By

DONALD J. BOYCE
Bachelor of Science
Central State College
Edmond, Oklahoma
1956
Master of Science
Oklahoma State University
Stillwater, Oklahoma 1957

```
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the degree of DOCTOR OF EDUCATION
May, 1968
```

DEAL CURVATURE OF HYPERSURFACES

Thesis Approved:

Dean of the Graduate College

PREFACE

This author is deeply grateful for the patient and valuable direction given by Professor R. B, Deal, Jr. in the formulation and preparation of this thesis. Additional appreciation is also expressed for the many considerations, time, and constructive comments given by Professors John E. Hoffman, Vernon Troxel, and Kenneth E. Wiggins.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION, 1
II. BASIC DEFINITIONS AND THEOREMS. 5
III. TENSORS AND FORMS 28
IV. ON THE DEAL CURVATURE OF HYPERSURFACES. 43
BIBLIOGRAPHY 59

CHAPTER I

INTRODUCTION

Differential geometry has a long history as a branch of mathematics but a large portion of the knowledge produced belongs to the realm of contemporary mathematics. Much of this new material is scattered throughout the research journals.

Mathematics, in general has been expanding in all areas at a fabulous rate during the past half century. At the same time, one of the most striking trends in contemporary mathematics is the constantly increasing interrelationship among its various branches. Thus, as a possible means to alleviate some of the resulting pedagogical problems, one needs to study some of the latest developments, reexamine the traditional areas of mathematics in light of these developments and clarify and condense the material presently required for undergraduates by pointing out the important ideas and techniques being used.

The various concepts and computational techniques that are currently in use in differential geometry and emphasized in this paper are:

1) exterior differential calculus of E. Cartan; and
2) covariant differentiation $\nabla_{X} Y$ for vector $f i e l d s X$ and Y. Purpose of Study

It is the purpose of this study to develop many of the basic concepts and techniques that are currently being used as research tools in
modern differential geometry with the following objectives in mind:
1.) The material necessary for a thorough understanding of recent research papers in differential geometry by Shiing-Shen Chern and Richard Lashof on curvature of manifolds will be presented.
2.) The exterior algebra of forms will be used to derive a measure of curvature of a hypersurface called the Deal curvature.

Procedure

The basic definitions and theorems will be presented in a setting familiar to the advanced undergraduate student of mathematics. In fact, it will be shown that many of the basic ideas used are just generalizations of concepts presently being used in elementary calculus. An algebra, called the exterior algebra of forms, will be utilized in conjunction with the method of moving frames as developed by Cartan.

After a careful study of some recent research papers in differential geometry (in particular, see [4] and [5]) where many of the modern research tools are used, the author of this thesis developed the neces sary background material for an understanding of the topics being pre. sented in these papers. The notes on differential geometry by N. Hicks [10] influenced the material in Chapter II on differentiable manifolds, and the notation is that due to Barrett O'Neill [15]. The development of the exterior algebra of forms follows that presented by Mostow, Sampson, and Meyer [13].

These methods are then used to study a geometrical object, such as a surface, and a measure of curvature of a surface in E^{3}, introduced by R. B. Deal, Jr., (see [6]), is presented in this modern setting and then generalized to a hypersurface in E^{n}. Many other applications of
exterior forms have been given by H. Flanders [8].

Brief History

The discipline was well launched after the formulation of the analytic geometry of R. Descartes (1596-1650) and the calculus by G. Leibniz (1646-1716) and I. Newton (1643-1727). Many of the isolated results on curves and surfaces were contributed by L. Euler (1707-1783). In France, G. Monge (1746-1818) founded an extensive school of geometry that influenced much of the development of differential geometry.

It was C. F. Gauss (1777-1855) who transformed the theory of surfaces into its modern systematic mold. He recognized the fundamental significance of intrinsic geometry. His main work in differential geometry is his treastise of 1827, Disquisetiones generals circa superfices curvas.

A development of intrinsic geometry independent of imbedding was given by B. Riemann (1826-1866) in 1854. Riemann dropped the restriction of two dimensions and laid the foundations for "Riemannian geometry" that has been extensively developed. These results were not pub11shed until 1868, after Riemann's death.

Felix Klein (1849-1926) and his "Erlangen program" had more influence, at first, than that of Riemann's work. Klein defined a geometry as being a theory of invariants of a group of transformations. For example, Euclidean geometry would be a theory of invariants of a group of rigid motions.

Around the turn of the 20 th century G. Ricci and T. Levi-Civita developed the tensor calculus, which became a powerful tool of differential geometry. Einstein's theory of relativity created much acitvity
in the further development of Riemannian geometry during this time. During the early part of the 20 th century, E. Cartan (1869-1951) utilized the earlier work of H. Grassman (1809-1877) in 1847 (on the algebra of subspaces of vector spaces) to systemitize the study of differentials. When the Frenet formulas were discovered (by F. Frenet in 1847, and independently by J. Serret in 1851), the theory of surfaces in E^{3} was already a richly developed branch of geometry. The success of the Frenet approach to curves led G. Darboux (in 1887) to adope the "method of moving frames" to the theory of surfaces. Then, it was Cartan who brought the method to full generality. His essential idea was very simple: To each point of the object under study (a curve, a surface, Euclidean space itself, . . .) assign a frame; then using orthonormal expansion express the rate of change of the frame in terms of the frame 1tself, This, of course, is what the Frenet formulas do in the case of a curve. Cartan, also, introduced the notion of connections in fibre bundles, This notion has been given a modern formulation, first by E. Ehresmann [7], and has been utilized by S. S. Chern [4] and others.

CHAPTER II

BASIC DEFINITIONS AND THEOREMS

The goal of modern differential geometry is a study of differentiable manifolds using the tools of analysis. Thus, one wants to use calculus on a manifold and that calculus is the same as the one used on Euclidean space. For this reason we start with Euclidean space, mapping from E^{n} to E^{m}, tangent vectors, vector fields, and derivatives of these objects. Then a definition of a manifold is given and the previous definitions on E^{n} are extended to the manifold. Let R denote the real numbers.

Definition 2.1. Euclidean n-space is the pair (S, d), where $S=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{i} \in R, i=1,2, . . ., n\right\}$ and d is a mapping, $d: S x S \rightarrow R$, defined by $d(p, q)=\left[\sum_{i=1}^{n}\left(p_{i}-q_{i}\right)^{2}\right]^{\frac{1}{2}}$, where $p=\left(p_{1}, p_{2}, \cdot ., p_{n}\right), q=\left(q_{1}, . ., q_{n}\right)$ belong to S.

Thus (S, d) $=E^{n}$.

By the dot product of points $p=\left(p_{1}, P_{2}, ., p_{n}\right)$ and $q=\left(q_{1}, q_{2}, \cdots, q_{n}\right)$ in E^{n} we mean the real number $p \cdot q=\sum_{i=1}^{n} p_{i} q_{i}$. The dot product is an inner product. That is, the dot product has the following properties:

$$
\text { 1.) Bilinearity } \begin{aligned}
&(a p+b q) \cdot r=a p \cdot r+b q \cdot r \\
& r \cdot(a p+b q)=a r \cdot p+b r \cdot q
\end{aligned}
$$

2.) Symmetry $\mathrm{p} \cdot \mathrm{q}=\mathrm{q} \cdot \mathrm{p}$
3.) Positive definite $p^{\cdot} p \geq 0, p^{\circ} p=0$ if and only if $p=0$ 。

If $p=\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ then

$$
\|\mathrm{p}\|=\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\ldots .+\mathrm{p}_{\mathrm{n}}^{2}\right)^{\frac{1}{2}}
$$

called the norm of p. Thus, the norm is a real valued function on E^{n}, and it has the following properties:
1.) $\|p+q\| \leq\|p\|+\|q\|$
2.) $\|a p\|=|a|\|p\|$ where $|a|$ is the absolute value of the real Thus, $d(p, q)=\|p-q\|$.

The mapping d gives some structure to the set S and E^{n} is a metric space with metric d. Therefore, E^{n} is a topological space with the usual topology. Now, add additional structure by making E^{n} into an R module (vector space over the reals) with the following definitions of vector addition and scalar multiplication:

$$
\begin{aligned}
p+q & =\left(p_{1}, p_{2}, \cdot ., p_{n}\right)+\left(q_{1}, q_{2}, \ldots, q_{n}\right) \\
& =\left(p_{1}+q_{1}, p_{2}+q_{2}, \cdot, \cdot p_{n}+q_{n}\right) \\
\alpha & =\alpha\left(p_{1}, p_{2}, \cdot ., p_{n}\right)=\left(\alpha p_{1}, \alpha p_{2}, \ldots, \alpha p_{n}\right)
\end{aligned}
$$

for all p, q in E^{n} and all α in R.
Definition 2.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the real valued functions on E^{n} such that for each $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ in $E^{n}, x_{i}(p)=p_{i}$ for $i=1,2, \ldots, \quad n$.

The functions $x_{1}, x_{2}, \ldots, x_{n}$ are called the natural coordinate: functions of E^{n}.

Definition 2.3. A real-valued function f on E^{n} is differentiable (or of class C^{∞}) provided all partial derivatives of f, of all orders, exist and are continuous. Notation: $f \in C^{\infty}\left(E^{n}, R\right)$.

Next, we define a tangent vector at a point in E^{n}. Then, we
define a directional derivative (with respect to a tangent vector) of a real valued function which generalizes the usual directional derivative in elementary calculus. This generalization will allow us to define a tangent vector on a manifold as a linear mapping on realvalued functions.

Definition 2.4. A tangent vector v_{p} to E^{n} consists of two points of E^{n} : its vector part v and its point of application p.

We think of a tangent vector v_{p} as the arrow from p to $p+r$. Tangent vectors v_{p} and w_{q} are equal if and only if $v=w$ and $p=q$. Tangent vectors with the same vector parts but different points of application are called parallel.

Definition 2.5. Let p be a point of E^{n}. The set $T_{p}\left(E^{n}\right)=\left\{v_{p} \mid v_{p}\right.$ is a tangent vector to E^{n} at $\left.p\right\}$ is called the tangent space of E^{n} at p.

We can make $T_{p}\left(E^{n}\right)$ into a vector space by defining $v_{p}+w_{p}$ to be $(v+w)_{p}$ and $c\left(v_{p}\right)$ to be (cv) ${ }_{p}$. These operations on each tangent space make $T_{p}\left(E^{n}\right)$ a vector space isomorphic to E^{n}. We need only show that the mapping $v \rightarrow v_{p}$ is a linear isomorphism from E^{n} to $T_{p}\left(E^{n}\right)$.

Definition 2.6. A vector field V on E^{n} is a function that assigns to each point of p of E^{n} a tangent vector $V(p)$ to E^{n} at p.

Let $\mathcal{X}=\left\{V \mid V\right.$ is a vector field on $\left.E^{n}\right\}$ and $\mathcal{F}=\left\{f \mid f_{\varepsilon} C^{\infty}\left(E^{n}, R\right)\right\}$. Then we can make \mathcal{F} into an \mathcal{F} module (vector space over \mathcal{F}) by the usual pointwise principle:

$$
(V+W)(p)=V(p)+W(p)
$$

and

$$
(f V)(p)=f(p) V(p) \text { for all } p
$$

Definition 2.6. Let $U_{1}, U_{2}, \ldots, U_{n}$ be the vector fields on E^{n} such that

$$
\begin{aligned}
& U_{1}(p)=(1,0, \ldots, 0)_{p} \\
& U_{2}(p)=(0,1,0, \ldots, 0)_{p} \\
& \cdot \\
& U_{n}(p)=(0,0, \ldots, 1)_{p} \text { for each } p \text { in } E^{n} .
\end{aligned}
$$

We call $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ the natural frame field on E^{n}.
Lemma 2.1. If V is a vector field on E^{n}, there exist uniquely determined real-valued functions $v_{i}, i=1,2$, \ldots, n, on E^{n} such that

$$
V=\sum_{i=1}^{n} v_{i} U_{i}
$$

The functions v_{i} are called the Euclidean coordinate functions of V.
Proof: By definition of $V, V: E \rightarrow T_{p}\left(E^{n}\right)$ so the vector part of $V(p)$ may be denoted as $\left(v_{1}(p), \ldots, v_{n}(p)\right)$ where the v_{i} are realvalued functions on E^{n} (since they depend on the point p). Thus,

$$
\begin{aligned}
v(p) & =\left(v_{1}(p), v_{2}(p), \ldots, v_{n}(p)\right)_{p} \\
& =v_{1}(p)(1,0,0, \ldots, 0)_{p}+\ldots .+v_{n}(p)(0,0, \ldots, 1)_{p}
\end{aligned}
$$

at each point p. But by definition of addition and scalar multiplication of vector fields, V and $\Sigma \mathrm{v}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}$ have the same tangent vector at each point p. Hence, $V=\Sigma v_{i} U_{i}$.

Definition 2.7. A vector field V on E^{n} is differentiable if and only if its Euclidean coordinate functions are differentiable (in the sense of Definition 2.3).

Definition 2.8. Let f be a differentiable real-valued function on E^{n}, and let v_{p} be a tangent vector at $p \in E^{n}$. Then

$$
v_{p}[f]=\left.\frac{d}{d t}(f(p+t v))\right|_{t=0}
$$

is called the derivative of f with respect to $\underline{y}_{\mathrm{p}}$.

Lemma 2.2. If $v_{p}=\left(v_{1}, v_{2}, \ldots ., v_{n}\right)_{p} \in T_{p}\left(E^{n}\right)$ then

$$
v_{p}[f]=\sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial x_{i}}(p) .
$$

Proof: Let $p=\left(p_{1}, p_{2}, . ., p_{n}\right)$ Then,

$$
p+t v=\left(p_{1}+t v_{1}, p_{2}+t v_{2}, \ldots, p_{n}+t v_{n}\right)
$$

and since $\frac{d\left(p_{i}+t v_{i}\right)}{d t}=v_{i}$, we have

$$
\left.\frac{d}{d t}(f(p+t v))\right|_{t=0}=\Sigma v_{i} \frac{\partial f}{\partial x_{i}}(p) .
$$

The main properties of the directional derivative are given in the following theorem and the proof is a direct application of Lemma 2.2.

Theorem 1. If $f, g \in C^{\infty}\left(E^{n}, R\right), V_{p}, W_{p} \in T_{p}\left(E^{n}\right)$ and $a, b \in R$, then
1.) $\left(a v_{p}+b w_{p}\right)[f]=a v_{p}[f]+b w_{p}[f]$
2.) $v_{p}[a f+b g]=a v_{p}[f]+b v_{p}[g]$
3.) $v_{p}[f g]=v_{p}[f] \cdot g(p)+f(p) \cdot v_{p}[g]$.

We again apply the pointwise principle and take directional derivatives of vector fields so we have the following:

Corollary 2.1. If V, $W \in \notin$ and $f, g, h \in C^{\infty}\left(E^{n}, R\right), a, b \in R$, then
1.) $(f V+g W)[h]=f V[h]+g W[h]$
2.) $V[a f+b g]=a V[f]+b V[g]$
3.) $V[f g]=V[f] \cdot g+f \cdot V[g]$.

Definition 2.9. A curve in $\underline{E}^{\mathrm{n}}$ is a differentiable function α : $I \rightarrow E^{n}$ from an open interval I into E^{n}. Thus $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, where $\alpha_{i}=x_{i} \alpha \alpha$ are the Euclidean coordinate functions of α.

Definition 2.10. Let $\alpha: I \longrightarrow \mathrm{E}^{\mathrm{n}}$, be a curve in E^{n} with $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. For each real number $t \in I$, the velocity vector of q at t is the tangent vector

$$
\alpha^{\prime}(t)=\frac{\left(\mathrm{d} \alpha_{1}(\mathrm{t})\right.}{\mathrm{dt}}, \frac{\mathrm{~d} \alpha_{2}(\mathrm{t})}{\mathrm{dt}}, \ldots ., \frac{\left.\mathrm{d} \alpha_{\mathrm{n}}(\mathrm{t})\right)}{\mathrm{dt}} \alpha(\mathrm{t})
$$

at the point $\alpha(t)$ in E^{n}.
Lemma 2.3. Let $\alpha: I \rightarrow E^{n}$ be a curve in E^{n} and $f \in C^{\infty}\left(E^{n}, R\right)$. Then

$$
\alpha^{\prime}(t)[f]=\frac{d(f(\alpha))}{d t}(t)
$$

Proof: Since $\alpha^{\prime}(t)=\left(\frac{d \alpha 1}{d t}, \ldots, \frac{d \alpha n}{d t}\right)$, we have by Lemma 2.2

$$
\alpha^{\prime}(t)[f]=\sum_{i=1}^{n} \alpha_{i}^{\prime}(t) \frac{\partial f}{\partial x_{i}}(\alpha(t)) .
$$

Now $f(\alpha)=f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and hence $\frac{d f(\alpha)}{d t}(t)=\boldsymbol{\Sigma} \frac{\partial f}{\partial x_{i}}(\alpha(t)) \cdot \frac{d \alpha(t)}{d t}$ by chain rule for composite functions. Thus $\alpha^{\prime}(t)[f]=\frac{d f(\alpha)}{d t}(t)$.

Definition 2.11. Given a function $F: E^{n} \longrightarrow E^{m}$ let f_{1}, f_{2}, . . . , f_{m} denote the real-valued functions on E^{n} such that

$$
F(p)=\left(f_{1}(p), f_{2}(p), \ldots, f_{m}(p)\right)
$$

for all points p in E^{n} 。 The functions f_{i} are called Euclidean coordinate functions of F and we write $F=\left(f_{1}, f_{2}\right.$, . . , $\left.f_{m}\right)$.

The function F is differentiable, or $C^{\infty}\left(E^{n}, E^{m}\right)$, provided its coordinate functions are differentiable, or $C^{\infty}\left(E^{n}, R\right)$. A differentiable function $F: E \xrightarrow{n} E^{m}$ is called a mapping from E^{n} to E^{m}. Notice that the f_{i} in $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ are the composition mappings: $f_{i}(p)=x_{i}(F(p))$.

Definition 2.12. If $\alpha: I \rightarrow E^{n}$ is a curve in E^{n} and $F: E \xrightarrow{n} E^{m}$ is a mapping (differentiable function), then the composite function
$\beta=F(\alpha): I \quad E^{m}$ is a curve in E^{m} called the image of α under F.

Figure 2.1

Definition 2.12. Let $F: E^{n} \longrightarrow E^{m}$ be a mapping. If v is a tangent vector to E^{n} at p, let $F_{\gamma}(v)$ be the initial velocity of the curve $\beta: t \rightarrow F(p+t v)$ in E^{m}. The resulting function $F_{*}: T_{p}\left(E^{n}\right) \longrightarrow$ $T_{F(p)}\left(E^{m}\right)$ is called the derivative map $F_{\%}$ of F 。

Thus F_{*} is the function that assigns to each tangent vector v in E^{n} at p a tangent vector $\mathrm{F}_{*}(\mathrm{v})$ to E^{m} at $\mathrm{F}(\mathrm{p})$. Consider the tangent vector v as the initial velocity of the curve $\alpha: t \rightarrow p+t v$. Now the image of α under the mapping F is the curve β such that

$$
\beta(t)=F(\alpha(t))=F(p+t v) .
$$

And so from the definition above we have

$$
F_{*}(v)=\beta^{\prime}(0)=\left(\left.\frac{d(F(p+t v))}{d t}\right|_{t=0}\right) F(p) .
$$

The figure below describes the case where $n=m=3$ 。

Figure 2.2

Theorem 2.2. Let $F: E \xrightarrow{n} \longrightarrow E^{m}$ be a mapping with $F=\left(f_{1}, f_{2}\right.$, . . . , f_{m}). If $v \in T_{p}\left(E^{n}\right)$, then

$$
F_{*}(v)=\left(v\left[f_{1}\right], v\left[f_{2}\right], \cdot, v\left[f_{m}\right]\right)_{F(p)}
$$

Proof: Given $v \in T_{p}\left(E^{n}\right)$ we have from definition of F_{*} that $\beta(t)$ $=F(p+t v)=\left(f_{1}(p+t v), f_{2}(p+t v), \ldots, f_{m}(p+t v)\right)$ and $B^{\prime}(0)=$ F_{*} (v) . But by definition of velocity vector,

$$
\begin{aligned}
\beta^{\prime}(0)= & \left.\frac{d}{d t}(F(p+t v))\right|_{t=0}=\left(\left.\frac{d}{d t} f_{1}(p+t v)\right|_{t=0},\right. \\
& \left.\left.\frac{d}{d t} f_{2}(p+t v)\right|_{t=0}, \cdots \cdot,\left.\frac{d}{d t} f_{m}(p+t v)\right|_{t=0}\right) \\
= & \left(v\left[f_{1}\right], v\left[f_{2}\right], \cdots \cdots, v\left[f_{m}\right]\right) F(p)
\end{aligned}
$$

The following corollary shows the strong link between the calculus and linear algebra.

Corollary 2.2. Let $F=\left(f_{1}, f_{2}, . ., f_{m}\right)$ be a mapping from E^{n} to E^{m}. Then at each point p of E^{n}, the derivative map $F_{*_{p}}: T_{p}\left(E^{n}\right) \longrightarrow$ $T_{F(p)}\left(E^{m}\right)$ is a linear transformation. (The proof is immediate since $V_{p}\left[f_{i}\right]$ is Iinear)

Now since F_{*} is a linear transformation from $T_{p}\left(E^{n}\right)$ to $T_{F(p)}\left(E^{m}\right)$ we express F_{*} in the following matrix form:
where $\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right)$ is the transpose of $U_{i}(p)=(0,0, \ldots, 0)_{p}$
and the 1 is in the $i^{\text {th }}$ slot. Thus

$$
F_{*}=\left(\frac{\partial f_{j}}{\partial x_{i}}\right) \quad i=1,2, \ldots \ldots, n, j=1,2, \ldots \ldots, m_{0}
$$

This last matrix is called the Jacobian matrix of F at p.
Theorem 2.3. Let $F: E \xrightarrow{n} E^{\mathrm{m}}$ be a mapping. If $\beta=F(\alpha)$ is the image in E^{m} of the curve α in E^{n}, then $\beta^{\prime}=F_{*}\left(\alpha^{\prime}\right)$ 。 (This says that F_{x} preserves velocities).

Proof: If $F=\left(f_{I}, \ldots, f_{m}\right)$ then

$$
\beta=F(\alpha)=\left(f_{1}(\alpha), f_{2}(\alpha), \cdots, f_{m}(\alpha)\right)=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

By Theorem 2.2

$$
F_{*}\left(\alpha^{\prime}(t)\right)=\left(\alpha^{\prime}(t)\left[f_{I}\right], \alpha^{\prime}(t)\left[f_{2}\right], \cdots, \alpha^{\prime}(t)\left[f_{m}\right]\right)
$$

By Lemma 2.3 we have $\alpha^{\prime}(t)\left[f_{i}\right]=\frac{d f_{i}(\alpha)}{d t}(t)=\frac{d \beta_{i}}{d t}(t)$, hence

$$
F_{*}\left(\alpha^{\prime}(t)\right)=\left(\frac{d \beta_{1}(t)}{d t}, \frac{d \beta_{2}(t)}{d t}, \ldots, \frac{d \beta_{m}(t)}{d t}\right) \beta(t) .
$$

Therefore $\beta^{\prime}=F_{*}\left(\alpha^{\prime}\right)$.
Definition 2.13. A mapping $F: E n \rightarrow \mathrm{E}^{\mathrm{m}}$ is regular if and only if for each point p of E^{n} the derivative map is one-to-one.

A mapping that has an inverse mapping is called diffeomorphism (remember that by a mapping we mean differentiable function). Thus a diffeomorphism is necessarily both one-tomone and onto, but a mapping which is onemonone and onto need not be a diffeomorphism. (Consider the mapping $F: E \xrightarrow{2} \mathrm{E}^{2}$ defined by $\mathrm{F}=\left(\mathrm{u}^{3}, \mathrm{v}-\mathrm{u}\right)$. Then $F^{-1}=\left(u^{1 / 3}, v+u^{1 / 3}\right)$ is not differentiable at $u=0$.

Theorem 2.4. Let $\mathrm{F}: \mathrm{E} \longrightarrow \mathrm{E}^{\mathrm{n}}$ be a mapping such that $\mathrm{F}_{\text {*p }}$ is onetowone at some point p. Then there is an open set U containing p such that the restriction of F to U is a diffeomorphism $U \rightarrow V$ onto an open set V 。

Definition 2.14. A set e_{1}, e_{2}, ..., e_{n} of n mutually orthogonal unit vectors ($e_{i} \cdot e_{j}=\delta_{i j}$) tangent to E^{n} at p is called a frame at the point p .

Theorem 2.5. Let e_{1}, . ., e ${ }_{n}$ be a frame at the point p of E^{n}. If v is any tangent vector to E^{n} at p then

$$
v=\left(v \cdot e_{1}\right) e_{1}+\left(v \cdot e_{2}\right) e_{2}+\ldots+\left(v \cdot e_{n}\right) e_{n}
$$

We call the above process (which works in any inner-product space) the orthonormal expansion of v in terms of the frame $e_{1}, e_{2}, \ldots, e_{n}$.

If we let $e_{i}=U_{i}$ then

$$
\begin{aligned}
& v=\left(v^{1}, v^{2}, \ldots, v^{n}\right)=\sum_{i=1}^{n} v^{i} U_{i} \\
& w=\left(w^{1}, w^{2}, \ldots, w^{n}\right)=\sum_{i=1}^{n} w^{i} U_{i}
\end{aligned}
$$

and in terms of these Euclidean coordinates

$$
V \cdot W=\Sigma v^{i} w^{i}
$$

Now if we use the frame e_{1}, . . , e_{n}, we have

$$
\begin{aligned}
& V=\Sigma a_{i} e_{i}\left(a_{i}=V \cdot e_{i}\right) \\
& W=\Sigma b_{i} e_{i}\left(b_{i}=W \cdot e_{i}\right)
\end{aligned}
$$

but the dot product is given by the same simple formula V. $W=\Sigma a_{i} b_{i}$,

$$
\text { since } \begin{aligned}
V \cdot W & =\left(\Sigma a_{i} e_{i}\right) \cdot\left(\Sigma b_{j} e_{j}\right)-\Sigma\left(a_{i} b_{j}\right) e_{i} \cdot e_{j}=\Sigma a_{i} b_{i} \zeta_{i j} \\
& =\Sigma a_{i} b_{i}
\end{aligned}
$$

It is for this reason that we use frames and the advantage becomes enormous when applied to more complicated geometric situations.

Definition 2.14. Let e_{1}, ... e_{n} be a frame at a point p of E^{n}. The $n \times n$ matrix A whose rows are Euclidean coordinates of these n vectors is called the attitude matrix of the frame.

Thus, if $e_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)_{p}$ then

$$
A=\left(a_{i j}\right) \quad I \leq i, j \leq n
$$

Notice that the rows of A are orthonormal since

$$
\sum_{k} a_{i k}{ }_{j k}=e_{i} \cdot e_{j}=\delta_{i j} \text { for } 1 \leq i, j \leq n
$$

By definition, this means that A is an orthogonal matrix. Hence $A^{t} A$ $=I$, where I is the $n x n$ identity matrix, and ${ }^{t} A$ is the transpose of A. This means that ${ }^{t} A A=I$ and so ${ }^{t} A=A A^{-1}$, the inverse of A.

Definition 2.15. A vector field on a curve $\alpha: I \longrightarrow E^{n}$ is a function that assigns to each number t in I a tangent vector $Y(t)$ to E^{n} at the point $\alpha(t)$ 。

Thus for each $t \in I$, we can write

$$
\begin{aligned}
Y(t) & =\left(y_{1}(t), \cdots, y_{n}(t)\right) \\
& =\Sigma y_{i}(t) U_{i}(\alpha(t))
\end{aligned}
$$

To differentiate a vector field on α we need only differentiate its

Euclidean coordinate functions，thus giving a new vector field on α ．
That is，$Y(t)=\left(y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right)=\Sigma y_{i}(t) U_{i}(\alpha(t))$

$$
Y^{\prime}(t)=\Sigma \frac{d y_{i}(t)}{d t} U_{i}(\alpha(t)) .
$$

It is easy to show that we have the following properties：

$$
(a Y+b Z)^{\prime}=a Y^{\prime}+b Z^{\prime}, a, b \in R \text {, the reals }
$$

and

$$
(f Y)^{\prime}=\frac{d f}{d t} Y+f Y^{\prime}, \quad(Y \cdot Z)^{\prime}=Y^{\prime} \cdot Z+Y \cdot Z^{\prime} .
$$

We say that a vector field Y on a curve is parallel provided its
Euclidean coordinate functions are constants（i．e．，$Y(t)=\left(c_{1}, c_{2}, c_{3}\right)$
$=\Sigma c_{i} U_{i}$ for all t ．
Lemma 2．4．
（1）A curve α is constant $\Leftrightarrow \alpha^{\prime}=0$ 。
（2）A nonconstant curve α is a straight line $\Leftrightarrow \alpha^{\prime \prime}=0$ 。
（3）A vector field Y on a curve is parallel $\Leftrightarrow Y^{\prime}=0$ 。
Definition 2．16．Let W be a vector field on E^{n} and let v be a tangent vector to E^{n} at the point p ．Then the covariant derivative of W with respect to v is the tangent vector

$$
\nabla_{\mathrm{v}} \mathrm{~W}=\mathrm{W}(\mathrm{p}+\mathrm{tv})^{\prime}(0)
$$

at the point p ．
Thus，$\nabla_{\mathrm{v}} \mathrm{W}$ measures the initial rate of change of $\mathrm{W}(\mathrm{p})$ as p moves in the v direction（See fig．2，3）．

Figure 2.3

Lemma 2.5. If $W=\Sigma w_{i} U_{i}$ is a vector field on E^{n} and v is a tangent vector at p, then

$$
\nabla_{v} W=\sum_{i=1}^{n} v\left[w_{i}\right] U_{i}(p)
$$

Proof: Since $W(p+t v)=\Sigma w_{i}(p+t v) U_{i}(p+t v)$ for the restriction of W to the curve $t \longrightarrow p+t v$ and to differentiate all we have to do is differentiate the Euclidean coordinates. But the derivatives of $w_{i}(p+t v)$ at $t=0$ is $v\left[w_{i}\right]$. Hence,

$$
\nabla_{v} W=\sum_{i=1}^{n} v\left[w_{i}\right] U_{i}(p)
$$

Thus, to apply ∇_{v} to a vector field we apply v to its Euclidean coordinates. We use the linearity and Leibnizian properties of the directional derivative to derive the corresponding properties of the covariant derivative。

Theorem 2.6. Let v and w be tangent vectors to E^{n} at p, and a, $b \in R, f \in C^{\infty}\left(E^{n}, R\right)$, let Y and Z be vector fields on E^{n}. Then
1.) $\nabla_{a v}+b w=a \nabla_{v} Y+b \nabla_{w} Y$ for $a l l a, b, \in R$.
2.) $\nabla_{v}(a Y+b Z)=a \nabla_{v} Y+b \nabla_{v} Z$
3.) $\nabla_{v}(f Y)=v[f] Y(p)+f(p) \nabla_{v} Y$
4.) $v[Y \cdot Z]=\nabla_{v} Y \cdot Z(p)+Y(p) \cdot \nabla_{v} Z$

Proof:
1.)

$$
\nabla_{a v}+b_{w} Y=\Sigma(a v+b w)\left[y_{i}\right] U_{i}(p)
$$

$=a \Sigma v\left[y_{i}\right] U_{i}(p)+b \Sigma w\left[y_{i}\right] U_{i}(p)$
$=a \nabla_{v} Y+b \nabla_{w} Y$
2.) $\nabla_{V}(a Y+b Z)=\Sigma v\left[a Y_{i}+b Z_{i}\right] U_{i}(p)$
$=a \Sigma v\left[Y_{i}\right] U_{i}(p)+b \Sigma v\left[Z_{i}\right] U_{i}(p)$
$=a_{\nabla_{v}} Y+b \nabla_{v} Z$
3.) $\quad \nabla_{v}(f Y)=\Sigma v\left[f y_{i}\right] U_{i}(p)=\Sigma v_{p}[f] y_{i}(p) U_{i}(p)+\Sigma f(p) v\left[y_{i}\right] U_{i}(p)$

$$
=v_{p}[f] \Sigma y_{i}(p) U_{i}(p)+f(p) \Sigma v\left[y_{i}\right] U_{i}(p)
$$

$$
=v[f] Y(p)+f(p) \cdot \nabla_{v} Y .
$$

4。) $\nabla_{v}(Y \cdot Z)=v[Y \cdot z]=v\left[\Sigma y_{i} z_{i}\right]$

$$
\begin{aligned}
& =\Sigma v\left[y_{i}\right] \cdot z_{i}(p)+\Sigma y_{i}(p) v\left[z_{i}\right] \\
& =\nabla_{v} Y \cdot Z(p)+Y(p) \cdot \nabla_{v} Z
\end{aligned}
$$

Note: The properties above are also sufficient conditions for ∇_{v}. For suppose we are given a covariant differentiation satisfying the conditions 1 through 4 above. Then for the vector field W and tangent vector v at p we have:

$$
\begin{aligned}
\nabla_{v} W= & \nabla_{v}\left(\Sigma w_{i} U_{i}(p)\right) \\
= & \Sigma \nabla_{v}\left(w_{i} U_{i}(p)\right)=\Sigma\left(v\left[w_{i}\right] U_{i}(p)+w_{i}(p) \nabla_{v} U_{i}(p)\right) \\
= & \Sigma \nabla_{v}\left[w_{i}\right] U_{i}(p)=\left.W(p+t v)^{\prime}\right|_{t=0} \text { since } \\
& \nabla_{v} U_{i}(p)=0 \quad(\text { i.e. }, v[c]=0) .
\end{aligned}
$$

Using the pointwise principle, we can take the covariant derivative of a vector field W with respect to a vector field V. The properties of the preceding theorem take the following form:

Corollary 2.3. Let V, W, Y, and Z be vector fields on E^{n}. Then (1。) $\quad \nabla_{V}(a Y+b Z)=a \nabla_{V} Y+b \nabla_{V} Z$ for $a l l$ reals a, b.
(2.) $\nabla_{f V}+g W Y=f \nabla_{V} Y+g \nabla_{W} Y$, for all functions f and g.
(3.) $\quad \nabla_{V}(f Y)=V[f] Y+f \nabla_{V} Y$, for all $f \in C^{\infty}\left(E^{n}, R\right)$
(4.) $V[Y \cdot Z]=\nabla_{V} Y \cdot Z+Y \cdot \nabla_{V} Z$.

Definition 2.17. If $W=\Sigma W_{i} U_{i}$ is a vector field on E^{n}, the covariant differential of W is defined to be $\nabla W=\Sigma d w_{i} U_{i}$. Thus $\Delta W: T_{p}\left(E^{n}\right) \quad T_{p}\left(E^{n}\right)$ such that $(\nabla W)_{v}=\Sigma d w_{i}(v) U_{i}(p)=\nabla_{V} W$. Notice that d_{i} is a linear mapping on tangent vectors.

Definition 2.18. The bracket (or Lie product) of two vector fields V and W is the vector field $[V, W]=\nabla_{V} W-\nabla_{W} V$ 。

Theorem 2.7. If $f, g \in C^{\infty}\left(E^{n}, R\right)$ then
1.) $[V, W][f]=V[W[f]]-W[V[f]]$
2.) $[V, W]=-[W, V]$
3.) $[\mathrm{U},[\mathrm{V}, \mathrm{W}]]+[\mathrm{V},[\mathrm{W}, \mathrm{U}]]+[\mathrm{W},[\mathrm{U}, \mathrm{V}]]=0$
4.) $[f V, g W]=f V[g] W-g W[f] V+f g[V, W]$.

Differentiable Manifolds

Let M be a set of points. An $\underline{m \text {-coordinate }}$ pair on M is a pair (ϕ, M_{1}) consisting of a subset M_{1} of M and a 1 to 1 map $\phi: M_{1} \quad E^{n}$ such that $\phi\left(M_{1}\right)$ is open in E^{m}. One m-coordinate pair (ϕ, M_{1}) is C^{∞} related to another m-coordinate pair (θ, M_{2}) if and only if the maps $\phi O \theta^{-1}$ and $\theta \circ \phi^{-1}$ are C^{∞} maps wherever they are defined (i.e., domains of definition must be open).

Figure 2-4

A $C^{\infty} \underline{m-s u b a t l a s}$ on M is a collection of m-coordinate pairs (ϕ_{h}, M_{h}), each of which is C^{∞} related to every other member of the collection, and the union of the sets M_{h} is M. A maximal collection of C^{∞} related m-coordinate pairs is called a C^{∞} m-atlas. If a C^{∞} m-atlas contains a C^{∞} m-subatlas, we say the subatlas generates the atlas.

Definition 2.19. An m dimensional \underline{C}^{∞} manifold (or a C^{∞} m-manifold) is a set M together with a C^{∞} m-atlas.

An atlas on a set M is called a differentiable structure on M. Each m-coordinate pair (ϕ, M_{1}) on a set M induces a set of m real valued functions on M_{1} defined by $x_{i}=u_{i} \circ \phi$ for $i=1,2$, \ldots, m where the u_{i} are the natural coordinate slot functions of E^{m} (i.e., $u_{i}: E \longrightarrow R$ by $u_{i}(p)=p_{i}$ where $p=\left(p_{1}, p_{2}, \ldots, p_{i}, \ldots ., p_{m}\right)$ is in $\left.E^{m}\right)$ 。 The functions x_{1}, . . , x_{m} are called coordinate functions (or a coordinate system) and M_{I} is called the domain of the coordinate system.

We list some examples:

Example 1. Let M be E^{n} with a $C^{r} n$-subatlas equal to the pair (ϕ, E^{n}) where ϕ is the identity map on E^{n}.

Example 2. Let M be any open set of E^{n} and let a $C^{r} n$-subatlas be the pair (ϕ, M) where ϕ is the identity map of E^{n} restricted to M。

Example 3. Let M_{1} be the l-dimensional C^{1} manifold of example 1 . That is, let $M_{1}=R$ and ϕ the identity map. Let $M_{2}=R$ and with the C^{1} 1-subatlas (x^{3}, R), where x is the identity mapping on R. Then $M_{1} \neq M_{2}$ since $x^{1 / 3}$ is not C^{1} at the origin (i.e., $x^{\circ}\left(x^{3}\right)^{o+1}=x^{\circ} x^{1 / 3}=x^{1 / 3}$).

This example shows that the same set of points may have different differentiable structures.
Example 4. Let g be a C^{∞} real valued function on E^{n+1}, with $n>0$, and suppose $d g \neq 0$ on the set $N=\left\{p \in E^{n+1} \mid g(p)=0\right\}$. Then N is a $C^{\infty} n$-manifold when a $C^{\infty} n$-subatlas is chosen as follows: At each point $p \in M$, choose a partial derivative of g that doesn't vanish, say the $i^{\text {th }}$ one, apply the implicit function theorem to obtain a neighborhood of p (relative topology on M) which projects in a l-1 way into the $U_{i}=0$ hyperplane of E^{n+1}.

Example 5. Let V ve a vector space over R with Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V. The group of all non-singular matrices $\left(a_{i j}\right)$;

$$
a_{i}=\sum_{i=1}^{n} a_{i j} e_{j}, \quad i=1,2, \ldots, n
$$

called the general linear group and denoted by GL(n, R). Now map

$$
\mathrm{GL}(\mathrm{n}, \mathrm{R}) \longrightarrow \mathrm{E}^{\mathrm{n}^{2}}
$$

defined by: $\left(a_{i j}\right) \quad\left(a_{11}, a_{12}, \ldots, a_{1 n}, a_{21}, a_{22}\right.$, . . . , $a_{n n}$). The image is open since it is the inverse image of an open set (using the determinant map $: E \xrightarrow{n^{2}} R$ which is continuous).

Definition 2.20. Let M be a fixed C^{∞} n-manifold. An open set in M is a subset A of M such that $\varnothing(A \cap U)$ is open in E^{n} for every n coordinate pair (\varnothing, U).

With the above defintion for open sets the manifold M becomes a topological space。

Definition 2.21. Let M be a C^{∞} m-dimensional manifold and N an n-dimensional C^{∞} manifold. If $A M$, A open, then $F: A \longrightarrow N$ is C^{∞} (A, N) at $p \in A$ if and only if $g \circ F \circ \phi^{-1} \& C^{\infty}\left(\phi\left(A \cap M_{1}\right), E^{n}\right)$ at $\phi(p)$ for all coordinate pairs $\left(\phi, M_{1}\right)$ at $p \in M$ and all $g \in C^{\infty}\left(N_{1}, R\right)$, $F(p) \in N_{1}$. (See figure below).

Figure 2.5

Note: The definition above includes the special cases where $M=E^{n}$ and ϕ is identify map (or where $N=E^{n}$, and g is identify map).

Definition 2.22. Let I be an open interval of the real line and M a C^{∞} m-manifold. A differentiable mapping $\alpha: I \longrightarrow M$ is called a curve in M.

Lemma 2.6. If α is a curve, $\alpha: I \longrightarrow M$, whose image lies in M, where $\left(\phi, M_{1}\right)$ is an m-coordinate pair of the. $C^{\infty} m$-dimensional manifold M, then there exist unique differentiable functiona $a_{1}, a_{2}, \ldots, a_{m}$ on I such that

$$
\alpha(t)=\phi^{-1}\left(a_{1}(t), a_{2}(t), \ldots, a_{m}(t)\right) \text { for all } t \in I \text {. }
$$

Figure 2.6

For the proof of the above Lemma we need only consider the Euclidean coordinate functions of the mapping $\phi{ }^{\circ} \alpha$ and the uniqueness comes from the following:

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\phi \circ \alpha=\phi \circ \phi^{-1}\left(b_{1}, b_{2}, \ldots ., b_{m}\right) \\
& =\left(b_{1}, b_{2}, \ldots, b_{m}\right) .
\end{aligned}
$$

Definition 2.23. Let M be a C^{∞} m-manifald. Let $\mathcal{J}=\left\{£ \mid f \phi C^{\infty}\right.$ $(M, R)\}$. A tangent vector at $p \in M$ is a linear mapping $v: \mathcal{G} \longrightarrow R$ such that $v[f g]=v[f] \cdot g(p)+f(p) \cdot v[g]$ 。

Definition 2.24. The tangent space, $T_{p}(M)$, to M at p is the set of all tangent vectors v at p.

The tangent space $T_{p}(M)$ is a vector space over R where ($v+w$) $[f]=v[f]+w[f]$ and (av) $[f]=a \circ v[f]$ for all $v, w \in T_{p}(M), f \in F$ and $a \in R$.

Let x_{1}, . . , x_{m} be a coordinate system about $p \in M$. We define coordinate vectors $\left(\frac{\partial}{\partial x_{i}}\right)_{p}$ by

$$
\left(\frac{\partial}{\partial x_{i}}\right)_{p}[f]=\frac{\partial\left(f o \phi^{-1}\right)}{\alpha U_{i}}(\phi(p))
$$

where $x_{i}=U_{i} \circ \phi, i=1,2, \ldots, m$.

Figure 2.7

Notice that the $\left(\frac{\partial}{\partial x_{i}}\right)_{p}$ are tangent vectors since

$$
\text { 1.) } \begin{aligned}
\left(\frac{\partial}{\partial x_{i}}\right)[a f+b g] & =\frac{\partial}{\partial u_{i}}\left((a f+b g) \circ \phi^{-1}\right)(\phi(p)) \\
& =\frac{\partial}{\partial u_{i}}\left(a f \circ \phi^{-1}+b g \circ \phi^{-1}\right) \phi(p) \\
& =\frac{a \partial}{\partial u_{i}}\left(f \circ \phi^{-1}\right)(\phi(p))+\frac{b \partial}{\partial u_{i}}\left(g \circ \phi^{-1}\right)(\phi(p)) \\
& =a\left(\frac{\partial}{\partial x_{i}}\right)[f]+b\left(\frac{\partial}{\partial x_{i}}\right)_{p}[g]
\end{aligned}
$$

$$
\text { 2.) }\left(\frac{\partial}{\partial x_{i}}\right)_{p}[f g]=\frac{\partial}{\partial u_{i}}\left(f g \circ \phi^{-1}\right)(\phi(p))
$$

$$
=\frac{\partial}{\partial u_{i}}\left(\left(f \circ \phi^{-1}\right)\left(g \circ \phi^{-1}\right)\right)(\phi(p))
$$

$$
=\frac{\partial}{\partial u_{i}}\left(f \circ \phi^{-1}\right)(\phi(p)) \cdot g(p)+f(p)
$$

$$
\cdot \frac{\partial}{\partial u_{i}}\left(g \circ \phi^{-1}\right)(\phi(p))
$$

$$
=\left(\frac{\partial}{\partial x_{i}}\right)_{p}[f] \cdot g(p)+f(p)\left(\frac{\partial}{\partial x_{i}}\right)_{p}[g]
$$

Lemma 2.7. Let x_{1}, . . , x_{m} be a coordinate system about $p \in M$ with $x_{i}(p)=0$ for all i. Then for every function of $f \in C^{\infty}\left(M_{1}, R\right)$, M, an open subset of M with $p \in M_{1}$, there exist m functions f_{1}, . ., f_{m} in $C^{\infty}(M, R)$ with $f_{i}(p)=\left(\frac{\partial}{\partial x_{i}}\right)_{p}[f]$ and $f=f(p)+\sum_{i} x_{i} f_{i}$ in M_{1} 。

In the above lemma we need only consider the map ϕ belonging to the x_{i} and let $F=f 0 \phi^{-1}$. F is defined over some ball $B=\left\{q \in E^{m} \mid\right.$ $d(0, q)<r\}$. Let $\left(a_{1}, \ldots, a_{m}\right) \varepsilon_{\varepsilon} B$. Then let $F_{i}=\int_{0}^{l} \frac{\partial F}{\partial u_{i}}\left(a_{1}\right.$, ..., $\left.a_{i-1}, t a_{i}, 0, \ldots, 0\right) d t$. Then set $f_{i}=F_{i} 0 \phi$.

Theorem 2.8. Let M be a C^{∞} m-manifold and let x_{1}, . . , x_{m} be a coordinate system about $p \in M$. Then if $v \in T_{p}(M), v=\sum_{i} v[x]\left(\frac{\partial}{\partial x_{i}}\right)_{p}$
and the coordinate vectors $\left(\frac{\partial}{\partial x_{i}}\right)_{p}$ from the base for $T_{p}(M)$.
For Theorem 2.8. let $y_{i}=x_{i}-x_{i}(p)$ if $x_{i}(p) \neq 0$ for all i. Then for any $v \in T_{p}(M)$ and $f \in C^{\infty}\left(N_{p}, R\right)$ we use Lemma 2.7 with respect to the coordinate system y_{1}, \ldots, y_{m} and note that $\left(\frac{\partial f}{\partial y_{i}}\right)_{p}=\left(\frac{\partial f}{\partial x_{i}}\right)_{p}$. Also, if c is a constnat map, $v[c]=0$ and so $v[f]=v[c]+v\left[\sum_{i} y_{i} f_{i}\right]$ $=\Sigma\left[v\left[y_{i}\right] \cdot f_{i}(p)+y_{i}(p) \cdot v\left[f_{i}\right]\right]=\Sigma\left[v\left[x_{i}-x_{i}(p)\right] \cdot f_{i}(p)+\right.$ $\left.\left(x_{i}-\cdot x_{i}(p)\right)(p) \cdot v\left[f_{i}\right]\right]=\Sigma v\left[x_{i}\right] \cdot\left(\frac{\partial f}{\partial x_{i}}\right)_{p} . \quad$ Thus we have the $\underset{\partial x_{j}}{\text { required representation. Now if } v=\Sigma a_{i} \frac{\partial}{\partial x_{i}}=0 \text { then } 0=v\left[x_{j}\right]=}$ $\Sigma a_{i} \frac{\partial x_{j}}{\partial x_{i}}=a_{j}$ so the coordinate vectors are independent and span $T_{p}(M)$ so this space has dimension m.

With the above definition of tangent vector and the representation theorem we have for all the corresponding definitions given earlier on $E^{\text {n }}$ a counterpart defined on manifolds.

Definition 2.25. A vector field, V on a subset M_{1} of a C^{∞} mmanifold M, is a mapping that assigns to each $p \in A$ a tangent vector $v_{p} \in T_{p}(M)$.

A vector field V is C^{∞} on M_{1} if and only if M_{1} is open and for all $f \in C^{\infty}(B, R)$, the function $V[f](p)=V_{p}[f]$ is C^{∞} on M_{1} B. If V and W are C^{∞} vector fields on $M_{1} \quad M$, their bracket $\left[V, W\right.$] is a C^{∞} vector field on M_{1} defined by $[V, W]_{p}[f]=V_{p}[W[f]]-W_{p}[V[f]]$. Thus we have all the properties listed earlier in Theorem 2.7 and we note in particular that $\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=0$ for $a l l$ i and j since cross partial derivatives of C^{∞} functions are equal.

Let M and N be C^{∞} manifolds of dimension m and n respectively. If F is a C^{∞} mapping, $F: M \longrightarrow N$. Then we call the induced map $F_{i}: T_{p}(M)$ $\rightarrow T_{F(p)}(N)$ the Jacobian map of F and F_{r} is defined by

$$
\begin{equation*}
\mathrm{F}_{*} \mathrm{~V}_{\mathrm{F}(\mathrm{p})}[\mathrm{g}]=\mathrm{V}_{\mathrm{F}(\mathrm{p})}[\mathrm{g} \circ \mathrm{~F}], \text { for } \mathrm{v} \in \mathrm{~T}_{\mathrm{F}(\mathrm{p})}(\mathrm{N} \tag{N}
\end{equation*}
$$

and $g \in C^{\infty}\left(N_{1}, R\right)$ with $F(p) \in N_{1}$ (an open subset of N). Notice that $\mathrm{F}_{\mathrm{s}}(\mathrm{v})$ is a tangent vector at $\mathrm{F}(\mathrm{p})$ and that F_{*} is linear. We get a matrix representation of F_{*} by selecting coordinate systems x_{1}, . . , X_{m} at p and y_{1}, \ldots, y_{n} at $F(p)$, computing F_{*} on the basis $V_{i}=\frac{\partial}{\partial x_{i}}$ at p. Thus if $w_{j}=\frac{\partial}{\partial y_{j}}$ is a base at $F(p)$ we have

$$
\begin{aligned}
& F_{*} V_{i}=\sum_{j}\left(F_{*}^{*} V_{i}\right) y_{j} w_{j} \text { hence } \\
& \left(\left(F_{*} V_{i}\right) y_{j}\right)=\frac{\partial\left(y_{j} \circ f\right)}{\partial x_{i}} \text { for } 1 \leq i \leq m, 1 \leq j \leq n_{0} .
\end{aligned}
$$

The generalization of the definition of covariant differentiation or a connection on any C^{∞} manifold is the existence of an operator ∇ which satisfies the four conditions below and assigns to C^{∞} vector fields V and W a C^{∞} field $\nabla_{V} W$:
1.) $\nabla_{\mathrm{V}}(\mathrm{W}+\mathrm{Z})=\nabla_{\mathrm{V}} \mathrm{W}+\nabla_{\mathrm{V}}{ }^{2}$
2.) $\nabla_{V+W}(\mathrm{Z})=\nabla_{\mathrm{V}}(\mathrm{Z})+\nabla_{\mathrm{W}}(\mathrm{Z})$
3.) $\nabla_{f V}(W)=f(p) \nabla_{V} W$
4.) $\nabla_{V}(f W)=V[f] W_{p}+f(p) \nabla_{V}(W)$ 。

TENSORS AND FORMS

This chapter presents the exterior algebra of forms and an operm ator on these forms called the exterior derivative. The exterior algebra is a subalgebra of a tensor algebra over a finite dimensional vector space U. (In later application U becomes the tangent space $T_{p}(M)$ to a manifold M at $p \in M, U^{*}$ is the dual space, the space of forms on M.)

Tensor Products

Definition 3.1. Let $U_{1}, ., U_{r}, W$ be vector spaces over field R, A mapping $f: U_{1} X U_{2} X ., \quad X U_{r} W$ is called wininear (or multilinear) if $f\left(X_{1}, \ldots, x_{r}\right)$ is linear in each of the r-entires, that is, if $: f\left(x_{1}, \ldots, x_{i}+x_{i}^{\prime}, \ldots \rho, x_{r}\right)=f\left(x_{1}, \ldots, x_{i}\right.$, $\left.\ldots, x_{r}\right)+f\left(x_{1}, \ldots ., x_{i}^{\prime}, \ldots ., x_{r}\right)$ and $f\left(x_{1}, \ldots ., c x_{i}\right.$,
 allceR.

Example 3.1. Let $U_{1}=U_{2}=R^{n}=\left\{\left(x_{1}, \ldots \rho, x_{n}\right) \mid x_{i} \in R\right\}$. Let $f: U_{1} X U_{2} \longrightarrow R$ defined by $f(x, y)=\Sigma x_{i} y_{i}$ where $x=\left(x_{1}, \ldots \ldots, x_{n}\right)$, $\mathrm{y}=\left(\mathrm{y}_{1}, \cdot . \cdot, \mathrm{y}_{\mathrm{n}}\right)$. Then f is bilinear.

Example 3.2. Let U be a vector space over field R, dim $U=m$ with base $\left\{U_{1}, . \circ, U_{m}\right\}$. Let V be a vector space over field R, dim $V=n$ with base $\left\{V_{1}, \ldots . ., V_{n}\right\}$. Let P be a vector space over field. R_{g}
$\operatorname{dim} P=m n$ with base $\left\{P_{i j}\right\}$, $i=1, \ldots ., m ; j=1, \ldots, \ldots, n$. Define $f: U X V \longrightarrow P$ by $f(x, y)=x^{i} y^{j} p_{i j}$ where $x=x^{i} U_{i}, y=y^{i} V_{j}$ 。 Now $f\left(x_{1}+x_{2}, y\right)=\left(x_{1}^{i}+x_{2}^{i}\right) y^{j} p_{i j}=x_{1}^{i} y^{j} P_{i j}+x_{2}^{i} y^{j} P_{i j}=f\left(x_{1}, y\right)$

$$
+f\left(x_{2}, y\right)
$$

$$
\begin{aligned}
& f\left(x, y_{1}+y_{2}\right)=f\left(x, y_{1}\right)+f\left(x, y_{2}\right) \\
& f(c x, y)=f(x, c y)=c f(x, y) .
\end{aligned}
$$

Note: $f\left(U_{i}, V_{j}\right)=p_{i j}$, hence $f(U X V)$ spans P. Also, let $g: U X V \longrightarrow$ L, where g is bilinear, L is any other vector space. Define $g_{1}: P \rightarrow L$, g_{1} linear $g_{1}\left(P_{i j}\right)=g\left(U_{i}, V_{j}\right)$. This defines g_{1} uniquely on P by inearity. Now $g=g_{1} \circ f$ since $g_{1} \circ f(x, y)=g_{1}(f(x, y))$

$$
\begin{aligned}
& =x^{1} y^{j}\left(p_{i f}\right)=x^{1} y^{j} g\left(U_{i}, V_{f}\right)=g\left(x^{1} U_{i}, y^{j} V_{f}\right) \\
& =g(x, y) .
\end{aligned}
$$

Definition 3.2. By a Tensor Product of two vector spaces U, V on R is meant a vector space P over R equipped with a fixed bilinear mapping $f: U X V \rightarrow P$ having the following properties:
(i) the image $f(U X V)$ spans P.
(ii) if $g: U X V \underset{\text { bilinear }}{ }$ L then \exists linear mapping

$$
\mathrm{g}_{1}: \mathrm{P} \longrightarrow \mathrm{~L} \ni \mathrm{~g}=\mathrm{g}_{1}{ }^{\circ} \mathrm{f}
$$

Figure 3.1

Properties:

1.) The linear mapping $g_{1}: P \longrightarrow L$ in definition 2 is uniquely determined by the bilinear mapping g.
2.) Let $\{P, f\}$ and $\left\{P^{\prime}, f^{\prime}\right\}$ be two tensor products of vector spaces U and V. Then there is one and only one linear mapping $h: P \quad P^{\prime}$ such that $f^{\prime}=h \circ f$ and h is an isomorphism.

From 2.) We see that any two tensor products of U and V are canonically isomorphic. Thus by U (X Ve denote any one of the $\{P, f\}$ and for the given mapping $f:$
$\mathrm{U} X \mathrm{~V} \rightarrow \mathrm{U}$ (x) Ve use the following: $\mathrm{f}(\mathrm{x}, \mathrm{y})=$
x (x) y. From the bilinearity of f we have

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) \otimes y=x_{1} \times y+x_{2} \times y \\
& x \otimes\left(y_{1}+y_{2}\right)=x \otimes y_{1}+x \circledast y_{2} \\
& (c x) \otimes y=x \circledast(c y)=c(x \otimes y)
\end{aligned}
$$

3.) Every element $t \in U(X) V$ can be expressed in at least one way as a sum $t=\sum_{i=1}^{S} x_{i}$ (X) y_{i} where x_{i} in $U, y_{i} \in V, \quad(i=1$, 2, 。 . , s) 。
4.) If U and V have dimension m and n respectively then $U(X V$ has $\operatorname{dim} m \cdot n$, and if $\left\{U_{1}, \ldots, U_{m}\right\},\left\{V_{1}, \ldots, V_{n}\right\}$ are bases for U and V, respectively, then the elements U_{i}
V_{j} in $U X V$ form a base.
5.) U (X $V \cong V$ (x) U

Now given vector spaces U, V, W, over R, we can apply the tensorproduct operation twice, for many, for example, (U (x V) (X) w .

In a similar way we can form repreated tensor products with any number of factors. For our purposes we will be interested in repeated tensor products of a single vector space U.
6.) (U (X) V) (x) $W=U$ (X) (V (x) W)
7.) Let U_{I}, \ldots, U_{r} be vector spaces over R. The mapping $f: U_{I} X .$. . $X U_{r} \longrightarrow U_{I}(x)$. . $X U_{r}$ defined by $f\left(x_{1}, \ldots, x_{r}\right)=x_{1}$ (x) . . (x) $x_{r}, x_{i} \in U_{i}$ is r-linear and its image spans U_{1} (x) . $X U_{r}$. If $g: U_{1} X$. . $X U_{r} \rightarrow L$ is any r-linear mapping into a vector space L then there is a unique linear mapping $\mathrm{g}^{\prime}: \mathrm{U}_{1}(x) \cdot(X) \mathrm{U}_{\mathrm{r}} \longrightarrow \mathrm{L}$ such that $g\left(x_{1}, . ., x_{r}\right)=g^{\prime}\left(x_{1}\right.$ (x) . . © $\left.x_{r}\right)$ (proof is by induction on r)

The Tensor Algebra of a Vector Space

Let J denote an arbitrary set, and suppose that there is assigned to each element j in J a vector space U_{j} over $R_{\text {。 }}$ Let S denote the set of all mappings f that assign to each j in J a vector $f(j)$ in U_{j} in such a way that
(i) $f(j)$ is the zero vector in U_{j} for all but a finite number of j in J.

We make S into a vector space over R as follows:

$$
\begin{aligned}
& (\mathrm{ii}) \quad\left(f+f^{f}\right)(j)=f(j)+f^{\prime}(j) \\
& (c f)(j)=c \cdot f(j)
\end{aligned}
$$

for any f, f^{\prime} in S, any j in J, and any c in R. With these operations S is a vector space.

Definition 3.3. The space S is called the direct sum of the
family $\left\{\mathrm{U}_{\mathrm{j}}\right\}$.
Let x_{j} be an element in U_{j} 。 Denote by X_{j} the element of S defined by
(iii)

$$
x_{j}^{\prime}(i)= \begin{cases}x_{j} & \text { if } i=j \\ 0 & \text { if if } \neq j\end{cases}
$$

Now since

$$
\left(x_{j}^{I}+x_{j}^{2}\right)^{\prime}(i)= \begin{cases}x_{j}^{\prime}+x_{j}^{2} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

and

$$
\left(c x_{j}^{\prime}\right)^{\prime}(i)= \begin{cases}c x_{j} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

the mapping $U \longrightarrow$ S defined by $x_{j} \longrightarrow x_{j}^{\prime}$ is a linear mapping which maps U_{j} isomorphically onto a subspace U_{j}^{\prime} of S. Now let f be any element of S and write $f(j)=x_{j}$, so that x_{j} is in U_{j}. By condition (i), all but a finite number of the x_{j} are zero. Let $\mathrm{x}_{j_{1}}$, , . , $\mathrm{x}_{j_{r}}$ be those which are not zero. From (ii) and (iii) it follows that
(iv) $f=x_{j_{1}}^{\prime}+\ldots .+x_{j_{r}}^{\prime}$.

Conversely, given any elements $\mathrm{x}_{\mathrm{j}_{\mathrm{I}}}, \ldots \circ \circ, \mathrm{x}_{\mathrm{j}_{\mathrm{r}}}$ in $\mathrm{U}_{\mathrm{j}_{1}}, \ldots, \circ, \mathrm{U}_{\mathrm{j}_{\mathrm{r}}}$ (iv) defines an element f in S.

Finally, we simplify our notation by writing x_{j} instead of the mapping $\mathrm{x}_{\mathrm{j}}^{\prime}$. Thus we have the following:

Any element of the direct sum can be expressed as a finite sum

$$
\mathrm{x}_{\mathrm{j}_{1}}+\ldots \ldots+\mathrm{x}_{\mathrm{j}_{\mathrm{r}}}
$$

with $\mathrm{x}_{j_{1}}$ in $\mathrm{U}_{j_{1}}$, . . , $\mathrm{x}_{\mathrm{j}_{r}}$ in $\mathrm{U}_{j_{r}}$. Furthermore the expression is unique, provided the x^{\prime} s are nonzero and provided the elements j_{1}, - . . , j_{r} of J are distinct.

Now let U be an n-dimensional vector space over the field R. Let

U\% be the dual vector space. We introduce the following notation:
(v) $U_{q}^{p}=\underbrace{\mathrm{U}(x \cdot \cdot \cdot(x) \mathrm{U}}_{\mathrm{p}}(x) \underbrace{\mathrm{U}^{*}(x) \cdot \overbrace{i} \cdot(x) U^{*}}_{\mathrm{q}}$

$$
=\left(X^{p} U\right)\left(x\left(X^{q} U^{*}\right)\right.
$$

In particular, $U_{0}^{p}=x^{p} U, U_{q}^{O}=x^{q} U^{*}$. Thus $U_{o}^{1}=U, U_{1}^{0}=U^{*}$, and we further define $U_{o}^{O}=R$.

From all these vector spaces we now build a giant vector space $T(U)$, namely, their direct sum

$$
\text { (vi) } T(U)=\text { direct sum of all } \mathrm{U}_{\mathrm{q}}^{\mathrm{p}}(\mathrm{p}, \mathrm{q}=0,1,2, .0 .)
$$

The elements of $T(U)$ are called tensors on U. As we have just seen each U_{q}^{p} can be regarded as a subspace of $T(U)$. The elements of U_{o}^{p}. are called contravariant tensors of type $\left(\mathrm{p}, 0\right.$), elements of $\mathrm{U}^{0} \mathrm{q}$ are called covariant tensors of type $(0, q)$; elements of $U_{q}^{p}, p, q>0$ are called mixed tensors of type (p, q).

From (v) we have

$$
\mathrm{U}^{\mathrm{p}}=\mathrm{U}_{\mathrm{q}}^{\mathrm{p}} \text { (x) } \mathrm{U}_{\mathrm{q}}^{\mathrm{o}} \text { provided } \mathrm{p}>0, \mathrm{q}>0
$$

(Even if p or q is zero, we can still regard the above formula as correct. For example, if $q=0$ the right hand side is $U^{p}{ }_{0} X R$ $=U_{0 .}^{p}$) $T(U)$ is a vector space over R, and now we show that it can be made into a ring.

We define a product $T(U) X T(U) \longrightarrow T(U)$ by

$$
\begin{aligned}
& \left(t, t^{\prime}\right) \longrightarrow t \otimes t^{\prime \prime}=\sum_{i, j} t_{i} \otimes t_{j}^{\prime} \\
& \text { where } t=\sum_{i=1} t_{i}, t^{\prime}=\sum_{j=1} t_{j}^{\prime}, t, t^{0} \in T(U)
\end{aligned}
$$

Now, the system $T(U)$, with the product given is an associative algebra. Every element of $T(U)$ can be expressed as a finite sum of elements of the type

$$
\begin{aligned}
& x_{1} \times \cdots x_{p} \times y_{1}^{*}\left(x \cdots \left(x y_{q}^{*}\right.\right. \\
& \quad\left(x_{i} \in U^{i}{ }_{o}, U_{j} \text { in } U_{j}^{o}\right)
\end{aligned}
$$

and the product in $T(U)$ of two such elements is given by

$$
\begin{aligned}
& \left(x_{1} \times \cdots x_{p} \times y_{1}^{*} \times(x) \cdot \times y_{q}^{*}\right) \text { (x) }\left(z_{1} \times\right. \\
& \cdots\left(x z_{r}\right) \times\left(w_{1}^{*} \times \text {. . . } \times w_{s}^{*}\right)
\end{aligned}
$$

Furthermore the contravariant tensors in $T(U)$ form a subalgebra

$$
\left.T_{o}(U)=\text { direct sum of } U_{o}^{p}, p=0,1,2, . . .\right) \text { of } T(U)
$$

and the covariant tensors form a subalgebra

$$
T^{\circ}(U)=\text { direct sum of } U_{q}^{0}(q=0,1,2, \ldots) \text { of } T(U) \text {. }
$$

Definition 3.4. $T_{0}(U)$ is called the contravariant tensor algebra over U, and $T^{\circ}(U)$ is called the covariant tensor algebra over $\mathbb{U} ; T(U)$ is called the tensor algebra over U .

Exterior Algebra of U

Let U be a vector space over R, and $T_{o}(U)=\operatorname{direct} \operatorname{sum} U^{p}{ }_{o} p=0$, 1, 2, ... $T_{0}(U)$ has the product operation (x) so let S denote the ideal of $T_{0}(U)$ generated by all elements of the type

$$
x \text { © } x, \quad x \in U_{0}
$$

By this we mean: S consists of all elements in $T_{0}(U)$ which can be obtained from the elements of the type x (x) x by a finite number of the three operations in $T_{o}(U)$. (addition, scalar multiplication, tensor product by arbitrary elements).

Now $t_{1}, t_{2} \in S \quad t_{1}+t_{2}$ and $t_{1}-t_{2} \quad S$, hence S is a subgroup of $T_{0}(U)$, regarded as an abelian group, so we can form the quotient
group $T_{o}(U) / S$ ，consisting of all the cosets of S ．Every coset of S can be written（in many ways）as $t+S, t \in T_{0}(U)$（for any t in the coset）．We make $T_{0}(U) / S$ into a vector space by

$$
\begin{aligned}
& \left(t_{1}+s\right)+\left(t_{2}+s\right)=\left(t_{1}+t_{2}\right)+s \\
& c(t+s)=c t+s
\end{aligned}
$$

These operations are independent of the representatives chosen for suppose：

$$
\begin{aligned}
\text { If } t_{1}+S=t_{1}^{\prime}+S & \text { and } t_{2}+S=t_{2}^{\prime}+S \text {, then } \\
\left(t_{1}+t_{2}\right)+S & =\left(t_{1}^{\prime}+S_{1}+t_{2}^{\prime}+S_{2}\right)+S \\
& =\left(t_{1}^{\prime}+t_{2}^{\prime}\right)+\left(S S_{1}+S_{2}\right)+S \\
& =\left(t_{1}^{\prime}+t_{2}^{\prime}\right)+S
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& t_{1}+S=t_{1}^{\prime}+S \Rightarrow t_{1}-t_{1}^{\prime} \in S \text { and } s o \\
& c\left(t^{\prime}-t\right) \in S, \text { thus } c t^{\prime}+S=c t+S
\end{aligned}
$$

showing that the operations defined above are independent of the t chosen．We now make $T_{0}(U) / S$ into an algebra by defining a product operation，called the wedge product，in $T_{o}(U) / S$ by the rule：

$$
\left(t_{1}+s\right) \Lambda\left(t_{2}+s\right)=\left(t_{1} \quad \text { (x) } t_{2}\right)+s
$$

The right hand side depends only on the cosets and not the representa－ tives chosen．For if t_{1}^{\prime} is in $t_{1}+S$ and if t_{2}^{\prime} is in $t_{2}+S$ ，then both $t_{1}^{\prime}-t_{1}$ and $t_{2}^{\prime}-t_{2}$ are in S 。（i。e．，$t_{1}^{\prime}+S_{1}=t_{1}+S_{2}$ and so $t_{1}^{\prime}-t_{2}$ $\left.=S_{2}=S_{1} \in S\right)$ ．Thus，from the definition of S the products $\left(t_{1}^{\prime}-t_{1}\right)$ （x）t_{2}^{\prime} and t_{1}（x）$\left(t_{2}^{\prime}-t_{2}\right)$ must also be in S ．Hence so is their sum t_{1}^{\prime}（x）$t_{2}^{\prime}-t_{1}$（x）t_{2} ，and therefore t_{1}^{\prime}（x）$t_{2}^{\prime}+S=t_{1}$（x）$t_{2}+S$ 。

Definition 3．5．The quotient algebra $T_{0}(U) / S$ is called the
exterior algebra of U（or the Grassman algebra of U ）．
We shall denote it by $\Lambda \mathrm{N}$. We now examine its structure．Let
$P: T_{0}(U) \longrightarrow U$ be the canonical mapping

$$
P: t \rightarrow t+S .
$$

P is linear with Ger $P=S$, since $P\left(a t_{1}+b t_{2}\right)+S=a t_{1}+S+a t_{2}+S$

$$
=a\left(t_{1}+s\right)+b\left(t_{2}+s\right)
$$

$$
=a P\left(t_{1}\right)+b P\left(t_{2}\right)
$$

$$
P(t)=0 \Rightarrow t+S=S \text { or } t-0=t \in S
$$

Also:

$$
\begin{aligned}
P\left(t_{1} \text { (x) } t_{2}\right)=\left(t_{1} \otimes t_{2}\right)+s & =\left(t_{1}+s\right) \Lambda\left(t_{2}+s\right) \\
& =P\left(t_{1}\right) \Lambda P\left(t_{2}\right)
\end{aligned}
$$

Thus we have the result that P is a homomorphism of algebras.

$$
\left.P: U^{P}{ }_{0} \rightarrow \text { subspace of } \Lambda U \text { call it } \Lambda P_{U} \text { (i.e., } P\left(U_{0}^{p}\right)=\Lambda p_{U}\right)
$$

From the definition of S we know that $S=$ ger P contains no elements of $R=U_{o}^{0}$ or $U^{1}{ }_{o}=U$. Hence, P maps R isomorphically onto $\Lambda{ }^{\circ} U$ and P maps $\dot{U}^{1}{ }_{o}$ isomorphically onto $\Lambda^{1} U_{\text {。 }}$. Thus we identify $\Lambda_{U}{ }_{U}$ with R and $\Lambda^{1} \mathrm{U}$ with U . From this we have

$$
\begin{aligned}
\text { (vii) } & P(c)=c & \text { for all } c \in R \\
& P(x)=x & \text { for all } x \in U .
\end{aligned}
$$

Now since U^{p} is spanned by elements of the type x_{1} (x) 。. $x x_{p}$ $\left(x_{i} \in U\right)$ we have

$$
\text { (viii) } \begin{aligned}
P\left(x_{1}(x) \cdot(x) x_{p}\right) & =P\left(x_{1}\right) \Lambda p\left(x_{2}\right) \Lambda \cdot \wedge \cdot \Lambda P\left(x_{p}\right) \\
& =x_{1} \Lambda_{x_{2}} \Lambda \cdot \cdot \wedge x_{p}
\end{aligned}
$$

Hence, $\Lambda \mathrm{P}_{\mathrm{U}}$ is spanned by elements of the type

$$
\text { (ix) } \mathrm{x}_{1} \bigwedge_{\mathrm{x}_{2}} \Lambda . . . \bigwedge_{\mathrm{x}_{\mathrm{p}}} \text {, with } \mathrm{x}_{\mathrm{i}} \in \mathrm{U}_{0}
$$

Elements of ΛP_{U} are said to have degree p.
Since x (X) $x \in S$ for all x in U we have $P(x$ (x) $x)=0$, or $P(X) \bigwedge P(X)=0$. But by (vii) above we have

$$
\text { (x) } x \Lambda x=0 \text { for all } x \in U
$$

The mapping $\underbrace{U X U X \ldots X_{U}}_{\text {P }} \rightarrow \Lambda P_{U \text { defined by }}$
(xi)

$$
\left(x_{1}, x_{2}, \ldots ., x_{p}\right) \rightarrow x_{1} \Lambda \ldots x_{p}
$$

is p -linear. This follows from the following diagram:

Figure 3.3

Then from (xi) we have that if x, y are in U, then

$$
(\mathrm{x}+\mathrm{y}) \bigwedge(\mathrm{x}+\mathrm{y})=\mathrm{x} \Lambda \mathrm{x}+\mathrm{x} \Lambda \mathrm{y}+\mathrm{y} \Lambda \mathrm{x}+\mathrm{y} \Lambda \mathrm{y}
$$

But from (x$) \mathrm{x} \Lambda_{\mathrm{x}=\mathrm{y}} \Lambda_{\mathrm{y}=(\mathrm{x}+\mathrm{y})} \Lambda_{(\mathrm{x}+\mathrm{y})=0 \text { so we have }, ~}$ $x \Lambda y+y \Lambda x=0$ or

$$
\text { (xii) } x \Lambda y=-y \Lambda x
$$

From (xii) we have
(xiii)

$$
\begin{aligned}
& x_{1} \Lambda \ldots . x_{p}\left(x_{i} \varepsilon U\right)
\end{aligned}
$$

showing that the expression is skew-symmetric in its entries, we also have
(xiv) $x_{1} \Lambda . . \Lambda x_{p}=0$ if any two x_{i} are identical ($x_{i} \in U$).

For suppose $x_{j}=x_{k}$ then by suitable permutation we can put x_{j} and x_{k} adjacent. But $x_{j} \bigwedge x_{k}=0$ and since the permutation can at most change the sign we have the result.

Using（xii）repeatedly we have

$$
\begin{aligned}
(x v) & x_{1} \Lambda \cdot . . \bigwedge_{x_{p}} \Lambda \mathrm{y}_{1} \Lambda \ldots \ldots \mathrm{y}_{\mathrm{q}}=(-1)^{\mathrm{pq}} \mathrm{y}_{1} \Lambda \ldots . \bigwedge_{\mathrm{y}_{\mathrm{q}}} \Lambda \\
& \mathrm{x}_{1} \Lambda \cdot \ldots \mathrm{x}_{\mathrm{p}}
\end{aligned}
$$

for any x_{i}, y_{i} in U ．Since any $u \in \bigwedge p_{U}$ and $v \in \bigwedge q_{U}$ can be written as a linear combination of elements $x_{1} \Lambda . . . \Lambda x_{p}$ and $y_{1} \Lambda . . . \Lambda y_{q}$
we have

$$
(x v i) \quad U \Lambda V=(-1)^{p q} v \Lambda U \quad \text { for } U \in \Lambda P_{U}, V \in \Lambda q_{V}
$$

Notice：$x \bigwedge x$ not necessarily zero if $x \in \Lambda^{2} U$ ．For example let

$$
\begin{aligned}
\mathrm{x}=\mathrm{x}_{1} \Lambda \mathrm{x}_{2}+\mathrm{x}_{3} \Lambda \mathrm{x}_{4} \text { then } \mathrm{x} \Lambda \mathrm{x} & =\left(\mathrm{x}_{1} \Lambda \mathrm{x}_{2}+\mathrm{x}_{3} \Lambda \mathrm{x}_{4}\right) \Lambda\left(\mathrm{x}_{1} \Lambda \mathrm{x}_{2}+\mathrm{x}_{3} \Lambda \mathrm{x}_{4}\right) \\
& =\left(\mathrm{x}_{1} \Lambda \mathrm{x}_{2}\right) \Lambda \mathrm{x}_{3} \Lambda \mathrm{x}_{4}+\left(\mathrm{x}_{3} \Lambda \mathrm{x}_{4}\right) \Lambda\left(\mathrm{x}_{1} \Lambda \mathrm{x}_{2}\right) \\
& =\mathrm{x}_{1} \Lambda \mathrm{x}_{2} \Lambda \mathrm{x}_{3} \Lambda \mathrm{x}_{4}+\mathrm{x}_{1} \Lambda \mathrm{x}_{2} \Lambda \mathrm{x}_{3} \Lambda \mathrm{x}_{4} \\
& =2\left(\mathrm{x}_{1} \Lambda \mathrm{x}_{2} \Lambda \mathrm{x}_{3} \Lambda \mathrm{x}_{4}\right) \neq 0
\end{aligned}
$$

for $x_{1}, x_{2}, x_{3}, x_{4} \in U, x_{i}$ are linearly independent．
Also we have $\Lambda p_{U}=0$ if $p>n=\operatorname{dim} U$（Since $\Lambda p_{U}, p>n$ ，is spanned by elements of the type $x_{1} \Lambda . . . \bigwedge x_{p}\left(x_{i} \in U\right)$ and every such element is zero if $p>n$ ）。

Hence，$\Lambda \mathrm{U}=\Lambda^{\mathrm{O}} \mathrm{U} \oplus \Lambda^{1} \mathrm{U}_{\mathrm{U}} \oplus \ldots \AA^{\mathrm{n}_{\mathrm{U}}}$
Theorem 3．1．$x_{1} \Lambda \ldots . \Lambda x_{p}=0$ if and only if $x_{1}, x_{2}, \ldots \ldots$, x_{p} are linearly dependent $\left(x_{i} \in U\right)$ 。

We now compute the dimension of the $\Lambda^{p}(U)$ ．Let $B=\left\{e_{1}, \ldots\right.$. ， $\left.e_{n}\right\}$ be a base for U 。 Thus $\operatorname{dim} U=n$ 。 $I f x_{i}=x_{i}{ }_{i} e_{i}, i=1,2$ ，。。， p ，then

$$
\begin{aligned}
& =x_{1}{ }^{j_{1}} \ldots . x_{p}{ }^{j_{p}}{ }_{e_{j}} \Lambda . . \Delta e_{j_{p}} .
\end{aligned}
$$

Thus Λp_{U} is spanned by the elements of the form

$$
\mathrm{e}_{\mathrm{j}_{1}} \Lambda \cdots \wedge \mathrm{e}_{\mathrm{j}_{\mathrm{p}}} .
$$

But from (viii) and (ix) we see that $\Lambda \mathrm{p}_{\mathrm{U}}$ is spanned by $\mathrm{e}_{\mathrm{j}_{1}} \Lambda \ldots \mathrm{Ne}_{\mathrm{j}_{\mathrm{p}}}$ with $1 \leq j_{1}<j_{2}<\ldots<j_{p} \leq n$. There are $\binom{n}{p}$ elements $e_{j_{1}} \Lambda$... e $_{j_{p}}$ such that $2 \leq j_{1}<j_{2}<\ldots .<j_{p} \leq n$. These elements are linearly independent in $\bigwedge p_{U}$. For suppose
(xvii)

$$
c^{j_{1} \ldots j_{p}} \quad e_{j_{1}} \Lambda \cdot \cdots \Lambda e_{j_{p}}=0
$$

for some scalars $c^{j_{1}} \ldots{ }^{j} \mathrm{p}$. Let $\mathrm{K}_{\mathrm{p}+1}$, . . ., K_{n} be distinct integers from 1 to n and form the exterior product of the left member above (xvii) with the element $e_{K_{p+1}} \Lambda \cdots e_{K_{n}} \cdot$ All terms
 the ones for which j_{I}, 。 , j_{p} is the complementary set of indices K_{1}, . .., K_{p} corresponding to $\mathrm{K}_{\mathrm{p}+1}$, ..., K_{n}, so that K_{1}, ..., K_{n} is a permutation of $1, \ldots .0, n$. Thus the product of the left side of (xvii) and $e_{K+1} \Lambda \ldots \bigwedge e_{n}$ reduces to the single term
 (xvii). But $e_{K_{l}} \Lambda \ldots \bigwedge_{\mathrm{K}_{\mathrm{n}}}$ is not zero, by Theorem 3.1, thus $e^{K_{1} \ldots{ }_{p}^{K}}=0$ 。

Hence, we have proved that

$$
\text { (xviii) } \operatorname{dim} \bigwedge p_{U}=\binom{n}{p} p=0,1,2, \ldots, n_{0}
$$

and that
the elements $e_{j_{1}} \Lambda \ldots \operatorname{en}_{j_{p}}$ with $i \leq j_{1}<\ldots<j_{p} \leq n$ form a base in $\Lambda^{p}(U)$ if $\left\{e_{1}, \ldots, e_{n}\right\}$ is a base in $U(p>0)$.
Thus we have

$$
\operatorname{dim} \Lambda u=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}=(1+1)^{n}=2^{n}
$$

Differentiable Forms on a Manifold

We now let $U=T_{p}^{*}(M)$, the dual space to the tangent space $T_{p}(M)$ at a point p in a C^{∞} m-manifold M. The 0 -forms on M are the differentiable real-valued functions $f: M \longrightarrow R$.

Definition 3.6. A 1 - form ϕ at $p \in M$ is an element in $T_{p}^{*}(M)$. Thus $\phi_{p}(a v+b w)=a \phi_{p}(v)+b \phi_{p}(w)$ for $a l l a, b \in R, v, w \in T_{p}(M)$. Notice that by definition $\phi_{p}(v)$ is a real number for all $v \in T_{p}(M)$.

Definition 3.7. If f is a differentiable real-valued function on some open set containing a point p of a C^{∞} m-manifold M then the differential df of f is the 1 -form such that

$$
d f(v)_{p}=v_{p}[f] \text { for all } v \in T_{p}(M)
$$

If $x_{1}, x_{2}, \ldots, x_{m}$ is a local coordinate system in a neighborhood of $p \in M_{\text {, }}$ then the differentials $\left(d x_{1}\right)_{p},\left(d x_{2}\right)_{p}, \ldots,\left(d x_{m}\right)_{p}$ form a basis for $T_{p}^{*}(M)$. In fact, they form a dual basis of the basis

$$
\left(\frac{\partial}{\partial x_{1}}\right) p,\left(\frac{\partial}{\partial x_{2}}\right) p, \cdots,\left(\frac{\partial}{\partial x_{m}}\right) p \quad \text { for } T_{p}(M)
$$

Note: Let $M=E^{1}$ with coordinate system x. Then any tengent vector v at p is of the form $\left(x_{2}{ }^{-x_{1}}\right)_{p}=(\Delta x)_{p}=\Delta x \cdot l_{p}$ and so $d x\left(\Delta x_{p}\right)=(\Delta x)_{p}[x]=\left(\Delta x \cdot I_{p}\right)[x]=\Delta x \cdot\left(I_{p}\right)[x]=\Delta x \cdot \frac{d x}{d x}=\Delta x$, since $l_{p}=\left(\frac{d}{d x}\right)_{p}$. See Figure 3.2 below.

Figure 3.2

In a neighborhood of p, every 1 -form ω can be uniquely written as

$$
\omega=\sum_{i} f_{i} d x_{i}
$$

where the $f_{i}\left(x_{1}, \ldots, x_{m}\right)$ are functions defined in the neighborhood of p and are called components of w with respect to (x_{1}, . . . , x_{m}). The 1 -form ω is called differentiable if the f_{i} are differentiable.

A 1 -form can be defined as an $\mathcal{G}(M)$-linear mapping of the $\mathcal{G}(M)$ module $\mathcal{X}(\mathrm{M})$ into $\mathcal{F}(\mathrm{M})$. The two definitions are related by $(\omega(V))_{p}=$ $<\omega_{p}, V_{(p)}>, V \in \mathcal{X}(M), p \in M$, where $<,>$ denotes the value of the first entry on the second entry as a linear functional on $\mathcal{X}(M)$.

Let $\bigwedge T_{p}^{*}(M)$ be the exterior algebra over $T_{p}^{*}(M)$. An r-form ω is a mapping that assigns an element of $\Lambda^{r}\left(T_{p}^{*}(M)\right)$ to each point p of M. In terms of local coordinates x_{1}, . . , x_{m} can be expressed uniquely as a sum

The r form ω is called differentiable if the components $f_{i_{1}}$,in are all differentiable. By an r-form we shall mean a differentiable r-form.

We denote by $D^{r}(M)$ the totality of differentiable r forms on M for each $r=0,1$, . . m. Thus $D^{0}(M)=\mathcal{F}(M)$. Let $D(M)=\sum_{r=0}^{m} D^{r}(M)$, then with respect to the exterior product, $D(M)$ forms an algebra over the field of real numbers.

Exterior Differentiation

The exterior derivative of a p -form on M is a mapping $d: D^{r}(M) \rightarrow$ $D^{r+1}(M)$ such that
1.) $d(w+n)=d w+d n$ for all $w \in D^{n}(M), n \in D^{s}(M)$
2.) $\quad \mathrm{d}\left(\lambda \Lambda_{\mu}\right)={ }_{\mathrm{d} \lambda} \Lambda_{\mu}+(-1)^{\mathrm{r}} \lambda \Lambda \mathrm{d} \mu$ where $\lambda \in \mathrm{D}^{\mathrm{r}}(\mathrm{M})$
3.) $d(d w)=0$ for all $\in D$.
4.) $d f=\Sigma \frac{\partial f}{\partial x_{i}} d x_{i}$, for $f \in D^{\circ}(M)$.

The conditions above completely characterize d and in terms of local coordinates if $\omega=\Sigma \quad f_{i_{1} \ldots i_{r}} d x^{i_{1}} \Lambda \mathrm{dx}^{i_{2}} \Lambda \ldots \mathrm{dx}^{\mathrm{i}_{\mathrm{r}}}$

$$
i_{1}<i_{2}<\ldots<i_{r}
$$

then

$$
d \omega=\Sigma d f_{i_{1}} \ldots i_{r} \quad{ }^{d^{i}}{ }^{1} \Lambda d x^{i_{2}} \Lambda \ldots \Lambda_{d x}{ }^{i_{r}} .
$$

Let $F: M \longrightarrow N$ be a differentiable mapping where M is a $C^{\infty} m-$ manifold N is a C^{∞} n -manifold. Since the Jacobian F_{ψ} maps tangent vectors on M into tangent vectors on N, it induces a map F^{*} of forms on N to forms on M. If g is a real-valued C^{∞} function on N, then $F^{*}(g)$ $=\mathrm{g}^{\mathrm{o}} \mathrm{F}$ is a C^{∞} realwalued function on M 。 Hence

$$
F^{*}: D^{0}(N) \longrightarrow D^{0}(M)
$$

Now if ϕ is a 1 -form on N then define $F^{*}(\phi)(v)=\phi\left(F_{*}(v)\right)$ for all $v \in T_{p}(M)$, and if η is a 2 -form on N then define

$$
F^{*}(\eta)(v, w)=\eta_{\eta}\left(F_{*} v, F_{*} w\right) \text { for all pairs }(v, w) \in T_{p}(M) X T_{p}(N) .
$$

In general, then we define $F^{*}(\mu) \in D^{r}(M)$ by

$$
F^{*}(\mu)\left(v_{1}, v_{2}, \ldots, v_{r}\right)=\mu\left(F_{*} v_{1}, F_{*} v_{2}, \ldots ., F_{*} v_{r}\right)
$$

where $v_{i} \in T_{p}(M), \mu \in D^{r}(N)$.
Theorem 3.1. Let $F: M \longrightarrow N$ be a differentiable mapping of a C^{∞} m-manifold M into $C^{\infty} n$-manifold N and let ω and η be forms on N. Then

$$
\text { 1.) } F^{*}(\omega+\eta)=F^{*} \omega+F^{*} \eta
$$

2.) $\mathrm{F}^{*}\left(\omega \Lambda_{\mu}\right)=\mathrm{F}^{*}{ }_{\omega} \Lambda_{\mathrm{F}}{ }^{*} \eta$
3.) $F^{*}\left(d_{\omega}\right)=d\left(F^{*} \omega\right)$.

CHAPTER IV

ON THE DEAL CURVATURE OF HYPERSURFACES

This chapter utilizes the exterior algebra of forms and the moving frames as developed by E. Cartan to study hypersurfaces in Euclidean ndimensional space. The Deal Curvature of a surface on E^{3} is given and then extended to hypersurfaces in E^{n}.

The covariant differential, $\nabla \mathbb{W}$, of a vector field (see Definition 2.17) will be used in terms of the natural frame field U_{1}, U_{2}, U_{3} to yield a vector field with 1 -form coefficients. Then orthonormal expansion in terms of the moving frame e_{1}, e_{2}, e_{3} is used to introduce the connection forms for the moving frame e_{1}, e_{2}, e_{3}.

Moving Frames in E^{3}

To each point p in E^{3} we attach a right-handed orthonormal frame e_{1}, e_{2}, e_{3} and suppose the vector fields e_{i} are differentiable. Let $X=\left(x^{1}, x^{2}, x^{3}\right)=x^{1} U_{1}+x^{2} U_{2}+x^{3} U_{3}$ denote the positioning vector of the point p. Now since $\nabla_{V} X=\nabla_{V}\left(x^{1} U_{1}\right)+\nabla_{V}\left(x^{2} \mathrm{U}_{2}\right)+\nabla_{V} \mathrm{x}^{3} \mathrm{U}_{3}$

$$
=v\left[x^{1}\right] U_{1}+v\left[x^{2}\right] U_{2}+v\left[x^{3}\right] U_{3} \text { (by Lemma 2.5) }
$$

$$
=\mathrm{dx}^{I}(\mathrm{v}) \mathrm{U}_{1}+\mathrm{dx}^{2}(\mathrm{v}) \mathrm{U}_{2}+\mathrm{dx}^{3}(\mathrm{v}) \mathrm{U}_{3}
$$

(by Definition 3.7)
where $v \in T_{p}\left(E^{3}\right)$, we have $\nabla X=\left(d x^{1}, d x^{2}, d x^{3}\right)$. Thus in the following sections we will use E. Cartan's notation and express the covariant differential by $d X$. Thus, $d X=\left(d x^{1}, d x^{2}, d x^{3}\right)$ and if we express $d X$
in terms of the frame e_{1}, e_{2}, e_{3} by expanding U_{1}, U_{2}, U_{3} in terms of the e_{i} and then collecting terms we have:

$$
\mathrm{dX}=\sigma_{1} \mathrm{e}_{1}+\sigma_{2} \mathrm{e}_{2}+\sigma_{3} \mathrm{e}_{3}
$$

where the σ_{i} are one-forms. We do the same for each e_{i} :

$$
d e_{i}=w_{i 1} e_{1}+w_{i 2} e_{2}+w_{i 3} e_{3} \quad(i=1,2,3)
$$

where the $\omega_{i j}$ are one-forms. Since $e_{i} \cdot e_{j}=\delta_{i j}$, we have

$$
d e_{i} \cdot e_{j}+e_{i} \cdot d e_{j}=0
$$

and so

$$
w_{i k}+w_{k i}=0
$$

And, in particular, $\omega_{i i}=0$ 。
We introduce the following matrix notation:

$$
e=\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right), \quad \sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right), \Omega=\left(\omega_{i j}\right)
$$

Thus, we have $d X=\sigma e, d e=\Omega e$, and $\Omega+{ }^{t} \Omega=0$, where ${ }^{t} \Omega$ is the transpose of the matrix Ω.

Now, since $d(d X)=\left(d\left(d x^{1}\right), d\left(d x^{2}\right), d\left(x^{3}\right)\right)=0$, we have

$$
\begin{aligned}
0 & =d(d X)=d(\sigma e)=d_{\sigma} \cdot e+\sigma \cdot d e \\
& =d_{\sigma} \cdot e-\sigma \Omega e=\left(d_{\sigma}-\sigma \Omega\right) e,
\end{aligned}
$$

but the e_{i} are linearly independent, so

$$
\mathrm{d}_{\sigma}=\sigma \Omega .
$$

Also, $d(d e)=0$, and so

$$
0=\mathrm{d} \Omega \cdot e-\Omega \mathrm{de}=\mathrm{d} \Omega \mathrm{e}-\Omega^{2} \mathrm{e},
$$

therefore, $\mathrm{d} \Omega=\Omega^{2}$.
In summary, then we have

$$
\begin{array}{rr}
\text { Structure equations } & \text { Integrability conc } \\
d X=\sigma e & d_{\sigma}=\sigma \Omega \\
d e=\Omega e & d \Omega=\Omega^{2} \\
\Omega+{ }^{t} \Omega=0 &
\end{array}
$$

Integrability conditions

Notice that if we let

$$
\mathrm{u}=\left(\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2} \\
\mathrm{u}_{3}
\end{array}\right)
$$

where $U_{1}(p)=(1,0,0)_{p}, U_{2}(p)=(0,1,0){ }_{p}$, $U_{3}=(0,0,1)_{p}$ then

$$
e_{i}=\Sigma b_{i j} U_{j}, \quad e=B U
$$

where $B=\left(b_{i j}\right)$ is an orthogonal matrix:

$$
I=e^{t} e=B U^{t} U^{t} B=B I^{t} B=B^{t} B .
$$

Thus,

$$
\mathrm{dX}=\left(\mathrm{dx}{ }^{1}, \mathrm{dx}^{2}, \mathrm{dx}^{3}\right) \mathrm{U}=\sigma^{\mathrm{e}}=\sigma^{\mathrm{BU}},
$$

and so

$$
\left(d x^{1}, d x^{2}, d x^{3}\right)=\sigma^{B}
$$

hence

$$
\begin{aligned}
& \qquad \mathrm{dx}^{1} \bigwedge_{\mathrm{dx}}{ }^{2} \bigwedge_{\mathrm{dx}}{ }^{3}=|\mathrm{B}| \sigma_{1} \bigwedge_{\sigma_{2}} \bigwedge_{\sigma_{3}} \text {. } \\
& \text { But } \mathrm{t}_{\mathrm{BB}}=\mathrm{I} \text { so }|\mathrm{B}|^{2}=1,|\mathrm{~B}|= \pm 1 \text {. Since e is a right-handed system, } \\
& |\mathrm{B}|=+1 \text { and so } \\
& \qquad \mathrm{dx} \bigwedge_{\mathrm{dy}} \bigwedge_{\mathrm{dz}}=\sigma_{1} \bigwedge_{\sigma_{2}} \bigwedge_{\sigma_{3}} \\
& \text { and thus } \sigma_{1} \bigwedge_{\sigma_{2}} \bigwedge_{\sigma_{3}} \text { is the volume element for } \mathrm{E}^{3} .
\end{aligned}
$$

$$
\text { Surfaces in } E^{3}
$$

Let M be smooth surface in E^{3} with X as positioning vector. We
choose a moving orthonormal frame at each point p of M such that e_{3} is normal to the surface. Then e_{1} and e_{2} span the tangent plane at each point p.

Since X is constrained to the surface M, $d X$ must lie in the tangent plane and so σ_{3} must be zero. Thus

$$
d X=\left(d x^{1}, d x^{2}, d x^{3}\right)=\sigma_{1} e_{1}+\sigma_{2} e_{2} .
$$

and $\sigma_{1} \Lambda_{\sigma_{2}}$ represents the element of area on M 。

Figure 4.1

Since Ω is skew-symmetric we have

$$
\Omega=\left(\begin{array}{ccc}
0 & \bar{\omega} & -\omega_{1} \\
-\bar{\omega} & 0 & -\omega_{2} \\
\omega_{1} & \omega_{2} & 0
\end{array}\right) .
$$

Therefore, the structure and integrability equations reduce to

$$
\begin{aligned}
& \mathrm{dX}=\sigma_{1} \mathrm{e}_{1}+\sigma_{2} \mathrm{e}_{2} \\
& \mathrm{de}{ }_{1}={ }_{\omega} \mathrm{e}_{2}-\omega_{1} e_{3}
\end{aligned}
$$

$$
\mathrm{d} \sigma_{1}=\tilde{\omega} \Lambda \sigma_{2}
$$

$$
\mathrm{d}_{\sigma_{2}}=-\stackrel{-}{\omega} \Lambda_{\sigma_{1}}
$$

$$
\begin{aligned}
& \mathrm{de}_{2}=-\omega_{1}-\omega_{2} e_{3} \\
& \mathrm{de} \\
& 3
\end{aligned}=\omega_{1} e_{1}+\omega_{2} e_{2} .
$$

$$
\begin{aligned}
& \sigma_{1} \bigwedge_{\omega_{1}}+\sigma_{2} \Lambda_{\omega_{2}}=0 \\
& \mathrm{~d} \ddot{\omega}+\omega_{1} \Lambda_{\omega_{2}}=0 \\
& {\mathrm{~d} \omega_{1}}=\bar{\omega} \Lambda_{\omega_{2}} .
\end{aligned}
$$

The elements of Ω are called the connection forms for M with respect to the frame e_{1}, e_{2}, e_{3}. The equation ${ }_{\mathrm{d}}^{\omega}+\omega_{1} \Lambda_{\omega_{2}}=0$ is called the Guass equation and

$$
\begin{aligned}
& \mathrm{d}_{\omega_{1}}+\omega_{1} \Lambda \omega_{2}=0 \\
& \mathrm{~d}_{\omega_{2}}=\vec{\omega} \Lambda_{\omega_{1}}
\end{aligned}
$$

are called the Codazzi equations.
Also, since $\mathrm{dx} \Lambda_{\mathrm{dy}}=\sigma_{1} \bigwedge_{\sigma_{2}}$, the element of area on M is given by the form $\sigma_{1} \bigwedge_{\sigma_{2}}$. Now as X moves over the surface M, e_{3} moves over the surface $s^{2}=\left\{\left(x^{1}, x^{2}, x^{3}\right) \mid\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}=1\right\} \cdot S^{2}$ is called the spherical image of M and since e_{1}, e_{2}, are orthogonal to e_{3}, they lie in the tangent plane to S^{2} and form a frame on S^{2}. Thus, since

$$
d e_{3}=\omega_{1} e_{1}+\omega_{2} e_{2}
$$

$\omega_{1} \wedge \omega_{2}$ is the element of area on s^{2} (i.e., de e_{3} plays same role to s^{2} as $d X$ does for the surface M). From Chapter III we know that there is only one linearly independent 2 -form on M so

$$
\omega_{1} \Lambda_{w_{2}}=K_{\sigma_{1}} \Lambda_{\sigma_{2}}
$$

where K is a scalar called the Gaussian curvature of M at p.

$$
\begin{gathered}
\text { Also, } \sigma_{1} \Lambda \omega_{2}-\sigma_{2} \bigwedge_{\omega_{1}} \text { is a } 2 \text { form on } M \text { and so } \\
\sigma_{1} \Lambda \omega_{2}-\sigma_{2} \Lambda \omega_{1}=2 H \sigma_{1} \Lambda \sigma_{2} .
\end{gathered}
$$

We call H the mean curvature of M at p . The one-forms ω_{1}, ω_{2} are linear combinations of σ_{1} and σ_{2} and since $\sigma_{1} \Lambda \omega_{1}+\sigma_{2} \bigwedge \omega_{2}=0$, we have a symmetry in the coefficients:

$$
\begin{aligned}
& \omega_{1}=p \sigma_{1}+q \sigma_{2} \\
& \omega_{2}=q \sigma_{1}+r \sigma_{2} .
\end{aligned}
$$

From this we have

$$
\begin{aligned}
& \sigma_{1} \Lambda_{\omega_{2}}=r \sigma_{1} \Lambda_{\sigma_{2}} \\
& \sigma_{2} \Lambda_{\omega_{1}}=-\mathrm{p} \sigma_{1} \Lambda_{\sigma_{2}}
\end{aligned}
$$

and so by adding the last two equations above we have

$$
\sigma_{1} \Lambda_{\omega_{2}}-\sigma_{2} \Lambda_{\omega_{1}}=(p+r) \sigma_{1} \Lambda_{\sigma_{2}}
$$

Therefore, $2 H=p+r$ or $H=(p+r) / 2$. Also,

$$
\begin{aligned}
\omega_{1} \Lambda \omega_{2} & =\left(p \sigma_{1}+q \sigma_{2}\right) \Lambda\left(q \sigma_{1}+r_{\sigma_{2}}\right) \\
& =\left(p r-q^{2}\right) \sigma_{1} \Lambda \sigma_{2}
\end{aligned}
$$

and hence, $K=p r a q^{2}$.
We call the matrix

$$
S=\left(\begin{array}{ll}
\mathrm{p} & \mathrm{q} \\
\mathrm{q} & \mathrm{r}
\end{array}\right)
$$

the shape operator of the surface M and the Gaussian curvature K and the mean curvature H of M are given by

$$
\begin{aligned}
& K=\operatorname{det} S=p r-q^{2} \\
& H=\frac{1}{2} \text { trace } S=\frac{1}{2}(p+r) .
\end{aligned}
$$

The characteristic roots of the symmetric matrix S are called the principal curvatures k_{1}, k_{2} of M. Thus

$$
\begin{aligned}
& \left|S-\lambda^{I}\right|=0 \text { implies } \\
& (p-\lambda)(r-\lambda)-q^{2}=0 \text { or } p r-q^{2}-(p+r) \lambda+\lambda^{2}=0
\end{aligned}
$$

and so $K=k_{1}^{\circ} k_{2}$

$$
2 \mathrm{H}=\mathrm{k}_{1}+\mathrm{k}_{2}
$$

Notice that from $\mathrm{d} \bar{\omega}+\omega_{1} \bigwedge_{\omega_{2}}=0$ we have

$$
\mathrm{d} \bar{\omega}+\mathrm{k} \sigma_{1} \Lambda_{\sigma_{2}}=0
$$

Thus we know the Gaussian curvature once we know $\bar{\omega}, \sigma_{1}, \sigma_{2}$. But from the relations

$$
\begin{aligned}
\mathrm{d} \sigma_{1} & =\bar{\omega} \Lambda_{\sigma_{2}} \\
\mathrm{~d} \sigma_{2} & =-\bar{\omega} \Lambda \sigma_{1}
\end{aligned}
$$

we have $\mathrm{d} \sigma_{1}+\mathrm{d} \sigma_{2}=\bar{\omega} \quad\left(\sigma_{2}-\sigma_{1}\right)$ which means that we know $\bar{\omega}$ once σ_{1} and σ_{2} are known. That is

$$
\begin{aligned}
& \mathrm{d} \sigma_{1}=\mathrm{a} \sigma_{1} \Lambda \sigma_{2} \\
& \mathrm{~d} \sigma_{2}=\mathrm{b} \sigma_{1} \Lambda \sigma_{2}
\end{aligned}
$$

are determined and so we have

$$
\mathrm{d} \sigma_{1}+\mathrm{d}_{2}=\left(\mathrm{a} \sigma_{1}+\mathrm{b} \sigma_{2}\right) \Lambda\left(\sigma_{2}-\sigma_{1}\right)=\bar{\omega} \Lambda\left(\sigma_{2}-\sigma_{1}\right) .
$$

Hence, $\bar{\omega}=a_{\sigma_{1}}+b \sigma_{2}$. Thus the Gaussian curvature is completely determined analytically by σ_{1} and σ_{2}. This contains the theorem of Gauss that curvature is an intrinsic invariant of M.

On Deal Curvature of Surfaces

We consider the following two form on M :

$$
\mathrm{p} \omega_{1} \Lambda \sigma_{2}-\mathrm{r} \omega_{2} \Lambda \sigma_{1}+2 \mathrm{q} \omega_{2} \Lambda \sigma_{2}
$$

Since the space of all two forms on M is one dimensional we have

$$
\mathrm{p} \omega_{1} \Lambda_{\sigma_{2}}-\mathrm{r}_{2} \Lambda_{\sigma_{1}}+2 \mathrm{q} \omega_{2} \Lambda \sigma_{2}=\mathrm{K}_{\mathrm{D}} \sigma_{1} \Lambda \sigma_{2}
$$

where K_{D} is a scalar called the Deal Curvature of M at p.
By direct computation

$$
\mathrm{p}_{1} \Lambda_{\sigma_{2}}-\mathrm{r}_{\omega_{2}} \Lambda_{\sigma_{1}}+2 \mathrm{q}{\omega_{2}}^{\Lambda_{\sigma_{2}}=\left(\mathrm{p}^{2}+\mathrm{r}^{2}+2 \mathrm{q}^{2}\right){\sigma_{1}} \Lambda_{\sigma_{2}} .}
$$

A1so,

$$
\begin{aligned}
{\left[(2 \mathrm{H})^{2}-2 \mathrm{~K}\right]_{\sigma_{1}} \Lambda_{\sigma_{2}} } & =\left[(\mathrm{p}+\mathrm{r})^{2}-2\left(\mathrm{pr}-\mathrm{q}^{2}\right)\right] \sigma_{1} \Lambda_{\sigma_{2}} \\
& =\left[\mathrm{p}^{2}+\mathrm{r}^{2}+2 \mathrm{q}^{2}\right] \sigma_{1} \Lambda_{\sigma_{2}}
\end{aligned}
$$

so,

$$
K_{D}=(2 H)^{2}-2 K .
$$

Thus, in terms of the principal curvatures k_{1} and k_{2} we have

$$
\begin{aligned}
K_{D} & =\left(k_{1}+k_{2}\right)^{2}-2\left(k_{1} k_{2}\right) \\
& =k_{1}^{2}+k_{2}^{2} .
\end{aligned}
$$

Example: Let M be a surface of a sphere with radius a. Then

$$
X=(a \sin \phi \cos \theta, a \cos \phi \sin \theta, a \cos \phi)
$$

and so

$$
\begin{aligned}
d x= & (a \cos \phi \cos \theta, a \cos \phi \sin \theta,-a \sin \phi) d \phi \\
& +(-a \sin \phi \sin \theta, a \sin \phi \cos \theta, 0) d \theta \\
= & (a d \phi) e_{1}+(a \sin \phi d \theta) e_{2},
\end{aligned}
$$

where

$$
e=\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{lll}
\cos \phi \sin \theta & \cos \phi \cos \theta & -\sin \phi \\
-\sin \theta & \cos \theta & 0 \\
\sin \phi \cos \theta & \sin \phi \sin \theta & \cos \phi
\end{array}\right)
$$

Therefore

$$
\sigma_{1}=a d \phi, \quad \sigma_{2}=a \sin \phi d \theta, \quad \sigma_{3}=0
$$

Thus

$$
\begin{array}{rl}
\mathrm{de} & 3
\end{array}=(\cos \phi \cos \theta, \cos \phi \sin \theta,-\sin \phi) \mathrm{d} \phi \quad \begin{aligned}
& +(-\sin \phi \sin \theta, \sin \phi \cos \theta, 0) \mathrm{d} \theta \\
= & d \phi e_{1}+\sin \phi \mathrm{d} \theta e_{2}
\end{aligned}
$$

and so $\omega_{1}=d \phi, \quad \omega_{2}=\sin \phi d \theta$.
Therefore we have

$$
\omega_{1} \Lambda \omega_{2}=\mathrm{d} \phi \quad \sin \phi \mathrm{~d} \theta=\frac{1}{a} \quad \sigma_{1} \Lambda \frac{1}{a} \quad \sigma_{2}=\frac{1}{a^{2}} \quad \sigma_{1} \Lambda \sigma_{2} .
$$

This gives $\frac{1}{a^{2}}$ as the Gaussian curvature of a sphere of radius a. Now since

$$
\mathrm{d} \phi=\mathrm{pad} \mathrm{~d} \phi+\mathrm{q} a \sin \phi \mathrm{~d} \theta
$$

$$
\sin \phi d \theta=\mathrm{q} a \mathrm{~d} \phi+\mathrm{ra} \sin \phi \mathrm{~d} \theta
$$

we have $p=r=\frac{1}{a}, q=0$, and hence

$$
K_{D}=p^{2}+r^{2}+2 q^{2}=\frac{1}{a^{2}}+\frac{1}{a^{2}}=\frac{2}{a^{2}}
$$

Deal Curvature of Hypersurfaces

A hypersurface is an n-dimensional manifold M embedded in E^{n+1}. Let X denote the moving point p on M, and let n be the unit normal at each point in M. Consider the mapping $X \rightarrow n$ on M into S^{n}. The tangent space $T_{p}(M)$ is an n-dimensional Euclidean space, so we pick an orthonormal basis e_{1}, e_{2}, . . , e_{n}. Thus, at X, the vectors e_{1}, e_{2}, ..., e_{n}, n form on orthonormal basis of E^{n+1}. Now since $d X$ is in the tangent space we have

$$
d X=\sigma_{1} e_{1}+\sigma_{2} e_{2}+\ldots+\sigma_{n} e_{n}, \sigma_{i} \text { are one-forms on } M
$$

From $e_{i} \cdot e_{k}=\delta_{i k}, e_{1} \cdot n=0, n \cdot n=1$
we have $d e_{i} \cdot e_{k}+e_{i} \cdot d e_{k}=0, d e_{i} \cdot n+e \cdot d n=0, n \cdot d n=0$, and

$$
\begin{aligned}
& \mathrm{de}_{i}=\sum \omega_{i j} e_{j}-\omega_{i} n \\
& \mathrm{dn}=\Sigma \omega_{i} e_{i}
\end{aligned}
$$

where $\omega_{i j}$ and ω_{i} are one-forms on M and
$\omega_{i j}+\omega_{j i}=0$.
Thus in matrix notation we have

$$
e=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
\vdots \\
e_{n}
\end{array}\right), \quad \sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right), \Omega=\left(\omega_{i j}\right),
$$

Therefore

$$
\begin{aligned}
& d X=\sigma e \\
& d\binom{\mathrm{e}}{\mathrm{n}}=\left(\begin{array}{cc}
\Omega & -{ }^{\mathrm{t}} \omega \\
\omega & 0
\end{array}\right)\binom{\mathrm{e}}{\mathrm{n}}
\end{aligned}
$$

$$
\Omega+{ }^{\mathrm{t}} \Omega=0
$$

And since

$$
\begin{aligned}
0=d(d X) & =\left(d_{\sigma}\right) e-\sigma(d e)=\left(d_{\sigma}\right) e=\sigma\left(\Omega e-{ }^{t} \omega n\right) \\
& =\left(d_{\sigma}-\sigma^{2}\right) e+\left(\sigma^{t} \omega\right) n,
\end{aligned}
$$

we have $d_{\sigma}=\sigma \Omega$ and $\sigma^{t} \omega=0$.
Now,

$$
\begin{aligned}
0=d\left[d\binom{\mathrm{e}}{\mathrm{n}}\right] & =\left(\begin{array}{cc}
\mathrm{d} \Omega & -\mathrm{d}^{\mathrm{t}} \omega \\
\mathrm{~d} \omega & 0
\end{array}\right)\binom{\mathrm{e}}{\mathrm{n}}-\left(\begin{array}{cc}
\Omega & -\mathrm{t}_{\omega} \\
\omega & 0
\end{array}\right) \mathrm{d}\binom{\mathrm{e}}{\mathrm{n}} \\
& =\left(\begin{array}{cc}
\mathrm{d}_{\Omega} & -\mathrm{d}^{\mathrm{t}} \omega \\
\mathrm{~d}_{\omega} & 0
\end{array}\right)\binom{\mathrm{e}}{\mathrm{n}}-\left(\begin{array}{cc}
\Omega & -\mathrm{t}_{\omega}{ }^{2} \\
\omega & 0
\end{array}\right)\binom{\mathrm{e}}{\mathrm{n}} \\
& =\left(\begin{array}{lc}
\mathrm{d} \Omega-\Omega^{2}+\mathrm{t}^{t^{2} \omega} & -\mathrm{t}_{\omega} \mathrm{d}_{\omega}+\Omega^{\mathrm{t}} \omega \\
d_{\omega}-\omega \Omega & 0
\end{array}\right)\binom{\mathrm{e}}{\mathrm{n}}
\end{aligned}
$$

and so, $d \Omega-\Omega^{2}+{ }^{t}{ }_{\omega \omega}=0, d \omega=\omega \Omega$.
We define a skew-symmetric matrix of two forms:

$$
\begin{aligned}
& \Theta=\left(\theta_{\mathrm{ij}}\right)=\mathrm{d} \Omega-\Omega^{2} \\
& \mathrm{~d}_{\sigma}=\sigma \Omega, \mathrm{d} \omega=\mu \Omega \\
& \Omega+{ }^{\mathrm{t}} \Omega=0 \\
& \sigma^{\mathrm{t}} \omega=0 \\
& \Theta+{ }_{\omega \omega}=0
\end{aligned}
$$

or in terms of individual elements of the matrices we have

$$
\begin{aligned}
& d_{\sigma_{j}}=\Sigma \sigma_{i} \Lambda \omega_{i j} \\
& \omega_{i j}+\omega_{j i}=0 \\
& \Sigma \sigma_{i} \Lambda \omega_{i}=0 \\
& d \omega_{j}=\Sigma \omega_{i} \wedge \omega_{i j} \\
& e_{i j}+\omega_{i} \wedge \omega_{j}=0 .
\end{aligned}
$$

The σ_{i} form a basis for one-forms on M, hence we have

$$
\omega_{i}=\Sigma b_{i j} \sigma_{j}
$$

Because $\Sigma \sigma_{i} \Lambda_{\omega_{i}}=0$, the $b_{i j}$ must be symmetric,

$$
b_{i j}=b_{j i}
$$

The mean curvature and Gaussian curvature are defined by

$$
H=\frac{I}{n} \Sigma b_{i i}, \quad k=\left|b_{i j}\right|
$$

Since $\sigma_{1} \Lambda . . \Lambda_{\sigma_{n}}$ is the n-dimensional volume element on M and $\omega_{1} \Lambda_{0} . \Lambda_{\omega_{n}}$ is the corresponding quantity for s^{n}, K represents the ratio of volumes, volume of spherical image over volume of M, due to

$$
\begin{aligned}
\omega_{1} \Lambda_{\mathrm{n}} . \Lambda_{\omega_{n}} & \left.=\left(\Sigma_{b_{1 j} \sigma_{j}}\right) \Lambda . . . \Lambda_{\left(\Sigma b_{n j} \sigma_{j}\right.}\right) \\
& =\left|b_{i j}\right| \sigma_{1} \Lambda . . \Lambda_{\sigma_{n}}=K_{\sigma_{1}} \Lambda . \Lambda_{\sigma_{n}}
\end{aligned}
$$

Now consider the following n-form on M :

$$
\begin{aligned}
& \sum_{i=1}^{n}(-1)^{n-1} b_{i i} \omega_{i} \Lambda_{\sigma_{1}} \Lambda . . \Lambda \hat{\sigma}_{i} \Lambda . . \Lambda \sigma_{n} \\
& -2 \sum_{i=1}^{n-1}\left[\left(\sum_{j=1+1}^{n}(-1)^{n-1} b_{i j}\right)_{\omega_{i}} \Lambda_{\sigma_{1}} \Lambda . . \Lambda_{\sigma_{i}} \Lambda . . \Lambda_{\sigma_{n}}\right] \\
& =K_{D} \sigma_{1} \Lambda . \Lambda \Lambda_{\sigma_{n}} .
\end{aligned}
$$

The scalar K_{D} is called the Deal curvature of M.
As noted above

$$
\begin{aligned}
& \omega_{1}=b_{11} \sigma_{1}+b_{12} \sigma_{2}+\ldots+b_{1 n} \sigma_{n} \\
& \omega_{2}=b_{21} \sigma_{1}+b_{22} \sigma_{2}+\ldots+b_{2 n} \sigma_{n} \\
& \cdot \\
& \omega_{n}=b_{n I} \sigma_{1}+b_{22} \sigma_{2}+\ldots+b_{n n} \sigma_{m}
\end{aligned}
$$

so we consider the following:

$$
\begin{aligned}
& \mathrm{b}_{11} \mu_{1} \Lambda_{\sigma_{2}} \Lambda_{\sigma_{3}} \Lambda . . \Lambda_{\sigma_{\mathrm{n}}}=\mathrm{b}_{11}^{2} \sigma_{1} \Lambda_{.} . \Lambda_{\sigma_{\mathrm{m}}} \\
& -b_{22} \omega_{2} \Lambda_{\sigma_{1}} \Lambda_{\sigma_{3}} \Lambda . . \Lambda_{\sigma_{n}}=b_{22}^{2} \sigma_{1} \Lambda . . \Lambda_{\sigma_{n}} \\
& \%
\end{aligned}
$$

$$
\begin{aligned}
& (-1)^{n-1} b_{n n} \omega_{n} \Lambda_{\sigma_{1}} \Lambda . . \Lambda_{\sigma_{n-1}}=b_{n n \sigma_{1}}^{2} \Lambda \cdot . \Lambda_{\sigma_{n}} \\
& 2\left(\mathrm{~b}_{22}+. .+\mathrm{b}_{\mathrm{nn}}\right)_{\mu_{1}} \Lambda_{\sigma_{2}} \Lambda . . \Lambda_{\sigma_{\mathrm{n}}}=2 \mathrm{~b}_{11} \mathrm{~b}_{22 \sigma_{1}} \Lambda . . \Lambda_{\sigma_{\mathrm{n}}} \\
& -2\left(\mathrm{~b}_{33}+\ldots+\mathrm{b}_{\mathrm{nn}}\right){\omega_{2}} \Lambda_{\sigma_{1}} \Lambda_{\sigma_{3}} \Lambda . . \Lambda_{\sigma_{\mathrm{n}}}=2 \mathrm{~b}_{22} \mathrm{~b}_{33} \sigma_{1} \Lambda \\
& . \Lambda_{\sigma_{n}} \\
& \left.(-1)^{i-1_{2(b}}{ }_{i+1, i+1}+\cdots \cdot+b_{n n}\right)_{\omega_{i}} \Lambda_{\sigma_{1}} \Lambda_{\sigma_{2}} \Lambda . . \Lambda_{\sigma_{i}} \Lambda . . \Lambda_{\sigma_{n}} \\
& =2 b_{i i}{ }_{i+1, i+1} \sigma_{1} \Lambda . . \Lambda_{\sigma_{n}} \\
& (-1)^{n-1}{ }_{2 b}{ }_{n n} \omega_{n-1} \Lambda_{\sigma_{1}} \Lambda . . \Lambda_{\sigma_{n-2}} \Lambda_{\sigma_{n}}=2 b_{n-1, n-1}{ }_{n, n} \sigma_{1} \Lambda . \Lambda_{\sigma_{n}}
\end{aligned}
$$

By adding the above equations we have

$$
\begin{aligned}
& \sum_{i=1}^{n}(-1)^{i \infty I_{b}}{ }_{i i} \omega_{i} \Lambda_{\sigma_{1}} \Lambda . . \Lambda_{\sigma_{i}} \Lambda^{n} . \Lambda_{\sigma_{n}}+2 \sum_{i=1}^{n-1}\left(\sum_{j=i+1}^{n}(-1)^{i-1_{b}}{ }_{j j}\right) \\
& \omega_{i} \Lambda \sigma_{1} \Lambda \cdot \cdot \wedge \hat{\sigma}_{i} \wedge \cdot \cdot \wedge \sigma_{n} \\
& =\left(\sum_{i=1}^{n} b_{i 1}^{2}+\sum_{i=1}^{n-1} b_{1 i} b_{i+1, i+1}\right) \sigma_{1} \Lambda . . . \Lambda_{\sigma_{n}} \\
& =(\mathrm{nH})^{2} \sigma_{1} \Lambda \cdot . \Lambda_{\sigma_{\mathrm{n}}} .
\end{aligned}
$$

Now we consider the det $b_{i j}=\left|\begin{array}{llll}b_{11} & \cdots & b_{1 n} & b_{1 n} \\ 0 & & & \\ . & & & \\ \dot{b}_{n 1} & \cdots & \cdots & b_{n n}\end{array}\right|$,
and the following expressions derived from $\omega_{i}=\Sigma b_{i j} \sigma_{j}$ 。

$$
\begin{aligned}
& -2 \tilde{K}=-2\left\{\sum_{i=1}^{n}\left[\sum_{j=i+1}^{n}(-1)^{i-1} b_{j j}\right] \omega_{i} \Lambda \sigma_{1} \Lambda \cdot . \Lambda \hat{\sigma}_{i} \Lambda \cdot . . \Lambda_{\sigma_{n}}\right. \\
& -\sum_{i=1}^{n-1}\left(\sum_{j=i+1}^{n}(-1)^{i-1} b_{b_{j}}\right) \omega_{i} \Lambda_{\sigma_{1}} \Lambda . . \Lambda_{\sigma_{i}} \Lambda^{n} . \Lambda_{\sigma_{n}}
\end{aligned}
$$

$$
\begin{aligned}
= & -2\left\{\left(\sum_{i=1}^{n} b_{i i} b_{i+1, i+1}\right) \sigma_{1} \Lambda \ldots . \Lambda_{\sigma_{n}}\right. \\
& \left.-\sum_{i=1}^{n-1}\left(\sum_{j=i+1}^{n} b_{i j}^{2}\right) \sigma_{1} \cdots \cdots \sigma_{n}\right\} .
\end{aligned}
$$

Thus from the form giving Deal curvature we have

$$
\begin{aligned}
& \sum_{i=1}^{n}(-1)^{i-1} b_{i \dot{i}} \omega_{i} \Lambda_{\sigma_{1}} \Lambda \cdot \cdots \Lambda_{\sigma_{i}} \Lambda \cdots \cdot \Lambda_{\sigma_{n}} \\
& -2 \sum_{i=1}^{n-1}\left[\left(\sum_{j=i+1}^{n-1}(-1)^{i-1} b_{i j}\right) \omega_{i} \Lambda_{\sigma_{1}} \Lambda . . \Lambda \hat{\sigma}_{i} \Lambda . . \Lambda_{\sigma_{n}}\right] \\
& =\left[(\mathrm{nH})^{2}-2 \tilde{K}\right] \sigma_{1} \Lambda \cdot . \Lambda_{\sigma_{n}}=K_{D} \sigma_{1} \Lambda \cdot \cdot . \Lambda_{\sigma_{n}} .
\end{aligned}
$$

It can be shown that in terms of the principal curvatures k_{1}, . . ., k_{n} (characteristic roots of the symmetric matrix $\left(b_{i j}\right)$) that $K_{D}=k_{1}^{2}+k_{2}^{2}$ $+\ldots+k_{n}^{2}$ 。

Example: Consider the surface of revolution given by

$$
X\left(u^{1}, u^{2}\right)=\left(u^{2} \cos u^{1}, u^{2} \sin u^{1}, h\left(u^{2}\right)\right)
$$

Let the frame be given by

$$
\begin{aligned}
& e_{1}=\left(-\sin u^{1}, \cos u^{1}, 0\right) \\
& e_{2}=\left(\cos u^{1}, \sin u^{1}, h^{\prime}\left(u^{2}\right)\right) \frac{1}{\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{\frac{1}{2}}} \\
& e_{3}=\left(h^{\prime}\left(u^{2}\right) \cos u^{1}, h^{\prime}\left(u^{2}\right) \sin u^{1},-1\right)\left(1 /\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{\frac{1}{2}}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
d X\left(u^{1}, u^{2}\right) & =u^{2} d u^{1} e_{1}+\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{\frac{3}{2}} d u^{2} e_{2} \\
& =\sigma_{1} e_{1}+\sigma_{2} e_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
d e_{3} & =\left(h^{\prime}\left(u^{2}\right) d u^{1} /\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{\frac{1}{2}}\right) e_{1}+\left(h^{\prime \prime}\left(u^{2}\right) d u^{2} /\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)\right) e_{2} \\
& =w_{1} e_{1}+w_{2} e_{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\omega_{1} \Lambda_{\omega_{2}} & =\left(h^{\prime}\left(u^{2}\right) h^{\prime \prime}\left(u^{2}\right) /\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{3 / 2}\right) d u^{1} \Lambda_{d u^{2}}^{2} \\
& =\left(h^{\prime}\left(u^{2}\right) h^{\prime \prime}\left(u^{2}\right) / u^{2}\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{2}\right)_{\sigma_{1}} \Lambda_{\sigma_{2}} \\
& =k \sigma_{1} \Lambda_{\sigma_{2}}
\end{aligned}
$$

where K is the Gaussian curvature of $X\left(u^{1}, u^{2}\right)$.
Also, since

$$
\begin{aligned}
& \omega_{1}=p \sigma_{1}+q_{\sigma_{2}} \\
& \omega_{2}=q \sigma_{1}+r_{\sigma_{2}}
\end{aligned}
$$

we have

$$
\begin{aligned}
& p=h^{\prime}\left(u^{2}\right) /\left(u^{2}\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{\frac{1}{2}}\right. \\
& q=0 \\
& r=h^{\prime \prime}\left(u^{2}\right) /\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{3 / 2}
\end{aligned}
$$

and so

$$
\begin{aligned}
\mathrm{p} \omega_{1} \Lambda_{\sigma_{2}}-r \omega_{2} \Lambda_{\sigma_{1}} & =\left(\mathrm{p}^{2}+\mathrm{r}^{2}\right) \sigma_{1} \Lambda_{\sigma_{2}} \\
& =\left(h^{\prime}\left(u^{2}\right)^{2}\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{2}\right. \\
& \left.+\left(u^{2}\right)^{2} h\left(u^{2}\right)^{2}\right) /\left(u^{2}\right)^{2}\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{3} \sigma_{1} \Lambda_{\sigma_{2}} \\
& =K_{D} \sigma_{1} \Lambda_{\sigma_{2}}
\end{aligned}
$$

where K_{D} is the Deal curvature of the surface of revolution given by $X\left(u^{1}, u^{2}\right)$. If we let

$$
h\left(u^{2}\right)=u^{2}, \quad 0<u^{2}<1
$$

we have the surface of a cone and the Gaussian curvature vanishes;

$$
\mathrm{K}=0
$$

while the Deal curvature is given by

$$
K_{D}=1 / 2\left(u^{2}\right)^{2}
$$

If we let

$$
h\left(u^{2}\right)=\left(a^{2}-\left(u^{2}\right)^{2}\right)^{\frac{3}{2}}
$$

then the surface of revolution given by

$$
x\left(u^{1}, u^{2}\right)=\left(u^{2} \cos u^{1}, u^{2} \sin u^{1},\left(a^{2}-\left(u^{2}\right)^{2}\right)^{\frac{1}{2}}\right)
$$

is a sphere with radius a. Now since

$$
h^{\prime}\left(u^{2}\right)=-\left(u^{2}\right) /\left(a^{2}-\left(u^{2}\right)^{2}\right)^{\frac{1}{2}}, \quad h^{\prime \prime}\left(u^{2}\right)=-a^{2} /\left(a^{2}-\left(u^{2}\right)^{2}\right)^{3 / 2}
$$

we have the Gaussian curvature of a sphere of radius a given by

$$
\begin{aligned}
K & =h^{\prime}\left(u^{2}\right) h^{\prime \prime}\left(u^{2}\right) /\left(u^{2}\right)\left(1+h^{\prime}\left(u^{2}\right)^{2}\right)^{2} \\
& =1 / a^{2}
\end{aligned}
$$

And, for the Deal curvature, K_{D}, of the sphere we have:

$$
K_{D}=2 / a^{2}
$$

A SELECTED BIBLIOGRAPHY

I. Auslander, L., and Mackenzie, R. E., Introduction to Differentiable Manifolds, McGraw-Hill Book Company, N. Y., (1963).
2. Bishop, R. L., and Crittenden, R. J., Geometry of Manifolds, Academic Press Inc., N. Y., (1964).
3. Cartan, E., "La Methode du Repere Mobile," Actualities Sci. et Ind., (1.935).
4. Chern, S. S., "Differential Geometry of Fiber Bundles," Proc. Int. Congress, (1950).
5. Chern, S.S., and Lashof, R. K., "The Total Curvature of Immersed Manifolds," Amer. J. Math., vol. 79 (1957) pp. 308-318.
6. Deal, R. B., Jr., Unpublished Doctoral Dissertation, University of Oklahoma, (1953).
7. Ehresmann, C., "Les Connexions Infinitesimales dans un Espace Fibre Differentiable," Colloque de Topologie, Bruxelies, (1950).
8. Flanders, H., Differential Forms with Applications to the Physical Sciences, Academic Press Inc., N. Y., (1963).
9. Goldberg, S. Io, Curvature and Homology, Academic Press Inc., N. Y., (1962).
10. Hicks, N. Jo, Notes on Differential Geometry, D. Van Nostrand, N. Y., (1965).
11. Kobayashi, S_{\circ}, and Nomizu, K., Foundations of Differential Geometry I, John Wiley \& Sons, Inc., N. Y., (1963).
12. Kreyszig, E., Differential Geometry, Oxford University Press, London, (1959).
13. Mostow, G. D., and Sampson, J. H., and Meyer, J. P., Fundamental Structures of Algebra, McGrawwHill Inc., N. Y, (1963).
14. Nomizu, K., Lie Groups and Differential Geometry, Math. Soc. Japan, (1956).
15. O^{\prime} Neill, Barrett, Elementary Differential Geometry, Academic Press Inc., N. Y., (1966).
16. Spivak, M., Calculus on Manifolds, W. A. Benjamin, Inc., N. Y., (1965).
17. Sternberg, S., Lectures on Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, N. J., (1964).
18. Willmore, T. J., Introduction to Differential Geometry, Oxford University Press, Oxford, England, (1959).

VITA

Donald J. Boyce
Candidate for the Degree of
Doctor of Education

Thesis: DEAL CURVATURE OF HYPERSURFACES

Major Field: Higher Education
Minor Field: Mathematics
Biographical:
Personal Data: Born in Duncan, Oklahoma, December 30, 1931, the son of Mearl and Ruby Boyce.

Education: Attended elementary schools in Comanche County and Lawton Public Schools, Lawton, Oklahoma; was graduated from Lawton High Schoo1, Lawton, Oklahoma, in 1951; attended Cameron Junior College, Lawton, Oklahoma, 1951-53; received Bachelor of Science degree from Central State College, Edmond, Oklahoma, with a major in mathematics, in May, 1956; received Master of Science degree at Oklahoma State University, Stillwater, Oklahoma, in August, 1957; attended University of California at Los Angeles, in Summer, 1960; attended University of Kansas, Lawrence, Kansas, in 1961-62; completed requirements for the Doctor of Education degree at Oklahoma State University, Stillwater, Oklahoma, in January, 1968.

Professional Experience: Taught mathematics at Central State College, Edmond, Oklahoma, 1955-56; Graduate Assistant, Oklahoma State University, Stillwater, Oklahoma, 1956-57; Central State College, Edmond, Oklahoma, 1957-58. Systems Analysist, Tinker Field, Oklahoma, in Summer, 1958; taught mathematics, Central State College, Edmond, Oklahoma, 195860 and 1963-67.

