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PREFACE 

In this thesis, a numerical method was applied to a system of 

derived differential equations in an attempt to develop a way by which 

multispecie turbulent flow of perfect nonreacting gas could be de

scribed. The overall scheme was applied to a constant pressure, two

specie (C02 and air), coaxial mixing problem. 

Although comparison of the results of this work was made 

with experimental data, analysis of the experimental data indicated a 

large inconsistency with the conservation of mass principle. Con

sequently, a currently available analytic solution for single specie 

was extended to the two-specie case for the purpose of comparison. 

In attempting this work, the ultimate goal was the establish

ment of a method whereby extremely complex nonreactive flow fields, 

such as occur in advanced propulsion devices, may be analyzed. 

Major advances in techniques for such analysis have already been 

made by previous investigators at Oklahoma State University. 

Specifically, the suitability of a numerical method for the analysis of 

complex shock wave patterns in an inviscid flow field has been 

demonstrated by Drs. W. N. Jackomis, L. D. Tyler, and R. R. Eaton. 

In addition, Dr. W. F. Walker analyzed the interaction of a blast 

wave and a turbulent mixing region. Therefore, it appeared 
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appropriate to now consider multispecie mixing. Furthermore, while 

only a relatively simple isobaric jet mixing case was considered, the 

technique was so conceived as not to be restricted to only this type of 

flow. Conceivable, analysis of more complex flow fields with multi

specie mixing will only require specification of appropriate boundary 

and initial conditions. This specification, of course, is normally the 

most difficult aspect of any analysis. 

However, throughout this investigation it was realized that: 

I.) the technique is a numerical method and therefore is capable only 

of approximate solutions, and 2.) the exact description of turbulent 

flow has stymied the scientific community for over a century and 

therefore it was not intended that this work would terminate the prob

lem of turbulent analysis. Indeed, the selection of an eddy viscosity 

automatically biases the description of turbulent flow. However, the 

urgency for analysis of currently intractable flow fields warrants, at 

this juncture, even approximate analysis. 

Time would not permit nor space allow the acknowledgement 

of all who have aided in the completion of this work. Nonetheless, I 

wish to express my deep gratitude to those who have been 

instrumental. 
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NOMENCLATURE 

A = stability coefficient Eq. (3-3) 

B = stability coefficient Eq. (3-3) 

b = mixing region width 

c = local speed of sound 

C = Crocco number 

c1 = a constant Eq. (2-26) 

f = time dependent matrix variable Eq, (3-2) 

Fr = radially dependent matrix variable Eq. (3-2) 

Fz = axially dependent matrix variable Eq. (3-2) 

h = static enthalpy 

h = stagnation enthalpy 
0 

K = At/ Ar 
r 

K = At/Az z 

N = number of species 

p = pressure 

Pr t = turbulent Prandtl number 

Ri = gas constants 
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Sc . 
t, 1 

u 

v 

v 

x 

x 

y 

y 

z 

a. 

v 

Ar 

Az 

At 

e 
m 

Tlu 

= radial coordinate measured from the centerline 

th = turbulent Schmidt number for i specie 

= axial velocity component 

= radial velocity component 

= axial coordinate with origin at point of separation 

= axial coordinate with origin at point of separation 

= transverse coordinate with origin at point of separation 

= transverse coordinate measured from x axis 

= axial coordinate measured along centerline 

= See Eq. (3-5) 

= See Eq. (3 .. 5) 

= average specific heat ratio 

= specific heat ratio of ith specie 

= boundary layer thickness 

= distance between two node points in radial direction 

= distance between two node points in axial direction 

= time step 

= eddy viscosity 

= y/6 a 

= See Eq. (5-11) 

= See Eq. (5-11) 

= ho/hoa 
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~ 
u 

p 

(j 

(j 
0 

cf n 
m, J, 

w 

= See Eq. (5-7) 

= density 

= spreading rate parameter 

n 
= (cj' m, J, ) max 

= See Eq. (3-15) 

= u/u 
a 

= Arctan (6. r I 6. y) 

= matrix variable Eq. (3-2) 

= x/F., 
a 

th 
= concentration of i specie 

= damping parameter 

Superscript 

= time average 

= fluctuating components 

n = denotes quantities measured in nth time 

Subscript 

a = a mixing stream, in this case, the air stream 

b = a mixing stream, in this case, the C02 stream 

e = denotes variables associated with an energy profile 

i 
th = denotes i specie 

t = an axial point number 

m = a radial point number 
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max = the maximum value 

t = denotes variables common to turbulent flow 

t, i th = denotes variables common to turbulent flow for i specie 

u = denotes variables associated with a velocity profile 
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CHAPTER I 

INTRODUCTION 

Because of the enormous cost of present day launch vehicles 

and some promising prognostications based on very simple analyses 

which have appeared in the literature (References l and 2), interest 

has been spurred in the areas of supersonic burning ramjets 

(SCRAM jets) and air-augmented rockets (see Figure 1). However, 

before practical designs are possible, the detailed flow fields of these 

devices must be analyzed. Moreover, a cursory inspection of the 

sketches contained in Figure l indicates the obvious complexity of the 

associated flow fields. That is, not only are the inviscid variations 

of pressure, temperature, density, and velocity very complex, but 

the added complications of multiple species and turbulent mixing com

pound the problem to an almost insurmountable level. (See Refer

ence 3 for a brief delineation of the difficulties encountered in the 

analysis of heterogeneous mixing.) 

The solution of these types of problems, therefore, requires a 

method that can describe the mass, momentum., and energy distribu

tions of a turbulent flow field that has shock waves and other 

discontinuities such as occur in two-stream mixing. This means that 
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both transverse and longitudinal gradients of all the flow quantities 

must be permitted. In addition, consideration must be given to mix

ing of light and heavy gases, including the possible existence of solid 

particles in the flow. These conditions will not allow the assumption 

of a Prandtl and Lewis number equal to unity. Moreover, combustion 

may also take place if the gases are of a combustible nature and at a 

proper temperature. 

Thus far, as the literature survey will indicate, the utility of 

currently available analytic methods is restricted in application to 

much simpler flow fields than of topical importance. Furthermore, 

the possibility of extending available analytic methods to complex flow 

fields appears to be remote. Consequently, this work applied a 

numerical method to a system of partial differential equations that 

were assumed to describe multispecie turbulent flow. 

Literature Survey 

Because of the nature of the appropriate differential equations, 

most investigators have been led to attack only the problem of con

stant pressure (or, at best, prescribed pressure gradient) turbulent 

jet mixing. This is not to say that the amount of investigation devoted 

to this topic is wanting. On the contrary, there appears to be a 

plethora of more or less related investigations (for example, Refer

ence 4 contains 585 references related to ejectors and mixing 

streams). However, since the expressed purpose of this thesis is 



the development of a technique sufficiently general to permit 

further extension and application to problems of the variety experi

enced in SCRAM jet and air-augmentation applications, a discussion 

of the currently available analytical tools for jet mixing analysis is 

here apropos. In the text of the following chapters, where informa

tion concerning experimentally determined parameters is necessary, 

an appropriate and brief literature survey is incorporated, 

4 

The analytic analysis of turbulent jet mixing generally breaks 

down into two approaches to the problem. One technique is that of the 

integral momentum method similar to that used by von Karman in 

boundary layer analysis (5). The other consists of solving the partial 

differential equations of motion and looking for particular solutions to 

match the boundary conditions. 

Perhaps the best documented solution for two-dimensional jet 

mixing is that of Korst (6). This solution was arrived at by integra

tion of the linearized streamwise momentum equation. Since this 

solution is discussed in Chapter V of this thesis, details will not be 

delineated here. However, it should be noted that this solution is, 

essentially, for constant pressure turbulent mixing, although pre

scribed pressure gradients have been incorporated, as, for example, 

was done by Zumwalt (7). The wide variety of problems to which 

this solution has been applied is discussed in Reference 8. 

By transforming the flow equations into the von Mises co

ordinates with a subsequent linearization, Kleinstein (9) developed a 



solution for laminar jet mixing. Because transport properties are 

only significant in the inverse transform, the solution in the van 

Mises coordinates is the same for both laminar and turbulent flow 

5 

(if it is assumed that the flow equations for turbulent flow are the 

same as those for laminar flow with the laminar transport properties 

replaced by their phenomenological counterparts). This enabled 

Libby ( 10) to perform a turbulent flow analysis via the solution 

developed by Klein stein but with additional assumptions which 

describe the turbulent transport properties. Reference 11 gives a 

discussion of both the laminar and turbulent solutions with this trans

formation technique and Reference 12 shows an application of this 

method to the description of both the near jet and far jet regions of a 

constant pres sure, coaxial, chemically reacting free jet. As with the 

Korst solution, application of this solution is restricted to constant 

pressure mixing. However, because of the role the transport pro

perties play in the inverse transformations, this method does aid in 

the analysis of the turbulent transport properties. 

Some other attempts at handling the mixing problem that show 

limited application are presented in References 13, 14, and 15. 

Donaldson and Gray (13) assumed Prt = Let= 1 and considered con

stant pressure mixing using Crocco' s integrals and a form of 

Prandtl' s free turbulence eddy viscosity term. The constant in the 

eddy viscosity term was found to be a function of exit geometry 

which was to be expected, as Abramovich (16} indicated. 



Seubold ( 14) transforms the partial differential equations, 

using a similarity variable, into an ordinary differential equation 

with the Lewis number assumed unity but with the Prandtl number as 

a parameter. An attempt was made to retain the pressure gradient 

term but it was found more convenient to introduce a pressure gra

dient through a velocity term. Consequently, the pressure gradient 

was considered a known quantity and not dependent on the flow 

situation. 

6 

In somewhat a similar manner, Cassaccio (15) transformed 

the equations of motion to get an ordinary differential equation as sum

ing Prt = Let = 1 with Prandtl1 s hypothesis for turbulent mixing. 

Consideration was confined to a potential core and a pressure gra

dient parameter was defined. No experimental verification was 

given. 

As an alternate method to the differential approach, as was 

noted above, investigators recognized the ability of the integral 

approach in describing the spreading rate of constant pressure jet 

mixing regions. Abramovich {16) gives extensive consideration to 

this approach for a multitude of primary and secondary stream con

ditions. With the assumption of similar velocity and stagnation 

profiles which display acceptable comparison with experimental data, 

he developed jet spreading rate expressions which require evaluation 

of complicated integrals imbedded in very involved equations. 
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In an attempt to describe the turbulent jet spreading rate 

more simply, Abramovich suggested another expression in Reference 

17. While this expression does not determine the details of the mix

ing region flow field, it was found to be a useful relationship by 

Peters, et al. {18) in a simplified analysis of bounded coaxial turbu

lent mixing with chemical reactions, 

Other attempts at the description of the rate of spreading of a 

turbulent mixing region have centered investigation on the variation of 

a 11 spreading rate parameter, 11 cr, which is consequential to the 

assumption of similarity. However, the appropriate value of cr for a 

particular situation is dependent, to some extent, on the assumed 

velocity function. 

To determine the value of cr for higher Mach numbers, 

Maydew and Reed { 19) experimented in the Mach number range of 

0. 70 to I. 96. Several analytic curves were compared to the experi

mental data and it was found that Crane's or Goertler' s incompres

sible curve fit the data best and corresponding values of er, as a 

function of Mach number, were determined. The data were for the 

isoenergetic case. 

In another attempt of similarity, Reference 20 suggested a 

transformation procedure that maps variable density velocity profiles 

onto a single constant density velocity profile. Here again, a simi

larity parameter, that is a function of Mach number, is introduced. 
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The method predicts the expected trends that have been observed 

previously by many others: that the rate of spreading is dependent on 

the density and the velocity of the jet. 

Channapragada (21), with the use of Howarth's transformation 

and the assumption of the invariance of the shear stress under trans

formation, related the compressible value of er to its incompressible 

value. He noted that, as the Crocco number approached unity, the 

ratio of the compressible spreading parameter to the incompressible 

value approached four; and, for a given Crocco number, the hotter 

the jet the lower the value of the spreading parameter ratio, hence 

the greater the spread. This formulation was for a jet exhausting 

into a quiescent medium. 

In an extension of this approach to the case of two-stream 

mixing, Channapragada and Woolley (22) determined a relation for the 

spreading rate parameter as a function of the two-stream velocity 

ratio, the primary stream Crocco nurn.ber, and the two-stream 

stagnation temperature ratio. For this analysis it was assumed that 

Prt =Let= 1 and the pressure was constant. 

Peters (23) suggested that, for two-stream mixing, there are 

two predominant scales of turbulence: one of large scale that is 

represented by Prandtl' s free turbulence eddy viscosity term, and the 

other of a smaller scale that can be represented by an eddy viscosity 

that is proportional to the local velocity. With the use of Forstall and 

Shapiro's cosine velocity distribution, Peters suggests yet another 



similarity parameter for the integral approach. This cr compares 

to that presented by Abramovich (16) which is known to have given 

acceptable results. 

Forde ( 24) considered similaritv in the constant pres sure 

isoenergetic mixing of two supersonic streams, one of which was 

C02 • The emphasis was on the potential region. Several methods 

of analysis were considered and for each method best values of cr 

were determined by comparison with experiment. 
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Bauer (25) also approached the constant pressure isoenergetic 

mixing problem from the similarity viewpoint. Considering a control 

volume over a portion of the mixing region and using the momentum 

integral idea, an expression for cr was developed. This a was based 

on the error function velocity profile, and, as with Peters (23), was 

compared with Abramovich' s work. The two formulations were in 

relative agreement. 

The effect of ionization was pointed out in (26). By m.ixing 

high temperature argon with cool helium with both streams subsonic, 

it was noticed that spreading decreased with ionization and stayed 

constant for a degree of ionization greater than 10%. The technique 

for calculation used an integral-differential approach which simplified 

to a system of algebraic equations once an assumption for the jet 

boundary spreading was made. This report also indicated the effect 

of temperature and two-stream velocity ratio on the spreading rate. 

Again the pres sure was constant. 



Despite the amassing of the information and techniques deli

neated above, direct application of any one method to the problems 

of the type associated with the SCRAM jet and air-augmented rocket 

is, generally speaking, impossible. Consequently, a synthesis of 

analytical tools was the next obvious step. 
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For the air-augmented rocket, Chow, et al. (27) (28) com

bined a method-of-characteristics solution with the Korst mixing 

theory (6) by superimposing a mixing region on the inviscid interface 

b~tween the primary and secondary streams. This method was use

ful in defining limiting regimes of operation. However, the method of 

characteristics is an isentropic solution of the flow equations for 

supersonic flow and in the interior (neglecting the jet mixing on the 

edges) of an underexpanded jet there are typically not only non

isentropic processes in evidence, such as shock waves and viscous 

mixing, but also parts of the flow are subsonic (see Reference 29). 

In a similar attempt to solve the air-augmentation mixing 

problem, a technique was presented in Reference 30 that requires 

an inviscid calculation via the method of characteristics. On top of 

the inviscid jet boundary, thus calculated, was superimposed the 

mixing effects which were determined by a numerical calculation of 

linearized differential equations which had been transformed into the 

von Mises plane. The technique allowed for constant values of Prt 

and Let but could not handle the situation where shock waves appear 

in the flow. 
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Another method developed for rocket exhausts was presented 

in Reference 31. In this paper, Emmons transformed the linearized 

equations of fl.ow into the von Mises coordinates and used Prandtl1 s 

formulation for the eddy viscosity. Suggested values were given for 

the turbulent Prandtl and Lewis numbers for gases and for solid 

particles, and results of some calculations were compared to the 

data given in Reference 32; the comparison seemed to be acceptable. 

While the approach of Emmons could not describe flow fields 

which contain shock waves, it did employ a numerical solution of the 

partial differential equations. This approach to a solution of a sys

tem of partial differential equations has, no doubt, been inspired by 

the recent accessibility of large core-storage high-speed computers. 

Moreover, extensive effort has been expended recently in the develop

ment of numerical techniques of applying more general forms of the 

fl.ow equations. 

Fromm ( 33) employed von Neumann and Richtmye'l:" 1 s pseudo

viscosity concept for numerical stability (see Reference 34) and 

performed a Lagrangian coordinate analysis of transient normal 

shock waves. However, the Lagrangian coordinate system is 

practical only for one dimensional problems. 

In the Eulerian coordinate system, Fromm (35) developed a 

method for computing nonsteady incompressible, viscous fluid flows. 

The comparison of his results with experiment is amazing. Another 



numerical analysis which used Prandtl 1 s boundary layer equations 

was presented for non-equilibrium laminar and turbulent boundary 

layer flows by Galowin (36). 

Among the numerical methods which are commonly used for 

the analysis of inviscid transient supersonic flows, the schemes of 

Lax ( 37), Lax and Wendroff (38), Richtmyer 1 s variation of the Lax

Wendroff method (39), and Rusanov (40) are the most popular. 

In the past several years, the Rusanov method has been the 

subject of intensive development at Oklahoma State University: 
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Jackomis (41) studied the passage of a blast wave over a stationary 

cone, Tyler (42) analyzed the propagation of a shock wave into both a 

still and supersonic crossflow, Walker (43) investigated the inter

action of a moving shock wave and a turbulent mixing region, 

Eaton (44) considered a cone-cylinder in supersonic flow as it entered 

into and exited from a large-radius spherical blast, and Rao (45) 

described the transient shock wave patterns, resulting from super

sonic aircraft, around ground level structures. 

Method of Analysis 

As the literature survey indicates, attempts to date to syn

thesize analytic solutions for the calculation of complex flow fields 

have suggested basically two conceptual difficulties. In addition to 

the inability of currently available analytic methods in describing 

some of the phenomena encountered in complex flow fields, such as 



the entire shock wave system in underexpanded jets, the synthesis 

route requires the investigator to be as much of an artist as a 

scientist. 

13 

On the other hand, the application of a numerical method may 

proceed in a straightforward manner. The satisfaction of boundary 

conditions may be accomplished in direct analogy with their analytic 

description -- once the boundary conditions have, in fact, been 

defined. Furthermore, the adoption of numerical analysis does not 

conceptually require a restriction on the degree of generality that 

may be accomplished. However, it must be recognized that the 

numerical approach yields only an approximate solution for regions 

of discontinuities, such as shock waves and concentration disconti-

nuities, smeared over several mesh spacings. Yet, one is not 

inclined to quibble when faced with the option of either getting a com

plete, but approximate, s elution of a complex flow field or none at all. 

Since the Rusanov num.erical method ( 40) has been developed 

to a high degree (References 41 through 45), this work was an attempt 

to extend the method still further so that steady state flow fields 

which contain multispecie turbulent jet mixing could be calculated. 

That is, the two important extensions that were the goals of this work 

were the incorporation of multispecie turbulent mixing and the demon

stration of the achievement of an asymptotically approached steady 

state solution (the Rusanov numerical method is a time-dependent 



schem.e and the previously cited references were devoted, almost 

wholly, to transient phenomena). 

14 

To accomplish these ends, a general set of flow equations, 

applicable to turbulent flow, were derived and are presented in 

Chapter II. In the derivation of these equations, no sweeping assump

tions were made which would restrict their application to any 

particular flow situation other than the restriction that the flow must 

be turbulent everywhere (laminar transport mechanisms were deleted 

from consideration). Moreover, since consideration was restricted 

to turbulent flow, it was necessary to remain within the state-of;..the

art in the description of the turbulent transport mechanism. On this 

point, it is necessary to note that the terms in the turbulent analogue 

of the laminar shear stress representations were investigated 

separately. While this may appear as a linearization, the nebulous 

nature of the turbulent shear stresses justified this approach. This is 

also discussed in Chapter II and its consequences are discussed in 

Chapter IV. 

Chapter III presents the details of the Rusanov numerical 

method for axisymrnetric flow. In addition, the approximate schemes 

for the satisfaction of the boundary conditions applicable to the flow 

situation which was investigated as part of this work are also 

presented. 

In order to verify the utility of any developed program., it is 

necessary to compare the results of calculation with experimental 
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data. However, adequate experimental data for flow fields which 

contain shock waves with multispecie turbulent mixing is, at present, 

nonexistent. Consequently, because of the previous extensive investi

gation, an axisymmetric, constant pres sure, two-specie, nonreacting, 

perfect gas, turbulent jet mixing case was considered (see Figure 2). 

However, despite the extensive consideration that has been given to 

this type of flow, experimental data of sufficient detail and accuracy, 

necessary for the application of this numerical analysis, is also 

nonexistent. Nonetheless, the data of Reference 24 was used for 

comparison in this work since reasonable assumptions could be made 

for the information not presented in this reference. This is discussed 

in Chapter IV. 

Moreover, because assumptions had to be made in order to 

permit comparison, the effect of the differing assumptions was in

vestigated and the results of this investigation, together with compari

sons with experimental data, are also presented in Chapter IV. 

Since analysis of the experimental data of Reference 24 

indicated an appreciable error, an analytic analysis was performed 

with the use of the Korst jet mixing theory (Reference 6). However, 

since the Korst theory, in its most current state of development, did 

not include multispecie mixing, an extension of this theory was made 

to incorporate this phenomenon. Further, since the boundary condi

tions for integration differed for the momentum, energy, and specie 

equations, Crocco' s integral, which was originally used in the Korst 
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theory, could not be used. Consequently, slight modifications were 

made to account for this. These extensions and modifications are 

presented in Chapter V and also in Chapter V, there is contained a 

comparison of the numerical method results with those of the analyti

cal theory. 

Finally, it is important to note that, in this work, because of 

the type of flow field considered, only non-reacting perfect gases 

were considered. Further, while shock waves were absent from 

this investigation, the ability of this numerical method to describe 

flow fields containing such phenomena is suggested by the success 

contained in the above cited references. 



CHAPTER II 

DIFFERENTIAL EQUATIONS, TRANSPORT COEFFICIENTS, AND 

BOUNDARY AND INITIAL CONDITIONS 

The determination of the detailed description of a fluid flow 

field requires application of partial differential equations to appro

priate boundary conditions. The first task in any analysis, then, is 

to develop differential equations which describe local, or pointwise, 

phenomenological behavior of the va:riations of the dependent vari

ables. In addition, initial and boundary conditions, which accurately 

model a particular situation, must be specified. In this chapter, 

therefore, attention is directed toward these topics. 

Basic Equations 

Since it was the attempt of the work herein described to deter

mine a steady-state solution as an asymptotic result of a transient 

calculation for a turbulent flow c cndition, the appropriate fluid flow 

differential equations must exhibit a transient nature and permit 

implementation of expressions presumed to describe the turbulence 

phenomenon. By first assuming that all dependent variables are 

time dependent and, further, that the flow, assumed to be purely 

18 
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turbulent, is of such a nature that laminar momentum. and specie 

transport, and viscous flow work are of negligible importance, the 

axisymmetric differential equations for the conservation of mass, 

momentum, energy, and specie may be written (see Appendix A for 

the derivation and further discussion): 

Conservation of mass: 

Radial conservation of momentum: 

'?lpv o ~ o pva 
- +- (pv·+p) +- (pvu) +- = 0 o t or oz r 

Axial conservation of momentum: 

Conservation of energy: 

Conservation of specie: 

and: 

where: 

o pw. ?I O pvw. 
".\, 1 +~(pvw.) +~(ouw.) +----1: = 0 at or 1 oz · 1 r 

N=l 
wN=l-1'. w1 

i=l 

I 
h = h+-va 

0 2 

i = 1, 2, ... N-1 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

(2-7) 
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In addition to the principle assumptions delineated above, it 

was also assumed that there existed no body forces of sufficient 

significance for application in the mom.entum equation, that energy 

fluxes due to concentration gradients, pressure gradients, and body 

forces (Dufour effect) were unimportant, and that specie diffusion due 

to pressure gradients and temperature gradients (Soret effect) were 

also unim.portant. Moreover, since application is intended solely for 

completely turbulent flow, all laminar, or molecular, contributions 

to transport of momentum, energy, and specie were considered 

inconsequential. 

Perturbation Scheme 

While equations (2-1) to (2-7) are presumed to describe the 

local variations of the dependent variables in (r, z, t) space, they are 

not practically useful within the framework of the present II state-of

the-art" turbulent flow analysis. In order to transform these 

equations into a more useful form, a widely adopted postulate, by and 

large corroborated by experiment (Reference 5) and believed to be an 

acceptable description of the turbulence for the case here considered, 

was employed. The substance of the postulate supposes that each 

dependent variable may be decomposed into an average value (later 

denoted by a bar) and a fluctuation value (later denoted by a prime) 

measured about the mean value. The significance of this postulate is 

embodied in the time-averaging of the differential equations which 
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result after substitution into equations (2-1) through (2-7) of the de-

composing expressions for the dependent variables. 

Because straightforward decomposition and substitution of each 

dependent variable results in a labyrinth of algebra (not to mention the 

evolution of terms for which there is currently no phenomenological 

understanding), simplifications were made in the spirit of the sug-

gestion of Van Driest (46). Consequently, the dependent variable 

decomposition scheme, which was found useful in this work, is: 

pu = pu + (pu)' h = h + h' 

pv = pv + (ov)' p = p + p' 
( 2-8) 

u = u + u' W. = W. + W. 1 
1 1 1 

v = v + v' 
p = p + p' 

By employing equations (2-8) in two different ways, two sets 

of perturbed, time-averaged differential equations were derived, 

However, because of the enormous amount of computer time required 

to study both sets of equations, and because one set of equations 

seemed to be more in line with physical reasoning, only one of the two 

sets of perturbed, time-averaged differential equations was used and 

is here presented. 

Conservation of mass: 

(2-9) 



Radial conservation of momentum: 

?I rw o -- -- - ?I --
-· - +-[ovv + (pv)'v' + p] +- [pvu + (pv) 1u 1 ] ot or . oz 

+ pv v + ( pv)' v' = 0 
r 

Axial conservation of momentum: 

clpu o -- o --
-· - +-[ pu v + (ou)'v'] + ~. z [ pu u + (pu) 1u 1 + pl o t or · o 

Conservation of energy: 

+ouv+(pu) 1v 1 =O 
r 

o - 1 -- - o -- 1--Mr ph +2 pV2 -p] +~[pv h + (pv) 1h 1 +2 pv y:a + u(pv)'u' 

- o -- 1--
+ v(pv) 1v 1 ] + ~ [ p.i h + (pu) 1h 1 + 2 pu V 2 + u(pu) 1u 1 
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(2-10) 

(2-11) 

( 2-12) 

- pv h + (ov)'h' + 1/2-pv V2 + u{pv) 1u 1 + v(pv)'v1 = 0 
+ v( pu)lv'] + ----· ----------------r 

Conservation of specie: 

'cl - - o -- ?I --
- p w + -· ( pv w + < ov) 1 w I l + -;-- ( p.i W. + ( pu) 1 w. 11 
cl t i or i . i ' oz 1 l 

( 2-13) 
pv W. + ( pv) 1 tll. 1 

1 1 +------- = 0 
r 

where: 

( 2-14) 

See Appendix B for a detailed description of the perturbation scheme 

and a listing of both sets of time-average, perturbed differential 

equations. 
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In order for time averaged assurn.ptions, presented below, to 

have meaning, brief consideration must be given to the time.averaging 

process, especially since the dependent variables (both the rn.ean and 

fluctuation parts) are assumed to be a function of time. In the 

development of a mathematical description of turbulence, analysis is 

not applied to a particular time-history of the dependent variables 

that might result from a particular experiment. Rather, before tirn.e 

averaging a dependent variable, an average of many time-histories 

for repeated experiments must be performed. Indeed, because of the 

nature of turbulent flow and the lack of knowledge of the random pro-

cesses involved in turbulent flows, consideration must be given to an 

ensemble of turbulent flows for the case under consideration 

(Reference 47). The.refore, the ignorance of turbulence is reflected 

by viewing all dependent variables as ensemble averages and con-

sistency of the mathematics is maintained. Moreover, with the adop-

tion of this concept, the conventional time averaging process 

(Reference 6) led to no mathematical difficulties. Specifically, if g 

is taken to represent any ensemble averaged dependent variable 

(mean, fluctuation, or product of fluctuation variables), the time-

average value of the ensemble average g, denoted by g, is deter-

mined by: 

l t + D.t 
g = D. t J g(r, z, t)dt 

t 
( 2-15) 
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where 6t is permitted to approach zero. Time-averaging of a differ

ential equation, then, is accomplished by applying the concept 

indicated in equation (2-15) termwise to each differential equation. 

After substitution of equations (2-8) into equations (2-1) 

through (2-8) and subsequent time-averaging, the following additional 

assumptions were made: 

1.) (u1) 2 << ~2 and (v1) 2 << v2 

2.) u p1u 1 << l/2pu2 andv p1v 1 << l/2pv2 

3.) p1h 1 << p h 

Assumption 3 above is one of several alternatives. It is pos

sible to perturb ph as one entity instead of the individual constituents; 

alternatively, it might be assumed in lieu of assumption 3, that p' 

and h' are uncorrelated. Obviously, a myriad of possibilities exist 

in the development of any system of differential equations which find 

application in turbulent flow analysis. The above arguments and 

assumptions represent one system of equations by which an attempt 

has been made to retain as much generality as current experimental 

knowledge of turbulent flow would permit. 

Finally, special attention is directed to the enthalpy expres

sion in equations (2-8). While perturbation of enthalpy in a single 

specie turbulent mixing process amounts to perturbation of tempera

ture, the same perturbation assumption in multi specie studies for 

constant property nonreactive gases, incorporates, in addition to a 

temperature fluctuation, a concentration fluctuation. since enthalpy 



25 

for a multispecie gas is a function of both the temperature and the 

concentrations of the cases involved. 

Turbulent Transport Expressions 

In order to utilize equations (2-9) through (2-13), it is neces-

sary to specify phenomenological expressions for terms such as 

(pv)'h'. Recourse was made to an analogue of laminar flow first sug-

gested by Boussinesq and related by Schlichting (6): 

-( pu)'v' = T(t) = A ou 
rz m or 

(2-16) 

Tlle essence of equation (2-16) relates assumed correlated, time-

averaged perturbations such as (pu)'v', called "Reynolds stresses, 11 

to the product of some phenomenological coefficient, A , variously 
m 

called an "apparent, 11 "eddy," or "virtual" viscosity, and a partial 

derivative oif a mean velocity.· Since this hypothesis is an "a pos-
I i 

teriori" development, the relationship of these turbulent transport 

expressions to physical reality is somewhat nebulous although 

pragmatic. Consequently, the specification of the exact expressions 

which are to relate assumed correlated, time-averaged, products of 

perturbed variables verges on arbitrariness. 

However, by adopting Prandtl' s physical concept of turbulent 

exchange of an agglomerate of fluid (Reference 6), two sets of expres-

sions, assumed to represent turbulent transport phenomenon, were 

developed. Prandtl assumed that a lump of mass, for which an 
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average momentum, enthalpy, etc. could be assigned, moved some 

lateral distance, called the "mixing length" distance, while retaining 

its average properties. Once arriving at this new location, the lump 

of fluid mixes with the surrounding fluid, thereby producing a fluctua-

tion in local properties. While the above discussion is somewhat a 

generalization of Prandtl' s concept, as reported by Schlichting (6), it 

typifies the current understanding of turbulent flow. 

Employment of this reasoning led to the theorization that the 

transport of axial momentum per unit volume, pu, which results in an 

axial momentum fluctuation, ( pu) 1 , is accompanied by a radial velocity 

fluctuation, v 1 • Furthermore, this process is precipitated by a radial 

gradient of axial velocity.. Consequently, the terms (pu)'v' and 

(pv) 1u 1 were expressed: 

) ou 
-(pu 'v' = pe: -mor 

and 
ov 

-( pv) 'u' = pe: -
m oz (2-17) 

where the apparent eddy viscosity, A , has been rewritten using a 
m 

kinematic eddy viscosity e: . However, since there existed no "a 
m 

priori" criterion or philosophy on which to base the form of the gra-

dient, an alternate form for ( pu)'v' and ( pv)lu' exists. By theorizing 

that the fluctuation of axial momentum per unit volume is caused by a 

variation of the radial velocity in the axial direction, it was possible 

to write: 

ov = pe -
m oz (2-18) -(pu) 1v 1 and -(pv) 'u' 
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The apparent preference exhibited in the literature for only 

equations ( 2-17) appears to be due to use of the linearized boundary 

layer equations whereas the sweeping assumptions associated with 

these equations have not been employed here. Moreover, the achieve-

ment of the above stated goals of this work forbade the use of those 

classical assumptions. 

Application of either of the above philosophies for specification 

of (pu)'v' and (pv) 1u 1 , resulted in: 

?lu 
-(pu)'u1 = pe -

m nz 
ov 

-(pv)'v' = pe -
m or (2-19) 

and the assumption that, for example, an enthalpy fluctuation due to a 

fluctuation in pu is associated with a gradient of enthalpy in the axial 

direction resulted in: 

pem oh 
-(pv)'h' - -- --

- Prt or 

-(pu)'h' 

-(pv)'w.' 
1 

pe ow. 
m 1 

=~. or 
t~ 1 

oe ow. · m 1 
-(pu)'w. = -- --

1 Set . oz 
, 1 

where, in analogy with lam.inar flow, 

Set . 
, 1 

e 
m 

e . 
Cl 

(2-20) 

(2-21) 

To complete the set of equations necessary for the description 

of multispecie turbulent flow it was assumed that the perfect gas 

equations applied, Therefore, a state equation could be written as: 

p = pRT (2-22) 
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where R is the appropriate gas constant evaluated by: 

N 
R = 'E R 1 w1 i= 1 

( 2-23) 

Furthermore, the enthalpy was evaluated by: 

N 'V.Riw. 
1 1 

I'. y - 1 
h= 

i=l i p (2-24) 
N p 
r R.w. 

i =l 1 1 

The set of equations used in this analysis, then, consisted of 

the time ... averaged, perturbed differential equations (2-9) through 

(2-14) with a combination of the expressions (2-17) through (2-20) and 

the auxiliary expressions (2-22) through (2-24). In cases presented 

in this work, equations (2-19) and (2-20) were generally used. How-

ever, in one application, to study the effect of differing assumptions 

for (pu)'v' and (pv)'u', equations (2-17) and equations (2-19) and 

(2-2'0) were employed in the ,differential equations for a set of bound-

ary conditions, and then, equations (2-18) and equations (2-19) and 

(2-20) were used for the same boundary conditions and the results 

compared. Use of the former set will be referred to as 11 Case ! 11 

while application employing the latter set will be referred to as 

11 Case II. 11 Consideration was not given to both sets used together. 
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Transport Coefficients 

The above discussion has presumed knowledge of the turbulent 

transport coefficients, Pr and Sc ., and the eddy viscosity. How-
t t, 1 

ever, because of the nature of turbulent flow, it is precisely the 

acquisition of this data that has retarded the analysis of turbulent 

flow problems. In fact, whereas the analogous transport coefficients 

for laminar flow are well known properties, the turbulent transport 

counterparts have thus far eluded definition in terms of functional 

relationships involving fluid properties and mean flow variables. 

Nonetheless, a cursory review of the literature reveals nearly as 

many proposed formulations, developed on a myriad of foundations, 

as investigators. 

Fundamental to the precipitation of this condition is the reali-

zation that, to date, an understanding of the exact and detailed 

mechanism of turbulence has yet to be developed. Certainly, it is 

recognized that such quantities as free stream turbulence due to up-

stream influences, wall protuberances, pressure gradients, and high 

shear gradients effect both transition and turbulent flow development; 

but, it was, and is, the lack of knowledge of the exact interrelation-

ship of such variables that has led, and currently does force, many 

investigators to postulate mathematical models which are based on 

limited information, and which require at least one experimentally 

determined constant. Furthermore, a very detailed experimental 



investigation, which would determine exact occurrence for a parti

cular situation, could not be used as a sole basis for a description 
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of turbulence since each turbulent flow is itself unique; thus, any 

general description of turbulence must be viewed as a representation 

of an ensemble, in the statistical sense, of all possible turbulent 

flows. 

With the recognition of the difficulties in a detailed analysis of 

a turbulent flow field, investigators have generally attacked the prob

lem from one of two approaches -- both presently requiring ern.pirical 

information. On the one hand, the phenomenon of turbulence is con

sidered in a manner analogous to the kinetic theory of gases, Alter

natively, a gross over-all phenomenological consideration has arisen. 

By the very way in which the above differential equations have been 

derived, the phenomenological approach has been implicitly assumed. 

However, since the statistical view point represents a possible 

avenue for turbulent flow analysis, brief consideration will be given 

to it at this juncture. 

Basically, the statistical approach to turbulence assumes that 

the continuity equation and the momentum (Navier-Stokes) equations 

describe the instantaneous condition in a fluid flow field. Upon per

turbation and time-averaging, in a manner similar to that presented 

above, a set of equations, similar in form to equations (2-9) through 

(2-11), result. In order to apply these equations, statistical assump

tions, based on experimental data, are made for the correlated, 
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perturbed, tim.e-averaged terms. Donaldson (48), for example, in 

an attempt to study transition in an incompressible fl.ow over a fiat 

plate, makes some assumptions relating second and third order cor

relations. 

Because the development of the statistical approach is still 

somewhat in the embryonic stage, consideration has .been restricted 

almost entirely to incompressible turbulent boundary layers on a fl.at 

plate. Consequently, a thermodynamic energy equation is not neces

sary for a complete set of equations. However, comm.on to many 

investigators is the employment of an equation which represents a 

balance among the production, dissipation, and diffusion of the turbu

lent kinetic energy (49). This equation is often termed the "energy" 

equation, and it contains, as in the case of the continuity and momen

tum equations, perturbed, time-averaged, correlated terms. 

Bradshaw et al (50) includes this energy equation in the appropriate 

system of equations and assumes that the turbulent intensity is di

rectly proportional to the local shear stress, that the dissipation rate 

is determined by the local shear stress and a length scale, and that 

the energy diffusion is directly proportional to the local shear stress 

with a factor depending on the m.aximum value of this shear stress. 

With the solution of the differential equations by use of the method of 

characteristics, apparently excellent agreement with experiment was 

achieved. 



Although the technique presented in Reference 50 displays 

great promise in the analysis of turbulent flows, its state of devel

opment is not nearly sufficiently advanced for the analysis of the 

more complex problems of current interest. However, it is sig

nificant to note that one of the principal points that Bradshaw, 
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et al. strives so hard to make is that the turbulent shear stress is 

not simply related to the velocity gradient as suggested in equations 

(2-17) through (2-19). Moreover, the acceptance of this suggestion 

implies that the relationships (2-20) are likely not to represent 

adequately the turbulence phenomenon. While contemplating these 

thought it should also be borne in mind that the statistical approach 

has thus far been limited to imcompressible uniform type of flow. 

Consequently, only momentum transport in the vicinity of a wall 

has been considered. G. I. Taylor (51) points out that wall turbu

lence effects differ from free jet turbulence effects. On the other 

hand, the phenomenological approach, while making rather sweeping 

assumptions regarding turbulent transport processes, has demon

strated moderate success in a wide variety of turbulent flow prob

lems (see Reference 6). Consequently, until turbulence is more 

fully understood and the statistical niethod refined, the phenomenol

ogical method offers the best immediate gains in the solution of 

many current turbulent flow situations. 

The phenomenological approach is primarily based on the 

assumption that turbulent transport terms which appear in the per

turbed, time-averaged differential equations, equations (2-10) 
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through (2-13), may be simply expressed in terms of mean flow 

values by an analogy with laminar transport expressions. Therefore, 

equations (2-17) through (2-21) result -- the phenomenological view-

point was adopted for this work. This assumption is predicated on the 

supposition that it is possible to determine expressions for the eddy 

viscosity, the turbulent Prandtl number, Prt, and the turbulent 

Schmidt number, Sc . (or turbulent Lewis number Le .). 
t, 1 t, 1 

At this juncture a brief presentation of suggested eddy viscosi-

ties ensues, followed by a discussion of the turbulent Prandtl and 

Schmidt numbers. Notice that these quantities only have relevance 

within the framework of the phenomenological viewpoint. Further-

more, it might be noted in passing that this viewpoint appears to be 

the most popular within the realm of turbulent flow. This is due, no 

doubt, to the lack of involved mathematics which seems to pervade the 

statistical approach. As a consequence of this popularity, a myriad of 

formulations for the eddy viscosity have been developed. 

One of the first and most prolific analysts in the eddy viscosity 

field was Prandtl (see Reference 6). He idealized turbulent motion by 

considering agglomerations of fluid which travel some length, J,, 

called the "mixing length. 11 This length is analogous to the kinetic 

theory mean-free-path for molecules and, in traversing the mixing 

length distance, the agglomerations, or lumps, of fluid retain the 

p1'operties they initially had before this submotion on the mean 

motion occurred. Upon arriving at the new location the lump of fluid 
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mixes with the surrounding fluid which produces a fluctuation in the 

fluid properties (such as velocity, density, etc.) at the new location. 

This line of reasoning led-to the "mixing-length" eddy viscosity: 

e = 1,s l ou I 
m oy. (2-25) 

While it may appear that this formulation does not represent 

an improvement since J, is not a fluid property, as Schlichting (6) 

points out, under some circumstances it is easier to make plausible 

assumptions regarding the form of J, than it is to assume expressions 

for e • Nikuradse (52) (reported by Schlichting (6)) found that a plot 
m 

of the ratio of J, to R, a pipe radius, versus the radial coordinate, 

normalized by R, was independent of the Reynolds number for a 

smooth pipe. Also, it was observed that a linear variation of J, in the 

vicinity of the wall was a good approximation. In considering several 

free jets, Tollmien (53) achieved only fair agreement with experi-

ment with the assumption that J, is a linear function of the axial co-

ordinate of a free jet. 

G. I. Taylor ( 51) argued that vorticity was transferred rather 

than momentum as Prandtl suggested. His derivation resulted in a 

similar formulation for e except that his mixing length differed by a 
m 

factor of VZ from Prandtl' s mixing length. The significance of 

Taylor's result is that the region of temperature variations due to, 

say, turbulent mixing of two streams of differing temperatures should 

be larger than the region of velocity variations. Prandtl1 s 
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formulation would not predict such a difference. As is well known, 

this difference does exist. However, in contrast to Prandtl' s expres-

sion, Taylor's formulation has not found wide application. 

With a philosophy somewhat similar to that of Taylor's, 

others, for example Black (54), have attempted to describe a turbu-

lent flow field by a system of vortex patterns. Black supposes that a 

vertical system dictates the velocity and shear stress distributions 

and a "tempo-spatial" sublayer instability generates and maintains the 

characteristic vortex structures. However, this approach is still in 

the embryonic stages, as is the statistical approach. 

From an analysis of free jet data collected by H. Reichardt, 

Prandtl derived another expression for the eddy viscosity (see Refer-

ence 6). In his derivation, Prandtl assumed that the dimensions of 

the lumps of fluid which move in a transverse direction during turbu-

lent mixing are of the same order of magnitude as the width of the 

mixing zone. The formulation which results was termed the II constant 

exchange" eddy viscosity: 

e = c 1 b(u - u . ) 
max min 

(2-26) 

Although the experimental data was for a jet which mixes with a 

quiescent surrounding, Prandtl generalized his idea to arrive at 

expression (2-26). Goertler (see Reference 6) applied Prandtl1 s 

II constant exchange" expression in an analysis of Reichardt' s data 

and found excellent agreement. Moreover, Goertler1 s analysis was 
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for the more general case of two stream jet mixing. More will be 

said about this later. 

However, Prandtl' s original expression leads to the obvious 

realization that, at u = u . , e = 0. This implication has been 
max min m 

demonstrated to be incorrect by the results of the experiments of 

Forstall and Shapiro (55) and, more recently by Alpinieri (56). 

Recognizing this disparity between equation (2-26) and experiment, 

investigators suggested new expressions which generally amount to 

some alteration of Prandtl 1 s expression (equation (2-26)). Perhaps 

foremost among the many are those suggested by Ferri, et al (57), 

Alpinieri (56), and Boehman (58). The expression suggested by Ferri 

eliminates the objection to Prandtl' s expression; but it results in a 

similar singularity for p v = p .u.. Consequently, it shows little 
e e J J 

value for general application. Alpinieri' s formulation resulted from 

experiments conducted in the flow regimes where Prandtl' s and 

Ferri' s correlations indicated zero eddy viscosity. While this new 

correlation shows great promise and is free from objections, it has 

not been employed for cases outside of the range for which it has been 

developed. This criticism of Alpinieri' s equation is generally true 

for every expression for eddy viscosity due to a lack of complete and 

accurate data with which several versions might be investigated. 

In addition to the objections raised to Prandtl 1 s and Ferri' s 

eddy viscosities, recent investigators have considered the effects of 
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compressibility and radial variations of e: and pe: • These effects 
m m 

have been, in some respects, segregated and, in other respects, in-

tegrated into one overall consideration. Where the effect of com-

pressibility on a spreading rate parameter, a, is considered, the 

effect of radial variations is generally ignored. However, others con-

sidered density variations, as a consequence of compressibility, to 

have the same effect as variations due to a difference in gas properties 

across the mixing region (as, for example, might occur when two 

streams of widely different molecular weights mix). In addition, 

these latter investigators considered the radial variations of e: due 
m 

to the nature of turbulent mixing itself. The former group will be 

considered later. 

Foremost in the latter group is, perhaps, Boehman ( 58) and 

Zakkay, et al (59) (60). Boehman assumes several similar velocity 

functions known to represent experimental data for two-stream incom-

pressible turbulent jet mixing. Employing indpendently the conserva-

tion principles and experimental data, he shows that e: , as expected, 
rn 

does vary in the radial direction. In addition, in contrast to the re-

sults of Zakkay and Krause (60), Boehman1 s eddy viscosities display 

physically realizable variations with the radial coordinate. 

Zakkay and Krause's reported radial variations of e: and oe: 
m · m 

are incorrect because the authors specify a similar radial concentra-

tion profile, a centerline concentration decay, and a half radius 
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variation. Of these three functions, the last two were determined 

from data in Reference 59, As noted by Boehman, the conservation 

principles do not permit these to be independently specified. 

Reference 60 also presents radial variations of e: and oe: 
m · m 

which result from using a transform suggested by Ting and Libby in 

Reference 61. The essence of this transformation is a conversion of 

an incompressible eddy viscosity to one applicable to compressible 

fl.ow. This conversion requires knowledge of the radial density pro-

file. However, the results of this transformation, using the data of 

Reference 59, are in accord with the conclusions reached by Bo·ehman. 

Therefore, this transformation admits possible practical application. 

Inhibiting implementation of this transform, however, is the 

added complexity it implies. In addition, Reference 60 indicates that 

pe is not a strong function of the radial coordinates, thus permitting 
m. 

it to be considered a constant. The problem still remains to deter-

mine which, e: or pe: , should be used as either an average or a 
m m 

correct incompressible form for the Ting and Libby transformation. 

Looking at the problem from another viewpoint, Maydew and 

Reed ( 19) presented thoroughly documented experimental results for a 

compre·ssible jet mixing study. They concluded that the resulting 

similar velocity profiles were the same as those for incompressible 

mixing. Since similar velocity profiles for incompressible flow have 

been analytically derived using incompressible eddy viscosities 
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(generally Prandtl' s) and have been shown to compare very favorably 

with experiment, one is led to conjecture the use of incompressible 

eddy viscosities which are constant in the radial direction (especially 

in the light of the conclusions drawn from the results of the Ting· and 

Libby transformation reported by Zakkay and Krause (60)). Before 

pursuing this thought further, however, several facets of Reference 19 

must be noted. 

For the similar profiles considered by Maydew and Reed, a ;et 

spreading rate parameter, cr, was used with Prandtl' s eddy viscosity. 

For incompressible flow it has been found that cr is a constant. How-

ever, for compressible flow experiment, specifically Maydew and 

Reed's, it has been found that cr is a function of the jet exit Mach 

number (assuming a free jet). In essence, then, the effect of com-

pressibility is contained in the parameter cr, while e is assumed to 
m 

be a function of the axial coordinate only. Furthermore, since com-

pressible velocity profiles have been found to be essentially the same 

as those for incompressible flow, the use of an incompressible eddy 

viscosity should be adequate. 

There is, however, one drawback. The experiments of 

Maydew and Reed were for an isoenergetic free jet of air mixing with 

air .. While the variation of cr with compressibility (Mach number) has 

been considered, investigation of variations of cr for cases of two 

gases of widely different densities has yet to be conducted. Since the 
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results presented in this paper are for mixing of C02 with air, this 

drawback was not considered significant. 

Rather than use Prandtl' s eddy viscosity in its original form, 

further consideration was given to the form of e: • In the derivation 
m 

presented by Goertler (see Reference 6), for the case of two-stream 

incompressible jet mixing, if one makes a simple substitution for the 

constants in equation (2-26) and uses the results of Goertler, it will 

be discovered that e: takes the form 
m 

z ( ' e: =--u +u ) 
m 4CJ2 max min 

(2-27) 

This form of the eddy viscosity has been used by Korst (6) in his 

analytical theory. 

previously raised. 

Notice that this form does not display the objections 

In fact, the case of u = u. may be viewed as a 
e J 

problem of determining the appropriate CJ (experimentally by use of a 

tracer gas). In this light, equation (2-27) may be viewed as a defini-

tion of CJ much the same as the convective heat transfer equation 

defines h, the convective heat transfer coefficient. Furthermore, the 

variation of <J with large density gradient across the mixing region 

may be well worth considering in future experiments. 

It needs yet to be mentioned that the incorporation of an eddy 

viscosity in an iterative computer program requires that the expres-

sion be as simple as possible for feasible run times. Furthermore, 

since numerical method techniques have the tendency to II smear" any 
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regions containing gradients, only a reasonable approximation of e 
m 

is required. 

Thus far, the discussion has centered on the eddy viscosity 

(momentum transport coefficient). The energy and specie transport 

coefficients are related to the eddy viscosity by the turbulent Prandtl 

and Schmidt numbers respectively. Implicit, of course, are the 

assumptions that, first, such quantities as the turbulent Prandtl and 

Schmidt numbers can be meaningfully expressed in terms of the mean 

flow variables and, second, that such quantities are more easily ex

pressed than the respective transport coefficients themselves. 

While, certainly, definitive proofs of the above assertions are 

lacking (and are most likely to remain so), it appears that good 

approximations can be made. In fact, experimental data, as the fol

lowing discussion will show, indicate that, at worst, the turbulent 

Prandtl and Schmidt numbers are a function of the axial coordinate 

only (free jet mixing), and, generally, it is sufficient to assume these 

quantities constant. The precise value of these quantities varies from 

investigator to investigator and naturally the values quoted are asso

ciated with a particular theory under consideration. This is due to a 

lack of a concise definition which would precisely explain what these 

turbulent quantities are. 

In their classical experiment, For stall and Shapiro (55) used 

experimental data, together with Squire and Trouncer's ( 6 2) mixing 

length coefficient and integral method, to determine a turbulent 
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Prandtl and Schmidt number equal to 0. 7 (and therefore a turbulent 

Lewis numb.er of unity). 

Both Kleinstein ( 11) and Alpinieri (56) investigated experi-

mental data for constant pressure coaxial jet mixing using an analyti-

cal method presented by Libby (10). The analytical method trans-

forms the boundary layer turbulent flow differential equations into the 

von W:.ises coordinates. The solution in the transformed plane is that 

of the heat conduction equation. The eddy viscosity and turbulent 

Prandtl and Schmidt numbers act as coordinate stretchers. While the 

solution in the transformed plane does not require knowledge of the 

turbulent transport coefficients, transformation back to the physical 

plane does require knowledge of these quantities. With the use of this 

feature of the analytical solution, Kleinstein determined the turbulent 

Schmidt number to be 0. 708 and the turbulent Prandtl number to be 

0. 715. He considered an air jet exhausting into a quiescent air re
l 

ceiver for the dete,r:rhination of the Prandtl number and helium-air 

injection data from the experiments of Kergy and Weller (63) for the 

determination of the Schmidt number. These experiments and the sub-

sequent results are for the 11 main11 region of mixing (i. e, the region 

downstream of where the mixing has affected the centerline -- up-

stream of this location is termed the "potential core" region). 

Alpinieri ( 56) found that the turbulent Schmidt number varied 

between O. 5 and 0. 7 in the main region of mixing of a hydrogen jet 

exhausting into an air stream with the same velocity. Moreover, in 



43 

his analysis of the experimental data he showed that, in the main 

region of mixing, turbulent Schmidt numbers of 0. 6 and l. 0 produced 

identical results. 

Zakkay, et al (59) investigated analytically and experimentally 

hydrogen, helium, and argon jets individually exhausting into a coaxial 

moving air stream. They also investigated the main region of mixing 

and determined the turbulent Schmidt number to vary between O. 3 and 

2. 3 and the turbulent Lewis number to vary between 0. 4 and 1. 0. The 

wide variation of these variables can possibly be explained by con

sidering the technique employed for their evaluation. The laminar 

conservation differential equations are assumed to describe turbulent 

flow where the laminar transport coefficients are supposed then to be 

the turbulent analogues, These equations were solved for these 

turbulent transport coefficients (here under consideration) and evalu

ation was considered at the centerline. In order to carry out this 

evaluation, first and second derivatives on the centerline were neces

sary. These derivatives were determined by casting six radial 

experimental data points, at several axial locations, into similar 

profile expressions for the axial velocity and concentration. 

Morganthaler (64) discussed this work and points out: (1) six widely 

spaced data points are insufficient for the determination of first and 

second derivatives on the centerline, (2) Hinze (49) shows that true 

similarity does not exist for the general case considered in Refer

ence 59, and (3) in the reduction of the raw data, a constant 
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stagnation temperature is assumed which, from consideration of the 

assumed energy equation, requires that the turbulent Prandtl and 

Lewis numbers be equal to unity. 

Emmons (31) considered the rate at which liquid droplets dif-

fused in a gas stream. By injecting liquid diesel fluid into a turbulent 

airstream and comparing concentration measurements at various 

axial locations to similar data obtained with naphtha gas as the injected 

fuel, he found that the gas to liquid Lewis numbers varied approxi-

mately from 1. 2 to 2. 0. 

Finally, Forde (24) compared the mixing region width for con-

centration to that for velocity in the potential core region. With the 

use of this scheme for the determination of the turbulent Schmidt 

number Forde determined Sc = 0. 92. Forde' s experiments were for 
t 

C02 co-axially mixing with an airstream. The data from this refer-

ence was used for comparison. 

As the above discus si6n has indicated, there are a large 

number of eddy viscosities available for use in a turbulent flow 

analysis. One then must select a particular form for E: that best 
m 

suits his needs. Since most of the formulations discussed above are 

functions of a "half-radius" (that radius where the velocity has a value 

equal to the average of the adjacent free stream velocities), a quantity 

that is not readily determinable with the scheme suggested in this 

work, and since an iterative procedure, such as employed here, 
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run times, equation (2-27) was selected for application in this work. 
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Further, as the above discussion also indicated, the turbulent 

Prandtl and Schmidt numbers tend to be constant. The question is: 

11 What are their values? 11 Because comparison was to be made with 

the experimental data of Reference 24, the Schmidt number that was 

reported in that reference was used for all cases. Since the above 

discussed experiment data indicated that the turbulent Lewis number 

tended to be approximately one, the turbulent Prandtl number was 

assumed to be equal to the turbulent Schmidt number. 

Boundary and Initial Conditions 

Now that the equations which describe turbulent flow have been 

developed, specification of the boundary and initial conditions is neces

sary. That is, the conditions which define a flow problem must be 

described mathematically. In this section the conditions necessary for 

the description of the multispecie, coaxial, compressible, turbulent 

jet mixing geometry depicted in Figure 3 will be delineated. Chapter 

IV contains a detailed discussion of the reasons for the selection of 

this problem. 

Because an asymptotic steady state solution was desired it 

was necessary to define initial conditions for the entire flow field and 

boundary conditions for all time under consideration. Two different 

initial conditions were considered in this analysis. One initial 
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condition assumed that the entire flow field was exactly the same as 

the upstream boundary conditions, That is, radial profile of all de

pendent variables assumed at the upstream boundary was exactly the 

same at all downstream locations, In essence, then, physically, at 

successive times, the solution represented what would result if the 

initial conditions were as just described. The adoption of this view

point is predicated on the assumption that, if the calculation is made 

for sufficiently long times, initial condition discrepancies will be im

material (assuming, of course, that the boundary conditions are con

stant with time). 

The other initial condition that was assumed employed the 

results for the analytic solution developed in Chapter V. This analy

tic solution is for a steady state case and, consequently, it should be 

close to the correct solution which results from the numerical analy

sis thus reducing the time for computer computation. 

The specification of the boundary conditions required some 

practical considerations of the technique for developing a solution. 

While it is hypothetically possible to consider exact integration of the 

equations developed in this chapter and, therefore, integrate to easily 

definable boundaries such as walls, in practice, since the solution 

was to be developed with the use of a numerical method on a digital 

computer which practically limits the storage available, a less con

venient boundary had to be chosen. This boundary, and the region 

which it encloses, is shown in Figure 3. The exact length and width 
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of this region varied somewhat from computer run to computer run. 

Because the exact upstream boundary which corresponds to 

the experimental results with which comparison was to be made was 

unknown, several different profiles for the dependent variables were 

assumed, However, each set of the assumed upstream profiles for 

the dependent variables were held constant with time for each com-

puter run. 

The top boundary was described by demanding that the radial 

gradients of all the dependent variables were zero. That is: 

af 
- 0 (2-28) or 

where f is a vector whose elements are: 

f = (p, u, v, p, ltl1 Wa ). (2-29) 

The adoption of this assumption assumed that all significant gradients 

would be contained within the assumed boundaries and, consequently, 

a uniform flow ( or zero radial derivative) could certainly be con-

sidered a legitimate boundary condition. 

Moreover, this assumption was justified by Reference 24. In 

this reference, Forde indicates that the effect of mixing on the outer 

edge of the secondary stream did not influence the potential core 

region. No proof was given for this, however. 

At the downstream boundary, both the values of the dependent 

variables and their gradients were permitted to be whatever the cal-

culations required. 
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In a similar manner, the centerline dependent variables were 

determined by computation. However, the centerline was recognized 

to be a line of symmetry (the above differential equations have this 

condition incorporated in them) and, consequently, the radial velocity 

component was required to be zero. 

Nondimensionalization Scheme 

Rather than be encumbered by the units of the dependent 

variables, the nondimensional technique used by Walker (43) was 

employed. Briefly, the scheme consists of nondimensionalizing the 

thermodynamic properties of pressure and density by some appropri-

ate reference values. In this work the reference pressure and density 

were taken to be those which exist at the center of the inner jet at the 

exit. 

To nondimensionalize the velocity, it was required that the 

Mach number that is determined from dimensional quantities be equal 

to the Mach number that is determined from nondimensional quantities. 

If a prime (1 ) denotes dimensional quantities and the lack of a prime 

denotes nondimensional quantities, the nondimensionalizing relation-

ship for velocity has the form: 

u' 
P' Ip' (2-30) 

Lengths are nondimensionalized with respect to the inner jet 

exit radius and, from the use of any one of differential equations 

·--- -- -----



presented above, time was nondimensionalized by 

t' 
t =

r, 
J 

-VP 1 /0 1 
r · r 

50 

(2-31) 

With the use of this scheme the differential equations that were 

presented above have exactly the same form for both the nondimen-

sionalized and the dimensionalized variables. 



CHAPTER III 

THE NUMERICAL METHOD 

In order to solve the system of equations that were presented 

in Chapter II, recourse was made to implementation of a numerical 

method. Such an approach has certainly found its impetus with the 

advent of the digital computer. Moreover, as was pointed out in the 

introduction, the primary purpose of this work is to extend the capa

bility of the Rusanov nurn.erical method, which has shown remarkable 

success in solving a wide variety of problems thus far, to the problem 

of multispecie turbulent jet mixing. Consequently, this chapter is 

devoted to the description of the numerical method for this type of 

problem and, in addition, necessary supplementary numerical equa

tions are presented. 

The Rusanov Numerical Method 

This method is based upon a technique presented by Von 

Neumann and Richtmyer (34) who suggested a scheme for the numeri

cal solution of the one-dimensional gasdynamic equations in La

grangian coordinates. The principle of Von Neumann and Richtmyer 

centered on the description of a moving shock wave. However, as 

51 
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Rusanov (40) noted, Lagrangian coordinates are only convenient in 

one-dimensional problems. In multi-dimensional problems the 

Lagrangian coordinate system is so complex that there is seldom any 

doubt of the superiority of the Eulerian approach. Furthermore, 

Rusanov pointed out that, not only are the Lagrangian coordinates 

useless, but their use predicts unnecessarily distorted flow fields 

when applied to a numerical method. 

In order to apply Von Neumann's scheme of artifical viscosity 

(which will be discussed below), the Rusanov method considers the 

differential conservation equations to be expressed as one matrix dif-

ferential equation of the form: 

of + oFr + oFZ + 1f = O 
ot or oz r 

where, for the equations developed above, the dependent matrix 

variables have the form: 

p 
pu 
pv 

pv 
puv + ( pu) 1v 1 ·---
ov2 +p + (pv)'v' 

(3-1) 

f = ph -p 
0 

Fr= pvh +(pv) 1h 1 +u(pv)'u' +v(pv)'v' 
0 

pwi 

pu 
pu2 + p + (pu)'u1 

Fz = pvu + (pv)'u' 

ovw. + ( pv)' w! 
' 1 1 

puh + (pu) 1h' + u(pu)'u' + v(pu)'v' 
0 

puw. + ( ou) 1 w.1 
1 . 1 

(3-2) 



* = 

pV 
puy + (p"n)'v' 
pv2 + (pv)'v 1 

puh0 + (pu) 1h' + u(-pu)'u' + v(pu)'v' 
puw i + ( pv) ' wi' 
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In the above equations, in addition to the assumptions made' in Chapter 

II, second order correlations of the form p'u1" and third order correlations 

of the form p'u'v' have been neglected. This permitted pu v to be 

evaluated asp u v and transformed terms of the form (p,u)'v' (called 

"Reynolds stresses" above) into the more usual form p u 1v 1 thus main ... 

taining consistency in the use of pe:m., It should also be recalled from 

the discussion of Chapter II, that the terms in equations (3-2) which rep-

resent turbulent transport of enthalpy and specie (which appear in the 

last two elements of each matrix with the exception of the f matrix) are 

expressed in terms of mean flow quantities always by equations (2-30). 

The terms in equation (3-3) which represent turbulent shear stresses 

are alternately expressed by equations (2-17), (2-19) and (2-20) (Case I) 

or by equations (2-18), (2-19) and (2-20) (Case II). The eddy viscosity 

was listed as equation (2-27). 

While a rigorous demonstration that all finite-difference 

forms of equations (3-1) are unstable has not been presented, pre-

vious finite-difference attempts have not been successful. Conse-

quently, addition terms have been added to equation (3-1) such that 

the stability of the resulting finite-difference equation might be en-

forced. The form of these additional terms, and the associated con-

ditions imposed upon them, is precisely the significance of Von 

Neumann and Richtmyer's work. The Eulerian counterpart of this 
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modification, presented by Rusanov, assum.es the form, in axisym-

metric coordinates: 

?I [ c\hl +- B-
~z ?.lz 

( 3-3) 

The coefficients A and B are determined from stability considerations. 

Specifically, A and B must be of such a nature that (see Reference 34 

and 43): 

1. the modified conservation equations result in solutions 

without discontinutities, 

2. the thickness of discontinuities must be of the order of the 

spatial distances between node points, 

3. the effect of the terms containing A and B rn.ust be negligible 

outside of regions of sharp discontinuities, and 

4. the Rankine-Hugoniot equations must hold across shock 

layers, should shock waves exist in the flow field. 

In this work a discontinuity of specie concentration, such as exists at 

the exit of the concentric nozzles (see Figure 3), was considered 

analogous to the property discontinuities which result across a shock 

wave. 

With the supposition of the modified conservation differential 

equations (equation (3-3)), application is implemented by a finite-

differencing of equation (3-3). To accomplish this finite-differencing, 
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a forward difference is used for the time derivative and centered dif

ferences are employed for all space derivatives (see References 43 

and 44 for. an illustration of this differencing), 

Before presenting the result of this differencing scheme, some 

qualifying and clarifying remarks are in order, The very fact that a 

finite-difference approximation is made connotes the idea that a flow 

field will be described by a discrete number of points, or nodes, 

rather than a determination of the values of the flow variables at any 

arbitrary point. Each point will be identified by a pair of numbers 

(m, .t) such that the radial location is determined by r = (m- l)Ar and 

the axial location by z = (.t- l)Az where Ar and Az are the radial and 

axial distances between node points respectively (see Figure 4), 

Notice that the centerline is described by m = l and the upstream 

boundary by I, = l. The number of steps in time is given by the super

script n, 

The above description of the finite differencing scheme refers 

to a field point, that is, a point interior to the boundaries, Further

more, the. stability requirements presented below were determined 

from an analysis of the field point finite difference scheme. The last 

point of note concerns some of the elements if Fr, Fz, and '1' 

matrices, If substitution is made for turbulent transport quantities in 

accordance with equations (2-17) through (2-20), it will be observed 

that derivatives which themselves must be finite differences, are con

tained in these matrices. The scheme for this finite differencing does 
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not follow the rule outlined above. 

If, then, a field point is considered and the differencing 

scheme that was outlined above is employed, the finite difference ap-

proximation of equation (3-3), which represents all the conservation 

principles, is: 

Kr n l n 
-(m-1) '!' + 2(m-l) [(m-l/Z)a.m+l/2, J, 

( 3-4) 

(11 -fn ) - (m-3/2)a.n (11 -11 )] 
m+l, J, m, J, m-1/2, J, m, J, m-1, J, · 

where: 

K 
.6.t 

K 
.6. t 

- .6.r - .6.z r z 
(3-5) 

2A.6.t 
f3 

2 B.6.t 
a. = (.6.r)a = (.6.z)a 

I I 

In the application of equation (3-4), as well as all following 

equations, information was only known at node points. Consequently, 

information at the "half-spaces" could only be gotten from adjacent 

nodes. In the above equation, a. and f3 were determined at the half-

spaces by averaging their respective values at adjacent node points. 

Because Fr, Fz, and'!' themselves contain derivatives, con-

sideration must be given to the technique that was employed for the 

differencing of these derivatives. In general, the differencing 



58 

scheme was so devised that only the eight points surrounding the 

point (m, .t) (see Figure 4) were used for field points, This overall 

plan was implemented by recognizing that four types of second deriva-

tives may appear: 

0 
' or (3-6) 

where s and t are generalized variables. The variable s may pos-

sibly represent: oe: , pe:m/Prt' pe /Sc . ; and the variable t may 
m m. t, 1 

possibly represent: u, v, h, w .• 
1 

It should be recognized that those terms which appear in (3-6) 

and whose outside derivative is 0: are associated with Fr only, and 

those terms, whose outside derivative is 0:, are associated with Fz 

only; the '¥ matrix contains only first derivatives. Each term may be 

differenced in the following manner: 

1 [ -- 2s (t -t )/Ar 
2(6r) m+l I 2, .t m+l, J m, _e, 

'------------------- ~----------------'/ v 
contained in Fr 1 m+ 'J. 

'-----------------.. r--------------J/ v 
contained in Fr 1 m-· '.t 

(3-7) 



1 
..6.z 

1 lzs (t -t )/..6.z 
2(..6.z) L m,t+l/2 m,t+l m,£-1 

contained in Fz 1 m, t+ 

-Zs (t -t ) I .t."J 
m, J., - 1 I 2 m, t m, t -1 .J 

contained in Fz 1 m, J.,-

s~) -(s~) ~ 
-

m+l, l m-1, J ?lz ?lz 

1 Is (t -t )/2..6.z 
2..6.r l__:m+l, R, m+l, J.,+l m+l, t-1 

contained in Fr 1 m+ 'R, 

-s (t -t ) I 2.t.J 
m-1,P m-1,.t+l m-1,t-1 J 

contained in Fr 1 m- 'R, 
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( 3-8) 

(3-9) 
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- 1- Is (t -t ) I 2D.r 
2D.z L m, £+1 m+l, .t+l m-1, .t+l 

' / v 
contained in Fz (3-10) 

m, ~+l 

-s (t -t )/2D.-:i 
m,1,-l ·m+l,.t-1 m-1,.t-l J 
' / '/ 

contained in f z 1 m, t.-

The 2 1 s that have been inserted in equations ( 3-7) and (3-8) are for the 

purpose of maintaining consistency with the derivation of equation 

(3-4). 

In the development of above system of equations, an attempt 

has been made to avoid the necessity of determining information at the 

half-spaces. This was done for computer programming convenience. 

Moreover, it was desired in this work to use only the eight surround-

I ' 
ing nodes for the evaluation of a property at a central node (the down-

stream and centerline boundaries are exceptions). Further, where 

half-space information was required, all involved properties were 

first determined at the half-spaces by a linear interpretation and then 

the required combination of these was evaluated. 

The procedures presented above were followed consistently for 

both the Case I and the Case II studies. 
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Stability Requirements 

In the finite difference approximation (equation (3-4)) to the 

modified gasdynamic conservation equations (equation (3-3)), the 

variables an and 13n n were used in place of the coefficients A and 
m, J. m, x, 

B which were introduced in equation (3-3), Further, it should be 

noted that, in equation (3-4), it is implied by the subscript notation 

that both a and 13 are a function of location. This should certainly be 

expected by the very nature of the restrictions applied to A and B, and 

consequently, to a and 13 respectively. Moreover, since application 

utilizes equation ( 3-4), rather than develop stability relationships for 

A and B directly, expressions for a and 13 have been developed, In 

this section only a brief outline of the stability analysis technique and 

the results of the stability analysis will be presented. See References 

43 and 44 for the detailed discussion and development of the expres-

sions presented below. 

One of the most common techniques employed in stability 

analysis of finite difference approximations to differential equations is 

a method which is attributed to Von Neumann and discussed in 

Reference 65. The stability scheme consists of assuming that, at 

some time step, the numerical value of a dependent variable that is 

calculated by use of the finite difference equation is different from the 

exact value which applies to the finite difference equations. This er-

ror is due to the practical limitations in evaluating any algebraic 
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equation. Instability results when, because of the nature of the finite 

difference scheme, these errors are permitted to grow with succes

sive calculations. Von Neumann's stability analysis describes the 

production of an error as a perturbation of the mean value, The per

turbation is then expanded in to a Fourier series, For stability, it is 

subsequently required that each term, at least, remain bounded but 

preferably, diminish with successive calculations. 

Quite obviously, the mechanics of this analysis are dependent, 

ultimately, on the form of the approximated differential equation. 

Casual inspection indicates that the gasdynamic equations are non

linear, and, as Richtmyer (39) has mentioned, there exists no rigor

ous analysis of stability for this fir st order nonlinear system of equa

tions. The Von Neumann scheme which was outlined above, attacks a 

nonlinear system by applying the method to small regions so that the 

coefficients may be approximated by constants. 

Rusanov (40) applied the Von Neumann stability analysis to the 

finite difference scheme presented in equations (3-4). The elements 

off, Fr, Fz, and 1l:' where those that apply to a two-dimensional 

inviscid flow, Walker (43) performed a stability analysis to a system 

of equations that were assumed to represent turbulent flow. He found 

that the incorporation of viscosity, albeit eddy viscosity, tended to 

relax the stability requirements so that a closer approximation (than 

is permitted by the inviscid stability requirements) to the correct 



flow equations ( equation ( 3-1)) by the modified flow equations 

( equations ( 3-3)) could be achieved. 
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At this juncture mention of a peculiarity of equation ( 3-3) is in 

order. If, for the moment, one considers the matrices in equation 

(3-1) to have only the elements that would produce the inviscid gas

dynamic equations, then equation (3-3) has a form similar to the 

viscous gasdynamic equations (especially when consideration is limi

ted to only the momentum equations). The addition of the terms on 

the right hand side of equation ( 3-3) has, therefore, the mathematical 

effect of adding an additional viscosity (an "artificial" or "pseudo" 

viscosity) to the gasdynamic equations. Consequently, it is not sur

prising that the incorporation of real viscosity ( of the turbulent or 

laminar variety) relaxes the stability requirements defining the 

artificial viscosity. Of course, since turbulent shear stresses are 

much greater than laminar shear stresses, it should be anticipated 

that the relaxation of stability requirements will be greater in an 

analysis of turbulent flows than in an analysis of laminar flows. 

Although Walker (43) performed a stability analysis which 

included turbulent viscosity, because of the immense complexity of 

the mathematics involved, he did not arrive at a definitive expres

sion for the stability requirements for the turbulent conservation 

equations. In the analysis considered here, the stability require

ments which are applicable to the inviscid gasdynamic equations 

(derived by Rusanov (40) and also by Walker (43)) were employed. 
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It was, however, recognized that the stability requirements for the 

inviscid gasdynamic equations could be relaxed and still achieve a 

stable s elution. In fact, under this condition, a closer approximation 

of reality should be achieved, as will be observed below. 

With the application of the Von Neumann linear stability 

analysis for the inviscid gasdynamic equations, Rusanov (40), and 

eventually Walker (43), developed expressions for an and f3n 
m, e m., e 

of the form: 

where 

n 
a 

m, !., 

f3n 
m, 1, 

n = wK(V +c) n sin2 ')( 
m, x, 

(3-11) 

K = [K2 + K2 l1f 2 (3-12) r z -

V = [u2 + v 2 ] 1 / 2 (3-13) 

and ')( is the angle defined in Figure 4. The parameter tU has been 

termed the "damping parameter" and it is also obtained from 

stability considerations. Specifically, if the "Courant" number is de-

fined by: 

-n n 
am, 1., = K(V + c)m, R,, 

stability requires that: 

Further, with the notation that CT represents the maximum 
0 

(3-14) 

(3-15) 
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allowable Courant num.ber, the damping parameter, W, must satisfy 

the inequality: 

( 3-16) 

The definition of <J also permits the determination of K, which, in 
0 

essence, determines the time step .6.t: 

(J 
0 

K = (V+c) 
max 

( 3-17) 

That K determines the time step may be seen by consideration of its 

definition: 
1/a 

[ (.6. r )2 + (.6. z )21 
K = [K~ + K! Jl/a = (.6.r) (.6.z) .6.t (3-18) 

Normally, the mesh spacing, which defines .6.r and .6.z, may be con-

sidered known. Moreover, once K, and consequently the time step 

.6.t, has been determined, K and K are also defined. With the con-
r z 

sideration of X defined in Figure 4 and equation (3-18), K and K 
r z 

may be evaluated by: 

K = K sin X 
r 

K = K cos X 
z 

( 3-19) 

The calculation procedure, then, consists of chasing a value of 

of a and w in correspondence with equation ( 3-16). The parameter 
0 

cr can be chosen rather arbitrarily ( except that it must be less than 
0 

1. However, because the cr selection determines the time step, 
0 
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consideration must be given to the number of time steps (and, con-

sequently, computer run time) necessary for any fixed time interval 

under investigation. Certainly, the mesh is bound up in these con-

siderations. Although a coarser grid spacing will permit a larger 

time step, in accordance with stability requirements, the solution 

that results will be less accurate than that which would result from a 

smaller grid spacing. 

Once cr is selected, an w that satisfies the inequality (3-16) 
0 

is selected; at least, this is the requirement for an inviscid fluid cal-

culation. Since, in general, as UJ is permitted to approach zero, 

equation (3-3) better approximates equation (3-1) and a numerical 

solution better approximates reality, the smallest possible w is de-

sirable. Consequently, in this work, m was selected considerably 

lower than the inequality ( 3-16) would permit. 

With the selection of cr and w, the stability requirements for 
0 

each time step are satisfied by evaluating K in accordance with 

equation ( 3-17) where (V + c) is the maximum value of (V + c) in 
max 

the most recent time plane. The parameters K and K are evalu-
r z 

ated in accordance with equations ( 3-19), and since the entire flow 

field is initially defined at the start of any calculation, the first time 

step off er s no difficulty. 
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Centerline Equations 

To develop the equations necessary for the determination of 

the centerline values of the dependent variables, a "control volume" 

was imagined to surround an arbitrary centerline node. The integral 

conservation .equations were then applied to this node (much the same 

way the differential equations are normally derived). Since the 

centerline was considered an axis of symmetry, the radial conser

vation equation was not considered. 

In general, the properties at the node in the control volume 

were assumed to represent the average of the control volume and 

fluxes across the boundaries of the control volume were evaluated by 

taking the averaged value of the two adjacent points on either side of 

the control volume surface. Further, the convention that all gra

dients are positive was adopted for evaluation of all turbulent trans

port terms in the derivations presented below. 

Continuity Equation 

Figure 5 depicts the assumed control volume and indicates 

the assumed positive directions for the velocities. These assump

tions will be maintained in this and subsequent derivations in this 

chapter. 

The integral equation which describes the conservation of 

mass is: 
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dd f pdV + J p V dA = 0 
t s n s 

c.v. c.s. 

This was approximated by: 

Rearrangement produced: 

Axial Momentum Equation 

- ( pu) 1, 1, + ( pu) 1, 1, - I 1 
2~z 

A- ( rw) 2 n + ( ov) 1 p 
+ (2~ ~z)t , x, 2~r , ,, 
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(3-20) 

(3-21) 

n 

J = 0 

( 3-22) 

The conservation of axial momentum was accomplished by an 

approximate satisfaction of the equation: 

r: F = -2.. J o u d V + f r u Vnd As z dt . s 
(3-23) 

c.v. c.s. 

where 

'.EF = -f pn· i dA + j~ · i dA 
z z s z s 

( 3-24) 
c.s. c.s. 

where n is a unit outward pointing normal to the control surface and 

i is a unit vector which points in the positive z-direction. The evalu
z 

~tion of the above force integrals was accomplished in the following 

manner (see Figure 6): 

-f pn. i dA 
c. s. z s 

(3-25) 
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.,. + .,. 
" 2 I( z z\ ' n + I ( z z) 1, .11 J - ..,....dA ,...,t..:,.r )v )v 

.,.. 1 =--
z s 4 2 

c. s. 
.,. + .,. 

( z z) l II I ( z z) I II n ,x.,- ,x,l 
2 

( 3- 26) 

.,. + .,. 
b,. ( zz) 2 t ( zz) 1 n 

+(2ir-f b,.z)[ ' 2 ,t] 

The flux integral and the storage integral were approximated: 

bi.r?. (pu~)l t+l + (pua)l II 

+ ( 7r-4 ) [ ' 2 ' )(; (3-27) 

(pu2 ) + (pu2 ) n 
l,l-1 l,J,J 

2 

( puv) + ( puv) 1 11 n 
( 2 b,.r b,. r. 2' i, ')v 1 + ir T z) · 2 -

where v l, t was eventually set to equal zero. 

Combination and rearrangement led to: 

K n 
n+l _ n 2 ~ ( 2) 

(pu)l, 1, - (pu)l, ,.,- 2 [(pu )1, t+l - pu 1, .t-1 1 

n 

- 2K r [ ( puv) 2, i, l 

n 
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K 
z 

+ -2 r{'l" ) -('!" ) 1 (2-28) .. zz zz 
1, 1,+l 1, R,-1 

n 

+ 2K (T ) 
r zr 2, t 

The numerical expansions of the turbulent stress terms for a 

general centerline node and end nodes on the centerline are presented 
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in Appendix C. However, suffice it to say at this point that these 

stresses were assumed to be of the form: 

OU 
'T = pe: -

zz mrlz 
( 3-29) 

OU .,. = p e: -:;-
zr m or 

Energy Equation 

The form of the integral energy that was employed is: 

dd f p(e + 2
1 V 2 ) d V + f p{h + 2

1 V 2 ) V dA = fq11 dA +fw11 dA {3-30) 
t s n s n s s 

C, V, C, S, C, S, 

where q' 1 represents the energy transported into the control surface 

by turbulent motion, Here q 11 was evaluated via the assumption: 

q" 
n 

(3-31) 

where n is a direction perpendicular to the surface of the control 

volume. 

The work per unit area is denoted by w'' and it accounts for 

the work effect of the turbulent stresses. See Figure 7 for depiction 

of addition assumptions. 

The evaluation of the q 11 and w 11 integrals was as follows: 

f q" dA s 
c. s. 

2 q'1', •+I + q'i'. II = (,/~: ) [ x, 2 • x, 

n 
[q" + q" 1 

2, J., I, J., 

q'' + q'' l,J., l,J.,-1 1 

n 

2 
{3-32) 
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J Ara ('T' u) 1 fl + ( 'T u) 1 II 1 = [ zz ' x, zz , . .x., -
w" d.A.s = (ir4 ) 2 

(,. u) 1 II + (,. u) 1 " 1 n zz , .x., zz , ,fl+ l 
2 .. 

c. s. 
(T u) + ( '!" u) n 

+ (2,r~t ~z) [ zr 1, J, 2 zr 2, J, l 

A a 1 ( .,- v) 2 fl 1 + (,. v) 2 n 
( _f.-l._r_) [- rz , ;,.,- rz , x, 

+ ,r 4 4 2 (3-33) 

1 (,. v) 2 fl 1 + ( 'T v) 2 fl n _ rz , x,+ rz , ;,., l 
4 2 

A r ( 'T v) 1 fl + ( 'T v) 2 n n = ) [ rr , x, rr , x, J 
+(2,rz~z 2 

In equations ( 3-34) and (3-35) it has been assumed that radial deriva-

tives evaluated at the axis are zero as well as is the radial velocity 

at the axis. 

The storage and flux integrals were evaluated in a manner 

exactly analogous to the way that the similar flux and storage inte-

grals in axial conservation of momentum equation and the continuity 

equation were evaluated. The final form of the energy equation that 

was employed for centerline calculations in this work is: 

1 n+l 1 n Kz 1 
r p ( e + - ya ) 1 = [ p ( e + -2 Y 2)] - - { [ 0 (h + - ya ) u J - 2 -·1,1, l,J, 2 · 2 1,£+1 

n II n . (3-34) 

+ 2K (q ) 2 II r r , YJ 

K n n 

+ / [(Tzzu)l, .t+l- ('T zzu)l, £-1] + 2Kr('T zru)2, £ 
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In addition to the forms of the turbulent transport expres-

sions presented in equations (3-29) and (3-31) the following additional 

assumptions were made: 

'?Iv ,. = pe -
rr m cir 

(3-35) 
'?Iv ,. = pe -

rz m clz 

The numerical expansions of these expressions, as well as 

equation (3-31), will also be presented in Appendix C. 

Specie Conservation Equation 

Finally, the satisfaction of the specie conservation require-

ment was achieved by a numerical approximation of the integral con-

servation of specie equation: 

ddt f pw.d v + J pw .v dA 
1 s 1 n s 

= fn . dA 
n1 s 

(3-36) 
c.v. c.s. c. s. 

where D ni represents the flux of specie i in the n-direction due to 

turbulent transport processes. See Figure 8 for the assumed direc-

tions of D . which correspond to the assumption that D . may be 
n1 n1 

evaluated by: 

pe '?lw. 
D = ___!!!; i 

ni Set . on 
' 1 

(3-37) 
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The integral equation (3-36) was approximated by: 

n+l n 
~r2 (pwi)l,t-(pwi)l,J, ~ra n 

(ir4 ~z) -6,t + ((,r 4 ) ( puw i) I, t+l/ 2 - (put\P, t-1 / 2] 

~r n 
+ (2ir2 ~)[(pvwi) 1/2, e,J = 

n (3-38) 

(D .) + (D .) n 
+( 2,r~t~z)[ r12,t 2 r1I,t 1 · 

which,, after rearrangement, produced: 

K n 

(pu,i)~, t = (pwi>~, t --f [( puw) I, t+I -( puwi) 1, t-1 1 - 2Kr( pvwi>;, t 

K n 

+ T [(D zi) I, t+l -(D zi) l,J, -I J 
n 

+ 2K (D ·>2 , r rt , x., 

( 3-39) 

See Appendix C for a delineation of the numerical expansions em-

ployed for D . and D .. 
Zt rt 

Top Boundary Conditions 

As was pointed out in Chapter II, it was assumed that the top 

boundary was sufficiently removed from the mixing region to permit 

the boundary defining condition that the radial gradients of all depend-

ent variables are zero, equation (2-28). In the numerical sense, this 

was accomplished by assigning to the dependent variables at the top 

line of nodes the value that was calculated for the dependent 

variables at the nodes which are one line below the top. That is, 
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if M represents the maximum number of radial nodes, it was 

assumed that: 

u = u M, J, M-1, J, 

v =v 
M, J, M-1, J, (3-40) 

p = p M,J, M-1,J, 

etc. 

Downstream Boundary Numerical Equations 

At the downstream boundary no particularly restrictive as-

sumptions were employed since the flow was supersonic. Instead, 

calculations were performed in a manner similar to the field point 

calculations. However, rather than employ a central difference 

scheme for the axial derivatives in equation (3-3), a backward dif-

ference technique was used. This resulted in a finite difference 

approximation to equation (3-3) of the form: 

K n K n 
11+I = 11 _ _! [Fr -Fr ] _2rpz -Fz 1 
m, J, m, J, 2 m+l, 1, m-1; J, 2 · m, J, m, 1,-I·· 

Kr n 1 n fl f1 
- (m-1) 'I'm, J, + 2(m-l)[(m-l/Z) a.m+l/2, J,( m+l, ,,- m, J,) 

- f3 (11 _fl > J 
m, J,- 3 I 2 m, J,- 1 m, J,- 2 

(3-41) 



79 

where, of course, J, has its maximum value; that is, this equation 

applies to the last column of the mesh field {see Figure 3). 

Here, again, consideration had to be given to the manner in 

which the derivatives contained in Fr, Fz, and'!:' were to be evalu-

ated. Any radial derivatives in Fr were finite differenced by follow-

ing the scheme presented in equation (3-7). Any axial derivatives in 

the Fr were finite differenced by employing a backward difference. 

With the use of the nomenclature described above, this differencing 

scheme has the form: 

0 [ rl.t 1 1 [ ) I 6 
or _s oz··~ 26r 2sm+l/2, J,(tm+l/2, ,,-tm+l/2, .t-1 z 

(3-42) 
-2s (t -t )6zl 

m-1/2, I, m-1/2, J, m-1/Z, J,-1 ·· 

where, again, the 21 s within the brackets have been inserted for dif-

ferencing consistency. 

Any radial derivatives in Fz were handled in a manner 

similar to equation ( 3-10) where centered radial differences were 

taken across two mesh spacing. For the downstream boundary! 

(3-43) 
-2s (t -t )/26r] 

m, L-1 m+l, L-1 m-1, J,-1 

and any axial derivatives in Fz were approximated by: 

a at 1 
- [s-] ~--[Zs (t -t )/Az 
oz · oz 26z m, J.,-1/2 m, J., m, J.,-1 

-Zs n 3/Z(t n 1-t n z)/6z] m, x,- m, x,- m, x,-
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The radial derivatives in 'l' were approximated by a centered 

difference across two mesh spacings and any coefficients of the 

derivatives were evaluated at the center node of the centered dif-

ference. The axial derivatives in '!.' were differenced by a backward 

difference over one mesh spacing and derivative coefficients were 

taken as averages between the two nodes used for the differencing. 

Computational Scheme 

After all flow variables were defined at every node point, the 

maxim.um value of (V+c) was determined by checking each node. 

Then, equation ( 3-17) was used to calculate K since cr was specified 
0 

at the start of the program. Next, K and K were calculated by 
r z 

equations (3-19). With the use of equations (3-2}, (3-4), and (3-11), 

together with the second derivative finite difference forms, equations 

(3-7) through (3-10), all flow variables for each field point (i.e., not 

on a boundary) were calculated. The top boundary flow variables 

were determined by equations of the form expressed by equations 

(3-40). Centerline properties were calculated by using equations 

(3-22), (3-28), (3-34), and (3-39) together with the finite difference 

expressions for the turbulent transport fluxes which are presented in 

Appendix C. The centerline radial velocity was defined to be zero. 

The downstream boundary was calculated by equations (3-2), (3-11), 



and (3-41) together with the finite difference expressions for the 

turbulent transport fluxes -- equations (3-42) through (3-44). 
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Once all flow variables for all nodes had been calculated, the 

n+l time step variables were redefined as the n time step variables 

and the calculation process repeated. 



CHAPTER IV 

THE RESULTS OF THE NUMERICAL METHOD AND 

COMPARISONS WITH EXPERIMENTAL DATA 

Since the relative merit of any analysis may be gauged only 

after solutions produced via the proposed rn.ethod have been compared 

with appropriate data, such a comparison was made a part of this 

work. Moreover, to test thoroughly the method, ideally it would 

have been desirable to consider cases which were as general in 

nature as the assumptions inherent in the method would permit. 

With regard to the analytic development in the two previous chapters, 

this would require consideration of axisymmetric, non-constant 

pressure, non-isoenergetic, nonreactive, perfect gas, multispecie, 

turbulent jet mixing. However, such considerations would also re

quire comparable accurate experimental data; but, extensive review 

of the literature revealed no such data even approaching the gener

ality desired, In fact, only constant pressure mixing studies have 

been reported with any detail (24), ( 32), (56), (58) for two species. 

Further, in the area of constant pressure jet mixing, in those cases 

where differing stagnation temperatures existed, no flow field 

temperature measurements have been reported. As a consequence 

82 



of these considerations, interest was restricted to a constant pres

sure, multispecie turbulent jet mixing case, 

The Experimental Data 

83 

The data from one of the cases reported in Reference 24 was 

used for comparison purposes. This experiment consisted of a 

central axisymmetric jet of carbon dioxide and a circumferential iet 

of air, both of which flowed in the same direction ( see Figure 2). 

Both streams had a stagnation temperature of 675 degrees Rankine 

(which was measured by thermocouples in the respective plenum 

chambers). The exit Mach numbers were 1. 47 and I. 62 for the car

bon dioxide and air jets respectively. A static pressure was repor

ted to 5. 5 psia; however the location and technique for the determina

tion of this quantity is riot discussed in the reference. Further, the 

reference made no mention of any experimental checks to determine 

if, indeed, the pressure was constant throughout the entire investi

gated flow field. Mass flow measurements of each stream were 

made (although this information was not incorporated in the report) 

and, the reference indicated that the nozzles for each stream were 

calibrated so that this could have been the means by which the static 

pressure was determined. At any rate, the discussion in Reference 

24 appears to indicate that the static pressure was assumed to be 

constant. 
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The major effort in the experimental investigation was the 

determination of radial profiles of the stagnation pres sure and C02 

concentration in the potential core region. Three axial locations of 

the flow field were probed and these locations are shown in Figure 9. 

The stagnation pres sure radial profiles were obtained by using a 

motorized rake so that the pi tot tubes could be moved without inter-

ruption of a particular run. The data itself were obtained by using a 

' 
Statham temperature-compensated strain gauge transducer; the out-

put from the transducer was continuously recorded. By these means, 

as Forde notes, a continuous profile of total pressure could be 

obtained. Forde also points out that the total pressure measure-

ments displayed axial symmetry so that measurements from both 

sides could be used to develop the total pressure radial profiles, 

See Figure 10 for a reproduction of the p /p radial profiles presented 
0 

in Reference 24. Forde also indicates that temperature measure-

ments were made by using thermocouples but the readings that were 

obtained were largely unusable and consequently were not reported. 

Concentration measurements {obtained at the same axial 

locations as the total pressures) were obtained by employing a samp-

ling rake. Each probe on the rake was connected by flexible tubing 

to a sampling bottle. The separation of the species in the sampling 

bottles was achieved by gas-solid chromatography, and only those 

results which were repeatable were used in the report. Since 
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sampling rakes were used, only a discrete number of data points 

could be obtained and Reference 24 displays only six such measure-

ments in the half jet. This data has been reproduced and is presen-

ted in Figure 11. 

These two variables, p /p and w represent the information 
O co2 

generally gleaned from experiment and they incorporate as little 

reduction of the raw data as is possible. This latter point is impor-

tant since errors in data reduction of the raw data to reported data 

could lead to fallacious conclusions when compared to results of this 

study. Therefore, any discrepancies between the experimental data 

of Reference 24 and the results determined by the above theories 

must arise from inabilities of the above theories to describe turbulent 

jet mixing, incorrect modeling of the experiment to which the data 

apply, experimental error, or some combination of these. 

Notwithstanding the questionability of the above described 

data, no better data appeared to be in the offing at the initiation of 

this investigation. Generally, that data on constant pressure, axi-

symmetric, turbulent jet mixing which was available in the literature 

fell into one of two categories depending on whether the experimen-

tation concerned (1) the potential core, or (2) the main region of 

mixing (see Figure 3). With the addition of the restriction that con-

sideration had to involve mixing of different gases, the number of 

reported data sets available in the literature was further diminished. 
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In fact, there appeared to be only two other sources of experimental 

data (References 56 and 59) for constant pressure, multispecie, 

turbulent jet mixing. Both of these references were concerned with 

the main region of mixing. Moreover, it was this very deficiency of 

experimental data for the potential core region which led both Forde 

(24) and Boehman (58) to perform experiments in this flow regime. 

(Boehman' s results only became available at the conclusion of this 

investigation. ) 

In the two references that are concerned with the main region 

of mixing, both raw and reduced data for the radial profiles of, 

variously, velocity, concentration, or pressure at several axial 

locations are presented. To model numerically any one of the experi

mental cases presented in either of these two references, detailed 

information for the upstream boundary for a system of nodes would 

be necessary. While the most upstream axial location for which ex

perimental data is presented might be considered the upstream 

boundary of the nodal system, the gleaning of the detailed information 

necessary would be extremely difficult and, at best, probably a poor 

approximation of reality for several reasons. Perhaps the most 

severe consideration concerns the num.ber of data points for any 

ra-dial profile at any axial location. In Reference 59 only five data 

points are used and Reference 56 used, at most, nine data points to 

define a radial profile (the numerical method typically employed 
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thirty-two radial nodal points at every axial location). Furthermore, 

because of the nature of the quantities that are typically measured, it 

is only possible to determine with any precision the axial velocity, 

the concentrations, and the density (if the assumptions of constant T 
0 

and p are momentarily accepted). This, however, is not sufficient 

information for the numerical method since the radial velocity (albeit 

is small) must also be known. To obtain the radial velocity, re

course would have to be made to the continuity equation; here, again, 

the deficiency of experimental data points would severely hamper the 

determination of the radial velocity, with any accuracy, at the large 

number of nodal points which the numerical method employs. 

This lack of data points appears to be due, in part, to the dif

ficulty of performing large scale experiments. In Reference 59, the 

inner jet radius was approximately O. 3 inch and, in Reference 56, 

the inner jet radius :was approximately 0. 7 inch. In this latt.er 

reference, the outside diameter of the sampling probe was approxi

mately ten percent of the inner jet radius. 

The constancy of the static pressure and the stagnation 

temperature was not considered to any great extent in References 56 

and 59. Of course, it rnust be admitted that these constant value 

assum.ptions are probably not bad in the main region of mixing. 

Reference 56 measured the wall static pressure and found it to be 

essentially constant and i:p.ferred that it was constant everywhere. 
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Also, since the velocity differences were not great, and the plenum 

chamber temperatures were reported to be equal, the assumption of 

constant T was probably adequate. Moreover, the axial velocity and 
0 

concentration profiles look reasonable. However, the axial velocity 

profiles which result from the reduction of the data in Reference 59, 

with the assumption of constant p and T are highly distorted which 
0 

makes these assumptions highly suspect for the experiments presen-

ted in this reference. 

Because of the considerations delineated above in regard to 

the main region of mixing, it appeared easier to make plausible 

assumptions about the flow pattern at the nozzle exits {the upstream 

boundary of the potential core) than it would be to interpolate reason-

ably the main region experimental data for the quantities which would 

be necessary for the implementation of the analysis presented in this 

work. However,0 the process of estimating the nozzle exit conditions 

is not without its own difficulties. Since Reference 24 does not 

present the detailed upstream dimensions of the nozzles, it is impos-

sible to calculate the degree of boundary layer growth and the degree 

of flow divergence in both the inner and outer streams. Furthermore, 

while the inner jet radius is given, the outer jet radius is not {see 

Figure 9). In addition, the thickness of the wall separating the inner 

jet from the outer jet is also not indicated; presumably, it is very 

thin. Finally, since no elaboration is rn.ade concerning the static 
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pressure (and the mass fl.ow rates are not given) and no optical 

investigations were performed to check for shock waves or expansion 

fans which would indicate a disparity in exit pressure, an assumption 

which dictated the exit pressures was necessary. 

In all fairness to the experimental efforts presented above, it 

should be noted that these experiments were performed to corrobo

rate some analytic theory. While the assumptions that are necessary 

for the work presented here may seem sweeping in nature, the 

analytic methods associated with the respective experirn.ents either 

had incorporated in them these assumptions already or these assump

tions were of little significance. Nonetheless, the need still exists 

for extensive and thorough large scale experimentation in the field of 

multispecie turbulent mixing. 

Basic Considerations 

The node point arrangement for the numerical study of the 

potential core mixing region is shown in Figure 12. In all cases dis

cussed below the maximum radius of the field of node points was 

twice the central jet radius. Since two types of node point arrange

ments (that is, two different sets of grid spacings) were considered, 

each will be discussed where appropriate. 

The majority of the computations that were performed as a 

part of this thesis employed an IBM 7040. In addition, some of the 

upstream boundary conditions, as well as output plots, were 
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determined on an IBM 1620. Both of these machines were on the 

Oklahoma State University campus. 
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The analysis of any particular set of boundary and initial 

conditions by a particular combination of the above presented equa

tions generally required three computer programs. This situation 

was demanded by computer storage limitations. The first program 

simply loaded a tape with information that was pertinent to a parti

cular study. The second program performed the calculations. 

Because of time limitations it was necessary to segment the use of 

this second, or main program, into a series of short runs; at the 

beginning of each segmented run, the master tape was read. This 

tape contained only the most recent values of all the flow variables 

and other parameters necessary for further calculation. At the end 

of each segmented run of the second program, the current values of 

the quantities necessary for future calculations were written on the 

master tape. Each segmented run could be ended either by the de

pression of a sense switch on the computer console or by the program 

reaching a preassigned time step number, see Appendix E. 

The third program read the master tape and printed on paper 

and punched on cards values of the calculated variables. The card 

data was used for plotting, using the IBM 1620. 

In the course of the investigation presented here, it was dis

covered that the time required for the calculation of the entire flow 

field (that is, one time step calculation) was very sensitive to the 
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main program logic. Initially, the main program took approxi-

mately 3. 5 minutes per time plane. However, with slight alterations 

of the main program logic the length of a time plane calculation was 

reduced to approximately 2. 33 minutes. Obviously, these time rates 

strongly suggested a termination of any particular run at as early a 

time as possible. Yet a steady state condition was sought. 

To determine when and if a steady state solution was reached, 

two alternate approaches were pursued (although not simultaneously). 

The first consisted of comparing plots of p /p (since these were the 
0 

most sensitive to time stepping and also were to be compared with 

experimental data) at various time intervals. If the plots of p /p at 
0 

some time in the calculation were not significantly different from 

those at some time much previous to the current time, then it was 

assumed that the steady state condition was approached. Normally, 

a time interval correspbnding to 100 to 200 time steps was used. In 

this regard, attention is directed to Figure 13. In this figure p /p 
0 

curves are presented for two different times for the axial locations 

for which the experimental data is available. The solid lines cor-

respond to a tirn.e step number of 611 and the dashed lines are for a 

time step number of 1181 -- a difference of 570. Notice that the 

only significant difference appears in the p /p curve at a z/r. of 
O J 

7. 294 (this is very near the downstream boundary of the node point 

field). However, this condition amounts to only about a 4 percent 
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change of the values at the 611 time step. Therefore, it seemed 

unreasonable to continue calculation for approximately thirty addi-

tional hours for only a four percent improvement in downstream data. 

This point was further emphasized when calculations were 

made to determine how long a particle would take to travel from the 

upstream boundary to the downstream boundary of the node point 

field. Based on the slower stream velocity (the C02 stream) and the 

normal time step increment used for each time iteration, calculations 

indicate that 558 time steps would be required. Further, if the effect 

of the speed of sound is included in the calculations, only 363 itera-

tions should be necessary for upstream influences to be signaled at 

the downstream boundary. 

Before pursuing the discussion of the results of the numerical 

investigation, one final point needs to be made. This point is also 

emphasized i:p. Figure 13. While the p /p curves for z/r. location of 
O J 

7. 294 appears to be noticeably different, the difference is only of the 

order of 4 percent. Consequently, attention must be given to the ex-

panded scale values for interpretation of the following figures. 

As outlined in the 11 Experimental Data" section of this chapter, 

upstream boundary data were meager. This necessitated some 

fundamental assumptions regarding this boundary. In order to deter-

mine input conditions, it was assumed that the nozzle exit pressures 

of both streams were equal and had a value of 5. 5 psia. Further, the 
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respective Mach numbers, together with the given stagnation tern-

peratures, were used to determine the exit flow conditions. -With the 

assumption of a semi-perfect gas (i.e., a gas that obeys the perfect 

gas equation but has variable specific heats), the exit conditions 

were determined as: 

Primary Stream (C02 ) 

M = 1. 47 
T = 675°R. 

0 

T = 514. 47°R 
p = 18. 48 psia 

0 

p = 5. 5 psia 
y = 1. 28878 
R = 35. 13 lbf-ft/lbm- ° F 

u = 1272. 57 fps 
p = 0. 04382 lb /ft3 

m 

Secondary Stream (Air) 

M = 1. 62 
T = 675°R 

0 

T = 446. 99°R 
P = 23. 98 psia 

0 

p = 5. 5 psia 
y = 1. 38874 
R = 53. 3 lbf-ft/lb m- ° F 

u = 1671. 44 fps 
p = 0. 0 3 3 24 1 b / ft3 

m 

To nondimensionalize the flow variables in the manner dis-

cussed in Chapter II, the reference pressure was taken as the exit 

pres sure, 5. 5 psia, and the reference density was taken to be the 

exit density of the primary stream, 0. 04382 lb /ft3 • 
m 

In addition to the assumptions mentioned above and which 

were employed in all cases to be discussed here, it was further 

assumed that the wall, which separated the inner flow from the outer, 

or secondary flow, was of zero thickness. 

Finally, in regard to basic assumptions, for all cases pre-

sented below, the spreading rate parameter, er, was as signed the 

value of 15. 3. This value was found by Forde (24) to result in 



similar velocity profiles which were determined by the reduction of 

experimental data. Also, in accordance with a suggestion from 

Walker (43), in all computer runs, the maximum allowable Courant 

number, a , was given the value of 0. 5. Basically, the selection of 
0 

the value of a is a compromise between the computer run time re
o 

quired and the accuracy of the results of computation. 

Numerical Results and Comparisons 

Because of the nebulous nature of the knowledge of the exit 
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conditions (in particular, the size of the exit plane boundary layers), 

a rather fruitful investigation was undertaken to ascertain the effects 

of slightly different flow conditions at the exit of the concentric 

nozzles, Generally speaking, both the size and the shape of the exit 

plane boundary layers was varied, and one case was considered with 

slightly divergent flow in both streams. Also, two different node 

arrangements were employed, Finally, the effects of varying both 

the damping parameter, lll, and the effective axial length in the eddy 

viscosity equation (2-27) were investigated. 

For all the studies described below, with the exception of one, 

which will be specifically noted, the Case I type eddy viscosity was 

employed. Also, in the discussion that follows, attention will be 

directed almost entirely to the nature of p /p which resulted from 
0 

various upstream boundary conditions. The concentration profiles 



100 

exhibited very limited dependence on the type of upstream boundary 

conditions assumed. This point will be elaborated upon in more de-

tail after the different types of upstream boundary conditions have 

been described. 

To distinguish between different various studies, each will be 

assigned a run number such as I, II, III, etc. 

Run I 

For this study, forty node points were used in the radial 

I 

direction, and thirty-three were used in the axial direction. The 

maximum radius covered by these nodes, as mentioned previously, 

was equal to two carbon dioxide jet radii, and the ratio of t::..z/t::..r 

was 4, 5. This was approximately the maximum node spacing sug-

gested by Walker (43) and extends over the region covered by the 

experimental data, The intention was to accomplish a closer spacing 

in the radial direction than in the axial direction since gradients in 

the ri!,dial direction are much steeper than those in the axial 

direction. 

The damping parameter, w. was assigned the value of 0. l 

everywhere. This value is below the value required by the stability 

analysis (equation 3-16), but since turbulent flow was being investi-

gated, it was the opinion of this author, based on the results of 

Walker (43), that this low value was adequate. 
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The free streams of the exit flows were assumed to be uni-

form (i.e. , of constant value and parallel). The boundary layers 

were assumed to be distributed over four node points for the C02 

stream and over five node points for the air stream (see Figure 14). 

Even in the boundary layers, no radial component of the velocity 

vector was assumed even though a more refined boundary layer 

analysis would indicate (as a consequence of the continuity equation) 

that these velocity components certainly do exist. 

The conditions in the boundary layers were determined by 

assuming that the velocity profiles followed the one-seventh power 

rule. The velocity at each node point was thus assumed, and the 

density was obtained by assuming the gases were perfect, the pres-

sure was constant acres s the boundary layers, and the adiabatic 

energy equation held across the boundary layer. 

Also, it might be noticed that in Figure 14, the node points 

straddle the wall between the C02 stream and the air stream. This 

scheme was devised to avoid stagnation conditions which, as Eaton 

(44) points out, are difficult to handle. This assertion was confirmed 

in preparatory work performed by this author but not reported here. 

The results of calculation for 658 time planes are shown by 

the solid lines in Figure 15. Comparison with experiment, Figure 10, 

is obviously poor, notably in the vicinity of r/r. = I. 
J 
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While the comparison at first glance looks poor, several 

aspects of these results need to be considered. First, the profile at 

z/r. = 7. 294 displays the greatest inaccuracies at both the centerline 
.J 

and at r /r. = 2. 00. Yet, at these locations the calculated values of 
J 

p /p are of the order of only five percent different from the values 
0 

indicated by experiment. Further, in the vicinity of r /r, = 1, the 
J 

"dips" in the curves are evidently due to boundary layer effects. 

However, the fact that the experimental data does not exhibit a bound-

ary layer effect is also subject to suspicion. While the extent to 

which initial boundary layer influences persist in free turbulent mix-

ing has not been, to this author I s knowledge, defined, the seemingly 

low values at the z/ r. = 7. 294 location may be attributed to boundary 
J 

layer effects, especially in view of the results of Run II discussed 

below. Moreover, it should be recalled that the initial radius of 

central jet is small, and it is possible that the pitot tube diameter 

may have been so large that these dips in the p /p curve may have 
0 

gone unnoticed. It must be admitted, however, that the results de-

picted in Figure 15 for the Run I study suggest that the assumed exit 

boundary layers were too large. 

Another difficulty was indicated by the results of this case, 

In a region several mesh lengths downstream of the point of separa-

tion (the end of the wall separating the air from the C02 stream), 
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static pressure instabilities were indicated (see Figure 16). The 

cause of this instability was attributed to the low value of u.,. Since 

the magnitude of the turbulent shear stresses is a function of z, the 

axial coordinate, which is measured from the exit plane, the equa-

tions in the region of this instability are essentially those of an 

inviscid fluid. The inviscid stability requires that an w of 0. 5 (for 

the a = 0. 5) should be used. This difficulty was rectified in Run VI. 
0 

The initial conditions for this case were such, that at every 

axial location, all radial profiles were the same as at the exit plane 

(upstream boundary of the node system). The achievement of a 

steady state condition was checked by simple comparison of the p /p 
0 

curves at various time planes as outlined above. 

At time plane 658 (at which data for Figure 15 was extracted) 

an integral check over the boundaries of the nodal system was made 

for conservation of mass, axial momentum and energy. The errors 

indicated by these conservation checks were 0. 25, 0. 32, and 0. 25 

percent respectively for mass, axial momentum, and energy. Con-

sequently, it may be concluded that the pseudo-viscous effects of the 

Rusanov method produce a negligible overall error as far as the con-

servation principles are concerned. 

Run II 

With the exception of the upstream boundary, the flow field 

variables for the entire nodal field are the same as those calculated 
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at time plane 658 for Run I. The grid spacings for this case are 

necessarily also the same as those for Run I. 
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However, two significant changes have been made. Because 

it was judged that the boundary layer sizes that were assumed in 

Run I were too large, smaller boundary layers were assumed for 

this case. In order to eliminate the instabilities in the static pres

sure in the region downstream of the point of separation, an attempt 

was made to mathematically increase the level of turbulence in this 

region. 

With respect to the boundary layers, it was assumed that one 

node point was located in each boundary layer. The velocity at each 

node point was assumed to have a magnitude equal to one-half of the 

respective free stream magnitude (see Figure 17). The densities at 

each of the node points in the respective boundary layers were calcu

lated in the same manner as in Run I. The attempt was to simulate 

the physica] no-slip condition at the wall by a simplified boundary 

layer profile. While it was admitted that this was a rather severe 

assumption in regard to the boundary layer profiles, the overriding 

purpose was to ascertain the effect of various upstream boundary 

conditions. A more realistic linear profile was assumed in Run VI. 

Moreover, a linear velocity profile assumption may be justi

fied on several bases. Results from many experiments indicate that 

the effect of initial boundary layers does not persist very far 
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downstream. Therefore, any reasonable velocity profile should 

only effect a region several radii downstream of the point of separa-

tion. From a pragmatic viewpoint, implementation of an analytic 

solution presented in Chapter V requires integrations of the boundary 

layer velocity profiles. Use of more realistic (and, consequently, 

more complicated) profiles would necessitate numerical integration; 

whereas, insertion of linear functions permits analytic integration. 

Furthermore, the numerical method utilizes only spatial average 

values so that, regardless of the actual functional relationships 

assumed for the velocity profile, a linear profile may be substituted 

in such a way that the value at the node point is equal to the average 

value of the actual function -- averaged over the region the node 

represents. 

To increase the level of turbulent stresses at the point of 

separation, the axial coordinate for the eddy viscosity, equation 

(2-27) ,was measured from a point upstream of the point of separa-

tion. In order to make a rough estimate of this shift, the distance, 

z , between the point of separation and the upstream ordinate was 
0 

determined by assuming that the boundary layer developed in a man-

ner analogous to the way similar velocity profiles II spread" in the 

free jet mixing region as predicted by the Korst theory of mixing 

(see Chapter V). That is, either boundary layer was assumed to be 

like one-half of the velocity profile for free jet mixing. The Korst 
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theory of mixing indicates that error function velocity profiles are a 

function of one variable, '!'), which is a function of both the .down-

stream coordinate and the transverse, or in this case, the radial 

coordinate. Specifically n is roughly of the form 

'!') = crAr/z . (4-1) 

For an error function velocity profile the edge of the mixing region is 

reached at an n of 3. 0. With the boundary layer size that was 

assumed for this case, the upstream coordinate shift was deter-

mined by: 

(4-2) 

Because of the node arrangement: 

E, = /).;r (4-3) 

where Ar numerical had the value of 0. 05128205. With the use of 

these expressions, z was assigned the value of 0. 52307691. It 
0 

perhaps needs to be further emphasized that this analysis was, by no 

means, intended to describe the actual boundary layer phenomena 

near the point of separation, but merely to make a rough guess at the 

value of z • 
0 

After the upstream boundary layer alterations were made, 

calculations proceed from. time plane 6 27 of Run I to time plane 

1695 (a time plane span of 1068). However, the addition of the up-

stream shift of the z ordinate in the eddy viscosity was not added until 

time plane 927 -- an oversight on the author's part. 
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The pressure ratio cur.ves at time plane 1068, m.easured 

from the start of Run II, are shown as dashed lines in Figure 15. It 

should be noted in this figure that the boundary layer effects are very 

much reduced in comparison to those of Run I. A comparison of 

these Run II pressure ratio curves with experimental data is shown 

in Figure 18. This comparison indicates only fair agreement of the 

calculated values with those of experiment. However, attention is 

directed to earlier remarks which concerned the percent of error 

indicated by curves such as those in Figure 13. At the centerline and 

the outer edge of the indicated fl.ow field, the maximum error is of 

the order of five percent. In the region of maximum turbulent shea,r, 

where the error appears to be rather large, consideration must be 

given to the degree of experiment accuracy. While this information 

was not presented in Reference 24, it is a well-known fact (Reference 

66) that pitot tubes inserted in a region where steep velocity gradients 

exist, tend to shift the measured total pressure toward the high pres-

sure values. 

In Figure 19 is shown the nondimensionalized pressure dis-

tribution at an axial location just downstream of the point of separa-

tion. As in Run I, instabilities are indicated. While it was expected 

that the assumed boundary layer velocity distributions would decrease 

the pressure in the region downstream of the point of separation, it 

was also hoped that the inclusion of z would have a stabilizing effect. 
0 
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Apparently it did not. Curiously enough, it appears that the insta

bility is symmetric. 
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There is one final note to be made. Although an instability did 

appear to exist in a small local region just downstream of the point of 

separation, examination of pressure distributions in other regions of 

the flow field for this and all other cases reported herein did not 

reveal any other instabilities. Further, because the pressure ratio 

profiles exhibit expected trends, it was concluded that the slight up

stream instabilities had little or no effect on downstream profiles. 

Run III 

With the observation that the previous numerical calculations 

indicated a greater degree of turbulent mixing than did the experi

mental data, attention was directed towards the effect of the grid 

spacing. It was the opinion of this author that, in the previous two 

cases, the turbulence effects could more easily propagate in the 

radial direction than in the axial direction due to rather large value of 

the raio of Az/Ar. To rectify this a smaller ratio of Az/Ar was 

used. This was accomplished by decreasing the number of nodes in 

the radial direction to thirty-two and increasing the number of nodes 

in the axial direction to forty-one. The ratio of Az/Ar became 2. 906. 

This sort of arrangement was dictated by two considerations .. 

The first consideration pertained to available core storage in the 

IBM 7040 computer. Approximately 1300 nodes could be 
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accommodated. Node fields bigger than herein described would 

require very time consuming data shuffling on tape units. 

The other consideration concerned the geometrical area that 

had to be covered by node field. Previous experience (Runs I and II) 

indicated that, indeed, the ratio of r /r. should at least have a 
max J 

value of two. Furthermore, the experimental data extends a distance 

of z/r. = 7. 294 downstream. The node system, therefore, had to ex
J 

tend several mesh spacings beyond this location in order to decrease 

the possible upstream influence of the downstream boundary calcula-

tion scheme, 

Under these restrictions, the axial spacing, .6.z, assumed the 

value of 0. 1875 and the radial spacing, .6.r, 0. 06451613. 

In addition to the rearrangem.ent of the node field, a modifica-

tion of the damping parameter, w, was incorporated in this study. 

Because the desire was to decrease the degree of apparent down-

stream mixing, w was assumed to have a value of 0. 1 for the first 

fifteen nodes and a value of 0. 05 for the remainder of the nodes. The 

effect of such a scheme is to decrease the mathematically effective 

viscosity for downstream locations, 

The upstream boundary was assumed to have the same dis-

tribution as those used for Run II. However, since .6.r for this study 

is slightly greater than that for Run II, the assurn.ed boundary layers 

are also slightly larger. This slight difference was felt to have 
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negligible significance. 

The initial conditions were developed in the same manner as 

was done for Run I. That is, all downstream locations were identi

cal to the upstream boundary. 

The ensuring results of calculations for the above described 

conditions are displayed as dashed lines in Figure 20. Also shown in 

this figure are the results of Run II. The results for Run II are for 

time plane 1068 and those for Run III are for time plane 1181 so that 

the comparison is at comparable time planes (after 1000 time steps 

only insignificant changes occur in less than one-hundred time 

steps). 

Since the comparison is very close, these results were 

examined with two questions in mind. First, what, if any, is the 

effect of the node rearrangement, and, second, how much did the w 

:modification influence these results? To answer these questions, the 

second question was considered first. The answer was determined by 

performing calculations for several additional tim.e steps for Run III 

and examining the order of magnitude of the terms in the finite dif

ference equations. In both the region where w = 0. 1 and the region 

where w = 0. OS, the pseudo-viscous dissipation terms were approxi

mately three orders of magnitude smaller than other significant 

terms in the finite difference equations. This led to the conclusion 

that, by decreasing the downstream value of w by one-half of its up

stream value, little, if any, effect was accomplished. 



0. 

i~~~~~~~,--~~~~~~~---,------~---, • 
2 • 
8. • 
~ / , , 

, 
/ , 

.,, ., ., 
, 

.,,. 
-- ~----........ 

'. Ai 
,,; 

, 
/ 

/ , 
--- Run 11, n=l068 

2 
~ 

l.. = 4.941 r. 
J 

z ~- =7.294 r. 
J 

---- - Run 111, n=1181 

8. . 
lf>O 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 

R/RJ 
2.00 

Figure 20. Stagnation Pressure Comparisons of Run!II{n=ll81) and Run II {n= 1068) 

..... 

..... 
-J 



118 

Further, this answer to the above posed second question also 

answered the first question. That is, the change in mesh spacings 

considered here had only a small effect. The largest difference in 

the z/r. = 7. 294 pressure ratio curve is of the order of four percent. 
J 

Finally, it should be noted that the comparison made in 

Figure 13 above is for this run at time plane 611 and 1181 for the 

solid and dashed lines respectively. As pointed out above, this is a 

demonstration of the degree with which the steady state condition was 

approached. More will be said concerning this in connection with 

the results of Run VI. 

Run IV 

In the previous three runs, it was assumed that everywhere 

on the upstream boundary, the flow was parallel with no radial com-

ponents of the velocity vector. Since, experimentally, this condition 

is difficult to achieve, this study was conducted to ascertain the 

effect of slightly divergent flows which are more commensurate with 

reality. The mesh spacings for this run were the same as those for 

Run II and the initial conditions were established in the same manner 

as those for the previously discussed runs. In fact, all the computer 

programs associated with Run III were unchanged for this study --

only the upstream boundary conditions (and, consequently, the initial 

conditions) were changed. 
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To develop the divergent fl.ow, it was assumed that the flow 

from each nozzle could be described as a "source" fl.ow. That is, it 

was assumed that the flow at the exit of a divergent nozzle is such 

that it may be described by a fl.ow emanating from a point with 

straight streamlines (see Figure 21). In the analysis for this study, 

' ... 
it was assumed that the wall divergence angle, 9, was small and that 

the magnitude of the velocity vector for each nozzle was constant 

(excluding the boundary layers) with only a change in the direction of 

the vector. The divergence angle for the air stream 9., was approxi
o 

mately 2. 9 degrees and that of the C02 stream, 9., was approximate -
J 

ly 5. 5 degrees. 

In the boundary layers, the velocity m.agnitude, as with Runs II 

and III, was assumed to be one-half the magnitude of the free-stream 

velocity and consequently, the shape of the profiles were similar to 

those of Runs II and III. The direction of the velocities in the bound-

ary layers was determined by, first, a satisfaction of the require-

ments of the II source" fl.ow hypothesis, and, then, a correction was 

made which was based on a crude satisfaction. of the continuity 

equation. See Appendix D for the details of this divergent flow 

analysis. 

The results of the numerical analysis for these upstream 

boundary conditions are presented in Figure 22. In this figure, the 

data for this Run are for time plane 583 and are contrasted with the 



~ AIR 

VIRTUAL ORIGINS 

80 
Bi 

COz 

j~- - --~ 

Figure 21. Divergent Flow Upstream Boundary Condition for Run IV 

..... 
N 
0 



A. 
' 0 

i--~~~~~~~~~~~~:.----, 
¢ 

0 
N 
¢ 

a • 
~ ,,, 

J 

A.2 
2. = 4.941 
rj 

~ 

0 • .,; 

-======--
~fl ==;;;.:~=-'""""-: 2. = 2.588 

rj 

--- Run IV, n=583 

------ Run 111, n=611 

a---.---~_.,....--....---..---+---.---+---.--~ 
0.80 1.00 1.20 rt>O 0.20 0.40 0.60 1.40 1.60 1.80 2.00 

R/RJ 

Figure 22. Stagnation Pressure Comparisons of Run III (611) and Run IV (n = 583) -N -



122 

data from Run III for time plane 611. There are only two significant 

differences indicated. At radii greater than approximately r/j, = 1, 5, 
J 

the z/ r, = 2. 588 curve is about three percent lower than that for the 
J 

Run III results. Also, the z/r, = 7. 294 curve is, at worst, five per
J 

cent lower than that for the Run III results. Nonetheless, at either 

end of the curves the maximum error, in comparison with experi-

ment, is no greater than approximately six percent. 

Perhaps the most significant effect of the upstream boundary 

conditions for this run was exhibited by the pres sure in the vicinity of 

the point of separation. It no longer displayed the instabilities which 

appeared in the previous· runs. Furthermore, in this region, printed 

"output" indicated the existence of weak compression waves which are 

eventually dissipated by expansion waves which emanate from the 

nozzles due to the assum.ed expanding nature of the exit flow. Figure 

j 

23 is a sketch of the effects exhibited by the nodal pressure values. 

Run V 

Thus far, all numerical method calculations have used the 

Case I type of turbulent shear stresses which were discussed in 

Chapter II. In this run, the effects of the Case II type turbulent shear 

stresses were used. It is important to note that where Case I type 

stresses were used, only these stresses were involved and, corres-

pondingly, in this run only Case II stresses were considered. 
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Never were stresses of the form 

,.(t) :: € (OU + ov ), 
xy p m '?!r nz (4-4) 

which involve both Case I and Case II stresses, and which are the 

analogue of laminar type stresses, used. This point will be empha-

sized later. 

Further, with the advantage of insight and experience, four 

additional changes were made. By rearranging the logic of the main 

computer program, the run time was reduced from approximately 

three and one-half minutes per time step to approximately two 

minutes a time step. While this modification contributes nothing to 

the theoretical development and the understanding of results, future 

investigators will greatly profit financially by bearing this point in 

mind. 

In a more theoretical vein, the damping parameter, W, was 

modified so that in the vicinity of the point of separation, it had a 

value which equaled the inviscid stability value at the point of separa-

tion and decreased exponentially to a value of 0. 1. The equation for 

w was: 

w = 0. 1 + 0. 4 e - Zz (4-5) 

where z is the axial coordinate. 

This modification was made in an attempt to prevent the pres-

sure instabilities which arose in all previous runs with the exception 

of Run IV. It was anticipated that these instabilities would occur 
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since recourse was again made to a uniform parallel flow with 

boundary layers at the upstream boundary for this run. However, 

instead of the rather severe boundary layer shapes which were pre

viously employed, the average velocity for a turbulent boundary layer 

shape was determined by a straightforward integration of the one

seventh velocity profile over the area, This, of course, neglects 

density variations, but the inclusion of these variations would unduly 

complicate the analysis. Once the average velocity was determined, 

a linear velocity profile was assumed which would yield the same 

average velocity. This substitution of velocity profiles was more for 

the purposes of the analysis in Chapter V than for this investigation. 

In any event, the average velocity for each boundary layer was im

posed at each respective node point in the respective boundary layers 

( see Figure 24). 

The initial conditions were assumed to be the solution of the 

analytic theory presented in Chapter V. This was a further attempt 

to decrease the necessary run time for the asymptotic approach to a 

steady state solution. That is, it was predicated that the closer the 

initial conditions conformed to the steady state solution, the shorter 

the computer run time required. This point will be justified in the 

discussion of the results of Run VI. 

For this run1 pressure ratio curves for a z/rj = 2. 588 and at 

various time steps are displayed in Figure 25. If consideration is 
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given to the degree of change for each of the three intervals (e.g. 

between n = 15 and n = 55, etc.) it appears that, due to the small 

change between n = 155 and n = 242 as contrasted to that which oc

curred between n = 55 and n = 155, the calculation was approaching 

a solution albeit an unrealistic solution. Consequently, it was con

cluded that, although incorporation of Case II type turbulent shear 

stresses does not inhibit the approach to a steady state solution by 

themselves, they do not represent physical reality by themselves. 
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In the region downstream of the point of separation, results of 

calculation indicate only a slight degree of instability (the radial pres

sure variations are of the order of three percent or less -- generally 

less). Because both the boundary layers and the value of w were 

altered, the contribution of each change to the stability of the pres

sure was not discernible. Certainly, the form of exit condition ef

fects the stability of the calculation. This was demonstrated by Run 

IV. However, it must also be recognized that w was below the mini

mum value for inviscid stability in a region where turbulent viscous 

effects were a minimum. 

Run VI 

In order to gauge the effect of the II simulated" turbulent 

boundary layer which was used in Run V without the complexity intro

duced by consideration of Case II type of turbulent shear stresses, the 

initial and boundary conditions for Run V were reconsidered with the 
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incorporation of only Case I type of turbulent shear stresses. Again, 

the damping parameter w was taken as expressed in equation ( 4-5). 

After 350 time steps, the pressure ratio curves were as 

shown in Figure 26. Also shown in Figure 26 is the experimental 

data-comparison, which appears to be fair. At this point attention is 

directed to Figure 25 which contains a comparison of some results 

from Run V with appropriate experimental data. Consideration of 

these two figures indicates that whereas incorporation of Case I tur

bulent shear stress terms tends to equalize the stagnation pressures 

across a mixing region, incorporation of Case II turbulent shear 

stress terms tends to maintain not only a disparity in the stagnation 

pressures, but increase the difference in the stagnation pressures. 

Consequently, these results built a strong case for the hypothesis 

that a linearization of the flow equations, in this case a linearization 

of the turbulent analogue of the laminar shear stress expressions, 

may produce erroneous results when incorporated in a finite dif

ference method. Moreover, one may suppos.e in view of these results, 

that, indeed, the flow equations are of such a nature that even in 

their application to simple flow problems, it is preferable to main

tain complete generality when using finite difference equations. 

The pressure downstream of the point of separation displayed 

only one unexpected sudden change and this change was only of the 

order of four percent. Thus it. appears, in the light of the res-ults of 
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Run V, that the form of the flow equations also effects the degree of 

the pressure instabilities. 

The onset of a steady state condition is suggested by Figures 

27 through 32. In these figures, dependent variables such as pres

sure, velocity, etc. are plotted versus time step number. The loca

tion of each dependent variable is indicated by the set of subscript 

numbers. The first subscript is the node number in the radial direc

tion and the second subscript is the node number in the axial direc

tion. When reviewing these plots the reader should bear in mind that 

there are thirty-two nodes in the radial direction and forty-one in the 

axial direction with point ( 1, 1) located on the centerline at the up

stream boundary. The third number indicates that the n plus first 

time is being displayed. Furthermore, it should be noted that the 

scales differ from plot to plot. In fact, the largest variation indicated 

over the last one hundred time steps by these curves is less than one 

percent. It should .be noted that the node points considered for these 

plots are scattered over the entir-e flow field and represent an attempt 

to select worst cases. In these figures, it was observed that, in the 

upstream region, a steady state condition is definitely indicated 

(Figures 27 and 28). In Figure 29, which displays information at the 

same axial location as that for Figure 28, the achievement of a steady 

state condition is not as strongly indicated. Nonetheless, the changes 

are in the fourth significant figure. Likewise, Figures 30, 31 and 32 
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are no assurance of a steady state condition; however, the change in 

the respective values is small for the last one-hundred time steps for 

each. Further, there appears to exist a tendency of each variable 

to oscillate, thus diminishing the rate at which the solution diverges 

(in comparison to a monotonic divergence) from the initial condition. 

Therefore, in view of the results displayed in Figures 27 and 28, it 

appears reasonable to suggest that,with additional calculation, the 

solution could readily approach a steady state condition. 

Additional Points for Consideration 

The insensitive nature of the carbon dioxide concentration 

radial profiles is exhibited in Figure 33. Because the profiles at a 

z/r. = 7. 294 displayed the greatest variation from case to case, they 
J 

have been plotted in this figure. Data from all runs discussed above, 

with the exception of the results from Run V, where calculation did 

not proceed far enough for adequate comparison, are present in this 

figure. 

In order to compare the concentration results with experi-

mental data, the data from Run VI have been prepared in Figure 34 

together with the experimental data. Because the agreement was only 

qualitative, a check was made to determine if the experimental data 

for carbon dioxide satisfied the conservation of mass. Application of 

this principle revealed that: at the z/r. = 2. 588 location there was a 
J 
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forty-six percent error, at the z/r. = 4, 941 location the error was 
J 

fifty-five percent, and at the z/ r. = 7. 294 location an error of sixty
J 

three percent was indicated. 

With respect to this error, several points are worthy of con-

sideration, Recourse is first made to early discussions which con-

cern the stagnation pres sure ratio, p /p. The possibility of a pi tot 
0 

tube error is amplified when consideration is given to the compari-

sons which were made in Figure 26, for example. From inspection 

of this figure it appears that, if the experiment pres sure curves were 

shifted in the direction of increasing radius (in accordance with the 

proposed nature of the pitot error) agreement between theory and 

experiment would be good (especially in light of the discussion con-

cerning the effects of the types of turbulent shear stresses considered 

in this work). In fact, so far as the theory is concerned, it would be 

expected that the numerical method would "smear out" velocity 

gradients, but it would not be expected that the nurr1erical method 

would result in a radial shift of the mixing region. 

Next, the validity of the concentration measurements may be 

questioned. It is an experimental fact that small concentration levels 

are difficult to determine accurately. Furthermore, Alpinieri (56) 

pointed out that the probe tip design is crucial. 

Finally, since integral conservation checks of all numerical 

runs indicated an error of less than one percent, and, in view of the 
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results obtained by use of, alternately, Case I and Case II turbulent 

shear stress representations, the possibe utility of this schem.e for 

analysis of multispecie turbulent mixing is suggested. Certainly, the 

results warrant further investigation. A differential, albeit approxi

mate, and integral satisfaction of the fundamental principles may not 

be taken lightly. 

It may be of interest to the reader that, in all runs, the con

centrations of air and C02 were calculated separately and independ

ently. The constraint that the concentrations must sum to unity 

everywhere was not employed in the computer programs. Fowever, 

a check of this constraint for subsequent results indicated that, 

indeed, it was satisfied everywhere to at least five significant figures. 

This, of course, was not unexpected. In addition, a check was made 

on the constancy of the static pressure for all runs. This check in

dicated that, with the exception of the region in the vicinity of the 

point of separation, and in Run IV the static pressure was uniform 

within less than one percent. In Run IV, ten percent pressure changes 

occurred on the centerline where it would be expected that the ex

panding nature of the flow would decrease the static pres sure. 

As further demonstration of the reasonable nature of the re-

sults of calculation, velocity and density distributions are presented in 

Figures 35 and 36, The data for these curves were taken from the 

results of Run VI at time plane 350. 
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Conclusions 

Below is presented an apers:u of the pertinent conclusions 

discussed above. Further conclusions will be drawn in Chapter V 

after comparison has been made with a currently available analytic 

solution. 

1. Assumed boundary layer profiles at the upstream bound-

ary had a pronounced effect on radial downstream distributions. 

2. The use of a virtual origin, z , for the purpose of 
0 

mathematically increasing the level of turbulence at the initiation of 

free jet mixing was insufficient in the attempt to c cntrol localized 

instabilities. 

3. !t was found that an exponential decay of w from a value 

dictated by inviscid stability requirements to a value considerably 

below normally accepted values successfully established a stable 

solution in the__ region downstream. of the point of separation. 

4. A change in node spacing ratio, t:::..z/ D..r, from a value of 

4. 5 to a value of 2. 906 appeared to have had very little effect. 

5. It was discovered that the form of the differential equa-

tions and the upstream boundary conditions also had an effect on the 

degree of instability in the region down.stream of the point of initia-

tion of jet mixing. 

6. Both the divergent flow (Run IV) and the simulated turbu-

lent boundary layer (Run VI) as upstream boundary conditions 
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appeared to produce reasonable results despite the number of arbi

trary assumptions necessary for the development of the divergent 

flow boundary condition. 

7. By themselves, Case I type turbulent shear stresses re

sulted in reasonable results whereas Case II type turbulent shear 

stresses did not. Moreover, it appeared that if these types of shear 

stresses were incorporated together in direct analogy with the form 

of the laminar shear stresses, better results than reported here are 

indicated. 

8. Concentration profiles demonstrated insensitivity to the 

form of the upstream boundary conditions. 

9. Comparison of numerical method results indicated fair 

agreement for the pressure ratio curves and only qualitative agree

ment for the concentration curves. However, it was also noted that 

the experimental data is inconsistent with the continuity equation 

the error being as large as sixty-three percent. 

10. The dire need for accurate, comprehensive experimental 

data on a large scale was noted. 

11. The length of computer run time necessary for the 

asymptotic approach to a steady state condition was found to be de

pendent upon the assumed initial conditions. 

12. Integral conservation checks of the numerical results 

indicated errors of less than one percent. 



CHAPTER V 

APPROXIMATE ANALYTIC SOLUTION AND RESULTS 

As noted in the previous chapter, the experimental data of 

Reference 24 was found to be inconsistent with the conservation of 

mass. Consequently, in order to better ascertain the degree of suc

cess achieved by the numerical method, a brief comparison was made 

with an approximate analytic solution that has been shown to be in 

agreement with experimental data ( see Reference 19). In addition, m 

the description of the turbulent shear stresses in the num_erical method, 

the spreading rate parameter, cr, was as signed the value of 15. 3 

since this was the value found by Forde ( 24) that best correlated the 

experimental data. The analytic solution was employed to determine if 

this value of cr was appropriate. 

Analytic Solution for Constant Pressure Jet Mixing 

To accomplish these goals, two different solutions were con

sidered for application: ( 1) the solution reported by Korst and Chow 

in Reference 6, and (2) a solution developed by Kleinstein (9). While 

the solution of Korst and Chow assumes two-dimensional mixing 
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whereas Kleinstein' s solution assumes axisymmetric flow, the former 

is much simpler to apply than the latter, Moreover, the former has 

been shown to be a good approximation for axisym.metric mixing (see 

Reference 19 for comparison with experimental data). Consequently, 

the Korst solution was used, 

The mathematic details of the Korst solution for one-component 

two-stream mixing are thoroughly documented (6) (8) and only a brief 

summary will be presented here. The extension to two-specie jet 

mixing, which was original with this work, is also presented. 

Because the Korst solution is described in terms of a coordi-

nate system which is attached to the point of separation, the symbols 

(x,y) will be used instead of (r, z); see Figure 37. 

For two-dimensional isobaric turbulent flow, the x-momentum 

equation, 

au au 
u- tv

clx oy ( 5-1) 

was adopted by analogy with Prandtl' s laminar boundary layer equa-

tions, By small perturbation agreements (see References 6 and 8), 

equation (5-1) may be further linearized with the results: 

u + u o clgu 
( a b) ~ = e _ 

2 ax m ayg 

The eddy viscosity, e , was assumed to have the form 
m. 

e = e f(x/ o ) 
m moo a 

(5-2) 

(5-3) 
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where 

( 5-4) 

This development assumes that an appropriate average function for E: 
m 

is used since it is well known (58) that E: varies in the lateral direc
m 

tion as we.11 as in the streamwise direction. The function, f(x/ 6 ), 
a 

was conceptually employed to adjust the value calculated from equation 

(4-4) to account for the presence of initial boundary layers at the initia-

tion of mixing. However, because of lack of knowledge of the exact 

nature of this function, it was assigned the value of unity, and was 

deleted from the development. 

With the adoption of the definitions 

u 
q, = - ' u 

a 

equation (5-2) becomes: 

x 
,!r=-

5 
a 

with the deletion off( 1'r). Further, the transformation: 

!; = _1_ J,~ d l!r 
2cr2 

may be introduced which transforms equation (5-6) into the form: 

( 5-5) 

(5-6) 

(5- 7) 

(5-8) 
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For the case of initial boundary layers at the point of separation, the 

boundary conditions for integration are: 

cp(O, C) = cpia ( C) for O :S: C :S: 1 (5-9) 

cp(O, C = 1 for l:S:(~o:, 

cp( i;, C)---4-cpb for 
' ___.,. - 0::, 

cp( !; C)---+ I for c ____. 0::, 

The solution of equation (5-8) with the boundary conditions (5-9) is: 

1 5b 
cp=-2 [(l+cpb)+erf(n -'11 )-co.. erf(n +-;-n )] 

u p 'b u u 'p 
a 

(5-10) 

'11 
u '11 -f3 p::! ) + J cp. ( u ) e - dl3 

1a '11 · 
'11 -'11 p 

u p 



where 

and 

I 
r,p=~ 

Tl = Cri 
'U p 

cp = ',, 
b -

u 
a 

2 Tl u 132 
erf Tl = -- J e- df3 . 

u ~ 0 
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(5-ll) 

( 5-12) 

For the case of two initially uniform streams with no boundary 

layers, equation ( 4-10) simplifies to 

( 5-13) 

This equation will prove useful by analogy later. 

Since boundary layer approximations have been made, the 

boundary layer forms for the conservation of energy and specie were 

respectively expressed: 

( 5-14) 

aw. aw. 
1 1 u-- +v--ox 0')7 

(5-15) 

These equations were then further linearized in the same manner as 

the momentum equation. 

As with the axial velocity, the stagnation enthalpy and concen-

tration were nondimensionalized by the stream "a" free stream values. 
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Since the concentration of air in stream "a" was unity, and, since 

two-specie mixing was being considered, equation (5-15) was only 

solved for the concentration of air, w1 , and the concentration of carbon 

dioxide, w2 , was found by use of: 

(5-16) 

After linearization and substitution of the appropriate nondimen-

sionalized variables, equations (5-14) and 5-15) respectively became: 

where: 

otlr -

ho 
A= -

ho 
a 

with 1'I and C defined in Equation ( 5-5). 

( 5-17) 

(5-18) 

( 5-19) 

Thes,e-iequations were further transformed by implementing the 

definitions: 

f ~1 d t, 

!;s = l ftd~r. 
2cr2 Sct . 

' 1 

Equations (5-17) and (5-18) then became: 

(5-20) 

(5-21) 

(5-22) 
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( 5-2 3) 

Since the boundary conditions for these equations were different 

from those of the velocity where initial upstream boundary layers were 

assumed, Crocco' s integral could not be used (previous investigators 

have used it). However, the boundary conditions for A and w1 are 

similar to the case of two uniform velocity profiles, without boundary 

layers, for which the solution was given by equation (5-13). Therefore, 

the solutions for equations (5-22) and (5-23) were expressed: 

(5-24) 

(5-25) 

where: 

( 5-26) 

and 
'1 

rie = ~ riu , (5-27) 

ri = -. fs;-t . ri . s v --t, l u 

The expression for the density was derived by assuming con-

stant pressure mixing of perfect gases. The result was: 

p 
l - C a 

a 
(5-28) 



where 

and C is the Crocco number. 
a 

y - 1 
a 
y - 1 ' 
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(5-29} 

The solutions presented above are not, however, complete. 

These solutions are referenced to a coordinate system (x, y) whereas 

the flow field is referenced to a coordinate system ( X, Y}. See 

Figure 37, Because the differential equations employed for integration 

incorporated the continuity equation, the relative location of the solu-

tions, in terms of (x, y), must be determined in terms of (X, Y). To ::lo 

this, the integral form of the conservation of mass must be satisfied. 

Application of this conservation principle produces a coordinate shift, 

determining y (see Figure 37). It was assumed that: 
m 

y = Y + y (x} with y (0) = 0 
m. m 

The solution for y is presented in terms of Tl = C Tl . 
rr1 m m p 

11 
m = Tl R 

a 

( 5- 30) 

(5-31) 

where 8 , eb, and 15* are the momentum thicknesses and the displace-
a a 

ment thickness of the boundary layers of the respective stream_s, See 
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Reference 6 for details. The variables T'\ R and T'\ R are determined 
a b 

for sufficently large values of YR and YR respectively, such that the 
a b 

mixing region is contained within these lateral dimensions. Further-

more, since this solution was for two two-dimensional semi-infinite 

streams whereas the problem. under consideration was axisymm.etric, 

calculation was not made for locations downstream of the point where 

the mixing region would reach the centerline. Fortunately, this point 

was downstream. of the three locations for which the experimental data 

were available. 

Comparisons of Numeric and Analytic Results 

The variation of a was first investigated. In Reference 6 an 

expression was derived, based on theoretical considerations, which 

indicated that the appropriate value for the spreading rate parameter, 

for the case under consideration here, should have been of the order of 

ninety. However, this was judged to be too large and a value of fifty 

was assumed for calculation. Stagnation pressure curves for this cal-

culation are presented in Figure 38. In the calculation for these 

results, it was assumed that there existed no upstream boundary 

layers. However, the inclusion of boundary layers merely resulted in 

the downstream propagation of the stagnation pres sure deficits asso-

dated with the boundary layers. From this investigation it was 
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observed that values of cr of the order suggested by Korst are un

realistic. Additional calculations, with decreasing values of cr, re

sulted in the conclusion that a value of 15. 3 was, indeed, appropriate. 

To achieve a comparison of the results of the numerical 

method and those from the analytic theory, the upstream boundary 

conditions for Run VI were applied to the analytic theory with cr = 15. 3. 

For Run VI linear velocity boundary layer profiles were assumed such 

that the average velocity for such a profile was the same as that for a 

one-seventh power velocity profile which is typical of a turbulent 

boundary layer. From an analytic standpoint, such an assumption 

permitted a straightforward integration of the integrals in Equation 

(5-10) whereas the assumption of a typical turbulent velocity profile 

would have required a numeric integration. 

The comparison of the stagnation pressure and carbon dioxide 

concentration results are presented in Figures 39 and 40, respectively. 

Whereas the Run VI stagnation pressure curves appeared shifted in the 

radial direction in comparison to experimental data (Figure 26), no 

such shift appears to exist in the comparison of analytic and numerical 

results. However, the analytical results show greater boundary layer 

effects than do the results of the numerical method. This might best 

be understood by realizing that f(1'r) was taken to be unity for all calcu

lations. Since the purpose of this function is to control the boundary 

layer decay, the above observation could be expected. At the same 
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time, the comparisons in Figures 39 and 40 are further evidence that 

both Case I and Case II types of turbulent shear stress representations 

should be incorporated into the numerical method. This would result 

in a turbulent shear stress representation of the form: 

( 5-32) 

The comparison of carbon dioxide profiles in Figure 40 shows 

much better agreement than was indicated in Figure 34 where the 

numeri.cal method results were compared with experimental data, 

Therefore, in light of the discussions which concern the addition of the 

effects of the turbulent shear stress representations, it may be firmly 

concluded that the numerical method results compare very well with 

those of an experimentally verified analytic theory for turbulent jet 

mixing. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

It was the purpose of this investigation to develop a method 

capable of describing steady state multispecie turbulent jet mixing. 

The accomplishment of this objective has been suggested. With the 

adoption of the phenomenological description of turbulence, the basic 

differential flow equations were developed. Because of the nebulous 

way in which the turbulent shear stress representations have been 

historically developed, two alternate schemes were considered. The 

differential equations were applied to the Rusanov numerical method 

and the results were compared with both an analytic solution and ex

perimental data for constant pressure supersonic turbulent mixing of 

air and carbon dioxide. In addition, an inv·estigation was conducted to 

determine the downstream effect of differing upstream boundary 

conditions. 

In the application of the numerical method, with the exception of 

a small region in the vicinity of the point of separation, stable solu~ 

tions were achieved with a value of the damping parameter, w, that was 
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one-fifth the value required by inviscid stability considerations. The 

region of slight pressure instabilities was eliminated by employing a 

sharp exponential decay of the value of the damping parameter from the 

inviscid value to a value that was one-fifth that required by inviscid 

stability requirements. In addition, it was found that both the direction 

of the velocity and the shape of the velocity profile at the upstream 

boundary affected the degree of instability which was exhibited by the 

pressure, 

Independent application of the two different turbulent shear 

stress representations resulted in the conclusion that one form pro

duced reasonable radial profiles, whereas the other did not. However, 

closer inspection indicated that, if the shear stress representations 

were applied in complete analogy with the laminar shear stress expres

sions, improved results were suggested, Furthermore, this led to the 

important conclusion that, in the application of a numerical method 

where the conservation equations are applied at a point, simplifications 

of the shear stress expressions, in the spirit of the Prandtl simplifica

tion, are significantly harmful -- more so than has previously been 

expected, This point was demonstrated by the comparisons of the 

numerical method results with both the experimental data and the 

analytic solution, 

The investigation of the sensitivity of the numerical method 

results to assumed upstream boundary conditions revealed that bound

ary layer effects significantly influenced the downstream radial 
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profiles. Comparison of numerical method results for different up

stream conditions indicated that both the size and shape of the boundary 

layers are important parameters. Therefore, in the application of the 

method presented above, one must be careful to define the upstream 

boundary in accordance with the physical problem under investigation. 

The achievement of a steady state solution was demonstrated by 

plotting various dependent variables versus time plane number. It was 

observed that, if the initial conditions were close approximations to 

the final solution, computer run time was significantly reduced. 

Although the calculation scheme did not require that the pres

sure remain constant, the pressure did, in fact, achieve approximately 

a constant value. In addition, the concentrations for air and carbon 

dioxide were calculated independently in the numerical method and the 

sum of these concentrations always equaled unity. 

The comparison of the numerical method results with experi

mental data indicated only qualitative agreement. However, the appli

cation of the conservation of mass principle to the experimental data 

indicated large discrepancies. Comparison with an experimentally 

verified analytic solution displayed good agreement. 

In general, the results of this work indicate that the method 

presented in this thesis may be employed to solve a wide variety of 

multispecie turbulent mixing problems that have heretofore proven 

intractable. Furthermore, in view of the degree of success that the 

Rusanov numerical method has previously enjoyed, flow fields 



containing such additional phenomena as shock waves should now be 

amenable to analysis. 

Recommendations 
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Based upon the observations which have been made in the pro-· 

cess of this investigation, the following recommendations are made: 

1. Accurate, detailed, large-scale, multispecie, turbulent jet 

mixing experiments should be conducted, This information is very 

desperately needed, not only for the determination of more accurate 

transport expressions, but also for comparative studies, such as was 

performed above, of new methods of analysis. 

2. To assert the generality of the method which has been pre

sented above, variable pressure multispecie jet mixing experiments 

are needed, Specifically, experimental and numerical studies of flow 

fields which contain shock waves, as well as several different gases, 

are necessary to develop confidence for the analysis of flow fields as 

complex as that in a SCRAM jet. 

3. Investigative numerical experim.ents should be conducted to 

determine if the us·e of the turbulent analogue of the laminar shear 

stress expressions is as-advantageous as expected. Furthermore, the 

exact nature of the effects of any simplifications in the flow equations, 

as applied via a numerical method, needs investigation. 
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4. At this juncture in the development of the Rusanov numeri

cal method, extension to chemically reacting gases is warranted if 

sufficient experimental data become available. 

5. For electrofluiddynamic studies, the incorporation into the 

numerical method of the motion of electrically charged liquid drops is 

necessary. This investigation will also require experimental studies 

to determine rate expressions for the diffusion of the drops. 
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APPENDIX A 

DERIVATION OF INSTANTANEOUS TURBULENT 
PARTIAL DIFFERENTIAL FLOW EQUATIONS 

The derivation of the transient laminar partial differential 

equations for multispecie fluid flow is well-documented in numerous 

textbooks (e.g. see Reference 66); these equations may be written in 

the form: 

Conservation of mass: 

clp -- + "ii" (oV) = 0 rlt . (A-1) 

Conservation of momentum: 

(A-2) 

Conservation of energy: 

(A-3) 

Conservation of specie: 

cl p. 

'?l t1 + "ii • ( o i V) = -"ii • Ji + r i (A-4) 

In these equations, ,- is the conventional laminar shear stress tensor, 

g, is a generalized body force per unit of mass, q is the 
1 
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multicomponent energy flux, V. is the vector velocity of the i'th 
1 
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specie, j. is the mass flux of the i'th specie, V V is a velocity dyadic 
1 

and r. is the rate of production if the i'th specie. It is also impor-
1 

tant to note that V represents the magnitude of the velocity vector, 

IV l, whereas V is the velocity vector. 

The multicomponent energy flux, q, is usually expressed in 

terms of contributions which result from the conduction, interdif-

fusion and 11 diffusion-thermo11 effects (the diffusion-thermo effect, 

Dufour effect, describes the energy flux due to gradients in concen-

tration and pressure and the unequal action of external forces on 

various chemical species; usually the Dufour effect is negligible). 

The mass flux of specie i, j., is represented by a summation of con-
1 

tributions which result from concentration, pres sure, and tempera-

ture gradients and the unequal action of external forces on the 

various species. As should be evident, all the effects which contri-

bute to the determination of q and j,, as well as ,- , are molecular 
. 1 

effects. See Reference 66 for an analytic description of these effects. 

However, in turbulent flow analysis, these effects were 

assumed to have negligible importance. Classically this assumption 

has been justified by nondimensionalizing the flow equations with the 

result that the molecular transport terms have a coefficient of the 

form 1/R , where R is the Reynolds number. Since it is known that 
e e 
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turbulent flow usually has a large Reynolds number associated with 

it, terms which contain the Reynolds number in the denominator have 

been neglected (Reference 43 contains this analysis). 

This analysis, however, is not conceptually sufficient for 

turbulent free jet mixing. In such flows, the free streams on either 

side of the turbulent mixing region may be laminar in nature (as for 

example was the case in Reference 58 where honeycomb was inserted 

in the adjacent streams upstream of the region of mixing). This 

makes the determination of an appropriate Reynolds number difficult 

if not meaningless as an indicating parameter for the nature of the 

flow (laminar or turbulent). 

Consequently, turbulent jet mixing was considered in the 

spirit of Frandtl (see Reference 5). It was assumed that, in turbulent 

mixing, large agglomeration of fluid transport energy, momenturr, 

species, etc. in a rr1anner analogous to the molecular transport 

mechanism. Furthermore, it was assumed that these agglomera

tions form, move, and disperse sufficiently fast so that molecular in

teractions within and between these lumps are negligible. At the same 

time, since equations (A-1) through (A-5) were viewed as an instanta

neous description of the conservation principles, this turbulent 

action is taken into account in the convective terms of the differential 

equations. Therefore, the molecular transport terms in the right

hand side of equations (A-1) through (A-4) have been neglected. 
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In addition, it was assumed that there were no significant 

external body forces (gi = 0) and the gases were nonreacting (ri = 0). 

With these assumptions the differential equations (A-1) through (A-4) 

respectively became: 

?lo+'il·oV=O 
?It 

c1r,V +'il· (pVV) +v'p=O 
?It 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

These equations were rearranged for convenient application 

to the Rusanov numerical method. Since 

e = h - p I p , (A- 9) 

p. = p W. (A-10) 
1 1 

the energy and specie equations were rewritten respectively as: 

(A-11) 

(A-12) 

Finally, because interest was centered on axisymmetric flow, the 

flow equations were rewritten in the form.: 

Conservation of mass: 

?IP l cl o - + - - (r p v) + - ( p u) = 0 
cit r cir oz (A-13) 
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Conservation of radial momentum: 

n 1 a . a 
'2\t(pv)+ ;- ar (r p v:a+ p) + ~z (puV) = 0 (A-14) 

Conservation of axial momentum: 

?(pu) + .!._ ar puv) + cl( pu2 + p) = O 
?lt r or ?lz 

(A-15) 

Conservation of energy: 
(A-16) 

Conservation of specie: 

?l 1 ?I '?I 
-;-t ( pw.) + - ;-:(Tow. )v +-;--(ow. u) = O 
o 1 r or · 1 oz 1 

(A-17) 

In these equations it is important to note that the dependent variabl'es 

describe the instantaneous state of a flow field. See Appendix B for 

the time-averaging scheme. 



APPENDIX B 

PERTURBATION AND TIME-AVERAGING SCHEME 

To render equations (2-1) through (2-5) useful for application, 

the instantaneous dependent variables were decomposed, in the spirit 

of Van Driest (46), into time dependent mean and fluctuation values. 

After decomposition, a time-averaging process was performed. 

Because of the complexity of this procedure, each differential equa-

tion will be considered separately in turn. Further, two schemes 

were found to be possible and both will be presented below. 

Essential to this development are the rules of time averaging. 

If f and g are two dependent variables whose mean values are to be 

formed and if s denotes any one of the independent variables r, z, 

t then, according to Schlichting (4), the rules for time averaging are 

T = f f+g=f+g 

f·g=f,g (B-1) 

'?If '?If 
= J f d s = ft d s 

?ls ?Is 

where the bar indicates an average. In the discussion below, a bar 

179 



180 

) will indicate an average value and a prime ( 1 ) will indicate a 

fluctuation quantity. 

Continuity Equation 

The instantaneous form of the continuity equation is: 

op + .!_ ~(rov) + o(pu) = 0. 
at ror oz 

(B-2) 

For decomposition it was assumed that: 

p = r + p' 

pu = pu + (pu)' (B-3) 

pv = pv + (ov)' 

With the substitution of equations (B-3) into equation (B- ) and sub-

sequent time-averaging in accordance with the rules (B-1), the time-

averaged differential equation for the conservation of mass became: 

~ [p + o'] + -2_ [ ov + ( pv) 1 J + ~[ pu + ( ou)' J 
ot ?Ir ?.lz 

+ pv + (pr), = 0 
r 

(B-4) 

Because of the definition of the fluctuation variables, their time-

average is zero: 

p' = 0 

(pu)' = 0 
(B-5) 

(pv)' = 0 
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Consequently, the continuity equation became: 

(B-6) 

It is important to note that, although the time-average of a 

fluctuation variable is :zero, the time-average of the mean variable is 

not zero since the time interval for averaging is small in com.paris on 

to the time scale of the problem of interest. 

Radial Momentum Equation 

In the decomposition of the variables in the radial momentum 

equation it was initially assumed that the radial momentum per unit 

volume, rw, should be perturbed as a unit. This resulted in the 

scheme: 

pv = pv + ( pv) 1 

u = u + u' 
(B-7) 

v = v + v' 

p = p + p' 

The radial momentum equation became, after substitution of assump-

tions (B-7): 

..2_[ pv + (pv)'] +l~[r(pv + (pv) 1)(v + v')] + :r rp + p 11 ot r cir O 

n - -+ ?l.z [(pv +, (pv) 1)(u + u')l = 0 . 

(B-8) 

After time-averaging and deletion of terms of the form ( pv)v' which 

are zero, equation (B-8) became: 



apv ~ -- -- n 
'at +nr[r(pvv+(ov)'v'l +~[p+p'] 

-,,. -- + ( V)I I 
+ n r- - + ( ) I t ] + pv V ' p V -- 0 -;-- . pv u ov u .. oz· · r 
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(B-9) 

However, there is no hard fast rule that requires the pertur-

bation to proceed as just described. In fact, with the substitution of 

pu = pu + ( pu) 1 , instead of u = u + u', into the instantaneous radial 

momentum equation instead of equation (B-8), the result was 

a[ l la[ - 1 r 1 M pv + (pv)•_ +-; or r(pv + (pv)'(v + u') + _p + p' 

(B-10) 

+ 0~ [(pu + (pu)')(v + v')] = 0 

After tim.e-averaging, equation (B-10) became 

aov 1 a - -M +-; or [r(pv v + (pv)'v')l + [p + p'] 

(B-11) 

Equation ( B-11) differs from equation ( B-9) in the expression in 

axial derivative. 
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Axial Momentum. Equation 

The axial momentum equation was perturbed in a manner 

analogous to that employed for the radial momentum equation. By 

first perturbing, as a unit, the axial momentum per unit volume, pu, 

just as the radial momentum per unit volume, pv, was perturbed above, 

a subsequent time-averaging resulted in: 

d pu +.!.....£.[r(pu-; + (pu)'v')] +~[pu; + (ou)'u' + p] = 0 o t r or oz · · (B-12) 

On the other hand, with the perturbation of the respective mass fluxes 

per unit area, the result after time-averaging was: 

o pu I o - - o - - -
at+-; ?lr[r(pvu+(pv)'u')] + 0 z [puu+(pu)'u' +pl= O (B-13) 

A comparison of equations (B-13) and (B-14) indicated that they dif-

fered in both the second and third terms. 

Energy Equation 

To perturb the transient term in the instantaneous energy 

equation (2-4), it was assumed that: 

ph = ph + (ph)' 

p = p + p' 

p = p + p' (B-14) 

u = u + u' 

v = v + v' • 
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Substitution into the transient term produced 

(B-15) 
c, - - 1- - -= M [ph + (ph)' -p-p1 +2 [(p + p')((u + u 1) 2 + (v + v'> 2 >J1 

After time-averaging and the adoption of the assumptions: 

-~ 1-- -~ 1--
2. u p1u 1 << 2 p u 2 and v p1v 1 << 2 p va 

(B-16) 

there resulted for the transient term: 

(B-17) 

where 

(B-18) 

For the remaining terms in the energy equation, equation 

(2-4), the following perturbations were assumed: 

pu = pu + (ou)' 

pv = pv + (pv)' 
(B- 1 q) 

h = h + h 1 

u = u + u 1 

v = v + v 1 

These were substituted in the following manner: 

.!. -2-[r pv(h +.!.v2 )1 = .!. _£__[r(pv + (pv)') [h + h 1 + 21 ((u + u 1 ) 2 
r or 2 - r or 

+(v+v1) 2 )]} 
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'21 I 
_ cl [(pu + (ou)')[h + h' + .!. ((~ + u'f 

(B-20) 
-· [pu(h + - V'<i)l oz 2 ... ~z 2 

After time-averaging equations (B-21) and with the use of assumptions 

in (B-17), together with the result (B-18), the time-mean energy 

equation became: 

o - I -- - I o -- I --
-[ph +- p V~-p] +--;:--[r(pvh+(pv)'h' +-pvV2 +u(pv)'u' 
cit 2 ror 2 

+ v ( pv)'v')] (B-21) 

'21 -- 1-- - ----
+ '2\z [ou h +(ou)'h' + 2 pu V~+u(pu)'u' +v(ov)'v' ]=O 

The scheme presented above appeared to be straightforward 

without other logical physical alternatives. However, other schemes 

were attempted and these invariably resulted in the appearance of 

terms for which no reasonable assumptions could be made and for 

which no mean value expressions could be found. 

Specie Equation 

For the perturbation of the specie equation, it was assumed 

that: 

OW. = PW. + (pW.) 1 
1 1 1 

w. = w. + (w.)' 
1 1 1 

pu = pu + (pu) 1 

ov = nv + ( ov) 1 

(B-22) 
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These assumptions were substituted into the instantaneous conserva-

tion of specie equation in the following manner: 

"' r- J 1 "' - - 1 -:;:---. t. ow. + (ow.)' + - -· h(ov + (ov)')(w. + w.). 
o 1 · 1 r 2\r · · 1 1 

(B- 23) 

t -:,.(\ [ ( OU t ( OU) 1 }(W. t 1.ll,) 1 = 0 
c,Z . 1 1 

and after time-averaging: 
(B-24) 

0 - 1 21 [ -- 1 21 c-- 1 -:;:-t ow1• +- - r(pv t11 • + (i:w)'w.) .. +-;:--- ou w. + (pu)'w. 1 .• =O 
c, r or 1 1 oz 1 1 

In the above discussion, whereas one form of the continuity, 

energy and specie conservation equations was developed, two forms 

for both the radial and axial momentum equations were developed. 

For application, it was assumed that it was more appropriate to use 

the momenum equations that resulted from perturbation of the 

respective momentum per unit volume. Consequently, equations 

(B-6), (B-9), (B-13), (B-22) and (B-25) were used for analysis in 

this work. 



APPENDIX C 

NUWERICAL EXPANSION OF 
CENTERLINE TRANSPORT 

EXPRESSIONS 

In the centerline numerical equations for the satisfaction of 

the conservation principles there are contained variables which accourt 

for turbulent transport phenomena. These variables, themselves, 

were expressed in terms of spacial derivatives of the flow variables. 

The expansions of these derivatives are presented below. 

For node points that were at least two mesh spacings away 

from either the upstream or downstream boundaries, (3:::;; i., ~ e -2) 
max 

the following numerical expansions were used: 

T ~ ±( p e i r (u - u ) / 2.6.z J 
z z 1 , i., ± l. m., f., ± 1 · 1, l ± 2 1 , J, 

(C-1) 

(C-2) 

':::: ± ( ) T - Pf. ~± rz m 2, x., 1 
2, i., ± l 

rv -v )/26.z] 
2,i.,±2 2,f., 

(C-3) 

'T ""'(pe ) r(v v )/26.r] 
rz m2,?, 3,e 1,f, 

a' i., 

(C-4) 

(p e ) . m 
,..., 1,l,±1 [ ] 

q11 = ±----- (h -hl,_A_)/26.z. 
z Prt 1, J, ±a i: 
1,.t±1 

(C-5) 
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Zl 

D, 
r1 

1, .t±1 

~' P. 
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(C-6) 

(C-7) 

[((w.) 6 - (w.) 0 )/ZAr] 
l.'3,.ic, 11,x, 

(C-8) 

In the above approximations, centered differences have been 

used, For both the node point .l = 2 and .l = l - 1, the centered 
max 

difference approach would require information at imaginary node 

points which would be outside of the nodal grid. Consequently, at the 

node point P, = 2, when axial derivatives were required at .l = 1 a 

forward difference was used. For example, T was approximated 
zz 

l' l 

by: 

T ~ (pe: ) [(u -u )/ Arl 
z z m 1 , 1 1 /a 1 , ?. 1 , 1 · 

(C-9) 
l' l 

Notice that the transport coefficients were evaluated at the midpoint 

between the two appropriate nodes. 

Similarly, at the node .l = .l -1, for axial derivatives at the 
max 

node .l = .l a backward difference was employed. Hence, 
max 

T 
zz 

l, 1 
max 

-u 
l' 

_ 1) I Az l 
R, 
max 

(C-10) 



Derivatives in the radial direction were always evaluated by 

the scheme shown in equations (C-2), (C-4), (C-6), and (C-8). 
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APPENDIX D 

DIVERGENT FLOW UPSTREAM 
BOUNDARY CONDITION 

The divergent flow condition at the exits of the concentric 

nozzles was defined by assuming that the flow from the center nozzle 

emanated from a point and the flow from the outer concentric nozzle 

emanated from a ring (see Figure 41). In the following discussion 

the subscripts e and s refer to the central and external streams 

respectively. 

The calculation procedure for the central nozzle was as 

follows. Since the exit radius and Mach number were known, the 

throat radius was determined from the "area ratio" expression: 

A 
e 

= --:;;: 
A"" 

j 

y+l 
2(y-1) 

(D-1) 

It was assumed that the nozzle wall was straight between the exit and 

the throat. This, most likely, was not the actual case, but, since a 

pure guess would eventually be required anyway, such an assum.ption 

appeared justified. With this assumption, the distance between the exit 

and the throat is related to the wall divergence angle by: 
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tan e 
e 

r - r 
e t 

=--,..--
x 

192 

(D-2) 

Once x was picked, the angle 8 was determined. Next, the distance, 
e 

x, between the exit and the assumed source point, P, was calculated 

by: 

x = r /tan e 
e e 

The velocities at each node point were then calculated by: 

v = V Sin ep 
e e 

u = V Cos ep 
e e 

where ep was determined for each node by: 
e 

_ 1 [(m - l)b..r 1 ep = tan 
e x 

where V was assumed constant and determined by: 
e 

[ 
y _ 1 )1/ 2 

V =MT '~ l+-e--M 2 
e e oe V 1 e,..'"e 2 e 

(D-3) 

(D-4) 

(D-5) 

(D-6) 

There was one exception to the above procedure. At the node adjacent 

to the nozzle wall, the magnitude of the velocity was as surned to be 

one-half of the free stream value in order to simulate a boundary layer. 

Further, the u and v velocity components were not calculated by the 

above procedure but were determined in a manner described in the 

11 Boundary Layer Corrections 11 section of this appendix. 

The outer stream exit conditions were determined in a manner 

similar to that used for the center flow. However, corrections were 

made to account for the fact that the external nozzle was in the shape of 
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ring. Therefore, the area ratio (which was determined by the Mach 

number in the manner of equation (D-1)) for the external stream was 

set equal to 

A 
s 

A* 
s 

= 

ra - r2 
s e 

r~r--2 
l - 2 

(D-7) 

where the nomenclature is defined in Figure 41. The value for r was 
s 

assumed to be 0. 5 inch. 

The distance, d, was determined by: 

Once d was determined, the angle 9 was calculated with: 
s 

9 = tan- 1 
s 

and x was determined by: 
s 

e 
(-;.--) , 

x 
s 

r - r 
s e 

xs= 2 )/tan9s 

The angle, er , for any node, was determined by 
s 

= tan-rs :,_r_e ___ (_m_x_:_1 )_t::._r_-_r_e_] 

v = - V Sin q, 
s s 

u = V Cos co 
s ·s 

(D-8) 

(D-9) 

(D-10) 

(D-11) 

(D-12) 



where V was determined by: 
s 

y - 1 1/2 
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V = M T -. r.;-;; [1 + s 1'lf2] s s OS V I s~~s 2 s (D-13) 

Again, for the node next to the wall, the magnitude of the 

velocity was assumed to have a value that was one-half of the free-

stream value, and the velocity components were determined as de-

scribed below. 

Several different values of x and x were considered. The 
e s 

values that were finally employed were those that resulted in a 8 and 
e 

8 equal to approximately 5. 5 and 2. 9 degrees respectively. 
s 

Boundary Layer Corrections 

To correct for the slight divergence associated with a boundary 

layer, a very simplified analysis was performed. In both streams, 

this analysis was only applied to the velocities at the nodes next to the 

wall. 

Basically, along the wall in both streams, it was assumed that 

the linear velocity profile at the exit started as a uniform profile. 

Because of the change in shape of the profile, the distance between the 

wall and the first node next to the wall is greater, for the same m.ass 

flow rate, than that upstream where the velocity profile was uniform. 

It was further as sum.ed that the 11 growth" occurred at a rate dictated by 

the approximate rate at which a turbulent boundary layer grows: 



195 

o . 376 
- = / (D-14) 
x Re 1 5 

x 

where 6 is the turbulent boundary layer thickness, and Re is the free 
x 

stream Reynolds number based on x, measured from the location 

where the velocity profile is uniform. This equation permitted the 

determination of the distance, x. 

It then was assumed that there was some thickness of the uni-

form velocity profile such that the mass flow rate between the wall and 

this thickness was the same as the mass flow rate for the linear 

velocity profile for the region between the wall and the node point next 

to the wall. 

With the description of a linear velocity profile by: 

u=sy+t (D-15) 

and with y measured perpendicular from the wall, the thickness of the 

uniform velocity profile that will contain a mass flow rate equal to that 

for the linear velocity profile between the wall and the distance y was 

determined to be: 

b =( l~p J,/1+2(~)B(sy+t)' 
y Y- ·spcc?a:il V Yp 

(D-16) 

+ln V' Y_p [
"" /2 ( 'f.._:_J) B ] 

-v l + 2 ( y ~: ) B ( s y + t) 21 + 1 
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where 

(D-17) 

These equations were applied separately to both streams with the 

appropriate free stream values (designated in the above equations by 

the infinity symbol). 

The angle with which the flow diverged from the wall was then 

determined by: 

(D-18) 

By considering that the walls themselves diverged and by including the 

corrections made by this analysis, the velocity components at the nodes 

next to the wall were calculated by: 

central stream: 

v v 
u = ; Cos !:\ Cos epe + T Sin !:\ Sin roe 

v v (D-19) 

v =__!;_Cos O Sin ep -~ Sin O Cos ep 
2 e e 2 e e 

external stream: 

v v 
u = t Cos Os Cos eps + t Sin Os Sin cps 

(D- 20) 
v v 

v = -+ Cos Os Sin ~"s + t Sin<\ Cos eps 



APPENDIX E 

COMPUTER LOGIC DIAGRAM 

In the numerical analysis, several versions of the 11 main 11 

computer program were employed~ In addition, the input and output 

programs also had a variety of forms. In this section, the logic for 

the fastest 11 main 11 program will be presented. Since the input and 

output programs are of little importance, they will not be discussed 

further. 

Of principal significance in the logic, presented below, of the 

11 main11 program is the recognition that appropriate values of oe , . m 

an and 13n n need only be evaluated once for each node since they 
m, P, m, x, 

are independent of the particular definite differenced flow equations in 

which they are used. They need not be evaluated over and over again 

for each conservation equation at each node. Implementation of this 

fact very significantly reduced run times, 

In the logic diagram below, the following definitions are used: 

p pressure array 

u axial velocity array 

v radial velocity array 

RHO density array 
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CON! 

CON2 

MMAX 

LMAX 

IMAX 

N 

ALPHA 

BETA 

DR 

DZ 

SZB 

STAB 

PRT 

SCT 

R 

GAMM 

SPDPR 

KR 

KZ 

M 

L 

concentration of CO:;i array 

concentration of air array 

maximum value of m 

maximum value of J., 

maximum number of gases to be 
considered 

time plane number 

n 
a 
m, J, 

f3n 
m, J, 

~z 

Ii 
0 

array of Sc . 
t, 1 

array of gas constants 

array of specific heat ratios 

K 
r 

K 
z 

m 
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REM 

F 

FR 

FZ 

PSI 

Fl 

J 
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oe . m 

an indexing parameter that indicates 
which conservation equation is being 
applied to the finite difference equations 



200 

Read from tape: MMAX, LMAX, IMAX, N 
DR, DZ, SZB, STAB, PRT, R, GAMM, 

SCT, P, RHO, U, v, CONl, CON2, SPDPR 

• IN= N + 11 

Search for maximum 
value of (V + c) 

Calculate K, KR, KZ 

IM = 1 I . 
I T = 2 I 

I 

• U, 

Calculate a necessary 
value of REM 

Evaluate appropriate 
ALPHA1 s and BETA's 

' 
I J = 11 

-1 

' • 
Evaluate F, FR, FZ, and PSI 

at appropriate nodes for ' 

appropriate conservation equation 
and calculate F 1 

-IJ=J+l' No 6 
Yes 

D c A B 



D c 

No 

A 

No 
>----L=L+l 

Redefine the n + I 
flow variables to be 
the n flow variables 

Yes 

Write all variables on 
tape exactly as they were 

read for restart 

201 

B 



VITA 

Paul Thomas Bauer 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: AN EULERIAN NUMERICAL METHOD FOR MULTISPECIE, 
TURBULENT, SUPERSONIC JET MIXING 

Major Field: Mechanical and Aerospace Engineering 

Biographical: 

Personal Data: Born in Pittsburgh, Pennsylvania, June 24, 
1942, the son of Jerome L. and Anna Mae Bauer. 

Education: Attended grade school in Pittsburgh and Wexford, 
Pennsylvania; graduated from North Catholic High School, 
Pittsburgh, Pennsylvania in 1960; received a Bachelor of 
Science degree in Aeronautical Engineering from Parks 
College of Aeronautical Technology of St. Louis Univer
sity, East St. Louis, Illinois in July 1963; received a 
Master of Science degree in Mechanical Engineering from 
Oklahoma State University, Stillwater, Oklahoma, in 
May 1965; completed the requirements for the Doctor of 
Philosophy degree in Mechanical and Aerospace Engineer
ing at Oklahoma State University, Stillwater, Oklahoma, 
in July 1968. 

Professional Experience: Wind Tunnel Instructor and Super
visor at Parks College of St. Louis University, East 
St. Louis, Illinois from September 1962 to July 1963; 
Teaching Assistant at Oklahoma State University, Still
water, Oklahoma from September 1966 to May 1967; 
Instructor in the Mechanical Engineering Department and 
Research Engineer at the University of Dayton, Dayton, 
Ohio from July 1967 to May 1968; National Aeronautics 
and Space Administration Summer Faculty Fellow at 
Lewis Research Center, Cleveland, Ohio from June 1968 
to August 1968. 



Organizations and Awards: The author is a member of the 
following: American Institute of Aeronautics and Astro
nautics, Pi Mu Epsilon, Sigma Pi Sigma, and Pi Tau 
Sigma. He was the recipient of a National Aeronautics 
and Space Administration three year predoctoral fellow
ship, and an American Society of Engineering Educators
National Aeronautics and Space Administration Summer 
Faculty Fellowship. 


