--> 
~117P1 v = + ~12 7P2 pe 

--> 
v = ~21 7P1 + ~22'7P2 pi 

--> 

--> ieE 
0 v = oe (J.lII. 

e 

--> 

--> 
ieE 

0 v = ---oi wm. i 

The plasma modes are represented in terms of the scalar pressures P1 and 

P2 • The optical mode will be represented in terms of the potential 

f . n_, d __, I h f · · th iwt unctions oe an nom" n a omogeneous, source- ree region Wi e 

supressed 

--> 
E 

0 

.. 
= -7xn oe 

+--1-
iwe e 

0 

--> 
7x7x n om 



--> 
H 

0 

--> 
= 7xn om 

+ ..1...... --> 
7x7xn 

i(tj..l, oe 
0 

where, after the Lorentz gauge 

7 2:;t --> 
II + K2 n oe o oe = 0 

Because TE modes are not coupled to plasma modes at such a boundary 
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(Gallawa, 1965), the potentials must be chosen to represent a field TM 
--> 

to z . Thus, n = 0 oe 

Expanding the resulting field expressions in rectangular coordinates 

Now, let 

E 
ox 

1 =---iwee 
0 

1 E = _ .......... _ 
oy iW€€ 

0 

E 1 
= oz iW€€ 

0 

an 
H 

om 
=-

ox ay 

= 0 

a:2 + K~)nom 

H = H = 0 oy oz 

--> --> 

--+ = n e i ( wt - KO • r) u 
nom om z 



where 

..... 
K =Ku 

0 0 0 

u0 , u1 , and u2 are unit vectors in the 

direction of propagation. 

We may now determine the field structures in each region. 
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Incident Longitudinal Wave. Since the incident field is assumed to have 

only the ion mode structures, P2 and n are zero and om 

-+i 
E 

p 

-> 
v pe 

..... 
v . 

pl. 

Reflected Fields. 



--+R 
E = 

0 

--'R. 
v oe 

--'R. 
voi = 

iK2 
_._o_ 
wee 

0 

jf = 
0 

'K ' 9 nR -1. sin o OR om u 
x 

R 
sin e0R[cos e0Ruy + sin e0Ruz]fl 0 m 

w m.ee 
l. 0 
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Transmitted Fields. Here, plasma modes are absent. Let K2 = 

waµ. e • 
0 0 

i{f = -iK sin 

Application of Boundary Conditions. Boundary conditions will now 

be applied to obtain an expression from which the transmitted power can 

--+ 
be determined. From continuity of tangential E, 

iK.a T 
we sin e OTC OS e OT nom 

0 

= -

--+ 
From continuity of tangential H, 

-iK sin e0RnR o om = -iK sin 9 nT 
OT om 

From the normal electron velocity condition, 



93 

i R R eK2 

sin29oifl!m i311K1 cos - i311K1 cos 
0 

e .1lr1 e1R11r1 - i312K2cos 9zR'V2 + w2m e e = 0 
]. 

e 0 

And, from the normal ion velocity condition, 

e· l R R eK2 

sin29oif'!m i321K1cos - i321K1cos 
0 

0 elR'Vl - l322K2COS e2R'V2 - w2m. ee 
= l l 

]. 0 

Because the potential functions have exponential variation at z = O, in 

order to meet the boundary conditions for ally, 

which is a form of Snell's Law. By using these equations, considerable 

simplification may be achieved. We find that 

R T 
nom = nom 

Revising the symbolism to 

R T T n om= nom = n 

we may write 



K2 . 29 e 0 sin OR 
uPm. ee 

1 0 
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The solution for the transmitted field in terms of the incident field is 

now straightforward, but messy. The final result is 

where 

= 
2w2ee 0 ~ 1K1K2cos 9icos 92R(~11B22 - ~12~21) 

A+ iB 

Because of the complexity of the preceding expression, one is 

forced to use numerical methods. The fact that the ion mode wave number 

exceeds the wave number of free space by a great deal means that trans-

mission through the sharp boundary will take place within a very small 

cone of incidence angles; otherwise, total reflection occurs. There-

fore, it will be more convenient to study the conversion in terms of the 
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angle of transmission, meanwhile realizing that the incident ion mode 

is nearly normal to the boundary. Using the Snell's Law relations, the 

preceding equation may be rewritten entirely in terms of the transmis-

sion angle with the substitutions 

a = a OT 

cos a0R = [1 - (} sin 
0 

a)2]~ 

cos a2R = [ (} 2J 1 - -; sin a) ~ 

cos a. = [ 1 - (}l sin a)2]~ 
l. 

K 
sin a0R = iz"" sin 0 

0 

Power Relationships. Recall from the ground plane study that, if ...... 
-iK ·r P1 = *1 e 1 , the power density for the ion mode is 

wlhl 2 
2 um N K1 e e o 

The Poynting vector for the optical mode is 

Here, in the vacuum region 

... 
E = 

0 

S = :I< R [E xir] 
o 2 e o 

... H .K • 0 nT .... = -1. sin OT ux 
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Therefore, the normal component of power flow for the optical mode is 

Recalling that 9. is very small, the ratio of normal power components is 
1 

approximately 

Numerical Results. The ratio of incident ion mode power to trans-

mitted optical mode power was computed using plasma parameters that are 

somewhat typical of the stagnation region of a blunt body during high 

velocity reentry. These parameters were 

2 2 x 1011 m2 I sec2 u = e 

2 = 2 x 107 m2 /sec 2 u. 
1 

m = 9.1 x 10-31 kg 
e 

m. = 2.34 x 10-26 kg (oxygen) 
1 

N = 1. 5 x 1014 cm-s 
0 

Under these conditions the electron plasma frequency is 

f = 1.1 x 1011 Hz pe 

The power conversion ratio was computed versus transmission angle 

for a number of frequencies, and Figures 34 through 39 were chosen as 

illustrative of the basic trends. 
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The first thing one notes about the rigid boundary results is that 

the magnitude of power conversion is quite low. This is in qualitative 

agreement with the results of Gallawa (1966) for a one-fluid plasma and 

with Dunphy, Kahn and Mintzer (1967) for a two-fluid plasma. Generally 

speaking, the overall conversion magnitude increases with increasing 

frequency until w is of the same order as the ion plasma frequency 

(109 ). The power conversion increases several orders of magnitude as 

the transmission angle approaches 90 degrees, but never increases above 

10-8 • As the signal frequency increases still further, a peak in the 

transmission pattern appears near 90 degrees and moves toward O degrees 

for increasing frequency; the overall conversion magnitude decreases 

with increasing frequency. This trend continues as w increases. 
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5.3 Mode Conversion at a Hypersonic Shock Front 

The preceding analysis concerned a sharp discontinuity in an equil-

ibrium plasma with uniform temperature and density. This section will 

present some basic material which suggests that the sharp boundary model 

is inappropriate for the shock front and that better conversion from ion 

to optical mode radiation might be found in the real shock front. 

_A shock wave is a discontinuous change in velocity, pressure, den-

sity, etc. of a supersonic gas; the velocity entering the shock is 

supersonic, and that leaving is subsonic. The temperature, pressure, 

and density in the subsonic region can be obtained from those in the 

supersonic region by the Rankine-Hugoniot relations. The characteristic 
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of greatest importance here is that much of the energy of the supersonic 

flow goes into an instantaneous rise in temperature behind the shock 

wave; this increase in temperature occurs within about two collision 

lengths behind the shock and increases with increasing gas velocity re

lative to the shock. 

For an ideal gas, the change in thermodynamic properties is instan

taneous and predictable; however, many phenomena occur in a real gas 

with high internal energy that are not predicted by ideal gas theory. 

For temperatures below about 1000°K, most of the internal energy is in 

translation and rotational states. However, as temperatures increase, 

progressively more and more of the energy goes into vibration, dis

sociation, electronic excitation, and ionization of the real gas mole

cules. These new energy states require an increasing number of colli

sions for adjustment, and both thermodynamic and ionization characteris

tics will vary with position behind the shock until relaxation is com

pleted and thermodynamic equilibrium is established. The region between 

the start of the shock and the point of thermodynamic equilibrium behind 

the shock is called the "shock front." Because the shock front forms 

the real boundary which the ion mode signal encounters, the properties 

in the front are of intense interest. The following material on relaxa

tion in shock fronts has been extracted from a paper by Shkarofsky, 

Johnston, and Bachynski (1959); the reader wishing a more complete dis

cussion than that given here should consult their work. 

The variation in gas temperature across the front will be consid

ered first. When a shock wave impinges upon air, some of the shack's 

translational motion is converted into random translational motion of 

the molecules behind the shock; this amounts.to an instantaneous rise in 
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temperature of the gas. If the thermal energy subsequently goes into 

other modes such as dissociation, the gas temperature falls. Because of 

large differences in the amount of time required for the various pro-

cesses to reach equilibrium, they may be assumed to occur separately and 

consecutively. The gas temperature profile in the shock front may now 

be represented as in Figure 40. 
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RELATIVE TO----+ 
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LU ·-
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AIR r

T1 

DISTANCE (TIME)__. 

Figure 40. Temperature Profile Behind a Hypersonic Shock Front 



103 

Station 1 represents free-stream conditions ahead of the shock 

where translation and rotation are in equilibrium. Station 2 represents 

conditions behind, but very close to the shock wave where translation 

and rotation are again in equilibrium; however, vibration is just begin

ning to be excited. Dissociation of oxygen molecules occurs between 

Station 3 and 4. Nitrogen dissociates between Stations 4 and 5. At 

Station 5 the ionization of oxygen and nitrogen atoms becomes signifi

cant until the gas reaches thermodynamic equilibrium at Station 6. 

The region of increasing ionization and decreasing gas temperature 

between Station 5 and 6 forms the boundary of the plasma sheath. Some 

ionization occurs prior to Station 5 because of atom-atom collisions. 

This process is important in that it governs the subsequent rate of ion

ization. However, at Station 5 ionization by electron-atom collisions 

becomes the dominant mechanism and rapidly overwhelms the atom-atom ion

ization. After some detailed considerations, Shkarofsky, Johnston, and 

Bachynski present the following electron density profile in the shock 

front (see Figure 41). 
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Figure 41. Electron Density Profile Behind a Hypersonic Shock Front 

The electrons created by the ionization process initially have a 

relatively low temperature, whereas the gas temperature is high. How-

ever, equipartition of energy takes place between electrons, ions, and 

atoms by elastic collisions of electrons with the atoms and ions; there-

fore, the electron temperature will increase with increasing distance 

from the shock. 

The qualitative nature of the plasma in a shock front may now be 

sketched as in Figure 42. Here Tis the gas (ion) temperature and T is 
e 

the electron temperature. The drop in gas temperature due to ionization 

is ~TI and ~T is the further drop required to bring the electron 
µ.e 



temperature up to equilibrium. 

T 
0 

Ai_ 

T 
eq 

+ tr AT 
ue 

T 
eo--

l"\eq--

t.,e 

t 
eq 

______ TIME (DISTANCE) 
BEHIND SHOCK 

Figure 42. Comparison of Temperature and Electron Density 
Behind a Shock Front 

105 

We have now seen that the shock front as seen by an impinging ion 

mode wave is a nonequilibrium region of continuously decreasing electron 

density·and electron temperature and continuously increasing ion temper-

ature. Because the wave number of the ion mode is typically much great-

er than the free space wave number of the optical mode, the change in 

density and temperature may occur over many ion mode wavelengths. Since 
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the wave number of the ion mode depends on the derisities and tempera-

tures of the plasma, the index of refraction of the ion mode may be a 

continuous, slowly-varying function of position. Under these conditions 

the path of propagation curves smoothly as the ray moves through the 

front. 

However, it appears difficult to say just how the wave number 

varies. To illustrate, recall the expression for K~ derived earlier. 

w2m. {1 - x 1 - x. 
+ [(1 - x 1 

: xi)2 
4(1 - x - x.)J} Kf 1. e + 1. e + e 1. "2 

=~ m. m m. mm. e 1. e 1. e e i. 

The x and x. terms are the normalized plasma frequencies and depend on e 1. 

the density of charged particles, which has been established relatively 

well. However, the difficulty occurs with the term representing the 

mean thermal velocity of the electrons 

u2 
e 

3kT 
e =-

m e 
k = Boltzmann Constant 

The assumption that electron and ion temperatures were equal, i.e., 

T =T. =T 
e 1. 

was implicit in the derivation of the electron and ion mode wave num

bers; the relation u:me - u~mi = 3kT was employed at several steps in 

the derivation. This is clearly not the case in the shock front. More-

over, s~nce the so-called ion mode is a hybrid combination of electron 

and ion particle pressures, it is not apparent at this point just what 

temperature should be used in the expression for the ion mode wave num-

her. If w >> w , the ion mode becomes essentially an ion particle 
pe 



107 

pressure wave, and one would heuristically expect that the ion tempera-

ture would be appropriate in such a case. However, in the blackout 

spectrum, electron and ion pressures are combined equally in the ion 

mode and probably neither T nor T. is the correct temperature. A fur-
e l. 

ther complication is that the plasma in the front is not in equilibrium 

which contradicts assumptions used in deriving the basic plasma equa-

tions. 

From the preceding discussion, it is apparent that the index of re-

fraction for the ion mode wave varies continuously, if unpredictably, 

through the shock front profile. Field .(1956) has shown that a gradient 

of the index of refraction in a compressible plasma produces coupling 

between the electroacoustic and optical modes. The reason for the coup-

ling can be seen from the definition of the fields. 

where 

-+ 
7xE p 

-+ 
7•E 

0 

-+ -+ -+ 

= 

= 

E = E + E 
O p 

0 

0 

-+ 
7•E =} 0 

p 

-+ 
'7XE "f O 

0 

Physically, the gradient. in the index of refraction produces a bending 

in the lines of force (unless propagation is along the gradient), and 

-+ -+ -+ 
thus a curl in the E field. Since 7xE = O, the 7xE produced is asso

p 

ciated with an optical mode and mode conversion occurs as the electro-

acoustic mode propagates through the region. 

Field (1956) comments that the mathematical procedure for treating 

small gradients in a one-fluid electron plasma is very involved. Such a 
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treatment of a two-fluid plasma would probably be quite formidable and 

inconclusive in view of the paucity of knowledge concerning the ion mode 

wave number in a real shock front. 

Lacking an accurate mathematical description of mode conversion in 

a two-fluid diffuse boundary, some speculative statements can be made to 

compare sharp and diffuse boundary effects. When an ion mode wave im

pinges on a sharp boundary, most of the energy is reflected in the ion 

mode and very little is transmitted. Because the ion mode wave number 

is ordinarily several orders of magnitude greater than the free space 

wave number, the low transmission coefficient is not too surprising. In 

fact, electromagnetics is not the only realm in which waves incident up

on a sharp boundary separating media of quite different intrinsic pro

perties are almost totally reflected. This situation is contrasted with 

the one where the properties of the supporting media vary slowly with 

distance and reflection is greatly reduced. In view of this, it is not 

implausible that an ion mode wave may propagate through the shock front 

with little reflection and transfer energy into the optical mode with 

reasonable efficiency. Considering theoretical difficulties, conclusive 

statements will probably require experimental work. 

Although definitive experimental work is lacking, some support for 

reasonable conversion efficiency may be drawn from the literature. Chen 

(1965) has theoretically shown that electroacoustic waves excited by a 

space vehicle in the ionosphere produce an enhancement of radar scatter

ing which resembles the unusual observations of the CW reflected HF sig

nal from satellites reported by Kraus, et al (1958a, 1958b, 1960). The 

sharp spikes observed in satellite radar cross section are apparently 

not predicted by conventional EM scattering theory, whereas the spikes 
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do appear if an electroacoustic wave is considered. If the efficiency 

of mode conversion were very small at the lower boundary of the iono-

sphere, one would expect that the contribution from the electroacoustic 

mode would not be apparent to an observer on the ground. The radar re-

turn would be almost entirely due to the optical mode alone, Therefore, 

this work provides some indication of a relatively efficient conversion 

process. 

Further support comes from an experiment by Chen, Judson, and Lin 

(1967) which measured the input impedance and radiation pattern of a 

monopole immersed in a glass-enclosed plasma, Both the impedance and 

radiation patterns agreed well with the theoretical predictions and pro-

vided strong indications of the excitation of the electroacoustic mode. 

· Although it was not stated in their paper, the experimental setup (see 

Figure 43) used in the study also indicates a reasonable mode conversion 

efficiency. 

Theoretically, it can be demonstrated that if an electroacoustic 

wave is excited by the monopole, the radiation pattern will be end-fire, 

i.e. directed primarily along the antenna axis. This is in contrast 

with the broadside pattern of the optical mode. For w slightly greater 

than w , the radiation patterns reported by Chen, et al, do have an 
pe 

end-fire lobe which is about 20 dB below the level of the broadside 

lobes, and the end-fire lobe is identified with an electroacoustic wave. 

The significant idea here is that the electroacoustic wave must 

convert to an optical mode at the boundary of the plasma defined by the 

walls of the glass jar before it is observed by the receiving antenna, 

If something were known about the amplitude of the electroacoustic wave 

at the boundary, the magnitude of the mode conversion could be 
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estimated. As a first step in obtaining such information, it is noted 

that the radiation resistance measurements from this experiment are in 

close agreement with the theory by Chen (1964). According to this 

theory, for 0.7 < ~)2 < 1.0 the radiation resistance due to plasma 

mode radiation is greater than that due to the optical mode, but of the 

same order of magnitude. Other studies have predicted that the coupling 

into EA modes would be substantially larger; however, real-plasma ef-

fects such as the Debye sheath, absorption at the antenna surface, etc. 

have been ignored to reduce the complexity of the problem. Differences 

in theory notwithstanding, for the particular experimental conditions 

being discussed here, the radiation resistance is closely predicted by 

combining the usual radiated EM power from a cylindrical dipole with an 

electroacoustic power a few times larger. Keeping in mind that only a 

rough estimate of mode conversion efficiency is desired, assume that the 

EA power density leaving the vicinity of the monopole is a few times 

greater than the EM power density. Because the peak of the EA lobe was 

measured to be about 20 dB below the level of the EM lobes, it would ap-

pear that the loss in mode conversion is only about 25 dB, rather than 

the 80 dB or so from rigid boundary theory. 

Further, before arriving at the outer boundary of the plasma, the 

EA wave must propagate for many wavelengths. During this time, one 

would expect the amplitude to decrease due to collisional losses and 

Landau damping. It is very difficult to say just how much loss is in-

curred over the propagation path; however, because the radiated EA pow-

er appears comparable with the EM power, any plasma mode losses present 

in the experiment would indicate a better conversion efficiency at the 

boundary. This is because the amplitude of the incident EA wave is 
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decreased relative to the incident .EM wave. 

Thus, it is seen that there are at least two experiments which sup

port to some extent the statement that mode conversion at a plasma boun

dary may be a good deal greater than that predicted by the theory for a 

sharp, rigid plasma boundary. In the first experiment, the boundary was 

the lower side of the ionosphere; and in the second experiment, a plasma 

terminated at a glass wall. Probably neither boundary duplicates condi

tions in a shock front; however, the fact that an appreciable mode con

version is indicated at th~se diffuse boundaries offers some hope that 

conversion in the shock front will also be appreciable. 



CHAPTER VI 

SUMMARY AND ENGINEERING RECOMMENDATIONS 

6.1 Summary 

Chapter II discusses the basic properties of the hot two-fluid 

plasma model which is used to describe the electromagnetic characteris

tics of a reentry sheath. Plane wave dispersion relations are developed 

from the basic plasma equations; and, it is shown that the plasma will 

support a hybrid longitudinal or electroacoustic mode which will, in 

theory, propagate regardless of the charge density in the sheath. This 

mode is called the "ion mode". Examination of· the boundary conditions 

at a sharp boundary indicates that an ion mode signal impinging upon a 

plasma discontinuity such as the outer boundary of the sheath will be 

partially converted into an electromagnetic mode which may propagate 

outside the sheath. Finally, the assumptions used in applying the two

fluid model to a reentry sheath are justified. 

Chapter III discuss~s the theory of operation of the ion mode re

entry communication system. In particular, the important questions of 

which type of antenna to use and where to place it are considered. Sur

vivabili·ty considerations indicate that an aperture type antenna should 

be used, and propagation characteristics of the ion mode require that 

the antenna be placed in the stagnation region at the bow of the reentry 

vehicle. After discussing the theory of operation of the system, a 

113 
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theoretical model is formulated to study the system characteristics. 

The model considered first is a slab of pl~sma over a perfectly-

conducting ground plane with an infinitesimal slot. However, because of 

.the very burdensome algebra involved in the solution of this problem, 

further approximations are made, It is shown that conditions in an ac-

tual reentry sheath support to some extent the division of the slab 

problem into two simpler problems: (1) radiation by a slot into a plas-

ma half space, and (2) mode conversion at a plasma-vacuum boundary. The 

approach taken in evaluating the practicality of the system then in• 

valves solving the ground plane problem to determine the ion mode radia-

tion characteristics of an aperture, and considering the efficiency of 

conversion from ion mode to EM mode at the shock front. 

Chapter III also outlines a method for approximating the EM radia-

tion field by combining the results of the two simpler problems with 

proper phase and amplitude bookkeeping. This was not done, because the 

mathematical theory developed for mode conversion at a plasma boundary 

was felt to be inadequate to describe the processes at a real hypersonic 

shock front. Some justification for this is given in Chapter V. 

Chapter IV is the solution for the radiation from a slotted ground 

plane into a two-fluid compressible plasma half space. The formal solu-

tion of the three simultaneous Helmholtz equations is carried out using 
.... 

Fourier transform techniques with the rigid boundary condition v·n = 0. 

The resulting integrals are evaluated approximately by saddle point 

techniques to determine the fields in the radiation zone. 

The discrete spectrum of the integrals was also considered to some 

extent. The complicated nature of the characteristic equation forced 

the use of numerical techniques. Computation of the poles of the 
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integrand for a signal frequency near the ion plasma frequency revealed 

the possibility of a surface wave with propagation constant slightly 

greater than the ion mode wave number. For the computed example, the 

amplitude of the surface wave was severely attenuated at typical shock 

detachment distances; this indicates that the illumination of the shock 

front will be almost entirely due to ion mode radiation. However, the 

large number of variables in a plasma sheath make it risky to conclude 

that the surface wave will be sufficiently attenuated in all reentry 

plasmas. Indeed, there is also the possibility of surface modes bound 

to the outer boundary at the shock front; this phenomena was obscured by 

the division of the slab problem into the two subproblems. Therefore, 

one of the criticisms of the analysis is the difficulty in dealing with 

surface modes. 

The formal solutions for all three radiated modes were evaluated on 

a digital computer and a number of the computed radiation patterns are 

given in the text. Although numerous electron and optical mode patterns 

were included to demonstrate the reasonability of the computed results, 

the ion mode patterns for w < w are of greatest interest for the repe 

entry com!ilunication system. The ion mode patterns show a pronounced 

broadside lobe which increases a great deal in intensity as signal fre-

quency passes below the i.on pla.sma frequency. The ion mode radiation is 

much smaller than the other modes for w above the electron plasma fre-

quency. The rigid boundary problem of Chapter Vindicates that the ion 

mode radiation from the aperture is properly directed for greatest mode 

conversion efficiency. 

Chapter V discusses mode conversion processes at a hypersonic shock 

front. A theoretical analysis of mode conversion at a sharp, rigid 
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boundary is presented first. The usual techniques for boundary value 

problems are employed to arrive at a formal solution, and the numerical 

results agree in character with those of other workers considering simi

lar problems. Although the pJ;edicted conversion efficiencies were quite 

low, in the blackout spectrum the peak conversion efficiencies occur for 

transmission angles almost parallel to the boundary, i.e. almost normal 

to the velocity vector of the reentry craft. This would offer some hope 

of a peak in the radiation pattern in the direction of ground stations. 

If this were the case, a single ion mode aperture antenna would produce 

a wide-angle cone of EM radiation which could be linked with ground sta

tions even for a spinning reentry body. 

Chapter V goes on to explain some aspects of the physical processes 

inside an actual hypersonic shock front, and it is noted that the real 

boundary is diffuse rather than sharp and rigid. After a short discus

sion of gradient mode coupling versus rigid-boundary coupling, heuristic 

arguments are presented to support much better mode conversion efficien

cy at the real boundary. Although definitive experimental work is lack

ing, related experiments in the literature are drawn upon to give a much 

more optimistic picture than that resulting from rigid-boundary theory. 

Lack of an adequate mathematical theory of electromagnetic processes at 

a plasma discontinuity is a serious weakness in present knowledge; care

ful experiments will probably offer the best hope in this area for some 

time to come. 

In defense of the approach taken in analyzing the ion mode system, 

by considering the aperture radiation, propagation, and mode conversion 

problems separately, one obtains a more detailed physical insight into 

the various processes involved in the system operation than that offered 
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by the slab problem, although at the expense of not having an entirely 

accurate picture of the overall radiation. It might be argued, though, 

that a solution of the much more burdensome problem of a plasma slab 

over a ground plane with a rigid-boundary conditi.on might give a false 

feeling of accuracy in view of the serious weaknesses in modeling the 

processes at the shock front. 

The theoretical analysis of the separated problem has indicated 

that: (1) an aperture antenna will radiate significant amounts of pro

perly directed ion mode radiation for frequencies lower than the ion 

plasma frequency, which may be in the microwave spectrum for a dense 

sheath; and (2) the mode conversion at the outer boundary of the sheath 

may be reasonably efficient and provide a radiation pattern which allows 

the use of a single antenna on a spinning reentry body. 

The remaining link in the theoretical evaluation of system practi

cality is the study of propagation losses for the ion mode in the re

entry sheath. As noted in Chapter II, the losses were ignored in the 

basic equations to allow the diagonalization of an otherwise non-Hermi

tian matrix. Generally speaking, propagation losses will occur as Lan

dau damping or collisional losses. For short wavelengths, Landau damp

ing will predominate; whereas for long wavelengths, collisional attenua

tion will be the primary .mechanism. This places an upper and lower 

bound on the operating frequency of the ion mode system. From a practi

cal standpoint, one would like to operate at lower frequencies; this 

makes collision loss the main problem. 



118 

6.2 Engineering Recommendation~ 

Based on the theoretical results of this investigation, the follow

ing approach is reconunended for alleviating conununications blackout dur

ing reentry of a blunt vehicle into an atmosphere. 

The primary conununication system should be an ordinary EM system 

operating from antennas located such that the onset of blackout is de

layed as long as possible. For typical blunt reentry bodies, this is 

probably in the aft region to allow maximum reduction in charge density 

due to volumetric expansion, recombination, and electron attachment. 

_The ion-mode aperture antenna should operate into the bow stagnation re-

gion with the axis of the aperture normal to the detached bow shock. By 

the time that the charge density in the aft portion of the sheath has 

increased sufficiently to create blackout for the primary antennas, the 

much higher charge density in the stagnation ~egion should allow the 

aperture in the bow to operate near or below the ion plasma frequency 

for that region. As noted earlier, this is the condition for substan

tial ion mode radiation. The reverse process occurs as the vehicle 

slows down and sheath ionization abates. By the time that the aperture 

in the bow is operating well above the ion plasma frequency, the primary 

antennas should be out of blackout again. 

A sketch of the total system concept is shown in Figure 44. The 

primary system consists of four apertures mounted at equal intervals a

round the aft section of the reentry body; this will tend to eliminate 

loss of radio contact due to spinning. The ion mode aperture is mounted 

in the bow. From the boundary studies of Chapter V, it may be cautious

ly stated that there is some hope for a wide-angle cone of EM radiation 
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from the ion mode antenna; such a cone would allow contact with ground 

stations even with spinning. 

PRIMARY 
-1-----+ ELECTROMAGNETIC 

ANTENNAS 

Figure 44. The Total System Concept 

The choice of operating frequency should be based upon knowledge of 

mode propagation characteristics in the expected plasma for specific re-

entry missions. A substantial amount of both theoretical and experimen-

tal work is needed to adequately define this area for engineering pur-

poses. 
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The vast number of papers and reports in the last decade related to 

reentry blackout indicates the intense interest generated by this prob

lem. Discussions of the blackout problem have even reached the popular 

news media. It would seem that the particular merits of this thesis lie 

in the proposal of a novel approach for alleviating blackout and in the 

theoretical analysis of its practicality. In addition to this, the so

lution of the radiation problem in Chapter IV may be of some interest 

outside the reentry problem. 

Finally, a great deal of work still remains, notably in the areas 

of electroacoustic mode propagation in real plasmas and mode conversion 

at a diffuse plasma boundary such as a shock front. Because of the com

plexity of these problems, an empirical approach, supported by theory 

where possible, seems to offer the best hope for a partial solution. 

Such research could have widespread implications, not only for the re

entry problem, but also in the areas of telecommunications and astro

physics. 
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APPENDIX A 

LINEARIZATION OF THE BASIC PLASMA EQUATIONS 

The basic equations governing wave motion in an isotropic compress-

ible plasma containing t species of charged particles are: 

-+ t 

where 

-+ 
E, 

P. = 
]. 

N. = 
]. 

qi = 
-+ 

V. = 
]. 

m. = 
]. 

-+ 
H = 

-+ oE l -+ 7xH - e ~t = N.q.V. 
Oo l.l.l. 

i=l 

-+ 
-+ oH 7xE+µ. -=O 

o ot 

[ oV. -+ -+ J -+ -+ -+ 
N.m. ~ti+ (V.•7)V. = N.q.[E + µ. (V.xH)] - 7P. 

l. 1 o l. l. l. ]. 0 l. ]. 

the ith specie pressure, 

the ith specie density, 

the ith specie· charge, 

the ith specie velocity, 

the ith specie mass, 

the electric and magnetic field. 

In the above form,. the basic equations are nonlinear partial 

(A. l) 

(A. 2) 

(A. 3) 

(A.4) 

di£-

ferential equations, and are virtually intractable. However, if it is 

assumed that the impressed electromagnetic fields are of small amplitude 
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linearization may be achieved. 

Employing a perturbation approach, assume that the ith particle 

specie density and velocity may be expressed as the sum of a steady 

state value and a small amplitude time function. Thus 

where 

N. = N • + n. 
1 01 1 

-t -t -t 

V. = V i + v1 • 
1 0 1 

-t 

oV • 
01 at= 0 

Invoking the ideal gas laws subject to adiabatic conditions, 

T = To ~i)y-1 
0 

where 

T = temperature of the plasma, 

T0 = steady state plasma temperature, 

y = specific heat ratio, 

k = gas constant. 

More simply, 

P.=N.k.T ~i)y-1 
1 1 o \N01 

(A.5) 

(A. 7) 

Substituting the perturbation relations of Equation A.5,into Equations 

A.1, A.2, A.3, and A.7 and neglecting as small all nonlinear terms con-
-t 

taining products of v1i and ni, we find 



, Since by A. 6 

n. 
lJ.....I << 1 N. 

OJ. 

Equation A.11 may be approximated by 

P. ~ N .kT (1 + yn./N .) 
J. OJ. 0 J. OJ. 

= N .kT + yniKT 
OJ. 0 0 
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(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

If the dynamic perturbation fields have three degrees of freedom, 

then y = 3. Using the mean square thermal velocity for the ith particle 

specie 

u2. 
OJ. 

we have 

3kT 
0 =-

m. 
J. 

(A.13) 

(A.14) 

Since we have assumed that the plasma is described by Maxwell-Boltzmann 
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statistics, the drift velocity is zero. Therefore, the linearized basic 

equations are 

... 
7xH -

... 
... oH 

7xE + µ.o ot = O 

P. = N .KT + m.u2 .ni 
1 01 0 1 01 

The first two equations are the source-free Maxwell equations, the 

third is the equation of continuity, the fourth is the force equation 

for a plasma fluid particle, and the last expression is the linearized 

equation of state. 



APPENDIX B 

BOUNDARY CONDITIONS AT A PLASMA DISCONTINUITY 

(Rig.id Boundary) 

A derivation of the boundary conditions at a sharp, rigid interface 

between a plasma and air will be developed using the geometry in Figure 

B-1. It will be assumed that the interface separates warm plasmas of 

different densities; and the result for a plasma-air boundary follows 

by taking N1 = O. 

PLASMA I 

PLASMA 2 

Figure B-1. A Discontinuity Separating Plasma Half-Space 

From Appendix A, the linearized basic equations are 
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7xH - iwe E = Ne(v. - v) o 1. e 
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7xE + io.µ H = 0 
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iwn + N 7•V = 0 e oe e 
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(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

Consider the continuity Equation, B.4, integrated over a regular 

volume containing the plasma boundary 

I 7• (N ; ) dv = -iw J n dv o e .e 
v v 

and apply the divergence theorem to show 

I __. "' 
N v •u da 

o e n 
s 

where u is a unit vector normal to the surface-bounding the volume. 
n 

Assume that the boundary is time-invariant, i.e. "rigid", and let the 

volume of integration be the classical pillbox shown in Figure B-2. 

I I 
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l 

-...... 
2 

f 

Figure B-2. The Volume of Integration 

Allowing the dimension of the volume orthogonal to the boundary to ap-

proach zero, we have 

lim J N; •U da = •iw lim'J n dv 
L--0 o e n L-ICX) e 

s v 

Because the electron density must be finite, the volume integral van-

ishes and 

(B. 7) 

An identical procedure s~arting with Equation B.3 yields 

where.u is the unit normal vector from Region 2 to Region 1. Equations 

B.7 and B.8 describe continuity of mass flow across the boundary; this 

is contrasted with the continuity of velocity condition used by some 

writers. 
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Upon application of the classical technique of a contour integral 

of the Maxwell EquationB.1 about a rectangular path enclosing a length 

of the boundary as the height of the rectangle vanishes, we find 

(B. 9) 

Likewise, from (2) the same procedure yields 

(B.10) 

where the boundary is assumed source-free. 

If Region 1 is assumed to be neutral gas, N1 = 0 and the linearized 

boundary conditions become 

(B.11) 

The set of Equations B.11 provide a basis for dealing with propagation 

in warm plasma as a boundary value problem. However, it is not intui-

tively obvious that a real boundary between a plasma and air is indeed 

rigid. Moreover, for Equations B.11 to apply, the transition between 

plasma and air must occur over a distance that is short relative to any 

wavelength involved; due to the very short electroacoustic wavelengths, 

this may often be a serious limitation of the theory. 
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