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CHAPTER I

INTRODUCTION

l.]l Statement of the Problem

It has been observed both experimentally and analytically that
various structures become unatable when gubjected to a periodic loed,
legs than the gtatic buckling load, when certein relationships exist
between the frequency of the periocdic load and the natural frequency of
transverse vibrations of the structure. The stability of a thin right
circular eylindrical ghell gubjected to a uniformly distributed axial
and radial pulsating pressure is investigated in this thesis. The
results of this analysis are presented by giving the principal regions
of instability for several loading and support conditions. A region of
instability is defined as the spectrum of thoge points in the load-
freépency space which satisfy certain conditions of instability.

The shelis in this study are assﬁmeé to be homogeneous, isotropiec,
and initially perfect. The material is iinearly elastic and the

asgumptions of small deflection theory are assumed.

1.2 Historical Review
—

Melde, in 1859, discovered the phenomenon of parametric resonance
in a stretched string with one end attached to a vibrating tuning forks
The first theoretical explanation of this phenomenon was glven by

Rayleigh (1) in the 1880's. Most of the recent work in the area of

“



dynamic stability has been done by Russian investigators. A detailed
review of the Russian works in this area through 1951 can be found in
an article by Beilin and Dzhanelidze (2).

N. M. Beliaev (3), in 192k, examined the problem of dynamic
stability of a straight rod hinged at both ends and found the bounda~
ries of the principal region of instability. In 1935, Krylov and
Bogoliubov (4) solved the problem of a straight bar with arbitrary
-support conditions by applying the Galerkin variational method. Bodner
(5), Knalilov (6), Einaudi (7), and Ambartsumian and Khachatrian (8)
investigated the dynamic stability of plates loaded with compressive
in-plane forces. In 1940 Dzhanelidze and Radtsig (9) published a paper
solving the problem of dynemic stebility of a circular ring subjected
to a radial pulsating load.

Markov (10} investigated anisotropic cylindrical shells in 1949
and Bolotin (11} published several papers on the dynamic stability of
spherical shells in 1958. Federhofer (12) published a paper on the
dynamic stability of cylindrical shells under axial pressure and Bublik
and Merkulov (13) studied the dynamic stability of a shell filled with
a8 liquid. The influence of damping on the boundaries of the regions
of instability was discussed by Mettler (14) and Naumov (15). Bolotin

(16) published a book, Dynamic Stability of Elastic Systems in 1956,

which includes most of the work done in this area before that time.
In 1963 Wood and Koval (17) published some experimental results
on dynamic stability of cylindrical shells using mylar cylinders for
models. Bieniek, Fan, and Iackman (18) applied Galerkin's method to
the problem for cylindrical shells. Also, Agamirov and Vol'mir (19)

and Vol'mir (20) employed finite deformation theories for solution of



cylindrieal shells and panels.

In all of the above works the problem of dynamic stability was
either exactly or approximately reduced to one second-order differential
equation of the Mathieu-Hill type. Brachkovskii (21) and Bolotin (22)
established a class of problems that can be exactly reduced to one
second~order differential equation.

The concept of subdividing a structure into various finite ele=~
ments for analysis is by no means new. The slope deflection method of
vstrugtural analysis could be classified as a finite element approach.
However, the methodology of the finite element technique as it mest
usefully applies to plates, shells, and compound structures, has been
developed only recently. Turner et al (23), in 1956, presented the
first significant work in this area. Melosh (24), Best (25), Pian
(26), Zienkiewicz and Cheung (27), and Severn end Taylor (28) developed
and extended the method, but did not alter the original cqncept. '

Percy et al (29) used a conical frusta for an element in applying
the method to static and vibrational problems for shells of revolution.
Others have suggested and used doubly curved elements (30) and curved
frusta (31) for general shells of revolution. The recent application
of the finite element method to the determination of the regions of
dynamic instability of bars, plates, and complex structures for which
other known techniques are unnecessarily difficult, has been the effort
at Oklahome State University (32) and (33). This thesis is an exten-
sion of these works to the dynamic stability of cylindrical shells

under periodic axial and radial loading.



1.3 Finite Element Method

The finite element method consists basically of subdividing the
structure into a number of elements, determining the bebavioral
characteristics of each element, and assembling the elements by con-
necting them at certain points or nodes in such a way so as to repre-
sent closely the original structure. The type of element to be used
for a particular problem is very critical. The aszembled elements
must not only spproximste the shape of the originsl structure, but
must also be able to approximate the actions and deformations of the
gtructure, If the properties of the material are known,; then the
behavior of each element can be described by relating the'generalizeg
forces to the generaliged coordinates at the nodes. The behavior of
the entire structure is then determined by satisfying compatibility of
the elements at the nodes.

The finite element method is an approximate solution of a
mathematical model of the real structure in contrast to other approxi-
mate methods which are approximate solutions of the governing differen-
tial equations of the problem. The governing differential equation is
not necessary for the solution of a problem, and almost any boundary
conditions can easily be applied. Many problems not readily handled
by other means can be golved very efficlently by this method.

The matrices describing the response of an element can be derived
by assuming either a displacement function throughout the element or a
stress distribution within the element. However, since the effects
of inertia and the potential energy due to loads are related directly
to displacements and not gtresses, a displacement function will be

aggumed for this study. A short cylinder, similar to the element that



Percy et al (27) used for the analysis of shells of revolution, will be

assumed as a typical element.

1.4 Solution Procedure

The boundaries of the regions of dynamic instability are deter-

mined in the following steps:

8,

b.

Co

d.

8o

o

ge

Determine the equsations of motion of & typical shell element.
Assume a displacement function for the shell element.

Derive the necessary influence matrices using stiffness
formulation for the individual elements.

Assenble the elemental matrices to obtain the equation of
motion of the entire shell.

Apply the houndsry conditions.

Calculate the static buckling load and the hatural frequency
of the shell,

Determine the boundaries of the regions of dynamic instebility

by using the equations obtained In step'a.



CHAPTER IT
DERIVATION OF CONDITIONS OF INSTABILITY

2,1 Eaquation of Motion

The equations of motion of the system in finite element form are
determined from a consideration of Hamilton's principle. The bounda-
ries of the regions of dynamic instebility are then derived from cer-
tain solutions of the equations of motion.

Hamilton's principle may be stated in the following manner (3h4):

b2
6Jtl(T-»w)dt=0 (1)
in which

T = kinetic energy,
W = the sum of the potential energy and the energy,

dissipated by viscous damping,
tl = initial instant of time,
to = fingl instant of time, and
& indicates the first variation.

Equation (1) can be rewritten as:

t
2

§J, (T-U+V +¥)dt=0 (2)
1

in which



U = strain energy
V = potential energy of the applied loads
W = energy dissipated by viscous damping.

The variation of equation (2) cannot be performed by the usual method
due to the nonconservative energy, W. However, equation (2) can be
geparated into two parts, conservative and nonconservative, as fol-

lows ¢ t
t2 2

8 tl(T-U+v)dt+6ftlﬁdt=o. (3)

The dissipated energy, W, may be written as:

=27, 04 ()
i
i
in which
Fi = the ith damping force
di = the dlsplacement at the point of application of the ith

force.
Substituting equation (&) into the second integral in equation (3)

yields:
t5 tp
5L W_dt=6-[t zFi"didt. (5)
1 1 i

Performing the variation on the right-hand side of equation (5) is
equivalent to caleulating the work done by the force Fi acting through
a virtual displacement 84;. Therefore, equation (5) may be rewritten

in the following manner:



£, t,
é.r ﬁdtzj > F, - bd, dt. (6)
tl tl ] i i \

From the definition of generalized forces and generalized displacements

the following expression can be written:

>F, e 8d, = 2> G, - 8q, (7)
i i J J
1 J
where Eﬁ is the jth generalized force due to damping forces and 1, is
the jth generalized displacement. Substituting equation (7) into equa-
~ tion (5) and substituting the result into equation (3) yields:.
t t

2 ‘ 2
8J, (T-U+V) dt+Jt Eéjaaqj dt = 0, (8)

1 15
The kinetic, strain, and potential energies can be defined in
terms of the generalized velocities, {a}, and the generalized displace-

ments, {g), as follows:

(2) [m] {3}
(a)[x]{a}
(a)(=1{0} + (Q){a)

a
]
ofd MO O

in which

[m]

L}

-mass matrix whose elements? mij’ represent the ith inertia
force due to the jth unit‘acceleration, all other acclera-
tions being zero

[k] = stiffress matrix wﬁése.elements, kij’ represent the ith

external force due to the jth unit displacement, all other

displ@@ements being zero



[s] = stability matrix whose elements, 8 32 represent the out
of plane component of the ith in plane load due to the jth
unit displacement, all other displacements being zero.

§ =.the time dependent applied 1oad;

Rayleigh's dissipation function may be written in matrix form as

(35):

v 1, #
W= -3 (a)[ad{q} (10)
in which
W o= one~-half the time rate at vwhich energy is dissipated by
viscous damping, and
[a] = damping coefficient matrix whose elements, » represent

%5
the ith damping force due to the jth unit velocity, all

other velocities belng zero.

The damping force, as, {s now given by:

ol
Q
o

(11)

Cae
Q@
flely
e

Performing the differentiation indicated in equation (11) on equation

(10) gives:

{3y =- [a){a} - (12)

Substituting equations (9) and (12) into equation (8) yields;
t
2 o . w
6‘ft1 %-((é)fm]{ﬁ}'° (@) (k] {a} + pa) sl @} + (@) {a}) dt

s

- ft (2)[a] 8{q} at = o. (13)
_ 1
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By performing the variation of the first integral in equation (13) and

combining the two integrals, Hamilton's equation becomes:

t
2

L @@ - WE @ @ - ) s d =0 o)

The integral in equation (14) must be zero for any virtual displace-

ment, é{q}; therefore, the term in parenthesis must vanish:

m]{q} + [k){a} - pls]la} + [a}{a} ={a}. .. (15)

Equation (15) is the equation of motion of a typicél element in terms
of the mass, stiffness, stability, and damping'cééffieient matrices of
that element. The equation of motion of the'tbféi‘étructure is bb-
tained by assembling the finite elements'to’fofmﬁtﬁe complete struc-
ture. Performing this‘operatipn and denoting fhe agssembled matrices

by [K], (M], [8], and [D] yields:
—_— - a . . :
Mi{a} + (K1{a} - p(s){a} + [D1{a} =0 - (16)
which is the equation of motion of the entire strueture.

2.2 TInstability of Conservative Systems

If only conservative forces are considered i, e. the damping

coefficient is zero, equation (16) becomes:

MKEY + K1 {a} - p[s){a} = O. (17)

For the purpose of this study the time dependent load, p, wili be

agssumed of the formy

P =D, + P, cos Ot _ (18)
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in which P, is the constant portion of the load and P is the ampli~
tude of the time dependent portion of the load. Substituting equation
(18) into equation (17) leads to the equation of motion in the follow-

ing form:
D{a} + (K]{a} - (m, p_ cos 8t)[SI{a} = O. (19)

Three possibilities éxist for parametrically exclted lateral
vibrations: 1l. the vibrations may decrease in amplitude with time,
2, the vibrations may continue periodiecally, 3. the amplitudes of
the vibrations may lncrase with time and eventually become unbounded.
Bolotin (16) has shown that on the boundaries of the regions of in-
stability the system of equations of the type of equation (19) has

| 2n b,

periodic solutions with a peried of T = =g or 2T =

golutions of identical periods bound the region of instability and two

Also two

solutions of different periods bound the region of stsbility. From
a physicael observation it is seen that periodic solutions of the
equations of motion form a boundary between regions in which vibra-
tions decrease (regions of stability), and regions in which vibrations
increase unboundedly (regions of instability).

The generalized disﬁlacements and accelerations in equation (19)
are functions of time and position; however, to find a solutibn with a
period of 2T = i% the generallized displacements are assumed in the

form of an infinite serieé

[q} = z {{a, }sin k0% +{v, } cos K3t} (20)
' k=l,3’590 ) 2 2 .

in which (e, } and {b, } are independent of time. Substituting equation

kot
(20} into equation (19) and collecting similar terms of gin "2 and
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co8 58:9- yields the following infinite number of matrix equations:

for sin 5,29,&

2
[(K) - p,[5] + py[8] - S-[M])fa) - b [5]{ast= O
t t

2
22
)
(k=3,5,700+) (21)
and for cos %«E
2
[[K] - p,[8] - p,[8] - S-0MINb,} - 2, [5T{os}="0
z 2

22
[[x] - p (8] - 3‘-59—[»4]]%}- p (810 Py 1+ {b, 110 = 0
(k=3,5,7+++) (22)

The condition for a nontrivial solution of these equations is that the
determinant of the coefficients of {_ak} and{bk} must vanish., Combining

the two determinants by using the + sign yields:

2
[K]-(po0)(81-300) - Lp,[8] 0 :
z
- Lp,[5] [k]-p [s1-96°M] - Lp[s] :
= O
2

0 - 20081 [Kl-p,[8]- B2M] .

. . . . (23)
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If the series

[a} =%‘{bo} + Z I{ k} sin £ ket +{by Ycos ket} - (2k)

k=2,4,6..4

is,sﬁbstituted into equation (19), the following conditions for the

21

exlstence of solutions with a period of T = 5 8re found in a similar
manner, giving:
| [K]-p, [5]-6°[M] - &p,[8] 0
1 2y 1
- 3 py[8] [k]-p, [5]-106°[M] - 5 9,[8] 1,
1 2 -
0 - 5 p,[5] [K]-p [s]-166 (M) -
j. ' ° o ° & (25)
and
[Kl-p,[s] -3 p,[s] : .
o] 2%t
1 2 1
-5 p.(8] [x]-p [8]-0 [M] - 5 p,[8] . .
0 lpfs] (Klep [s-keP0N] -
2 %% 3]
o ° L 0 (26)

For an exact solution of the boundaries of the regions of in-
stability, or if all of the regions of instability are desired, the
infinite determinants of equations (23), (25), and (26) must be solved.
However, only the principal regions which correspond to k = 1, are of
practical importance in structural applications. A very good approxi-
mation to these regions can be obtsined by considering only the first

term on the principal diagonal of equation (23). This approximation
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is equivalent to assuming that the generalized displacements, {q}, can
be expressed with sufficient accuracy by considering only the first

term of the infinite series of equation (20) as follows:
{q} = {a;]} sin 2% +{Db,} cos Q%, (27)

Therefore, the solution of a dynamic stability problem for conserva-
tive systems reduces to finding the roots of the following determin-

ant:

2
(K] - (py £ 2,)8] - S-[M]| = 0 (28)
2

2.3 Instabllity of Non-Conservstive Systems

The equations of the boundaries of the principal regions of
dynemic instébility were derived in the previous sectlion on the basils
that all forces acting on the system are conservative. Therefore, no
damping resistance is assumed to be present. Since it 1s known that
most materials exhibit some damping characteristics, the effect of
 viscous damping on the boundaries of the regions of instability will be
included in this section.

If equation (18) is substituted into equation (16) the equation

of motion of the system becomes:

{53 + [K){a} - (p, £ p, cos 6t)[s]{a} + [DI{a} =0 (29)

Here sgain, the boundaries of the regions of instabllity are determined
by finding periodic solutions with periods T of 2T for equation (28)
in the same manner ag for conservative problems. By substituting

i
equation (20) into equation (29) solutions with a period of 2T = ©
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are found from the infinite number of matrix equations:

2
[(&] - po[8] - pyls] - S-[MD]{a; } - o[0]{v, 3 - 2 p [} }=0
)
‘ 2
[[K] - Bo[8] - p,[8] - -uJ}{b } + o[D){a.] - 5 v, [s1{p,] =
3
k262
(k] - p,[8] - =p—[M1}{a, } - k6[D]{b ] -
Pt[s]{{ak 2} + { k+2}} Y
[[K] - pl5] - k6 DMJ}{b, ] +ke[){a, )
- p [81{{p , +{b p1}=0 (30)
z

(k=335:7:°°°)

Por nontrivial solutions of equation (30) to exist the determinant of
the coefficients of {ak} and {bk} must vanish. Therefore, the bounda-
ries of the regions of instability including the effects of damping are
located by solving the determinant given in Figure 1. As in the case
of conservative problems, a good approximation to the boundaries of
the principal regions can be obtained by considering only the first
term of the Iinfinite series in equgtion (20). Using this approxima-

tion the equations of the boundaries reduce to the reguirement:

2
(K] - (p, = p,)8] - 30 -6[D]
2

"
o

2
a[p] (K] - (p +2)[8] - 00 | (31)
-5 4
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2
. [Kl-p,[s1-220M)

. -p, [8]
2

. 0
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° °

Figure 1.

°
3

-Pt[S] 0 -30[D] .
2
§2
(x1-(p -p, ) (8- 5-[M] -8[p] 0 .
2
62
8[D] (X)-(pstp, ) (8] -] -p_[s]
: :
2
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)
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CHAPTER IIT
DERTVATION OF ELEMENTAL MATRICES

3.1 Digplacement Function

An element with the assumed displacement coordinates and reference
system is shown in Figure 2. The displacement coordinates, u, v, W,
are the axial, tangential, and normal displacements, respectively.

The individual elements are joined at the nodal circles. Accordingly,
each element has four degrees of freedom at each end; three displace-~
ments and the rotation of a generator of the shell; a total of eight
degrees of freedom. The assumed displacement funetion will have at
least eight independent constants, one for each degree of freedom.

If only eight constants were assumed the displacements would be:

u = (A + Asx) cos ng
Vo= (A3 + Ahx) sin ng (32)
W o= (A5 +Ax +A,_(x2 + A8x3) cos ng

Pian (26) has developed a procedure to improve the accuracy of a
stiffness matrix. More than the reguired number of constants are
azsumed in the displacement function, and the principle of minimum
potential energy is utilized to evaluate the additional constants in
terms of the generalized displacemegts of the element. This technique
is uged in this thesis, and is extended to improve the accuracy of the

inertia and stability matrices.

17



Figure 2. A Typical Shell Element
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Pour additional constants were chosen; therefore, the assumed

digplacement functions become:

2
u = (8 + Ax + A9x )} cos nd

2y .
v = (A3 + A% + Alox ) sin nd (33)

W o= (AS +Ax + A7x2 + A8x3 + AllxhL + Alexs) cos nd,

The rotation of a generator of the shell, y, is then:

. ow
Y = 5%
or
y=(A, +25 x + 3A x2 4+ ha x3 + 5A xh) cos ng (3k4)
<) T 278 11 12 )

3.2 Stiffness Matrix

8. Ueneralized displacements-«The generalized displacements, qi,
are amplitudes of the assumed displacem%hts at the ends of the element.
By substituting the proper value of the x coordinate into the agsumed

displacements, the generalized coordinsdtes can be written as:

{a} = [8 3] {Aa} (35)
.

where (A} is the column matrix of the four additicpal constants to
the displacement function snd the metrix [Ba Bb] is listed in Figure 3.

Solving equation (35) for {Aa} in terms of {q}, [Ba], [Bb] and
{Ab} gives:

‘ -1 -1 :
{a}=108 :-B BJ]ja (36)
A
b

so0 0



0 0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 -0 0 0 0
1 0 0 0 0 0
0 0 0 a2 0 0
0 0 0 0 az 0
1 a az a3 ¢ 0 a4
0. 1 'Za 3a2 0 0 @aB

Figure 3, Matrix Ba Bb

20
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Meking use of the identity matrix, [I], the complete matrix of assumed

constants, {A} can be expressed as:

{A} = [R] {q } | (37)
A
b

(38)

where

snd
‘ A
(43 { }
A
b

Matrix [R] is listed in Figure 4. The solution of the dependent con=-
stants ia terms of the generalized displacements is presented in
section 3.2 e.

P. Strain-displacement relationships--The approximate equations

relating the displacements in a thin cylindrical shell to the gtrains

and curvature changes are (36):

© Ju
€& = ox
10v W
e¢ =:;; *';:,
1w v
ex¢ =Y dF Ox
P (39)
k = = 5
X ox
K =ml-‘?-2-‘-’-+l-a-3’-
4 2 o2 T 12 o4
k=X 52W s 10V
% =TT T T T



o

0o o
= o
o o
o 3
0 o
o 0
0 o
0o 0 -
0o o
0o o
o o
o o

Figure 4.

o o o
3 1

== 0
a2 a
2. 1.
a3  af

o
[
)

0 0

Matrix [R]

-3,
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Substituting the assumed displacement functions, equation (33), into
equations {39), the strains can be related to the constants, {A}, by

the eguation:

{e} = W] {A] (40)

where the matrix [W] is given in Figure 5.
Utilizing equation {37) the strain matrix, equation (kO) is ex-
pressed in terms of the generalized coordinates, {q}, and the dependent

constants, {Ab} as:

A
b

{e} = (W] [R] {q } (41)

c. BStress-resultants strain relationshipg~-The relationship of

the stress resultants to strains for a linearly elastic, isotropie,

and homogeneous material may be written in matrix form as:

{w} =[] {e]. (42)

Bquation (42) is written in expanded form in Figure 6.

d. Straln energy--The internal strain energy of an element can

be expressed in matrix form in terms of stress-resultants and strains.
1] T
U=35J, {e} (W} aa (43)

Using equation (42) which relates stress-resultants to the strains,

the str ain energy expreSSiOn becomes:
= 2 ‘J’ﬂ { ? ‘ { } .o hh‘
U = = € HI € dA ( )

Because the stress resultants and their corresponding strains were used



cos: né

2x cos nd

0 0 0 0 0 0 o o 0
: . 2 L
[« 0 2 cos nd | X cos nd 08 né X cos nd X cos né X_ cos nd o] IX_ cos nd X_ cos nd X cos nd
r r r r Tr ) r r r r
. _ 2 :
- B sin nd | - BX sin ng o sin ng o] 0 o] o] - BX_ gsin ng 2x sin n¢d o] 0
r r r
o o o 0 0 o -2 cos nd -6x cos né 0 0 -]_.szcos né | -20x3 cos nd
0 0 = cos né = cos né 25 cos né 75~ cos né 5 cos né *—5- cos nd [ =5 cos né 25 cos né - cos nd
r r r r r r r r r
in n .. 2nx ! me 2x lnx - 5
0 0 0 222 o 0 £ sin nd === sin n¢ sin nd 0 £ sin nd | -ZX_ sin nd | ZX. ain nd
r r S r r r ..

T

Figure 5. Matrix [W]
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in equation (42), equations (43) and (44) are integrated only over the
surface of the element.
Substituting equation (41) into the strain energy expression,

equation (k%) yields:

U=z j A ((q,Ab)[RJTEWJTEHJEWJ[RJ { q }) aA. (45)
%

The matrices (q,Ab) and [R] are independent of the variables of inte-

gration in equation (45). Therefore,

T * T T
U =5 (2,4 )R] (L fo (W)™ (] [W]radax) (R] {q } (46)

A
b

Defining the matrix [L] as:
' a 2n
[ = fo o oty mraga (47)

and performing the indicated matrix multiplication and integration,
[1], is evaluated and listed in Figure 7. Equation (46) now can be

written asg:

0= 3 (a,8,)[R] (1] {q } (48)
K |
b
or
U= ,2% (2,A.) [Kaa Kab} {q } (49)
Koo Kopd Uy
where
¥ K
{aa ab} = [R] [LI[RI. (50)
%o Kop



Figure 7.
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e. Total Potential Energy--The total potential energy including

the work done by the generalized forces, {Q}, is:

m=U - (a)a} ~ (51)

which can be rewritten by using equation (49) as:

q ) - (a){e}. (52)
W
b

The theorem of minimum potential energy states that,"a conserva-

= % (q’Ab)[%éa Kéb]
8 Kﬁb

tive system ig in a position of stable equilibrium if, and only if,
the value of the potential energy is a relative minimum." Therefore,
the partial derivative of the total potential energy with respect to

the displacement coordinates is equal to gzero, or for the case under

congideration:
g‘g-‘#‘o i=l,2ooo8
q.
i
(53)
on
a“"’KL"—-O i=9’ooa12o

1

Performing the indicated partial differentiation on equation (52)

b N

A
b

vields:

Solving the lagt four equations of this relation for the dependent

constants, {Ab} in terms of the generallged coordinates, [q}, gives:



29

(a)=- [Kbb]-l[Kba]{q}. (55)

The first eight equations of equation (54) can be written as:

K, ol + (&, ){a 7 =[], (56)

Substituting equation (55) into equation (56) gives the following:

[x,,] - [Kab][Kbb]'l[KbaJ] {a} = {e}. (57)

Then by definition, the element etiffness matrix, [k], is:

-1
(k] = [Kaa] - [Kab][KbbJ [Kba]‘ (58)

3.3 Mags Matrix

The inertia forces developed at the nodal circles on each end of
an element are derived by considering the total kinetic energy of the
element. A velocity distribution over the surface of the element,
gimilar to the displacement function used in deriving the stiffness
matrix, is assumed as the following:

L3

u

(Al + Agx + A9x2) cos ng

%

<
fl

(A3 + Ahx + A10x2) sin ng (59)

L3

° ° ° 2 ° 3
w=(A_+AX+Ax +AXx

. )_!_ * 5
A .
5 ¢ - 8 + Allx + 12x ) cos né

The total kinetic energy, T, of an element is:

T_-_fing (2 +v2 ++°) aa (60)
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or by including the proper limits of integration,
»_E-guf I + ¥ +32) radax (61)

where p 1s the mess density of the material per unit volume. Substi-
tuting the assumed velocity distribution into the kinetic energy

expression, equation (61), and performing the integration yields:
T = & () [v] {4} (62)

where matrix [V]\is listed in Figure 8.

In the previous section a relation was developed between the
constants of the assumed displacement function, {A}, and the generaliz-
ed displacements {Q}. This relation depends only on the form bf the
displacement function and the geometric properties of the element.

The velocity distribution, assumed in this section, has exactly the
same form as the digplacement function of the preceding section.
Therefore, the assumed velocity constants, {A} are related to the
generalized velocities, {é}, by the same matrix as the displacement
constants are to the generalized displacements. From equation (36)

the following equation is obtained

{A} = [Ba'l - Ba'lsb] ; (63)
o I {Ab}

and from equation (55)

(3] = - [k, K G- (64)

Using equation (64) and the identity matrix, [I], the following ex-

pression can be writien:
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e | a%2l 0] o | o] o 0 o |a33] o o | o]

a3/3( o | o o o o 0 ah/h 0 0 0
a|a/2| ol o 0 0 0 a3/3 0 0
a/3 | 0| O 0 0 0 | o 0

o |22 ad/3 | au| o | o | a'/s5|a%e

a3/3 au/h a5/5 0 o | a.6/6 a7/7

symmetrical asks 36/6 o o 37/7 a8/8

| a7/7 0 0 a8/8 a9/9
2’/5| 0 0 0
aS/S 0 0

Figure 8. Matrix [V]
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{{1} { I 0 ] ) \
=l - | {al. (65
A "‘:K'bb:I [K'ba]

The complete matrix of veloclty constants can now he written in terms

of the generalized velocities by substituting equation (65) into equa-

tion (63) which yields:

(A7 Ba'l -Ba"le I s
= -1 q} (66)
0 I Ky K
or
{a}= B1{&} (67)
where
5 Tt 5 ' T
®-|® & (68)
0 N S W

The kinetic energy of the element can now be written in terms of the
generalized velocities by substituting equation (67) into equation

(62) giving:

¥a! P - T . °
T = &5 ()R] [VIR){a } (69)
It follows directly from equation (9) that the mass matrix [m] is:

(a] = phrr (K1 [V]E]. (70)

3.4 Stability Matrix

The work done by the parametric loads acting through the bending
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displacements of 2 shell element is used as & basis to derive the .
stability matrix., The axial bending deformation of a cylindrical

element subjected to an axial load is:

AL=—12—r(( + (37) ax (11)

and the work done by a uniform axial load is:

T
W, o= Jzo N AL rad (72)
or
2n & .
3] (@? s @9?) e, (73)

The shortening of the mean clrcumference of a cylindrical element due

to bending displacements is:

oL ey
Ac =2, Lg.(@.‘:f.) rdg (74)
2 o

r

and the work done by a uniform radial pressure becomes:

=N¢j j aT”) ddax. (75)

2% Y0 1

By combining equations (73) and (75) the total work done by the

external loads ig:
ja J?n
1 Nd, 0w V2 . 0w\ 2
W_ == + 0 (=) 4 (== rddax. 76
r=290 (25 <¢ , ED D) (76)

Substituting the assumed displacement function into equation (76) and

performing the integration yields:
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Wo =% (8) [P] (A} (17)
and by substituting equation (67) into this relation,
~_T —
Wy =2 (a) [R] [F] [R] {q} (78)

where matrix [P] is listed in Figure 9. The stebility matrix, [g], is

nows
2
pls] = W“Q’ | (19)
dq
or
(s = (B (%] (1. (80)

3.5 Damping Matrix

The damping forces developed at the nodal circles are derived
from the time rate at which energy is dissipated by viscous damping.
The dsmping forces in the shell are assumed to be directly proportional
to the veloeity. Therefore, ome-half the rate at which energy is

dissipated is:
2m

a
W= Ze Jo Jo (F &+ ++°) radax (81)

where ¢ is the damping coefficient of the material, Comparing this

relation with equation (61) it follows that:

W =;°—- 7. (82)

Therefore, the damping matrix, [d] is the following:



0| 0y 0 o ¢ e) 0 0 0 0 B
olo]| o 0 0 o o| o 0 0
ol o0 0 0 0 0 ) 0 0
17s [0 0 0 0 0 | sa 0 0
v 2 4 5
o, ca, ca ca_ 0 0 ca, ca
. . 2 3 h 5'0_ 6
5 & 5 | .7
Ca 4+ S8 4+ ga L2 _ 4 ag 0 0 c8 + ga L2 &+ sa
3 5.0 6 7
5 2 6
ca” . lga ca 4+ 3sa3 o 0 ca’ + Bsa ca. 5.0sa5
5.0 3 6 2 T 5.0 8 3
ca.7 + 9sea,h 0 0 ca8 + _238.5 ca9 + 15.0sa
T 5.0 8 9 T
symmetrical | 0 0 0 6]
-
= br a hga 0 0
2 3
_ 2 ca? + l6sa6 call + 5.0sa/
) 9 7 10 2
call + 25.088
11 9
Figure 9. Matrix [P]
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[al = -,%; [m]. | (83)

3.6 Alternate Displacement Function

The stiffness, mass, stability, and demping matrices for an
element were derived in the preceding sectlions of this chapter on the
basis of an assumed displacement fleld with twelve terms, as in
equation (33). Another displecement function with more terms was also

used as follows:

2 3
e (A, +AX +Ax $A X cos n
(By + 5% + A + 4 x7) cos nf

2 3
v = (A3 + Ahx +.Alox + Alhx ) sin n¢é (8%)

v o= (A5 + X +A71;2.+Ax3 + A xh +A2x5) cos nd.

8 11 1

The procedure for calculating the elemental matrices using equation
(84) for the assumed displacement field is identical to the procedure
when equation (33) was assumed for the displacements., However, the
order of the matrices [L], [R], [V], and [P] is fourteen for this case
instead of twelve. The first twelve rows and columns would be the
same for both cases. The thirteenth and fourteenth columns of the
symmetrical matrices [R], [L], [V], and [P] are listed in Figures 10,

11, 12, and 13 respectively.
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Figure 10.
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Matrix [L]
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Fourteen of Matrix [V]
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CHAPTER IV
FORMULATION OF THE SOLUTION

In Chapter II the equations for determining the boundaries of the
principal regions of dynamic instability were derived in terms of the
gtiffness, mass, stabllity, and damping coefficient metrices of sone
arbitrary étructure. In this analysis the type of the structure and
its deformations remained general. The stiffness, mass, stability,
and damping coefficient matrices for a right circular cylindrical
shell element were derived in Chapter III, These matrices were de-
rived by assuming that the deformation of the shell could be expressed
ag the product of a polynomial funetion of the axial coordinate and a
cogine function of the central angie. The node circles along the axis
of the shell allows an arbitrary deformation along the axis of the
shell but restricts the deformation around the circumference to a pre-
determined number of cosine waves. The number of cosine waves, n,
is treated as a parameter so that-any number of waves around the cir-
cumference of the shell can be investigated. It is the purpose of
this chapter to formulate the equationg needed to solve the problem
being considered in final form. The general problem which is solved

in this thesis is shown in Figure 1h.

4.1 TFormation of the Structural Matrices

The shell being analyzed is Tirst divided into a number of finite

h1
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elements. The stiffness properties of each element are calculated by
the equations‘developéd in Chapter III. The total structural matrices
are formed from the elemental matrices by establighing compatibility
at the podal circles (the ends of each,fiﬁite element) which is
accomplished by adding corresponding coefficients at each node circle.
After the total structural matriceg are formed the support conditions
of the shell must be applied. This is easily accomplished by deleting
the row and column in the total structural matrix which corresponds to
each boundary constralnt. The term structural matrix will be used
hereafter to apply to the total structural matrix after the boundary
conditions have been applied.

The order of the elemental maggix for the cylindrical element is
eight and the order of the structunal matrix is (b3 4 b-v), where j
is the number of finite elements into which the shell is divided and
b is the number of boundary constr;ints. The choice of the number of
elements is often a compromise between accuracy and computing time.
The number of nodes must be gufficient to represent accurately the
deformation of the shell but, if too many elements are chosen, the

computation time becomes excessive.

k.2 Bquations of the Solution

The equation of motion of a shell without damping is given by

equation (19) as:

g} + KI{q} - (p, X p, cos 6t)[s]{a} = 0. (85)

For the case of static buckling {q }and p, are zero; therefore,

equation (85) reduces to the following:
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[[x] - p,[51] {a}=o. (86)

The static buckling loads are the values of P, which make the deter-

minant of the coefficients of {q} vanish or:

[x] - p,[5]] = o. (87)

If the shell is vibrating freely then P, and Py vanish and equa~

tion (85) becomes:

MI{d}+ k) {a} =o0. (88)

For harmonic vibrations the generalized displacements, {q}, may be

represented in the following form:

{a} ={a}sinwt (89)

where {q} is independent of time. Substituting equation (89) into

equation (88) yields:

[[k] - WF M]1{ ¢} sinwt = O. (90)

The condition for nontrivial solutions of equation (90) requires that
the determinant of the coefficients of{a} must vanish. Therefore, the

natural frequencies of a cylindrical shell are given by the following
i

i1
Bl

eguation:

K] - o (]| = 0. (91)

For a shell vibrating under the action of a constant load equa-

tion (85) reduces to:



k5

1{a7 + (K1{a} - » [81{a} = 0. (92)

Substituting equation (89) into equation (92) the frequencies of free

vibration of a shell under a constant load are given by:

(K] - p[8] ~o® DM} =0, (93)

For the problem of dynamic stability, the constant and pulsating
portions of the load, P, and pt , may be defined by:
a p¥*

© (ok)
p, = Op*

b

!

where p* is the lowest buckling load as determined from equation (87).
Substituting equation (94) into equation (28) the boundaries of the
principal regions of dynamic instability excluding damping are located

by the following relation:
8 6
X] - (@ x%) p*[s] - ¢ M]| = 0. (95)

Similarly the determinant for determining the principal regions of ine
stability with viscous damping is found by substituting equation (9h4)

into equation (31) which yields:

2
K] - (a +S)pxs] - £ - 5 0 _,

. 2
i K] - (o - §wis] - S0 (96)



CHAPTER V
PRESENTATION OF RESULTS

The static buckling loads, natural frequencies, and boundaries of
the regions of dynsmic instebility without damplng for a ceylindricel
shell are found by calculating the eigenvalues of equations (87), (91),
and (9S)o The elgenvectors associlated with the eigenvalues represent
the characteristic shapes (mode shapes) of the deformed structure. The
boundaries of the regions of instability inecluding viscous damping are
determined by finding the values of the frequency, 6, which cauge the
determinant in equation (96) to be zero for arbitrary values of the
applied load. A trial and error procedure is necessary to do this
because the form of this equation will not allow a direct solution.
Points within the regions of instability indicate a dynamically un-
stable ghell for the corresponding parameters. A program was written
for the IEM TOUO electronic digital computer to formulate the stiff=-
nesé; masg, and stability matrices from given shell dimensions and
boundary conditions and to calculate the desired values from equations

(87), (91}, (95}, and (96).

5.1 Free Vibration

The natural Tfregquencies of a cylindrical shell are found by solv-
ing equation (91). Two examples were solved for comparison with existe

ing solutions: an analytical solution of a cylinder clamped on both

L6
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ends (37) and some experimental results for a sinmply supported
cylinder (38). The results of these examples are shown in Table I.
and Table I1. The effeet of the number of constants in the agsumed
displacement function on the accuracy of the calculated natural fre-
guencies is shown in Table I. At first only the eight independent
constants were used, but the results were not in eclose agreement with
existing solutions. Twelve terms were assumed in the displacement
function: three terms for u, three terms for v, and six terms for w

as follows:

o
il

(Al + A + A9xe) cos ng

v

il

(A3 *AX 4 Aldxz) sin nd (91)

3

2 Y 5
w=(A +Ax +Ax +Ax" +A4 ¥ +A ¥7) cos nd.
( 5 éx 7x gx llx lax ) ¢

Also, fourteen terms were assumed in another attempt to improve the

displacement function. These were taken as follows:

, 2 3
u=(A +AX+AX +A x°) cos ng
( 1 2 9 13 )

. 2 3
v = (A3 FAX #A X +A X ) sin ng | (98)

_ 2 L3 b 5 _
W o= (A5 + AKX & A7x +AK A X+ A X ) cos ng.

As is seen from Table I, better results were obtained from the 12-
term displacement field than for 8-terms. Still, better overall re-

| gults were oObtained from the lhfterm field when compared with that for
12-terms. This was found to be the case especially for higher mode

shapes along the axis of the shell (larger values of m).



TABLE I

NATURAL FREQUENCIES OF A CYLINDER
CLAMFED ON BOTH ENDS

-

E = 3Ox106 1b/in?

h = 0.1 inch

Density = 0.283 1b/in>  r = 3.0 inches

v = 0.3 L =12.0 inche.s

m=1 m= 3
n |8 A's |12 A's |1k A's | Kraus|| 8 A's |12 A's | 1k A's| Kraus
3 | 1295 1180 1178 | 1176 | 4750 | k520 4365 | 4350
L1919 782 776 | 783 || 3650 | 3210 | 3103 | 3139
51 T37 589 585 597 || 2950 2400 230k | 23k2
6| 680 541 537 552 || 2480 1890 1793 | 1823
71 711 598 506 | 611 || 2170 | 1570 | 1479 | 1503
8| 812 725 725 736 || 1990 | 1h0oO | 1321 | 1338
9| 957 88k 900 902 || 1900 1360 1293 | 1302
10 |11k0 1110 | 1112 | 1100 | 1890 1430 1373 | 1369
11 {1350 1360 1362 | 1321 || 1955 1590 | 1538 | 1512

L8



49

TABLE IT

NATURAL FREQUENCIES OF A SIMPLY
SUPPORTED CYLINDER

E = 29°6x106 lb/in2 h = 0,101 inch
Density = 0.283 1b/in3 r = 1.92k inches
v = 0.29 L = 15.63 inches
m=1 m=2 m= 3 m=4
Finite’ Finite Finite Finite

n |Element| Exp.* | Element| Exp.* | Element | Exp.¥ | Element| Exp.¥*

2| 898 960 | 2080 | 2070 | 3900 | 3725 | 5960 | 5270
3| 2150 | 2130 | 2320 | 2420 3140 | 3130 | k190 | k180
L | 3960 3985 Lo75 4130 4360 Lk30 4890 4950
5 | 6620 | 6k00 | 6700 | 6500 | 6880 | 6700 | ‘7220 | 7030

6 {10100 9270 | 10200 9370 10350 9570 | 10600 9850

% Arnold and Warburton (38)
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A sclution was attempted using sixteen terms in the displacement
function which consisted of adding two more terms to the expression for
w in equation (98) but for this case the stiffness matrix became im=
prdper. No further attempt was made to refine the displacement func-

tion more than the fourteen terms used in this section.

5.2 Static Buckling

The static buckling loads and their associated characteristic
shapes are found by solving equation (87). The buckling problem is
divided into three categories for this study; radial pressure only,
axial pressure only, and combined axial and radial pressure. BEach of

|
these cases is compared with an analytical solution for a simply ‘

supported cylinder (39)» The cylinder used throughout the rest of

this study has the following dimensions and properties:

. 25.0 inches

b
]

2,0 inches

=
i

h = 0.0l ineh

0.25 .

<
3}

Teble IIT gives the critical external radial pressure for several
mode shapes. It 18 noted that for the primery mode shepe along the
axla of the cylinder the displacement function with only eight con-
stants gives values closer to the analyticel solution than the finite
element solution involving a more refined displacement function.
However, the solution with eight constants requires a larger number of
elements than the refined displacement field as shown in Table IV, and

the convergence is not uniform. In addition to this, the solutions



BUCKLING FRESSURES FOR A SIMPLY SUPPORTED CYLINDER
SUBJECTED TO A UNIFORM RADIAL LOAD

TABLE IIT

p* = PE x 1077 1b/in°

ms=1 m=2
n|8A's 12 A's | 1k A's | Flugge|| 8 A's |12 A's |1k A's |Flugge
2 (k422 3.28 3.28 L.k3 | 58.4 hh,5 Li,7 60.3
3 11.33 1.07 1.07 1.22 8.33 4.97 k.97 5.63
L 11.75 1.62 1.62 1.74 3.69 2.35 2.35 2.54
5 12.67 2.60 2.60 2.70 3.50 2.80 2.81 2.94
6 | 3.86 3.86 3.87 3.91 h,33 3.91 3.96 h.o2
7 1 5.29 5.4k4 5,46 5.35 5,60 5¢37 5.51 5.42

51



TABLE IV

BUCKLING PRESSURES OF A CYLINDER UNDER RAIDAL LOAD
FOR DIFFERENT NUMBER OF FINITE ELEMENTS

52

p* = DE x 1077 psi

8 term

displacement field

14 term dis-
Placenment field

5 8 . 10 16 20 5 10 -
n Elements Elements |Elements|Elements | Elements Elements‘E}emanxs Flugge
2 h.22 3.40 3.28 3.28 h.h3
3] 2.62 1.50 1.33 1l.22 1.29 1,08 1.07 1.22
L1 2.35 1.82 1.75 1.75 1.81 1.63 1.62 || 1.7%
51 2.99 2.70 2.67 2,61 2,60 2.70
6 3.86 3.87 3.91
T 5.29 5.46 535
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with more terms in the displacement function yield much better accuracy
for higher modes along the axis of the cylinder.

The critical stresses for the assuvmed cylinder subjected to uni-
form axial pressure are given in Table V for a few mode shapes. In
this case the results obtained by using only eight constants in the
displacement function do net even approximate the analytical results.
An attempt was made to overcome this deficlency by using a larger
number of finite elements, but this helped very little. It was this
problem which made & refinement of the assumed displacement function
necessary. Assuming s displacement function with twelve constants
yields results which compare favorably with the analytical solution
for most of the mode shapes given. However, increasing the number of
constants to fourteen gave even a better comparigon, especially for
higher modes along the axis of the cylinder. Also, the displacement
flelds with eight and twelve terms often gave critical mode shapes
which differed from those predicted by the analytical solution. These
are marked by ¥ to the left.

Table VI gives the buckling loads for combined loading for one
ratio of end pressure to radial pressure and for three different
beoundary conditions. It was necessary for the ratio of end pressure to
radial pressure to be large, for the agsgumed shell dimensions, to ob-
tain a solution that differed from the case of radial pressure only.,

On the bhasis of the comparisons made in sections 5.1 and 5.2 it
was concluded that the displacement function containing fourteen terms

should give better results in the remaining analysis.



TABLE V

CRITICAL STRESSES IN A SIMPLY SUPPORTED CYLINDER
UNDER AN AXTAL LOAD

5k

o*:f)'ExlO-h

psi

lst Critical Stress

2nd Critical Stress

m|[8 A's |12 A's | 14 A's | Flugge|| m |8 A's |12 A's |1k A's | Flugge

1| k2.3 33.2 33.2 4.3 || 2| 17 112 112 115

1] 38,0 27.4 27.3 27.5 |l 2 53.1 | 31.9 31.8 32,1

21 43.7 | 28.1 28,1 28.2 || 3] 59.7| 28.5 28.3 28.5

3 | #55,4 _ . 2 | ¥66.0

b 27.9 27.5 27.6 || 5 30.5 30.h
3 31.0

I | *%66.4 3 | *¥72.0

6 30.2 28.5 28.3 || 5 29,9 29,2 29,2

5 | %76.0 L | %81,k

8 33.7 29,0 28.7 11 9 29.k4 29.2
7 %*32.3




TABLE VI

BUCKLING PRESSURES FOR A CYLINDER
UNDER COMBINED LOADING

— [ | —
80p — " -——— 80p
—_— \/ ——
BERER
v’o = Wo =0 uL='vL= L=7L vo=w0=0
o= o= 0 =0 VL= =yL=O
Finite Finite Finite
ni| m | Element | Flugge|| m | Element !/m | Element
21 1 1.83 2.1k 1 0467 1 2.03
31 0.81k 0.894 1 0.69 1 0.89
Lt 1 1.39 1.h7 1.01 1 1.39
51 3 1.89 1.93 1.25 3 1.92
6| b 2.k2 2.37 1.43 L 2.37
715 2.92 2.86 | 1.57 T 2.69

55
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5.3 Dynamic Instability Without Damping

The boundaries of the regions of dynamic instability when neglect-~
ing 211 damping forces are found by solving equation (95). The first
seriesg of problems for which the regions of instability are determined
are for cylinders subjected to a pulsating radial pressure and support-

ed in a way such that the following boundary conditions apply:

Boundary . Restrained
Condition Displacements
1 VYV =W =V =w =20

(o) (4] L L

U =V =W = =0 =V =W =0
3 0 = Vo TV =V =V =L =YL TN,
b U =V =W =y =0

o 0 0 o
5 WO=VL=WL:=)/L=O

The boundaries of the regions of instability for each of the boundary
conditions given ahove were calculated and plotted on & non-
dimensionalized graph. When plotted in this manner each of these
cases gave identical regions which are shown in Figure 15. The
region corresponding to @ = 0 is the same as the solution of the
Mathieu differential equation. The regions for a = 0.6 and @ = 0.9
would be the same as the region for ¢ = 0 had the frequency of the
pulsating load been normalized with respect to the resonant frequency
of a shell under a constant load of 0.6 p* or 0.9 p* respectively.
In that case, 9 would have been divided by solutions of equation (93)

instead of solutions of equation (9l)¢ The values of buckling pres-
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sures and natural frequencies are given in Table VII and Table VIII,
respectively, for several mode shapes for each of the five boundary
conditions which were congidered. With this informastion, Figure 15
indicates whether or not a certain load applied at a given frequency
will casuse dynamic instability of a shell with the agsumed dimensions.
In each of the preceding cases the mode shapes of buckling and vibra-
tion for a given value of n were almost identical; from the most
critical values to the least critiecal values.

The regions of dynamic instability for a shell subjected to a
‘uniform axial pressure and with simply supported ends sre shown in
Figure 16. The critical axial stress in this cylinder corresponds to
a8 mode shape of n = 3 and m = 1; therefore, the regions of instability
were calculated for n = 3, In Figure 17 the regioﬁs of dynamic
instability are given for the same case except that an additional
restraint is imposed in which the ends of the cylinder were not
allowed to rotate, i.e., y = O. The critical load occurred in this
cagse for n = 4 and m = 1, In both of these cases the static buckling
and free vibration mode shapes along the axis of the shell were almost
identical for equally ranked values, and the regions are the same as
these for solutions of the Mathieu equation.

The regions of instability for a shell under axial pressure which
is clamped at one end and restrained only in the radial direction at
the other end are shown in Figure 18. These regions differ consider-
ably from the previous results, but, in this case, there was a marked
difference in the critical mode shapes for buckling and free vibration
as shown in Flgure 19. The same regions are also shown in Figure 20,

in which the frequency of the load, 6, is normalized with respect to



TABLE VII

CRITICAL RADIAL PRESSURES FOR SEVERAL

BOUNDARY CONDITIONS

p¥ = EE X 10'.7 psi

B.Co| n=2 n=3 n=h n=5 n=56 n= n=8
3.286 | 1.07 | 1.62 | 2.60 | 3.86 | 5.4k
1 Wy,5 | L.97 1 2.35 | 2.80 | 3.91 | 5.37
199 20.8 | s5.40 | 3.67 | L.28 | 5,67
13.8 | 2.11 | 1.82 | 2.65 | 3.88 | 5.45 | 7.k2
2 88.0 | 10.0 | 3.37 | 3.10 | L.06 | 5.54
287 33.3 | 8.13 | 4.48 | 4.58 | 5,79 | T.62
13.9 | 2.12 | 1.82 | 2.65 | 3.88 | 5.h5 | T.42
3 89.2 | 10.2 | 3,40 | 3.11 | 4,06 | 5.54 | 7.48
292 34.1 | 8.32 | ho55 | 461 | 5.80 | 7.63
De6k | 0,83 | 1.58 | 2.59 | 3.87 | 5.hk8
i 14,3 ] 2,17 | 1.83 | 2.67 | 3.91 | 5.50
98,9 | 10.7 | 3.49 | 3.15 | 4,10 | 5.60
hoh2 | 1.32 | 1.69 | 2.64 | 3.93 | 5.58 | 7.68
5 51.1 | 6.82 | 2.88 | 3.01 | 4.08 | 5.66 | T.72
227 29.1 | 7.97 | 4.60 | 472 | 5.99 | 7.95
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NATURAL FREQUENCIES FOR SEVERAL
BOUNDARY CONDITICHNS

TABLE VIII

w =0 [E/p x 1077 rad/sec
B.Ce| n=2 n= n=l n=5 n=6 n= n=08
725 660 | 1101 | 1770 | 261k | 3647
1 2676 | 1431 | 1339 | 1844 | 2645 | 366h4
5723 | 297k | 2067 | 2133 | 2765 | 3723
1kol 930 | 1173 | 1790 | 2623} 3653 | Look
2 3790 | 2057 | 162k | 1951 | 2688 | 3685 | kool
6968 | 3846 | 2618 | 2h22 | 2901 | 3793 | k985
1512 gho | 1176 | 1792 | 2623 ] 3653 | Look
3 3875 | 2118 | 1657 | 1963 | 269k | 3688 | h923
7189 | 4039 | 2754 | 2498 | 2937| 3812 | 5000
326 582 | 1089 | 1765 | 2612 3641 | L4835
b 1517 934 | 1175 | 1793 | 2625| 3652 | k903
Looo | 212k | 1646 | 1958 | 2691 3682 | kLols
810 720 | 1125 | 1777 | 26181 3651 | L4903
5 2760 | 1592 | 1kh1 | 1887 | 2664 | 367k | bLols
5721 | 3210 | 2297 | 2268 | 2831 3758 | L4965

60



2(1-Qzm)

I 1 T T T
—— , -—-—
S [ -
| |
—_— \ ——
- v=wz=0 V=ws =
O8f .
6k _
0 =09
B a=06 1
04 =0 |
o2k O3, = 27.3Ex107* .
- ws | = 66 /-5 x 107 T
0 ! : | ! I
0 .0 2.0 30 40
e3,m /wS,m
Figure 16, Regions of Dynamic Instability for a Simply Supported Shell

SubJjected to Axial Pressure

©



08

04

02

T

1

RN

<
1]
g

- — ]

P

3

<
1]
o

29E x 107¢

.0137/—5:_

0. ' 1.O 2.0 30

e4,n\/qu4,m

Figure 17. Regions of Dynamic Instability for a Clamped Shell Subjected
to Axial Pressure

40

€9



1.2 T T T T T T T
o — = :
— \ ——

- w=0 V=W=)’:O _
08} -
o6 =09 ]

i =06 |

a=0
o4 -
02f oy, = 284E x 107 -

= ’ _ / E -3 .

O ] ] e 1 1 i
) 1.0 2.0 30 40

O4,1 /Wa,

Figuré 18, Regions of Dynamic Instability for a Shell Under Axial Ioad
Supported by Boundery Condition Number 5

£9



PN

v

FIRST BUCKLING MODE

FIRST FREE VIBRATION MODE

FIRST FREE VIBRATION MODE UNDER
A CONSTANT LOAD p, = 0.6p*

/\\/

FIRST FREE VIBRATION MODE UNDER
A CONTANT LOAD p, = 0.9p"

Figure 19. Mode Shapes for a Shell Under Axial Load
Supported by Boundary Condition Number 5

6l



_Ba,
2( I-Q4q )

- T T | i

|.oF |

o8}l | i
i/

] 1 / .
os} / i
oaf / oy = 28.4Ex107° .

i a=0,04,= 'H.28\/—;§——' X107
o2k ==e==Q=086,Q4,= 90 /E_ x 107

i ——— =09, 04,= 474 /5 x 107
. O 1 { 1 {

0 3.0 4.0

e4, | /‘0'4, !

. Figure 20. Regions

of Dynamic Tnstability Normalized by

59



66

the resonant frequency of vibration under the respective values of
constant load,§l, instead of the natural frequency,w . The regions
corresponding t0 Q = .6 and @ = .9 when plotted in this manner corres-
pond closely to the region for a = Q0 in the previous examples, but the
buckling and vibration mode shapes are similar for these values of
the constent load as shown in Figure 19.

The regions of instability for a cantilevered shell under a uni-
form axial load are given in Figure 21. The regiong for this case are
slightly narrower than the regions given by solutions of the Mathieu
equation. The mode shapes for static buckling and free vibration
shown in Figure 22 differ slightly. 1In the previous example a large
difference in the buckling and vibration mode shapes resulted in a
large difference in the regions of instability and in this example a
emall variation in the mode shapes produced a small change from the
regions of unbounded solutions of Mathieu equation. This trend was
also observed by Brown (30) and Hutt (31) for the dynamic stabilify
of rods and plates. Hutt (31) offered an explanation for this
occurrence for the dynamic stability of plates.

Figures 23, 2k, and 25 give the principal regions of dynamic
instability for a shell subjected to combined axial and radial pressure
for three support conditions. The mode shapes for static buckling and
free vibration are gimilar for each of these conditions and the re- '

sulting regions of instability are solutions of the Mathieu equation.
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5.4 Dynamic Instability With Damping

The three examples presented in the previous section with combined
loading were also solved including damping forces and the resulting
regions are shown in Figures 26, 27, and 28. The parameter, 7 , which
is used as a measure of the damping force is defined by the following

relation:

=S
oon (99)

in which

¢ = damping coefficient

3
]

natural frequency of the shell

mass density per unit volume of the material

o)
]

thickness of the shell.

The effect that the damping forces have on the regions of instability
is to require that the load must have a finite value to cause dynamic
instability. Also, the presence of damping produces narrower insgtabi-
1lity regions. In the cases given for 7 = 0.1 and @ = O the periodic
load must be greater than four-tenths of the static buckling load to

be capable of causing dynamic instability.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary snd Conclusions

A method for determining the principal regions of dynsmic instebi-
lity for cylindrical shells hag been developed in this thesis using a
stiffness formulation of the finite element method. The equations of
motion of a shell element were derived from Hamilton's principle. The
equations of the boundaries of the reglons of dynamic instability were
derived from certain periodic solutions of the equations of motion.
The stiffness matrices were obtained by assuming & displacement field
throughout the element. The accuracy of this approach was improved by
assuming e dlsplecement fleld which had nmore arblitrary constents than
the number of degrees of freedom of the element and using the principle
of minimum potential energy to express the dependent constants in
terms of the independent constants. This procedure gave overall re-
gults which compared better with existing solutions for static buckling
and free vibration with a fewer number of elements than the standard
proecedure. If a further improvement is desired in the accuracy of
this method then, more exact strain-displacement relations should be
assumed in deriving the stiffness matrix. A shell subjected to several
boundary conditions and different combinations of axial and radial
pressure was analyzed. The effect of damping was includéd in some of

the examples.
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The similarity of the mode shapes for static buckling and free
vibration was found to have a direct influence on the regions of in-
gtabllity. In all cages in ﬁhich thegse mode shapes were identical the
regulting reglons were the same as those given in Figure 15. In those
cagses in which the mode shapes differed the resulting regions of in-
stability differed from those in Figure 15.

The finite element method makes the solution of the dynamie
stability problem of cylindrical shells feasible. Other approaches to
this problem are extremely difficult. The ease with which various
boundary conditions can be applied is a primary advantage of the
method. Support conditions which have not been solved by other methods

are easlily handled with the finite element technique.

6.2 Extension of Work

The examples whlch were solved in this thesis were restricted to
cylindrical shells subjected to a uniformly distributed axial and
radial pressure. The shell is assumed to be initially perfect and
constructed of a homogeneous, isotropic, and linearly elastic material.
The methed could be readily adapted to anisotropic and multilayered
shells. Other loading conditions such as a torque applied about the
axis of the eylinder could also be considered. The buckling of a
shell under axial pressure should be investigated by taking small
initial imperfections of the shape of the cylinder into account.
Shells of revolution could be considered by using a conical frusta for
a Tinite element. An investigation to establish some criteria for the

optimmm displacement function should be conducted.
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