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CHAPI'ER I 

INTRODUCTION 

1.1 Statement of the Problem 

It has been observed both experimentally and a.na.lytica.lly tha.t 

various structures become unstable when subjected to a periodic load, 

less than the static buckling load, when certain relationships exist 

between the frequency of the periodic load and the natural frequency of 

transverse vibrations of the structure. The stability of a thin right 

circular cylindrical shell subjected to a uniformly distributed axial 

and radial pulsating pressure is investigated in this thesis. The 

results of this analysis are presented by giving the principal regions 

of instability for several loading and support conditions. A region of 

instability is defined as the spectrum of those points in the load-

frequency space which satisfy certain conditions of instability. 

The shelis in this study are assumed to be homogeneous, isotropic, 

and initially perfect. The material is linearly elastic and the 

assumptions of small deflection theory are assumed. 

1.2 Historical Review 
,,._, . 

Melde, in 1859, discovered the phenomenon of parametric resonance 

in a stretched string with·one end attached to a vibrating tuning fork. 

The first theoretical explanation of this phenomenon was given by 

Rayleigh (1) in the 188o•s. Most of the recent work in the area of 

l 



dynamic stability has been done by Russian investigators. A detailed 

review of the Russian works in this area through 1951 can be found in 

an article by Beilin and Dzhanelidze (2). 

2 

N. M. Beliaev (3), in 1924, examined the problem of dynamic 

stability of a straight rod hinged at both ends and found the bounda­

ries of the pri11cipal region of instability,. In 1935, Krylov and 

Bogoliubov (4) solved the problem of a straight bar with arbitrary 

support conditions by applying the Galerkin variational method. Bodner 

(5), Khalilov (6), Einaudi (7), and Ambartsumian and Khachatrian (8) 

investigated the dynamic stability of plates loaded with compressive 

in-plane forces. In 1940 Dzhanelidze and Radtsig (9) published a paper 

solving the problem of dynamic stability of a circular ring subjected 

to a radial pulsating load. 

Markov (10) investigated anisotropic cylindrical shells in 1949 

and Bolotin (11) published several papers on the dynamic stability of 

spherical shells in 1958. Federhofer (12) published a paper on the 

dynamic stability of cylindrical shells under axial pressure and Bublik 

and Merkulov (13) studied the dynamic stability of a shell filled with 

a liquid.. 'I'he influence of dam.ping on the boundaries of the regions 

of instability was discussed by Mettler (14) and Naum.ov (15). Bolotin 

(16) published a book, Dynamic Stability of Elastic Systems in 1956, 

which includes most of the work done in this area before that timeo 

In 1963 Wood and Koval (17) published some experimental results 

on dynamic stability of cylindrical shells using mylar cylinders for 

models. Bieniek, Fan, and Lack:Pt...a.n (18) applied Galerkin's method to 

the problem for cyli~drical shells. Also, Agam.irov and Vol'mir (19) 

and Vol 1mir (20) employed finite deformation theories for solution of 
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cylindrical shells and panels. 

In all of the above works the problem of dynamic stability was 

either exactly or approximately reduced to one second-order differential 

equation of the Mathieu-Hill type. Brachkovskii (21) a.n.d Bolotin (22) 

established a. class of problems that can be exactly reduced to one 

second-order differential equation. 

The concept of subdividing a structure into various finite ele­

ments for analysis is by no means new. The slope deflection method of 

stru~tural analysis could be classified a.s a finite element approach. 

However, the methodology of' the finite element technique a.sit most 

usefully applies to plates, shells, and compound structures, has been 

developed only recently. Turner et al (23), in 1956, presented the 

first significant work in this area. Melosb (24), Best (25), Pian 

(26), Zienkiewicz and Cheung (27), and.Severt!!. and Taylor (28) developed 

and extended the method, but did not alter the original concept. 

Percy et al (29) used a conical frusta for an element in applying 

the method to static and vibrational problems for shells of revolution. 

Others have suggested and used doubly curved elements (30) and curved 

frusta (31) for general shells of revolution. The recent application 

of the finite element method to the determination of the regions of 

dynamic instability of bars, plates, and complex structures for which 

other known techniques are unnecessarily difficult, has been the effort 

at.Oklahoma State University (32) and (33). This thesis is an exten­

sion of these works to the dynamic stability of cylindrical shells 

under periodic axial and radial loading. 
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1.3 Finite Element Method 

The finite element method consists basically of subdividing the 

structure into a number of elements, determining the behavioral 

characteristics of each element, and assembling the elements by con­

necting them at certain points or nodes in such a way so as to repre­

sent closely the original structure. The type of element to be useq 

for a. pa.rticula.r problem is very critical. The assembled elements 

must not only approximate the shape of the original structure, but 

must also be able to approximate the actions and deformations of the 

structure. If the properties of the material a.re known, then the 

behavior of ea.ch element ca.n be described by relating the generalize.d 

forces to the generalized coordinates at the nodes. The behavior of 

the entire structure is then determined by satisfying compatibility of 

the elements at the nodes. 

The finite element method is an approximate solution of a 

mathematical model of the real structure in contrast to other approxi­

mate methods which are approximate solutions of the governing differen­

tial equations of the problem. The governing differential equation is 

not necessary for the solution of a problem, and almost any boundary 

conditions can easily be applied. Many problems not readily handled 

by other means can be solved very ~fficiently by this method. 

The matrices describing the response of an element can be derived 

by assuming either a displacement :function throughout the element or a 

stress distribution within the element. However, since the effects 

of inertia and the potential energy due to loads are related directly 

to displacements and not stresses, a displacement function will be 

assumed for this study. A short cylinder, similar to the element that 
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Percy et al (27) used for the analysis of shells of revolution, will be 

assumed as a typical element. 

l.~ Solution Procedure 

The boundaries of the regions of dynamic instability are deter-

mined.in the following steps: 

a. Determine the equations of motion of a typical shell element. 

b. Assume a displacement function for the shell element. 

e. Derive the necessary influence ma.trices using stiffness 

formulation for the individual elements. 

d. Assemble the elemental matrices to obtain the equation of 

motion of the entire shell. 

e. Apply the bO"Undary conditions. 

f. Calculate the static buckling load and the natural frequency 

of the shell. 

g •. Determine the boundaries of the regions of dynamic instability 

by using the equations obtained in step d. 



CRAPI'ER II 

DERIVATION OF CONDITIONS OF INSTABILITY 

2.1 Equation of Motion 

The equations of motion of the system in finite element form are 

determined from a consideration of Hamilton's principle. The bounda• 

ries of the regions of dynamic instability a.re then derived from cer-

ta.in solutions of the equations of motion. 

Hamilton's principle may be stated in the following manner ( 3l1 ) : 

t2 

5 Jt (T ~ W) dt = 0 
1 

in which 

T = kinetic energy, 

W = the sum of the potential energy and the energy, 

dissipated by viscous da.m:ping, 

t 1 = initial instant of time, 

t 2 = final instant of time, and 

5 indicates the first variation. 

Equation (1) can be rewritten as: 

t2 

6 Jt (T - U + V + w) 
1 

in which 

6 

dt = 0 

(1) 

(2) 
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U = strain energy 

V = potential energy of the applied loads 

W = energy dissipated by viscous damping. 

The variation of equation (2) cannot be performed by the usual method 

due to the nonconservative energy, W. However, equation (2) can be 

separated into two parts, conservative and nonconservative, as fol-

lows: 
t2 

- u + v) dt + 6 J t w dt 
1 

= o. 

The dissipated energy, w, may be written as: 

:ln which 

F 1 = the ith damping force 

di= the displacement at the point of application of the ith 

force. 

Substituting equation (4) into the second integral in equation (3) 

yields: 

2 F O di dt. 
i 1 

Performing the variation on the right-hand side of equation (5) is 

( 3) 

(4) 

( 5) 

equivalent to calculating the work done by the force F. acting through 
J. 

a virtual displacement &di. Therefore, equation (5) may be rewritten 

in the following manner: 
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(6) 

From the definition of generalized forces and generalized displacements 

the following expression can be written: 

2 Q O oq. 
j j J 

(7) 

where Qj is the jth generalized force due to damping forces and qj is 

the jth generalized displacemento Substituting equation (7) into equa­

tion { 5) and substituting the result into equation ( 3) yield~,: .. 

t2 

_6 Jt (T - U + V) dt 
1 

o oq. dt = o. 
J 

(8) 

The kinetic, strain9 and potential energies can be defined in 

terms of the generalized velocities, {q}, and the generalized displace-

men ts» {g}, as follows: 

. 1 0 0 

T = ·- (q) [m] {q} 
2 

u = !: ( q)[k] {q} 
2 

V = ~ (q)[s] {q} + (Q) {q} 

in whith 

[m] :mass matrix whose elements, mi., represent the ith inertia 
. J 

force due to the jth unit acceleration, all other acclera-

tions being zero 

[kJ = stiffness matrix whose elements, kij' represent the ith 

external force due to the jth unit di,.splacement, all other 

displa~ements being zero 
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[s] = stability matrix whose elements, sij' represent the out 

of plane component of the ith in plane load due to the jth 

unit displacement, all other displacements being zeroo 

p = the time dependent applied loado 

Rayleigh's dissipation function may be written in matrix form as 

(35): 
B 1 " j w = - 2 (q)[d]{q} (10) 

in which 
"0 

W = one-half the time rate at which energy is dissipated by 

viscous damping, and 

[d] = damping coefficient matrix whose elements, d1 ., represent 
. J 

the ith damping force due to the jth unit velocity, all 

other velocities being zeroo 

- I The damping force, Qj, is now given by: 

(11) 

Performing the differentiation indicated in equation (11) on equation 

(10) gives: 

(Q}=- [d]{gJ. 

Substituting equations (9) and (12) into equation (8) yields; 

t2 

af ! ((q)[m]{q} - (q) [k) {q} + _p(q)[s](q} + (Q){q}) dt 
tl 2 

t2 

-It (q)[d] o{q} dt = o. 
1 

(12) 

(13) 
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By performing the variation of the first integral in equation {13) and 

combining the two integrals, Hamilton's equation becomes: 

t2' ' 

Jt <~ (mJ{q} - ,[k][q} rp[s].(g.}+ {Q} - [a]!{q})c5(q} dt=O (14) 
1 ' 

The integral in equation (14) must be zero for any virtual displace-

ment, 6{q}; therefore, the term in parenthesis must vanish: 

[m](q} + [k]{q} - p[s]{q} + [d]{q} ={Q}. (15) 

Equation (15) is the equation of motion of a typical element in terms 

of the mass, stiffness, stability, and damping coefficient matrices of 
' ' ' 

that element. The equation of motion of the total structure is ob-

tained by assembling the finite elements to form the complete struc-

tureo Performing this.operation and denoting the assembled matrices 

by [K], [M], [SJ, and [DJ yields: 

[M]{~t'} + [K] (q} - p[S]{q} + [D][q} = b . (16) 

which is the equation of motion of the entire struetureo 

2 ... 2 Instability o:f' Conservative Systems 

If only conservative forces are considered i.e. the damping 

coefficient is zero, equation (16) becomes: 

[M]{q} + [KJ[qJ - p[S]{q} = O. (17) 

For the purpose of this study the time dependent load, p, will be 

assumed of the form:· 

p = p0 :t pt cos 9t (18) 
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in which p0 is the constant portion of the load and pt is the ampli­

tude of the time dependent portion of the load. Substituting equation 

(18) into equation (17) leads to the eq'\la.tion of motion in the follow-

ing form: 

[M]{q} + [K](q} - (po ~Pt cos et)[S]{q} = o. (19) 

Three possibilities exist for parametrically excited lateral 

vibrations: lo the vibrations may decrease in amplitude with time, 

2. the vibrations may continue periodically, 3. the amplitudes of 

the vibrations may incrase with time and eventually become unbounded. 

Bolotin (16) has shown that on the boundaries of the regions of in­

stability the system of equat:t.ons of the type ,of equation (19) has 

periodic solutions with a period of T =~or 2T = ~· Also two 

solutions of identical periods bound the region of instability and two 

solutions of different periods bound the region of stability. From. 

a ~hysical observation it is. seen that periodic solutions of the 

equations of motion form a boundary between regions in which vibra­

tions decrease (regions of stability), and regions in which vibrations 

increase unbounded.ly (regions of instability). 

The generalized displacements and accelerations in equation (19) 

are functions of time and position; however, to find a sol'\ltion with a 

period of 2T =!.!!the generalized displacements a.re assumed in the e . 
form of an infinite series 

[q} = 2 [ [a. } sin !2! + {bk] cos ket } 
· · · K 2 2 k=1,3,5... · 

(20) 

in. which [9ir} and {bk} a.re independent of time. Substituting equation 
k0t 

(20) into equation (19) and collecting similar terms of sin 2 and 



k0t cos~ yields the following infinite number of matrix equations: 

ket for sin 2 
2 

[[IC] - p0 [s] + Pt[s] - \-[M]][a1} - pt[s]{a3} = o 
2 2 

2 2 

[[K] - p0 [S] - ¥-[M](ak}- pt[S]({ak.2J "':· 'L~+e}) = :0 

2 

12 

(k=3,5,7 ••• ) (21) 

k0t and for eos 2 
2 

[[K] - Po[s] - pt[S] - \-[M]]{_bl} - p.i[slfi>~}:i..'.0 
~ 2 

2 2 

[[K] - Po[S] - ¥-(M]{bk}- Pt[sJC--fi>k .. ~+JJ~.k~:'} 0 = 0 2 -· .... 

(k:3,5,7 ••• ) (22) 

The condition for a nontrivial solution of these eguatione is that the 

determinant of the coefficients of {~k} and[biJ mus.t vanish. Combining 

the two determinants by using the± sign yields: 

a2 
[K]-(Po±Pt)[s]-t{M] 0 

~ 

-f l\[S] 

= 0 

0 
2 

[K]-p [SJ- ~JM] • 
0 ~ 

0 0 0 

0 • .. • (23) 
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If the series 

is .substituted into equation (19), the following conditions for the 

existence of solutions with a period of T =~are .found in a similar 

manner, giving: 

and 

1 
"' 2 Pt[sJ 

1 
= - p .... [s] 2 t, 

[K]-p0 [sJ-4e2[M] 

0 

• • 

[K]=p0 [S] 1 
- 2 Pt[sJ 

1 
= 2 I\[S] 

2 
[K]-po[S]-e [M] 

0 1 
- 2 pt[S] 

0 

1 
- - p [S] 2 t 

• 

0 

1 
- - p [SJ 2 t 

2 
[K]-p [sJ-4e [MJ 

0 

.. -,..,-

= 0 

0 

0 

= 0 

.. 

0 

For an exact solution of the boundaries of the regions of in-

(25) 

(26) 

stability, or if all of the regions of instability are desired, the 

infinite determinants of equations (23), (25), and (26) must be solvedo 

However, only the principal regions which correspond to k = 1, are of 

practical importance in structural applications .. A very good approxi-

mation to these regions can be obtained by considering only the first 

term on the principal diagonal of equation (23). This approximation 
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is equivalent to assuming that the generalized displacements, {q}, can 

be expressed with sufficient accuracy by considering only the first 

term of the infinite series of equation (20) as follows: 

(27) 

Therefore, the solution of a dynamic stability problem for conserva-

tive systems reduces to finding the roots of the following determin-

ant: 

I [K] - (po ± p1)[S] - f[M] I = 0 

2 

2.3 ]nstabiliti of Non-Conservative Systems 

The equations of the boundaries of the principal regions of 

(28) 

dynamic instability were derived in the previous section on the basis 

that all forces acting on the system are conservative. Therefore, no 

damping resistance is assumed to be present. Since it is known that 

most materials exhibit some damping characteristics, the e.ffect of 

viscous damping on the boundaries of the regions of instability will be 

included in this section .. 

If equation (18) is substituted into equation (16) the equation 

of motion of the system becomes: 

[M]{q} + [K]{q} - (po ± pt cos et)[S]{q} + [D][g.} = O (29) 

Here again, the boundaries of the regions of instability are determined 

by f'inding periodic solutions with periods T of 2T for equation (28) 

in the same manner as for conservative problems .. By substituting 
4rr 

equation (20) into equation (29) solutions with a period of 2T = '""e 
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are found from the infinite number of matrix equations: 

2 
([K] -po[S] -pi[S] -~[M]]{al}- e[D][bl}-!pt[S]{a3J=O 

2 

(30) 

(k=3,5,7, .... ) 

For nontrivial solutions of equation (30) to exist the determinant of 

the coefficients of [ak} and [b~ must vanish. Therefore, the bounda­

ries of the regions of instability including the effects of damping are 

located by solving the determinant given in Figure 1. As in the case 

of conservative problems, a good approximation to the boundaries of' 

the principal regions can be obtained by considering only the first 

term of the infinite series in equation (20). Using this approxima-

tion the equations of the boundaries reduce to the requirement: 

2 
[K] - (p0 - Pt)[S] - ~[M] 

2 

9[D] 

·9[D] 

2 ! 
[K] - (p +pt)[S] .. \-[MJ'.' (31) 

0 - , 
2 



.. • 

2 

• [K]-p [S]-~M] 
0 

• -pt(S] 
-2 

• 0 

• 39[D] 

" • 

Figure 1. 

• • • • 

-pt(s] 0 -30[D] .. 
2 

e2 -0[D] [K]-(p -p ) [S]- ,:;:-[M] 0 • O t 
2 

a2 
0[D] [K]-(po+Pt)[s]- ""lj:'"[M] -p [S] -·,:, 

2 t -2 

2 
0 -pt(S] [K]-p0 [s]- ~[M] • 

2 
• • • • 

Equations of the Boundaries of the Regions of Instability Including Damping 

· I =0 

t,-J 
(J\ 



CHAPTER III 

DERIVATION OF ~LEMENTAL MA.TRICES 

3.1 Displacement Function 

An element with the assumed displacement coordinates a~d reference 

system is shown in Figure 2. The displacement coordinates, u, v, w, 

are the axial; tangential, and novmal displacements, respectively. 

The individual elements are joined at the nod.al circles. Accordingly, 

each element has four degrees of freedom at each end; three displace-

ments and the rotation of a generator of the shell; a total of eight 

degrees of freedom. The assumed displacement function will have at 

least eight independent constants, one for each degree of freedom. 

If only eight constants were assumed the displacements would be: 

u = (A1 + A2x) cos n~ 

v = (A3 + A4x) sin n~ (32) 

2 3 cos n~ w = (A5 + A6x + Ar- + A8x ) 

Pian (26) has developed a procedure to improve the accuracy of a 

stiffness matrix. More than the required number of constants are 

assumed in the displacement function, and the principle of minimum 

potential energy is utilized to evaluate the additional constants in 

terms of the generalized displacements of the element. This technique 

is used i.n this thesis, and is extended to improve the accuracy of the 

inertia and stability matrices., 

17 
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w 

Figure 2.. A Typical .Shell Element 



Four additional constants were chosen; therefore, the assumed 

displacement functions become: 

2 
u = (A1 + A2x + A9x ) cos n~ 

v = (A3 + A,.x + A x2 ) sin n~ 
'+ 10 

2 3 4 5 
w = (A5 + A6x + A7x + A8x + A11x + A12x ) cos n~. 

The rotation of a generator of the shell, i, is then: 

or 

3.2 Stiffness Matrix 

·y ow =rx 

19 

(33) 

(34) 

a. Oen~ra.lized displacement~-~The generalized displacements, q11 

•··. are amplitudes of the assumed displacemeats at the ends of the element. 

By substituting the proper value of the x coordinate into the assumed 

displacements, the generalized eoordinites can be written as: 

(35) 

.where{~} is the column ma.trix of the four additional constants to 

the displacement function and the matrix [B B] is listed in Figure 3. 
. a b 

Solvipg equation (35) for [Aa.} in terms of {q}, [Ba], [~] and 

{Ab} gives: 

-1 0 

{A } = [B : a a • (36) 



20 

1 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 
2 

0 0 0 a a 

0 0 1 a 0 0 0 0 0 a 
2 

0 0 

2 3 4 5 
0 0 0 0 1 a a a c 0 a 3. 

2 
4a3 

.J, 
0 0 0 0 0 1 2a Ja 0 0 5a 

Figi12·e 3o Matrix Ba Bb 
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Making use of' the identity matrix, [I], the complete matrix of assumed 

constants, [A] can be expressed as: 

where 

and 

{A} = [R] {:J 

[ 

-1 
Ba 

[R] = 0 

(37) 

(38) 

Matrix [R] is listed in Figure 4. The solution of the dependent con-

stants in terms of the generalized displacements is presented in 

section 3.2 e. 

b. Strain-displacement relationships--The approximate equations 

relating the displacements in a thin cylindrical shell to the strains 

and curvature changes are (36): 

(39) 
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1 0 0 0 0 0 0 0 0 0 0 0 

1 
0 0 0 

1 
0 0 0 0 0 0 ··- - -a. a a 

0 l 0 0 0 0 0 0 0 0 0 0 

0 l 0 0 0 1 0 0 0 -a. 0 0 --a a 

0 0 l 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 

0 0 .; 2 
0 0 ~ 

1 0 0 a.2 . 2a.3 ··-a. a. a 

0 0 
2 l 

0 0 
2 1 

0 0 -2a. 2 :;, ~ -;:,- ~ -3a. 
a 

0 0 0 0 0 0 0 0 l 0 0 0 

0 0 0 0 0 0 0 0 0 l 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 1 

Figure 4. Matrix [R] 
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Substituting the assumed displacement functions, equation (33), into 

equations (39), the strains can be related to the constants, {A}, by 

the equation: 

{e} = [WJ {A} (40) 

wher~ the matrix [WJ is given in Figure 5. 

Utilizing equation (37) the strain matrix, equation (40) is ex­

pressed in terms of the generalized coordinates, [q}, and the dependent 

constants,{~} as: 

{•} = [W] [R] (} (41) 

c. Stress-resultants strain relationships--The relationship of 

the stress resultants to strains for a linearly elastic, isotropic, 

and homogeneous material may be written in matrix form as: 

(N} = [HJ [ e}. (42) 

Equation (~2) is written in expanded form in Figure 6. 

d. Strain energ:y:--The internal strain energy of an element can 

be expressed in matrix form in terms of stress-resultants and strains. 

I T 
U = ! A [ e} { N} dA (43) 

Using equation (42) which relates stress-resultants to the strains, 

the strain energy expression becomes: 

U = ! J A { e} T [HJ [ e} aA .. (44) 

Because the stress resultants and their corresponding strains were used 
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0 
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r 
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4 
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Nx 
Eh vEh o, 0 0 " 0 

l-v2 ~ e 
1-v x 

N¢ ~ Eh d' 0 0 
" .. I 

0 
1-v2 1-v2 e~ 

Eh ~ 

Nx¢ 0 0 
2 (l+v) 

0 0 0 /.. ex~ 

= Eh3 vEh3 M 0 0 0 0 Kx x ' 12(1-v2) 12(1-"2) 
vEh3' Eh;3 ' 

M¢ 0 0 0 
12(1-v2 ) l2(1-v2). 

·O .K, 

Mx¢ 0 0 0 0 0 
Eh3 

12(1+v) ~~ 

Figure 6. Stress-Resultant Strain Relationships 
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in equation (42), equations (43) and (44) are integrated only over the 

surface of the element. 

Substituting equation (41) into the strain energy expression, 

equation (44) yields: 

(45) 

The matrices (q,~) and [R] are independent of the variables of inte­

gration in equation (45). Therefore, 

(46) 

Defining the matrix [L] as: . 
a 2rr 

[L] = f0 f0 [W]T[H)[W]rd~d.x (47) 

and performing the indicated matrix multiplication and integration, 

[L], is evaluated and listed in Figure 7 .. Equation (46) now can be 

written as: 

U = ! (q,'),)[Rl[L1{:} 

b 

(48) 

or 

U = 1. (q,Ab) [K 2 · aa 

11,a 

(49) 

where 

(50) 



n.2c..k n 2a2k 

2r 

I 
rat 

+ n2a\ 
l ,r 

....._ 

I 
we.k I 

n2ak 

r 

+ n2a.D 

rl 

-nak 

\mll2i'_ 

2 
_ na2£ 

2 

2 2 
n • J, 
"e;--

2 2 
... ~-~ 

2r' 

n2a~ -1- ark 
3r 

2 3 -
D a D aD +-;r+-

I ~k 

! 

nak 

n\.n 
r' 

na2k 

2r 

n 3a2n 
--;;:;-

~ 

4 
..i. D e.D 

-;T 

.,,.2. 
2 

na2k 
2r 

+~ 
2r 0 

I 
l I ~,. 
I 
I 
I T ne:1k -t-D;a::!l 

I •.r 3r · 

. ~ 

L. 3- h 
~+~ 

3 -:i ~ 
~ +n~a~D 

3r 3r_J 
+ naS 

a". 
2r 

4 2 
nan +~ 
2r' 

e.1k n4e.'b -+-,-
1, ~r 

+ n2a!\ 

_ 4~2n :-na2n 

a 1k +n4a 3n -;-- ---;,--
2.vn. 28]) 

r 

4 l'.i ~ 
Ll+~ 
l.r l:r 

- vn2a2r:J + n.2a.2fi 

4 ' !.....!. +r:. a;~.,+ b·e.D 
Sr 

2 ' -~ -

Sy:cret.ric-s.l. 

k=A 
1-v 

:£,,,~ 
2(1+.) 

E:-, -
D = 12(1-v2) 

D=-..2!:.._ 
12(1+v) 

4n2e. 'n 

"' 

i, 

~ 

nat.k n ":!alD 
-+--< 

fir l;r 

2.'!!!~~ 

ne.;k n=·a5o 
--;;- 5r3 
_ 2vna.3n + na11D 

h h h 
a k n a D 
~ + ""TzT 

~vn2a2n 

g_5it_ + 'ilkaSD 

"r "..r1 

2vri2a \ c2a 1fi ----+--
.r 

a'\+~+ 6ra2n 
6r '". 

2 11 2 4-
- ~~ +~ 

r 2r 

a.7k n4!!1. "TD 
~· 7.r3 +12raD 

2 c 2 '1,,.. 
- ~+9n a:D 

5r 5r 

2 7;.,.. 
~-~ 

3r 

2 4-
!L.U 

4r 

+ ra2k 

vna2k 

~ 
3 
na3k 

2 
va k 

2"6.3< 

" v~ k --.--

2va.,k 

~ 

.... ,i1a':""f 
S,: 

Figure 7. Matrix [Ll 

-::i.a,:.i 

vne3k 

2na~ -~ 
n2e. "\ 

,r 

+ n2a3r> 
~-;r 

n2a4k + n2~ 4D 

4r 4r3 

+ a2rk + a2n 

na3k 

Jr 

+ n3e.\ 
3-;r-

r 

4 J 4 
oak+~ 

4r 4r3 

+ na2n 
r 

na5k + n3a5n 

5r 5r3 

_ g_~a. \ + 4na.1n 
3r ~r 

na!\ + n ~~6n 
6r 6r~ 

"'!vna ~D + ">na LD 
2r 2r 

• ~ 
4-

-~ 
2 

n2a5k n2a5n --+--
5r 5r3 

4ra 'ii ha3n 
~+~ 

.Y.':-2 

na5k + n \ 5n 
----;;-- 5r~-

- """""' r 

ne.~ +n3a~ 
6r 6r3 

3vna4D + na4n 

a5k +~~ 
5r 5r3 

_ kvr?a3n 

a.6~- :4a6n 
&•e;;-3 

r 

3w2a4D + n2e.3n 
- -r-- -r-

a.7k + -;:~{D + & ~rD 
7r 7r3 

1.4,.11i.2a5D + 8n2a~ 
Sr 5r 

E - h B 

;rk +n8~-D + lBa\·n 

-;vn2&6D + 2n2a.6n 
r 

va6k 

na7k + n\.7n 
7r ~ 

l.2vna 5n 8na5n ----+--5r 5r-

a9k -~b a9n lli4ra5n 
;-+~+--5-

- 24wi2&7D + 16n2s.7"D 
?r 7r 

0 

6 
""k 
-6-

na6k + n ':l.e.6D 

6r --;;, 

- 5vna4D 

~ 
n& k n a D 
---;;;:-+~ 
_ 4wa5v + na5ii 

r r 

a\ + n4~6D 
6r ~ 

5vn2a4.E_ 

25.\. n4e.1n 
:;-+~ 

4\11?a5n n2a5n 
--r-+-r-

a e;_-· -~ 4 ~BD 4 

a;-+~+ lOra.D 

2 6 2 6... 
llw a~+ 5n a D 

3r 3r 

a9k n tia9D 
~ +-;,-- + 24a5rn 

_ 26vn2a 7n + 15n2a 7D 
7r 7r 

2\11!1.'k 

8 3 B 

n:/•~ 
lOvna "n 5n• 6n ----+--

3r 3r 

alOk n 4al°n 
~ + ~ + 40re.6D 

.. 4vri2-a 8n + 5n2/~ 
r 2r 

•l~ + n"~~ .. ~00ra7D 
llr llr' 

4ovn2a9n 2'5n2a% ----+-9r 9r 

I\) 
-..:i 



e. !otal Potential Energz--The total potential energy including 

the work done by the generalized forces, (Q}, is: 

28 

TI= U - (q)(Q} (51) 

which can be rewritten by using equation (49) as: 

1 
TI = 2 ~:l{:J- (q){Q}. 

(52) 

The theorem of minimum potential energy states that, 1•a conserva-

tive system is in a position of stable equilibrium if, and only if, 

the value of the potential energy is a relative minimum.n Therefore, 

the partial derivative of the total potential energy with respect to 

the displacement coordinates is equal to zero, or for the case under 

consideration: 

OTT -a- = o 
qi 

a,,. = o or: 
J. 

i = 1, 2 Ho 8 

i =9, 000 12 .. 

Performing the indicated partial differentiation on equation (52) 

yields: 

Solving the last four equations of this relation for the dependent 

( 53) 

(54) 

constants, (Ab} in terms of the generalized coordinates, (q}, gives: 
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[A]= - [K r 1[K ]{q}. 
b bb ba 

( 55) 

The first eight equations of equation (54) can be written as: 

(56) 

Substituting equation (55) into equation (56) gives the following: 

Then by definition, the element stiffness matrix, [k], is: 

-1 
[k] = [K ] - [K ][K ] [K ]. (58) 

aa ab bb ba 

3 .. 3 Mass Matrix 

The inertia forces developed at the nodal circles on each end of 

an element are derived by considering the total kinetic energy of the 

elemento A velocity distribution over the surface of the element, 

similar to the displacement function used in deriving the stiffness 

matrix, is assumed as the following: 

0 . • .. 2 
v = (A + A4x + A10x) sin n¢ (59) 

3 
~ • .. 0 2 0 3 • 4 • 5 
w - (A + A6x +Ax + A8x +A x + A x ) cos n¢. - 5 7 11 12 

The total kinetic energy, T, of an element is: 

(60) 
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or by including the proper limits of integration, 

a 2TT 

T =~Io Io ul· + :.,2 + w2) rd¢dx (61) 

where pis the mass density of the material per unit volume. Substi­

tuting the assumed velocity distribution into the kinetic energy 

expression, equation (61), and performing the integration yields: 

T = P~rrr (A) [VJ {A} (62) 

where matrix [VJ is listed in Figure 8. 

In the previous section a relation was developed between the 

constants of the assumed displacement function, (A}, and the generaliz-

ed displacements [q}• This relation depends only on the form of the 

displacement function and the geometric properties of the element~ 

The velocity distribution, assumed in this section, has exactly the 

same form as the displacement function of the preceding section. 
0 

Therefore, the assumed velocity constants, [A} are related to the 

generalized velocities, [q}, by the same matrix as the displacement 

constants are to the generalized displacements. From equation (36) 

the following equation is obtained 

and from equation (55) 

Using equation (64) and the identity matrix, [I], the following ex-

pression can be written: 

(63) 

(64) 
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"--

a2/2 ·a3/3 
-

a 0 0 0 0 0 0 0 0 0 

a3/3 0 0 0 0 0 0 a4/4 0 0 0 

a a2/2 0 0 0 0 0 a3/3 0 0 

a/3 0 0 0 0 0 ab. /4 0 0 

a a2/2 a3/3 a4/4 0 0 a5/5 a6/6 

a3/3 a4/4 a 5/5 0 0 a.6/6 a.7 /7 

symm.etrical 
a5/5 6 a7/7 a8/8 a /6 0 0 

7 8 
a9/9 a /7 0 0 a /8 

a5/5 0 0 0 

5 a /5 0 0 

a9 /9 a1?10 

- a1711 -
Figure 8. Matrix [VJ 
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(65) 

The complete matrix of velocity constants can now be written in terms 

of the generalized velocities by substituting equation (65) into equa­

tion (63) which yields: 

(66) 

or 

[A}= [iJ Cci} (67) 

where 

[R] (68) 

The kinetic energy of the element can now be written in terms of the 

generalized velocities by substituting equation (67) into equation 

(62) giving: 

(69) 

It follows directly from equation (9) that the mass matrix (m] is: 

- 'I' -[m] = phTTr [R] (VJ [R]. (70) 

3o4 Stability Matrix 

The work done by the parametric loads acting through the bending 
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displacements of a shell element is used as a basis to derive the 

stability matrix. The axial bending deformation of a cylindrical 

element subjected to an axial load is: 

{71) 

and the work done by a uniform axial load ist 

W = l0 1T N 61 rd¢ 
A · x 

{72) 

or 

N 211 a 
x I I ( av 2 aw 2 ) J.. 

WA = ~ o o {ox) + (ox) rdxdiu, {73) 

The shortening of the mean circumference of a cylindrical element due 

to bending displacements is: 

(74) 

and the work done by a uniform radial pressure becomes: 

a 2TT 

Nr/, J J 1 (aw)2 1 w ¢ = 2 0 0 r ~ . diodxo (75) 

By combining equations (73) and (75) the total work done by the 

external loads is: 

a 2,r 

WT=} t t ( ~(~>2 + Nx <!i + <!:>2) rd~dx. (76) 

Substituting the assumed displacement function into equation (76) and 

performing the integration yields: 



WT = I (A) [PJ {A} (77) 

and by substituting equation (67) into this relation, 

n - T .... WT= f (q) [R] [P] [R] (q} (78) 

where matrix [P] is listed in Figure 9. The stability matrix, (s], is 

now: 

(79) 

or 

T 
(s] = [R] .(P] [R]. (80) 

The damping forces developed at the nodal circles are derived 

from the time rate at which energy is dissipated by viscous damping. 

The damping forces in the shell a.re assumed to be directly proportional 

to the velocity. Therefore, one-half the rate at which energy is 

dissipated is: 
a 2TT 

W = ~ Jo Jo (u2 + v2 + w2 ) rd'dx (81) 

where c is the damping coefficient of the material. Comparing this 

relation with equation (61) it follows that: 

• e 
W = p h T. (82) 

Therefore, the damping matrix, (d] is the following: 
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[d] = ~ [m]. (83) 

3.6 Alternate Displacement Function 

The stiffness, m.ass, stability, and damping matrices for an 

element were derived in the preceding sections of this chapter on the 

'basis of a.n assumed displacement field with tw.elve terms, as in 

equation (33). Another displacement function with.more terms was also 

used as follows: 

u = (A1 + A2x + A x2 + A x3) cos n~ 
· 9 13 

v·= (A3 + A4x + A x2 + A 4x3) sin n, (84) 
10 l 

2 3 4 5 
w = (A5 + A{' + A7x . + A8x + A11x + A12x ) cos n,. 

The procedure for calcu1ating the elemental ma.trices using equation 

(84) for the assumed displacement field is identical to the procedure 

when equation (33) was assumed ~or the displacements. However, the 

order of the matrices [L], [R], [VJ, and [P] is fourteen for this case 

instead of twelve. The first twelve rows and columns would ·be the 

same for both cases. The thirteenth and fourteenth columns of the 

s:ymmetrical matrices [R], [L], [V], and [P] a.re listed in Figures 10, 

11, 12, and 13 respectively. 
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CHAPTER IV 

FORMULATION OF THE SOLUTION 

In Chapter II the equatiQns for determining the boundaries of the 

principal regions of dynamic instability were derived in terms of the 

stiffness, mass, stability, and damping coefficient ma.trices of some 

arbitrary structure. In this analysis the type of the structure and 

its deformations remained general. The stiffness, mass~ stability, 

and damping coefficient matrices fo~ a right circular cylindrical 

shell element were derived in Chapter III •. These ma.trices were de­

rived by assuming that the deformation of the shell could be expressed 

as the product of a polynomial function of the axial coordinate and a 

cosine function of the central angle. The node circles along the axis 

of the shell allow:s a.n arbitrary deformation along the axis of the 

shell but restricts the deformation around the circumference to a pre­

determined nUD1ber of cosine wa.ves. The number of cosine waves, n, 

is treated as a parameter so that any number of waves around the cir­

cumference of the shell can be investigated. It is the purpos~ of 

this chapter to fqrm:ulate the equations needed to solve the problem 

being considered in final form. The general problem which is solved 

in this thesis is ·shown in Figure 14. 

4.1 Formation of the Structural Ma.trices 

The shell being analyzed is first divided into a number of finite 

1'-1 
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elements. The stif:f'ness properties of each element are calcuiated by 

the equations.developed in Chapter III. The total structural ma.trices 

are formed from the elemental matrices by establishing compatibility 

at the nodal circles (the ends of each finite element) which is 

accomplished by adding corresponding coefficients at each node circle. 

After the total structural matrices are ~~rmed the support conditions 

of the shell must be applied. This is easily accomplished by deleting 

the row and column in the total structural matrix which corresponds to 

each boundary constraint. The term structural matrix will be used 

hereafter to apply to the total structural matrix after the boundary 

conditions have been applied. 

The order of the elemental matrix for the cylindrical element is ... 
eight and the order of the structu.nal matrix is (4j + 4-b), where j · 

is the number of finite elements into which the shell is divided and 
·.··+·: 

bis the number of boundary constraints. The choice of the number of 

,elements is often a compromise between accuracy and computing time. 

The number of nodes must be sufficient to represent accurately the 

deformation of the shell but, if too many elements are chosen, the 

computation time becomes excessive. 

4.2 Esuations of the Solution 

The equation of motion of a shell without damping is given by 

equation (19) as: 

[MJ{q}+ [K]{q} .. (p0 ;t Pt cos et)[s]{q1 = o. (85) 

For the case of' static buckling {q} and pt a.re zero; therefore, 

equation (85) reduces to the following: 
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[[K] - p0 [S]] {q}= o. (86) 

The static buckling loads are the values of p which make the deter .. 
0 

minant of the coefficients of {q} van:i!sh or: 

I [K] - p0 [sJI = o. (87) 

If the shell is vibrating freely then p0 and pt vanish and equa­

tion (85) becomes: 

[M] {_ q } + [K] [ q} = 0 o 

For harmonic vibration.s the generalized displacements, [ q}, may be 

represented in the following form: 

{q] = {q} si.n wt 

where {q} is independent of time. Substituting equation (89) into 

equation (88) yields: 

2 c-[[K] = w [M]J q} sin wt = 0 .. 

(88) 

(89) 

(90) 

The condition for nontrivial solutions of equation (90) requires that 

the determinant of the coefficients of { qJ must vanish. Therefore, the 

natural frequencies of a cylindrical shell are given by the foll9wing 
ii , .. 

equation: 
,I 

(91) 

For a shell vibrating under the action of a constant load equa-

tion (85) reduces to: 
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[M]{°q°} + [K](q} - p [S]{q} = O. 
0 

(92) 

Substituting equation (89) into equation (92) the frequencies of free 

vibration of a shell under a constant load a.re given by: 

I [K] - p 0 [S] - w2 [M] I ;:: o. (93) 

For the problem of d;yna.m.ic stability, the constant and pulsating 

portions of the load, p and 1, may be defined by: 
O t 

p = a P* 
0 

pt = f3p* 
(94) 

where p* is the lowest buckling load as determined from equation (87). 

Substituting equation (94) into equation (28) the boundaries of the 

principal regions of dynamic instability excluding damping are located 

'by the f'ollowing relation: 

(95) 

Similarly the_ determinant for determining the principal regions of in-

stability with viscous d,a.mping is found by substituting equation (94) 

into equation (31) which yields: 

2 
[K] - (a +i)p*[S] - ,\-[M] 

~ [M] ph 

- ~ [M] ph = 0 

(96) 



CHAPTER V 

PRESENTATION OF RESULTS 

The static buckling loads, natural frequencies, and boundaries of 

the regions of dynamic instability without dam.ping for a cylindrical 

shell are found by calculating the eigenvalues of equations (87), (91), 

and (95). The eigenvectors associated with the eigenvalues represent 

the characteristic shapes {mode eha.pes) of the deformed structure. The 

boundaries of the regions of instability including viscous damping are 

determined by finding the values of the frequency, e, which cause the 

determinant in equation (96) to be zero for arbitrary values of the 

applied loado A trial and error procedure is necessary to do this 

because the form. of this equation will not allow a direct solution. 

Points within the regions of instability indicate a dynamically un­

stable shell for the corresponding parameters. A program was written 

for the IBM 7o4o electronic digital computer to formulate the stiff­

ness, mass, and stability ma.trices from given shell dimensions and 

boundary conditions and to calculate the desired values from equations 

(87), (91), (95), and (96). 

5.1 Free Vibration 

The natural frequencies of a cylindrical shell are found by solv­

ing equation (91). Two examples were solved for comparison with exist­

ing solutions: an analytical solution of a cylinder clamped on both 
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ends (37) and some experimental results for a simply supported 

cylinder (38). The results of these examples a.re shown in Table I. 

and Table II. The effect of the number of constants in the assumed 

displacement function on the accuracy of the calculated natural ;f're-

quencies is shown in Table I. At first only the eight independent 

constants were used, but the results were not in close agreement with 

existing solutions. Twelve terms were assumed in the displacement 

f'Unetion: three terms tor u, three terms for v, a.nd six terms for w 

as follows : 

u = {A1 + Aft' + A9~:_2) cos n~ 

v = (A3 + A4x + A1l 2) sin n, 

w = (A5 + A6x + Af2 + A8x.3 + A11x4 + A12x5) cos n,. 

Also, fourteen terms were assumed in another attempt to improve the 

displacement function. These were taken as follows: 

u = {A1 + A2x + A9~2 + A13x3) cos n~ 

v = (A3 + A4x + A10x2 + A14x3) sin n~ 

{ A + A ,.,.. A . 2 + A . .3 A 4 + A · 5) 1 w = 5 6~ + 7x 8x + 11x 12x cos n~. 

(97) 

(98) 

As is seen from Table I, better results were obtained from the 12-

term displacement field than for 8-terms. Still, better overall re­

sults were obtained from the 14-term field when compared with that for 

12-terms. This was found to be the case especially for higher mode 

shapes along the axis of the shell (larger values of m). 



n 8 A's 

3 1295 

4 919 

5 737 

6 680 

7 711 

8 812 

9 957 

10 1140 

ll 1350 

TABLE I 

NATURAL FREQUENCIES OF A CYLINDER 
CLAMPED ON BOTH ENDS 

E = 30x106 lb/in2 

Density= 0.283 lb/1n3 

v = 0.3 

m=l 

12 A's 14 A's Kraus 

1180 1178 ll76 

782 776 783 

589 585 597 

541 537 552 

598 596 611 

725 725 736 

884 900 902 

1110 1112 1100 

1360 1362 1321 

h = O.l inch 

r = 3.0 inches 

L = 12.q inches 

i< 

· m = 3 

8 A's 12 A's 14.A's 

4750 4520 4365 

3650 3210 3103 

2950 2400 23o4 

2480 1890 1793 

2170 1570 1479 

1990 1400 1321 

1900 1360 1293 

1890 1430 1373 

1955 1590 1538 

48 

Kraus 

4350 

3139 

2342 

1823 

1503 

1338 

1302 

1369 

1512 



TABLE II 

NATURAL FREQUENCIES OF A SIMPLY 
SUPPORTED CYLINDER 

E = 2906x106 lb/in2 

Density= 00283 lb/in3 

\I= Oo29 

h = O.l.01 inch 

r = l.0924 inches 

L = 15.63 inches 

m:1 m:2 m = 3 m:4 

Finite· Finite Finite Finite 
n Element Exp.* Element Exp.* Element Exp .. * Element Exp.* 

2 898 960 2o80 2070 3900 3725 5960 5270 

3 2150 2130 2320 2420 3140 3130 4190 4180 

4 3960 3985 4075 li-130 4360 li-430 4890 4950 

5 6620 · 6400 6700 · 6500 6880 6700 ·7210 7030 

6 10100 9270 10200 9370 10350 9570 10600 9850 

* Arnold and Warburton (38) 
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A solution was attempted using sixteen terms in the displacement 

function which consisted of adding two more terms to the expression for 

win equation (98) but for this case the stiffness matrix became im­

~roper. No further attempt was made to refine the displacement func­

tion more than the fourteen terms used in this section~ 

5.2 Static Bu.cklin6 

The static buckling loads and their associated characteristic 

shapes are found by solving equation (87). The buckling problem is 

divided into three categories for this study; radial pressure only, 

axial pressure only, and combined axial and radial pressure. Each of 

these cases is compared with an analytical solution for a simply 

supported cylinder (39). The cylinder used throughout the rest of 

this study has the following dimensions and properties: 

L = 25.0 inches 

r = 2 .. 0 inches 

h __ 0.01 inch 

v = 0.25. 

Table III gives the critical external radial pressure for several 

mode shapes. It is noted that for the primary mode shape along the 

axis of the cylinder the displacement function with only eight con­

stants gives values closer to the analytical solution than the finite 

element solution inv·olving a more refined displacement function. 

However, the solution with eight constants requires a larger number of 

elements than the refined displacement field as shown in Table DI, and 

the convergence is not uniformo In addition to this, the solutions 



n 

2 

3 

4 

5 

6 

7 

TABLE III 

BUCKLING PRESSURES FOR A SIMPLY SUPPORTED CYLINDER 
SUBJECTED TO A UNIFORM RADIAL LOAD 

- -1 I 2 P* = pE x 10 lb in 

m=l m=2 

8 A's 12 A's 14 A's Flugge 8 A's 12 A's 14 A's 

4.22 3.28 3.28 4.43 58.4 44.5 44.7 

1.33 1.07 1.07 1.22 8.33 4.97 4.97 

1.75 1.62 1.62 .1.74 3.69 2.35 2.35 

2.67 2.60 2.60 2.70 3 .. 50 2.80 2.81 

3.86 3.86 3.87 3.91 4.33 3.91 3,96 

5.29 5.44 5.46 5.35 5.60 5.37 5.51 
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Flu.gge 

60.3 

5.63 

2.54 

2.94 

i...02 

5.42 



5 
n Elements 

2 

3 2.62 

4 2.35 

5 2.99 

6 

7 
0 

TABLE IV 

BUCKLING PRESSURES OF A CYLINDER UNDER RAIDAL LOAD 
FOR DIFFERENT NUMBER OF FINITE ELEMENTS 

P* = pE x 10·7 psi 

8 term 14 term dis-
displacement field placement field 

8 10 16 20 5 10 ·. 
Elements Elements Elements ·Elements Elements Elements 

4,22 3.40 3.28 3.28 

1.50 1.33 1.22 1.29 l.o8 1.07 

1.82 1.75 1.75 1.81 1.63 1.62 

2.70 2.67 2.61 2.60 

3.86 3.87 

5.29 5.46 

52 

Flugge 

4.43 

1.22 

1.74 

2.70 

3.91 

5.35 
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with more terms in the displacement :f'unction yield much better accuracy 

for higher modes along the axis of the cylinder. 

The critical stresses for the assmned cylinder subjected to uni­

form axial pressure are given in Table V for a few mode shapes. In 

this case the results obtained by using only eight constants in the 

displacement :f'unction do not even approximate the. analytical results. 

An attempt was made to overcome this deficiency by using a larger 

number of finite elements, but this helped very little. It was this 

problem which made a refinement of the assumed displacement :f'unction 

necessary. Assuming a displacement :f'unction with twelve constants 

yields results which com.pa.re favorably with the analytical solution 

for most of the mode shapes given. However, increasing the number of 

constants to fourteen gave even a better comparison, especially for 

higher modes along the axis of the cylinder. Also, the displacement 

fields with eight and twelve terms often gave critical mode shapes 

which differed from those predicted by the analytical solution. These 

are marked by* to the left. 

Table VI gives the buckling loads for combined loading for one 

ratio of end pressure to radial pressure and for three different 

boundary conditions. It was necessary for the ratio of end pressure to 

radial pressure to be large, for the assumed shell d:i,.mensions, to ob­

tain a solution that differed from the case of radial pressure only. 

On the basis of the comparisons made in sections 5.1 and 5.2 it 

was concluded that the displacement f'unction containing fourteen terms 

should give better results in the remaining analysis. 



n m 

2 1 

3 1 

4 2 

3 
5 4 

4 
6 6 

5 
7 8 

TABLE V 

CRITICAL STRESSES IN A SIMPLY SUPPORTED CYLINDER 
UNDER AN AXIAL LOAD 

- -4 o- * = pE x 10 psi 

1st Critical Stress 2nd Critical Stress 

8 A's 12 A's 14 A's Flugge m 8 A's .12 A's 14 A's Flugge 

42.3 33 .. 2 33.2 34.3 2 147 112 112 115 

34.o 27.4 27.3 27.5 2 53.1 31.9 31.8 32 .. 1 

43.7 28.1 28.1 28.2 3 59.7 28.5 28.3 28.5 

*55o4 ,. 2 *66.o 
27.9 ~n.5 27.6 5 30.5 30.4 

3 31.0 

*66.4 3 *72.0 
30 .. 2 28.5 28.3 5 29.9 29 .. 2 29.2 

'*·76.0 4 *81.4 
33.7 29.0 28.7 9 29.4 29.2 

7 *32.3 



n 

2 

3 

4 

5 

6 

7 

TABLE VI 

BUCKLING PRESSURES FOR A CYLINDER 
UNDER COMBINED LOADING 

p 

j I • l I' . , 
I -- -I 

' 
80p - ----- 80p - -\ \ ' -

p 

V. =W :0 '\. =vL ::W'L = YL v =W =O 
0 0 0 0 

VL =WL =0 :0 VL =W'L =YL :::() 

Finite Finite Finite 
m Element Flugge m Element m Element 

1 1.83 2.14 1 o.467 l 2.03 

1 0.814 0.894 1 0.69 1 0.89 

1 1.39 1.47 2 1.01 1 1 .. 39 

3 1.89 1.93 3 1.25 3 1.92 

4 2.42 2.37 5 1.43 4 2.37 

5 2.92 2.86 4 1.57 7 2.69 
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5.3 ~c Instability Without Dam;ein~ 

The bound.a.ries of tbe regions of dynamic instability when neglect­

ing all damping forces are found by solving equation (95). The first 

series of problems for which the regions of instability are determined 

are for cylinders subjected to a pulsating radial pressure and support-

ed in a way such that the following boundary conditions apply: 

Boundary Restrained 
Condition Displacements 

1 v :W =V =W = 0 
0 0 t L 

2 uo =V =W =U =v :c:W =0 
0 .o L L L 

3 u =V =W =Y :U =V = w =Y, :0 
0 0 0 0 L L L L 

4 u m:V :W =Y =0 
0 0 0 0 

5 WO = VL = WL =YL :0 

The boundaries of the regions of instability for each of the boundary 

conditions given above were calculated and plotted on a non-

dimensionalized graph. When plotted in this manner each of these 

eases gave identical regions which are shown in Figure 15. The 

region corresponding to a= 0 is the same as the solution of the 

Mathieu differential equation. The regions for a= o.6 and a= 0.9 

would be the same as the region for a = 0 had the frequency of the 

pulsating load been normalized with respect to the resonant frequency 

of a shell under a constant load of 0.6 p* or 0 .. 9.P* respectively. 

In that case, e would have been divided by solutions of equation (93) 

instead of solutions of equation (91). The values of buckling pres-
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sures and natural frequencies are given in Table VII and Table VIII, 

respectively, for several mode shapes for each of the five boundary 

conditions which were considered. With. this information, Figure 15 

indicates whether or not a certain load applied at a given frequency 

will cause dynamic instability of a shell with the assum.ed dimensions. 

In each of the preceding cases the mode shapes of buckling and vibra­

tion for a given value of n were almost identical; from the most 

critical values to the least critical values. 

The regions of dynamic instability for a shell subjected to a 

uniform axial pressure and with simply supported ends are shown in 

Figure 16. The critical axial stress; in this cylinder corresponds to 

a mode shape of n = 3 and m = l; therefore, the regions of instability 

were calculated for n = 3. In Figure 17 the regions of dynamic 

instability are given for the same case except that an additional 

restraint is imposed in which the ends of the cylinder were not 

allowed to rotate, i.e., y = O. The critical load occurred in this 

case for n = 4 and m = 1. In both of these cases the static buckling 

and free vibration mode shapes along the axis of the shell were almost 

identical for equally ranked values, and the regions are tpe same as 

these for solutions of the Mathieu equation. 

The regions of instability for a shell under axial pressure which 

is clamped at one end and restrained only in the radial direction at 

the other end are shown in Figure 18. These regions differ consider· 

ably from the previous results, but, in this case, there was a marked 

difference in the critical mode shapes for buckling and free vibration 

as shown in Figure 19. The same regions are also shown in Figure 20, 

in which the frequency of the load, e, is normalized with respect to 



1,;"j-

m B.C. 

1 

2 1 

3 

1 

2 2 

3 

l 

2 3 

3 

1 

2 4 

3 

1 

2 5 

3 
.... _ .. 

TABLE VII 

CRITICAL RADIAL PRESSURES FOR SEVERAL 
BOUNDARY CONDITIONS 

- -7 p* = pE x 10 psi 

n=2 n=3 n::4 n:5 n=6 n=7 

3.28 1.07 1..62 2.60 3.86 5.44 

44.5 4.97 2-35 2 .. 80 3.91 5-37 

199 20.8 5 .. 40 3.67 4.28 5.67 
"'--1--· 

13.8 2.11 1.82 2.65 3.88 5 .. 45 

88.o 10.0 3.37 3.10 4.06 5.54 

287 33.3 8.13 4.48 ~-. 58 5.79 
- -· 

13.9 2.12 1.82 2.65 3.88 5.J~5 

89.2 10.2 3.40 3.11 4.06 5.54 

292 34 .. 1 8-32 4 .. 55 4 .. 61 5 .. 80 
-

o .. 64 0 .. 83 1.58 2 .. 59 3 .. 87 5 .. 48 

14-3 2 .. 17 1.83 2.67 3 .. 91 5.50 

98 .. 9 10 .. 7 3.49 3 .. 15 4 .. 10 5.60 

4.42 1.32 1..69 2 .. 64 3 .. 93 5 .. 58 

51.1 6 .. 82 2 .. 88 3.01 4 .. o8 5 .. 66 

227 29.1 7.97 4 .. 60 4.72 5.99 

59 

nd3 

7.42 

7.62 

7.42 

7.48 

7 .. 63 
·--

7.68 

7 .. 72 

7 .. 95 



m. B.C. 

1 

2 1 

3 

1 

2 2 

3 

l 

2 3 

3 

l 

2 4 

3 

1 

2 5 

3 

TABLE VIII 

NATURAL FREQUENCIES FOR SEVERAL 
BOUNDARY CONDITIONS 

w = w JEi'p x 10-5 ra.d/sec 

n=2 n=3 n::4 n:5 n=6 n=7 

725 660 1101 1770 2614 3647 

2676 1431 1339 1844 2645 3664 

5723 2974 2067 2133 2765 3723 

1491 930 1173 1790 2623 3653 

3790 2057 1624 1951 2688 3685 

6968 3846 2618 2422 2901 3793 

-~512 940 1176 1792 2623 3653 

3875 2118 1657 1963 2694 3688 

7189 4039 2754 2498 2937 3812 

326 582 1o89 1765 2612 3641 

1517 934 1175 1793 2625 3652 

1+000 2124 1646 1958 2691 3682 

810 720 1125 1777 2618 3651 

2760 1592 1441 1887 2664 3674 

5721 3210 2297 2268 2831 3758 

60 

n:8 

4904 

4921 

4985 

4904 

4923 

5000 

4835 

4903 

4915 

4903 

4915 

4965 
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the resonant frequency of vibration under the respective values of 

constant load,.O., instead of the natural frequeney,wo The regions 

corresponding to a= 06 and a= o9 when plotted in this manner corres­

pond closely to the region for a= O in the previous examples, but the. 

buck.ling and vibration mode shapes a.re similar for these values of 

the constant load as shown in Figure 19. 

The regions of instability for a cantilevered shell under a uni­

form axial load are given in Figure 21. The regions for this case are 

slightly narrower than the regions given by solutions of the Mathieu 

equation. The mode shapes for static buckling e.nd free vibration 

shown in Figure 22 differ slightly. In the previous example a large 

difference in the buckling and vibration mode shapes resulted in a 

large difference in the regions of instability and in this example a 

small variation in the mode shapes produced a small change from the 

regions of unbounded solutions of Mathieu equationo This trend w~s 

also observed by Brown (30) and Hutt (31) for the dynamic stability 

of rods and plates. Rutt (31) offered an explanation for this 

occurrence for the dynamic stability of plates. 

Figures 23, 24, and 25 give the principal regions of dynamic 

instability for a shell subjected to combined axial and radial pressure 

for three support eonditionso The mode shapes for static buckling and 

free vibration are similar for each of these conditions and the re­

sulting regions of instability are solutions of the Mathieu equation. 
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5.4 PJ!amie Instability With Damping 
J 

The three examples presented in the previous section with combined 

loading were also solved including da.m,ping forces and the resulting 

regions are shown in Figures 26, 27, and 28. The pa.ra.m.eter, 71 , which 

is used as a measure of the damping force is defined by the following 

relation: 

in which 

c = damping coefficient 

71 =.....£._ 
wph 

w = na. tural frequency of the shell 

p = mass density per unit volume of the material 

h = thickness of the shell. 

(99) 

The effect that the damping forces have on the regions of instability 

is to require that the load must have a finite value to cause dynamic 

instability. Also, the presence of damping produces narrower instabi-

lity regions. In the cases given for 71 = 0.1 and a= 0 the periodic 

load must be greater than four-tenths of the static buckling load to 

be capable of causing dynamic instability. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary a.nd Conclusions 

A method :f'or determining the principal regions of dynamic insta.b.i­

lity for cylindrical shells ha.s been developed in this thesis using a. 

sti:f':f'ness formulation of the finite element method. The equations of 

motion of a shell element were derived from. Ham.ilton•s principle. The 

equa.tions of the boundaries of the regions of dyn8.J11ic instability were 

derived from. certain periodic solutions of the equations of motion. 

The stiffness matrices were obtained by assuming a displacement field 

throughout the element. The accuracy ot this approach was improved by 

assuming a. displacement field which had Di.ore arbitrary constants than 

the number of degrees of freedom Qf the element e.nd using the principle 

of minimum potential energy to express the dependent constants in 

terms of the independent constants. This procedure gave overall re­

sults which compared better with existing solutions for static buckling 

and free vibration with a fewer number of elements than the standard 

procedure. If a further improvement is desired in the accuracy of 

this method then, more exact strain-displacement relations should be 

assumed in deriving the stiffness matrix. A shell subjected to several 

boundary conditions and different combinations of' axial and radial 

pressure was analyzed. The effect of dam.ping was inelud.ed tn some of 

the examples • 
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The similarity of the mode shapes for static buckling and free 

vibration was found to have a direct influence on the regions of in­

stability .. In all cases in which these mode shapes were identical the 

resulting regions were the same as those given in Figure 15 .. In those 

cases in which the mode shapes differed the resulting regions of in­

stability differed from those in Figure 15. 

The finite element method makes the solution of the dynamic 

stability problem of cylindrical shells feasible. Other approaches to 

this problem are extremely difficult. The ease with which various 

boundary conditions can be applied is a primary advantage of the 

method. Support conditions which have not been solved by other methods 

are easily handled with the finite element technique. 

6 .. 2 Extension of Work 

The examples which were solved in this thesis were restricted to 

cylindrical shells subjected to a uniformly distributed axial and 

radial pressureo The shell is assumed to be initially perfect and 

constructed of a homogeneous, isotropic, and linearly elastic material .. 

The method could be readily adapted to anisotropic and multilayered 

shells. Other loading conditions such as a torque applied about the 

axis of the cylinder could also be considered. The buckling of a 

shell under axial pressure should be investigated by taking small 

initial imperfections of the shape of the cylinder into accounto 

Shells of revolution could be considered by using a conical frusta for 

a finite element. An investigation to establish some criteria for the 

optimum displacement function should be conducted. 
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