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CHAPTER t· 

INTRODUCTION 

Differential geometry has a long history as a branch of mathematics 

but a large portion of the knowledge produced belongs to the realm of 

cQntemporary mathematics. Much of this new material is scattered 

throughout the research journals. 

Mathematics, in general has been expanding in_ all areas at a fabu­

lous rate during the past half century. At the same time, one of the 

mQst striking trends in contemporary mathematics is the constantly in­

creasing interrelationship among its various branches. Thus, as a pos­

sible means to alleviate some of the resulting pedagogical problems, 

one needs to study some of the latest developments, reexamine the tra­

ditional areas of mathematics in light of these developments and clarify 

and condense the material presently required for undergraduates by 

pointing out the important ideas and techniques being used. 

The various concepts and computational techniques that are current­

ly in use in differential geometry and emphasized in this paper are: 

1) exter:i,or differential calculus of E. Cartan; and 

2) covariant differentiation ~X Y for vector fields X and Y. 

Purpose of Study 

It is the purpose of this study to develop many of the basic con­

cepts and techniques ·that are currently being used as research tools in 

1 
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modern differential geometry with the following objectives in mind: 

1.) The material necessary for a thorough understanding of recent 

research papers in differential geometry by Shiing-Shen Chern and 

Richard Lashof on curvature of manifolds will be presented. 

2.) The exterior algebra of forms will be used to derive a measure 

of curvature of a hypersurface called the Deal curvature. 

Procedure 

The basic definitions and theorems will be presented in a setting 

familiar to the advanced undergraduate student of mathematics. In fact, 

it will be shown that many of the basic ideas used are just generaliza­

tions of concepts presently being used in elementary calculus. An 

algebra, called the exterior algebra of forms, will be utilized in con­

junction with the method of moving frames as developed by Cartan. 

After a careful study of some recent research papers in differen'" 

tial geometry (in particular, see [4] and [SJ) where many of the modern 

research tools are used, the author of this thesis developed the· neces­

sary background material for an understanding of the topics being pre .. 

sented in these papers. The notes on·differential geometry by N. Hicks 

[10] influenced the material in Chapter II on differentiable manifolds, 

and the notation is that due to Barrett O'Neill [15]. The development 

of the exterior algebra of forms follows that presented by Mostow, 

Sampson, and Meyer [13]. 

These methods are then used to study a geometrical object, such 

as a $Urface, and a measure of curvature of a surface in E3 , introduced 

by R. B. Deal, Jr,, (see [6]), is presented in this modern setting and 

then generalized to a hypersurface in En. Many other applications of 
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exterior forms have been given by H. Flanders [8]. 

Brief.History 

the discipline wa~ '\11en 1aunched afte~ the iotmu1auon of the ana­

lytic geometry of R. Descartes (1596-1650) and the calculus by G • 

. Leibniz (1646-1716) and I. Newton (1643-1727). Many of the isolated 

results on curves and surfaces were contributed by L. Euler (1707-1783). 

In France, G, Monge (1746-1818) founded an extensive school of geometry 

that influenced much of the development of differential geometry. 

It was C. F. Gauss (1777-1855) who transformed the theory of sur­

faces into its modern systematic mold. He recognized the fundamental 

significance of .intrinsic geometry. His main work in differential 

geometry is his treastise of 1827, Disquisetiones generals circa super­

fices curvas •. 

A development of intrinsic geometry independent oLimbedding was 

given by B. Riemann (1826-1866) in 1854. Riemann dropped the restric ... 

tion of two dimensions and laid the foundations for "Riemannian geome­

try" that has been extensively developed, These results were not pub­

lished until 1868, after Riemann's death, 

Felix Klein (1849·1926) and his "Erlangen program" had more influ­

ence, at first, than that of Riemann's work. Klein defined a geometry 

as being a theory of invariants of a group of transformations. For 

example, Euclidean geometry would be a theory of invariants of a group 

of rigid motions. 

Around the turn of the 20th century G. Ricci and T. Levi-Civita 

developed th~ tensor calculus, which became a powerful tool of differ­

ential geometry. Einstein's theory of relativity created much acitvity 
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;i.n the further development of Riemannian geometry during this time. 

During the ear~y part of the 20th century, E. Cartan (1869-1951) 

utilized the earlier work of H. Grassman (1809-1877) in 1847 (on the 

algebra of subspaces of vector spaces) to systemitize the study of dif-

ferentials. When the Frenet formulas were discovered (by F. Frenet in 

1847, and independently by J. Serret in 1851), the theory of surfaces 

in E3 was already a richly developed branch of geometry. The success 

of the Frenet approach to curves led G. Darboux (in 1887) to adope the 

"method of moving frames" to the theory of surfaces. Then, it was Cartan 

who brought the method to full generality. His essential idea was very 

simple: To each point of the object under study (a curve, a surface, 

Euclidean space itself, . ) assign a frame; then using orthonormal 

expansion express the rate of change of the frame in terms of the frame 

itself, This, of course, is what the Frenet formulas do in the case of 

a curve. Cartan, also, introduced the notion of connections in fibre 

bund1es,· This notion has been given a modern formulation, first by E, 

Ehresmann. [7], and has been utilized by S. s. Chern [4] and others. 

i 
I 
I 



CHAPTER II 

BASIC DEFINITIONS ANP !HEOREMS 

The goal of modern differential geometry is a study of differenti-

able manifolds using the tools of analysis, Thus, one wants to use 

calculus on a manifold and that calculus is the same as the one used on 

Euclidean space. For this reason we start with Euclidean space, map-

n m ping from E to E, tangent vectors, vector fields, and derivatives of 

these objects. Then a definition of a manifold is given and the pre­

vious definitions on En are extended to the manifold. Let R denote the 

real numbers. 

Definition· ll· Euclidean n-space is the pair (S, d), where 

, pn) I Pi e R, i = 1, 2, ... , n} and d is a map-

ping, d : S x s- R, defined by d (p, q) 

P = (p 1, P2 , , , , , pn)' q = (q 1, , .. , qn) belong to S. 

Thus (S, d) = En. 

By the dot product of points p = (pl, Pz, . . pn) ' 
and 

n 
En we q = (ql, q2, qn) in mean the real number p . q =i~/iqi . . . . , 

The dot product is an inner product. That is, the 

following properties: 

1.) Bilinearity (ap + bq) · r = ap·r + bq·r 
r·(ap + bq) ar·p + br·q 

2.) Symmetry p . q q . p 

dot product has 

3.) Positive definite p· p :2: 0, p•p O if and only if p 

5 
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. , p ) then 
n 

called the norm of p. Thus, the norm is a real valued function on En, 

and it has the following properties: 

1 ·) \\p + qi\ s: \IPII + llqll 

2.) ~::t; I/ I IIP\I where· I a I is the absolute value of the rea 1 

Thus, d(p,q) = l!P - qll • 
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The mapping d gives some structure to the set Sand En is a metric 

space with metric d. Therefore, En is a topological space with the 

usual topology. Now, add additional structure by making En into an R-

module (vector space over the reals) with the following definitions of 

vector addition and scalar multiplication: 

for all p, q in En and all a in R. 

Definition 2.2. Let xl' x2, . . . 
' 

x be the real valued func-n 

tions on En such that for each P=(P1, P2, ' pn) in En x. (p) = p. 
' 1 . 1 

for i = 1, 2, . . . ' n . 

The functions x1, x2 , ... , xn are called the natural coordinate, 

functions of En. 

Definition l.:J.. A real-valued function f on En is differentiable 

(or of class c=) provided all partial derivatives off, of all orders, 

exist and are continuous. Notation: f e c= (En, R). 

Next, w~ define a tangent vector at a point in En. Then, we 



define a directional derivative (with respect to a tangent vector) of 

a real valued function which generalizes the us1,1al directional deriva-

tive in elementary calculus. This generalization will allow us to 

define a tangent ve~tor on a manifold as a linear mapping on real-

valued functions. 

Definition Ll· n A tangent vector v to E consists of two points 
p 

f En .. 0 its vector part v and its point of application p. 

We think of a tangent vector v as the arrow from p top+ r. 
p 

Tangept vectors v and w are equal if and only if v =wand p = q. 
p q 

Tangent vectors with the same vector parts but different points of ap-

plication are called parallel. 

Definition 2.5. Let p be a point of En. The set T (En) = [v Iv p p p 
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n n is a tangent vector to E at p} is called the tangent space of E at p. 

We can make T (En) into a vector space by defining v + w to be 
p p p 

(v + w) and c(v) to be (cv) • These operations on each tangent space p p ·p 

make T (En) a vector space isomorphic to En. We need only show that 
p 

the mapping v-vp is a linear isomorphism from En to Tp (En). 

Definition 2.6. A vector field Von En is a function that assigns 

to each point of p pf En a tangent vector V(p) to En at p. 

Let J'_ = [V I V is a vector field on En} and 3 = [£ I feC 0\En, R)} . 

Then we can make I into an J-module (vector space over 3-) by the 

usual pointwise principle: 

(V + W) {p) = V(p) + W(p) 

and 

(fV) (p) = f(p)V(p) for all p. 

Definition 1..:..§. Let u1, u2, 

En such that 

. , U be the vector fields on 
n 



u1 (p) = 

u2 (p) = 

(1, 0, • • • ' O) 
p 

(O, 1, 0, ... , O) 
p 

U (p) = (O, O, ... , 1) for each p in En. 
n p 

We call [u1 , u2 , , .• , Un} the natural~ field on En. 

Lemma l..:l· If Vis a vector field on En, there exist uniquely 

determined real-valued functions vi, i = 1, 2, n , n, on E such 

that 

The 

V(p) 

v = 

functions 

Proof: 

n 
!: 

i=l 

v. 
l, 

v. u. 
]. 1 

are called the 

By definition of V, 

may be denoted as ( v 1 (p) , . 

Euclidean coordinate functions of V. 

v En--.T (En) so the vector part p 

' 
v (p)) where the V. are real-n ]. 

valued functions on En (since they depend on the point p). Thus, 

' vn (p) \ 

of 

=vfp)(l,0,0, ... , 0\ + ... + vn(p)(O,O,.,., 1\ 

at each point p. But by definition of addition and scalar multiplica-

tion of vector fields, V and~ v.U. have the same tangent vector at 
]. ]. 

each point p. Hence, V = ~ v.U .. 
]. ]. 

Definition 2.7. A vector field Von En is differentiable if and 

only if its Euclidean coordinate functions are differentiable (in the 

sense of Definition 2,3), 

Definition 1..:...§. Let f be a differentiable real-valued function 

on En 
' 

n and let v be a tangent vector at p EE . 
p 

vp [f] = !t (f(p + tv)) \ ~=O 

is called the derivative of i with respect .!.Q. .Yp, 

Then 

8 



Lemma 2.2. If v = (vl, v2, . . . vn\ e T (En) then p ' p 

n .aL v [£] = I: v. (p). p i=l 
]. oX. 

]. 

Proof: Let p = (pl' P2, . . . 
' 

p ). Then, n 

• , p + tv ) 
n n 

p + tV = (p 1 + tv1, p2 + tv2 , 

d (pi+ tvi) 
and since = vi, we have dt 

a I .aL > dt (f(p + tv)) t::;Q = . t Vi oX. (p • 
. ]. 

The main properties of the directional derivative are given in 

the following theorem and the proof is a direct application of Lemma 

2.2. 

then 

Theorem 1. co n n 
If f, g e C (E, R), v, w e T (E) and a, be R, 

1.) 

2.) 

3.) 

p p p 

(avp + bwp)[f] = avp[f] + bwp[f] 

vp[af + bg] = avp[f] + bvp[g] 

vp[fg] = vp[f] · g(p) + f(p) · v [g]. p 

9 

We again apply the pointwise principle and take directional deriv-

atives of vector. fields so we have the following: 

then 

I co n Corollary 2.1. If V, We and f, g, h EC (E, R), a, be R, 

1.) (fV + gW)thJ = fV[h] + gW[h] 

2.) V[af + bg] = aV[f] + bV[g] 

3.) V[fg] = V[f] " g + f · V[g]. 

Definition~· A curve ..!n En is a differentiable function a 

I--.En from an open interval I into En. Thus a= (a1, a2 , 

where a.= x. oa are the Euclidean coordinate functions of a, 
]. ]. 



Definition 2.10. Let ct: I-En,be a curve in En with 

C'i = (Q'1, 0'2 , , , , , O'n), For each real number t e I, the velocity 

vector ..2!~ at tis the tangent vector 

( det 1 ( t ) dO! 2 ( t ) da ( t ) ) 
cx 1 (t) = ' ! ... , n Q'(t) dt dt dt 

at the point et(t) in En. 

Then 

Lemma . l..:2. n . n oo n 
Let O!: I_..E be a curve in E and f e C (E, R). 

Proof: Since a'(t) = (d~!, GI • • J d~) , we have by Lemma 2.2 

a' (t) [f] = l: O!'. (t) .aL (a(t)). 
i=l l. oXi 

Now f(a,) = f(Q'1 , .•. , an) and hence dfJ~) (t) =t.~!. (a(t))· d~?) 
1-

by chain rule for composite functions. Thus a' (t) [f] df(cy) 
::; dt (t). 

Definition 2.11. Given a function F : En-Em let f 1, f 2 , 

• , f denote the real-valued functions on En such that 
m 

F(p) = (fl (p)' f2 (p), .•. , fro (p)) 

10 

for a 11 points p in En. The functions f. are called Euclidean coordi-
]. 

.!1!.U. functions of F and we write F=(f l' f2, . , f ) . m 

The function F is differentiable, or C00 (En, Em), provided its 

coordinate functions are differentiable, or Cro (En, R), A differenti­

able function F: E~Em is called a mapping from En to Em. Notice 

that the fi in F = (f1, f 2 , .•. , fro) are the composition mappings: 

f. (p) = x. (F(p)). 
]. 1. 

n n n m 
Definition ~·. If 0t : r--E is a curve in E and F : E__...E 

is a mapping (differentiable function), then the composite function 



~ = F(a) I Em 1."s · Em 11 d th · f d F a curve 1.n ca e e 1.mage o a un er • 

I 

Figure 2.1 

m 
E 

11 

D f . "t" 2 12 Let F ·. En~Em be a mapp1."ng. e 1.n1. 1.on --=--· · ·~ If vis a tangent 

n 
vector to E at p, let F'* (v) be the initial velocity of the curve 

~ : t-F(p + tv) in Em. The resulting function F* : T (En)~ 
p 

TF(P) (Em) is called the derivative map F* of F. 

Thus F* is the function that assigns to each tangent vector v in 

En at pa tangent vector F* (v) to Em at F(p). Consider the tangent 

vector v as the initial velocity of the curve a: t---..p + tv. Now the 

image of a under the mapping Fis the curve B such that 

13(t) = F(a(t)) = F(p + tv). 

And so from the definition above we have 

F* (v) = !3' (0) = ( d(F(p + tvn 
dt I t=O) F(p). 
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The figure below describes the case where n = m = 3. 

F*(V) ,' B(t) = F{a(t)) 

I 

Figure 2,2 

Theorem l.:l, Let F : En----Em be a mapping with F = (f1 , f 2 , 

. . . ' f ) • 
m 

If v e T (En), then 
p 

Proof: Given v e TP(En) we have from definition of F* that s(t) 

= F(p + tv) = (f1 (p + tv), f 2 (p + tv), . ' f (p + tv)) and 9 1 (0) = m . 

F* (v). But by definition of velocity vector, 

d 
[3 ' ( 0) = - (F (p+t v) ) \ 

dt t=O 
d 

= (dt f1 Cp+tv) I , 
t=O 

d I .!L ) I dt f2 (p+tv) ' . . • ' dt fm (p+tv ) 
t=O t=O 

The following corollary shows the strong link between the calculus 

and linear algebra. 

Corollary 1.:1· Let F = (f1, f 2 , ... , fm) be a mapping from En 

to Em. Then at each point p of En, the derivative map F* : T (En)----'jOo-
p p 

m TF(p)(E) is a linear transformation. (The proof is immediate since 

V [f.J is linear) p 1 



N ( n) m) ow since F* is a linear transformation from Tp E to TF(p)(E 

we express F* in the following matrix form: 

F* 

0 
0 

0 
0 

1 = 

0 

of . 
........!. 

of. 
........!. 

oXl oX2 

a£2 of2 • . 
oXl oX2 

of1 0 
0 

oX n 

. of2 -oX n 1 

0 

13 

where 1 is the transpose of U. (p) = (O, 0, ••• , 1, .... , O) 
i . p 

0 

and the 1 is in the . th slot. Thus i 

of. 
F* = ( ~) i = 1, 2, . . . n, j = 1, 2, . . . m . 

' ' 
i 

This last matrix is called the Jacobian matrix of Fat p. 

Th 2 3 L F En-Em be · eorem ~·-· et : a mapping. If~= F(a) is the 

image in Em of the curve ct in En, then 8' = F* fo'). (This says that 

F* preserves velocities). 

Proof: If F = (f1, , 

By Theorem 2 • 2 

L1 

• , f) then 
m 

df. (a) 
i 

By Lemma 2.3 we have a'(t)[fi] = dt 
d~i 

(t) = - (t), hence dt 
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d~l (t). d~2 (t) 
R* (OI' ( t) ) = ( d t . ' d t ' • • ' ' 

Therefore~, = F*(01'). 

Definition l..:.,11, A mapping F: E~Em is regular if and only if 

for each point p of En the derivative map is one-to-one. 

A mapping that has an inverse mapping is called diffeomorphis'rti 

(remember that by a· mapping.we mean differentiable function). Thus a 

diffeomorphism is necessarily both one-to-one and onto, but a mapping 

.which is one•to-one and onto need not be a diffeomorphism. (Consider 

the mapping F: EL-E2 defined by F = (u3, v - u). Then 

F-l = (u113, v + u1/ 3) is not differentiable at u = O. 

Theorem.£.:.!!:· Let F: E0----En be a mapping such that F* is one­
p 

to"'one at some point p. Then there is an open set U containing p such 

that the restriction of F to U is a diffeomorphism u .......... v onto an open 

set V. 

Definition 2~14. A set e 1, e2 , 

unit vectors (e. . e. = o .. ) tangent 
1. J 1. J 

the point p. 

Theorem 2.5. Let el' . . . 
' 

e 

to En 

be a 
n 

, e of n mutually orthogonal 
n 

at p is cdled a frame at 

frame at the point n p of E . 

If vis any tangent vector to En at p then 

. + (v • e ) e • 
n n 

We ca 11 the above process (which works in any inner-product space) the 

orthonormal expansion of v in terms of the frame e 1, e2 , ..• , en 

If we let e. = u. then 
1. 1. 

1 2 vn) 
n i v = (v v . . . = ~ vu. 

' ' ' 1. i=l 

1 2 wn) n i 
w = (w w = ~ w u. 

' ' ' i=l 1. 



and in terms of these Euclidean coordinates 

Now if we 

i i V · W.= I: v w • 

use the frame e 1 , 

v = I: ai ei (ai = v 

w = I: bi ei (b. = w 
]. 

. . . ' e n' we have 

. ei) 

. e.) 
]. 

. 15 

but the dot product is given by the same simple formula V . w = !: aibi' 

since V • W = (t a,e,) • (E b.e.) - t(aib.) e. • e, = t a.b. ~l.'J' 
]. ]. J J J l J . ]. ]. ~ 

= I: ai bi. 

It is for this reason that we use frames and the advantage becomes 

enormous when applied to more complicated geometric situations. 

Definition h!,!t, Let e 1, ••• , en be a fr,;3me at a point p of En. 

Then x n matrix A whose rows are Euclidean coordinates of these n 

vectors is called the attitude matrix of the frame. 

Thus, if e. = (a. 1, a. 2 , 
]. ]. ]. 

1 s: i, j s: n. 

, a. ) then 
in p 

Notice that the rows of A are orthonormal since 

. I: aika jk = ei . e. = cij for 1 s; i,j s: 
k J 

n • 

By ~efinition, this that A is orthogonal matrix. t means an Hence A A 

= I, where I is the n x n identity matrix, and tA is the transpose of 

A. This means that tAA = t -1 
I and so A= A , the inverse of A. 

Definition 2.15. 
n A vector field on a curve a: 1--,...E is a 

function that assigns to each number tin I a tangent vector Y(t) to 

En at the point a(t). 

Thus for each t e I, we can write 

Y(t) = (y1(t), 

t y. ( t) u. (Qi( t)) . 
]. ]. 

To differentiate a vector field on a we need only differentiate its 



Euclidean coordinate functions, thus giving a new vector field on a, 

That is, Y(t) = (y1 (t), y2 (:t), ••. , yn(t)) = !: yi (t) Ui (a(t)) 

dy. (t) 
]. 

Y'(t) = !: --d-t-- Ui(a(t)). 

It is easy to show that we have the following properties: 

(aY + bZ)' = aY' + bZ' , a, be R, the reals 

and 

(fY)' = .£.iy + fY' (Y • Z)' = Y' • Z + Y • Z'. dt , 

We say that a vector field Yon a curve is parallel provided its 

16 

Euclidean coordinate functions are constants (i.e., Y(t) = (c 1, c2 , c3) 

= !: c.U. for all t. 
]. ]. 

Lemma 2.4. 

(1) A curve a is constant~ a' = O. 

(2) A nonconstant curve~ is a straight line~ a'' = O. 

(3) A vector field Yon a curve is parallel~ Y' = 0. 

Definition 2. 16. 
n 

Let W be a vector field on E and let v be a 

tangent vector to En at the point p. Then the covariant derivative of 

W with respect to vis the tangent vector 

9 W = W(p + tv)' (O) 
v 

at the point p. 

Thus, 9 W measures the initial rate of change of W(p) asp moves 
v 

in the v direction (See fig. 2,3). 



Lemma Ll· 

Figure 2.3 

If W = t w.U. is a vector field on En and vis a 
l. l. 

tangent vector at p, then 

n 
'v W = I:: v [w. J U. (p). 

v i=l l. l. 

17 

Proof: Since W(p + tv) = t wi(p + tv) Ui(p + tv) for the restric-

tion of W to the curve t-p + tv and to differentiate all we have to 

do is differentiate the Euclidean coordinates. But the derivatives of 

w.(p + tv) at t=O is v [w.J. Hence, 
l. l. 

'ii w = 
v 

n 

E v[wi]Ui(p). 
i=l 

Thus, to apply v to a vector field we apply v to its Euclidean 
v 

coordinates. We use the linearity and Leibnizian properties of the 

directional derivative to derive the corresponding properties of the 

covariant derivative. 

Theorem 2.6. 
n Let v and w be tangent vectors to E at p, and a, 

b e R, f E: c= (En, R), let Y and Z be, ve.ctor. fields on En. Then 

I..) 'v + b Y = av Y + b'v Y for all a, b, e R. av w v w 



2.) 

3.) 

4.) 

v (aY + bZ) = av Y + bV z v v v 

v (fY) = v[f]Y() + f(p)v Y v . p v 

Proof: 

1.) V Y =~(av+ bw) [y.J U.(p) av+ bw i- i 

= av1 Y + bv Y v w 

2.) V (aY + bZ) = E v[aY. + bZ.J U.(p) v i i i 

= a E v[Y.] U,(p) + b t v[Z.J U,(p) 
i . i i i 

= av Y + bv z v v 

18 

3,) 9v(fY) = t.v[fy~] U~(p) =Ev [f]y.(p)U.(p) +}:; f(p)v[y.JU.(p) 
L L p i i i i 

= v [f]t y.(p)U.(p) + f(p)t v[y.JU.(p) 
p i i i i 

= v[f]Y(p) + f(p) • V Y. v 

4.) vv(Y • z) = v[Y · ZJ = v[E y.z.] 
i i 

= E v[y;] · z.(p) + E y.(p)v[z.J 
k i i i 

=VY• Z(p) + Y(p) · 9 z 
v v 

Note: The properties above are also sufficient conditions for 

9. For suppose we are given a covariant differentiation satisfying 
v 

the conditions 1 through 4 above. Then for the vector field Wand 

tangent vector vat p we have: 

9 W = 9 Ct w.U.(p)) 
.v v i i 

= E Vv(wiUi (p)) =}:; (v[wi]Ui (p) + wi (p)7vUi(p)) 

= E vv[wi]Ui(p) = W(p + tv) 1 1 t=O since 

9 U.(p) = 0 (i.e., v[c] = O). 
v i 



Using the pointwise principle, we cap take the covariant deriva-

tive of a vector field W with respect to a vector field V .. The prop-

erties of the preceding theorem take the following form: 

Corollary 2. 3. n Let V, W, Y, and Z be vector fields on E . Then 

(1.) 'iJv(aY + bZ). = a'i;VY + b'iJVZ for all reals a, b. · 

(2.) 'iJ fV + gW y = f'i/VY + g'iJWY' for all functions f and g. 

(.3 • ) 'iJv(fY) = V[f]Y + f'i/VY, for a 11. f e C00 (En, R) 

( 4 0) V[Y · Z] = 'i/VY · Z + Y • 'vvz • 

Definition 2.17. If W = ~ w.U. is a vector field on En, the 
1 1 

covariant differential of Wis defined to be 'iJW = ~ dw.U .. 
1 1 

T (En) such that ('i;W) = ~ dw. (v) U, (p) = 'iJ W, 
p V 1 1 V 

Notice that dw. is a linear mapping on tangent vectors. 
1 
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Definition 2.18. The bracket (or Lie product) of two vector fields 

V and Wis the vector field [V, W] = 'ilvW - VwV. 

Theorem 2.7. 
co n 

If f,g e C (E, R) then 

1.) [V, W][f] = V[W[f]] - W[V[f]J 

2.) [V, W] = - [W, VJ 

.3.) [U, [V, W]] + [V, [W, UJJ + [W, [U, VJ]= 0 

4.) [fV, gW] = fV[g]W - gW[fJV + fg[V, W]. 

Differentiable Manifolds 

Let M be a set of points. An m-coordinate pair on Mis a pair 

(¢, M1) consisting of a subset M1 of Mand a 1 to 1 map¢ : M1 En 

such that ¢CM1) is open in Em. One m-coordinate pair (¢, M1) is C00 

related to another m-coordinate pair (9, M2) if and only if the maps 

-1 -1 00 
¢o'e and 9 0¢ are C maps wherever they a re defined (i.e., domains of 

definition must be open). 



Figure 2-4 

A C00 m-subatlas on Mis a collection of m-coordinate pairs (¢ . h' 
. 00 

Mh), each of which is C related to every other member of the collec-

tion, and the union of the sets Mh is M. A maximal collection of C00 

related m-coordinate pairs is called a C00 m-atlas. If a C00 m-atlas 

contains a C00 m-subatlas, we say the subatlas generates the atlas. 
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Definition b.1..2· An m dimensional C00 manifold (or a C00 m-manifold) - -,-. 

00 
is a set M together with a C m-atlas. 

An atlas on a set Mis called a differentiable structure on M. 

Each m-coordinate pair(¢, M1) on a set M induces a set of m real valued 

functions on M1 defined by x. = U, 0 ¢ for i = 1, 2, . . . m where the 
1. 1. ' 

u. are the natural coordinate slot functions of Em (i.e., u. E~R 
1. l. 

by u/p) = pi where p = (pl' P2, . . . pi' ' pm) is in Em). The 
' 

functions x1, p O .. , x are called coordinate functions (or a coordi­
m 

nate system) and M1 is called the domain of the coordinate system. 

We list some examples: 
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Example 1. Let M be En with a Cr n-subatlas equal to the pair (¢, En) 

where¢ is the identity map on En. 

Example 2'. 

Example 3, 

Example 4. 

n r Let M be any open set of E and let a C n-subatlas be the 

pair(¢, M) where¢ is the identity map of En restricted to 

M. 

Let M1 be the 1-dimensional c1 manifold of example 1. That 

is, let M1 =Rand¢ the identity map, Let M2 = R and with 

tqe cl 1-subat las (x3 , R), where xis the identity mapping 

R Th M -1. M . 1 / 3 • t C 1 t.. • • on . • en 1 r 2 since x is no at t.ue origin 

(i.e., x o (x3)-l = x o xl/3 = xl/3), 

This example shows that the same set of points may have 

different differentiable structures • 

Let g be a c(X) rea 1 valued function on 
. n+l 
E , with n > o, and 

suppose dg "f O on the set N = [peEn+ll g(p) = o} .. Then N 

is a c(X) n-manifold when a C(X) n- suba t las is chosen as 

follows: At each point p e M, choose a partial derivattve 

f h d I ' h h • th 1 h o gt at oesn t vanis , say Fe~ one, app y t e 

implicit function theorem to obtain a neighborhood of p 

(relative topology on M) which projects in a 1-1 way into 

the U = 0 hyperplane of En+l. 
i 

Example 5. Let V ve a vector space over R with Let {e1, •.. , en} be 

a basis of V. The group of all non-singular matrices 

n 
aei = r: a .. e. 

i=l iJ J 
i 1, 2, .. , , n 

called the general linear group and denoted by GL(n,R). 

Now map 
2 

GL(n, R) _.En 
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defined by: (aij) (a 11 , a 12 , , aln' a21 , a22 , 

••. , a ), The image is open since it is the inverse 
nn 2 

image of an open set (using the determinant map : En ,..R 

.which is continuous), 

Definition.1.:12, Let M be a fixed C00 n-manifold, An open set in 
~ is a subset A of M such that¢ (A (1 U) is open in En for every n­

coordinate pair(¢, U), 

With the above defintion for open se.ts the manifold M .becomes a 

topological space. 

Definition 1.:11· 
co 

Let M be a C m-dimensional manifold and Nan 

n-dimensional Ccre manifold. If A M, A open, then F 

-1 oo ) n (A, N) at p e A.if and only if go F o ¢ e C (¢(A(\ M1 , E) at 

¢(p) for ali coordinate pairs (¢, M1) at p e Mand all g e C00 (N1, R), 

F(p) e N1 . (See figure below). 

F 

¢ g 

¢(A(\ M1) g (F (A),,..:· ,r.;-,,,~ 

~ gOF o ¢-! 
----11---

Figure 2.5 
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Note: The definition above includes the special cases where M = En 

and¢ is identify map (or where N = En, and g is identify map). 

Deffriition 2, 22. Let I be an open interva 1 of the rea 1 line and M 

a c= m·manifold. A differentiable mapping~: I~M is called a curve 

Lemma l.:.§. If a is a curve, a: I---M, whose image lies in M, 

where (¢, M1) is an m·coordinate pair of the.c= m-dimensional manifold 

M, then there exist unique differentiable functions a 1, a2 , • 

on I such that 

• • ' a 

a(t) 
-1 = ¢ (a 1(t), a2 (t), ••• , am(t)) for all t e I. 

(:-----) I 
t 

Figure 2. 6 

For the proof of the above Lemma we need only consider the 

m 

Euclidean coordinate functions of the mapping¢ o ~ and the uniqueness 

comes from the following: 
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-1 = ¢ o O! = ¢ o ¢ (b 1, b2, , . . , bm) 

(bl' b2' , • ' ' bm), 

Definition 2. 23. Let M be a C00 m-manifold, Let 3 = £f I f ¢ C00 

(M, R)}. A tangent vector at p e: M :j.s a linear mapping v :J-R such 

that v[fg] = v[f] , g(p) + f(p) , v[g]. 

Definition~· The tangent space, Tp(M), to M.at pis the set 

of all tangent vectors vat p, 

[f] 

The tangent space T (M) is a vector space over R where (v + w)_ 
p 

= v[f] + w[f] and (av) (f] = a , v [f] for all v, w e: T (M), f € F 
p 

and a e: R. 

, x be a coordinate system about p e M. We define 
m 

coordinate vectors (0~_)p by 
1. 

O!U. 
1. 

where x. = U. o ¢, i = 1, 2, . • , , m. 
1. 1. 

Figure 2.7 

M 



Notice that the (_a_) are tangent vectors since 
. aX, 

l. p 

-1 
1.) (_a_) [af + bg] = _a_ ((af + bg) o ¢ ) (¢(p)) 

cJXi _aui 

2.) (tx;) 
p 

= _a_ (af O ¢- l + bg o ¢-l,) ¢(p) 
au. 

l. 

_ !]__ (f O ¢- 1)(¢(p)) + .h.c,_(g o ¢-l)(¢(p)) 
aui . aui 

= a (tx;) [f] + b (tx;) [g] 
p p 

-1 
[fg] = _.a.._(fg O (/) ) (¢(p)) 

aui 

-1 -1 = _a_((f O ¢ ) (g O ¢ )) (¢(p)) 
au. 

l. 

-1 
= _.a.._(f O (/) )(¢(p)) 

cJU. 
g (p) + f (p) .. 

l. 

-1 
• ....a_(g O ¢ ) (¢(p)) 

au. 
l. 

·~~1) [fJ . &<v> + f(v>(a~J [gJ . 
p p 
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Lemma 2.7. Let x 1, ... , xm be a coordinate system about p e M 

with xi(p) = 0 for all i. Then for every function off e C~ (M1, R), 

M, an open subset of M _with p e M1, there exist: m functions f 1, • , • , 

f in C~ (M, R) with f. (p) =(_a_) [ffaiid i = f(~) + I: x.f. in M1 • 
m l. ax. . . l. l. 

l. p l. 

the 

d(O, 

In the above lemma we need only consider the map¢ belonging to 

-1 
x. and let F = f O ¢ . Fis defined over some ball B = [q E: 

Em 

. 

l. 

q) < rJ. Let (al' . ' a ) eB, Then let F = fl .aL (al' m i • Q cJUi 

' ai-i' ta., o, . . 
' 

O) dt. Then set f. = F. 0 ¢· 
l. l. l. 

Theorem l.;_.§. Let M be a C~ m-manifold and let x1 , • , x be 
m 

a coordinate system about p e M. Then if v e T (M), v = t v p [xJfat) v l. p i 
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and the coordinate vectors (a~i )p from the base for Tp(M}, 

For Theorem 2.8. let yl.. = ~. - x.(p) if x.(p) ~ 0 for all i. Then l. l. l. 

for any v e T (M) and f e c= (N, R) we use Lemma 2.7 with respect to 
p p 

the coordinate system y1, . , y and note that (.a.L), = (.a.L) . 
m oY. ax. l. p l. p 

Also, if c is a constnat map, v [c] = 0 and so v [f] = v [c] +.v[:t yifi] 
i 

= E [v [Yi] • fi(p) + yi(p) • v [fi]J = t[v [xi - xi(p)J • fi(p) + 

(x1 -. xi {p)) {p} • v [£1 ]] • I: v [ x1 J • ( ~!J p, Thus We have the 

required 
oXj 

I: a.~ 

representation. Now if v = I: a. _a_ = 0 then O = v [x. J = 
l. oXi J 

l. oX• l. 
= a. so the coordinate vectors are independent and span T (M) 

J p 

so this space has dimension m. 

With the above definition of tangent vector and the representation 

theorf;!m we have for all the corresponding definitions given earlier on 

En a counterpart defined on manifolds. 

Definition 2.25. 
CX) 

A vector field, Von a subset M1 of a C m-

manifold M, is a mapping that assigns to each p e A a tangent vector 

v e T (M). 
p p 

CX) 

A vector field V is C on M1 if and only if M1 is open and for a 11 

f e Ccxi (B, R), the function V [f] (p) = VP [f] is Ccxi on M1 B. If V 

and Ware Ccxi vector fields on M1 M, their bracket [V, WJ is a Ccxi 

vector field on M1 defined by [V, WJP [f] = Vp[W[f]J - Wp[V[f]]. Thus 

we have all the properties listed earlier in Theorem 2.7 and we note 

in particular that [_a_ , ~] = 0 for all i and j since cross partial 
oX. oX, 

l. J 
derivatives of Ccxi functions are equal. 

Let Mand N be c= manifolds of dimension m and n respectively. If 

Fis a c= mapping, F: M...._.N, Then we call the induced map F* : T (M) 
p 

..-.TF(p)(N) the Jacobian map of F and F* is defined by 
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and g e C00 (N1 , R) with F(p) e N1 (an open subset of N). Notice that 

FJv>is a tangent vector at F(p) and that F* is linear. We get a matrix 

representation of F* by selecting coordinate systems x1 , . , x at 
m 

p and y1 , , , • , yn at. F(p), computing F* on the basis Vi= 0~. at p. 
]. 

Thus if w = _a_ is a base at F(p) we have 
j oYj 

F*Vi = r: (F*V.) y.w .. hence 
j l. J J 

o(Yj O f) 

ax. 
]. 

for 1 ~ i ~ m, 1 ~ j :c;; n. 

The generalization of the definition of covariant differentiation 

(IQ 

or a connection on any C manifold is the existence of an operator~ 

which satisfies the four conditions below and assigns to C00 vector 

fields V and W a C00 field ~VW: 

1.) 

2.) 

3.) ~ (W) = f(p) ~ w fV V 

4.) ~v (fW) = V[f] WP+ f(p) ~v (W). 



CHAPTER III 

TENSORS AND FORMS 

This chapter presents the exterior algebra of forms and an oper-

ator on these forms called the exterior derivative. The exterior 

algebra is a subalgebra of a tensor algebra over a finite dimensional 

vector space U, (In later application U becomes the tangent space 

* T (M) to a manifold Mat p e M, U is the dual space, the space of 
p 

forms on M,) 

'I'ensor Products 

Definition 1.:.1· Let u1, •• , , Ur,W be vector spaces over field 

R, A mapping f : u1 x u2 X. X U--+-W is called r·linear (or r 

multilinear) if f(x1, 

that is, if : f(x 1, 

, , xr) + f (x1, 

a 11 c e R. 

Example.1,J;. 

. ' y ). 
n 

Example 3. 2. Let 

base {Ul, . . . ' Um}· 

wj_th babe [V l' . . . 
' 

0 0 0 ' ,c ) is line.ar in each of tre r-entires, 
r 

. ' 

. ' 
x. +x!, 

l. l. 

x'.' l. 

0 11 ) x • ) 
l. 

. . . , x ) for a 11 x., x' "' U. and r 1. i ~ 1. 

Let 

Then f is bilinear. 

Ube a vector space over field R, dim U = m with 

Let v be a vector space over field R, dim V = n 

v n}· Let p be a vector space over field .. R, 

28 



dim P = mn with base [P ij}, i = 1, ••. , m; j = 1, •• , , n. 

Define f : U X v~P by f(x,y) = xiyjp .. where x = xiU1., y = yiVj. 
1J . 

- i i j - i j ' i j -Now f(x1 + x2 , y) - (:ic1 + x2 ) y pij - x1y Pij_+ x2y Pij - f(x1' y) 

+ f(x2 , y) 

f(cx, y) = f(x, cy) = cf(x, y). 
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Note: f(Ui' Vj) = pij' hence f(U XV) spans P. Also, let 8 : U XV-+ 

L, where 8 .is bilinear, L is any other vector space. Define 8l : P-+L, 

81 linear 81 (Pij) = g(Ui' Vj). This defines g1 uniquely on P by 

linea.rity. Now g = 81 o f since g1 o f (x, y) = 8i (f (x,y)) 

• xiyj(pij) = xiyjg(Ui, Vj) = g(xiui, yjVj) 

= g (x, y) • 

.Definition~· By a Tensor Product of two vector spaces U, V 

on R is meant a vector space P over R equipped with a fixed bilinear 

mapping f : U X V--.P having the following properties: 

(i) the image f(U XV) spans P. 

(ii) if g : U XV·---- L then 3 linear mapping 
bilinear 

uxv f p 

L 

Figure 3.1 



Properties: 

1.) The linear mapping g1 : p__...1 in definition 2 is uniquely 

determined by the bilinear mapping g. 

2.) Let [P, f} and [P', f'} be two tensor products of vector 
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spaces U and V. Then there is one and only one linear mapping 

h : p P' such that f' =ho f and his an isomorphism. 

f p 

uxv ------f I l h 
~P' 

From 2,) We s~e that any two tensor products of U and 

V are canonically isomorphic. Thus by U@ Vwe denote 

any one of the [P, f} and for the given mapping f. 

U X v-u @ V we use the following: f(x, y) = 

x @ y, From the bi linearity of f we have 

(x1 ~ x2 ) @y = x 1@y ! x2 @Y 

x® (yl + Y2) = x@y1 + x@y2 

(ex) @y = x © (cy) = c (x@y) 

3.) Every element t e U @ V can be expressed in at least one 

way as a sum t = f x. @ y. where x. in U, y. e V, (i = 1, 
i=l 1 1 1 1 

2, , s). 

4,) If U and V have dimension m and n respectively then U @ V 

has dim m · n, and if [U1 , ..• , Um}' [V1 , • 

bases for u and v, respectively, then the elements u. ® 1 

V. in u @ v form a base. 
J 

5.) u ® v~v @ u 

Now given vector spaces U, V, W, over R, we can apply the tensor-

product operation twice, for many, for example, (U @ V) @ W. 
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In a similar way we can form repreated tensor products w:i,th any number 

of factors. For our purposes we will be interested in repeated tensor 

products of a single vector space u. 

6.) 

7.) 

(U ® V) 

Let ul, 

f : u1 x • . 
f (x1, . . . 
is r-linear 

If g : u1 X 

® w = u 0 (V G W) 

. ' u be vector spaces over R, . The mapping 
r 

. x u ul @ . . . 0 u defined by 
r r 

x ) = xl @ . . • @ x , x. e ui ' r r 1 

and its image spans u1 © • . . ® u . r 

, X U __.,... L is any r- linear mapping into a 
r 

vector space L then there is a unique linear mapping 

U---i .... .-L such that 
r 

(proof is by induction on r) 

The Tensor Algebra of a Vector Space 

Let J denote an arbitrary set, and suppose that there is assigned 

to each element j in J a vector space U. over R. Let S denote the set 
J 

of all mappings f that assign to each j in J.a vector f(j) in U. in 
J 

such a way that 

(i) f(j) is the zero vector in U. for all but a finite number 
J 

of j in J. 

We make S into a vector space over Ras follows: 

(ii) ( f + f 1) ( j ) = f ( j ) + f I ( j ) 

(cf) (j) = c • f(j) 

for any f, f' in S, any j in J, and any c in R. With these operations 

S is a vector space. 

Definition hl· The space S is called the direct ~· of the 
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family [Uj}. 

Let x. be an element in U .• Denote by xJ. the element of S defined 
J J 

by 

(iii) 

Now since 

and 

{
x. 

x'.(i) = J 
J O 

if i = j 

if i f j 

={:; + 1 + i)' (xj (i) 
J 

[ex. 
(ex~)' (i) = l_o J 

2 
if X, 

J 

if 

if i = j 
ifi:/:j 

I 

i = j 

i 'f j 

the mapping U .----... S defined by 
J 

x~x. 
J J 

is a linear mapping which maps 

! 
let f be any element u. isomorphically onto a subspace u. of s. Now of 

J J 

s and write f (j) = x.' so that x. is in u .. By condition (i), all 
J J J 

a finite number of the x. are zero. Let x. , ... , x. be those 
J J1 Jr 

which are not zero. From (ii) and (iii) it follows that 

(iv) 
I I 

f = x. + ... + x .. 
Jl Jr 

Conversely, given any elements x. , 
J1 

(iv) defines an element fin S. 

0 0 0 ' o O O ' 

Finally, we simplify our notation by writing x. instead of the 
J 

I 

mapping x .. Thus we have the following: 
J 

Any element of the direct sum can be expressed as a finite sum 

with x. 
J1 

unique, 

. ' 

x. + . + x. 
J1 Jr 

in U. 
' 

0 ' x. 
J1 Jr 

provided the x' s are 

J. of J are distinct. 
r 

in u. . Furthermore the expression is 
Jr 

nonzero and provided the elements j l' 

but 

Now let Ube an n-dimensional vector space over the field R. Let 



u,'C' be the dual vector space. We introduce the following notation: 

(v) uP = u @. . . @ u ® u''C' @ . . . @ u* 
q'- v _,,/~ 

p q 

= (@P U)@(@q u,'C') 

In particular, uP = 'x'P u, u0 = 'x'q u''C'. 
0 \Y q \.::;.) 

Thus u1 = U u0 = 
0 ' 1 

u* 
' and we further define u0 = R. 

0 

From all these vector spaces we now build a giant vector space T(U), 

namely, their direct sum 

(vi) T(U),:;:: direct sum of all uP 
q 

(p, q = 0, 1, 2, . • • ) 

The elements of T(U) are called tensors on U, As we have just seen 

each uP can be regarded as a subspace of T(U). The elements of uP 
q O 

are called contravariant tensors of type (p, O), elements of u0 q are 
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called covariant tensors of type (0, q); elements of uP q' p, q > 0 are 

called mixed tensors of type (p, q), 

From (v) we have 

uP q = uP O @ u 0 q provided p ::,. O, q > O •. 

(Even if p or q is zero, we can still regard the above 

correct. For example, if q = 0 the right hand side is 

= uP . ) T (U) is a vector space over R, and now we show 
0 

made into a ring. 

We define a product T(U) X T(U)----T(U) by 

(t, t')---....t @ 

where t ~ 
i=l 

I 

t.' t 
]. 

t 1 = ~ t. @ t'. 
. . ]. J 

= 

]. ' J 

2 
j=l 

I t U 
t ., t' 

J 
e: T (U) • 

formula as 

uP o@R 

that it can be 

Now, the system T(U), with the product given is an associative algebra. 

Every element of T(U) can be expressed as a finite sum of elements of 

the type 



i O ( U U in U .) xi e: o' j · J 

and the product in T(U) of two such elements is given by 

@x p 

0 ~'<) . w 
s 

= xl @ · ' ' @ xp @ zl @ ' • ' @ zr @ Y~ @ 

© Y; G) w~ @ • · · @ w;. 
Furthermore the contravariant tensors in T(U) form a subalgebra 

T (U) = direct sum of uP , p = 0, 1, 2, ..• ) of T(U) 
0 0 

and the covariant tensors form a subalgebra 

T0 (U) = direct sum of u0 (q = O, 1, 2, ••• ) of T(U). q 
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Definition .1,d, T (U) is called the contravariant tensor algebra 
0 

~ ], and T0 (U) is called the covariant tensor algebra~]; T(U) 

is called the tensor algebra~]. 

Exterior Algebra of U 

Let Ube a vector space over R, and T (U) = direct sum uP p = 0, . O O 

1, 2, TO (U) has the product operation @ so let S denote the 

ideal of T (U) generated by all elements of the type 
0 

x 0 x, x € u. 

By this we mean: S consists of all elements in T (U) which can be 
0 

obtained from the elements of the type x . ~ x by a finite number of 

the three operations in T (U). (addition, scalar multiplication, 
0 

tensor product by arbitrary elements), 

S, hence Sis a subgroup 

of T (U), regarded as an abelian group, so we can form the quotient 
0 



group T (U)/S, consisting of all the cosets cf S. Every coset of S 
0 

can be written (in many ways) as t + S, t e T (U) (for any tin the 
0 

coset). We make T (U)/S into a vector space by 
0 

(t 1 + S) + (t 2 + S) = (t 1 + t 2) + S, 

c(t + S) =ct+ S, 

These operations are independent of the representatives chosen 

for suppose: 

I 
= t 1 +Sand t 2 + S 

I 

= t 2 + S, then 

(tl + t2) 
I I s2) + S + s = (tl + sl + t2 + 

I I 
= (tl + t2) + (Sl + S2) + s 

I I 
= (tl + t2) + s 

and similarly 

t 1 + S = t~ + S ~ t 1 - t~ e Sand so 

I I 
c(t - t) e S, thus ct + S =ct+ S 

showing that the operations defined above are independent of the t 

chosen. We now make T (U)/S into an algebra by defining a product 
0 

operation, called the wedge product, 

(t 1 + S) /\.. (t 2 + S) = (t 1 

in T (U)/S by the rule: 
0 

@ t2) + S 
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The right hand side depends only on the cosets and not the representa-

i I 

tives chosen, For if t 1 is in t 1 +Sand if t 2 is in t 2 + S, then both 

I 

Thus, from the definition of S the products (t 1 - t 1) = s = 
2 

(0 t~ and t 1 
I @ (t2 - t 2) must also be in S. Hence so is their sum 

i I 

t 1 @ t 2 , and therefore t 1 @ t 2 + S = t 1 @ t 2 + s. 

Definition 3.5. The quotient algebra T (U)/S is called the 
0 

exterior algebra of U (or the Grassman algebra of U), 

We shall denote it by Au. We now examine its structure. Let 



P T (U)~u be the canonical mapping 
0 

p : t-..t + s. 
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Pis linear with Ker P = S, since 'P(at 1 + bt2) + S = at 1 + S + at2 + S 

Also: 

= a(t 1 + S) + b(t2 + S) 

aP(t 1) + bP(t 2) 

P ( t) = 0 .::::;>t + S = S or t G O = t e S. 

P(tl 0 t2) = (tl 0 t2) + s = (tl + S) A (t2 + S) 

= P(tl) AP(t2). 

Thus we have the result that Pis a homomorphism of algebras. 

P: uP....-subspace of /\u call it /\Pu (i.e., P(UP) =/\Pu). 
0 0 

From the definition of S we know that S = ker P contains no elements of 

0 1 /\ 0 R = U or U = U. Hence, P maps R isomorphically onto U and P 
0 0 

maps u1 isomorphically onto /\ 1u. Thus we identify I\ 0 u with R and 
0 

/\ 1 U with U. From this we have 

(vii) P(c) =-= c for a 11 c e: R., 

p (x) x for a 11 x e: U. 

Now since uP is spanned by elements of the type x1 

(x. e U) we have 
1. 

by elements of the type Hence, /\Pu is spanned 

(ix) x 1 A x2 I\ . . . /\ x , with x. e: u. 
p 1. 

Elements of/\ Pu are said to have degree E• 

Since x @ x e: S for all x in U we have P(x ~ 
p (X) I\ P(X) = o. But by (vii) above we have 

(x) x A x = O for a 11 x e U. 

0 · · · 0 x p 

x) 0, or 



The mapping U X U X • X U -+A Pu defined by 
""'-------v---.J 

p 

, x )-x1 A . . . A x p p 

is p·linear. This follows from the following diagram: 

f 
.... 

U XU X .• , , XU ~uP 
0 

p- linear I 
7->~ 

r = u 

p (linear) 

Figure 3.3 

• • • 

Then from (xi) we have that if x, y are in U, then 

(x+y) /\<x-+y) =x/\x+x/\y+yf,x+y/\y 

But from (x) x /\ x = y /\ y = (x + y) (\ (x + y) = 0 so we have 

x /\ y + y A x :::1: 0 or 

(xii) x A y = -y A x. 

From (xii) we have 

A I\ .Ax. 
( 1 -~) (xiii) x. x. sign i J,: 

1.1 1.2 1. 1 . p p 

showing that the expression is skew-symmetric in its entries, we also 

have 

(xiv) x1 I\ ... A xp = 0 if any two xi are identical (xi E: U). 
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For suppose xj = xk then by suitable permutation we can put xj and 

xk adjacent. But xj/\ xk = 0 and since the permutation can at most 

change the sign we ·have the result. 
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Using (xii) repeatedly we have 

(xv) x 1 /\,, ./\ xpAY1 /\ , (\y =(-llq Y1 /\. • , /\y /\ q q 

xl /\ • ',' I\ xp 

for any x., y. in U. 
]. ]. 

Since any u e j\ Pu and v e 

a linear combination of elements x 1 (\ ... A xp 

we have 

/\qu can be written as 

and y 1 /\ . • . /\ y q 

(xvi) u/\ v = (-llq v /\ u for u e (\ Pu, v e /\ qv 

Notice: x I\ x not necessarily zero if x e /\ 2u. For example let 

x = x 1 /\ x2 + x 3 /\ x4 then x /\ x = (x1 /\ x2 + x3 /\ x4 )(\(x1/\x2 + x3 j\x4 ) 

= (x1 /\x2)/\.x3/\x4 + (x3Ax4)/\(x1/\x2 ) 

= x 1 I\ x2 A x3 (\ x4 + x 1 /\· x2 A x3 J\ x4 

2 (x1 /\ x2 /\x3 /\ x4 ) 'f O 

for x 1 , x 2 , x 3 , x4 e U, xi are linearly independent. 

Also we have /\Pu= 0 if p > n = dim U (Since /\Pu, p>n, is spanned by 

elements of the type x 1 /\ •.• j\ xp (xi e U) and every such element is 

zero if p > n) , 

©f/u CB 0Anu. Hence' I\ u A. 0 u 

Theorem 3. 1. x1 /\ . . /\ xp O if and only if x 1 , x2 , • • . , 

x are linearly dependent (x. e U). 
p ]. 

We now compute the dimension of the/\ p (U). Let B = [ e 1 , • • 

en} be a base for U. Thus dim U = n. 

p, then 

x 1 /\ , . /\ jl 
. x xl e. p J1 

jl 
xl 

A 

If x. 
]. 

x 
jp 

p 

Ax\ 
p 

/\ 0 e. 
J1 

Thus /\Pu is spanned by the elements of the form 

e. 
JP 

. /\ e .• . 
JP 
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. . . (\ 

But from (viii) and (ix) we see that /\Pu is spanned bye.(\. 
J1 

with 1 s; j 1 < j2 < . 
. . ' Ae. such that 

JP 
linearly independent 

(xvii) I: 

. . < jp s; n • There 

2 :;;; jl < j2 < . . . 
in A. Pu. For suppose 

j j 
1. . . p 

c 

j 1 <·. ·<\ 

are (;) elements e. (\ 
J1 

< jp :;;; n. These elements are 

for some 1 j L , , jp 
sea ars c Let Kp+l' , , K be distinct integers 

n 

from 1 ton and form the exterior product of the left member above 

(xvii) with the element eK /\ 
p+l 

e . (\ . . . A. e . I\ eK /\ . . 
Jl JP p+l 

, . A eK • All terms 
n 

/\ eK (j 1 < . . . < jp) vanish except 
n 

the ones for which j 1 , ... , jp is the complementary set of indices 

K1, • • • , KP corresponding to Kp+l' , K, so that K1 , . n • , ' K n 

is a permutation of 1, . . . 
' 

n. Thus the product of the left side 

0 . /\ e reduces to the single term 
n 

/\eK (no summation) and this must be zero by 

(xvii). 

KL 
e 

But eK. (\ 
K 1 

p = o. 

n 

A eK is not zero, by Theorem 3.1, thus 
n 

Hence, we have proved that 

(xviii) dim/\Pu = (;J p = 0, 1, 2, •.• , n. 

and that 

of 

the elements e. /\ 0 • /\ e. with i :;;; jl < . . . < jp :;;; n form a 
J1 JP 

base in (\ P·(u) if [el' 0 . 0 

' en} is a base in u (p > 0) • 

Thus we have 
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dim A U = ( ~ ) + ( ~ ) + . . . + ( : ) = ( 1 + 1) n = 2 n • 

Differentiable Forms on a Manifold 

We now let U = T;(M), the dual space to the tangent space Tp(M) at 

CC) 

a point pin a C m·manifold M. The O·forms on Mare the differenti· 

able real-valued functions f : M---R. 

Definition l:.§. * A l·form ¢ at p e Mis an element in T (M). 
p 

Thus ¢p(av + bw) = a¢p(v) + b¢P(w) ;or all a, be R, v, we TP(M). 

Notice_:·.'.t]:iat by ·definition ¢p (v) is a rea 1 number for a 11 v e Tp (M). 

Definition 1.:.Z· If f is a differentiable real-valued function on 

some open set containing a point p of a Ca:, m-manifold M then the differ-

ential df off is the l•form such that 

df(v) = v [fl for all v e T (M). p p ~ p '. 

. ' x is a local coordinate system in a neighborhood 
m 

of p e M, then the differentials (dx1) , (dx2 ) , . 
p p 

, (dx) form 
m p 

a basis for T*(M). In fact, they form a dual basis of the basis p . 

.(-;:-}p 
m 

for T (M). 
p 

Note: Let M = E1 with coordinate system x. Then any tengent 

vector v at p is of the form (x2 - x1) = (Ax) = b,x • l· and so 
p p p 

dx 
dx(b,x) = (Ax) [x] =(Ax· 1 )[x] = 6x · (1 )[x] = b,x · dx = Ax, p p p p 

since 1 = (dd J . See Figure 3 .2 below. 
p x p 

0 p = x 
1 

Figure 3.2 

!§.. 
p 



41 

In a neighborhood of p, every 1-form w can be uniquely written as 

w = I: 
i 

where the fi(x1, • , x) are functions defined in the neighborhood 
m 

of p and are called components of w with respect to (x1, , • , , xm). 

The 1-form w is called differentiable if the f. are differentiable. 
1. 

A 1-form can be defined as an J(M)-linear mapping of the 'J (M)-

module I (M) into 3 (M). The two definitions are related by (w(V) \ = 

< wp' V (p) >, V e: J: (M), p e: M, where <, > denotes the value of the 

first entry on the second entry as a linear functional on :I°(M). 

Let/\ T*(M) be the exterior algebra over T*(M). An r-form w is a 
p p 

mapping that assigns an element of j\r(T*(M)) to each point p of M. In 
p 

terms of local coordinates x1, .. . ' x can be expressed uniquely as 
m 

a sum 

w = t fi 1 • . . ir dx. (\ dx. /\ 
. . .. 1.1 1 2 
1.l < 1.2 < ··· < 1.r 

!\ dx .• 
1. 

r 

The r-form w is called differentiable if the components fi 
1-' .i 

r 
are all differentiable. By an r-form we shall mean a differentiable 

r-form. 

We denote by Dr(M) the totality of differentiable r-forms on M 

for each r = O, 1, . ' m. Thus D0 (M) = J (M). 
m 

Let D (M) = I: Dr (M), 
r=O 

then with respect to the exterior product, D(M) forms an algebra over 

the field of real numbers. 

Exterior Differentiation 

r The exterior derivative of a p-form on M is a mapping d ·: D (M)-

. r+l ( ) D M such that 

1.) d(w + n) = dw + dn for all we: D0 (M), n e: Ds(M) 



3.) 

4.) 

d(dw) = 0 for all we D. 

df = I: .at_ dx. , for f e n°(M). 
oX, 1 . 1 

The conditions above completely characterized and in terms of 

ill\ i2A /\_.i 
local coordinates if w = t fi i dx dx /\ ... {\dX r 

1.,. r 

then 

d w = ~ df. 
1.1. 

il < i2 < .. , < ir 

0 0 i 
r 

Let F : M--,... N be a differentiable mapping where M is a c= m­

manifold N is a c= n-manifold. Since the Jacobian F* maps tangent 

* vectors on Minto tangent vectors on N, it induces a map F of forms 
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* on N to forms on M. If g is a real-valued c= function on N, then F (g) 

= g'0 'F is a c= real-valued function on M. Hence 

* Now if ¢ is a 1-form on N then define F (¢) (v) = ¢ (F* (v)) for all 

v e Tp (M), and if T] is a 2-form on N then define 

* F (Tj)(v,w) = T](F* v, F* w) for all pairs (v,w) e T (M) X T (N). p p 
* r . In general, then we define F (µ,) e D (M) by 

* F (1,11)(v1, v2, ••. , vr) = µ,(F* v1, F* v2 , ..• , F* vr) 

r where v. e T (M), µ, e D (N). 
1 p 

Theorem 3 .. 1. Let F: M---N be a differentiable mapping of a 

C00 m-manifold Minto C00 n-manifold N and let wand T] be forms on N. 

Then 

* * * 1.) F (w + T]) = F w+F T] 

* (w/\ µ) = F* A ,~ 2.) F w F T] 

* * 3,) F (dw) = d(F w), 



CHAPTER IV 

ON THE DEAL CURVATURE OF HYP;ERSURFACES 

This chapter utilizes the exterior algebra of forms and the moving 

frames as developed by E. Cartan to study hypersurfaces in Euclidean n-

d . . 1 Th D 1 C f f E3 ' . d imensiona space, e ea urvature o a sur ace on is given an 

then extended to hypersurfaces in En. 

The covariant differential, vW, of a vector field (see Definition 

2.17) will be used in terms of the natural frame field u1,u2 , u3 to 

yield a vector field with 1-form coefficients. Then orthonor~al e~pan-

sion in terms of the moving frame e1, e2 , e3 is used to introduce the 

connection forms for the moving frame e 1, e2 , e3 . 

3 Moving Frames in E 

To each point pin E3 we attach a right~handed orthonormal frame 

e 1, e2 , e3 and suppose the vector fields ei are differentiable. Let 

X = (x1, x2 , x3) = x1u1 + x2u2 + x3u3 denote the positioning vector of 

1 2 3 
the point p. Now since VvX = Vv(x u1) + Vv(x u2) + Vvx U3 

1 2 3 = v[x JU1 + v[x JU2 + v[x Ju3 (by Lemma 2.5) 

dx1 (v)U1 + dx2 (v)U2 + dx3 (v)U3 

(by Definition 3.7) 

3 1 2 3 
where v € T (E ) , we have vx = (dx , dx , dx ) . Thus in the following 

p . 

sections we will use E. Cartan's notation and express the covariant 

differential by dX. 1 2 3 Thus, dX = (dx, dx, dx) and if we express dX 
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in terms of the frame e 1, e2 , e3 by expanding u1, u2, u3 in terms of 

the ei and then collecting terms we have: 

dX = alel + a2e2 + a3e3 

where the ai are one-forms. · We do the same for eac·h ei: 

(i = 1, 2, 3) 

where the"' are one~forms. 
"'ij 

• e . + e. • de. = 0, 
J l. J 

and so 

And, in particular, w .. = O. 
l.l. 

We introduce the following matrix notation: 

e =(J 
Thus, we have dX = cre, de 

transpose of the matrix O. 

t = Oe, and O + 0 o, where to is the 

·Now, since d(dX) 
1 2 . ·3 

= (d(dx ), d(dx ), d(x )) = O, we have 

0 = d(dX) = d(0 e) = dcr • e +a· de 

= da • e - aOe = (d0 - o{))e, 

but thee. are linearly independent, so 
1. 

.dcr = on. 
Also, d(de) = O, and so 

0 = dO · e - Ode 

2 
therefore, dO = n. 

In summary, then we have 

2 dOe - 0 e, 



Structure equations Integrability conditions 

dX = cre 

de= Oe 

o+\1=0 

Notice that if we let 

where u1(p) = (1, 0, O)p, u2 (p) = 

u3 = (0, 0, l)P then 

(0, 1, O) , 
p 

e. = r: b .. U., 
1. 1.J J 

e = BU 

where B = (b .. ) is an orthogonal matrix: 
1.J 

t t t t t I= e e = BU U B =BIB= BB. 

Thus, 

and so 

hence 

dx1 Adx2 A dx3 = I BJ cr1" 0"2 /\0"3•r 

da = on 
dO = r? 
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I so I B r = 1, I B I= + 1. Since e is a right-handed system, 

I B I = + 1 and so 

dx Ady A dz cr1 /\ cr2 /\cr3 

and thus cr1 I\ o-2 /\ cr3 is the volume element for E3 • 

Surfaces in E3 

Let M be smooth surface in E3 with X as positioning vector. We 
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choose a moving orthonormal frame at each point p. of M such that e3 is 

normal. to the surface. Then e1 and e2 span the tangent plane at each 

point p. 

Since Xis constrained to the surface M, dX must lie in the tan-

gent plane and so 0'3 must be zero. Thus 

dX 1 2 3 
+ cr2e2. = (dx , dx, dx. ) = cr1e1 

and ~l A cr2 represents the element of area on M. 

Figure 4. 1 

Since O is skew-symmetric we have 

Therefore, the structure and integrability equations reduce to 

dX = cr1e1 + cr2e2 dcr1 
- A cr2 = (.l) 

de 1 = we 2 - U\e 3 dcr2 -w A a1 
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de2 = -u,el - Ulze3 
<"1 Awl + crz /\wz = 0 

de 3 = Ull el + w2e2 
dw + w1 /\ wz = 0 

du, = 1 w A w2 • 

The elements of O are called the connection forms for M.with 

respect to the frame el' e2' e3. The equation dw + W1 A Ulz = 0 is 

called the Guass equation and 

du,l + w1 /\ wz = 0 

du,2 = w Aw 1 

are ca1lled 

Also, 

the Codazzi equations. 

since dx Ady = a 1 A. o2 , 

al /\ crz. Now as X moves 

the element of area on Mis given 

by the form over the surface M, e3 

x3) ~xl)2 + (x2)2 + (x3)2 = l}, 

moves over 

2 1 2 
the surface S = [(x, x, S2 . 

1. s 

called the spherical image of Mand since e 1, e2 , are orthogonal to e3, 

2 2 they lie in the tangent plane to S and form a frame on S • Thus, since 

de = 
3 wlel + u,2e2, 

w1 /\ w2 is the element of area on S 2 (i.e., de3 plays same role to S 

as dX does for the surface M), From Chapter III we know that there 

only one linearly independent 2-form on M so 

where K is a scalar called the Gaussian curvature of M at p. 

Also, al A wz O'z Aw1 is a 2-form on M and so 

0'1 A Ulz - 0 2 /\ w1 = 2H cr 
1 
A cr2 • 

We call H the mean curvature of Mat p. The one-forms w1, w2 are 

linear combinations of a 1 and o2 and since a 1 A w1 + 02 /\ w2 = 0, we 

have a symmetry in the coefficients: 

2 

is 



Wl = pcrl + qa2 

w2 = qal + ra2 

From this we have 

A = rcr1 A 0'2 01 W2 

0'2 A W1 = -pal A 0'2 

and so by adding the last two equations above we have 

O' 1 A W2 - 0'2 /\ W1 = (p + r) 01 I\ 0"2 • 

Therefore, 2H = p + r or H = (p + r)/2. Also, 

w1 A (.1)2 = (pcrl + qa2) /\ (qcrl + rcr2) 

= (pr - q2) crl I\ a2 

and hence, K 2 
== pr - q • 

We call the matrix 

s = c :) 
the shape operator of the surface Mand the Gaussian curvature Kand 

the mean curvature H of M are given by 

K det s 2 = = pr - q 

H 1 s 1 (p + r). = - trace = -2 2 
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The characteristic roots of the symmetric matrix Sare called the 

principal curvatures k1, k2 of M. Thus 

I S - ,._I I= 0 implies 

(p - A)(r - A) - q2 = 0 or pr - q2 • (p + r)).. + )..2 0 

and so K = k 0 k 1 2 

2H =kl+ k2 . 

Not ice that from dw + IJ)l Aw2 = 0 we have 

-+rTA -o dw KM1 a2 - • 



Thus we know the Gaussian curvature once we know w, cr1 , a2 • But 

from the r~lations 

dcr1 = w A02 

dcr2 = -w A CY 1 

-= w (cr2 - o1) which means that we know w once 01 

and a2 are known. That is 

da1 "" acr1 A cr2 

dcr2 bcr 1 A 0 2 

are determined and so we have 
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Hence, W = a01 + ba2 • Thus the Gaussian curvature is completely deter­

mined analytically by 0 1 and 0 2 • This contains the theorem of Gauss 

that curvature is an intrinsic invariant of M. 

On Deal Curvature of Surfaces 

We consider the following two-form on M: 

PWl /\ 0z - rw2 /\ 0 1 + 2qw2 /\02 • 

Since the space of all two-forms on Mis one dimensional we have 

where~ is a scalar called the Deal Curvature of Mat p. 

By direct computation 

pw1A o-2 - rw2 /\ 01 + 2qw2 /\ 02 

Also, 

2 2 A 
[(p + r) - 2(pr - q )Jcr1/\a2 

cl + r2 + 2l J01 /\02 



so, 

2 
~ = (2H) - 2K. 

Thus, in terms of the principal curvatures k1 and k2 w~ have 

2 
~ = (kl + k2) - 2 (klk2) 

2 2 
=kl+ k2. 

Example: Let M, be a surface of a ~phere with radius a. Then 

and so 

where 

Therefore 

Thus 

x = (a sin¢ cos e, a cos¢ sine, a cos¢) 

dX = (a cos¢ cos 9, a cos¢ sin 9, - a sin¢) d¢ 

de3 

+ (-a sin¢ sine, a sin¢ cos e, 0) d9 

=(ad¢) e 1 + (a sin¢ d9) e2 , 

= 

= 

= 

(cos ¢ 

= a sin crz 

cos e, cos 

+ (-sin ¢ sin 8, 

cos¢ cos 9 

cos e 

sin¢ sine 

¢de, 

¢ sin 9, -sin 

sin ¢ cos 9, O) 

d¢e 1 + sin ¢ dee2 ' 

¢) 

d9 

: si¢n ¢) 
cos J 

d¢ 

and so wl = d¢, w2 =sin¢ de. 

Therefore we have 

sin¢ d6 a 

1 
This gives -:"Z as the Gaussian curvature of a sphere of radius a. Now a 

since 

d¢ =pad¢+ q a sin¢ d9 
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sin ¢ <le q a d¢ + r a sin ¢ de 

we have p 1 0, and hence = r ::::; ;, q = 

\ 
2 + 2 + 2q 

2 1 1 2 p r =-+- =-
2 2 2 a a a 

Deal Curvature of Hypersurfaces 

A hypersurface is an n·dimensional manifold M embedded in En+l. 

Let X denote the moving point p on M, and let n be the unit normal at 

each point in M. Consider the mapping x-n on Minto Sn. The tangent 

space T (M) is an n=dimensional Euclidean space, so we pick an ortho­
p 

normal basis e 1, e2 , ..• , en. Thus, at X, the vectors e 1, e2 , 

n form on orthonormal basis of En+l. 

the tangent space we have 

From e. 
l 

0, n·n = 1 

we have <lei · ek + ei · dek = 0, dei . n + e • dn 

where w .. 
lJ 

Thus 

Therefore 

<lei= r. wij ej - win 

dn::;:, E w.e. 
l l 

and 

(.l),. 
lJ 

in 

e = 

wi are 

+ w .. 
Jl 

matrix 

e 
n 

dX = a e 

one- forms 

= 0. 

notation we 

w 

t 
- w 

0 

on M and 

have 

) (l 
(J ' n 

w ). 
n 

Now since dX is in 

0, n • dn 0, and 



And since 

0 d(dX) (d0 )e - 0 (de) = (da)e 

= (d0 - aO)e + (crtw)n, 

t 
u(Oe - wn) 

we have d0 

Now, 

and so, 

( e) =(do 
0 = d[d n J dw -d:w)( : ) _ c -:w) d (:} 

(
dO 

= dw -d:w)(:)" (: -:w 2) (: J 
=(dO - 02 + t'.J.JW 

dw - wO 
2 t 

dO - 0 + ww = 0, dw = WO. 

- tdw : ntw J ( : ) 

We define a skew-symmetric matrix of two forms: 

0 = <eij) 

du = oD 
t 

0 + 0 = 0 

t 
cr w = o 

dO - o2 

dw = o.O 

8 + tww = 0 

or in terms of individual elements of the matrices we have 

do. 
J 

wij + wji 

I: cr/\wi = O 

dw. 
J 

e .. 
l.J 

= E w./\w .. 
l. l. J 

+ W.~W. = 0. 
l. J 

The 0 . form a basis for one-forms on M, hence we have 
l. 

CJ •• 
J 

Because E crAw = 0 the b must be symmetric, i i ' ij 
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b,. = b ..• 
J.J JJ. 

The mean curvature and Gauss~an curvature are defined by 

1 
H = - 'E b,i' l{ = I b,. I . n J. J.J 

Since 0\ 

U\ A .. 
A. ••• /\(J is the n•dimensional volume element on M and 

n 

• ,(\ w0 is the corresponding quantity for s0 , K represents the 

ratio of volumes, volume of spherical image over volume of M, due to 

w1A ... Aw = .(t h1. cr.)/\ ... A(t b . 0 .) 
. n . J J OJ J 

=J bij lcr1A.· • ./\crn =Ka/\•• .A a 
n 

Now consider the following n· form on M: 

; (-l)n-l b .. w.Acr1/\ .•. /\G'.A. · ./\a 
i=l ii i J. n 

n- 1 n n- 1 A /\ A /\ j\ 
-2 I: r< t (-1) b .. )w.l'cr1 • • , (J, • • , cr] 

i=l j=i+l J.J J. i n 

= 1<n cr 1 j\ · · . I\ crn • 

The sea lar 1<n is called the ~ curvature of M. 

As noted above 

w1 = bll cr1 + b12 
(J + + bln crn 2 

Ul2 = b21 cr1 + b22 02 + + b2 (J n n 

wn = bnl 0 1 + b22 °2 + + b a 
nn m 

so we consider the following: 

bllw1Acr2A. cr3 /\. • /\ (J 
2 

cr1 /\. ./\ (J = bll n m 

b22w2Acr1 /\ cr3 /\. ./\ (J 
2 

cr1 /\ • .Aa b22 n n 

.. 
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(-l)r{.:. 1h w A(j1 /\ • • .I\ cr 1 = h2 cr1A • · ./\ cr nn n n- nn n 

2(b22 + • . + bn~)w1/\cr2 /\ ... /\ crn = 2b11b22cr1 A ... /\~n 

- 2 (b33 + · + bnn)~2A cr1/\cr3A. • · ·Acrn = 2b22b33cr1 A 
• , ./\ crn 

i-1 
(-l) 2 <hi+l,i+1·+ 

By adding the above equations we have 

n · n-1 n 
t (-1/-1biiwiAcr1A ... /\~ii\ ••• /\ 0 + 2 !: ( I: (-l)i'."l.i:)j .) 

i=l · n i=l j~i+l J 

wiA a/\. · ,A~A. · ,Aan 

2 
== (nH) a-1 /\ • ,/\cr . 

n 

Now we copsider the det b ~ 
ij 

0 0 0 b 
nn 

and the foUowing expressions derived from UJ, = !: b .. 
1 1J (J j O 

. 

r.J n n i - 1 I\ ./\ /\ /\ 
-2K = -2[ I:: [ I:: (-1) h .. J wi/\cr1 • • • &i · · • crn 

i=l j=i+l JJ 

n-1 n 
i-1 /\ I\ J\ /\ f\ - :E ( !;. (-1) bi,) wi cr1 •.• cri •.• crn} 

i=l j=i+l J 



n-1 n 2 
I: ( E b .. ) cr1 

i=l j=i+l lJ 

Thus from the form giving Deal curvature we have 

n . 1 A 
I: (-1) 1 - b.~w./\cr1/\ •• . /\r:;./\. , ,Acr 

i=l 1L l l n 
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It can be shown that in terms of the principal curvatures k1, • I O ) k 
n 

(characteristic roots of the symmetric matrix (bij)) that 1'n = ki + k~ 
+ . 2 . . + k • n 

Example: Consider the surface of revolution given by 

X(u1,u2) = (u2cosu1, u2sinu1, h(u2)). 

Let the frame be given by 

( . 1 1 O) -s1.nu , cosu , 

1 , 1 I 2)) 1 (cosu , s1.nu , h(u ---------
( 1 +h ( u2 ,2 ) \ 

12 1 ,2 .1 122\ 
(h(u )cosu, h(u) s1.nu, -1)(1/(l+h(u) ) ). 

Then 

1 2 dX(u, u) 

and 

,2 1 ,22!:: ,,2 2 ,22 
de 3 = (h(u )du /(l+h(u) ) 2 )e 1 + (h(u )du /(l+h(u) ))e2 



Therefore 

w1.A w2 = (h( u2 )l;'(u2) I ( 1 +h'(u2) 2 ) 3 / 2 )du 1/\ du2 

,2112 2 ,222 /\ = (h(u )h(u )/u (l+h(u) ) )01 02 

= K cr1Acr2 

1 2 where K is the Gaussian curvature of X(u ,u ). 

Also, since 

we have 

and so 

p = li(u2)/(u2 (l+h(u2)2)~ 

q = 0 

r = h(u2)/(l+h(u2)2)3/2• 

/\ A 2 2 A PW1 cr2 ~ rw2 cr1 = (p +r) cr1 cr2 

~ (b'(u2)2(l+h(u2)2)2 

+ (u2)2h(u2)2)/(u2)2(1+h(u2)2)3 cr/\02 

= ~ cr/\ cr2 

where~ is the Deal curvature of the surface of revolution given by 

1 2 
X(u ,u ). If we let 

2 2 h(u) = u, 2 
0 < u < 1. 

we have the surface of a cone and the Gaussian curvature vanishes; 

K = 0 

while the Deal curvature is given by 

~ = 1/2 (u2l. 
If we let 

h(u2) 
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then the surface of revolution given by 

X( 1 2) ( 2 1 2 . 1 ( 2 ( 2)2)\) u ,u = u cosu, u sinu, a - u 

is a sphere with radius a. Now since 

I 2 2 2 2 2 \ h(u ) = - (u ) I (a - (u ) ) , 

we have the Gaussian curvature of a sphere of radius a given by 

K = h(u2)h(u2)/(u2)(1+h(u2)2)2 

= l/a 2 • 

And, for the Deal cuivature, ~' of the sphere we have: 

~ = 2/a 2 • 

57 



A SELECTED BIBLIOGRAPHY 

1. Ausbnder, L., and Mackenzie, R. E., Introduction to Differentiable 
Manifolds, McGraw-Hill Book Company, N. Y., (196.3), 

2. Bishop, R. L., and Crittenden, R. J., Geometry .2! Manifolds·, 
Academic Press Inc., N. Y., (1964), 

3, Cartan, E., "La Methode du Repere Mobile, 11 Actualities!£.!. & 
Ind., (.!.935). 

4. Chern, S. s., 11Differential Geometry of Fiber Bundles," !!.2.£. Int·. 
Congress, (1950). 

5. Chern, S.S., and Lashof, R., K., "The Total Curvature of Immersed 
.Manifolds,"~· l, Math,, vol. 79 (1957) pp. 308-318. 

6. Deal, R. B., Jr., Unpublished Doctoral Dissertation,. University 
of Oklahoma, (1953). 

7. Ehresmann, C., "Les Connexions lnfin~tesima lee dans un Espace 
Fibre Differentiable, II Cgllocme a l'.opologie, Bruxelles, 
(1950). 

8. Flanders, H., Differential Forms with Aeplications . ..t.e the Physical 
Sdence_s, Academic Press Inc,, N. Y., (1963). 

9. Goldberg, S, I., Curvature~ Homology, Academic Press Inc., 
N. Y., (1962). 

10. Hicks, N. J., Notes .Q!! Differential.Geometry, D. Van Nostrand, 
N. Y., (1965). 

11. Kobayashi, S., and Nomizu, K., Foundations of Differential 
Geometry!, John Wiley& Sons, Inc., N. Y., (1963). 

12. Kreyszig, E., Differential Geometry, Oxford University Press, 
London, (1959). 

13. Mostow, G.D., and Sampson, J. H., and Meyer, J.P., Fundamental 
Structures ..Q! Algebra, McGraw-Hill Inc., N. Y,, (1963)~ 

14, Nomizu, K., Lie Groups .filll! Differential Geometry, .Math. Soc. 
Japan, (1956). 

15. O'Neill, Barrett, Elementary Differential Geometry, Academic Press 
Inc., N. Y., (1966). 

58 



16. Spivak, M., Calculus on Manifolds, W. A. Benj~min, Inc., N. Y., 
(1965). . -

17. Sternberg, S., Lectures .Qll Differential Geometry, Prentice-Ha 11 
Inc., Englewoo~ Cliffs, N. J., (1964). 

18. Willmore, T. J., Introduction .!2 Differential Geometry, Oxford 
University Press, Oxford, England, (1959); · 

59 



VITA 

Donald J. Boyce 

. Candidate for the Degree of 

Doctor of Education 

Thesis: DEAL CURVATURE OF HYPERSURFACES 

Major Field: Higher Education 

Minor Field: Mathematics 

Biographical: 

Personal Data: Born in Duncan, Oklahoma, December 30, 1931, the 
son of Mearl and Ruby Boyce. 

Education: Attended elementary schools in Comanche County and 
Lawton Public Schools, Lawton, Oklahoma; was graduated from 
Lawton High School, Lawton, Oklahoma, in 1951; attended 
Cameron Junior College, Lawton, Oklahoma, 1951-53; received 
Bachelor of Science degree from Central State College, Edmond, 
Oklahoma, with a major in mathematics, in May, 1956; received 
Master of Science degree at Oklahoma State University, 
Stillwater, Oklahoma, in August, 1957; attended University 
of California at Los Angeles, in Summer, 1960; attended 
University of Kansas, Lawrence, Kansas, in 1961-62; completed 
requirements for the Doctor of Education degree at Oklahoma 
State University, Stillwater, Oklahoma, in January, 1968. 

Professional Experience: Taught mathematics at Central State 
College, Edmond, Oklahoma, 1955-56; Graduate Assistant, 
Oklahoma State University, Stillwater, Oklahoma, 1956-57; 
Central State College, Edmond, Oklahoma, 1957-58. Systems 
Analysist, Tinker Field, Oklahoma, in Summer, 1958; taught 
mathematics, Central State College, Edmond, Oklahoma, 1958-
60 and 1963-67. 


