THEORETICAL INVESTIGATION OF THE BOND-BOND
 INTERACTION FORCE CONSTANT IN X_{2} MOLECULES

By
ROY EDWARD BRUNS
Bachelor of Arts
\section*{Southern Illinois University}

Edwardsville, Illinois
1963

Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY

May, 1968

THEORETICAL INVESTIGATION OF THE BOND-BOND
INTERACTION FORCE CONSTANT IN
XF_{2} MOLECULES

Thesis Approved:

I am deeply indebted to Dr. J. Paul Devlin for his guidance and patience throughout the execution of this project. I wish to express my gratitude to Dr. Lionel M. Raff for his invaluable advice pertaining to the quantum mechanical aspects of this problem. Acknowledgment is also due to Dr. H. A. Pohl for numerous helpful discussions concerning this project.

This study was made possible by financial support from the National Aeronautics and Space Administration through a National Aeronautics and Space Administration Traineeship and from the Dupont Chemical Company through a Dupont Fellowship.

I also wish to thank the Oklahoma State University Computing Center for use of their facilities during the preparation of this thesis.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THE VIBRATIONAL PROBLEM. 10
Potential Energy Functions 11
GVFF Calculations 16
UBFF Calculations on $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} 17
Discussion of Results 18
III. THE LCAO-MO-SCF CALCULATION 21
The Four Electron Problem 22
The Four Electron LCAO-MO-SCF Problem 26
Determination of the Binding Energy 30
Semiempirical Integral Evaluations. 32
Evaluation of Overlap Integrals 43
Core-Core Repulsion 44
Numerical Method. 44
Results and Discussion 47
IV. THE CONFIGURATION INTERACTION CALCULATION. 58
The Eight Electron Problem 59
Mathematical Formalism. 65
Semiempirical Integral Approximations 67
Core-Core Repulsion Terms 67
Calculation of Binding Energy 70
Overlap Integrals 70
Results 71
V. DISCUSSION OF RESULTS 82
Summary 92
Suggestions for Future Work 93
BIBLIOGRAPHY 96
APPENDIX A 99
APPENDIX 108
Table Page
I．Vibrational Frequencies of Some Non－Linear Symmetric Triatomic Molecules 4
II．Urey－Bradley Force Constants for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} 18
III，Slater Exponential Coefficients for Carbon，Nitrogen， Oxygen and Fluorine Atoms and Ions 26
IV．Semiempirical Integral Evaluations－Set I 36
V．Semiempirical Integral Evaluations－Set II 38
VI．F－Matrix Elements－Set I 39
VII．F－Matrix Elements $\boldsymbol{\sim}$ Set II 41
VIII，Valence State Ionization Potentials and Electron Affinities 43
IX．Binding Energy Values for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} Set I 50
X．LCAO－MO－SCF Coefficients for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2}－ Set I 51
XI。 Equilibrium Binding Energies and Bond Lengths for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and $\mathrm{CF}_{2}{ }^{\circ}$ 52
XII．Binding Energy Values for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2}－Set II 54
XIII。 LCAO－MO－SCF Coefficients for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2}－Set II。 55
XIV。 Equilibrium LCAO－MO－SCF Coefficients． 57
XV。 Atomic and Molecular Orbitals for the Configuration Interaction Problem 63
XVI．Semiempirical Integral Evaluations－－Set I－－ Configuration Interaction Problem 68
XVII．Binding Energies－－Out－of－Plane Atomic Orbital Basis Set 74

LIST OF TABLES (Continued)

Table Page
XVIII. Configuration Interaction Coefficients -- Out-of- Plane Atomic Orbital Basis Set 75
XIX. Binding Energies -- In-Plane Atomic Orbital Basis Set -- Symmetric Stretch. 76
XX. Binding Energies -- In-Plane Atomic Orbital Basis Set -- Antisymmetric Stretch 77
XXI. Configuration Interaction Coefficients -- In-Plane Atomic Orbital Basis Set -- Symmetric Stretch. 78
XXII. Configuration Interaction Coefficients -- In-P1ane Atomic Orbital Basis Set -- Antisymmetric Stretch. . . . 79
XXIII. Theoretical Values for f_{d}. 87
XXIV. Bond-Bond Interaction Constants for Several Triatomic Molecules. 88
Figure Page

1. A DBNB Resonance Structure and the Stretching Modes of XF_{2}. 5
2. An Atomic Orbital Diagram for Lucken's Calculation 7
3. The Normal Modes of a Non-Linear XF 2 Molecule 10
4. Internal Displacement Coordinates of XF_{2} 。 12
5. Non-Bonded Potential Energy Curves 15
6. GVFF Calculations for OF_{2} 16
7. The Cores and Atomic Orbitals Used in the Four Electron XF_{2} Problen 23
8. Effective Nuclear Charges for Core-Core Repulsion Terms 45
9. Binding Energy Curves for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} - Set I 49
10. Binding Energy Curves for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and $\mathrm{CF}_{2}-$ Set II 53
11. The Cores of OF_{2} for the CI Calculation 60
12. Atomic Orbital Basis Sets for the CI Calculation. 62
13. Configuration Interaction Binding Energy Curves for OF_{2}-Sym- metric Stretch 72
14. Configuration, Interaction Binding Energy Curves for 0_{2}-Anti- symmetric Stretch 73
15. $\Delta E_{B}(I)$ and $\Delta E_{B}(C T)$ as a Function of the Normal Coordinate, Q_{3}. 84

CHAPTER I

INTRODUCTION

The chemistry of fluorine atoms and ions and of molecules containing fluorine has been the object of extensive investigation by chemists for many years. Much of this interest stems from the fact that fluorine combines chemically with other elements in much the same way as hydrogen although the two atoms have greatly different atomic properties. Since fluorine can be directly substituted in many molecules for hydrogen a direct comparison between fluorine substituted and hydrogen substituted compounds can be made to determine the effect on bonding of certain characteristics of the fluorine atom which the hydrogen atom does not exhibit. For instance a comparison of the properties of OF_{2} and OH_{2} might shed considerable light on the interaction between nonbonded atoms and its relationship to the individual properties of the fluorine and hydrogen atoms. The differences in chemical bonding which might occur because fluorine can contribute to molecular orbitals with several 2 p atomic orbitals while hydrogen has essentially only a ls orbital available for bonding can be investigated. A major purpose of this research project was to investigate in a theoretical manner some of the proposed explanations for the various differences in chemical and physical properties of analogous fluorine and hydrogen compounds. Two major explanations are analyzed in this thesis; the dquble bond-no bond resonance theory first proposed by Brockway ${ }^{1}$ and the interaction
between non-bonded atoms which has been of particular interest to molecular spectroscopists.

Brockway ${ }^{1}$ first proposed double bond-no bond (DBNB) resonance in 1937 as an explanation of the fact that carbon-fluorine bond distances in fluoromethanes were significantly shorter in compounds containing several fluorine atoms than in the monofluoride molecule. This resonance has been represented by the following structures for CF_{4},

If such DBNB resonance structures are of sufficiently low energy, they should stabilize the molecule. This stability would be reflected in stronger and hence shorter C-E bonds. In fluoromethanes containing more than one fluorine atom the $C-F$ bonds would then be shorter than in the methyl fluoride molecule which cannot exhibit such resonance.

This shortening of the $C-F$ bond can be explained by postulating residual attractive forces between the non-bonded fluorines ${ }^{2}$. The assumption of a destabilizing interaction with residual repulsive forces between the non-bonded atoms cannot account for such bond shortenings, although these residual repulsive forces cannot be ruled out for the following reason. When the non-bonded interaction is energetically stabilizing the residual forces between the atoms may be attractive or repulsive. An energetically stabilizing interaction would tend to shorten the $\mathbf{C - F}$ bond regardless of the type of residual forces existing between the non-bonded atoms. Many spectroscopists accept the viewpoint that the non-bonded interaction is energetically
destabilizing ${ }^{3}$. In the next several paragraphs other chemical phenomena which may be explained by postulating either DBNB resonance or stabilizing non-bonded interactions are presented.

In the disproportionation

$$
2 \mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{CH}_{4}+\mathrm{CH}_{2} \mathrm{~F}_{2} \quad \Delta \mathrm{H}=-5.2 \mathrm{kcal} .
$$

methane and methylene fluoride are favored over methyl fluoride ${ }^{4}$ 。 DBNB resonance could occur in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ but not in $\mathrm{CH}_{3} \mathrm{~F}$; From force constant calculations one deduces that the $F \cdot 0 \cdot F$ non-bonded interaction is much larger than the interactions between hydrogen and fluorine or between two hydrogens ${ }^{3}$. Therefore the existence of either significant multiple bonding or of stabilizing non-bonded interactions would tend to drive the reaction to the right.

In both the structural and thermodynamic phenomena mentioned above, the effects are much less striking when other halogens are substituted for fluorine. The non-bonded interaction force constant between two chlorines is calculated to be less than between two fluorines ${ }^{3}$ 。 If this interaction is stabilizing one would not expect methane and methylene chloride to be as heavily favored over methyl chloride as the corresponding fluoride compounds. ${ }^{4}$

The relative significance of DBNB resonance in fluoromethanes compared with other halomethanes is demonstrated by the greater ability of fluorine, compared with the heavier halogens, to donate a pair of electrons to the carbon atoms of aromatic rings" A relative measure of this donating ability is given by the numerical values of the substituent constant, σ, in the Hammett equation ${ }^{5}$. The substituent constant is a measure of the electron donating or electron withdrawing power of
a substituent on an aromatic ring，a σ value greater than zero indicat－ ing the former．A substituent on a benzene ring will produce different electronic effects at the meta and para positions．：As a result σ values vary depending on the position of interest in the aromatic ring． The substituent effect at the meta and para positions are denoted by σ_{m} and σ_{p} ，respectively．The quantity of $\sigma_{p}-\sigma_{m}$ has been suggested as a measure of the ability of a substituent to add（or withdraw）elec－ trons to a π system by a resonance phenomenon．This suggestion is ap－ proximately correct since inductive effects（such as the electro－ negativity of the substituent）perturb the meta and para positions to approximately the same extent whereas resonance effects essentially show up at the ortho or para position．Values of $\sigma_{p}-\sigma_{m}$ for fluorine， chlorine，bromine，and iodine are $0.275,0.146,0.159$ and． 0.076 ， respectively。 ${ }^{5}$

The vibrational frequenctes of $\mathrm{OF}_{2}, \mathrm{NF}_{2}, \mathrm{CF}_{2}, \mathrm{OCl}_{2}$ and OH_{2} are listed in Table Io In a large number of nonlinear symmetric triatomic

TABLE I

VIBRATIONAL FREQUENCIES OF SOME NON－LINEAR SYMMETRIC

 TRIATOMIC MOLECULES| Frequency ${ }^{*}$ | OF_{2}^{6} | NF_{2}^{7} | CF_{2}^{8} | $\mathrm{OCl}_{2}{ }^{9}$ | OH_{2}^{10} |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ν_{1}（sym。str。） | 929 | 1069.6 | 1222 | 630.7 | 3651.7 |
| v_{2}（sym。bend。） | 461 | 573.4 | 668 | 296.4 | 1595.0 |
| $v_{3}($ antisym。str。） | 828 | 930.7 | 1102 | 670.8 | 3755.8 |

＊All frequencies are given in cm^{-1} 。
molecules，ν_{3} ，the antisymmetric stretching frequency is larger than v_{1} ，
the symmetric stretching frequency. This behavior is illustrated by OCl_{2} and OH_{2}. But, in the carbon, nitrogen and oxygen difluorides v_{1} is larger than $V_{3^{\circ}}$ Significant multiple bonding and/or stabilizing non-bonded interaction between the fluorines would tend to produce this frequency inversion shown by these molecules. Figure 1 shows a DBNB resonance structure for XF_{2} and a schematic diagram of its symmetric and antisymmetric stretching modes. As one X-F bond is compressed,

Figure 1. For the XF_{2} Molecule a) a DBNB Resonance Structure, b) the Symmetric Stretching Mode, and c) the antisymmetric stretching mode.
multiple bonding should become increasingly important for that bond. If DBNB resonance structures contribute significantly to the resonance hybrid, they would facilitate motion in the antisymmetric stretching mode, thus lowering $v_{3} \quad v_{1}$ would be relatively unaffected by such resonance structures but may possibly be increased by a small amount.

The non-bonded distance in XF_{2} changes as the molecule vibrates in its symmetric stretching mode but this distance is almost constant as the molecule moves in its antisymmetric mode. The existence of a stabilizing non-bonded interaction between the fluorines would tend to increase v_{1} leaving ν_{3} relatively unaffected.

Vinylidene fluoride has an $\mathrm{F}-\mathrm{C}-\mathrm{F}$ angle 12° smaller than its $\mathrm{H}-\mathrm{C}-\mathrm{FH}$
angle. 11 This would not be expected on the basis of electrostatic repulsion between the non-bonded fluorines but is anticipated if this interaction is stabilizing。 $P_{i t z e r}{ }^{12}$ has suggested resonance structures of the type

for unsaturated hydrocarbons. If these structues were unimportant the carbon atomic orbitals which form bonds with the fluorines would be sp ${ }^{2}$ hybrids. The above structures would introduce added p character into the $C-F$ bonds at the expense of the $C-C$ bond. Since the angle between $s p^{2}$ orbitals is larger than between $s p^{3}$ orbitals one would expect a smaller $F-C-F$ angle in compounds in which the above structures are important. This same argument applies to the smaller $F-C-F$ angle in CHF_{3} compared to $\mathrm{CH}_{2} \mathrm{~F}_{2}{ }^{13}$ In this case the $\mathrm{C}-\mathrm{F}$ bond experiences an increase in p character at the expense of the $C-H$ bond.

The cis to trans conversion of 1,2 -difluoroethylene is not the

the rmodynamically favored reaction compared to the reverse process. 14 Such a result is unexpected on the basis of bond dipole-dipole repulsions. Stabilizing non-bonded interactions in these molecules would favor the cis form. Resonance structures similar to those drawn for vinylidine fluoride ${ }^{12}$ have been used to explain the greater stability of the cis form compared with the trans form of difluoroethylene。

Lucken ${ }^{15}$ has measured ${ }^{35} \mathrm{C} 1$ nuclear quadrupole resonance frequencies of various chloromethanes. For those molecules for which structures such as

might be drawn the NQR frequencies of ${ }^{35} \mathrm{C} 1$ are considerably lower than in compounds whexe structures of this type cannot be drawn. Such lowering in this frequency is expected as the ionicity of the $\mathrm{C}-\mathrm{Cl}$ bond is increased.

Lucken ${ }^{15}$ has performed an approximate Huckel molecular orbital calculation on the model illustrated in Figure 2 where X might be a

Figure 2. An Atomic Orbital Diagram for Lucken's Calculation。
fluorine atom。. Double bonding is provided for by combining ψ_{x} with an antibonding orbital of the carbon-chlorine bond. His calculation can account for the shortening of the $C-F$ bond length in the fluoromethane series and the anomalously low quadrupole resonance frequencies of chlorine in molecules where multiple bonding might take place. His
calculation is very sensitive to the choice made for the electronegativity of X and the values chosen for the resonance integrals derived in the calculation. A less arbitrary molecular orbital approach would be desired to further test the significance of multiple bonding in these molecules.

Kaufman ${ }^{16}$ has explained why the $N-F$ bond energy observed in NF_{2} is larger than this same quantity observed in NF_{3}. First the geometry of NF_{2} is more favorable for multiple bonding than the geometry of $\mathrm{NF}_{3}{ }^{\circ}$ In NF_{2} the p orbitals available for π-bonding are perpendicular to the plane containing the NF_{2} molecule. NF_{3} has a pyramidal structure similar to ammonia. The most favored geometry for a DBNB resonance structure of NF_{3}

would be a planar structure where the 2 p orbitals on nitrogen and fluorine, perpendicular to the plane, could come into maximum coincidence. Since more significant energetic factors favor the pyramidal structure this geometry would not be favorable for multiple bonding in $\mathrm{NF}_{3}{ }^{\circ}$ Secondly, multiple bonding in NF_{2} may occur through use of a halffilled atomic orbital on nitrogen whereas NF_{3}.has only a fully occupied nitrogen non-bonded atomic orbital。

In summary, many experimental phenomena hint at the existence of multiple bonding and/or stabilizing non-bonded interactions in XF_{2} and other fluorine containing molecules. No extensive molecular orbital calculation has been accomplished to support either theory although the

Huckel calculation by Lucken indicates multiple bonding could be important in these molecules. Kaufman's explanation, using a half-filled orbital on nitrogen to explain bonding differences in NF_{2} and NF_{3} would not explain the frequency inversion found in OF_{2} since this oxygen contains only filled non-bonded atomic orbitals. It appears that more extensive molecular orbital calculations would be useful in establishing the significance of DBNB resonance or multiple bonding in fluorine compounds. These calculations have been performed on $\mathrm{OF}_{2}{ }^{\circ}$. The techniques are explained and the results are discussed later in the thesis. Force constant calculations have been performed which point out the relationship between vibronic coupling of the double bond-no bond type and non-bonded interactions which may exist in these molecules. The techniques and results of these calculations are given in the next chapter.

THE VIBRATIONAL PROBLEM
XF_{2} molecules have three vibrational degrees of freedom. Associated with each of these degrees of freedom is a fundamental frequency and a normal coordinate. Displacement of the nuclei of a molecule from their equilibrium position according to one of its normal coordinates will lead to simple motion in which all the nuclei move in phase with the same frequency. Such vibrations are called normal vibrations. The apparently random vibration of an actual molecule may be described as a sum of normal vibrations each with its own frequency and phase factor. The normal vibrations of a symmetric nonlinear triatomic molecule are illustrated in Figure 3 .

v_{1}

v_{2}

v_{3}

Figure 3. Schematic Diagrams Representing the Symmetric Stretching Mode With Frequency ν_{1}, the Symmetric Bending Mode of Frequency v_{2}, and the Antisymmetric Stretching Mode of Frequency $\nu_{3}{ }^{\circ}$

In general, normal coordinates may be defined quantitatively by the following relationship,

$$
\begin{equation*}
Q_{k}=\sum_{i=1}^{3 N} 1_{k i} q_{i} \quad k=1,2 \cdots 3 N \tag{1}
\end{equation*}
$$

where Q_{k} denotes the normal coordinates of the molecule, N represents the number of atoms in the molecule and the q_{i} are the 3 N mass-weighted cartesian displacement coordinates defined by the set of equations

$$
\begin{array}{ll}
q_{i}=m_{j} \Delta x_{i} 。 & j=1,2 \cdots N \tag{2}\\
i=1,2, \cdots 3 N
\end{array}
$$

The mass of the $j^{\text {th }}$ atom is given by m_{j} and ΔX_{i} is one of the three cartesian displacement coordinates of the $j^{\text {th }}$ atom. The coefficients, $1_{k i}$ in (1), are chosen so that in terms of the normal coordinates, $Q_{k}{ }^{\circ}$ the kinetic energy, T, and the potential energy, V, of the nuclei have the form

$$
\begin{equation*}
2 \mathrm{~T}=\sum_{\mathrm{k}=1}^{3 \mathrm{~N}} \dot{\mathrm{Q}}_{\mathrm{k}}^{2} \quad \text { and } \quad 2 \mathrm{~V}=\sum_{\mathrm{k}=1}^{3 \mathrm{~N}} \lambda_{\mathrm{k}} \mathrm{Q}_{\mathrm{k}}^{2} \tag{3}
\end{equation*}
$$

where \dot{Q}_{k} is the time derivative of Q_{k} and the λ_{k} are related to the vibrational frequencies, v_{k}, of the normal modes by

$$
\begin{equation*}
\lambda_{k}=4 \pi^{2} v_{k}^{2} \tag{4}
\end{equation*}
$$

For a nonlinear molecule six of the normal modes correspond to translational and rotational modes of zero frequency. The remaining $3 \mathrm{~N}-6$ modes are vibrational modes corresponding to the $3 \mathrm{~N}-6$ fundamental frequencies.

Potential Energy Functions

Although it is convenient to express the potential energy of the nuclei in normal coordinates it is physically more meaningful to express
this quantity in terms of internal coordinates (coordinates describing the internal configuration of the molecule without specifying translational or rotational coordinates). The potential energy may be expanded in a Taylor series about the minimum where V_{0} is the potential

$$
\begin{equation*}
2 V=2 V_{0}+2 \Sigma\left(\frac{\partial V}{\partial R_{t}}\right)_{V_{0}} R_{t}+\Sigma \Sigma\left(\frac{\partial^{2} V}{\partial R_{t} \partial R_{t},}\right) R_{t^{\prime}} R_{t^{\prime}}+\cdots \tag{5}
\end{equation*}
$$

energy of the molecule at equilibrium and R_{t} represents one of the $3 N-6$ internal coordinates. If the internal coordinates are independent and the harmonic oscillator approximation is invoked (5) becomes

$$
\begin{equation*}
2 V=\sum \Sigma\left(\frac{\partial^{2} V}{\partial R_{t} \partial R_{t}{ }^{\prime}}\right)_{0} R_{t} R_{t},=\sum \sum t_{t t^{\prime}}, R_{t} R_{t} \tag{6}
\end{equation*}
$$

where $f_{t t}$, are the force constants for this potential energy function. For an XF_{2} molecule the above equation may be written as

$$
\begin{gather*}
V=\frac{1}{2} f_{r}\left(\Delta r_{1}\right)^{2}+\frac{1}{2} f_{r}\left(\Delta r_{2}\right)^{2}+\frac{1}{2} f_{\alpha}(\Delta \alpha)^{2}+f_{r r}\left(\Delta r_{1} \Delta r_{2}\right)+ \\
 \tag{7}\\
f_{r \alpha}\left(\Delta r_{1} \Delta \alpha\right)+f_{r_{\alpha}}\left(\Delta r_{2} \Delta \alpha\right)
\end{gather*}
$$

where. Δr_{1} and Δr_{2} are displacement coordinates of the $X-F$ bonds and $\Delta \alpha$ is a displacement coordinate of the $F-X-F$ angle as illustrated in Figure 4. The force constant of the $X-F$ bond is denoted by f_{r}, f_{α}

Δq
Figure 4. Internal Displacement Coordinates of XF_{2}
corresponds to the force constant of the $F-X-F$ angle, and $f_{r r}$ and $f_{r \alpha}$ are the bond-bond and the bond-angle interaction force constants, respectively, The force field corresponding to this potential energy expression is called the general valence force field (GVFF). Through these force constants, fundamental understanding of the nature of chemical bonding in the molecule may be attained. The technique involved in obtaining force constants from the frequency data will not be discussed here as it is described thoroughly in several references 17,18 Equation (7) contains four unknown force constants for an XF_{2} molecule but there are only three fundamental frequencies. In the absence of other supplementary data the problem is under-determined. As a result it is only possible to solve for three of the force constants in terms of a fourth one.

An approximate quadratic force field widely employed by chemists to reduce the number of unknowns is the Urey-Bradley force field (UBFF). The potential energy expression for this force field may be written as

$$
\begin{align*}
2 \mathrm{~V}=2 \mathrm{~K}^{\prime} \mathrm{r}\left(\Delta \mathrm{r}_{1}+\Delta \mathrm{r}_{2}\right)+ & \mathrm{K}\left(\Delta \mathrm{r}_{1}^{2}+\Delta \mathrm{r}_{2}^{2}\right)+2 \mathrm{H}^{\prime}(\Delta \alpha)+\mathrm{H}(\Delta \alpha)^{2}+ \\
& 2 \mathrm{~F}^{\prime} \mathrm{q}(\Delta \mathrm{q})+\mathrm{F}(\Delta \mathrm{q})^{2} \tag{8}
\end{align*}
$$

where K^{\prime}, H^{\prime} and F^{\prime} are $\left(\partial V / \partial r_{i}\right)_{V_{0}}(\partial V / \partial \alpha)_{V_{0}}$ and $(\partial V / \partial q)_{V}$ respectively and K, H, and F are $\left(\partial^{2} V / \partial r_{i}^{2}\right)_{V_{0}},\left(\partial^{2} V / \partial \alpha^{2}\right)_{V_{0}}^{0}$ and $\left(\partial^{2} V / \partial q^{2}\right)_{V_{0}}^{0}$ respectively and r and q are the $X-F$ bond distance and the $F \cdots F$ non-bonded distance, respectively, as illustrated in Figure 4. Note that an extra internal displacement coordinate, Δq, denoting the displacement of the non-bonded fluorines, has been introduced and this set of internal coordinates is not independent. Therefore the ($\partial V / \partial R_{t}$) V_{0} in equation
(5) may not be set equal to zero as the potential energy in each coordinate is not necessarily at a minimum when the molecule is at its equilibrium geometry. Therefore K^{\prime}, H^{\prime} and F^{\prime} remain in equation (8) while such terms are absent in (7). Expressing Δq as a function of $\Delta r_{1}, \Delta r_{2}$ and Δq and substituting it in equation (8) allows one to relieve this dependency, and derive the following expression.

$$
\begin{align*}
2 V= & \left(\mathrm{K}+\mathrm{aF}+\mathrm{bF} \mathrm{~F}^{\prime}\right)\left(\Delta \mathrm{r}_{1}^{2}+\Delta \mathrm{r}_{2}^{2}\right)+\left(\mathrm{H}+\mathrm{cF}+\mathrm{dF}{ }^{\prime}\right) \Delta \alpha^{2}+ \\
& 2\left(\mathrm{eF}+\mathrm{fF} \mathrm{~F}^{\prime}\right) \Delta \mathrm{r}_{1} \Delta \mathrm{r}_{2}+2\left(\mathrm{gF}+\mathrm{hF} \mathrm{~F}^{\prime}\right)\left(\Delta \mathrm{r}_{1} \Delta \alpha+\Delta \mathrm{r}_{2} \Delta \alpha\right) \tag{9}
\end{align*}
$$

In this expression "a" through " h " are functions of the geometry of the molecule and have been tabulated by Overend and Scherer. ${ }^{19}$ Equation (9) contains four unknowns, $\mathrm{K}, \mathrm{H}, \mathrm{F}$ and F^{\prime}, which must be evaluated from three fundamental frequencies, unless additional data is available。 Before a solution of this problem can be obtained a relationship between two of these force constants must be found.

In determining this relationship it has been common to assume that the interaction between non-bonded atoms is essentially of the van der Waals ${ }^{\text {a }}$ type, ${ }^{20}$ the potential energy of which may be represented by a Lennard-Jones expression of the form

$$
\begin{equation*}
V=\frac{a}{q^{12}}-\frac{b}{q^{6}} \tag{10}
\end{equation*}
$$

Figure 5 illustrates a rough plot of the potential energy of such an interaction against the non-bonded distance q. For the range of typical non-bonded distances found in most molecules, the potential energy is repulsive and the second term in equation (10) is negligible. With

Figure 5. Curve a - Stabilizing Non-bonded Interaction. Curve b - van der Waal's Interaction. \longmapsto Typical Non-bonded Distance Range in Molecules.
this assumption and the equations

$$
F^{\prime}=\frac{1}{q}\left(\frac{\partial V}{\partial q}\right)_{q_{0}} \quad \text { and } F=\left(\frac{\partial^{2} V}{\partial q^{2}} q_{0}\right.
$$

where q_{0} is the equilibrium non-bonded distance of a "typical" molecule one arrives at an expression relating F and F^{\prime}, io., $F^{\prime}=-0.1 F$. Whether this practice is valid or not is subject to some question ${ }^{2}, 21$ but since F^{\prime} is usually quite small it does not affect the calculation to a large degree. Therefore, the force constants K, H and F may be determined from the three fundamental frequencies of an XF_{2} molecule 。

Before presenting the results of the GVFF and UBFF calculations for these triatomic difluoride molecules, a brief discussion concerning the bond-bond interaction force constant, $f_{r r}$, will clarify its physical significance. When one bond of a molecule is distorted, the electronic structures of the other bonds are affected and their properties changed. Linnets and Hoare ${ }^{22}$ have considered ten symmetrical triatomic molecules
theoretically and have found the following relationships:
If $f_{r r}$ is positive, breaking one bond leaves the other bond stronger and shorter.

If $f_{r r}$ is negative, breaking one bond leaves the other bond weaker and longer.

Linnett and Hoare also state that if the two bonds concerned contain only localized electrons, the cross term, f_{rr}, tends to be negative while 'frr tends to be positive if the bonds contain delocalized electrons.

GVFF Calculations

Duchesne and Burnelle ${ }^{23}$ have completed extensive force constant calculations on $O F_{2}$. They have obtained values for f_{r}, f_{α} and $f_{r r}$ as a function of $f_{r a}$. Their allowed solutions for $f_{r r}$ as a function of $\mathbf{f}_{\mathrm{r} \alpha}$ are shown in Figure 6. For the negative values of f_{rr} shown in this figure f_{r} and f_{α} take on physically unreasonable values. They

Figure 6. GVFF Calculations for OF2, Allowed Solutions of E_{rr} as a Function of $\mathrm{f}_{r \alpha^{\circ}}$
concluded that f_{rr} for OF_{2} is definitely positive. Less extensive force constant calculations have been completed in our laboratory and our results agree with those given above。 Linnett and Hoare ${ }^{22}$ have also stated that $f_{r r}$ may measure effects other than the delocalization of electrons. Linnett and Heath ${ }^{20}$ have explained that a large positive bond-bond interaction constant, $f_{r r}$, may be due to a non-bonded interaction. This fact was illustrated by the equation

$$
\begin{equation*}
f_{r}+f_{r Y}=K+2 F \sin 2_{\alpha / 2} \tag{11}
\end{equation*}
$$

A large non - bonded force constant, F, tends to show up in the interaction constant, $f_{r r}$, and vice versa. This can be seen in the UBFF calculations on the XF_{2} molecules presented in the next section.

$$
\text { UBFF Calculations on } \mathrm{OF}_{2}, \mathrm{NF}_{2} \text {, and } \mathrm{CF}_{2}
$$

UBFF calculations on $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} were performed in our laboratory. The potential energy expression (9) and the frequencies given in Table I were used to calculate K, H and F. These calculations were accomplished by means of a computer program described in several references. 17,19 The program was run on an IBM 7040 computer at Oklahoma State University. The results of the calculations are given in Table II. Two calculations were performed on $O F_{2}$, one assuming that F^{\prime} is negligibly small, the other utilizing the assumption of a Lennard-Jones potential describing the non-bonded interaction. As expecteds the two calculations are not significantly different even though the non-bonded interaction constant is quite large.

TABLE II
UREY-BRADLEY FORCE CONSTANTS OF OF $2, \mathrm{NF}_{2}$ AND CF_{2}

Force Constants	$\mathrm{OF}_{2}\left(\mathrm{~F}^{\mathrm{P}}=0\right)$	$\mathrm{NF}_{2}\left(\mathrm{~F}^{\mathrm{y}}=0\right)$	$\mathrm{CF}_{2}\left(\mathrm{~F}^{\mathrm{y}}=0\right)$	$\mathrm{OF}_{2}\left(\mathrm{~F}^{\mathrm{y}}=-.1 \mathrm{~F}\right)$
K	3.15	3.60	4.42	3.37
H	-0.08	0.02	0.07	-0.32
F	3.14	4.51	6.01	2.81

Force Constants are in units of millidynes/angstrom。

Discussion of Results

A comparison of results between the two force field calculations illustrates the correspondence between the non-bonded force constant, F, and the bond-bond interaction constant, $f_{r r}$, as expressed in equation (11). The correspondence of a large non-bonded interaction constant as reflected in F and the large positive bond-bond interaction constant, $f_{r r}$, is clearly demonstrated. In the absence of other experimental data which might allow a calculation including both of these force constants in a potential energy function it would be very difficult to deduce which effect is producing large values for F and $f_{r r}$ 。 This is not incongruous with the experimental results presented in Chapter I where either stabilizing non-bonded interactions or DBNB resonance could explain most of the data presented.

It appears as though the non-bonded force constants calculated for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} are measuring effects in addition to the non-bonded interaction, because their large values cannot be explained by assuming either a stabilizing or destabilizing non-bonded interaction. The $X-F$ equilibrium bond distances in these molecules are between $1.3 \AA$ and $1.4 \AA$
which correspond to non-bonded distances in the range of $2.0 \AA$ to $2.2 \AA$. It seems unreasonable to accept values of $F \geq K$ for these molecules in view of the distances listed above if the non-bonded interaction is stabilizing. Shimanouchi ${ }^{24}$ lists values of non-bonded force constants between fluorines calculated for molecules using the UBFF potential energy function and compares these values with force constant values calculated assuming a destabilizing interaction and using a LennardJones 6:12 potential such as is given in Equation (9a). Shimanouchi illustrates that relatively good agreement exists between the two sets of force constants for the molecules examined. However the non-bonded force constants for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} presented earlier in this chapter do not exhibit this agreement. For example, the F \cdots. ${ }^{\text {F }}$ distances in OF_{2} and CF_{4} are approximately equal ($2.14 \AA$ and $2.16 \AA$) whereas the nonbonded force constant in OF_{2} is about 2.5 times as large as this same force constant in $\mathrm{CF}_{4}\left(\mathrm{~F}_{\mathrm{OF}_{2}}=3.14 \mathrm{ml} / \AA, \mathrm{F}_{\mathrm{CF}_{4}}=1.24 \mathrm{ml} / \AA\right) .{ }^{24}$ Hopefully, theoretical molecular orbital calculations treating non-bonded interactions and/or DBNB resonance might help clarify the situation to a large extent.

In this research project the significance of DBNB resonance has been studied by a configuration interaction calculation. A wave function of the form

$$
\begin{equation*}
\Psi=c_{I} \Psi_{I}+c_{I I} \psi_{I I}+c_{I I I} \psi_{I I I} \tag{12}
\end{equation*}
$$

was used to calculate the binding energy of OF_{2}. The wave function ψ_{I} describes a set of localized electrons in $0 F_{2}$ while $\psi_{\text {II }}$ and $\psi_{\text {III }}$ describe a delocalization of electrons which would produce multiple bonding in this molecule. The variation of this binding energy as
OF_{2} vibrates in its symmetric and its antisymmetric stretching modes was calculated. From these energy values and the size of the coefficients, $C_{I I}$ and $C_{I I I}$, in equation (12), deductions of the significance of multiple bonding can be made. The methods involved in the calculation and the results of this calculation are presented later in this thesis。

THE LCAO-MO-SCF CALCULATION

In order to carry out a quantum mechanical energy calculation to determine whether multiple bonding, as discussed in the previous chapters, is significant in X_{2} molecules, it is first necessary to obtain physically resonable wave functions for the molecules involved. A frequently utilized and reasonably successful approximation for molecular wave functions is the linear combination of atomic orbital (LCAO) method to build up molecular orbitals (MO). The method has previously met with particular success in the explanation of bonding phenomena and the mathematical apparatus needed to handle many electron problems has been well formulated. Because of these two facts, the LCAO-MO technique seems particularly well-suited for the present problem. It has thus been chosen to treat the $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} molecules.

To determine the energy, E, of a time independent quantum mechanical system, an equation of the form

$$
\begin{equation*}
H \Psi=E \Psi \tag{13}
\end{equation*}
$$

must be solved. This can be cast into the form

$$
\begin{equation*}
E=\frac{\text { all space }}{\int^{\int \Psi^{*} H \Psi d \tau}} \underset{\text { space }}{\int \Psi^{*} \Psi d \tau} \tag{14}
\end{equation*}
$$

where the asterisk indicates a complex conjugate quantity and $\mathrm{d} \tau$ is the volume element for the integration over all space.

Both Equations (13) and (14) are virtually impossible to solve for systems of high complexity. Thus one usually resorts to the variation principle ${ }^{25}$ to obtain approximate energies. Here one guesses a wave function, ψ, of proper symmetry and minimizes the expression

$$
\mathrm{E}_{\mathrm{VAR}}=\frac{\begin{array}{c}
\int^{*}{ }^{*} \mathrm{H} \psi \mathrm{~d} \tau \tag{15}\\
\int_{\text {all space }} \psi^{*} \psi \mathrm{~d} \tau
\end{array}}{\text { space }}
$$

with respect to parameters contained in ψ. The variation principle then guarantees the result to be an upper limit to the true energy, if the integrals are evaluated exactly.

The Four Electron Problem
$0 F_{2}, \mathrm{NF}_{2}$ and CF_{2} have 26,25 and 24 electrons, respectively. Treating such a large number of electrons explicitly, even within the framework of the variation technique, results in a very tedious quantum mechanical problem. For this reason it is desirable to use a technique which treats explicitly those electrons which are involved in chemical bonding, and to a large extent determine the chemical and physical properties of a molecule, while treating the "non-bonding" electrons implicitly in nonpolarizable cores about the nuclei. This type of separation has been employed extensively to unsaturated hydrocarbons and recently has been applied to sigma bonded systems by Pohl et al. ${ }^{26}$ With this procedure one can reduce the XF_{2} calculation to one involving four electrons. This approximation, in terms of wave functions, may be
expressed as

$$
\psi_{\text {total }}=\left[(\Sigma)\left(\Sigma^{\prime}\right)\right]
$$

where Σ^{\prime} denotes a four by four Slater determinant corresponding to the wave functions for the four bonding electrons and the brackets represent the proper antisymmetrization of the total wave function. Σ represents a Slater determinant containing orbitals representing the core electrons. By this approximation the effect of electrons occupying orbitals in the Σ part of the total wave function are introduced empirically into the calculation through the nonpolarizable cores about the nuclei.

The core for the four electron problem is shown in Figure 7 for the XF_{2} molecule. Each fluorine core may be described by the electronic configuration, $1 \mathrm{~S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}_{\mathrm{x}}{ }^{2} 2 \mathrm{P}_{\mathrm{y}}{ }^{2}$. The carbon atom has a core

Figure 7. a) The cores of the XF_{2} Molecule, b) The Atomic Orbital Basis Set for XF_{2}. Subscripts 1 and 2 Denote "Different" Fluorines.
configuration $1 S^{2} 2 S^{2}$ while electrons are added to the $2 \mathrm{P}_{\mathrm{x}}$ orbital to describe the nitrogen and oxygen cores. The four bonding electrons may
then be described as occupying the $2 \mathrm{P}_{\mathrm{y}}$ and $2 \mathrm{P}_{\mathrm{z}}$ atomic orbitals on the X atom and the $2 \mathrm{P}_{z}$ atomic orbitals on the fluorines. This basis set of atomic orbitals is then used to form molecular orbitals for the XF_{2} molecule.

The Hamiltonian operator for the four electron problem (in atomic units) may be written as

$$
\begin{equation*}
H_{e}(1,2,3,4)=\sum_{i=1}^{4} H_{N}(i)+\sum_{i<j=1}^{4} \frac{1}{r_{i j}} \tag{16}
\end{equation*}
$$

where the summations are carried over all the electrons, $r_{i j}$ represents the distance between the $i^{\text {th }}$ and $j^{\text {th }}$ electron, and

$$
\begin{equation*}
H_{N}(i)=-\frac{1}{2} \nabla_{i}^{2}-\sum_{\alpha=1}^{3} V_{\alpha i} \tag{17}
\end{equation*}
$$

In Equation (17), α is a summation index for the three nuclei, $V_{\alpha i}$ represents the interaction of one of the three cores of XF_{2} with the $i^{\text {th }}$ electron and $-\frac{1}{2} \nabla_{i}{ }^{2}$ represents the kinetic energy operator for the $i^{\text {th }}$ electron. For the XF_{2} four electron problem we may represent the Hamiltonian operator as

$$
\begin{equation*}
H=\sum_{i=1}^{4}\left(-\frac{1}{2} \nabla_{i}^{2}-\sum_{\alpha=1}^{3} V_{\alpha i}\right)+\sum_{i<j=1}^{4} \frac{1}{r_{i j}} \tag{18}
\end{equation*}
$$

The four electron wave function is written as a Slater determinant

$$
\psi=\frac{1}{\sqrt{4!}}\left|\begin{array}{l}
\lambda_{1}(1) \lambda_{2}(1) \lambda_{3}(1) \lambda_{4}(1) \tag{19}\\
\lambda_{1}(2) \lambda_{2}(2) \lambda_{3}(2) \lambda_{4}(2) \\
\lambda_{1}(3) \lambda_{2}(3) \lambda_{3}(3) \lambda_{4}(3) \\
\lambda_{1}(4) \lambda_{2}(4) \lambda_{3}(4) \lambda_{4}(4)
\end{array}\right|
$$

where, as a first approximation, we shall take

$$
\lambda_{1}=\phi_{1} \alpha, \lambda_{2}=\phi_{1} \beta, \lambda_{3}=\phi_{2}^{\alpha} \text { and } \lambda_{4}=\phi_{2} \beta .
$$

The λ_{i} are spin orbitals made up of a spatial mo function, ϕ_{i}, and a spin function, α or β. The spin functions, α and β, correspond to an electron spin quantum number, S_{z}, of $+1 / 2$ or $-1 / 2$. Placing these spin orbitals in a Slater determinant insures the proper antisymmetrization of this wave function with respect to electron exchange. The molecular orbitals, ϕ_{1} and ϕ_{2}, are taken to be linear combinations of the atomic orbitals illustrated in Figure 7 and are given by the equation

$$
\begin{equation*}
\phi_{i}=c_{i 1} X_{2 P_{z(0)}}+c_{i 2} X_{2 P_{z\left(F_{1}\right)}}+c_{i 3} X_{2 P_{y(0)}}+c_{i 4} X_{2 P_{z\left(F_{2}\right)}} \tag{20}
\end{equation*}
$$

The coefficients, $c_{i v}$, will be determined by a self-consistent field procedure to be discussed later in this chapter. Essentially these are the parameters which are varied in Equation (15) until the total energy for the XF_{2} molecule is at a minimum. The atomic orbitals in Equation (20) are assumed to be Slater atomic orbitals.

A Slater atomic orbital ${ }^{27}$ for atom X may be defined by the equation

$$
\begin{equation*}
x_{x}^{n l \lambda}=R_{n 1}\left(r_{x}\right) Y_{1, \lambda}(\theta, \phi) \tag{21}
\end{equation*}
$$

where $n, 1$, and λ denote the three spatial quantum numbers of the orbital. The $Y_{1, \lambda}(\theta, \phi)$ are the spherical harmonic functions while the radial part of the Slater orbital is given by

$$
\begin{equation*}
R_{n 1}(r)=N_{n 1} r^{n-1-\delta} e^{-\mu r} \tag{22}
\end{equation*}
$$

where $N_{n 1}$ is a normalization constant, $n-\delta$ is an effective quantum number and μ is a constant depending on the core being described. For orbitals with a principal quantum number, $n=2, \delta$ is zero。 The exponential coefficient, μ, may be expressed as $\mu=(Z-s) / n$ where Z is the nuclear charge of the nuclei and s is a screening constant for the electrons about the nuclei. This latter quantity may be determined from Slater's rules. ${ }^{25}$ Values of μ for the atoms and ions of interest in this problem are listed in Table III。

TABLE III
SLATER EXPONENTIAL COEFFICIENTS

ATOM	C	C^{+}	N	N^{+}	0	0^{+}	F	F^{++}
1.625	1.800	1.950	2.125	2.275	2.450	2.600	2.950	

The Four Electron LCAO-MO-SCF Problem

The formalism for the application of the self-consistent field method to LCAO-MO type wave functions was first presented by Roothaan. 28 Essentially this method uses the variation principle in determining which set of LCAO coefficients, the $c_{i v}$, gives the minimum total energy for the molecule. In other words this technique finds the "best" LCAO-MO wave function for binding energy calculations. Pople ${ }^{29}$ has given a set of working equations for Roothan's method which have been employed in this calculation. The equations for the LCAO coefficients are given by

$$
\begin{equation*}
\sum_{\nu=1}^{4} F_{\mu \nu} \cdot c_{i v}=\varepsilon \sum_{i} \sum_{\nu=1}^{4} S_{\mu \nu} c_{i v} \tag{23}
\end{equation*}
$$

In equation (23) the Arabic letter indices are summed over the molecular orbitals, while the Greek letters correspond to the atomic orbitals. $S_{\mu \nu}$ represents the overlap between the $\nu^{\text {th }}$ and $\mu^{\text {th }}$ atomic orbitals, i.e.,

$$
\begin{equation*}
s_{\mu \nu}=\int x_{\mu}^{*} x_{\nu} d t=\langle\mu \mid \nu\rangle \tag{24}
\end{equation*}
$$

$F_{\mu \nu}$ is defined as

$$
\begin{equation*}
F_{\mu \nu}=H_{\mu \nu}+\sum_{\lambda \sigma=1}^{4} P_{\lambda \sigma}\left[\langle\mu \lambda| r_{12}^{-1}|\nu \sigma\rangle-\frac{1}{2}\langle\mu \lambda| r_{12}^{-1}|\sigma \nu\rangle\right] \tag{25}
\end{equation*}
$$

In this equation

$$
\begin{align*}
& H_{\mu \nu}=\int x_{\mu}^{*}\left(-\frac{1}{2} \nabla^{2}-\sum_{\alpha} V_{\alpha}\right) x_{\nu} d \tau=\langle\mu|-\frac{1}{2} \nabla^{2}-\sum_{\alpha} V_{\alpha}|\nu\rangle, \tag{26}\\
& \langle\mu \lambda| r_{12}^{-1}|\nu \sigma\rangle=\iint x_{\mu}^{*}(1) x_{\lambda}^{\psi}(2) r_{12}^{-1} x_{\nu}^{(1)} x_{\sigma}(2) d \tau{ }_{1} d \tau, \tag{27}
\end{align*}
$$

and

$$
\begin{equation*}
p_{\lambda \sigma}=2 \sum_{i} c_{i \lambda} c_{i \sigma} . \tag{28}
\end{equation*}
$$

In these equations $H_{\mu \nu}$ is the matrix element of the one electron Hamiltonian for motion of an electron in the field of the $\alpha{ }^{\text {th }}$ core. The integral $\langle\mu \lambda| r_{12}^{-1}|\nu \sigma\rangle$ is a two electron integral, with $d \tau_{1}$ and $d \tau_{2}$ representing the volume elements for electrons numbered 1 and 2. In equation (28) $P_{\lambda \sigma}$ is a summation over various LCAO coefficients. The ε_{i} in equation (23) are the two lowest roots of the determinant

$$
\begin{equation*}
|F-\varepsilon S|=0 \tag{29}
\end{equation*}
$$

where F and S are 4×4 matrices made up of $F_{\mu \nu}$ and $S_{\mu \nu}$ matrix elements for the XF_{2} molecule. The secular equation corresponding to the above secular determinant is represented by

$$
\begin{equation*}
\mathrm{Fc}=\varepsilon S c \text {. } \tag{30}
\end{equation*}
$$

The 4×4 matrix c consists of four eigenvectors whose elements make up the LCAO coefficients for the various eigenvalues of Equation (29). That equation yields four eigenvalues corresponding to four molecular orbitals for XF_{2}. The four bonding electrons are placed in the two molecular orbitals corresponding to the two lowest eigenvalues of Equation (29). The total electronic energy using these two molecular orbj.tals is given by

$$
\begin{equation*}
E^{6}=\frac{1}{2} \sum_{\mu \nu} P_{\mu \nu}\left(H_{\mu \nu}+F_{\mu \nu}\right) \tag{31}
\end{equation*}
$$

In solving this eigenvalue problem, elements of F and S are determined by use of equations (24) through (28). Then Equation (29) is solved for its eigenvalues. These eigenvalues are then substituted in Equation (30) from which the eigenvectors may be obtained. Equations (29) and (30) are complicated by the fact that the elements of F depend on the solutions of Equation (30), the $c_{i v}$. For this reason the solution of these two equations is determined by the following iterative procedure。

1) The zero ${ }^{\text {th }}$ set of coefficients are chosen in some manner, usually involving an "educated guess."
2) The elements of F are then obtained using Equation (25..
3) The elements of F and S are substituted into Equation (29) and the eigenvalues, ε_{i}, are obtained.
4) With these eigenvalues, the eigenvectors are obtained through Equation (30).
5) This set of coefficients, $c_{i j}$, are then used to determine new elements of F (Step 2) and the process is repeated until the LCAO coefficients become constant or selfaconsistent.

In addition to the aforementioned assumptions, three assumptions were used to simplify this iterative calculation. First, maximum orthom gonality of the atomic orbital basis set is attained by constraining the XF_{2} molecular angle at 90° and using non-hybridized Slater orbitals on the X atom as shown in Figure 7. With this assumption, the only non=orthogonal atomic orbitals on adjacent atoms are those oriented directly toward one another along an $\mathrm{X}-\mathrm{F}$ bond. In principle, the calculated energy should be minimized with respect to angle but in this problem we are mainly concerned with the binding energy and its variation when the $\mathrm{X}=\mathrm{F}$ bonds are stretched and compressed.

Overlaps between atomic orbitals on nonadjacent atoms are assumed to be zero. This assumption is commonly made in molecular orbital calculations and here it implies that the overlap between $X_{2 P_{z\left(F_{1}\right)}}$ and $X_{2 P_{z\left(F_{2}\right)}}$ is zero. One can see that this overlap is considerably smaller than the overlap between $X_{2 P_{z(X)}}$ and $X_{\left.2 P_{z(F}\right)}$ or $X_{2 P_{y(X)}}$ and $X_{2 P_{z\left(F_{2}\right)}}$ because the $F_{1} \cdots F_{2}$ distance is larger than the $X-F_{1}$ bond length and because these two orbitals are not strongly directed towards each other

The third assumption states that the XF_{2} molecule contains only localized bonds. In other words

$$
\begin{equation*}
\phi_{1}=c_{11} x_{2 P_{z(X)}}+c_{12} x_{2 P_{z\left(F_{1}\right)}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2}=c_{23} X_{2 P_{y(x)}}+c_{24} x_{2 P_{z\left(F_{2}\right)}} \tag{33}
\end{equation*}
$$

Inspection of Equation (20) illustrates that C_{13}, C_{14}, C_{21} and C_{22} have been set equal to zero. Although this assumption is not rigorous if the electrons occupy delocalized molecular orbitals, we are mainly interested here in determining good localized molecular orbitals. The delocalization effects in the XF_{2} molecules will be brought into the problem by means of a configuration interaction calculation described in the next chapter.

In Equation (18) provision has not been made for electrostatic repulsion between the nuclei or core-core repulsions. The term which when added to (18) forms the complete Hamiltonian for XF_{2} is

$$
\begin{equation*}
\sum_{\alpha<\beta=1}^{3} \frac{z_{\operatorname{eff}(\alpha)^{z}} \operatorname{eff}(\beta)}{R_{\alpha \beta}} \tag{34}
\end{equation*}
$$

where α and β are the summation indices for the nuclei, Z_{α} and Z_{β} are the effective nuclear charges of nuclei α and β and $R_{\alpha \beta}$ is the distance between the $\alpha^{\text {th }}$ and $\beta^{\text {th }}$ nuclei. The total Hamiltonian may be expressed explicitly for the XF_{2} molecule as the sum of Equations (18) and (34).

Determination of the Binding Energy

The binding energy, E_{B}, of an XF_{2} molecule is defined as the change in energy of the reaction

$$
\mathrm{X}+2 \mathrm{~F} \rightarrow \mathrm{XF}_{2}
$$

where the reacting atoms are infinitely separated and each of these atoms is in its ground electronic state. This energy is calculated by considering the following processes. In the first step,

$$
X+2 F \rightarrow X_{v}+2 F_{v},
$$

the three infinitely separated atoms are promoted to their hypothetical valence states, ${ }^{30}$ the energy change for this process being $P_{X}^{o}+2 P_{F}^{o}$ where P represents the promotion energies of the various atoms from the ground state to the valence state. 31,32 The atoms are then ionized while in the valence state

$$
X_{v}+2 F_{v} \rightarrow X_{v}^{++}+2 F_{v}^{+}+4_{e}^{-}
$$

the energy change being $I_{v(X)}+I_{v\left(X^{+}\right)}+2 I_{v(F)}$ where I_{v} denotes the valence state ionization potentials for species indicated in the subscripted parenthesis. The atoms are then brought from infinity to a proper molecular geometry of the XF_{2} molecule. This hypothetical step occurs without any changes in the electronic configuration of the three ions and may be symbolized by the equation

$$
X_{v}^{++}+2 F_{v}^{+} \longrightarrow F_{v}^{+} \cdot{ }_{X_{v}}^{++} \cdot{ }_{F}^{+}
$$

where ΔE for this process is simply the nuclear-nuclear repulsion energy, Enuc, given by Equation (34). With the species in this geometrical configuration the four electrons are then placed in the lowest available unoccupied molecular orbitals

$$
{ }_{\mathrm{F}}^{+} \cdot{ }_{\mathrm{v}}^{++} \mathrm{X}_{\mathrm{v}}^{+} \cdot \mathrm{F}_{\mathrm{v}}+4 \mathrm{e}^{-} \longrightarrow \mathrm{F}_{\mathrm{v}} \cdot \mathrm{X}_{\mathrm{v}} \cdot \mathrm{~F}_{\mathrm{v}} \rightarrow \mathrm{XF}_{2}
$$

The energy required for this last process is the electronic energy, $\hat{\theta}$,
of Equation (31). For the overall process

$$
\mathrm{X}+2 \mathrm{~F} \rightarrow \mathrm{XF}_{2}
$$

the binding energy may thus be expressed as

$$
E_{B}=P_{X}^{O}+2 P_{F}^{o}+I_{v(X)}+I_{v\left(X^{+}\right)}+2 I_{v(F)}+E_{\text {nuc }}+\boldsymbol{\sigma}
$$

Semiempirical Integral Evaluations

In a semiempirical MO calculation of this type some scheme must be employed to evaluate the integrals. Two sets of integral approximations have been investigated in this project, these being identified as Set I and Set II. Both sets are an extension of the integral evaluations used by Pohl, et al., ${ }^{26}$ for the hydrogen halides.

For the semiempirical integral approximations of Set I, the $2 P_{z}$ and $2 \mathrm{P}, \mathrm{y}$ Slater wave functions for the X atom are assumed to have exponential parameters (μ) equal to those of the X^{+}ion rather than the X atomo. The $2 \mathrm{P}_{\mathrm{z}}$ Slater wave function for fluorine contains a μ value of the fluorine atom。

To clarify the above assumption consider a fluorine atom in XF_{2}. All the electrons save one are considered to be in a core about fluorine. The remaining electron occupies a $2 \mathrm{P}_{\mathrm{z}}$ orbital and is considered explicitly in the MO calculation. This electron should see about the same effective charge as a $2 p$ electron on a free fluorine atom. The Slater orbital containing this electron should then be described by a Slater function with an exponential coefficient for the fluorine atom. The central atom, X, has all but two of its electrons in its core。 These remaining electrons occupy the $2 P_{z}$ and $2 P_{y}$ orbitals on an X atom
and are considered explicitly in this calculation. Considering either one of these electrons, it will see an effective charge of the X core which will approximately equal the effective charge seen by a 2 p electron of an X^{+}ion. Therefore the Slater wave function describing the atomic orbital containing this electron should have an exponential parameter corresponding to the X^{+}ion.

The various integrals appearing in the MO calculation are now approximated as follows:

$$
\begin{equation*}
\langle Z(x)|-\frac{1}{2} 7^{2}-V_{x^{+}}|Z(X)\rangle=\langle Z(X)|-I_{X^{+}}|Z(X)\rangle=-I_{x^{+}} \tag{35}
\end{equation*}
$$

where $Z(X)=X_{2 P}{ }_{Z(X)}$. Here the fact that $H \psi=E \psi$ for an electron about a nonpolarizable core has been employed.

Two center core integrals such as the integral in Equation (36) are evaluated using Pople's point charge approximation. 29

$$
\begin{equation*}
\left\langle Z\left(F_{1}\right)\right| \mathrm{V}_{\mathrm{X}}+\left|\mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle=\mathrm{Z}_{\mathrm{X}^{+}} \mathrm{R}_{\mathrm{XF}}^{1}-1=2 \mathrm{R}_{\mathrm{XF}}^{1}-1 \tag{36}
\end{equation*}
$$

where Z_{X} is the charge of the core of atom X and $Z\left(F_{1}\right)$ represents the $2 P_{z}$ Slater orbital on fluorine one.

The one center core integrals such as

$$
\begin{equation*}
\langle Z(x)| v_{X^{+}}|z(x)\rangle \approx\langle Z(x)| z_{X^{+}} r^{-1}|z(x)\rangle=z_{X^{+}}\langle z(x)| r^{-1}|Z(x)\rangle \tag{37}
\end{equation*}
$$

are evaluated analytically. In this equation r represents the distance between an electron in a $2 P_{Z}$ orbital and the nucleus of the X atom。 Upon substitution of the expression for a $2 P_{z}$ Slater orbital, $X_{2 P_{z(X)}}=$ $\left(N_{X^{+}}\right)^{\frac{1}{2}}$ re ${ }^{-1 X^{+}} \mathrm{r} \cos \theta$, into Equation (37) one finds that

$$
\begin{equation*}
\langle z(x)| r^{-1}|z(x)\rangle=\frac{H^{+}}{n}=\rho_{x^{+}} \tag{38}
\end{equation*}
$$

where $n=2$ for a $2 p_{z}$ orbital.
One center-two electron integrals such as

$$
\begin{equation*}
\langle\mathrm{Z}(\mathrm{X}) \mathrm{Z}(\mathrm{X})| \mathrm{r}_{12}^{-1}|\mathrm{Z}(\mathrm{X}) \mathrm{Z}(\mathrm{x})\rangle=\mathrm{I}_{\mathrm{X}^{+}}+\mathrm{A}_{\mathrm{X}^{+}}, \tag{39}
\end{equation*}
$$

are evaluated using Pariser's approximation。 ${ }^{33}$
Two center Coulomb integrals such as

$$
\begin{equation*}
\left\langle\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right| \mathrm{r}_{12}^{-1}\left|\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle=\mathrm{R}_{\mathrm{XF}_{1}}^{-1} \tag{40}
\end{equation*}
$$

are evaluated by an interaction energy of point charges at the nuclear centers. ${ }^{29}$

For two center integrals of the type,

$$
\langle\mathrm{Z}(\mathrm{X}) \mathrm{Z}(\mathrm{X})| \mathrm{r}_{12}^{-1}\left|\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle,
$$

Mulliken's approximation ${ }^{34}$ is used to reduce the integral to a sum of those listed above. This approximation is 111 ustrated by the equation

$$
\begin{align*}
& \langle\mathrm{Z}(\mathrm{X}) \mathrm{Z}(\mathrm{X})| \mathrm{r}_{12}^{-1}\left|\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle= \\
& \frac{\mathrm{S}_{\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)}^{2}\left[\langle\mathrm{Z}(\mathrm{X}) \mathrm{Z}(\mathrm{X})| \mathrm{r}_{12}^{-1}|\mathrm{Z}(\mathrm{X}) \mathrm{Z}(\mathrm{X})\rangle\right.}{} \\
& \left.\left.+\left\langle Z(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right| \mathrm{r}_{12}^{-1}\left|\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle\right]=\frac{\mathrm{S}_{\mathrm{Z}(\mathrm{X}) \mathrm{Z}\left(\mathrm{~F}_{1}\right)}^{2}\left[\mathrm{I}_{X}+A_{X^{+}}+\mathrm{R}_{\mathrm{XF}}^{1}\right.}{-1}\right] \tag{41}
\end{align*}
$$

In this equation $S_{Z(X) Z\left(F_{1}\right)}$ is the overlap integral of a $2 p_{z}$ orbital on X and a $2 P_{z}$ orbital on fluorine. Three center-two electron integrals and some two center-one electron integrals were simplified in the same
manner.
One center exchange integrals such as $\langle Z(X) Z(X)| r_{12}^{-1}|Y(X) Y(X)\rangle$, where $Y(X)$ represents a $2 P_{y}$ slater orbital on X, were evaluated using a method described by Rein and Harris. ${ }^{35}$ This integral may be approximated by the expression

$$
\begin{align*}
& \langle Z(X) Z(X)| r_{12}^{-1}|Y(X) Y(X)\rangle \text { emp }= \\
& \frac{\langle Z(X) Z(X)| r_{12}^{-1}|Y(X) Y(X)\rangle}{} \begin{array}{l}
\text { num } \\
\langle Z(X) Y(X)| r_{12}^{-1}|Z(X) Y(X)\rangle \\
\text { num }
\end{array} \tag{42}
\end{align*}
$$

where the subscripts "emp" and "num" indicate that the integrals have been determined empirically and numerically. An integration program written by Switendick and Carbato ${ }^{36}$ numerically evaluates the integrals in Equation (42) for Slater orbitals. This program, written in Fortran II for the IBM 7090 computer, was obtained through the Quantum Chemistry Program Exchange at the University of Indiana (DI BC DIAT, \#29). The ratio of the numerically evaluated integrals in Equation (42) was found to be independent of the Slater exponential coefficient, μ, and this equation may be expressed as

$$
\langle Z(X) Z(X)| r_{12}^{-1}|Y(X) Y(X)\rangle_{e m p}=0.06040 \quad\langle Z(X) Y(X)| r_{12}^{-1}|Z(X) Y(X)\rangle_{e m p}
$$

where X may be the $\mathrm{C}, \mathrm{C}^{+}, \mathrm{N}, \mathrm{N}^{+}, \mathrm{O}$, or O^{+}atoms and ions.
Table IV lists the different types of integrals arising in the MO calculation and the Set I semiempirical evaluations employed. These integrals were evaluated using procedures analogous to those presented in the above examples.

The semiempirical integral approximations of Set II will now be

TABLE IV
SEMIEMPIRICAL INTEGRAL EVALUATIONS - SET I

One Electron Integrals:

$$
\begin{aligned}
& \langle z(X)|-\frac{1}{2} \nabla^{2}-V_{X^{+}}|z(X)\rangle=\langle y(X)|-\frac{1}{2} \nabla^{2}-V_{X^{+}}|y(X)\rangle=-I_{X^{+}} \\
& \left\langle Z\left(F_{1}\right)\right|-\frac{1}{2} \nabla^{2}-V_{F_{1}}\left|Z\left(F_{1}\right)\right\rangle=-I_{F} \\
& \left\langle Z\left(\mathrm{~F}_{2}\right)\right|-\frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{F}_{2}}\left|\mathrm{Z}\left(\mathrm{~F}_{2}\right)\right\rangle=-\mathrm{I}_{\mathrm{F}} \\
& \langle(x)| v_{F_{1}}|z(x\rangle\rangle=\langle y(x)| v_{F_{1}}|y(x)\rangle=+R_{X F_{1}}^{-1} \\
& \langle z(X)| V_{F_{2}}|z(X)\rangle=\langle y(X)| V_{F_{2}}|y(X)\rangle=+R_{X F_{2}}^{\infty} \\
& \left\langle Z\left(F_{1}\right)\right| V_{X}\left|Z\left(F_{1}\right)\right\rangle=+2 R_{X F_{1}}^{-1} \\
& \left\langle 2\left(\mathrm{~F}_{2}\right)\right| \mathrm{v}_{\mathrm{X}}\left|Z\left(\mathrm{~F}_{2}\right)\right\rangle=+2 \mathrm{R}_{\mathrm{XF}}^{2}-1 \\
& \left\langle z\left(F_{1}\right)\right| V_{F_{2}}\left|Z\left(F_{1}\right)\right\rangle=\left\langle Z\left(F_{2}\right)\right| V_{F_{1}}\left|Z\left(F_{2}\right)\right\rangle=R_{F F}^{-1} \\
& \langle z(x)| v_{x^{+}}|z(x)\rangle=+2 \rho_{x^{+}} \\
& \left\langle z\left(F_{1}\right)\right| V_{F_{1}}\left|Z\left(F_{1}\right\rangle\right\rangle=\left\langle Z\left(F_{2}\right)\right| V_{F_{2}}\left|z\left(F_{2}\right)\right\rangle=\rho_{F}
\end{aligned}
$$

Two Electron Integrals:

$$
\begin{aligned}
& \langle y(X) y(X)| r_{12}^{-1} \mid y(X) y(X\rangle=\langle Z(X) Z(X)| r_{12}^{-1}|Z(X) Z(X)\rangle=I_{X^{+}}+A_{X^{+}} \\
& \langle Z(X) y(X)| r_{12}^{-1}|Z(X) y(X)\rangle=I_{X^{+}}+A_{X^{+}} \\
& \left\langle Z\left(F_{1}\right) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|Z\left(F_{1}\right) Z\left(F_{1}\right\rangle\right\rangle=\left\langle Y\left(F_{1}\right) y\left(F_{1}\right)\right| r_{12}^{-1}\left|y\left(F_{1}\right) y\left(F_{1}\right\rangle\right\rangle=I_{F}+A_{F} \\
& \langle Z(X) Z(X)| r_{12}^{-1}|y(X) y(X\rangle\rangle=0.06040\left(I_{X^{+}}+A_{X^{+}}\right) \\
& \left\langle Z(X) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|Z(X) Z\left(F_{2}\right)\right\rangle=\left\langle y(X) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|y(X) Z\left(F_{2}\right\rangle\right\rangle=R_{X F_{2}}^{-1} \\
& \left\langle Z(X) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|Z(X) Z\left(F_{1}\right)\right\rangle=\left\langle Y(X) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|y(X) Z\left(F_{1}\right)\right\rangle=R_{X F_{1}}^{-1} \\
& \left\langle Z\left(F_{1}\right) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|Z\left(F_{1}\right) Z\left(F_{2}\right\rangle\right\rangle=R_{F F}^{-1}
\end{aligned}
$$

examined. The exponential parameters of the Slater orbital expressions are simply those of the corresponding atoms; independent of the number of electrons from each atom which are treated explicitly in the problem. The Slater orbitals are solutions to the central field problem where $V(r)$, the potential, is given by (corresponding to the convention used in Equation (18))

$$
V(r)=+\frac{(Z-s) e^{2}}{r}-\frac{n^{*}\left(n^{*}-1\right) h^{2}}{8 \pi^{2} m r^{2}}
$$

where Z is the nuclear charge of the atom, s is the Slater screening constant, n^{*} represents the "effective quantum number," h is Planck's constant, m is the mass of an electron and r is the distance between the electron and the nucleus. For the X atom and the X^{+}ion (in atomic units)

$$
V_{X}(r)-V_{X^{+}}(r)=+\frac{Z_{X}-s_{X}}{r}-\frac{Z_{X^{+}}-s_{X^{+}}}{r}=\frac{-, 35}{r}
$$

Using this relationship, the integral

$$
\begin{aligned}
& \langle\mathrm{Z}(\mathrm{X})|-\frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{X}^{+}}|\mathrm{Z}(\mathrm{X})\rangle=\langle\mathrm{Z}(\mathrm{X})|-\frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{X}}-\frac{.35}{\mathrm{r}}|\mathrm{Z}(\mathrm{X})\rangle \\
& =\langle Z(X)|-\frac{1}{2} \nabla^{2}-V_{X}|Z(X)\rangle-.35\langle Z(X)| r^{-1}|z(X)\rangle=-I_{X}-.35 \rho_{X}
\end{aligned}
$$

where the last two integrals are solved by procedures demonstrated in Equations (35) and (38). The balance of the integrals derived in this calculation, which are not of the form given in the last equation, are evaluated using the procedures demonstrated by Equations (36) through (42). A listing of the different types of integrals derived in this calculation and their evaluation using Set II approximations may be

TABLE V
SEMIEMPIRICAL INTEGRAL EVALUATIONS - SET II

One Electron Integrals:

$$
\begin{aligned}
& \langle Z(x)|-\frac{1}{2} \nabla^{2}-V_{X^{+}}|Z(X)\rangle=\langle y(x)|-\frac{1}{2} \nabla^{2}-V_{X^{+}}|y(X)\rangle=-I_{x}-.35 p_{x} \\
& \left\langle Z\left(\mathrm{~F}_{1}\right)\right| \infty \frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{F}_{1}}\left|\mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle=\left\langle\mathrm{Z}\left(\mathrm{~F}_{2}\right)\right|-\frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{F}_{2}}\left|\mathrm{Z}\left(\mathrm{~F}_{2}\right)\right\rangle=-\mathrm{I}_{\mathrm{F}} \\
& \langle Z(x)| V_{F_{1}}|z(X)\rangle=\langle y(X)| V_{F_{1}}|y(x)\rangle=R_{X F_{1}}^{-1} \\
& \langle Z(X)| V_{F_{2}}|Z(X)\rangle=\langle y(X)| V_{F_{2}}|y(X)\rangle=R_{X F_{2}}^{-1} \\
& \left\langle Z\left(F_{1}\right)\right| V_{X}\left|Z\left(F_{1}\right)\right\rangle=2 R_{X F_{1}}^{-1} \\
& \left\langle Z\left(\mathrm{~F}_{2}\right)\right| \mathrm{V}_{\mathrm{X}}\left|\mathrm{Z}\left(\mathrm{~F}_{2}\right)\right\rangle=2 \mathrm{R}_{\mathrm{XF}}^{2}-1 \\
& \left\langle Z\left(F_{1}\right)\right| V_{X}\left|Z\left(F_{1}\right)\right\rangle=\left\langle Z\left(F_{2}\right)\right| V_{F_{1}}\left|Z\left(F_{2}\right)\right\rangle=R_{F F}^{-1} \\
& \langle z(x)| v_{x+}|z(x)\rangle=-2 p_{x} \\
& \left\langle Z\left(F_{1}\right)\right| V_{F_{1}}\left|Z\left(F_{1}\right)\right\rangle=\left\langle Z\left(F_{2}\right)\right| V_{F_{2}}\left|Z\left(F_{2}\right)\right\rangle=\rho_{F} .
\end{aligned}
$$

Two Electron Integrals:

$$
\begin{aligned}
& \langle y(X) y(X)| r_{12}^{-1}|y(X) y(X)\rangle=\langle Z(X) Z(X)| r_{12}^{-1}|Z(X) Z(X)\rangle=I_{X}+A_{X} \\
& \langle Z(X) y(X)| r_{12}^{-1}|Z(X) y(X)\rangle=I_{X}+A_{X} \\
& \left\langle Z\left(F_{1}\right) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|Z\left(F_{1}\right) Z\left(F_{1}\right)\right\rangle=\left\langle y\left(F_{1}\right) y\left(F_{1}\right)\right| r_{12}^{-1}\left|y\left(F_{1}\right) y\left(F_{1}\right\rangle\right\rangle=I_{F}+A_{F} \\
& \langle Z(X) Z(X)| r_{12}^{\infty}|y(X) y(X)\rangle=0.06040\left(I_{X}+A_{X}\right) \\
& \left\langle y(X) Z\left(F_{1}\right)\right| r_{12}^{\infty}\left|y(X) Z\left(F_{1}\right)\right\rangle=\left\langle Z(X) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|Z(X) Z\left(F_{1}\right)\right\rangle=R_{X F_{1}}^{-1} \\
& \left\langle y(X) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|y(X) Z\left(F_{2}\right\rangle\right\rangle=\left\langle Z(X) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|Z(X) Z\left(F_{2}\right)\right\rangle=R_{X F_{2}}^{-1} \\
& \left\langle Z\left(F_{1}\right) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|Z\left(F_{1}\right) Z\left(F_{2}\right)\right\rangle=R_{F F}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& F_{11}=-I_{X^{+}}-R_{X_{F}}^{-1}-R_{X F_{2}}^{-1}+C_{11}^{2}\left[I_{X^{+}}+A_{X^{+}}\right]+2 C_{12}^{2}\left[R_{X_{1}}^{-1}-0.125 S_{X_{1}}^{2}\left(I_{X^{+}}\right.\right. \\
& \left.\left.+A_{X^{+}}+I_{F}+A_{F}+2 R_{X_{1}}^{-1}\right)\right]+2 C_{23}^{2}\left[I_{X^{+}}+A_{X^{+}}-.03020\left(I_{X^{+}}+A_{X^{+}}\right)\right] \\
& +2 \mathrm{C}_{24}^{2} \mathrm{R}_{\mathrm{XF}}^{2}-1 \mathrm{C} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{~S}_{\mathrm{XF}_{1}}\left(\mathrm{I}_{\mathrm{X}^{+}}+\mathrm{A}_{\mathrm{X}^{+}}+\mathrm{R}_{\mathrm{XF}_{1}}^{-1}\right)+2 \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{~S}_{\mathrm{XF}_{2}}\left(\mathrm{I}_{\mathrm{X}^{++}} \mathrm{A}_{\mathrm{X}^{+}}\right. \\
& +\mathrm{R}_{\mathrm{XF}_{2}}^{-1} \text {) } \\
& F_{22}=-I_{F}-2 R_{X F_{1}}^{-1}-R_{F F}^{-1}+2 C_{11}^{2}\left[R_{X F_{1}}^{\alpha}-0.125 S_{X_{1}}^{2}\left(I_{X^{+}}+A_{X^{+}}+I_{F}+A_{F}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{R}_{\mathrm{XF}}^{1}-1,2 \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{~S}_{\mathrm{XF}_{2}}\left(\mathrm{R}_{\mathrm{XF}}^{1}-1 / \mathrm{R}_{\mathrm{FF}}^{-1}\right) \\
& F_{33}=-I_{X^{+}}-R_{X_{F}^{-}}^{-1}-R_{X F_{2}}^{-1}+2 C_{11}^{2}\left[I_{X^{+}}+A_{X^{+}}-0.03020\left(I_{X^{+}}+A_{X^{+}}\right)\right] \\
& +2 C_{12}^{2} R_{X F_{1}}^{-1}+C_{23}^{2}\left(I_{X^{+}}+A_{X^{+}}\right)+2 C_{24}^{2}\left[R_{X F_{2}}^{-1}-0.125 S_{X F_{2}}^{2}\left(I_{X^{+}}+A_{X^{+}}+I_{F}\right.\right. \\
& \left.\left.+\mathrm{A}_{\mathrm{F}}+2 \mathrm{R}_{\mathrm{XF}_{2}}^{-1}\right)\right]+2 \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{~S}_{\mathrm{XF}_{1}}\left(\mathrm{I}_{\mathrm{X}^{+}}+\mathrm{A}_{\mathrm{X}^{+}}+\mathrm{R}_{\mathrm{XF}_{1}}^{-1}\right) \\
& \mathrm{F}_{44}=-\mathrm{I}_{\mathrm{F}}-2 \mathrm{R}_{\mathrm{XF}}^{2}-1, \mathrm{R}_{\mathrm{FF}}^{-1}+2 \mathrm{C}_{11}^{2} \mathrm{R}_{\mathrm{XF}_{2}}^{-1}+2 \mathrm{C}_{12}^{2} \mathrm{R}_{\mathrm{FF}}^{-1}+2 \mathrm{C}_{23}^{2}\left[\mathrm{R}_{\mathrm{XF}_{2}}^{-1}\right. \\
& \left.-0.125 \mathrm{~S}_{\mathrm{XF}_{2}}^{2}\left(\mathrm{I}_{\mathrm{X}}+\mathrm{A}_{\mathrm{X}}++\mathrm{I}_{\mathrm{F}}+\mathrm{A}_{\mathrm{F}}+2 \mathrm{R}_{\mathrm{XF}}^{2}-1\right)\right]+\mathrm{C}_{24}^{2}\left(\mathrm{I}_{\mathrm{F}}+\mathrm{A}_{\mathrm{F}}\right) \\
& +2 C_{11} C_{12} S_{X F}\left(R_{X F}^{-1}+R_{F F}^{-1}\right)+C_{23} C_{24} S_{X F_{2}}\left(I_{F}+A_{F}+R_{X F_{2}}\right) \\
& F_{12}=F_{21}=0.5 S_{X_{F}}\left(-I_{F}-I_{X^{+}}-\rho_{X^{+}}-0.5 \rho_{F^{\prime}}-1.5 R_{X F_{1}}^{-1}-R_{X F_{2}}^{-1}-R_{F F}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{C}_{23}^{2} \mathrm{~S}_{\mathrm{XF}_{1}}\left(\mathrm{I}_{\mathrm{X}^{+}}+\mathrm{A}_{\mathrm{X}^{+}}+\mathrm{R}_{\mathrm{XF}_{1}}^{-1}\right)+\mathrm{C}_{24}^{2} \mathrm{~S}_{\mathrm{XF}_{1}}\left(\mathrm{R}_{\mathrm{XF}_{2}}^{-1}+\mathrm{R}_{\mathrm{FF}}^{-1}\right) \\
& +0.75 \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{~S}_{\mathrm{XF}_{1}}^{2}\left(I_{\mathrm{X}^{+}}+\mathrm{A}_{\mathrm{X}^{+}}+\mathrm{I}_{\mathrm{F}}+\mathrm{A}_{\mathrm{F}}+2 \mathrm{R}_{\mathrm{XF}}^{\mathbf{- 1}}\right)-\mathrm{C}_{11} \mathrm{c}_{12} \mathrm{R}_{\mathrm{XF}}^{1}-1 \\
& +\mathrm{C}_{23} \mathrm{C}_{24} \mathrm{~S}_{\mathrm{XF}_{1}} \mathrm{~S}_{\mathrm{XF}_{2}}\left(\mathrm{I}_{\mathrm{X}}++\mathrm{A}_{\mathrm{X}^{+}}+\mathrm{R}_{\mathrm{XF}}^{1}-1 / \mathrm{R}_{\mathrm{XF}}^{2}-1, \mathrm{R}_{\mathrm{FF}}^{-1}\right)
\end{aligned}
$$

TABLE VI (Continued)

$$
\begin{aligned}
& F_{34}=F_{43}=0.5 S_{X F F_{2}}\left(-I_{F}-I_{X^{+}}-\rho_{X^{+}}-R_{X_{F}}^{-1}-1.5 R_{X_{F}}^{-1}-R_{F F}^{-1}-0.5 \rho_{F}\right) \\
& +C_{11}^{2} S_{X F}{ }_{2}\left(I_{X^{+}}+A_{X^{+}}+R_{X_{2}}^{-1}\right)+C_{12}^{2} S_{X F_{2}}\left(R_{X_{F}}^{-1}+R_{F F}^{-1}\right)+0.5 C_{23}^{2} S_{X F_{2}}\left(I_{X^{+}}\right. \\
& \left.\left.+A_{X^{+}}+R_{X F_{2}}^{-1}\right)+0.5 C_{24}^{2} S_{X F_{2}}^{\left(I_{F}\right.}+A_{F}+R_{X F_{2}}^{-1}\right)+C_{11} C_{12} S_{X F} S_{X F}{ }_{2}\left(I_{X^{+}}\right. \\
& \left.+A_{X^{+}}+R_{X F_{1}}^{-1}+R_{X F}^{-1}+R_{F F}^{-1}\right)+0.75 C_{23} C_{24} S_{X F_{2}}^{2}\left(I_{X^{+}}+A_{X^{+}}+2 R_{X F}^{-1}+I_{F}\right. \\
& \left.+A_{F}\right)-C_{23} C_{24} R_{X F}^{-1} \\
& F_{13}=F_{31}=0 \\
& F_{14}=F_{41}=0 \\
& F_{23}=F_{32}=0 \\
& \mathrm{~F}_{24}=\mathrm{F}_{42}=0
\end{aligned}
$$

TABLE VII

F-MATRIX ELEMENTS - SET II

$$
\begin{aligned}
& F_{11}=-I_{X}-.35 \rho_{X}-R_{X F_{1}}^{-1}-R_{X F_{2}}^{-1}+C_{11}^{2}\left(I_{X}+A_{X}\right)+2 C_{12}^{2}\left[R_{X F_{1}}^{-1}-\frac{S_{X F_{1}}^{2}}{8}\left(I_{X}\right.\right. \\
& \left.\left.+A_{X}+I_{F}+A_{F}+2 R_{X F_{1}}^{-1}\right)\right]+2 C_{23}^{2}\left[I_{X}+A_{X}-0.03020\left(I_{X}+A_{X}\right)\right] \\
& \left.+2 \mathrm{C}_{24}^{2}{ }^{\mathrm{R}_{X F_{2}}^{-1}}+\mathrm{C}_{11} \mathrm{C}_{12} \mathrm{~S}_{\mathrm{XF}}^{1} \text { (} \mathrm{I}_{\mathrm{X}}+\mathrm{A}_{\mathrm{X}}+\mathrm{R}_{\mathrm{XF}}^{1}-1\right)+2 \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{~S}_{\mathrm{XF}_{2}}\left(\mathrm{I}_{\mathrm{X}}+\mathrm{A}_{\mathrm{X}}\right. \\
& +\mathrm{R}_{\mathrm{XF}_{2}}^{-1} \text {) } \\
& F_{22}=-I_{F}-2 R_{X F_{1}}^{-1}-R_{F F}^{-1}+2 C_{11}^{2}\left[R_{X F}^{-1}-\frac{S_{X F}^{2}}{8}\left(I_{X}+A_{X}+I_{F}+A_{F}+2 R_{X F_{1}}^{-1}\right)\right] \\
& +C_{12}^{2}\left(I_{F}+A_{F}\right)+2 C_{23}^{2} R_{X F}^{-1}+2 C_{24}^{2} R_{F F}^{-1}+C_{11} C_{12} S_{X F_{1}}\left(I_{F}+A_{F}+R_{X F}^{-1}\right) \\
& 2 \mathrm{C}_{23} \mathrm{C}_{24}\left(\mathrm{R}_{\mathrm{XF}}^{1}-1+\mathrm{R}_{\mathrm{FF}}^{-1}\right) \\
& F_{33}=-I_{X}-.35 \rho_{X}-R_{X F_{1}}^{-1}-R_{X F_{2}}^{-1}+2 C_{11}^{2}\left[I_{X}+A_{X}-0.03020\left(I_{X}+A_{X}\right)\right] \\
& +2 C_{12}^{2} R_{X F}^{-1}+C_{23}^{2}\left(I_{X}+A_{X}\right)+2 C_{24}^{2}\left[R_{X F}^{-1}-\frac{S_{X F}^{2}}{8}\left(I_{X}+A_{X}+I_{F}+A_{F}\right.\right. \\
& \left.\left.+2 R_{X F_{2}}^{-1}\right)\right]+2 C_{11} C_{12} S_{X F_{1}}\left(I_{X}+A_{X}+R_{X F_{1}}^{-1}\right)+C_{23} C_{24} S_{X F_{2}}\left(I_{X}+A_{X}\right. \\
& +\mathrm{R}_{\mathrm{XF}_{2}}^{-1} \text {) } \\
& F_{44}=-I_{F}-2 R_{X F}^{-1}-R_{F F}^{-1}+2 C_{11}^{2} R_{X F_{2}}^{-1}+2 C_{12}^{2} R_{F F}^{-1}+2 C_{23}^{2}\left[R_{X F}^{-1}-\frac{S_{X F_{2}}^{2}}{8}\left(I_{X}\right.\right. \\
& \left.\left.+A_{X}+I_{F}+A_{F}+2 R_{X F_{2}}^{-1}\right)\right]+C_{24}^{2}\left(I_{F}+A_{F}\right)+2 C_{11} C_{12} S_{X F_{1}}\left(R_{X F}^{-1}+R_{F F}^{-1}\right) \\
& \left.+\mathrm{C}_{23} \mathrm{C}_{24} \mathrm{~S}_{\mathrm{XF}}^{2} \text { (} \mathrm{I}_{\mathrm{F}}+\mathrm{A}_{\mathrm{F}}+\mathrm{R}_{\mathrm{XF}}^{2}-1\right) \\
& F_{12}=F_{21}=0.5 S_{X F}\left(-I_{F}-I_{X}-1.35 \rho_{X}-0.5 \rho_{F}-1.5 R_{X F}-R_{X F}-R_{F F}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(I_{X}+A_{X}+I_{F}+A_{F}+2 R_{X F_{1}}^{-1}\right)-C_{11} C_{12} R_{X F_{1}}^{-1}+C_{23} C_{24} S_{X F_{1}} S_{X F}{ }_{2}\left(I_{X}\right. \\
& \left.+A_{X}+R_{X F_{1}}^{-1}+R_{X F_{2}}^{-1}+R_{F F}^{-1}\right)
\end{aligned}
$$

TABLE VII (Continued)

$$
\begin{aligned}
& F_{34}=F_{43}=0.5 S_{X F_{2}}\left(-I_{F}-I_{X}-1.35 \rho_{X}-.5 \rho_{F}-R_{X F_{1}}^{-1}-1.5 R_{X F_{2}}^{-1}-R_{F F}^{-1}\right) \\
& +C_{11}^{2} S_{X F_{2}}\left(I_{X}+A_{X}+R_{X F_{2}}^{-1}\right)+C_{12}^{2} S_{X F_{2}}\left(R_{X F_{1}}^{-1}+R_{F F}^{-1}\right)+0.5 C_{23}^{2} S_{X F_{2}}\left(I_{X}\right. \\
& \left.+A_{X}+R_{X F_{2}}^{-1}\right)+0.5 C_{24}^{2} S_{X F_{2}}\left(I_{F}+A_{F}+R_{X F_{2}}^{-1}\right)+C_{11} C_{12} S_{X F_{1}} S_{X F_{2}}\left(I_{X}\right. \\
& \left.+A_{X}+R_{X F_{1}}^{-1}+R_{X F_{2}}^{-1}+R_{F F}^{-1}\right)+0.75 C_{23} C_{24} S_{X F_{2}}^{2}\left(I_{X}+A_{X}+I_{F}+A_{F}\right. \\
& \left.+2.0 \mathrm{R}_{\mathrm{XF}_{2}}^{-1}\right)-\mathrm{C}_{23} \mathrm{C}_{24} \mathrm{R}_{\mathrm{XF}_{2}}^{-1} \\
& F_{13}=F_{31}=0 \\
& \mathrm{~F}_{14}=\mathrm{F}_{41}=0 \\
& \mathrm{~F}_{23}=\mathrm{F}_{32}=0 \\
& \mathrm{~F}_{24}=\mathrm{F}_{42}=0
\end{aligned}
$$

found on Table V. With either set of semfempirical integral evaluations the F matrix elements, as expressed by Equation (25), may be determined. These elements for an XF_{2} molecule are listed in Tables VI and VII. The former table corresponds to Set I integral approximations while the latter table corresponds to those of Set II.

The numerical values for the valence state ionization potentials and electron affinities used in these calculations are given in Table VIII。

TABLE VIII

VALENCE STATE IONIZATION POTENTIALS AND ELECTRON AFFINITIES*

$I_{F}=0.7672$	$I_{C}=0.4020$	$A_{N}=-0.0310$
$I_{F^{++}}=2.2515$	$I_{C^{+}}=0.8926$	$A_{N^{+}}=-0.5127$
$I_{0}=0.6354$	$A_{F}=-0.1287$	$A_{C}=-0.0281$
$I_{0^{+}}=1.2543$	$A_{F^{++}}=-1.3504$	$A_{C^{+}}=-0.4020$
$I_{N}=0.5127$	$A_{0}=-0.07403$	
$I_{N^{+}}=1.0658$	$A_{O^{+}}=-0.6354$	

*The valence state values given above were obtained from ground state ionization potentials and electron affinities and from promotion energies which have been published by Hinze and Jaffe in references (31) and (32) and from an Air Force report which may be obtained from Professor Jaffe.

Evaluation of Overlap Integrals

Numerical values of overlap integrals for Slater orbitals were obtained from a paper by Mulliken et.al。 ${ }^{37}$ The overlap integral between ${ }^{2 P} z_{z}$ orbitals on two centers, and X atom and a fluorine atom, directed toward each other may be expressed as a function dependent on
the distance between the two centers and on the Slater exponential pam rameters of the two nuclei involved. In Mulliken's paper this overlap integral is expressed as a function of p and t where

$$
p=\frac{1}{2}\left(\mu_{F}+\mu_{X}\right) r \quad \text { and } \quad t=\frac{\mu_{F}-\mu_{X}}{\mu_{F}+\mu_{X}}
$$

and where r is the distance between the nuclei in atomic units.
Mulliken lists tables of values for overlap integrals corresponding to various values of p and t. (Each table depends on the quantum numbers of the two Slater orbitals involved。) A simple graphical interpolation was utilized to obtain values for overlap integrals which are not listed.

Core-Core Repulsions

Herman and Skillman ${ }^{38}$ have determined the Hartree-Fock potentials for all the atoms of interest in the XF_{2} problems. Values of effective nuclear charges, $Z_{\text {eff }}$, for the various cores were obtained from these potentials. Effective nuclear charges are needed for the fluorine atom and for the oxygen, nitrogen and carbon singly charged ions. Values of $Z_{\text {eff }}$ for these ions were obtained by adding 1 atomic unit to the effective nuclear charges of the oxygen, nitrogen and carbon atoms. Values of $Z_{\text {eff }}$ as a function of distance are given in Figure 8 for the carbon, nitrogen, oxygen and fluorine atoms.

Numerical Method

A computer program was written in Fortran IV to handle the tedious computations demanded by this calculation. A description of the program and a Fortran listing of the program are given in Appendix A. Two

Figure 8. The Effective Nuclear Charges for Core-Core Repulsion Terms.
main points are mentioned here. First, the solution of the secular equation

$$
\begin{equation*}
F_{c}=\varepsilon S_{c} \tag{30}
\end{equation*}
$$

is obtained in a straightforward manner. The overlap matrix S is diagonalized and the secular equation is rearranged to form

$$
F^{\prime} c^{\prime}=\varepsilon E c^{\prime}
$$

where E is the identity matrix and F^{\prime} and c^{\prime} differ from F and c. Then the F^{\prime} matrix is diagonalized and the eigenvalues and eigenvectors of Equation (30) are obtained.

Secondly, each LCAO coefficient is tested for self-consistency by an equation of the form

$$
\begin{equation*}
c_{i v}^{i+1}-c_{i v}^{i} \leqslant 0.0001 \tag{43}
\end{equation*}
$$

The superscripts i and $i+1$ merely indicate that the coefficient being considered has values obtained from successive iterations. This test was applied to each LCAO coefficient, all of which must satisfy Equation (43) before the set is accepted and used to calculate binding energies. The program was tested for correctness by calculating binding energies of the FC1 molecule as a function of bond distance. This calculation has been previously carried out by Poh1 and Raff. ${ }^{39}$ They solved for LCAO coefficients using a grid technique rather than using the matrix diagonalization method. The results of both calculations were identical indicating that the subroutines employed in this problem to obtain the eigenvalues and eigenvectors are correct.

Results and Discussion

For symmetric, nonlinear, triatomic molecules the study of the variation of energy as one changes the two bond lengths may be accomplished in two ways. The two bonds may be extended or compressed from equilibrium by the same amounts which would approximate the symmetric stretching mode of the molecule. Actually the expression of the symmetric stretching normal coordinate as a function of internal coordinates indicates that the angle varies as the bond lengths change but this is neglected in these calculations. Secondly, displacing the nuclei of XF_{2} in its antisymmetric stretching mode permits a study of the variation in energy as one bond is compressed and the other bond is extended from equilibrium by the same amount. This mode is a pure stretching mode with no change in the molecular angle. The calculations discussed in the remaining part of this chapter correspond to the symmetric stretching mode. For these calculations, molecular symmetry allows Equations (32) and (33) for the two bonding molecular orbitals to be expressed as

$$
\begin{aligned}
& \phi_{1}=c_{X} X_{2 P_{z(X)}}+c_{F^{X}} X_{2 P_{z\left(F_{1}\right)}} \\
& \phi_{2}=c_{X X} X_{y(X)}+c_{F^{\prime}} X_{2 P_{z\left(F_{2}\right)}}
\end{aligned}
$$

where $c_{X}=c_{11}=c_{23}$ and $c_{F}=c_{12}=c_{24}$.
The procedure explained thus far differs from Huckel theory ${ }^{40}$ in that no calibration scheme has been employed in describing the XF_{2} series. As a result one cannot expect quantitative predictions of binding energies which are as accurate as those one might obtain if the calculations were judiciously calibrated.

One can introduce such a calibration into this type of MO treatment through the Wolfsberg-Helmholtz parameter, ${ }^{26}$ the value of which is theoretically equal to one. In references (26) and (39) values of this parameter are determined such that the calculation of certain physical properties (binding energy, dipole moment, etco) are in optimum agreement with the experimental data for a series of molecules. Such a technique could be employed here and would undoubtedly improve the agreement between the calculated and experimental binding energies.

Binding energy values as a function of bond distance, using the Set I integral approximations; are shown in Figure 9 for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2}. Table IX contains a listing of these binding energies at various bond distances. Table X contains a listing of the LCAO coefficients obtained in these SCF calculations. Table XI illustrates how the calculated values of equilibrium binding energies and bond lengths compare with the corresponding experimental values. The calculated binding energies are much too large, the ratio of the calculated to experimental energies being $3.1,1.9$ and 1.4 for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} respectively. The trend of these calculated binding energies as one compares the series $\mathrm{OH}_{2}, \mathrm{NF}_{2}$ and CF_{2} is not in agreement with experiment as the calculated binding energy of OF_{2} is larger than this quantity for NF_{2} 。 The calculated equilibrium bond lengths for these molecules are much shorter than the corresponding experimental quantities: This result was not unexpected since the hydrogen halide and interhalogen calculations show this same general phenomenon. The calculated equilibrium bond lengths of the $X F_{2}$ molecules do not vary by more than $0.1 \mathbb{A}$ which is in agreement with experimental observations.

Figure 9. The Binding Energy Curves for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and $\mathrm{CF}_{2}-$ Set I.

TABLE IX
BINDING ENERGY VALUES FOR $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and $\mathrm{CF}_{2}^{*}-\operatorname{SET}$ I

R_{xf} (a.u.)	R(\AA)	$\mathrm{E}_{\mathrm{B}}\left(\mathrm{OF}_{2}\right)$ e.v.	$\mathrm{E}_{\mathrm{B}}\left(\mathrm{NF}_{2}\right)$ e.v.	$\mathrm{E}_{\mathrm{B}}\left(\mathrm{CF}_{2}\right) \mathrm{e} . \mathrm{v}$.
1.50	0.794	-12.62		- 6.04
1.60	0.846	-2.10	-8.88	3.45
1.70	0.899	6.87	6.65	10.65
1.80	0.952	11.64	9.62	13.53
1.90	1.005	12.74	10.80	13.98
2.00	1.058	12.19	11.85	14.05
2.10	1.111	11.57	11.61	14.01
2.20	1.164	10.82	10.93	13.74
2.30	1.217	9.98	10.19	13.29
2.40	1.270	8.99	9.35	12.36
2.50	1.323	7.92	8.52	11.50
2.60	1.375	--	7.69	10.68
2.70	1.428	--	--	9.90

${ }^{*}$ In this and the following tables and in the discussions concerning binding energies in the body of the text, the convention of listing and discussing the negative values of the binding energies (- E_{B} as defined on page 30) is used.

TABLE X
LCAO-MO-SCF COEFFICIENTS FOR $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ AND $\mathrm{CF}_{2}-\mathrm{SET}$ I

$\mathrm{R}_{\mathrm{XF}}\left(\mathrm{a}_{0} \mathrm{u}_{0}\right)$	OF_{2}		NF_{2}		CF_{2}	
	C_{0}	$C_{\text {F }}$	C_{N}	C_{F}	C_{C}	C_{F}
1.50	.1746	. 9365			-. 02173	1.0031
1.60	. 2964	. 8708	. 07579	. 9775	-. 00803	1.0015
1.70	. 4078	. 7911	. 1459	. 9483	. 01623	. 9963
1.80	. 4637	. 7469	. 2226	. 9102	. 05089	. 9861
1.90	. 4941	. 7231	. 2935	. 8693	. 09350	. 9713
2.00	. 5134	. 7099	. 3473	. 8359	. 1417	. 9517
2.10	. 5273	. 7022	. 3863	. 8110	.1899	. 9299
2.20	. 5384	.6987	.4150	. 7927	. 2346	. 9080
2.30	. 5479	. 6976	.4362	. 7811	. 2728	.8885
2.40	. 5565	.6986	. 4526	. 7747	. .3040	.8727
2.50	. 5646	. 7009	. 4663	. 7705	. 3294	.8606
2.60			. 4780	. 7678	.3506	.8510
2.70					. 3685	. 8438

TABLE XI
EQUILIBRIUM BINDING ENERGIES AND BOND LENGTHS

	XF Bond Distances (A)			XF 2 Binding Energies ($\mathrm{e}_{\text {. }} \mathrm{V}$ 。)		
	Expt1.	Set I	Set II	Expt1.	Set I	Set II
OF_{2}	$1.38{ }^{6}$	1.00	0.96	3.941	12.74	6.33
NF_{2}	$1.37{ }^{7}$	1.07	1.02	$6.2{ }^{42}$	11.90	8.47
CF_{2}	$1.32{ }^{8}$	1.07	0.99	$\approx 10^{43}$	14.08	13.56

Figure 10 shows the binding energy-bond distance curves for these three molecules as calculated using the Set II integral approximations. Table XII lists numerical values of binding energies at various $X-F$ bond lengths. Table XIII lists the LCAO coefficients obtained at these same distances. Table XI compares the calculated and experimental values for the Set II calculations. The calculated binding energies are much closer to the experimental energies than the corresponding Set I calculations. The calculated values are again too large, deviating from the experimental values by $59 \%, 37 \%$ and 36% for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2}, respectively. The trend in the calculated binding energies agrees quite well with the experimental trend. The calculated values for the equilibrium bond lengths are again too small.

The calculated binding energies for molecules containing fluorine are anomalously large when compared with the calculated energies of non-fluoride molecules. Pohl and Raff^{39} have calculated a binding energy for the fluorine molecule of $3.90 \mathrm{e} . \mathrm{V}$. while the experimental energy, although not exactly determined, has an upper limit of 2.5 e.V. The equilibrium binding energies for $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2} were approximately

Figure 10. The Binding Energy Curves for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} -

TABLE XII
BINDING ENERGY VALUES FOR $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ AND $\mathrm{CF}_{2}-\mathrm{SET}$ II.

TABLE XIII

LCAO-MO-SCF COEFFICIENTS FOR $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and $\mathrm{CF}_{2}-\mathrm{SET}$ II

$\underline{\mathrm{R}_{\mathrm{XF}}}$	OF_{2}		NF_{2}		CF_{2}	
	C_{0}	C_{f}	C_{N}	C_{F}	C_{C}	C_{F}
1.50	. 03891	. 9883			-. 04066	1.0054
1.60	. 09327	. 9682	-. 00382	1.0010	-. 03825	1.0065
1.70	. 1634	. 9354	. 02847	. 9915	-. 03063	1.0064
1.80	. 2297	. 9009	. 06802	. 9774	-. 01548	1.0037
1.90	. 2856	. 8697	. 1122	. 9595	. 00509	. 9986
2.00	. 3295	. 8449	. 1562	. 9404	. 02977	. 9915
2.10	. 3630	. 8264	. 1976	. 9213	. 05720	. 9824
2.20	. 3885	. 8140	. 2351	. 9034	. 08602	. 9723
2.30	. 4086	. 8058	. 2662	. 8891	. 1147	. 9617
2.40	. 4248	. 8015	. 2910	. 8793	. 1419	. 9516
2.50	. 4384	.7997	. 3123	. 8714	. 1668	. 9426
2.60			.3306	. 8653	. 1896	. 9345
2.70					. 2102	. 9275

.7-.9e.V. smaller than their experimental values. The calculated binding energies of $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI are all smaller than their experimental binding energies. 26 However, the calculated values for $H C 1$, HBr and HI deviate from the experimental values by a constant fraction, 58%, whereas the calculated value for HF is 93% of its experimental value. Both the above data and the results of the XF_{2} calculations seem to indicate that the extremely high ionization potential and electron affinity of the fluorine atom result in these unusually large calculated energy values.

Table XIV lists the LCAO coefficients for $\mathrm{OF}_{2}, \mathrm{NF}_{2}, \mathrm{CF}_{2}$ and $\mathrm{C} 1 \mathrm{~F}^{39}$ close to their calculated equilibrium bond lengths. The trend of these LCAO coefficients through the $\mathrm{CF}_{2}, \mathrm{NF}_{2}$ and OF_{2} series is correct for both calculations. Both sets of calculations result in molecular orbitals which have LCAO coefficients indicating an extraordinarily high electron density on the fluorine atom of these XF_{2} molecules: The Set I LCAO coefficients, exhibit this phenomenon to a lesser degree than the Set II coefficients. The electronegativity difference of the nuclei of the $N-F$ and $C 1-F$ bonds are about the same although the LCAO coefficients of the $N-F$ molecular orbitals in each calculation indicate a much larger attraction of electrons for the fluorine atom than do the LCAO coefficients for the Cl-F molecular orbital. It appears as though these difluoride calculations may over-emphasize the repulsion of the two X electrons forcing the LCAO coefficient for fluorine to take an unusually large value when the electronic energy is minimized. Of course c_{X} would then be small due to the overlap condition. The greater variation in these $X{ }_{2}$ LCAO coefficients as anction of internuclear distance compared to this variation in the diatomic LCAO
coefficients is not incongruous with the above explanation.

TABLE XIV
EQUILIBRIUM LCAO-MO-SCF COEFFICIENTS

	Set I			Set II	
	C_{X}	C_{F}		C_{F}	
CF_{2}	.4941	.7231	.2856	.8697	
NF_{2}	.3473	.8359	.1122	.9595	
CF_{2}	.1417	.9517	.0051	.9986	
	C_{CI}	C_{F}			
	.4988	.7437			

The results of these four electron LCAO-MO-SCF calculations are also used to provide a basis of attack on the eight electron configuration interaction calculations, in which the significance of double bonding in OF_{2} is investigated. This problem is discussed in the next chapter.

CHAPTER IV

tHE CONFIGURATION INTERACTION CALCULATION

The significance of double bond-no bond resonance in OF_{2} was investigated by means of a configuration interaction (CI) calculation 40 which is described in this chapter. A CI calculation is essentially the application of the linear variation method to a wave function which is approximated as a linear combination of Slater determinants. The CI wave function for OF_{2} is approximated as

$$
\begin{equation*}
\psi=C_{I} D_{I}+C_{I I} D_{I I}+C_{I I I} D_{I I I} \tag{44}
\end{equation*}
$$

where the coefficients $C_{I}, C_{I I}$ and $C_{I I I}$ are chosen such that the energy of OF_{2} is miniroized。 The Slater determinants $D_{I}{ }^{\circ} D_{I I}$ and $D_{\text {III }}$ correspond to the resonance structures

I

II

III

I, II and III respectively. The magnitude of the coefficients, $C_{\text {II }}$ and $\mathrm{C}_{\text {III }}$, with respect to C_{I} gives a measure of the significance of the $\mathrm{D}_{\text {II }}$ and $D_{\text {III }}$ structures. The added stability calculated for $0 F_{2}$ using the wave function described by Equation (44) compared with a calculation using $\psi=D_{I}$ alone, gives a measure of the effect of determinants $D_{I I}$
and $\mathrm{D}_{\text {III }}$ on the molecular energy of OF_{2}.
The OF_{2} molecule was chosen as the subject of the configuration interaction calculation because the most important form of π-bonding should occur through the DBNB resonance structures shown above. However multiple bonding may occur in NF_{2} and CF_{2} through use of a vacant or half-filled 2P orbital on carbon or nitrogen and a filled 2 P orbital on a fluorine atom in addition to multiple bonding through DBNB resonance.

The Eight Electron Problem

Resonance structure I can be related to structure II in the following way. The two electrons in $0-\mathrm{F}_{(2)}$ bond in structure I are localized on the $F_{(2)}$ atom forming an F^{-}ion in structure II. A localized pair of electrons on $F_{(1)}$ in structure I may be thought of as forming a π^{-} bond in structure II using the vacated atomic orbital on oxygen. In resonance structure III, a localized pair of electrons on $F_{(2)}$ forms a π-bond with oxygen. Eight electrons are needed to describe these three resonance structures of OF_{2} simultaneously in a configuration interaction wave function. Therefore eight electrons will be considered explicitly in this calculation while the effect of the remaining 18 electrons are introduced into the problem through nonpolarizable cores about the nuclei. The cores of OF_{2} used in this calculation are represented schematically in Figure 11. The electronic configurations of the various cores in this CI calculation are the same as in the SCF problem except that a pair of electrons on each fluorine are considered explicitly in this eight electron problem whereas these electrons were part of the non-polarizable fluorine cores in the four electron SCF
problem.

> Figure 11. The Cores of OF_{2} for the CI Calculation.

The eight electron Hamiltonian may be expressed as

$$
\begin{gather*}
H=\sum_{i=1}^{8}\left(-\frac{1}{2} \nabla_{i}^{2}-\sum_{\alpha=1}^{3} v_{\alpha i}\right)+\sum_{i<j=1}^{8} \frac{1}{r_{i j}}+ \\
\sum_{\alpha<\beta=1}^{3} \frac{Z_{e f f(\alpha)^{2}}^{R_{\alpha \beta f}}(\beta)}{\alpha \beta}
\end{gather*}
$$

where the symbols have been defined in Chapter III and the $V_{\alpha i}$ represent the potentials of an electron about the $0, F_{(1)}$ and $F_{(2)}$ cores.

The wave function in Equation (44) is a linear combination of three 8 x 8 Slater determinants, each determinant having a form similar to D_{I} as expressed in Equation (46).

$$
D_{I}=\frac{1}{\sqrt{8!}}\left|\begin{array}{l}
\lambda_{1}(1) \lambda_{2}(1) \lambda_{3}(1) \lambda_{4}(1) \lambda_{5}(1) \lambda_{6}(1) \lambda_{7}(1) \lambda_{8}(1) \tag{46}\\
\lambda_{1}(2) \lambda_{2}(2) \lambda_{3}(2) \lambda_{4}(2) \lambda_{5}(2) \lambda_{6}(2) \lambda_{7}(2) \lambda_{8}(2) \\
\lambda_{1}(3) \lambda_{2}(3) \lambda_{3}(3) \lambda_{4}(3) \lambda_{5}(3) \lambda_{6}(3) \lambda_{7}(3) \lambda_{8}(3) \\
\lambda_{1}(4) \lambda_{2}(4) \lambda_{3}(4) \lambda_{4}(4) \lambda_{5}(4) \lambda_{6}(4) \lambda_{7}(4) \lambda_{8}(4) \\
\lambda_{1}(5) \lambda_{2}(5) \lambda_{3}(5) \lambda_{4}(5) \lambda_{5}(5) \lambda_{6}(5) \lambda_{7}(5) \lambda_{8}(5) \\
\lambda_{1}(6) \lambda_{2}(6) \lambda_{3}(6) \lambda_{4}(6) \lambda_{5}(6) \lambda_{6}(6) \lambda_{7}(6) \lambda_{8}(6) \\
\lambda_{1}(7) \lambda_{2}(7) \lambda_{3}(7) \lambda_{4}(7) \lambda_{5}(7) \lambda_{6}(7) \lambda_{7}(7) \lambda_{8}(7) \\
\lambda_{1}(8) \lambda_{2}(8) \lambda_{3}(8) \lambda_{4}(8) \lambda_{5}(8) \lambda_{6}(8) \lambda_{7}(8) \lambda_{8}(8)
\end{array}\right|
$$

where the spin orbitals, λ_{i}, are approximated as the product of a molecular orbital, ϕ_{i}, and a spin orbital, α or β, by the equations

$$
\lambda_{i}=\frac{\phi_{i+1}}{2} \quad \text { for odd values of } i
$$

and

$$
\lambda_{i}=\phi_{i / 2} \beta \quad \text { for even values of } i
$$

The basis set functions, ϕ_{i}, have been expressed in essentially two ways by using either an in-plane or an out-of-plane basis set of Slater atomic orbitals. These alternatives are represented schematically in Figure 12. The atomic orbitals and molecular orbitals used to build up each determinant, for both the in-plane and the out-of-plane cases are given in Table XV. For each basis set, π-bonding in OF_{2} may occur through overlaps of the $2 P_{y(0)}$ and $2 P_{y\left(F_{1}\right)}$ Slater orbitals and the ${ }^{2 P_{z}}{ }_{z}$) and $2 P_{y\left(F_{2}\right)}$ Slater orbitals.

The σ - bonds in OF_{2} have been described by normalized molecular orbitals of the form

$$
\begin{equation*}
\phi_{2}=\left[x_{2 P_{z(0)}}+x_{2 P_{z\left(F_{1}\right)}}\right] \frac{1}{\sqrt{2+2 S_{O F_{1(\sigma)}}}} \tag{47}
\end{equation*}
$$

(Ib)

(IJb)

(17z)

Figure 12. Atomic Orbital Basis Sets for the CI Calculation. (The Roman numerals in parenthesis correspond to the Slater determinats in equation (1), acorresponds to the out-of-plane A.O. basis set and b corresponds to the in-plane basis set. The shaded orbitals contain two electrons while the other orbitals, which contain one electron, are used to form molecular orbitals.)

Atomic and molecular orbitals for the out-of-plane basis set: *

$D_{I}:$	$D_{I I}:$	$D_{I I I}:$
$\phi_{1}=X\left(F_{2}\right)$	$\phi_{1}=X\left(F_{2}\right)$	$\phi_{7}=N_{4}\left[Z(0)+y\left(F_{2}\right)\right]$
$\phi_{2}=N_{1}\left[Z(0)+Z\left(F_{1}\right)\right]$	$\phi_{2}=N_{1}\left[z(0)+Z\left(F_{1}\right)\right]$	$\phi_{8}=Z\left(F_{1}\right)$
$\phi_{3}=N_{2}\left[y(0)+Z\left(F_{2}\right)\right]$	$\phi_{5}=N_{3}\left[y(0)+y\left(F_{1}\right)\right]$	$\phi_{3}=N_{2}\left[y(0)+z\left(F_{2}\right)\right]$
$\phi_{4}=X\left(F_{1}\right)$	$\phi_{6}=Z\left(F_{2}\right)$	$\phi_{4}=X\left(F_{1}\right)$

Atomic and molecular orbitals for the in-plane basis set:*

$D_{I}:$	$D_{I I}:$	$D_{I I I}:$
$\phi_{1}=y\left(F_{2}\right)$	$\phi_{1}=y\left(F_{2}\right)$	$\phi_{3}=N_{2}\left[y(0)+z\left(F_{2}\right)\right]$
$\phi_{2}=N_{1}\left[z(0)+z\left(F_{1}\right)\right]$	$\phi_{2}=N_{1}\left[z(0)+z\left(F_{1}\right)\right]$	$\phi_{4}=y\left(F_{1}\right)$
$\phi_{3}=N_{2}\left[y(0)+z\left(F_{2}\right)\right]$	$\phi_{5}=N_{3}\left[y(0)+y\left(F_{1}\right)\right]$	$\phi_{7}=N_{4}\left[z(0)+y\left(F_{2}\right)\right]$
$\phi_{4}=y\left(F_{1}\right)$	$\phi_{6}=z\left(F_{2}\right)$	$\phi_{8}=z\left(F_{1}\right)$

where:
$\mathrm{N}_{1}=\frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}_{1}(\sigma)}}}$ where $\mathrm{S}_{\mathrm{OF}_{1}(\sigma)}=\mathrm{S}_{\mathrm{Z}(0) \mathrm{Z}\left(\mathrm{F}_{1}\right)}$
$\mathrm{N}_{2}=\frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}_{2}(\sigma)}}}$ where $\mathrm{S}_{\mathrm{OF}_{2}(\sigma)}=\mathrm{S}_{\mathrm{y}(0) \mathrm{Z}\left(\mathrm{F}_{2}\right)}$
$\mathrm{N}_{3}=\frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}_{1}(\pi)}}}$ where $\mathrm{S}_{\mathrm{OF}_{1}(\pi)}=\mathrm{S}_{\mathrm{y}(0) \mathrm{y}\left(\mathrm{F}_{1}\right)}$
$\mathrm{N}_{4}=\frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}_{2}(\pi)}}}$ where $\mathrm{S}_{\mathrm{OF}_{2}(\pi)}=\mathrm{S}_{\mathrm{Z}(0) \mathrm{y}\left(\mathrm{F}_{2}\right)}$
*The above formulae have been expressed using the shorthand notation for Slater orbitals employed in Chapter III.

$$
\begin{equation*}
\phi_{3}=\left[x_{2 \mathrm{P}_{\mathrm{y}(0)}}+x_{2 \mathrm{P}_{\mathrm{z}\left(\mathrm{~F}_{2}\right)}}\right] \frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}}^{2(\mathrm{o})}}} \tag{48}
\end{equation*}
$$

Equations (47) and (48) are special cases of Equations (32) and (33) where $c_{0}=c_{F}$. This equality of LCAO coefficients implies that the $0-F$ bond is completely covalent. The LCAO-MO-SCF calculations for OF_{2} presented in Chapter III. resulted in orbital coefficients which indicated a greater ionic character for the 0-F bond than would be expected on the basis of the electronegativities of the oxygen and the fluorine atoms. It seems reasonable to expect that constraining the LCAO coefficients as indicated in Equations (47) and (48) would tend to balance those effects in the calculation which tend to over-emphasize the ionic character of the $0-F$ bond.

The π-molecular orbitals are also assumed covalent as

$$
\begin{align*}
& \phi_{5}=\frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}_{1}(\pi)}}}\left[\dot{x}_{2 \mathrm{P}_{\mathrm{y}(0)}}+\mathrm{x}_{2 \mathrm{P}_{\mathrm{y}\left(\mathrm{~F}_{1}\right)}}\right] \tag{49}\\
& \phi_{7}=\frac{1}{\sqrt{2+2 \mathrm{~S}_{\mathrm{OF}}^{2}(\pi)}}\left[\begin{array}{l}
\left.\mathrm{x}_{2 \mathrm{P}_{\mathrm{z}(0)}}+\dot{x}_{2 \mathrm{P}_{\mathrm{y}\left(\mathrm{~F}_{2}\right)}}\right]
\end{array} .\right. \tag{50}
\end{align*}
$$

Two additional assumptions, similar to approximations given in Chapter III, are used to simplify these CI calculations. First, the OF_{2} molecular angle is set at 90° rather than the experimentally determined value of 101.5°. Secondly, the overlap between atomic oribtals on nonadjacent atoms (the two fluorines) are assumed zero. The comments made in Chapter III concerning these assumptions also apply to this CI calculation.

Mathematical Formalism

A mathematical formalism for CI calculations has been worked out and is presented in the reference by Parr. ${ }^{40}$. The energy corresponding to the approximate wave function given in Equation (44) may be determined by the solution of the secular determinant

$$
\left|\begin{array}{lll}
H_{11}-\varepsilon S_{11} & H_{12}-\varepsilon S_{12} & H_{13}-\varepsilon S_{13} \\
H_{21}-\varepsilon S_{21} & H_{22}-\varepsilon S_{22} & H_{23}-\varepsilon S_{23} \\
H_{31}-\varepsilon S_{31} & H_{32}-\varepsilon S_{32} & H_{33}-\varepsilon S_{33}
\end{array}\right|=0
$$

where ε represents the electronic energy plus the nuclear repulsion energy of the molecule and

$$
\begin{align*}
& H_{i j}=\int D_{i} H D_{j} d \tau \tag{52}\\
& S_{i j}=\int D_{i} D_{j} d \tau \tag{53}
\end{align*}
$$

where the integration in Equations (52) and (53) are carried out over all space and $\mathrm{d} \tau=\mathrm{d} \tau_{1} \mathrm{~d}_{2} \tau_{2} \cdots \mathrm{~d} \tau_{8}$. The subscripts of the various volume elements refer to the volume elements for each electron of the eight electron problem. Equation (51) may be expressed as

$$
\begin{equation*}
|H-\varepsilon S|=0 \tag{54}
\end{equation*}
$$

where H and S are 3×3 symmetric matrices containing the $H_{1 j}$ and $S_{i j}$ elements and ε represents the three roots of this secular determinant.

The CI coefficients, $C_{I}, C_{I I}$ and $C_{I I I}$, may be determined by solving for the eigenvectors of the secular equation

$$
\begin{equation*}
H C=\varepsilon S C \tag{55}
\end{equation*}
$$

These eigenvectors can be obtained in a straightforward manner by
solving the set of simultaneous equations

$$
\begin{align*}
& \mathrm{C}_{11}\left(\mathrm{H}_{11}-\varepsilon \mathrm{S}_{11}\right)+\mathrm{C}_{12}\left(\mathrm{H}_{12}-\varepsilon \mathrm{S}_{12}\right)+\mathrm{C}_{13}\left(\mathrm{H}_{13}-\varepsilon \mathrm{S}_{13}\right)=0 \tag{56}\\
& \mathrm{C}_{21}\left(\mathrm{H}_{21}-\varepsilon \mathrm{S}_{21}\right)+\mathrm{C}_{22}\left(\mathrm{H}_{22}-\varepsilon \mathrm{S}_{22}\right)+\mathrm{C}_{23}\left(\mathrm{H}_{23}-\varepsilon \mathrm{S}_{23}\right)=0 \tag{57}\\
& \mathrm{C}_{31}\left(\mathrm{H}_{31}-\varepsilon \mathrm{S}_{31}\right)+\mathrm{C}_{32}\left(\mathrm{H}_{32}-\varepsilon \mathrm{S}_{32}\right)+\mathrm{C}_{33}\left(\mathrm{H}_{33}-\varepsilon \mathrm{S}_{33}\right)=0 . \tag{58}
\end{align*}
$$

Numerical values for $H_{i j}$ and $S_{i j}$ are substituted in Equations (56) through (58) along with the lowest root of the three eigenvalues of Equation (54). The CI coefficients corresponding to this lowest configuration interaction energy state, $C_{I}, C_{I I}$ and $C_{\text {III }}$, of Equation (44), may then be determined from these three equations.

The solutions of Equations (52) and (53) are straightforward but contain a large number of terms. Each 8×8 determinant is a sum of 64 terms, each term containing as factors expressions for the molecular and atomic orbitals occupied by the eight electrons. If the spin orbitals used in the calculation are orthonormals

$$
\begin{equation*}
\int \lambda_{i} \lambda_{j} d \tau=\delta_{i j} \tag{59}
\end{equation*}
$$

where $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$, then the equations given by Parr ${ }^{1}$ can be used as most of the terms of Equations (52) and (53) integrate to zero.

In the OF_{2} calculation the spin orbitals do not make up an orthonormal set. Rather than orthogonalize these spin orbitals and use the equations given by Parr, ${ }^{40}$ Equations (52) and (53) were expanded and each term was examined individually to determine its value. This procedure was greatly simplified by use of a theorem mentioned by Roothaan. 28

$$
\begin{align*}
& \frac{1}{N!} \int\left[\sum_{p}(-1)^{P} \prod_{i=1}^{8} \lambda_{i}(i)\right] H\left[\sum_{p}(-1)^{P} \prod_{i=1}^{8} \lambda_{i}^{\prime}(i)\right] d \tau_{1} \ldots d \tau_{8}= \\
& \int\left[\lambda_{1}(1) \lambda_{2}(2) \ldots . \lambda_{8}(8)\right] H\left[\sum_{p}(-1)^{P} \prod_{i=1}^{8} \lambda_{i}^{\prime}(i)\right] d \tau{ }_{1} \ldots d \tau \tag{60}
\end{align*}
$$

where ${ }_{P}^{\sum}$ indicates a sum over all possible permutations, and $(-1)^{P}$ is +1 if the permutation is even and $(-1)^{\mathrm{P}}$ is -1 if the permuation is odd. This theorem also holds for the overlap integral where H in Equation (60) may be taken as equal to one.

Semiempirical Integral Approximations

The semiempirical procedures used to evaluate the integrals resulting from expansion of the $H_{i j}$ matrix elements are essentially the same as those employed in the LCAO-MO-SCF calculations discussed in Chapter III. Semiempirical integral values using the Set I integral approximations for the in-plane atomic orbital basis set of OF_{2} are given in Table XVI. No table is included containing these values for the out-of-plane $A 0$ basis set as these are very similar, and in many cases identical, to those listed in Table XVI.

Core-Core Repulsion Terms

The core-core repulsions for this eight electron problem were obtained using the procedure explained in Chapter III. Figure 8 gives the values for $Z_{\text {eff }}$ for the oxygen and fluorine atoms. Two atomic units were added to $Z_{\text {eff }}$ for fluorine and one atomic unit was added to ;
table xvi
SEMIEMPIRICAL INTEGRAL VALUES - SET I

One Electron Integrals:

$$
\begin{aligned}
& \begin{aligned}
&\left\langle y\left(F_{2}\right)\right|-\frac{1}{2} \nabla^{2}-V_{F_{2}+2}\left|y\left(T_{2}\right)\right\rangle=\left\langle z\left(F_{2}\right)\right|-\frac{1}{2} \nabla^{2}-V_{F_{2}}+2\left|Z_{\left(F_{2}\right)}\right\rangle \\
&=-I_{F^{+}}
\end{aligned} \\
& \left\langle y\left(F_{1}\right)\right|-\frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{F}_{1}}+1 \left\lvert\, \mathrm{y}\left(\mathrm{~F}_{1}\right\rangle=\left\langle\mathrm{z}\left(\mathrm{~F}_{1}\right)\right|-\frac{1}{2} \nabla^{2}-\mathrm{V}_{\mathrm{F}_{1}+2}\left|\mathrm{z}\left(\mathrm{~F}_{1}\right\rangle\right\rangle\right. \\
& =-I_{F}+ \\
& \langle y(0)| v_{0^{\prime}}|y(0)\rangle=\langle z(0)| v_{0^{+}}|z(0)\rangle=+2 \rho_{0^{+}} \\
& \left\langle\mathrm{y}\left(\mathrm{~F}_{2}\right)\right| \mathrm{V}_{\mathrm{o}^{+}}\left|\mathrm{y}\left(\mathrm{~F}_{2}\right\rangle\right\rangle=\left\langle Z\left(\mathrm{~F}_{2}\right)\right| \mathrm{v}_{\mathrm{o}^{+}}\left|z\left(\mathrm{~F}_{2}\right\rangle\right\rangle=+2 \mathrm{R}_{\mathrm{OF}_{2}}^{-1} \\
& \left\langle y\left(F_{1}\right)\right| V_{0}+\left|y\left(F_{1}\right)\right\rangle=\left\langle z\left(F_{1}\right)\right| v_{0^{+}}\left|z\left(F_{1}\right\rangle\right\rangle=+2 R_{0 F_{1}}^{-1} \\
& \left\langle\mathrm{y}\left(\mathrm{~F}_{2}\right)\right| \mathrm{V}_{\mathrm{F}_{1}+2}\left|\mathrm{y}\left(\mathrm{~F}_{2}\right\rangle\right\rangle=\left\langle\left\langle\left(\mathrm{F}_{2}\right)\right| \mathrm{V}_{\mathrm{F}_{1}} \mid \mathrm{z}\left(\mathrm{~F}_{2}\right)\right\rangle=+3 \mathrm{R}_{\mathrm{FF}}^{-1} \\
& \left\langle y\left(F_{1}\right)\right| V_{F_{2}}+2 \mid y\left(F_{1}\right\rangle=\left\langle z\left(F_{1}\right)\right| V_{F_{2}}+2\left|z\left(F_{1}\right\rangle\right\rangle=+3 \mathrm{R}_{\mathrm{FF}}^{-1} \\
& \left\langle z_{1}(0)\right|-\frac{1}{2} \nabla^{2}+v_{0^{+}}|z(0)\rangle=\langle y(0)|-\frac{1}{2} \nabla^{2}+v_{0^{+}}|y(0\rangle\rangle=-I_{0^{+}} \\
& \langle\mathrm{z}(0)| \mathrm{V}_{\mathrm{F}_{1}^{+2}} \mid \mathrm{z}(0\rangle=\langle\mathrm{y}(0)| \mathrm{V}_{\mathrm{F}_{1}^{+2}} \quad|\mathrm{y}(0)\rangle=43 \mathrm{R}_{\mathrm{OF}}^{1}-1 \\
& \langle Z(0)| V_{F_{2}^{+2}}|z(0)\rangle=\langle y(0)| V_{F_{2}+2} \mid y(0\rangle=+3 R_{0 F_{2}}^{-1} \\
& \left\langle\mathrm{y}\left(\mathrm{~F}_{2}\right)\right| \mathrm{V}_{\mathrm{F}_{2}^{+2}}\left|\mathrm{y}\left(\mathrm{~F}_{2}\right)\right\rangle=\left\langle\mathrm{Z}\left(\mathrm{~F}_{2}\right)\right| \mathrm{V}_{\mathrm{F}_{2}+2} \mid \mathrm{Z}\left(\mathrm{~F}_{2}\right\rangle={ }_{3 p}{ }_{\mathrm{F}}+2 \\
& \left\langle Z\left(F_{1}\right)\right| V_{F_{1}+2}\left|Z\left(F_{1}\right\rangle\right\rangle=\left\langle y\left(F_{1}\right)\right| V_{F_{1}+2}\left|y\left(F_{1}\right)\right\rangle=3 p{ }_{F}+2
\end{aligned}
$$

TABLE XVI (Continued)

Two Electron Integrals:

$$
\begin{aligned}
& \left\langle Z\left(F_{1}\right) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|Z\left(F_{1}\right) Z\left(F_{1}\right\rangle\right\rangle=\left\langle y\left(F_{1}\right) y\left(F_{1}\right)\right| r_{12}^{-1}\left|y\left(F_{1}\right) y\left(F_{1}\right)\right\rangle=I_{F^{+2}} \\
& +\mathrm{A}_{\mathrm{F}}+2 \\
& \left\langle Z\left(F_{2}\right) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|z\left(F_{2}\right) Z\left(F_{2}\right)\right\rangle=\left\langle y\left(F_{2}\right) y\left(F_{2}\right)\right| r_{12}^{-1}\left|y\left(F_{2}\right) y\left(F_{2}\right)\right\rangle=I_{F^{+2}} \\
& +\mathrm{A}_{\mathrm{F}}+2 \\
& \left\langle Z\left(F_{2}\right) y\left(F_{2}\right)\right| r_{12}^{-1}\left|z\left(F_{2}\right) y\left(F_{2}\right)\right\rangle=\left\langle y\left(F_{1}\right) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|y\left(F_{1}\right) Z\left(F_{1}\right)\right\rangle=I_{F^{+}} \\
& +\mathrm{A}_{\mathrm{F}}+2 \\
& \left\langle Z(0) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|Z(0) Z\left(F_{1}\right\rangle\right\rangle=\left\langle y(0) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|y(0) Z\left(F_{1}\right)\right\rangle=R_{0 F_{1}}^{-1} \\
& \left\langle Z(0) y\left(F_{1}\right)\right| r_{12}^{-1}\left|z(0) y\left(F_{1}\right)\right\rangle=\left\langle y(0) y\left(F_{1}\right)\right| r_{12}^{-1}\left|y(0) y\left(F_{1}\right)\right\rangle=R_{0 F_{1}}^{-1} \\
& \left\langle Z(0) y\left(F_{2}\right)\right| r_{12}^{-1}\left|Z(0) y\left(F_{2}\right)\right\rangle=\left\langle Z(0) Z\left(F_{2}\right)\right| r_{12}^{-1}\left|Z(0) Z\left(F_{2}\right)\right\rangle=R_{0 F_{2}}^{-1} \\
& \left\langle y(0) y\left(F_{2}\right)\right| r_{12}^{-1}\left|y(0) y\left(F_{2}\right)\right\rangle=\left\langle y(0) z\left(F_{2}\right)\right| r_{12}^{-1}\left|y(0) z\left(F_{2}\right)\right\rangle=R_{0 F_{2}}^{-1} \\
& \left\langle y\left(F_{2}\right) Z\left(F_{1}\right)\right| r_{12}^{-1}\left|y\left(F_{2}\right) Z\left(F_{1}\right)\right\rangle=\left\langle Z\left(F_{2}\right) y\left(F_{1}\right)\right| r_{12}^{-1}\left|Z\left(F_{2}\right) y\left(F_{1}\right)\right\rangle=R_{F F}^{-1} \\
& \langle Z(0) z(0)| r_{12}^{-1}|Z(0) z(0)\rangle=\langle y(0) y(0)| r_{12}^{-1}|y(0) y(0)\rangle=I_{0^{+}}+A_{0^{+}} \\
& \langle z(0) y(0)| r_{12}^{-1}|Z(0) y(0)\rangle=I_{0^{+}}+A_{0^{+}} \\
& \langle Z(0) y(0)| r_{12}^{-1}|y(0) z(0)\rangle=0.06040\left(I_{0^{+}}+A_{0^{+}}\right) \\
& \left\langle\mathrm{Z}\left(\mathrm{~F}_{1}\right) \mathrm{y}\left(\mathrm{~F}_{1}\right)\right| \mathrm{r}_{12}^{\infty}\left|\mathrm{y}\left(\mathrm{~F}_{1}\right) \mathrm{Z}\left(\mathrm{~F}_{1}\right)\right\rangle=0.06040\left(\mathrm{I}_{\mathrm{F}^{+2}}+\mathrm{A}_{\mathrm{F}^{+2}}\right) \\
& \left\langle Z\left(F_{2}\right) y\left(F_{2}\right)\right| r_{12}^{-1}\left|y\left(F_{2}\right) z\left(F_{2}\right)\right\rangle=0.06040\left(I_{F^{+2}}+A_{F^{+2}}\right)
\end{aligned}
$$

$Z_{\text {eff }}$ for oxygen to compensate for the fact that the cores of oxygen and fluorine have formal charges of +2 and +3 in this calculation.

Calculation of Binding Energy

The method used to calculate the binding energy corresponding to the process

$$
0+2 \mathrm{~F} \longrightarrow 0 \mathrm{~F}_{2}
$$

is analogous to the procedure described in Chapter III. The processes involved, with their energy changes in parenthesis, are given below:

$$
\begin{align*}
& 0+2 \mathrm{~F} \rightarrow 0_{\mathrm{V}}+2 \mathrm{~F}_{\mathrm{V}} \quad\left(\mathrm{P}_{\mathrm{O}}^{\mathrm{O}}+2 \mathrm{P}_{\mathrm{F}}^{\mathrm{o}}\right) \\
& 0_{\mathrm{V}}+2 \mathrm{~F}_{\mathrm{V}} \rightarrow \mathrm{O}_{\mathrm{V}}^{+2}+2 \mathrm{~F}_{\mathrm{V}}^{+3} \quad\left(2 \mathrm{I}_{\mathrm{V}(\mathrm{~F})}+2 \mathrm{I}_{\mathrm{V}\left(\mathrm{~F}^{+}\right)}+2 \mathrm{I}_{\mathrm{V}\left(\mathrm{~F}^{+2}\right)}\right. \\
& \left.+\mathrm{I}_{\mathrm{V}(0)}+\mathrm{I}_{\mathrm{V}\left(0^{+}\right)}\right) \\
& \mathrm{O}_{\mathrm{V}}^{+2}+2 \mathrm{~F}_{\mathrm{V}}^{+3} \longrightarrow \mathrm{~F}_{\mathrm{V}}^{+3} \cdot 0_{\mathrm{V}}^{+3} \cdot \mathrm{~F}_{\mathrm{V}}^{+3} \\
& \left.\mathrm{~F}_{\mathrm{V}}^{+3} \cdot \mathrm{o}_{\mathrm{V}}^{+2} \cdot \mathrm{~F}_{\mathrm{V}}^{+3}+8 \mathrm{E}_{\mathrm{nuc}}^{-}\right) \tag{E}
\end{align*}
$$

The binding energy, E_{B}, is then given by

$$
\begin{aligned}
E_{B}= & P_{0}^{0}+2 P_{F}^{0}+2 I_{V(F)}+2 I_{V\left(F^{+}\right)}+2 I_{V\left(F^{++}\right)}+I_{V(0)}+I_{V\left(0^{+}\right)}+ \\
& E_{\text {nue }}+6
\end{aligned}
$$

The symbols and processes given above have been described in Chapter III.

Overlap Integrals

Numerical values for the overlap integrals containing Slater orbitals were obtained from Mulliken's paper ${ }^{37}$ as described in

Chapter III.

Results

The eight electron calculations, as described earlier in this chapter, were attempted using the Set II integral approximations. The results of these calculations (for both the out-of-plane and the inplane AO basis sets) were unsatisfactory in that they predicted an unstable OF_{2} molecule with respect to the separated atoms.

The calculations using the Set I integral approximations predicted very reasonable values for the binding energy of the OF_{2} molecule. Figure 13 illustrates the binding energy versus bond distance curves for the symmetric stretch of OF_{2} for both the in-plane and the out-ofplane AO basis sets. Figure 14 shows the analogous curves for the antisymmetric stretching mode of OF_{2}. The calculated equilibrium binding energies, $5.683 \mathrm{e} . \mathrm{V}$. for the out-of-plane set and $4.015 \mathrm{e} . \mathrm{V}$. for the in-plane set, agree quite well with the experimental binding energy of 3.9 e.V. The calculated equilibrium bond distances for the out-ofplane and the in-plane basis sets are $1.03 \AA$ and $1.09 \AA$ respectively. These bond lengths are considerably smaller than the experimentally determined value of $1.38 \AA$ 。

Tables XVII and XVIII contain data for the CI calculation using the out-of-plane AO basis set. Table XVII lists values of the binding energy for OF_{2} at various internuclear distances corresponding to the symmetric and antisymmetric stretch. $E_{B(I)}$ corresponds to the binding energy calculated using the wave function

$$
\begin{equation*}
\psi^{\prime}=D_{I} \tag{61}
\end{equation*}
$$

Figure 13. The Configuration Interaction Binding Curves for OF_{2} - Symmetric Stretch.

Figure 14. The Configuration Interaction Binding Energy Curves for OF_{2} Antisymmetric Stretch.

TABLE XVII
binding Energies -- OUT-OF-PLANE ATOMIC ORBITAL BASIS SET

$\mathrm{R}_{\mathrm{OF}}\left(\mathrm{a} \cdot \mathrm{u}_{0}\right)$	$E_{B(I)}(\mathrm{e} . \mathrm{V}$.	$E_{B(C I)}\left(\mathrm{e} . \mathrm{V}_{0}\right)$

Symmetric Stretch:

1.55		-34.602		-34.594
1.65		-18.183		-18.175
1.75		- 3.543		- 3.535
1. 85		3.005		3.013
1.95		5.675		5.683
2.05		5.210		5.218
2.15		4.470		4.479
2.25		3.443		3.451
2.35		2.094		2.102
$\mathrm{R}_{\mathrm{OF}_{1}}\left(\mathrm{a}_{\mathrm{o}} \mathrm{u}_{\mathrm{o}}\right)$	$\mathrm{R}_{\mathrm{OF}_{2}}(\mathrm{a} \cdot \mathrm{u} .)$		$E_{B(I)}$ (e.V.)	$\mathrm{E}_{\mathrm{B}(\mathrm{CI})}(\mathrm{e}$

Antisymmetric Stretch:

1.55	2.35	-16.253	-16.245
1.65	2.25	-7.369	-7.361
1.75	2.15	0.465	0.473
1.85	2.05	4.109	4.117
1.95	1.95	5.675	5.683
2.05	1.85	4.109	4.117
2.15	1.75	0.465	0.473
2.25	1.65	-7.369	-7.361
2.35	1.55	-16.253	-16.245

TABLE XVIII
CONFIGURATION INTERACTION COEFFICIENTS -- OUT-OF-PLANE ATOMIC ORBITAL BASIS SET

R_{OF} (a.u.)	C_{I}	C_{II}	$\mathrm{C}_{\text {III }}$

Symmetric Stretch:

Antisymmetric Stretch:

1.55	2.35	.9999	-.01252	-.009889
1.65	2.25	.9999	-.01133	-.009378
1.75	2.15	.9999	-.01047	-.009127
1.85	2.05	.9999	-.009842	-.009148
1.95	1.95	.9999	-.009428	-.009428
2.05	1.85	.9999	-.009148	-.009842
2.15	1.75	.9999	-.009127	-.01047
2.25	1.65	.9999	-.009378	-.01133
2.35	1.55	.9999	-.009889	-.01252

which corresponds to a resonance structure for OF_{2} with no provision for multiple bonding. $E_{B(C I)}$ denotes the configuration interaction binding energy of OF_{2} which corresponds to the wave function given by Equation (44). Table XVIII lists the configuration interaction coefficients corresponding to the values of $E_{B(C I)}$ given in Table XVII.

Tables XIX through XXII contain data for calculations utilizing the in-plane $A O$ basis set. Tablex XIX and $X X$ contain values of $E_{B(I)}$ and $E_{B(C I)}$ for the symmetric and antisymmetric configurations respectively. Tables XXI and XXII list the configuration interaction coefficients for the symmetric and antisymmetric stretching geometries of $\mathrm{OF}_{2}{ }^{\circ}$

TABLE XIX

R_{OF} (a.u.)	$\mathrm{E}_{\mathrm{B}(\mathrm{I})}$	$\mathrm{E}_{\mathrm{B}(\mathrm{CI})}$
1.57	- 39.483	-37.308
1.67	-19.070	-17.865
1.77	-5.169	- 4.544
1.87	1.191	1.460
1.97	3.810	3.932
2.07	3.996	4.015
2.17	3.750	3.755
2.27	3.043	3.065
2.37	2.012	2.091
2.47	0.606	0.748
2.57	-0.767	-0.563

TABLE XX
BINDING ENERGIES -- IN-PLANE ATOMIC ORBITAL BASIS SET -- ANTISYMMETRIC STRETCH

$\mathrm{R}_{\mathrm{OF}}^{1}\left(\mathrm{a}, \mathrm{u}_{.}\right)$	$\mathrm{R}_{\mathrm{OF}_{2}}$ (a.u.)	$E_{B(I)}$ e.v.	$E_{B(C I)} \mathrm{e} \cdot \mathrm{V}$ 。
1.57	2.57	-20.307	-19.717
1.67	2.47	-9.376	- 9.052
1.77	2.37	- 1.667	-1.447
1.87	2.27	2.077	2.167
1.97	2.17	3.76857	3.80664
1.98	2.16	3.79494	3.82893
1.99	2.15	3.85368	3.88413
2.00	2.14	3.91405	3.94124
2.01	2.13	3.92193	3.94776
2.02	2.12	3.92873	3.95320
2.03	2.11	3.93607	3.95864
2.04	2.10	3.97632	3.99807
2.05	2.09	3.98012	4.00133
2.06	2.08	3.98203	4.00242
2.07	2.07	3.99589	4.01520
2.08	2.06	3.98203	4.00242
2.09	2.05	3.98012	4.00133
2.10	2.04	3.97632	3.99807
2.11	2.03	3.93607	3.95864
2.12	2.02	3.92873	3.95320
2.13	2.01	3.92193	3.94776
2.14	2.00	3.91405	3.94124

TABLE XX (Continued)

$\mathrm{R}_{\mathrm{OF}_{1}}$ (a.u.)	$\mathrm{R}_{\mathrm{OF}_{2}}$ (a.u.)	$\mathrm{E}_{\mathrm{B}(\mathrm{I})} \mathrm{e} . \mathrm{V}$.	$\mathrm{E}_{\mathrm{B}(\mathrm{CI})} \mathrm{e} . \mathrm{V}_{0}$
2.15	1.99	3.85368	3.88413
2.16	1.98	3.79494	3.82893
2.17	1.97	3.76857	3.80664
2.27	1.87	2.077	2.167
2.37	1.77	-1.667	-1.447
2.47	1.67	-9.376	-9.052
2.57	1.57	-20.307	-19.717

TABLE XXI
CONFIGURATION INTERACTION COEFFICIENTS -- IN-PLANE ATOMIC ORBITAL BASIS SET -- SYMMETRIC STRETCH

R_{OF}	C_{I}	$\mathrm{C}_{I I}$	$\mathrm{C}_{I I I}$
1.57	.7550	.2848	.2848
1.67	.8498	.2017	.2017
1.77	.9134	.1370	.1370
1.87	.9556	.08764	.08764
1.97	.9816	.05341	.05341
2.07	1.0031	.02110	.02110
2.17	1.0177	-.003830	-.003830
2.27	1.0278	-.02392	-.02392
2.37	1.0358	-.04169	-.04169
2.47	1.0452	-.05461	-.05461
2.57		-.06691	-.06691

TABLE XXII
CONFIGURATION INTERACTION COEFFICIENTS -- IN-PLANE ATOMIC ORBITAL BASIS SET -- ANTISYMMETRIC STRETCH

$\mathrm{R}_{\mathrm{OF}}^{1}$	$\mathrm{R}_{\mathrm{OF}}^{2}$	$\mathrm{C}_{\text {I }}$	${ }^{\text {c }}$ II	$\mathrm{C}_{\text {III }}$
1.57	2.57	. 9433	. 2098	-. 02874
1.67	2.47	. 9715	. 1472	-. 02373
1.77	2.37	. 9881	. 1012	-. 01806
1.87	2.27	. 9977	. 06566	-. 007951
1.97	2.17	1.0005	. 04379	. 005770
1.99	2.15	1.0013	. 03848	. 008730
2.01	2.13	1.0025	. 03308	. 01082
2.03	2.11	1.0027	. 02939	. 01404
2.05	2.09	1.0022	. 02582	. 01889
2.07	2.07	1.0031	. 02110	. 02110
2.09	2.05	1.0022	. 01889	. 02582
2.11	2.03	1.0027	. 01404	. 02939
2.13	2.01	1.0025	. 01082	. 03308
2.15	1.99	1.0013	. 008730	. 03848
2.17	1.97	1.0005	. 005770	. 04379
2.27	1.87	. 9977	-. 007951	. 06566
2.37	1.77	. 9881	-. 01806	. 1012
2.47	1.67	. 9715	-. 02373	. 1472
2.57	1.57	. 9433	-. 02874	. 2098

Tables XVII, XIX and XX illustrate that $E_{B(I)}<E_{B(C I)}$ for all the geometrical configurations calculated. This is to be expected since the wave function in Equation (61) is a special case of the more general configuration interaction wave function. This latter wave function should be a better approximation to the "true" wave function than the single determinant wave function, ψ^{\prime}. In Chapter V the significance of this increase in binding energy upon introducing $D_{\text {II }}$ and $D_{\text {III }}$ into the OF_{2} wave function will be examined.

The CI coefficients listed in Table XVIII illustrate that C_{I} is much greater than $C_{\text {II }}$ and $C_{\text {III }}$ for all the geometrical configurations listed. This is reflected energetically in the fact that the configuration interaction energy is never more than $0.01 \mathrm{e} . \mathrm{V}$. larger than $\mathrm{E}_{\mathrm{B}(\mathrm{I})}$.

For the in-plane basis set the determinants $D_{I I}$ and $D_{\text {III }}$ are more important in Equation (44) than they are for the out-of-plane basis set. For the geometrical configuration where both bonds are about $0.25 \AA$ shorter than the calculated equilibrium bond lengths, the ratio, $C_{I I} / C_{I}=C_{I I I} / C_{I}=0.37$. As the bonds are stretched toward equilibrium this ratio becomes smaller, as one might anticipate. As $D_{\text {II }}$ and $D_{\text {III }}$ become less important in the $C I$ wave function, the absolute magnitude of the difference, $E_{B(C I)}-E_{B(I)}$ becomes smaller.

For the antisymmetric stretching mode where for example, the $0-F_{(1)}$ bond is compressed and the $0-F_{(2)}$ bond is stretched from equilibrium by the same amount, $C_{\text {II }}>C_{\text {III }}$; the more one distorts the molecule from equilibrium in this manner, the more important DBNB resonance structure II becomes relative to resonance structures I and III。 When the $0-F_{(1)}$ bond is about $0.25 \AA$ shorter than the calculated
equilibrium bond length the ratio of $C_{I I} / C_{I}=0.22$. In Chapter V the significance of these CI coefficients, which are a measure of the extent of DBNB resonance in OF_{2}, is discussed.

CHAPTER V

DISCUSSION OF RESULTS

The data obtained from the molecular orbital calculations in Chapter IV are analyzed in this chapter to determine whether the model employed to describe DBNB resonance can explain the frequency inversion one observes in OF_{2}. This frequency inversion appears to be the most striking physical manifestation of DBNB resonance (and/or non-bonded interaction) in the OF_{2} molecule.

The fundamental frequencies of OF_{2} are related to the general valence force constants through the equations: ${ }^{10}$

$$
\begin{align*}
& \lambda_{1}+\lambda_{2}=\left(1+\frac{2 m_{F}}{m_{o}} \cos ^{2} \frac{\alpha}{2}\right) \frac{f_{r}+f_{r r}}{m_{F}}+2\left(1+\frac{2 m_{F}}{m_{o}} \sin 2 \frac{\alpha}{2}\right) \frac{f_{\alpha}}{m_{F^{2}} r^{2}} \tag{62}\\
& \lambda_{1} \lambda_{2}=2\left(1+\frac{2 m_{F}}{m_{o}}\right) \frac{f_{r}+f_{r r}}{m_{F}^{2}} \frac{f_{\alpha}}{r^{2}} \tag{63}\\
& \lambda_{3}=\left(1+\frac{2 m_{F}}{m_{o}} \sin ^{2} \frac{\alpha}{2}\right) \frac{f_{r}-f_{r r}}{m_{F}} \tag{64}
\end{align*}
$$

These equations are derived by solving the vibrational problem using the potential energy function given in Equation (7). Equations (62) and (63) have been simplified by setting the bond-angle interaction
constant, $\mathrm{f}_{\mathrm{r} \alpha}$, at zero, although Equation (64) is exact within the harmonic oscillator approximation. The variables α and r represent the equilibrium molecular angle and bond length for OF_{2} while m_{o} and m_{F} indicate the masses of the oxygen and fluorine atoms respectively. The force constant notation has been defined in Chapter II. The vibrational frequencies, ν_{i}, are related to the λ_{i} by the equation

$$
\begin{equation*}
\lambda_{i}=4 \pi^{2} v_{i}^{2} \tag{65}
\end{equation*}
$$

Inspection of Equations (62) through (64) indicate that a positive bondbond interaction constant, f_{rr}, would tend to lower the value of the antisymmetric stretching frequency, ν_{3}, while it would tend to increase ν_{1}, the symmetric stretching frequency. A delocalization of electrons in $O F_{2}$, such as DBNB resonance, would manifest itself in a positive bond-bond interaction constant which, if large enough, would cause ν_{1} to have a larger value than v_{3}. In molecules where f_{rr} is nearly zero, such as $\mathrm{H}_{2} \mathrm{O}$, this frequency inversion is not observed. The next several paragraphs indicate how a value for this bond-bond interaction constant is obtained from the energy data of the MO calculations presented in Chapter IV. This value is then compared with the interaction constant determined experimentally from the fundamental frequencies of OF_{2} 。

In Chapter IV the results of two MO calculations are given for both AO basis sets presented. Those energy values corresponding to the single determinantal wave function, denoted by $E_{B(I)}$, approximate energy values for an OF_{2} molecule in which the binding electrons are localized in their respective bonds. Delocalization effects are explicitly entered into the calculation through the determinants $D_{\text {II }}$ and $D_{\text {III }}$
in the CI wave function. Binding energies corresponding to the CI wave function were denoted by $\mathrm{E}_{\mathrm{B}(\mathrm{CI})}$ in Chapter IV. The bond-bond interaction force constant for OF_{2} may be determined by considering the change in binding energy of OF_{2} as the molecule is displaced from equilibrium. The quantities $\Delta \mathrm{E}_{\mathrm{B}(\mathrm{I})}$ and $\Delta \mathrm{E}_{\mathrm{B}(\mathrm{CI})}$ are defined by Equations (66) and (67),

$$
\begin{equation*}
\Delta E_{B(I)}=E_{B(I)}^{0}-E_{B(I)} \tag{66}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta E_{B(C I)}=E_{B(C I)}^{o}-E_{B(C I)} \tag{67}
\end{equation*}
$$

where $E_{B(I)}^{\circ}$ and $E_{B(C I)}^{\circ}$ are the single configuration and the CI energies for the equilibrium geometry of OF_{2}. Figure 15 illustrates a schematic drawing of the quantities $\Delta E_{B(I)}$ and $\Delta E_{B(C I)}$ as a function of the antisymmetric stretching normal coordinate, Q_{3}.

Figure 15. Schematic Drawing of the Quantities $\Delta E_{B}(I)$ and $\Delta E_{B}(C I)$ as a Function
of ${ }^{\text {the }}$ Normal Coordinate, Q_{3}.

The change in the potential energy of OF_{2} as the molecule vibrates in its antisymmetric stretching mode may be expressed as

$$
\begin{equation*}
\Delta V=\frac{1}{2} f_{r}\left(\Delta r_{1}^{2}+\Delta r_{2}^{2}\right)+f_{r r} \Delta r_{1} \Delta r_{2} . \tag{68}
\end{equation*}
$$

For this normal mode $\Delta r=\Delta r_{1}=-\Delta r_{2}$ and Equation (68) may be simplified to

$$
\begin{equation*}
\Delta V=f_{r} \Delta r^{2}-f_{r r} \Delta r^{2} \tag{69}
\end{equation*}
$$

The quantities $\Delta E_{B(I)}$ and $\Delta E_{B(C I)}$, which measure this change in energy for the calculations using the wave functions given in Chapter IV may be expressed as

$$
\begin{equation*}
\Delta E_{B(I)}=f_{r}^{\prime} \Delta r^{2}-f_{r r}^{\prime} \Delta r^{2} \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{B}(\mathrm{CI})}=\mathrm{f}_{\mathrm{r}} \Delta \mathrm{r}^{2}-\mathrm{f}_{\mathrm{rr}} \Delta \mathrm{r}^{2} \tag{71}
\end{equation*}
$$

The quantities f_{r}^{\prime} and $f_{r r}^{\prime}$ represent force constants for energy calculations in which no provision has been included for delocalization of electrons. The force constants f_{r} and $f_{r r}$ correspond to energy calculations in which electron delocalization effects, in the form of DBNB resonance, have been provided for in addition to the localized effects illustrated by the quantities in Equation (70).

The difference

$$
\begin{equation*}
\Delta E_{B(I)}-\Delta E_{B(C I)}=\left(f_{r}^{\prime}-f_{r}\right) \Delta r^{2}+\left(f_{r r}-f_{r r}^{\prime}\right) \Delta r^{2} \tag{72}
\end{equation*}
$$

is illustrated in Figure 15. The equality of f_{r} and f_{r}^{\prime} is not guaranteed because the addition of determinants $D_{I I}$ and $D_{\text {III }}$ to the wave function described by D_{I} results in added stability calculated for OF_{2} 。

This stability may be reflected in stronger $0-\mathrm{F}$ bonds so that one may state that $f_{r}^{\prime} \leqslant f_{r}$ or

$$
f_{r}^{\prime}-f_{r}=\Delta f_{r} \leqslant 0
$$

Rearranging Equation (72) results in the equation

$$
\begin{equation*}
\frac{\Delta E_{B(I)}-\Delta E_{B(C I)}}{\Delta r^{2}}-\Delta f_{r}=f_{r r}-f_{r r}^{\prime} \tag{73}
\end{equation*}
$$

The first term on the left-hand side of this equation is positive so that one may write the expression

$$
\begin{equation*}
\frac{\Delta E_{B(I)}-\Delta E_{B(C I)}}{\Delta r^{2}} \leqslant f_{r r}-f_{r r}^{\prime}=f_{d} \tag{74}
\end{equation*}
$$

For convenience the difference, $f_{r r}-f_{r r}^{\prime}$, is denoted by f_{d} 。 The quantity, $f_{r r}^{\prime}$, measures the interaction constant essentially of a σ - bonded system containing localized electrons. The constant, f_{rr}, measures contributions to the interaction constant from DBNB resonance as well as from the localized system of electrons. Theoretically the quantity, f_{d}, would be the contribution to the bond-bond interaction constant due to electron delocalization of the DBNB resonance type. Theoretical values of f_{d} as determined from the data presented in Chapter IV using the term on the left-hand side of expression (74) are given in Table XXIII along with the displacements from equilibrium at which these quantities were calculated. The displacements chosen are large enough such that the difference, $\Delta E_{B(I)}-\Delta E_{B(C I)}$, was significant, and are small enough such that they correspond roughly to the size of the displacements expected for an $0-F$ bond in the Q_{3} coordinate.

TABLE XXIII

$$
\text { THEORETICAL VALUES FOR } f_{d}
$$

In Plane Atomic Orbital Basis Set: $\mathrm{r}(\AA)$	$\mathrm{f}_{\mathrm{d}} \times 10^{-5} \mathrm{dynes} / \mathrm{cm}$
0.02116	1.166
0.02645	1.181
0.03174	1.036
0.03703	0.920
0.04232	0.996
0.04761	1.037
0.05290	1.073
$0.05 t-o f-P 1$ ane Atomic Orbital Basis Set:	
0.0529	0.000

For the out-of-plane basis set, only one value is entered in Table XXIII, but it is representative of all the points calculated. These calculations predict a value of zero for f_{d}, resulting from the fact that the difference $E_{B(I)}-E_{B(C I)}$ is constant for all the antisymmetric geometries calculated for OF_{2}.

The values listed for the in-plane calculation predict a value of 1.058×10^{5} dyne/cm for the quantity, f_{d}, this value being an average of those listed in Table XXIII. Thus the model employed in this calcum lation of the binding energy for OF_{2} predicts a large positive contribution to the bond-bond interaction constant as a result of DBNB resonance. Such a contribution could partially explain why a positive bond-bond interaction constant, which Linnett and Hoare ${ }^{22}$ state as a
characteristic of triatomic molecules with delocalized electrons, is calculated for OF_{2} from the frequency data.

Use of expression (74), coupled with a reasonable estimate of $f_{r r}^{\prime}$, allows a calculation of the interaction constant, f_{rr}, which can be compared with experimental data. If $\mathrm{f}_{\mathrm{rr}}^{\prime} \geqslant 0$ expression (74) may be written as

$$
\begin{equation*}
\frac{\Delta E_{B(I)}-\Delta E_{B(C I)}}{\Delta r^{2}} \leqslant f_{r r} \tag{75}
\end{equation*}
$$

If this is the case, the values listed for f_{d} in Table XXIII should provide a reasonable estimate of a lower limit for the bond-bond interaction constant. If $\mathrm{f}_{\mathrm{rr}}^{\prime}<0$ it is unlikely that it will have a large absolute magnitude judging from the results of force constant calculations for essentially σ-bonded triatomic molecules. Table XXIV list some of these molecules and their corresponding interaction constants. It seems unlikely that $f_{r r}^{\prime}$ would have a value larger in absolute magnitude than any listed in Table XXIV. If this is the case, expression (75) should be approximately correct.

TABLE XXIV
BOND $-B O N D$ INTERACTION CONSTANTS FOR SEVERAL TRIATOMIC MOLECULES

| Molecule | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{H}_{2} \mathrm{~S}$ | $\mathrm{H}_{2} \mathrm{~S}$ | $\mathrm{H}_{\mathrm{g}} \mathrm{Cl}_{2}$ | $\mathrm{H}_{\mathrm{g}} \mathrm{Br}_{2}$ | HgI_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f}_{\mathrm{rr}}^{\prime}$ | -.201 | -.219 | -.249 | -.058 | -.0905 | -.0912 |
| Values taken from reference (22). | (Constants in dynes/cm $\times 10^{-5}$.) | | | | | |

The possible experimental values for f_{rr} of OF_{2}, calculated by Duchesne and Burnelle, ${ }^{23}$ have been presented in Figure 6 as a function
of $f_{r a}$, the bond-angle interaction constant. Assuming that the equality in expression (75) is approximately correct our calculated value of $\mathrm{f}_{\mathrm{rr}}, 1.058 \times 10^{5}$ dyne/cm, represents allowed solutions of 0.35×10^{5} and 2.2×10^{5} dyne/cm for $f_{r \alpha} / r$. Duchesne and Burnelle list representative values of $f_{r r}$ and $f_{r \alpha} / r$ of 1.1×10^{5} and 0.38×10^{5} dyne/cm for $0 F_{2}$, although they state no reason for this choice over other possible solutions. This excellent agreement, in view of the approximations heretofore made and the fact that the experimental $f_{r r}$ also includes contributions from the non-bonded interaction between the fluorines to some extent, is probably fortuitous, but the reasonableness of the theoretical quantity, f_{d}, is clearly demonstrated.

Linnett and Hoare ${ }^{22}$ have demonstrated that a large non-bonded interaction between the fluorines in OF_{2} can result in a major contribution to the large positive experimental value for $f_{r r}$ in OF_{2}. Equation (11) illustrates this correspondence between F and $f_{r r}$. Assuming a potential energy function containing both F and $f_{r r}$, these authors conclude that the non-bonded interaction in OF_{2} cannot completely explain the large positive f_{rr} 。 For example, assuming that $\mathrm{F}=2 \times 10^{5}$ dyne/cm, which seems reasonable compared to other fluorine molecules in which DBNB resonance is not expected to be as significant as in $O F_{2}$, a set of force constant solutions with reasonable values for f_{r}, f_{α} and $f_{r_{\alpha}}$ could exhibit a value of $f_{r r}$, of $+0.6 \times 10^{5}$ dyne/cm, which should measure essentially bond-bond interaction.

The model employed here indicates that a solution with $f_{r r}$ of this magnitude and sign may be explained by significant DBNB resonance in OF_{2}. When sufficient data becomes available to determine all the force constants of the GVFF, modified by a proper non-bonded interaction, a
more definite conclusion about the significance of $f_{r r}$ may be drawn. The assumption that OF_{2} contains only localized electrons, in the light of these calculations, seems premature. Therefore the correlation described by Linnett and Hoare, ${ }^{22}$ between the algebraic sign of $f_{r r}$ and the electronic configuration of a triatomic molecule, is not necessarily violated by the specific example of OF_{2} as originally inferred in reference (23).

The positive contribution to f_{rr} due to DBNB resonance, f_{d} as determined by these calculations, would decrease the frequency of the antisymmetric stretch by approximately $480 \mathrm{~cm}^{-1}$, according to equation (64). Inspection of equations (62) and (63) indicate that the frequency of the symmetric stretching mode would be increased by a comparable amount. Such frequency increments could easily account for the frequency inversion observed in OF_{2} 。

One of the most interesting aspects of this study is the apparently acute sensitivity of the interaction constant, $f_{r r}$, to a small change in the trial wave function. For the data used to calculate the difference between $f_{r r}$ and $f_{r r}^{\prime}$, the largest value of the variation coefficients, $C_{\text {II }}$ and $C_{\text {III }}$, is 0.04379 at a bond displacement of $0.0529 \AA$. Resonance structures, such as those of the DBNB type, which may appear unimportant in the determination of molecular properties, such as binding energies, bond force constants, etc., may not be insignificant as far as their effect on the bond-bond interaction constant.

The above analysis may be extended to NF_{2} and CF_{2}. In these molecules a filled fluorine $A O$ and either a vacant or half-filled orbital on carbon or nitrogen may participate in significant π-bonding. This would be reflected in positive contributions to f_{rr} in addition to
those effects mentioned for OF_{2}.
The binding energy curves which approximate the symmetric stretch are more difficult to interpret. First, the symmetric stretching mode as determined from normal coordinate analysis contains a considerable amount of angular displacement as the bond lengths are varied. Secondly, the analysis used to calculate f_{d} for the antisymmetric stretch is complicated by the presence of $f_{\alpha}, f_{\alpha}^{\prime}, f_{r}$ in the potential energy function for the symmetric stretch. If such effects are ignored, the resultant calculations of f_{d} are discouraging. At the bond displacement of $-0.0529 \AA$, this quantity is -5.3×10^{5} dyne/cm and at +0.0529 , $f_{d}=+1.4 \times 10^{5}$ dyne/cm. This latter value agrees reasonably well with the results of the antisymmetric stretching calculations, but the former value deviates badly and even possesses a negative sign. The negative sign for f_{d} results from a relatively large contribution of determinants, $D_{I I}$ and $D_{I I I}$, to the $C I$ wave function which would lead to a large positive difference, $\Delta E_{B(I)}-\Delta E_{B(C I)}$, for the symmetric stretch. Such a difference would result in a large negative value for $f_{d}{ } \quad D_{I I}$ and $D_{\text {III }}$ represent resonance structures

The molecular angle has been constrained at 90°; this angle cannot become larger as the bonds are compressed. This would result in an abnormally high core-core repulsion between the fluorines. The introduction of determinants $D_{I I}$ and $D_{I I I}$, multiplied by adjustable parameters may allow the effect of this abnormally high repulsion term,
which in reality is decreased by a wider angle at short bond distances, to be compensated for by a relatively large contribution of structures II and III to the CI wave function. This would explain why the values of f_{d}, calculated for the symmetric stretching geometries, deviate less from the antisymmetric stretching values as the bond length is increased.

The model predicts an increase in thermodynamic stability of OF_{2} of $0.445 \mathrm{kcal} / \mathrm{mole}$ due to the inclusion of $\mathrm{D}_{\text {II }}$ and $\mathrm{D}_{\text {III }}$ into the $C I$ wave function. This value was calculated from the difference $E_{B(C I)}^{O}$ $\mathbb{E}_{B(I)}^{0}$, these quantities representing equilibrium binding energies as determined in Chapter IV. Since two DBNB resonance structures may be drawn for OF_{2}, this corresponds to a resonance energy of $0.223 \mathrm{kcal} / \mathrm{mole}$ for each possible DBNB resonance structure. No experimental data is available for DBNB resonance structures involving oxygen and fluorine. Hine ${ }^{4}$ estimates a value of $3.2 \mathrm{kcal} / \mathrm{mole}$ resonance energy for each DBNB resonance structure in carbon-fluorine compounds. The calculation of this value assumes that all this resonance energy is due to DBNB resonance with no contribution from the non-bonded interaction between the fluorines. From the above data, it appears as though our calculated value for the resonance energy is considerably smaller than the value which might be expected experimentally.

Summary

1. The binding energies calculated for $\mathrm{OF}_{2}, \mathrm{NF}_{2}$ and CF_{2} using the semiempirical LCAO-MO-SCF procedure, described in Chapter III, are larger than their corresponding experimental values. This appears to be the result of the relatively high ionization potential and electron
affinity of the fluorine atom employed in the semiempirical evaluation of the integrals which determine the binding energies of these molecules.
2. The Set II integral approximations, coupled with the assumption of completely covalent $0-F$ bonds in OF_{2}, lead to equilibrium binding energies of $5.683 \mathrm{e} . \mathrm{V}$. and $4.015 \mathrm{e} . \mathrm{V}$. for the out-of-plane and inplane AO basis sets, respectively. These CI binding energies agree reasonably well with the experimental energy of 3.9 e. V.
3. The model employed in this calculation predicts a bond-bond interaction constant of approximately 1×10^{5} dyne/cm. This calculated value explains the large positive bond-bond interaction constant calculated from the fundamental frequencies of OF_{2}.
4. This calculation indicates that the OF_{2} molecule obeys the correlation of Linnett and Hoare between the sign of the bond-bond interaction constant and the electronic configuration of the triatomic molecule.
5. The calculation indicates that DBNB resonance, while having a relatively small effect on the equilibrium binding energy, plays a large role in determining the value of the bond-bond interaction constant.
6. A resonance energy of $0.223 \mathrm{kcal} / \mathrm{mole}$ for each possible DBNB resonance structure was determined for OF_{2}. This appears to be inconsistent with Hine's conclusion, as f_{rr} is less for CF_{4} than for OF_{2} 。

Suggestions for Future Work

1. Extend the LCAO-MO-SCF calculations for the XF_{2} molecules by utilizing other possible sets of integral approximations and by
minimizing the energy of these molecules with respect to the molecular angle. Possibly a study of the effect of the Wolfsberg-Helmholtz parameter on the calculated molecular properties of these molecules would be of value.
2. A study of the CI wave function and the calculated binding energies of OF_{2} as a function of molecular angle for the symmetric stretching mode, coupled with calculations similar to those presented above for the symmetric stretch, may illustrate the proper dependence of $E_{B(I)}$ and $E_{B(C I)}$ for symmetric stretching geometries on the positive bond-bond interaction constant.
3. A configuration interaction calculation to determine the extent of bonding between the fluorines in XF_{2} molecules would appear to be helpful in classifying the nature of the interaction between these atoms.
4. Theoretical investigations of the alkaline earth dihalides, with emphasis on non-bonded interaction and/or multiple bonding would be particularly interesting as several of these molecules are nonlinear.
5. As data becomes available on more triatomic dihalide molecules, such as CCl_{2} and NBr_{2}, calculations of the type described in this thesis may be employed to determine values for the bond-bond interaction constant. A comparison of these values with experimental data would be helpful in deducing the importance of DBNB resonance in these molecules. Also LCAO~MO-SCF calculations would be useful in determining the best set of semiempirical integral evaluations to be employed in treating these molecules.
6...Vibronic coupling of the DBNB resonance type in OF_{2} may be investigated by measuring the experimental band intensities of the
fundamental frequencies for OF_{2}. By comparing the intensities of the symmetric and antisymmetric stretching modes an estimate of the extent of vibronic coupling in OF_{2} may be obtained.

BIBLIOGRAPHY

1．Brockway，L．0．，J．Phys．Chem．，41， 185 （1937）．
2．Devlin，J．P．，J．Chem．Phys．，39， 2385 （1963）．
3．Shimanouchi，T．，J．Chem．Phys．，17， 848 （1949）。
4．Hine，J．To，J．Am．Chem。Soc．，85， 3239 （1963）。
5．Hine，J．T．，Physical Organic Chemistry，McGraw－Hill，New York （1962）．

6．Bernstein，H．J．and Powling，J．，J．Chem．Phys．，18， 685 （1950）．
7．Harmony，M．D．and Myers，R．J．，J．Chem．Phys．，37， 636 （1962）。
8．Milligan，D．E．，Mann，D．E．，Jacox，M．E．and Mitsch，Ro A．，J． Chem．Physor 41， 1199 （1964）．

9．Rochkind，M．M．and Pimentel，G．C．，J．Chem．Phys．，42， 1361 （1965）．

10．Herzberg，G．H．，Infrared and Raman Spectra of Polyatomic Molecules，D．VanNostrand，Princeton，N．J．（1945）．

11．Laurie，V．W．and Pence，D．T．，J．Chem．Phys．，38，2693（1963）。
12．Pitzer，K．S．and Hollenberg，J．L．，J．Am。Chem．Soc．，76， 1493 （1954）．

13．Sutton，L．E．（edo），Tables of Interatomic Distances and Configu－ rations in Molecules and Ions，Special Publication No．11， The Chemical Society，London（1958）．

14．Craig，N。C．and Entemann，E．A．，J．Am。Chem．Soc。，83， 3047 （1961）．

15．Lucken，E．A．C．，J．Chem．Soc．， 2954 （1959）。
16．Kaufman，J．J．，J．Chem．Phys．，37， 759 （1962）．
17．Latimer，B．Do，＂A Vibrational Study of Some．Trihaloboroxines＂ （unpub．Ph．D．thesis，Oklahoma State University，1966）．

18．Wilson，E．B．，Decius，J．C．and Cross，P．C．，Molecular Vibra－ tions，McGraw－Hill，New York，N．Y．（1955）．
19. Overend, J. and Scherer, J. R., J. Chem. Phys., 32, 1289 (1960).
20. Linnett, J. W. and Heath, D. F., Trans. Faraday Soc., 48, 592 (1952).
21. Devlin, J. P., J. Chem. Phys., 41, 2951 (1964).
22. Linnett, J. W. and Hoare, M. F., Trans. Faraday Soc., 44, 884 (1949).
23. Duchesne, J. and Burnelle, L., J. Chem. Phys., 19, 1191 (1951).
24. Shimanouchi, T., Pure and Applied Chem., I, 131 (1963).
25. Eyring, Ho, Walter, Jo and Kimball, G. E., Quantum Chemistry, John Wiley and Sons, New York, N.Y. (1944).
26. Poh1, H. A., Rein, R. and Appe1, K., J. Chem. Phys., 41, 3385 (1964).
27. Slater, J. C., Phys. Rev., 36, 57 (1930).
28. Roothaan, C. C. J., Rev. Mod. Phys., 23, 69 (1951).
29. Pople, J. A., Trans. Faraday Soc., 49, 1375 (1953).
30. Moffitt, W., Ann. Repts. Progr. Phys., 17, 173 (1954).
31. Hinze, J. and Jaffé, H. H., J. Am. Chem. Soc., 84, 540 (1962).
32. Hinze, J. and Jaffé, H. H., J. Phys. Chem., 67, 1501 (1963).
33. Pariser, R., J. Chem. Phys., 21, 568 (1953).
34. Mulliken, R. S., J. chim. phys., 46, 497 (1949).
35. Rein, R. and Harris, F. E., J. Chem. Phys., 41, 3393 (1964).
36. Switendick, A. C. and Carbato, F. Jo, Quarterly Progress Report, Solid State and Molecular Theory Group, M.I.T., 70 (1959).
37. Mulliken, R. So, Rieke, C. A., Orloff, D. and Orloff, H., J. Chem. Phys., 17, 1248 (1949).
38. Herman, F. and Skillman, So, Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, N. J. (1963).
39. Pohl, H. A. and Raff, L. M., International Journal of Quantum Chemistry, 1, 577 (1967).
40. Parr, R. Go, The Quantum Theory of Molecular Electronic.Structure, W. A. Benjamin, New York, N. Y. (1964).
41. Dibeler, V. H., Reese, R. M. and Franklin, J. L., J. Chem. Phys., 27, 1296 (1957).
42. Kennedy, A. and Colburn, C. B., J. Chem. Phys., 35, 1892 (1961).
43. Thrush, B. A. and Zwolenik, J. J., Trans. Faraday Soc., 59, 582 (1963).
44. Ralston, A, and Wilf, H. S. (ed,), Mathematical Methods for $\frac{\text { Digital }}{(1960)}$ Computers, John Wiley and Sons, New York; N. Y. (1960).

APPENDIX A

The LCAO-MO-SCF problem for an XF_{2} molecule using the procedure described in Chapter III demands solution of the determinant

$$
\begin{equation*}
|F-\varepsilon ; S|=0 \tag{29}
\end{equation*}
$$

where F and S are 4×4 symmetric matrices and ε represents the eigenvalues of this equation. A well-known matrix diagonalization routine ${ }^{44}$ written in Fortran IV and employed in this project successfully determines the eigenvalues and eigenvectors corresponding to the secular determinant

$$
\begin{equation*}
\left|F^{\prime}-\varepsilon E\right|=0 \tag{76}
\end{equation*}
$$

where F^{\prime} can be a 4×4 symmetric matrix and E is the identity matrix. The procedure for deriving Equation (76) from (29) is described below. Since F is a symmetric matrix the equations

$$
\begin{equation*}
\mathrm{S}_{\mathrm{D}}=\mathrm{C}_{1}^{-1} \mathrm{SC}_{1} \tag{77}
\end{equation*}
$$

or

$$
\begin{equation*}
s=C_{1} S_{D} C_{1}^{-1} \tag{78}
\end{equation*}
$$

may be written where S_{D} is a diagonal matrix. Substituting Equation (78) Into (29) yields

$$
\begin{equation*}
\left|F-\varepsilon C_{1} S_{D} C_{1}^{-1}\right|=0 \tag{79}
\end{equation*}
$$

Pre- and post-multiplying this equation by C_{1}^{-1} and C_{1} respectively
results in the determinant

$$
\begin{equation*}
\left|\mathrm{C}_{1}^{-1} \mathrm{FC}_{1}-\varepsilon \mathrm{S}_{\mathrm{D}}\right|=0 \tag{80}
\end{equation*}
$$

This same procedure may be applied to S_{D} in order to transform it into the identity matrix. This procedure yields the determinant

$$
\left|\mathrm{C}_{2}^{-1} \mathrm{C}_{1}^{-1} \mathrm{FC}_{1} \mathrm{C}_{2}-\varepsilon \mathrm{E}\right|=0
$$

which is identical to Equation (76) where

$$
\mathrm{F}^{\prime}=\mathrm{C}_{2}^{-1} \mathrm{C}_{1}^{-1} \mathrm{FC}_{1} \mathrm{C}_{2}
$$

A Fortran IV listing of the computer program used in these LCAO-MO-SCF calculations is presented at the end of this Appendix. This program contains four subroutines, COEF, EVAL, DIAGP, and HDIAG, in addition to the main program. The main program specifies the input variables and the geometry of the molecule in addition to calculating the binding energy of the XF_{2} molecule. The subroutine COEF specifies the initial guess for the LCAO coefficients and tests the successive sets of coefficients for self-consistency. Subroutine EVAL evaluates the elements of the F and S matrices as given by Equations (24) and (25). The steps presented earlier in the derivation in this Appendix is essentially used in the subroutine DIAG to prepare matrix Equation (29) for subroutine HDIAG. This latter subroutine determines the eigenvalues and eigenvectors of an equation similar to (76) by a modified Jacobi method。 44

C READ IN DATA FOR CALCULATION
DIMENSION H(4, 4),F(4, 4), S(4, 4), C(4, 4)
COMMON PF, PO, AF, AO, RHJF,RHOO,NN,N,ROF1,ROF2,RFF,SOF1,SOF2,ZEFO, LLEFF, C,F,H,S
C SYMMETRIC STRETCH
711 READ 5,101 PF, PO, AF, AO, RHOF, RHOO, CONST
10 FORMATI7F10.41
READ(5,11)NN
11 FORMAT(I3)
READ (5,14)N
14 FORMAT(I2)
READ(5,12)ROF 1
12 FORMAT(F10.4)
$D R=0.10$
DO $15 \quad I=1, N$
DO $15 \mathrm{~J}=1, \mathrm{~N}$
$15 \mathrm{H}(\mathrm{I}, \mathrm{J})=0.0$ DO $16 \quad I=1, N$ DO $16 \mathrm{~J}=1, \mathrm{~N}$
$16 F(I, J)=0.0$
DO $17 \quad I=1, N$
D $17 \mathrm{~J}=1, \mathrm{~N}$
$17 \mathrm{~S}(1, \mathrm{~J})=0.0$
DO $18 \quad \mathrm{I}=1, \mathrm{~N}$
DO $18 \mathrm{~J}=1, \mathrm{~N}$
$18 C(I, J)=0.0$
DO $50 \mathrm{~J}=1$, NN
ROF 2=ROF 1
$R F F=\operatorname{SQRT}(R O F 1 * R D F 1+R O F 2 * R O F 2)$
13 FDRMAT(4F10.4)
RFAD(5,13)SOF1,SOF 2, ZEFO, ZEFF CALL COEF
C CALCULATE ELECTRONIC ENERGY
$C(2,3)=C(1,1)$
$C(2,4)=C(1,2)$
$E E=C(1,1) * C(1,1) *(H(1,1)+F(1,1))+C(1,2) * C(1,2) *(H(2,2)+F(2,2))+C(2$ $1,3) * C(2,3) *(H(3,3)+F(3,3))+C(2,4) * C(2,4) *(H(4,4)+F(4,4))+2,0 * C(1,1$ $2) \neq(1,2) \neq(H(1,2)+F(1,2))+2,0 \neq C(2,3) \neq C(2,4) *(H(3,4)+F(3,4))$
C CALCULATE ENERGY CONTRIBUTION FROM NIJCLEAR REPULSIONS
ENUC $=2.0 * 2 E F O * Z E F F *(1.0 / R O F 1)+(1.0 / R F F)$
C CALCULATE BINDING ENERGY $E B I N D=E E+E N U C+C O N S T$ BINDE=EB [ND*27.19224
202. FORMAT ($1 X, 30 H$ SLATER EXPONENTIAL PARAMETERS, $10 X, 6 H$ RHOO $=, F 19.5,5 X$, 16 H RHOF $=, \mathrm{F} 10.5 / 1 \mathrm{X}, 22 \mathrm{H}$ IONIZATION POTENTIALS, $10 \mathrm{X}, 4 \mathrm{H} \mathrm{PO}=, \mathrm{F} 10.5,5 \mathrm{X}, 4 \mathrm{H}$ 2 PF=,F10.5/20H ELECTRON AFFINITIES, $10 X, 4 H \quad A D=, F 10.5,5 X, 4 H$ AF $=, F 10$. 35/1
204 FORMATI $1 X, 20 H$ NUCLEAR SEPARATIONS, $5 \mathrm{X}, 10 \mathrm{HROF} 1=\mathrm{ROF} 2=, \mathrm{F} 10.5,11 \mathrm{X}, 13 \mathrm{H}$ C LOEFFICIENTS, $5 \mathrm{X}, 4 \mathrm{H}$ CO $=, \mathrm{F} 10.5,5 \mathrm{X} .4 \mathrm{H} \quad \mathrm{CF}=\mathrm{F}, \mathrm{F} 10.5 / 1 \mathrm{X}, 16 \mathrm{H}$ ELECTRON ENERGY 2, 10X.4H FE=,F15.9) WRITE(6, 202) RHOO, RHOF, PO, PF;AO,AF WRITE(6, 204)ROF 1,C $(1,1), C(1,2), E E$
205. FORMAT (///17H BINDING ENFRGY=,E15.8///) WRITE(6, 205)BINDE
50 ROF $1=$ ROF $1+D R$ READ (5,11)M
IF (M-0) $712,711,712$
712 CONTINUE
STOP

END
C SUBROUTINE C.OEF
SUBROUTINE COEF
C this subroutine gives the first guess for the lcad coefficients and
C SEARCHES FOR SELF-CONSISTENCY.
DIMENSION H(4,4),F(4,4),S(4,4),C(4,4)
COMMON PF, PO, AF, AO, RHOF, RHOO, NN, N,ROF1,ROF2,RFF,SOF1,SOF2,ZEFO。
LZEFF,C,F,H,S
$C(4,4)=0.7$
C(3,4$)=-C(4,4) * \operatorname{SOF} 1+\operatorname{SQRT}(C(4,4) * C(4,4) * \operatorname{SOF} 1 * S O F 1+1.0-C(4,4) * C(4,4)$ $1)$
$772212=C(4,4)$
$2211=C(3,4)$
116 FORMAT(14H ZZ11 AND ZZ12)
WRITE $(6,116)$
WRITE(6,11512211,2212
115 FORMAT(2F10.4)
CALL FVAL(C,H,F,S)
ZNN $=C(3,4) * C(3,4)+2.0 * C(3,4) * C(4,4) * \operatorname{SDF} 1+C(4,4) * C(4,4)$
SZNN $=$ SQRT(ZNN)
$C(3,4)=C(3,4) / S Z N N$
$C(4,4)=C(4,4) /$ SZNN
IF (ABS(C(3,4)-2211) .GT. .0001) GO TO 77
IF (ABS(C(4,4)-ZZ12).GT. . O001) GO TO 77
$C(1,1)=C(3,4)$
$C(1,2)=C(4,4)$
RETURN
END
c subroutinf eval
SUBROUTINE EVAL(C,H,F,S)
DIMENSION C(4,4),H(4,4),F(4,4),S(4,4)
COMMON PF,PD,AF,AO,RHOF,RHOO,NN,N,ROF1,ROF2,RFF,SOF1,SOF2,ZEFO, 1ZEFF
C11=C(3,4)
C12=C(4,4)
C23=C(3,4)
$\mathrm{C} 24=\mathrm{C}(4,4)$
C EValuate h(I,J) terms
H(1, 1) $=-\mathrm{PO}-.35$ *RHOO-1.0/ROF1-1.0/ROF2
$H(2,2)=-P F-2.0 / R O F 1-1.0 / R F F$
$H(3,3)=H(1,1)$
$H(4,4)=-P F-2.0 / R O F 2-1.0 / R F F$
H(1,2)=0.5*SOF1*(-PF-PO-1.35*RHOO-0.5*RHOF-1.5/ROF1-1.0/ROF2-1.0/R
1FF)
$H(2,1)=H(1,2)$
$H(1,3)=0.0$
$\mathrm{H}(3,1)=\mathrm{H}(1,3)$
$H(1,4)=0.0$
$H(4,1)=0.0$
$H(2,3)=0.0$
$H(3,2)=0.0$
$H(2,4)=0.0$
$H(4,2)=0.0$
$H(3,4)=0.5 * S O F 2 *(-P F-P O-1.35 * R H O O-0.5 * R H O F-1 . / R O F 1-1.5 / R D F 2-1.0 / R F$ 1FI
$H(4,3)=H(3,4)$
C evaluate elements of f-matrix.
$F(1,1)=H(1,1)+C 11 * C 11 *(P 0+A D)+2.0 * C 12 * C 12 *(1.0 / R O F 1-()$ SOF1*SOF 1$) / 8$ $1.0) *(P O+A D+P F+A F+2.0 / R O F 1))+2.0 * C 23 * C .23 *(P O+A O-(1.0604 / 2.0) *(P O+A O$
$21) 1+2.0 * C 24 * C 24 *(1.0 / R O F 2)+C 11 * C 12 * S 0 F 1 *(P O+A 0+1.0 / R O F 1)+2.0 * C 23 * C$ 324*SOF 2* (PO + AO $+1.0 /$ ROF 2$)$
$F(2,2)=H(2,2)+2.0 * C 11 * C 11 *(1.0 / R O F 1-(1) S D F 1 * S O F 1) / 8.0) *(P D+A]+P F+A F$ $1+2.0 / R D F 1) 1+C 12 * C 12 *(P F+A F)+2.0 * C 23 * C 23 *(1.0 / R D F 1)+2.0 * C 24 * C 24 * 11$. 20/RFF) +C 11*C 12*SOF1*(PF+AF+1.0/ROF1) +2.0*C23*C24*SOF2*(1.0/ROF1+1. 30/RFF)
$F(3,3)=H(3,3)+2.0 * C 11 * C 11 *(P 0+A 0-(1.06040 / 2.0) *(P 0+A O)) 1+2.0 * C 12 * C$ 112*(1.0/ROF1)+C23*C23*(PO+AO)+2.0*C24*C24*(1.0/ROF2-(1)SOF2*SOF2)/B $2.0) *(P O+A O+P F+A F+2.0 / R O F 21)+2.0 * C 11 * C 12 * S O F 1 *(P O+A O+1.0 / R O F 1)+C 23 *$ 3C24*SOF $2 *(P 0+A O+1.0 / R O F 2)$
F(4,4) $=\mathrm{H}(4,4)+2.0 * C 11 * C 11 *(1.0 /$ ROF 2$)+2.0 * C 12 * C 12 *(1,0 /$ RFF $)+2.0 * C 23$ 1*C23*(1.0/ROF2-(1SDF2*SDF2)/8.0)*(PD+AO+PF+AF+2.0/ROF2) $1+C 24 * C 24 *($ $2 P F+A F)+2.0 * C 11 * C 12 * S O F 1 *(1.0 / R O F 2+1.0 / R F F)+C 23 * C 24 * S O F 2 *(P F+A F+1.0$ 3/ROF2)
$\mathrm{F}(1,2)=\mathrm{H}(1,2)+\mathrm{C} 11 * \mathrm{C} 11 * 0.5 * \operatorname{SOF} 1 *(\mathrm{PO}+\mathrm{AO}+1.0 /$ ROF1)+0.5*C12*C12*SOF1*1 1PF+AF+1.0/ROF1) C 23*C23*SOF1*(PO+AO+1.0/ROF1)+C24*C24*SOF1*(1.0/RO $2 F 2+1.0 / R F F)+0.75 * C 11 * C 12 * S D F 1 * S O F 1 *(P O+A O+P F+A F+2.0 / R O F 11-C 11 * C 12 *$ $3(1 . / R O F 1)+C 23 * C 24 * S O F 1 * S O F 2 *(P O+A O+1.0 / R D F 1+1.00 / R O F 2+1.0 / R F F)$
$F(2,1)=F(1,2)$
$F(1,3)=0.0$
$F(3,1)=F(1,3)$
$F(1,4)=0.0$
$F(4,1)=F(1,4)$
$F(2,3)=0.0$
$F(3,2)=F(2,3)$
$\mathrm{F}(3,4)=\mathrm{H}(3,4)+\mathrm{Cl} 1 * \mathrm{C} 11 * \operatorname{SOF} 2 *(\mathrm{PO}+\mathrm{AO}+(1.0 /$ ROF 2$) 1+\mathrm{Cl} 2 * \mathrm{C} 12 * \mathrm{SOF} 2 *(11.0 / \mathrm{R}$
10F1) $+(1.0 / R F F) 1+0.5 * C 23 * C 23 * S O F 2 *(P O+A O+(1.0 / R O F 2))+0.5 * C 24 * C 24 * S O$ $2 F 2 *(P F+A F+(1.0 / R O F 2))+C 11 * C 12 * S O F 1 * S O F 2 *(P 0+A 0+(1.0 / R O F 1)+(1.0 / R O F$ $321+(1.0 / R F F))+0.75 * C 23 * C 24 * S O F 2 * S O F 2 *(P O+A O+P F+A F+2.0 / R O F 2)-C 23 * C 2$ 44*(1.0/ROF 2)
$F(4,3)=F(3,4)$
$F(2,4)=0.0$
$F(4,2)=0.0$
¢ evaluate elements of the overlap matrix.
$S(1,1)=1.0$
$S(2,2)=1.0$
$S(3,3)=1.0$
$\mathrm{S}(4,4)=1.0$
$S(1,2)=S O F 1$
$S(1,3)=0.0$
$S(1,4)=0.0$
$S(2,3)=0.0$
$s(2,4)=0.0$
$S(3,4)=$ SOF 2
$S(2,1)=S(1,2)$
$S(3,1)=S(1,3)$
$S(4,1)=S(1,4)$
$S(3,2)=S(2,3)$
$S(4,2)=S(2,4)$
$S(4,3)=S(3,4)$
CALL DIAGP(S,F,C)
RETURN
END
C SUBRDUTINE DIAGP
C this subroutine prepares data for subrdutine hoiag.
c first diagonalize s matrix, then the resulting f prime matrix.
SUBROUTINE DIAGP(S,F,C)
DIMENSION $S(4,4), F(4,4), C(4,4), A(4,4), B(4,4), T(4,4)$
COMMON PF, PO,AF,AO,RHOF,RHOO,NN,N,ROF1,ROF2,RFF,SOF1,SOF2,ZEFO.

```
    1ZEFF
        DO }777\textrm{I}=1,
        OO 777 J=1.N
    777 r(I,J)=0.0
        DO 109 I=1,N
        00 109 J=1,N
    109 A(I,J)=S(I,J)
    CALL HDIAG(A,N,O,T,NR)
    DO 110 I=1,N
    TEMP=1.0/SQRT(AII,I))
    DO 110 J=1,N
    110 T(J,I!=T(J.I)*TFMP
    DO 120 I=1,N
    DO 120 J=1,N
    120 A!I;J!=F(I;J)
C PREPARE NEW MATRIX TO BE DIAGONALIZED,SHS-1
    DO 130 I =I.N
    DO 130 J=1,N
    C(I,J)=0.0
    DD 130 K=1,N
    130 C(I,J)=C(I,J)+T(K,I)&A(K,J)
    DO 140 I=1,N
    DO 140 J=1,N
    A(I,J)=0.0
    DO 140 K=1,N
    140 A(I,J)=A!&,J)+C(I,K)*T(K,J)
    CALL HOIAG(A,N,O,B,NR)
    DO 150 I=I,N
    OO 150 J=1,N
    C(I,J)=0.0
    DO 150 K=1.N
    150C(I,J)=C(I,J)+T(I,K)*B(K,J)
    K=0
    K=K +9
    K1=K-8
    IF(N .LT. K)K=N
2002 FORMAT(//33H EIGENVALUES IN DECREASING ORDER(,12,3H TO,I 3,1HI/)
2003 FORMAT(1HO,9E13.6)
2004 FORMAT\55H EIGENVECTORS IN COLUMNS UNDER CORRESPONDING EIGENVALUE/
    1)
        WRITE(6,2002)K1,K
        WRITE(6,2003)(A(J:J),J=K1,K)
        WRITE{6,2004}
        DO 30 I=1,N
        30 WRITE(6,2003)(C(I;J),J=K1;K)
        RETURN
        END
        SUBROUTINE HDIAG (H,N,IEGEN,U,NR)
    SUBROUTINE HOIAG.
    PROGRAMED BY F. J. CARBATO AND. M.MERWIN OF THE MIT
    COMPUTATION CENTER.
            THIS SUBROUTINE COMPUTES THE EIGENVALUES AND EIGENVECTORS
    OF A REAL SYMMETRIC MATRIX, H, OF OROER N I WHERE N MUST BE LESS
    THAN 5II, AND PLACES THE EIGENVALUES IN THE DI AGONAL ELEMENTS OF
    THE MATRIX H, AND PLACES THE EIGENVECTORS (NDRMALIZED ) IN THE
    COLUMNS DF THE MATRIX U. IEGEN IS SFT AS I IF ONLY EIGENVALUES
    ARE DESIRED,AND IS SET TO O WHEN VECTORS ARE REQUIRED. NR CON-
```

```
C TAINS THE NUMBER OF ROTATIONS DONE.
C
C
\(C\)
C
\(C\)
\(C\)
\(C\)
\(C\)
C
    2 FORMAT(14H MAX OFF DIAG=,F14.7,3HNR=013)
    2001 FORMAT (1X,8E15.8)
    2002 FORMAT ( 18 H ORTHOGONAL MATRIX)
    2003 FORMATII5H ROTATED MATRIX)
        IF(IEGEN.NE.O) GO TO 15
    10 DO \(14 \mathrm{I}=1\), N
        DO \(14 \mathrm{~J}=1\), N
        IF(I-J.NE.OI GO TO 12
    \(11 U(I, J)=1.0\)
    GO TO 14
    \(12 U(I, J)=0.0\)
    14 CONTINUE
    15 NR = 0
        IF(N-1.LE.O) GO TO 1000
C SCAN FOR LARGEST OFF-DIAGONAL ELEMENT IN EACH ROW
C X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
C IO(I) HOLDS SFCOND SUBSCRIPT DEFINING POSITION OF ELEMENT
    17 NMII \(=\mathrm{N}-1\)
        DO \(30 \quad I=1\), NMII
        \(X(I)=0.0\)
        \(I P L I=I+1\)
        Dก \(30 \mathrm{~J}=I P L I, N\)
        \(\operatorname{IF}(X(I)-A B S(H(I, J)) . G T .0 .0) \quad G 0\) TO 30
    \(20 \times(I)=A B S(H(I, J))\)
        IQ(I)=J
    30 CONTINUE
    SET INOICATOR FOR SHUT-OFF.RAP \(=2 * *-27, N R=N O\). OF ROTATIONS
    RAP \(=7.450580596 E-9\)
    HDTEST=1.0E38
C FIND MAXIMUM OF X(I) S FOR PIVOT ELEMENT AND
C TEST FOR END OF PROBLEM
    40 DO \(70 \mathrm{I}=1\), NMII
    IF(I-1.LF.0) GO TO 60
        IF (XMAX-XIII.GF.O.OI GD TO 70
    60 XMAX=X(I)
    \(I P I V=I\)
    JPIV=IQ(I)
    70 CONTINUE
    IS MAX. X(I) EQUAL TO ZERD, IF. LESS THAN HDTEST, REVISE HDTEST
    IF (XMAX.LE.O.O) GO TO 1002
    80 IF\{HDTEST.LF.O.O) GO TO 90"
    85 IF(XMAX-HDTEST.GT.0.0) GO TO 148
    90 HDIMIN \(=\) ABSI H(1,11)
        DO \(110 \quad I=2, N\)
        IFIHDIMIN- ABS( H(I,I) I.LE. O.O) GO TO 110
    100 HDIMIN=ABSI H(I,I)
    110 CONTINUE
        HDTEST \(=\) HDIMIN*RAP
C
    H, N, IFNGEN, U, AND NR OF THE ARGUMENT LIST ARE DUMMY VARIABLES
        AND MAY BE NAMED DIFFERENTLY IN THE CALLING DF THE SUBROUTINE.
    SUBROUTINF PLACES COMPUTER IN THE FLOATING TRAP MODE
    THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
            RIGHT OF THE MAIN DIAGONAL. THUS. ONLY A TRIANGULAR
            SFCTION NEED BE STORED IN THE ARRAY H.
    DIMENSION H(4,4),U(4,4),X(4),IQ(4)
C
    RETURN IF MAX.H(I,J)LESS THAN(2**-27)ABS(HIK,KI-MINI
```

```
        IF(HDTEST-XMAX.GE.0.0IGO TO 1002
    148 NR = NR+1
C COMPUTE TANGENT, SINE AND COSINE,H(I,I),H(J,J)
    150 TANG=SIGN(2.0,(HIIPIV,IPIV)-H(JPIV,JPIV)))*H(IPIV,JPIV)/(ABSIH(I
        1PIV,IPIVI-HIJPIV,JPIV)) +SQRT((H(IPIV,IPIV)-H(JPIV,JPIV)|**2*4.0*H
        2(IPIV,JPIV)**2))
            COSINE=1.0/SORT(1.0+TANG**2)
            SINE=TANG*COSINE
            HII=H(IPIV,IPIV)
            H(IPIV,IPIV)=COSINE**2*(HII +TANG*(2.*H(IPIV.JPIV) +TANG*H(JPIV.
            lJPIV!)
            H(JPIV,JPIV)=COSINE**?*(H(JPIV,JPIV)-TANG*(2.*H(IPIV,JPIV)-T.ANG*H
            1II|)
            HIIPIV,JPIVI=0.0
C
            C PSEUDO RANK THE EIGFNVALUES
C ADJUST SINE AND COS FOR COMPUTATION OF H(IK) ANO U(IK)
            IF(H(IPIV,IPIV)-H(JPIV,JPIV).GE.O.O) GO TO 153
    152 HTEMP = H(IPIV,IPIV)
            H(IPIV,IPIV) = H(JPIV,JPIV)
            H(JPIV,JPIV) = HTEMP
C RECOMPUTF SINE AND COS
            HTEMP = SIGN(1.O. -SINEI * COSINE
            COSINF = ABS (SINE)
            SINE = HTEMP
    153 CONTINUE
            C. INSPECT THE IOS BETWEEN. I +1 AND N-I TO DETERMINE
C WHETHFR A NEW MAXIMUM VALUE SHDULD BE COMPUTED SINCE
C THE PFESENT MAXIMUM IS IN THE I OR J ROW.
    DO 350 I = 1,NMII
    IF(I-IPIV.FO.O) GO TO }35
    IF(I-IPIV.LT. O GO TO 210
    200 IFII-JPIV.EQ. O I GO TO 350
    210 IF(IQ(I)-IPIV.EQ. 0) GO TO 240
    230 IF(IQ(I)-JPIV.NE. 0 IGO TO 350
    240 K = IQ(I)
    250 HTEMP = HII,KI
        H(I,K) = 0.0
        \ P L I = I + 1
        K(I)}=0.
        SEARCH IN DEPLETED ROW FQR NEW MAXIMUM
        DO 320 J = IPLI,N
        IF( X|I)-ABS( H(I,J) I.GT. 0.0) GO TO 320
    300 X(I) = ABS(H(I,J))
    IQ(I) = J
    320 CONTINUE
    H(I,K) = HTEMP
    350 CONTINUE
        X(IPIV) = 0.0
        X(JPIV) = 0.0
C CHANGE THE OTHER ELEMENTS OF H
    DO 530 I = I,N
    IF(I-IPIV.EQ. 0)GO TO 530
    IF(I-IPIV.GT. 0 ) GO TO 420
370 HTEMP = H(I,IPIV)
    H(I,IPIV) = COSINF*HTEMP + SINE*H(I.JPIV)
    IF( X(I) - ABS( H(I,IPIV) ).GE. O.0) GO TO 390
380 X(I) = ABS( HII,IPIV) )
    IQ(I)=IPIV
390 HII,JPIV) = -SINE*HTEMP + COSINE*H(IJJPIV)
```

```
        IF( X(I) - ABS( H(I,JPIV) ).GE. 0.0) GO TO 530
    400 X(I) = ABSI H(I,JPIV) :
        10(I) = JPIV
        GO TO 530
    420 IFI I-JPIV.EQ. D ) GO TO 530
        IF(I-JPIV.GT. D I GO TO 480
    430 HTEMP = H(IPIV,I)
        H(IPIV,I) = COSINE*HTEMP + SINE*H(I,JPIV)
        IF( XIIPIV) - ABSI HIIPIV,I) ).GE. 0.0 ) GO TO 450
    440 X(IPIV) = ABS( HIIPIV,I) )
        IQ(IPIV) = I
    450 H(I,JPIV) = -SINE*HTEMP + COSINE*H(I,JPIVI
        IFI X(I) - ABS( H(I,JPIV) ).GE. 0.0) GO TO 530
         &FI X(I) - ABSI H(I.JPIV) ).LT. 0.0) GO TO 400
    480 HTEMP = HIIPIV,I)
        H(IPIV,I) = COSINE*HTEMP + SINE*H(JPIV,I)
        IF( XIIPIVI - ABSI HIIPIV,I) ).GE. O.0) GO TO 500
    490 X(IPIV) = ABSI H(IPIV,I) )
    IQ(IPIV) = I
    500 H(JPIV,I) = -SINE*HTEMP + COSINF*HIJPIV,I)
    IFI X(JPIVI - ABSI HIJPIV,I) ).GE.D.OI GO TO 530
    510 X(JPIV) = ABS( H(JPIV,I) )
        IQ(JPIV) = I
    530 CONTINUE
C
        TEST FOR COMPUTATION DF EIGENVECTORS
        IFIIEGEN.NE.OI GO TO 40
    540 DO 550 I = 1,N
        HTEMP = U(I,IPIV)
        U(I,IPIV) = COSINE*HTEMP + SINE*U(I,JPIV')
    550 U(I,JPIV) = -SINE*HTEMP+COSINE*U(I,JPIV)
    GO TO 40
1002 WRITE(6,2)XMAX,NR
1000 RETURN
    END
```


APPENDIX B

Six short computer programs, employed in the CI problem, are included in this appendix. The first four programs calculate the $H_{i j}$ matrix elements for the in-plane AO basis set. These matrix elements are substituted into Equation (51) to obtain the eigenvalues and eigenvectors for the CI problem。 The four matrix elements needed are H_{11}, H_{22}, H_{12} and H_{23}. For symmetric stretching geometries the balance of the elements in Equation (51) are related to these four by the equations

$$
H_{12}=H_{21}=H_{13}=H_{31}, \quad H_{23}=H_{32}
$$

and $\mathrm{H}_{22}=\mathrm{H}_{33}$. For antisymmetric stretching geometries

$$
\mathrm{H}_{12}=\mathrm{H}_{21}, \quad \mathrm{H}_{13}=\mathrm{H}_{31} \text { and } \mathrm{H}_{23}=\mathrm{H}_{32^{\circ}}
$$

The matrix element H_{12} described by the geometry

$$
\mathrm{R}_{\mathrm{OF}_{1}}=\mathrm{R}_{\mathrm{OF}}^{0}+\Delta \mathrm{R} \text { and } R_{\mathrm{OF}_{2}}=\mathrm{R}_{\mathrm{OF}}^{0}-\Delta \mathrm{R}
$$

is equivalent to the matrix element H_{13} described by the geometry

$$
\mathrm{R}_{\mathrm{OF}}^{1} 10=R_{\mathrm{OF}}^{\mathrm{o}}-\Delta \mathrm{R} \text { and } \mathrm{R}_{\mathrm{OF}_{2}}=\mathrm{R}_{\mathrm{OF}}^{0}+\Delta \mathrm{R}
$$

In these equations $R_{0 F}^{0}$ indicates the calculated equilibrium bond length in OF_{2} and $\Delta \mathrm{R}$ denotes a displacement of the $0-F$ bond from equilibrium. The elements H_{22} and H_{33} may be related in a manner similar to the
relationship between H_{12} and H_{13}.
The two remaining programs calculate H_{11} and H_{22} for the out-ofplane $A O$ basis set. The balance of the matrix elements in this problem were simple enough to determine using a desk calculator.

```
C THIS PROGRAM COMPUTES THE MATRIX ELEMENTS:HII AND SII, IN PLANE AO BASIS SET.
    1234 FORMAT(GF10.4)
    12 FDRMAT(I3)
    13 FORMAT(F10.4)
    14 FORMAT(6F10.4)
    16 FORMAT(1HL,5X,4HROF1,10X,4HROF2,10X,5HSOF1S,9X,5HSOF 2S,9X,5HSOF1P.
        19X,5HSOF 2P,14X,2HEE///I
            DR=0.01
            WRITE(6,16)
            READ(5.14)PF2,PO1,AF2,AO1,RHOF2,RHOO1
            READ(5.13)ROF1
            READ(5:12)N
            DO 30 J=1,N
            READI5,1234:SOF1S,SJF2S,SOF1P,SOF2P,ZEFOL,ZEFF1:ZEF02,ZEFF2
            ROF2=4.000-ROF I
            RFF=SQRTIROF1*ROF1 +ROF 2*ROF2:
            RT1S=SQRT(2.0+2.0*SOF1S)
            RT2S=SQRT(2.0+2.0*SOF 2S)
            S12=SOF2P/RT1S
            S34=SOF1P/RT2S
            Hll=-PF2-2.0/ROF2-3.0/RFF
            H33=0.5*(1.0/(1.0+SOF1S))*(-PO1-PF2-5.0/ROF1-3.0/ROF2-3.0/RFF+SOF1
            1S*(-PF2-PO1-RHOD1-1.5*RHOF2-2.5/ROF1-3.0/RDF2-3.0/RFF))
            H55=0.5*(1.0/(1.0+SOF2S))*(-PO1-PF2-3.0/ROF1-5.0/ROF2-3.0/RFF+SOF2
            1S*1-PF2-PO1-RHOD1-1.5*RHOF 2-3.0/ROF1-2.5/ROF2-3.0/RFFI)
                    H77=-PF2-2.0/ROF1-3.0/RFF
            H13=(SOF2P/RT1S)*(-PO1-1.5*RHOF2-1.5/ROF1-1.5/ROF2-1.5/RFF)
            H31=(SOF 2P/RT1S)*(-PF2-RHOO1-1.0/ROF2-1.5/ROF1-1.5/RFF).
            H57=(SOF (P/RT 2S) (-PF2-RHOO1-1.0/ROF1-1.5/ROF2-1.5/RFF)
            H75=(SOF1P/RT2S)*(-PO1-1.5*RHOF2-1.5/ROF2-1.5/ROF1-1.5/RFF)
            Z1212=PF2+AF2
            Z1414=0.5*(1.0/ROF 2+1.0/RFF)
            13434=0.25*(PO1 +AD1+PF2+AF2+2.0/ROF1)
            21214=(0.5*S\capF 2P)*(1.0/RT1S)*(PF2+AF2+1.0/ROF2)
            Z.1434=(SOF 2P/(4.0* 2T1S ))*(PO1+A01+1.0/ROF1+1.0/ROF2+1.0/RFF)
            21234=((SOF2P*SJF2P)/(8.0*(1.O+SNF1S))
            Z1515=0.5*(PF2+AF2+1.0/ROF2)
            21717=1.0/RFF
            Z1771=0.0
            2.3535=0.25*(PO1+A01+1.0/ROF1+1.0/ROF2+1.0/RFFI
            Z3553=0.25*(1.0/((1.0)SOF1S)*(1.0+SOF2S)))*(0.05040*(PO1+AOl)
            23838=0.5*(PF2+AF2+1.0/ROF1)
            23773=0.5*(1.0/(1.0+SOF1S))*(0.0640*(PF2+AF2))
            Z1551=0.5*(1.0/(1.0+SOF2S))*(0.06040*(PF2+AF 2))
            Z1535=(SOF2P/(4.0*RT1S))*(PF2+AF2+PO1+AO1+2.0/ROF2)
            7.1553=0.0
            Z1737=(SOF 2P/(2.0*RT1S))*(1.0/ROF1+1.0/RFF)
            21773=0.0
            21517=((.5#SOF1P)/(RT2S))*(1.0/ROF2+1.0/RFF)
            2.1571=0.0
            73537=((0.25*SOF1P)/(RT2S))*(PF2+AF2+POL+AO1+2.0/ROF1)
            Z3573=0.0
            Z1537=((SOF2P*SOF1P*0.25)/(RT1S*RT2S))*(POL+AO1+1.0/ROF1+1.0/ROF2 +
                11.0/RFFI
                    21573=0.0
            22864=0.0
            25656=0.25*(PO1+A01+PF2+AF2+2.0/ROF2)
```

```
    25858=0.5*(1.0/ROF1+1.0/RFF)
    27878=PF2+AF2
    Z5676=(SOF1P/(4.0* RT2S ))*(PO1+AO1+1.0/ROF1+1.0/ROF2+1.0/RFF)
    Z5878={SOF 1P/{2.0*RT2S)|*{PF2+AF 2+1.0/ROF1}
    Z5678=(|SDF1P&SOF1P)/{8.0*(1.0+SOF2S)))*(PF2+AF2+P01+A01+2.0/ROF1)
    25757=0.5*(1.0/ROF1+1.0/RFF)
    25775=25678
    21331=21234
    SZ12=1.0-S 12*S12
    S234=1.0-S34*S34
    SS11=S212*S212*S234*S234
    E1=S212*S234*S 234*(2.0*H11+2.0*H33)-S12*S 212*S234*SZ34*(2.0*H13+2.
10*H31I+SZ34*SZ12*SZ12*(2.0*H55+2.0*H77)-S34*SZ34*SZ12*S7.12*(2.0*H5
27+2.0*H75!
    E2=S234*SZ34*{Z1212+2.0*Z1414+23434)-S12*S234*SZ34*14.0*Z1214+4.0**
    1Z1434)+S12*S12*SZ34*SZ34*4.0*Z1234+SZ34*SZ34*SZ12*12.0*21414-2.0*Z
    21331)+SZ12*S Z34*(4.0*21515*4.0*Z1717-2.0*Z1771+4.0*23535-2.0*23553
    3+4.0*73838-2.0*23773-2.0*21551)
    E.3=-SI2*SZ34*S212*18.0*21535-4.0*Z1553*8.0*Z1737-4.0*Z17731-S34*SZ
    134*SZ12*(8.0*21517-4.0*Z1571+8.0)# Z3537-4.0*23573)+S12*S34*SZ12*S Z3
    24*(16.0*7.1537-4.0*Z1573-4.0*Z2864)+SZ12*SZ12*(Z5656+2.0*Z5858+Z787
    38)-S34*SZ12*SZ12*(4.0*7567644.0*25878)+S34*S34*SZ12*SZ12*(4.0*2.567
    48)+SZ12*S712*SZ34*(2.0*Z5757-2.0*Z5775)
    EE=E1+E2+F3
    ENUC=ZEFO1*2EFF1*(1.0/RDF1)+2FFO2*ZEFF2*(1.0/ROF2) +(9.0/RFF)
    HH11=(EE +S S11*ENUC)
15 FORMAT{F10.5.5X,F10.5,F14.5.F13.5,F14.4,F14.4,8X,F14.8//)
    WRITE(6, 15)ROF1,ROF2;SOF1S,SOF 2S,SOF1P,SOF2P,EE
20 FORMAT{GH SS11=,F12.8.6H HH11=,F12.R///
    WRITEI6,20)SSIL,HH11
30 R\capF1=ROF1+DR
    CDNTINUF
    STOP
    END
```

```
C THIS PROGRAM COMPUTES THE MATRIX ELEMENTS,H22 AND S2?, IN PLANE AO BASIS SET.
```

C THIS PROGRAM COMPUTES THE MATRIX ELEMENTS,H22 AND S2?, IN PLANE AO BASIS SET.
1234 FORMAT(8F10.4)
1234 FORMAT(8F10.4)
12 FORMAT(I3)
12 FORMAT(I3)
13 FORMAT(F10.4)
13 FORMAT(F10.4)
14 FORMAT(6F10.4)
14 FORMAT(6F10.4)
16 FORMAT (1H1,5X,4HROF 1, 10X,4HROF 2,10X,5HSJF1S;9X,5HSOF 2S,9X,5HSOF 1P,
16 FORMAT (1H1,5X,4HROF 1, 10X,4HROF 2,10X,5HSJF1S;9X,5HSOF 2S,9X,5HSOF 1P,
19X,5HSOF 2P,9X,4HSS 2?, 15X,2HEE////
19X,5HSOF 2P,9X,4HSS 2?, 15X,2HEE////
DR=0.01
DR=0.01
WRITE(6,16)
WRITE(6,16)
RFAO(5,14)PF2,PO1,AF2,AD1,RHOF2,RHOQO1
RFAO(5,14)PF2,PO1,AF2,AD1,RHOF2,RHOQO1
READ(5,13)RDF1
READ(5,13)RDF1
READ(5,12)N
READ(5,12)N
DO 30 J=1,N
DO 30 J=1,N
RFAD(5,1234)SOF1S,SOF2S,SOF1P,SOF2P,ZEFO1,ZEFF1,ZEFO2, ZEFF2
RFAD(5,1234)SOF1S,SOF2S,SOF1P,SOF2P,ZEFO1,ZEFF1,ZEFO2, ZEFF2
ROD 2=4.000-ROF L
ROD 2=4.000-ROF L
RFF=SQRT (ROF 1*ROF1 +ROF 2*ROF'2)
RFF=SQRT (ROF 1*ROF1 +ROF 2*ROF'2)
RT1S=SQRT(2.0+2.0*SOF1S)
RT1S=SQRT(2.0+2.0*SOF1S)
RT 2S = SORT(2.0+2.0*SOF2S)
RT 2S = SORT(2.0+2.0*SOF2S)
RT1P=SQRT(2.0+2.0*SOF1P)
RT1P=SQRT(2.0+2.0*SOF1P)
RT2P=SQRT(2.0+2.0*SDF2P)

```
            RT2P=SQRT(2.0+2.0*SDF2P)
```

```
    S12=SOF2P/RT1S
    S56=SOF2S/RT1P
    SS22=((1.0-S 12**2)**2)*((1.0-S56**2)**2)
    H11=-PF2-2.0/ROF2-3.0/RFF
    H22=(1.0/(RT1S*RT1S))*(-PO1-PF2-5.0/ROF1-3.0/ROF2-3.0/RFF+SOF1S*(-
1PF2-PO1-RHOO1-1.5*RHOF 2-2.5/ROF1-3.0/ROF2-3.0/RFFII
    H12=(SOF 2P/RT1S)*(-PO1-1.5*RHOF2-1.5/ROF1-1.5/ROF2-1.5/RFF)
    H21=(SOF 2P/RT1S)*(-PF2-RHOO1-1.0/ROF2-1.5/ROF1-1.5/RFF)
    H55=(1.0/(RT1P*RT1P))**(-PF2-PO1-5.0/ROF1-3.0/ROF2-3.0/RFF+SOF1P*(-
1PF2-PO1-RHDO1-1.5*RHOF 2-2.5/ROF1-3.0/ROF2-3.0/RFFI)
    H66=-PF2-2.0/ROF 2-3.0/RFF
    H56=(SOF 2S/RT1P)*(-PF2-RHOO1-1.5/ROF1-1.0/ROF2-1.5/RFF)
    H65=(SOF2S/RTIP)*(-PO1-1.5*RHOF 2-1.5/ROF1-1.5/ROF2-1.5/RFF)
    Z1111=PF2+AF2
    Z1212=0.5*(1.0/ROF 2+1.0/RFF)
    Z2222=0.25*(PO1 +AO1+PF 2+AF 2+2.0/ROF 1)
    Z1121=(0.5*(SNF 2P/RT1S))*(PF2+AF 2+1.0/ROF 2)
    Z1222=(0.25*(SOF 2P/RT1S) )*(PO1+A01+1.0/ROF1+1.0/ROF2*1.0/RFF)
    Z1122=(0.125*SOF2P*SOF2P*(1.0/(1.0*SOF1S)) )*(PF2+AF2+PO1+AO1 +2.0/R
1OF2)
    Z1212=0.5%(1.0/ROF 2+1.0/RFFI
    21221=71122
    Z1515=0.5*(1.0/ROF 2+1.0/RFF)
    Z1551=0.0
    Z1616=PF 2+AF2
    Z1661=0.06040%(PF2+AF 2)
    Z2525=0.25*(PO1+AO1+PF2+AF2+2.0/ROF1)
    2.2552=0.25*(1.0/((1.0+SOF1S)*(1.0+SOF1P)))*0.06040*(PO1+AO1+PF 2+AF
12)
    22626=0.5*(1.0/RDF 2+1.0/RFF)
    Z2662=0.0
    Z1525=(SOF2P/(4.0*RT1S))*(PO1+AD1+1.0/ROF1+1.0/ROF2+1.0/RFF)
    Z1552=0.0
    Z1626={SOF 2P/(2.0*RT1S)|*{PF 2+AF 2+1.0/ROF 2)
    Z1662=0.0
    Z1516=(SOF2S/(2.0*RT1P))*(PF2+AF 2+1.0/ROF2)
    Z1651=0.0.
    Z2526=(SOF2S/(4.0*RT1P))*(PO1+AOL+1.0/ROF2+1.0/ROF1+1.0/RFF)
    Z2652=0.0
    22516=((SOF2P*SNF2S)/(4.0*RT1S*RT1P))*(PO1+AOL+PF2+AF2+2.0/ROF 2)
    Z2651=0.0
    Z2561=0.0
    75555=0.25*(PO1+AO1+PF2+AF2+2.0/ROF1)
    Z5656=0.5*(1.0/ROF 2+1.0/RFF)
    Z6666=PF2+AF2
    25565=(SOF2S/{4.0*RT1P))*(PO1+AD1+1.0/ROF1+1.0/ROF2+1.0/RFF)
    Z5666=(SOF 2S/(2.0*RTLP))*(PF2+AF2+1.0/ROF2)
    25566=((SDF2S*SOF2S)/(4.0*RT1P&RT1P))*(PO1+AD1 +PF2+AF2+2.0/ROF2)
    25665=7.5566
```



```
2* 2)*(1.0-SI2**2)*क2+12.0*H56+2.0*H65)*(-S56)*(1.0mS56**?)*(1.0-S12
3*申2l**2
```



```
31616-2.0*21661+4.0*22525-2.0*22552+4.0*22626-2.0*2.2662)*(1.0-512**
```



```
51.0-S56**2)*(1.0-S 12**2)
```

```
    EE3=(8.0*Z1516-4.0*7.1651+8.0*Z2526-4.0*22652)*(-S56)*(1.0-S12**2)*
    1(1.0-S56**2)+(16.0* 2 2516-4.0* 72651-4.0*22561)*S12*S56*(1.0-512**2)
    2*(1.0-S56**2)+(25555+2.0* 25656+26666)*(1.0-S 12**) ) ## 2+(4.0*25565*4
    3.0*25666)*(-S56)*(1.0-S12**2)**2+4.0*Z5566*S56*S56*(1.0-S12**2)**2
    4+(2.0*25656-2.0*25655)*(1.0-S12**2)*(1.0-S12**2)*(1.0-556**2)
    EE=EE1+EE2+EE3
    ENUC=ZEFO1*ZEFF1*(1.0/ROF1) +2EFO2*ZEFF2*(1.0/ROF2) +(9.0/RFF)
    HH22={EE+SS22*ENUC)
15 FORMATIF10.5,5X,F10.5,F14.5,F13.5,F14.5,F14.5,F14.5,8X,F14.8//1
    WRITE(6,15)ROF 1,RDF2,SDF1S,SOF 2S,SOF1P,SOF2P,SS22,EE
20 FORMATIGH SS22=,F12.8.6H HH22=,F12.8//I
    HRITE(6, 20)SS22,HH22
30 ROF1=ROF1+DR
    CONTINUE
    STOP
    END
```

```
C THIS PROGRAM COMPUTES THE MATRIX ELEMENTS,HI2 AND S12, IN PLANE AO BASIS SET.
    12.34 FORMAT(AF10.4)
    12 FORMAT(I3)
    FORMAT(F10.4)
    14 FORMAT(6F10.4)
    16 FORMATILH1,5X,4HROF1,1OX,4HROF 2,10X,5HSOF1S,9X,5HSOF 2S,9X,5HSOF1P,
        19X,5HSOF 2P,14X,2HFE////
            DR=0.01
            WRITE{6, 16)
            RFAD(5,14)PF2,PO1,AF2,AO1,RHOF2,RHOO1.
            READ(5,13)ROF1
            READ(5,12IN
            DO 30 J=1,N
            READ(5,1234)SOF1S,SOF2S,SOF1P,SOF2P,ZEFO1,ZEFF1,ZEFO2,ZEFF2
            ROF2=4.000-RDF 1
            RFF=SQRT(ROF1*ROF1+ROF 2*ROF 21
            RT1S=SQRT12.0+2.0*SOF1SI
            RT IP = SQRT (2.0+2.0*SDF1P)
            RT2S=SQRT(2.0+2.0*SOF 2S)
            RT2P=SQRT(2.0+2.0*SDF 2P)
            S12=SOF2P/RT1S
            S35=(1.0+SOF1P+SOF 2S)/(RT2S*RT1P)
            S36=(1.0*SOF2S1/RT2S
            S45=(1.0+SOF 1P I/RT 1P
            SS12=S 36*S 36*S45*S45*(1.0-S12*S12)*(1.0-S 12*S12)
            H11=-PF2-(2.0/ROF2)-(3.00/RFF)
            H13=(SOF 2P/RT1S)*(-PO1-11.5*RHOF 2)-(1.5/ROF1)-(1.5/ROF2)-(1.5/RFF)
                1)
            H33=(1.0/(RT1S*RT1S))*(-PO1-PF2-(5.0/ROF1)-(3.0/RDF2)-(3.0/RFF)+SO
            1F1S*(-PF2-PO1-RHOO1-(1.5*RHOF2)-(2.5/ROF1)-(3.0/ROF2)-(3.0/RFF)))
            H31=(SOF 2P/RT1S)*(-PF2-RHOO1-(1.0/ROF2)-(1.5/ROF1)-(1.5/RFF))
            H51L=(1.O/RT2S)*(-PF2-(2.0/ROF2)-(.3.0/RFF) +SOF2S*(-PF2-RHDOl-(1.0/
            1ROF2)-(1.5/ROF1)-(1.5/RFF)))
                    H711=0.0
            H79=(1.0/RT1P)*(-PF2-(2.0/ROF1)-(3.0/RFF) +SOF1P*(-PO1-11.5樟HOF2)-
            1(1.5/ROF1)-(1.5/ROF2)-(1.5/RFF))
            H115=(1.0/RT2S)*(-PF2-2.0/ROF2-3.0/RFF*SOF2S*(-PO1-1.5*RHOF2-1.5/R
            1OF2-1.5/ROF1-1.5/RFF)I
```

```
    H117=0.0
    H97=(1.0/RT1P)*(-PF2-2.0/ROF1-3.0/RFF+SOF1P*(-PF2-RHOO1-1.0/ROF1-1
1.5/ROF2-1.5/RFFI)
    21111=PF2+AF2
    21122=(1S12*S12)/4.0)*(PO1+AOl+PF2+AF2+(2.0/ROF2))
    Z1112=(S12/2.0)*(PF2+AF2+(1.0/ROF2))
    21212=0.5*((1.0/RFF)+(1.0/ROF2))
    Z1221=71122
    21222=(S12/4.0)*(PO1+A01+(1.0/ROF1)+(1.0/ROF2)+(1.0/RFF))
    21211=71112
    22222=0.25*(PO1+AO1+PF2+AF2+(2.0/ROF1))
    22212=71222
    22211=21122
    21316=(1.0/RT2S)*(PF2+AF2+(SOF2S/2.0)*(PF2+AF2+(1.0/ROF2)))
    Z1326=(1.0/(RT1S*RT2S))*((SOF2P/2.01*(PF2+AF2+11.0/ROF2))+((SOF2P*
1SOF2S)/4.0)*(PF2+AF2+PO1+AOL+(2.0/ROF21))
    21361=(1.0/RT2S)*(0.06040*(PF2+AF2))
    21362=0.0
    21416=0.0
    Z1415=(1.0/RT1P)*((1.0/RFF)+1SOF1P/2.0)*((1.0/RFF)+(1.0/ROF2)))
    21426=0.0
    21425=(1.0/(RT1S*RT1P))*((SOF2P/2.0)*((1.0/ROF1)*(1.0/RFF))+((SOF2
lP#SOF1P)/4.0)*(PO1+AOl+(1.0/ROF1)+(1.0/ROF2)+(1.0/RFF)|)
    Z1461=0.0
    21451=0.0
    21462=0.0
    Z1452=0.0
    Z2326=(1.0/(RT1S*RT1S*RT2S))*(()1.0/ROF2)+(1.0/RFF))*(1.0+SOF1S)+1
1(SOF2S/2.0)*(POI +AOI +(1.0/ROF1)+(1.0/ROF2)+(1.0/RFF))*(1.0+SOF1S))
2)
    Z2316=2.1326
    22362=0.0
    22361=0.0
    22426=0.0
    22425=(1.0/(RT1S*RTIS*RT1P1)*(()PF2+AF2+(1.0/RDF1))*(1.0+S0F1S))+1
1(1.0+SOF1S)*(SDF1P/2.0)*(PO1+AO1 +PF2+AF2+(2.0/ROF1)) )
    22416=0.0
    22415=71425
    22462=0.0
    22452=(1.0/(RT1S*RT1S*RT1P1)*(0.06040*(PF2+AF21)
    22461=0.0
    22451=0.0
    23366=(1.0/(RT2S*RT2S))*(PF2+AF2+(SOF2S*(PF2+AF2+(1.0/RDF2)))+((SO
1F2S*SOF2S)/4.0)*(PO1+A01+PF2+AF2+(2.0/ROF21))
    2.3456=0.0
    23465=(1.0/(RT2S*RTIP))*((1.0/RFF)+((SOF1P/2.0)*(11.0/ROF2)+(1.0/R
1FF)ll+((SDF2S/2.0)*((1.0/ROF1)+(1.0/RFF))I+((SOF2S*SDF1P)/4.0)*(PO
21+AO1+(1.0/ROF1)+(1.0/ROF21+(1.0/RFF))
    23466=0.0
    Z4466=0.0
    24455=(1.0/(RT1P*RT1P))*((|SOF1P*SDF1P)/4.0)*(PO1+AO1+PF2+AF2+(2.0
1/ROF1)\+(SOF1P*(PF2+AF2+(1.0/ROF1)|)+PF2+AF2)
    24456=0.0
    2.4465=0.0
    EE1=(S36*S36*S45*S45)*(1.0-S12*S12)*(2.0*H11+2.0*H33)+(S12*S36*S36
l*S45*S45)*(-1.0+S12*S12)*(2.0*H13+2.0*H31)+S 36*S45*S45*(1.0-S12*S 1
22.)*(1.0-S12*S12)*2.0*H511+S35*S36*S45*(1.0-S12*S12)*(1.0-S12*S12)*
3(-2.0*H711)+S36*S36*S45*(1.0-S12*S12)*(1:0-S12*S12)*(2.0*H79)
    EE2=S36*S36*S45*S45*(211111+2.0*2.1212+22222)+(S12*S36*S 36*S45*S45)*
```

```
    1((-2.0*Z1112)+(-2.0*Z1222)+(-2.0*Z1211)+(-2.0*22212))+(S 12*S 12*S 36
    2*S 36*S45*S45)*(21122+(2.0*21221)+22211)+(S36*S36*S45*S45*(1.0-S 12*
    3S12)|*(2.0*Z1212-(2.0*Z1221))+(S36*S45*S45*(1.0-S12*S12))*(4.0*213
    416-(2.0*21361) +(4.0*Z2326)-(2.0*22362)) +(S12*S36*S45*S45*(1.0-S 12*
    5S12)*(2.0*Z1362-(4.0*Z2316)+(2.0*22361)-(4.0*21326)))
        EE 3=(S 35*S 36*S45*(-1.0+S 12*S12))*((4.0*Z1416)-(2.0*Z1461) +(4.0* Z24
        126)-(2.0*2 2462))+(S36*S36*S45*(1.0-S12*S12))*((4.0*21415)-(2.0*2.14
        251)+(4.0*Z2425)-(2.0*22452))+(S12*S35*S36*S45*(1.0-S 12*S 12))*(4.0**
        321426+(-2.0*21462)+(4.0*22416) +(-2.0*22461))+(S12*S36*S36*S45*(-1.
        40+S12*S12))*((4.0*21425)-(2.0*21452)+(4.0*22415)-(2.0*Z2451))
        EE4={S45*S45*(1.0-S 12*S12)*(1.0-S12*S12)*(23366))+(S 36*S45*(-1.0+2
        1.0*S 12*S 12-S 12**4)*(2.0*23456-4.0*23465))+ S35*S45*(-1.+2.0*S12*S1
        22-S 12**4)*(23466*2.0) +(11.0-2.0*S12*S12*S 12**4)*(S35*S 35*24466*S36
        3*S36*24455-Z4456*S35*S36-24465*S35*S36))
    EE5=(S 36*S 36*S45*S45)*(1.0-S 12*S 12)*(2.0*H11+2.0*H33)+(S12*S 36*S36
    |*S45*S45)*(-1.0*S12*S12)*(2.0*H1 3+2.0*H31)+S 36*S45*S45*(1.0-S 12*S 1
    22)*(1.0-S12*S12)*2.0*H115+S 35*S36*S45*(1.0.S12*S12)*(1.0-S 12*S 12)*
    3(-2.0*H117)+S36*S36*S45*(1.0-S12*S12)*(1.0-S12*S12)*(2.0*H97)
    EE=0.5*(EE1+EE5)+EE2+EE3+EE4
    ENUC=ZFFOl*ZEFF1*(1.0/ROF1) +2EFO2*ZEFF2*(1.0/ROF2) +(9.0/RFFF)
    HH12=EE+ENUC*SS12
15 FORMAT(F10.5,5X,F10.5,F14.5,F13.5,F14.4,F14.4,8X,F14.8//1
    WRITE(6,15)ROF 1,ROF2,SOF1S,SOF 2S,SOF1P,SOF2P,EE
81 FORMAT(6H SS12=,F12.8,6H HH12=,F12.8//1
    WRITE(6,81)SS12,HH12
30 ROF1=ROF1+DR
    GONTINUE
    STOP
    END
```

; THIS PROGRAM COMPUTES THE MATRIX ELEMENTS,H23 AND S23, IN PLANE AO BASIS SET.
1234 FORMAT(8F10.4)
12 FORMAT(I3)
13 FORMAT (F 10.4)
14 FDRMAT (6F10.4)
16 FORMAT (1H1,5X,4HROF $1,10 \mathrm{X}, 4 \mathrm{HROF} 2,10 \mathrm{X}, 5 \mathrm{HSOF} 1 \mathrm{~S}, 9 \mathrm{X}, 5 \mathrm{HSOF} 2 \mathrm{~S}, 9 \mathrm{X}, 5 \mathrm{~S}$ SOF 1 P ,
$19 \mathrm{X}, 5 \mathrm{HSOF} 2 \mathrm{P}, 14 \mathrm{X}, 2 \mathrm{HEE} / / /$)
$D R=0.01$
WRITE(6,16)
READ (5,14)PF2,PO1, AF 2,AO1, RHOF 2,RHOO1
RFAO(5,13)RDF1
RFAD (5,12)N
DO $30 \mathrm{~J}=1, \mathrm{~N}$
RFAD(5,1234)SOF1S,SOF2S, SOF1P,SOF2P,ZEFO1, ZEFF1, ZEFO2, ZFFF2
ROF2 $=4.000-$ ROF 1
RFF $=$ SORT (ROF 1 *ROF 1 + ROF 2*ROF 21
RT1S = SQRT (2.0+2.0*SOF1S)
RT2S $=$ SQRT ($2.0+2.0 *$ SOF $2 S$)
RTIP $=$ SQRT $(2.0+2.0 * S O F 1 P)$
RT2P = SQRT(2.0+2.0*SOF 2P)
S $17=(1.0 / R T 2 P) *(1.0+S O F 2 P)$
$S 27=(1.0 /(R T 1 S$ कRT2D) $)=(1.0+S O F 2 P+S O F 1 S)$
$\mathrm{S} 28=(1.0 / \mathrm{RT} 1 \mathrm{~S}) *(1.0+\mathrm{SOF} 1 \mathrm{~S})$
S53 = (1.0/(RT1P*RT2S)) * (1.0 $0+$ SOF 2S +SOF1P)
S63=(1.0/RT2S)*(1.0+SDF2S)

```
    S54=(1.0/RT1P) # (1.0+SOF1P)
SS23=S 17*S 17*S 28*S 28*S54*S54*S63*S63
H17=(1.0/RT2P)*(-PF2-2.0/ROF 2-3.0/RFF+SOF2P*(-PO1-1.5/RFF-1.5/ROF1
1-1.5*RHOF 2-1.5/ROF 2))
    H18=0.0
    H28=(1.0/RT1S)*(-PF2-2.0/ROF1-3.0/RFF+SOF1S*(-PF2-RHOO1-1.0/ROF1-1
1.5/ROF 2-1.5/RFF)\
    H54=(1.0/RT1P)*(-PF2-2.0/ROF1-3.0/RFF+SOF1P*(-PF2-RHOO1-1.0/ROF1-1
1.5/ROF 2-1.5/RFF))
H63=(1.0/RT2S)*(-PF2-2.0/RDF2-3.0/RFF+SOF2S*1-P01-1.5/RFF-1.5/ROF1
1-1.5*RHOF 2-1.5/ROF 2))
    H64=0.0
    H71=(1.0/RT2P)*(-PF2-2.0/ROF 2-3.0/RFF*SOF 2P*1-PF2-RHOO1-1.0/ROF 2-1
1.5/ROF1-1.5/RFFID
    H81=0.0
    H82=(1.0/RT1S)*(-PF2-2.0/ROF1-3.0/RFF+SOF1S*(-PD1-1.5*RHDF 2-1.5/RD
1F1-1.5/ROF2-1.5/RFFI)
    H45=(1.0/RT1P)*(-PF2-2.0/ROF1-3.0/RFF+SOF1P*(-PO1-1.5*RHOF2-1.5/RO
1F1-1.5/ROF2-1.5/RFFI)
    H3G=(1.0/RT2S)*(-PF2-2.0/ROF2-3.0/RFF*SOF2S*(-PF2-RHOO1-1.0/ROF 2-1
1.5/ROF1-1.5/RFFI)
    H46=0.0
    21177=(1.0/(RT 2P*RT2P))*(PF2+AF2 +SOF2P*(PF 2+AF 2+1.0/ROF2) +(SOF 2P/4
1.0)*(PF2+AF2+PO1+AO1+2.0/ROF2)*(SOF2P):
    Z1178=0.0
    Z1188=0.0
    Z1278=(1.0/(RT2P*RT1S))*{(SOF1S*SOF 2P/4.0)*(PO1+AO1+1.0/ROF1+1.0/R
1OF2+1.0/RFF)+0.5*SOF2P*(1.0/ROF1+1.0/RFF) +0.5*SOF1S*(1.0/ROF2+1.0/
2RFFI+1.0/RFFI
    Z1287=0.0
    21574=(1.0/(RT2P*RT1P))*(0.25*SOF2P*SOF1P*(PO1+A01+1 0 0/ROF1+1.0/RO
1F2+1.0/RFF)+0.5*SDF 2P*(1.0/R NF 1+1.0/RFF) +0.5*SOF1P*(1.0/RDF2+1.0/R
2FFI+1.0/RFF)
    21547=0.0
    2.1584=0.0
    Z1548=0.0
    21673=(1.0/(RT2P*RT2S))*(0.25*SOF2P*SOF2S*(PF2+AF2+PO1 +AO1+2.0/ROF
12)+0.5*SOF 2P*(PF2+AF2+1.0/ROF2)+0.5*SOF 2S*(PF2+AF2+1.0/ROF2) +PF2+A
2F2)
    Z1637=(1.0/(RT2S*RT2P))*(0.06040*(PF2+AF 2))
    Z1683=0.0
    Z1638=0.0
    Z1674=0.0
    2.1647=0.0
    21684=0.0
    Z1648=0.0
    Z1288=0.0
    Z2288=(1.0/(2.0+2.0*SOFIS))*(0.25*SOF1S*SOF1S*(PO1+AO1+PF2+AF2+2.0
1/ROF1)+SOF 1S*(PF2+AF2+1.0/ROF1)+PF 2+AF 2)
    Z2584=(1.0/(RTlP*RT1S))*(0.25*SOF1S*SOF1P*(PO1+AO1+PF2+AF2+2.0/ROF
11)+(.5*SOF1S+0.5*SOF1P)*(PF2+AF2+1.0/ROF1)+PF2+AF2)
    Z2548=(1.0/(RT1S*RTIP))*(0.06040*(PF2.+AF 2))
    22684=0.0
    Z2648=0.0
    Z2683=(1.0/&RT1S*RT2S))*(0.25*SOF1S*SOF2S*(PO1+AO1+1.0/ROF1+1.0/RO
1F2+1.0/RFF)+0.5*SJFIS*(1.0/ROF2+1.0/FFF) +0.5*SOF2S*(1.0/ROFL +1.0/R
2FFI+1.0/RFF)
    Z2638=0.0
    Z5544=(1.0/(RT1P*RT1P))*(0.25*SOF1P**2 * *(PO1 +AD1 +PF2 +AF2 +2.0/ROF1)
```

$1+$ SOF 1 P* (PF $2+$ AF $2+1.0 /$ ROF $11+$ PF $2+$ AF 2$)$
25643=(1.0/(RT1P*RT2S))*(0.25*SOF1P*SOF 2S*(PO1+AO1+1.0/ROF1+1.0/RO
1F2+1.0/RFF) $+0.5 *$ SOFIP*(1.0/ROF $2+1.0 / R F F)+0.5 * S O F 2 S *(1.0 / R O F 1+1.0 / R$
2FF)+1.0/RFFI
Z5634 $=0.0$
Z5644=0.0
26633 $=(1.0 /($ RT 2 S*RT2S) $) *(0.25 *$ SOF $2 S * S O F 2 S *(P O 1+A O 1+P F 2+A F 2+2.0 / R O F$
$12)+$ SOF 2 S* $(P F 2+A F 2+1.0 / R D F 2)+P F 2+A F 2)$
26643=0.0
26644=0.0
EE1=S17*S28*S54*S54*S63*S63*(2.0*H17*S28-2.0*H18*S27+2.*H28*S17)+S
154*S63*S 17*S17*S28*S28*(2.0*H54*S63+2.0*H63*S54-2.0*H64*S53)
EE2=S54*S54*S63*S63*(21177*S28*S28+1-2.0*21178)*(S27*S28)+21188*S 127*S27+S 17*S28*(4.0*21278-2.0*21287))+S17*S28*S54*S63*(S28*S63*(4. 20*21574-2.0*Z1547)-S27*S63*(4.0*21584-2.0*21548) +S 28*S54*(4.0*Z167 33-2.0*21637) +S 27*S54*(-4.0*21683+2.0*21638) +S2.8*S53*(-4.0*21674+2. 40*21647) +S27*S53*(4.0*21684-2.0*21648)
EE 3 = S54*S54*S63*S63*(-2.0*21288*S17*S27+22289*S17*S17) +S17*S17*S28 $1 * S 54 * S 63 *(S 63 *(4.0 * 2584-2.0 * 22548)+S 53 *(-4.0 * 22684+2.0 * 2648)+S 54$ 2*(4.0*22683-2.0*22638))
EE4=S17*S17*S28*S28*S63*(S63*25544+S54*(4.0*25643-2.0*25634) +S53*(
$1-2.0 * 25644$) $)+$ S17*S17*S28*S28*(S54*S54*26633*S53*S54*(-2.0*26643) + S 253*S53*26644)
EES = S 17*S28*S54*S54*S63*S63*(2.0*H71*S28-2.0*H81*S27+2**H82*S17) +S
154*S63*S 17*S17*S28*S28*(2.0*H45*S63+2.0*H36*S54-2.0*H46*S53)
$E E=0.5 *(E E 1+E E 5)+E E 2+E E 3+E E 4$
ENUC $=$ ZEFO1*ZEFF1*(1.0/ROF1) + ZEFO2*ZEFF2*(1.0/ROF2) $+(9.0 /$ RFF)
HH23=EE+ENUC*SS23
15 FORMAT(F10.5,5X,F10.5,F14.5,F13.5,F14.5,F14.5,8X,F14.8/11
WRITFIG, 15 IROF1,RDF2,SOF1S, SOF 2 S, SOF $1 P$, SOF2P, EE
91 FORMAT(6H SS23=,F12.8,6H HH23=,F12.8)
WRITE(6,91)SS23,HH23
30 ROF $1=$ ROF $1+$ DR
continue
STOP
END

C this program computes the matrix elements,hll and silyout of plane ao basis
C SET.
1234 FGRMAT(8F10.4)
21 FORMAT(2F10.4)
22 FORMAT(13)
23 FORMAT(F10.4)
24 FORMAT(GF10.4)
25 FORMATI $1 \mathrm{HI}, 5 \mathrm{X}, 5 \mathrm{H}$ ROF $1,5 \mathrm{X}, 5 \mathrm{H}$ ROF $2,4 \mathrm{X}, 6 \mathrm{H}$ SOF $1 \mathrm{~S}, 4 \mathrm{X}, 6 \mathrm{H}$ SOF $2 \mathrm{~S}, 10 \mathrm{X}, 3 \mathrm{H}$ EE 1)
$D R=0.10$
WRITE (6, 25)
$\operatorname{READ}(5,24)$ PF 2, PO1, AF 2, AO1, RHOF2, RHOO1
READ(5,23)ROF 1
READ(5,22)N
DO $30 \mathrm{~J}=1 \mathrm{~N}$
READ (5,1234)SOF1S, SOF 2S, SOF1P, SOF2P,ZEFO1, ZEFFI,ZEFD2,ZEFF2
ROF $2=4.000-$ ROF 1
RFF $=$ SQRT(ROF1*ROF1 1 ROF 2*ROF2)

```
        H11=-PF2-2.0/ROF 2-3.0/RFF
        H33=0.5*(1.0/(1.+SDF1S))*(-PO1-PF2-5.0/ROF1-3.0/ROF2-3.0/RFF+SOF1S
    1*(-PF2-POI-RHOO1-1.5*RHOF2-2.5/ROF1-3.0/ROF2-3.0/RFFI)
    H55=0.5*(1.0/(1.0+SOF2S))*(-PD1-PF2-3.0/ROF1-5.0/RDF2-3.0/RFF&SOF2
    1S*1-PF2-PO1-RHDO1-1.5*RHOF2-3.0/ROF1-2.5/ROF2-3.0/RFFI)
    H77=-PF2-2.0/ROF1-3.0/RFF
    212=PF2+AF2
    234=0.25*(PO1+AO1+PF2+AF 2+2.0/ROF1)
    256=0.25*(PO1+A01+PF2+AF2+2.0/ROF2)
    Z13=0.5*(1.0/ROF 2+1.0/RFF)
    Z15=0.5*(PF2+AF 2+1.0/ROF 2)
    Z35=0.25*(PO1+A01+1.0/ROF1+1.0/ROF2+1.0/RFF)
    217=1.0/RFF
    237=0.5*(PF2+AF2+1.0/ROF1)
    Z57=0.5*(1.0/ROF1+1.0/RFF)
    Z78=PF2+AF2
    ZK13=0.0
    ZK15=0.5*(1.0/(1.0+SDF2S))*(0.0604*(PF2+AF 2))
    ZK17=0.0
    ZK35=0.25*(1.0/(1.0+SOF1S)*(1.0+SOF2S))*(0.0604*(P01+A01))
    ZK15=0.0
    2K57=0.0
    ZK37=0.5*(1.0/(1.0+SOF2S))*(0.0604*(PF 2+AF 2))
    EE=2.0*H11+2.0*H33+2.0*H55+2.0*H77+Z12+4.0*213+4.0*215+4.0*2 35+234
1+256+4.0*217+4.0*237+4.0*257+Z78-2:0*2K13-2.0*2K15-2.0*2K35-2.0*ZK
215-2.0*ZK17-2.0*2K37-2.0*ZK57
    ENUC=ZEFO1*ZEFF1*(1.0/ROF1)+ZEFO2*ZEFF2*(1.0/ROF2)+(9.0/RFF)
    HH11=EE+ENUC
20 FORMAT(4F10.4,F15.8/)
    WRITE(6,20)ROF 1,ROF2,SOF1S,SOF 2S,EE
27 FORMAT(9H SS11=1.0.6H HH11=.F12.8//)
    WRITE(G,27)HHII
30 ROF L=ROF 1+DR
    CONTINUF
    STOP
    END
C THIS PROGRAM COMPUTES THE MATRIX FLEMENTS,H22 AND S22,DUT OF PLANE AO BASIS.
C SET.
1234 FORMAT(8F10.4)
    11 FORMAT(4F10.4)
    12 FORMAT(I3)
    13 FORMAT(F10.41
    14 FORMAT(GF10.4)
    16. FORMATIIHL,5X,4HROFI,10X,4HROF2,10X,5HSOF1S,9X,5HSOF2S,9X,5HSOF1P,
    19X,5HSOF 2P,14X,2EE///I
        DR=0.01
        WRITE(6,16)
        READ(5,14)PF2,PO1,AF2,AO1,RHOF 2,RHOO1
        READ(5,13)ROF1
        READ(5,12)N
        DO 30 J=1,N
        READ(5,1234)SOF1S,SOF2S,SOF1P,SOF2P, 2EFO1,ZEFF1, ZEFO2,ZEFF2
        ROF2=4.000-ROF 1
        RFF=SQRT(ROF 1*ROF1 +RDF 2*ROF2)
```

```
    RT1S=SORT(2.0+2.0*SOF1S)
    RT1P=SQRT(2.0+2.0*SOFIP)
    S56=(1.0/RT1P)*SOF2S
    SS22=1.0-S56*S56+S56**4
    H11=-PF2-2.0/ROF2-3.0/RFF
    H33=(0.5*(1.0/(1.0+SOFIS)))*(-PO1-PF2-5.0/ROF1-3.0/ROF2-3.0/RFF+SO
    1F1S*(-PF2-PO1-RHOO1-1.5*RHOF2-2.5/ROF1-3.0/ROF2-3.0/RFF))
    H99=0.5*(1.0/(1.0+SJF1P))*(-POL-PF2-5.0/ROF1-3.0/ROF2-3.0/RFF+SOF
    11P*(-PF2-PO1-RHOO1-1.5#RHOF2-2.5/ROF1-3.0/ROF2-3.0/RFFI)
    H111l=-PF2-2.0/ROF 2-3.0/RFF
    H911={SOF2S/RT1P)*(-PF2-RHOO1-1.5/ROF1-1.0/ROF2-1.5/RFF)
    H119=(SOF2S/RTIP)*(-PO1-1.5*RHOF2-1.5/ROF1-1.5/ROF2-1.5/RFF)
    21111=PF2+AF2
    21212=0.5*(1.0/ROF2+1.0/RFF)
    Z1515=0.5*(1.0/ROF2+1.0/RFF)
    11616=PF2+AF2
    Z2222=0.25*(PO1 +A01 +PF2+AF2+2.0/ROF1)
    Z2525=0.25*(PO1+AO1+PF2+AF2+2.0/ROF1)
    22626=0.5*(1.0/ROF 2+1.0/RFF)
    Z5555=0.25*(PO1+AO1+PF2+AF2+2.0/ROF1)
    25656=0.5*(1.0/ROF 2+1.0/RFF)
    Z6666=PF2+AF2
    Z1661=0.0604*(PF2*AF2)
    Z2552=0.25*(1.0/(1.0+SOF1S)*(1.0+SOF1P1)*(0.0604*(PO1+AO1+PF2+AF2)
    1)
    Z5665=(\SOF2S*SOF2S\/(8.0*(1.0+SOF1P)))*(P01+AO1+PF2+AF2+2.0/RDF2)
    Z1516=(1.0/RT1P)*(SOF2S/2.0)*(PF2+AF2+1.0/ROF2)
    Z2526=(SOF2S/4.0)*(1.0/RT1P)*(PO1+AO1+1.0/ROF1+1.0/ROF2+1.0/RFF)
    Z5556=(SOF2S/4.0)*(1.0/RTIP)*(PO1+AO1+1.0/ROF1+1.0/RDF2+1.0/RFF)
    Z5566=((SOF2S*SDF25)/8.0)*(1.0/(1.0+SOF1P))*(P01+AO1+PF2+AF2+2.0/R
    10F2)
    25566=25665
    25666=(SOF2S/2.0)*(1.0/RT1P)*(PF2+AF2+1.0/ROF2)
    EE={2.0*H11+2.0*H33+Z11111+4.0*Z1212+Z22.22)*(1.0-12.0*S56*S56)+(S56
    1**4))+(2.0*H99+2.0*H1111+4.0*21515+4.0*Z1616+4.0*Z2525+4.0*2 2626+2
    2.0*25656-2.0*25665-2.0*21661-2.0*22552)*(1.0-S56*S56)+(2.0*H911+2.
    30*H119+8.0*21516+8.0*Z2526)*(-S56+S56**3)+25555+2.0*25656+Z6666+14
    4.0*25556*4.0*Z 5666)*(-556)*(2.0*Z5566+2.0*Z5665)*(S56*S56)
    ENUC=2EFO1*ZEFF1*(1.0/ROF1)+2FFO2*2EFF2*(1.0/ROF2)+(9.0/RFF)
    HH22=EE+SS22#ENUC
15 FORMATIF10.5,5X,F10.5,F14.5,F13.5,F14.4,F14.4,8X,F14.8//1
    WRITE\G,15IROF1,ROF2,SOF1S,SOF2S,SOF1P,SOF2P,EE
27 FORMAT16H.SS22=,F12.8,6H HH22=,F12.8//1
    WRITE(6,27)SS220HH22
30 ROF1=ROF1+DR
    CONTINUE
    STOP
    END
```


VITA

Roy Edward Bruns
Candidate for the Degree of
Doctor of Philosophy

Thesis: THEORETICAL INVESTIGATION OF THE BOND-BOND INTERACTION FORCE CONSTANT IN XF 2 MOLECULES

Major Field: Chemistry
Biographical:

Personal Data: Born in Breese, Illinois, September 10, 1941, the son of Ray and Elsie Bruns.

Education: Graduated from Cathedral High School in 1959, received Bachelor of Arts degree from Southern Illinois University, Edwardsville, Illinois, with a major in Chemistry, in May, 1963; completed requirements for the Doctor of Philosophy degree in May, 1968.

