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CHAPTER I
INTRODUCTION

0il reservoirs are becoming more expensive to discover. The con-
sumption rate of domestic crude reserves has in recent times surpassed
the discovery rate of new domestic reserves, and the trend is likely
to continue since consumption continues to increase appr&ximately 3 per
cent per year. Because of this situation, oil companies are actively
trying to develop substitute sources of 1iquid hydrocarbons.

It has been recognized for some time that oil shale deposits con=-
tain a tremendous hydrocarbon reserve. Over half of the known oil
shale reserves are located in the United States, most of which lie inr
the Piceance Creek Basin of Western Colorado. The Colorado oil shale
ou tcrops on the edges of the Piceance Creek Basin. At the outcrops
the shale beds are relatively thin, from 25 to 50 feet thick. In the
center of the basin the oil shale is as great as 2000 feet thick
covered with ‘1000 feet of overburden. It has been estimated that
there are over 1000 billion barrels of o0il in shales having an oil
content éver 15 gallons per ton in this basin. This is some 30 times
the present proven crude oil reserves in the United States.

0il shale does hot contain free oil but an organic matter called
kerogen. Kerogen is only slightly soluble, if at all, when extracted
with ordinary solvents for petroleum at room temperature. Kerogen

yields petroleum hydrocarbons by destructive distillation. It must be



heated to approximately 700°F where it decomposes into shale oil, gases
and coke.

The United States Bureau of Mines and, more recently, oil compa-
nies have conducted considerable research on methods to economically
recover oil from this shale. These methods involve the retorting of
crushed oil shale at the surface, which is either étrip or room and
pillar mined. To date with prevailing oil prices this approaéh'has
not proved economically attractive.

Another approach to exploit the oil shale deposits, in particular
the thick portion that is overlain by 1000 feet of overburden, is to
retort the o0il shale in place aﬂé p;oduce the liquid and gaseous hydro-
carboné through wells drilled into the shale. Little research has been
done on this approach. There are several variations to the "in situ"
retorting approach. These variations can be considered to bélong to
one of two groups based on the geometry of the system. The first group
is in situ retorting conducted in a highly fractured or broken .up
matrix. Thé second is in situ retorting conducted through single
fractures between producing and.injection wells. This dissertation is
concerned with the latter group.

The.objective of this work was to make a preliminary feasibility
study of in situ retorting oil shale by hot gas injection through wells
interconnected by single vertical fractures. A knowledge of the tem-
‘perature distribution under various assumed conditions will indicate
whether experimental pilot testing of this approach to in situ retort-
ing is justified. This dissertation is specifically concerned with
theoretically predicting temperature distributions and total heat con-

tents in o0il shale under various assumed conditions.



CHAPTER 11
REVIEW OF LITERATURE

Although there was little literature related to this specific
problem, a number of papers on various aspects of oil shale have
helped in developing the problem and in formulating a plan of attagk,

Jaffe (1,2) gave an extensive description of worldwide oil shale
deposits as to their compositions, sizes, locations and the extent to
which they have been exploited. A more detailed description of the
0il shale in the Green River Formations of Western Colorado was given
in Reference 2. Williamson (3,4) described the nature of kerogen and
its products of decomposition when retorted. In another paper,
Williamson (5) described the various o0il shale retorts that have been
used in research efforts in this country as well as thosevused‘com=
mercially in other countries. Scores of other articles concgrﬁing
oil shale were referenced in these five papers.

The First Symposium on 0il Shale (6) held in 1964‘re§u1ted from
the renewed interest in oil shale research. Papers in this symposium .
were essentially a review of oil shale technology up to that time. In
one paper V. Dean Allred described characteristic properties of oil
shale that might influence in situ processing. This paper was con-
cerned with the process in a highly fractured matrix where it was
visualized to be similar to in situ combustion in oil reservoirs.

The Second Symposium on Oil Shale (7) held in 1965 covered current



research in shale oil recovery. Lekas and Carpenter discussed the
possibilities of fracturing oil shale with nuclear explosives for in
situ retorting. They stated that information from surface retorts
was partially applicable to in situ retorting the resulting fractured
systems.

There were numerous U. S. Bureau of Mines reports available oﬁ oil
shale assays, distillation properties, other chemical properties, min-
ing methods, retorting and physical properties. Hubbard and Robin-
son (8) made a thermal decomposition study of the kerogen in three
Colorado o0il shales. They found the rate of decomposition increased
with temperature and varied little between shale samples. At tempera-
tures over 750°F essentially all hydrocarbons were driven off.

Sohns&ﬂ;al. (9) found for an experimental entrained-solids, oil-
shale retort that as the retorting temperature.was raised, the portion
of the organic matter converted to gas increased, and that converted
to oil decreased. Liquid and gas products became more dehydrogenated.
Oils from Colorado o0il shale gave good yields of stable gasolines
having low sulfur conﬁents. High-temperature retorting resulted in
more naphtha production than can be obtained by cracking a convention-
ally retorted shalg oil.

Carbonate decomposition varied from 4 per cent at 1000°F to 89 per
cent at 1650°F, Carbonate decomposition Was.40 per cent complete at
1400°F and 30 per cent complete at 1300°F. They reported that the
heat of retorting to 1200°F for 28 gallons-per-ton (GPT) shale with
zero carbonate decomposition was approximately 425 BTU per pound.
Carbonate decomposition required additional heat of 238 BTU per pound

of shale.



Sohns et al. (10) made a study to determine the total heat neces-
sary to retort Colorado oil shale to produce shale oil and other by-
products under conditions that would exist»in commercial aboveground
retorting methods. This total ﬁeat consisted of: 1) the heat content
of the mineral and other nonvolatile portions of the shale at the final
retort temperature; 2) the heat of reaction resulting from conversion
of the organic matter in the shale to gas, oil and coke; 3) the heat of
decoméosition of that portion of mineral carbonates that decompose
under the experimental conditions and other heats of reaction due to
changes in the mineral content of the shale; 4) the heat of vaporiza-
tion of the oil and water; and 5) the heat content of the gas and oil
vapors at their exit temperature. The first three items comprised the
predominate portion of the heat requirement.

These investigators published plots of heat requirements versus
temperature up to 1100°F for 28 GPT shale, for 57 GPT shale and for
- spent shale. They found for 57 GPT shale that the heat of retorting
between 750 to 1100°F ranged from 261 to 378 BTU per pound. Heat of
retorting ranged from 104 to 356 BTU per pound for 28 GPT shale between
450 to 1100°F. Heat content above 77°F for spent shale was determined
at a temperature interval of 500 to 1100°F and ranged from 94 to 272
BTU per pound. Their data showed that the endothermic reactions occur-
ring during the distillation of kerogen utilize 13 to 30 per cent of
the heat supplied. |

Gavin and Sharp (11) measured physical properties of oil shale.
The§ found that average specific heats between 20 and 90°C ranged from
0.223 to 0.265 calorie per gm-°C for the samples studied. Thermal

conductivities ranged from 0.00382 to 0.00518 calorie per sec-cm-°C.



Somerton and Boozer (12) reported thermal diffusivities and con-
ductivities of some typical sedimentary rocks at temperatures from 200
to 1800°F. They used an unsteady state technique that became less
accurate at high temperatures. Over 1500°F the estimated error using
this technique could be as large as 20 per cent. Thermal conductivi-
ties of all sedimentary rocks followed a similar and significant de-
creasing trend with temperature. Over 1200°F it was found that thermal
conductivities of rock become constant.

Recent work by Somerton (13) showed that the thermal conductivity
at room temperature of a typical oil shale averages 0.6 BTU/hr-ftoF
parallel to bedding planes and 0.4 BTU/hr-ft°F perpendicular to the
bedding planes.

Shaw (14) reported average specific heats for five samples of
Colorado oil shale measured at temperatures ranging from 50 to 450°F.
0il shale richnesses ranged from 1 to 89.2 gallons per ton. An em-
pirical equation as a function of o0il shale richness and temperature
was derived from theée meésurements.

Somerton (15) presented results of experimental measurements of
‘heat capacities of some sandstones, shales and siltstones. He found
measured heat capacities agree closely with values calculated from
known chemical compositions of the rocks. He found that heat capaci-
ties of these rocks increased from 0.19 to 0.21 BTU/lb-OF at 100°F to
0.28 to 0.30 BTU/lb-OF at 1000°F. At 1000°F the change in thermal
capacities of these rocks with temperature had become negligible.

Jukkola et al. (16) measured the thermal decompositionbrates of
carbonates in oil shale. They found that dolomite in oil shale began

to decompose somewhat below 1050°F, while the calcite began to



dissociate in the range of 1150-1200°F. Both diésociation temperatures
were nearly 400°F lower than that of the corresponding carbonate in>a
relatively pure state. These investigators showed that at 1550°F near
cqmplete carbonate decomposition occurred in less than one hour .in a
nitrogen atmosphere at 760 mm pressure. At lower temperatures thermal
decomposition rate was considerably slower. The reaction rate was
increased by decfeasing partial pressures of carbon dioxide.

Feldkirchner and Linden (17) in their study of hydrogasification
of oil shale reported carbonate decomposition rates in excess of those
reported by Jukkola (15). It was hypothesized that a lower concentra-
tion of carbon dioxide partially explained this. Also, ratios of
calcite to dolomite were larger in these studies and therefore over
1200°F, decomposition rates would be expected to increase rapidly.

Dannenberg and Matzick (18) ipncluded a discussion of carbonate de-
composition. They reported that Green River oil shale contains approxi-
mately 17 per cent mineral carbonates and that during surface retorting
approximately 30 per cent of these carbonates are decomposed. They
. presented a detailed ﬁineral composition.of a typical Green River shale
which shows that mineral carbonates are composed of 62 per cent dolo-
mite and 38 per cent calcite. They estimated from this composition
‘that 57,000 BIU per pound mol of carbon dioxide are liberated.

Matzick et al. (19) presented results from research and. develop-
ment carried out by the Bureau of Mines on the gas-combustion oil shale
retorting process. This Bulletin covered work from 1944 through 1955.
It included much of the material published in other Bureau publications.
A 28-GPT shale was reported to be approximately 23 per cent dolomite and

16 per cent calcite. Decomposition of dolomite required 500 BTU per



pound and calcite required 700 BTU. From this it was calculated that a
pound of oil shale would require 227 BTU for complete carbonate decom-
position.

The reaction time for kerogen decomposition was studied and
results showed that 90 per cent decomposition occurred in 10 minutes
at 850°F; it occurred in 1000 minutes at 700°F; and it occurred in
5000 ﬁinutes at 650°F. Essentially 100 per cent decomposition occurred
at 750°F given sufficient time.

Thomas (20) presented results from retorting tests on oil shale
conducted under simulated overburden pressures. The range of the in-
vestigation was from 25 to 2500 psi . at temperatures up to 1000°F. No
visible fracturing or exfoliation was found t§ occur in oil shales
retorted under confining stresses of 100 to 2500 psia. Pore structure
and permeability were created by removal of oil and water, decomposi-
tion of carbonates and the creation of microscopic expansion cracks.
Thermal conductivities measured on_raWAénd spent shale varied no more
than 13 per cent under stress conditions in excess of 1000 psi. 1In-
duéedvpermeabilities‘averaged about 10 md. for overburdén pressures in
excess of 1000 psi. This compared with cores of spent shale obtained
from a field test which showed an 11.3 md average. Qualitative fesults
based on X-ray diffraction patterné'indicated carbonate decomposition
of dolomite under overburden pfessure began at about 650°F compared
to the usual 1000°F. This was attributed to the LeChatelier-Braun
effecf which requires that a stressed system react in a direct;bn that
leads to an.equilibrium condition.

Several investigators have solved heat transfer problems appli-

cable to rock matrices. Thomas (21) presented a simplified



mathematical model of underground conduction heating. He assumed that

a horizontal fracture existed between wells and that the radial tempera-
ture distribution could be approximated by a step function along the
fracture surface. Heat transfer away from the fracture was dssumed to
be by one-dimensional vertical conduction and all convection effects
were neglected. An analytic sélution-for_this model was obtained. He
showed that for a wide range of air injection rates the heat transfer
coefficient ranged from 0.5 to 4.0, but it could be considered infinite
and very little error results.

Lesser et al. (22) developed a mathematical model that represented
the conduction heating of oil shale. They assumed heat would be intro~-
duced by the injection of hot condensing gas into horizontal fractures
through the formation. The fractureé were assumed to bé equally spaéed;
the. flow of fluid was linear. The thermal conductivity and thermal
~capacity of the rock was considered constant and endothermic heat loss
due to kerogen distillation was disregarded. Maximum temperature was
taken to be 1000°F and thus carbonate decomposition was assumed to be
negligible. They presented limited results for a 500-ft system, for 10
and 20-ft fracture spacing, for 1000 lbs/ftzhr injection rate at 10006F
and for two diffusivity values. 1In all cases several years were re-
quired to heat all of the formation to 700°F. Less than 32 per cent
of the injected heat was utilized for heating the shale.

Lauwerier (23) solved a heat transfer problem analytically where
convection heat transfer occurred in one dimension and heat was given
up by conduction into the bounding media. Heat transfer in the bound-
ing media was assumed to be by conduction only in a direction perpen-

dicular to the direction of flow. The downstream boundary was infinite
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in the direction of flow and coefficients were constant. He used the
Laplace transformation to obtain the solution. This analytical solu-
tion has been useful in checking the accuracy of numerical solutions.

In order to conduct an adequate theoretical heat transfer study
of the proposed problem it was neéessary.to solve nonlinear partial
differential equations that described conduction and convection heat
transfer. These equations had to be solved numerically. A review of
numerical techniques was made to determine which technique to use.

Birkhoff (24) summarized the current status of partial difference
methods for computing approximate numerical solutions of boundary value
problems. He pointed out that the practical solution of most boundary
value problems by difference methods was still more of an . art than a
science and that theoretical error bounds usually are hopelessly pes-
simistic, except for difference methods having a low order of accuracy.
He stated that, although the order of magnitude of truncation errors
could be computed theoretically, the actual bound depended on the size
of the derivatives usually not known beforehand. For mesh lengths used
in practice, cumulative round-off errors were usually much smaller than
truncation errors. If round-off errors accumulated significantly, it
was usually because thevaere amplified by "divergent" computing meth-
ods. He suggested that the usefulness of partial difference methods
owed far less to the science of numerical analysis than it owed to
improvements in computing machine technology.

Birkhoff pointed out that the Crank-Nicolson method was not well
adapted to the solution of parabolic differential equations involving
two-space variables because the method was implicit and therefore it

converged very slowly for fine meshes. He suggested that the ADIP
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(alternating=-direction implicit procedure) was an excellent practical
sglution to circumvent this difficulty.

Peaceman and Rachford (25) described the alternating-direction
implicit procedure as it was related to the conduction heat equation
with constant coefficients. It involved difference equations similar
to those for the implicit method; however, only one of the second
derivativés, say 32T/BX2, was replaced by a second difference evaluated
in terms of the unknown temperature while the other derivative,
aZT/ayz,,was replaced by a second difference evaluated in terms of
known values of the temperature. Sets of simultaneous equations were
formed that could be solved easily.by matrix inversion. These equations
were said to be impticit in the x direction. If the procedure was re-
peated for a second time step of equal size, with the difference equa-
tions implicit in the y direction, the overall procedure for the two
time steps was stable for any given time step. Their analysis of this
ﬁrocedure showed that it required fewer operations tham either the im-
plicit or explicit approach. Example solutions of the two-dimensional
steady and unsteady state heat equations were given for rectangular
boundaries.

Douglas and Peaceman (26) extended the applicability of the ADIP
by presenting solutions of more practical problems. The first example
was that of flow around a corner which showed that a more complicated
region.than a rectangle can be treated. A problem involving a radia-
tion boundary condition, which was nonlinear, was given; and therefore
the method was extended to more general equations. The third example
involved point heat sources and sinks in an elliptical region and so

this extended the method to treat curved boundaries and singular points.
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ADIP required less calculating time for these solutions than did other
methods.

Douglas (27) discussed the problem of stability and error growth
for linear parabolic and hyperbolic equations. He showed for wide
classes of difference analogies of linear parabolic and hperbolic
differential equations with twice-dependent coefficients that stability
,implies cdnvergence in the mean.

Brian (28) presented a finite difference method for solving three-
dimensional transient heat conduction .problems. The method was a modi-
fication of ADIP preserving its advantages of unconditional stability
and simplicity while achieving the higher-order accuracy of Crank-
Nicholson. The first three steps of the method were equivalent to ADIP
for half of a time step. 1In the fourth step the temperatures at the
‘advanced time level N+l were computed explicitly with the distance dif-

1

1
n+s n+s . .
? and T, ¢ values found in

1
ot T
y

ferences formulated in terms of the-Ti ,
the first three steps. The.form of the fourth step was similar to the
Crank=-Nicholson form. The method had not been proven by example when
the article was written.

Bruce et al. (29) developed a numerical procedure to solve a
second order nonlinear partial differential equation which described
unsteady state gas flow. The Crank-Nicholson method was used. A dif-
ference equation was written for each point in the domain and thus a
matrix of equations was solved. The method of solution consisted of
factoring the nonlinear terms into a product of assumed values of P and
unknown values of P. The resﬁlting linear set of simultaneous equa-

tions was solved by a Gaussian type elimination procedure for the

unknown P's. These values were then used as assumed values of P for
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the next iteration. .The iterations were continued until the unknown

P

values were eqqél:totthe»éésumed values. The Gaussian type elimination
procedure was first suggested by Lf H. Thomas of the Watson Scientific
Computing Laboratory. The procedure avoided error growth associated
with the back solution of the plain Gaussian elimination and also
minimized the storage problems in machine computation. This elimina-
tion procedure (Thomas' algorithm) was applicable for a tridiagonal
matrix. Proof of this algorithm was given in this paper.

Blair and Peaceman (30) presented experimental verification of
numerical solutions of nonlinear equations which described a gas drive
in an oil reservoir. -The numerical solutions presented were obtained
using the ADIP. A scale fluid sand model was used in the experimental
tests. Excellent agreement was obtained for all tests presented. A
convenient method to handle variable grid spacing in the numerical
equations was also presented.

Stone and Brian (31) gave a method of analyzing the accuracy of
finite~difference analogies of the differential systems which charac-
terized some convective transport problems. The method could be used
to treat equations containing both first and second order terms, but
was limited to consideration of linear differential systems.

Larkin (32) showed that the alternating-direction explicit proce-=
dure (ADEP) suggested by Saul'ev could be extended to two or three di-
mensions. The technique for abproximating the diffusion equation was
explicit, stable for time steps of any siée, and he concluded it was
competitive with other methods of approximating the diffusion equation.
Because it was an explicit method, it held a speed advantage o&er'im-

plicit computations over a single time level.
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Quon et al. (33) used the ADEP to solve a nonlinear partial dif-
ferential equation describing two-dimensional gas reservoir behavior.
They found the méthod to be straightforward and they encountered no
calculational problems. They concluded the method offered advantage
over the forward difference method from a stability standpoint, thus
permitting larger time steps. They said there was an advantage over
the ADIP from a computational point of view since only one nonlinear
algebraic equation had to be solved at a time, rather than a set of
equations, representing a row or a column of grid points.

Coats and Terhune (34) compared the ADIP and ADEP for two-=
dimensional flow calculations. They performed analyses and example
applications to compare accuracy and computing speed. They showed that
the truncation error for the ADEP was an order of magnitude larger than
.that for the ADIP. The ADEP was found to be nonconservative in that it
failed to preserve no-flow conditions at exterior boundaries. This
caused errors in potential and in material balance which could become
extremely severe if wells were near the insulated boundafies, Compari-
son of two example solutions showed ADIP accuracy superior to ADEP;
khowever, the ADIP required about 60 per cent more computing time than

&

the ADEP.



CHAPTER III
THEORETICAL DEVELOPMENT
General Description of Problem
Geometric Considerations

In situ retorting of oil shale requires that communication be
established between wells drilled into the shale matrix because oil
shale has no natural matrix permeability. This research is concerned
with a process using a single fracture communication between wells.
These fractures are induced hydraulically at pressures of approximately
2200 psia, and they have been observed to leave the well bore in a
vertical orientation. The fracture height can be controlled within a
range of a few to 100 feet.

Figure 1 illustrates the geometry of this problem. Gas is in-
jected down the injection well through the fracture in both.directions
to two producers. A combustible gas mixture could be burned at the
surface and the hot products of combustion injected or the combustible
mixture could be injected and then ignited downhole near the fracture.
The hot gas gives up heat to the shale matrix as it travels through the
fracture and it is recovered at the producing wells.

Figure 2 is an areal view of the pattern arrangement of a system
of wells. It is expected parallel lines of wells would be drilled,

all reaching the same horizon in the shale. The wells would be

15
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alternately producing and injection wells; The spacing between wells
and the lines would be determined ultimately:by the optimum economic
life of the process. A staggered injection-producing well sequence
from one.line to the next, thus resulting in a countercurrent flow
arrangement, would be the most efficient pattern based on heat trans-

fer considerations.
Process Considerations

Essentially all liquid and gaseous hydrocarbons are released from
0oil shale at or above 700°F; therefore the rate of movement of the
700°F isotherm in the matrix is an important consideration. The rate
of movement of this isotherm is not simply a function of the source
temperature and rate of heat injection. A complicated set of endo-
thermic heat reactions takes place as oil shale is heated. Endothermic
heat loss is experienced from 600 to 800°F when the kerogen decomposes
into oil, gas and coke. Also, endothermic heat loss occurs as the
mineral carbonates of the shale decompose. Under surface retorting
conditions most of this carbonate decomposition takes place over 1000°F
and it is essentially complete above 1600°F. Thermal conductivity of
sedimentary rocks is known to decrease significantly with temperature,
and the thermal‘capacity of shale has beeﬁ shown (10,14) to increase
.somewhat with temperature. These variable properties of oil shale

complicate the problem as to the optimum fluid injection temperature.
Flow Path

As the hot injected gases retort oil shale next to the fracture,

this shale is expected to develop a limited matrix permeability on the
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order of 10-15 md (20). Figure 3 is a schematic illustrating this.
Although limited injected gas flow may.occur through this zone, most of
the gas flow.is expected to remain in the high capacity fracture until
the retorted zone reaches the producing well. The fracture must remain
open ahead of the retorted zone to maintain a flow path to the pro-
ducer. Because of this requirement, injection pressures would remain
high, in order to maintain a fracture along the entire flow path,
through both retofted and nonretorted portions. Permeability in the
retorted zone -should be sufficient so that gases and vapors from the
interior shale undergoing retorting can escape to the fracture aﬁd be

-carried to the producing well,
Investigation Limitations

The process of in place o0il shale retorting is extremely complex.

Therefore, ‘this-investigation’was>limited to heat transfer. 'In.par-

-’iculaf;ffhe“lfmitatioﬁg*6fffﬁisi“ﬁﬁésfigétioﬁiwe 3

1. Pressure was not considered. It was assumed injection rates
.used in this study were possible. Any effect of pressure on
carbonate decomposition and retorting temperature was not
‘taken into account.

2. Retorting efficiency and ultimate recovery efficiency were not
studied in any aspect, although outflow temperatures were
limited to 900°F. This was done because it was recognized
sustained high temperatures would crack “péavy hydrocarbons
to gases: or eéeven:ito -carbon.

3. 0il richness was considered only with regard to heat retort-

ing requirements. A 28=-GPT sample was used for this.
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4. The effect of vaporization and condensation on heat transfer
was not considered explicitly. Mass transfer within or out
of the shale was not taken into account in the heat transfer

equations written for this problem.
Important Controllable Variables

Controllable variables that affect heat transfer in this process
are injection temperature, injection rate, well spacing and time.
Carbonate decomposition has an effect on the process but its effect

will be implicit with the temperature effect.
Value of Heat Transfer Study

- A knowledge of the temperature distribution under various condi-
tions will determine the feasibility of this retorting process from a
heat transfer standpoint. The most optimistic air-oil ratio can be pre-
dicted from this knowledge. Therefore, heat tranéfer results can be
used to determine if large expenditures for an experimental pilot test
are warranted. The pilot test operation is necessary to determine
optimum pressure and recovery operating conditions and to evaluate the

overall economics of a commercial project.
Plan of Attack
Four models were used in this heat transfer stuéy.
Models I and IT

Figure 4 is a schematic of Model I. This was the basic model used

to investigate the feasibility of oil shale in situ retorting by use
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of single fractures between wells. Heat is convected through the
fracture from the injection well to the producing well. Heat is.
 transferred to the shale by conduction. Conduction heat transfer is
considefed only in the horizontal direction, both .parallel and perpen-
dicular to the fracture. Vertical heat conduction is not considered in
this model because of computer size and time limitations. The section
cross-hatched in Figure 4 represents a symmetric element in a linear
array of such é well system. Therefore it is necessary to consider
only one such element because adiabatic boundary conditions exist on
three sides and an infinite boundary exists in the y direction perpen-
dicular to the fracture.

Model II shown in Figure 5 is a representative element in a sym-
metric areal array of wells. Figure 5 is similar to Figure 4 except
.two sides are bounded by. fractures which carry hot gas flowing in
opposite directions. TIn this model only the cross~hatched element
‘between fractures is considered, as the no-heat flow condition exists
on all sides. 1In both of these models the flow rate of only one half
the fracture is considered as demanded by the adiabatic boundary con-
dition of the symmetric elements.

The following two nonlinear partial differential equations

describe heat transfer in these two models.

QT -OT oT
h g . h g 5
= 0,CuV + = p,c, — = R(T) . (A-1)
2 Pe%e¥s 5 T 2 Pefe 3 | n |
"2

dT 3T
9 - - 5. = O, -
dx [KX(T) 3% 4 ' 3y [KY(T) 3y |- a(D = ps 37 [cs(T) Ts ] - (4-2)
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Deriyaﬁions of these equations are shown in Appendik A. Equation

(A—15 describes convection heat transfer in the fracture with heat

loss into the shale. The product pgvg represents the mass velocity
which is considered constant. This is based on the assumption that
near steady state conditions occur in the fracture. This condition is-
approached’more nearly with time as the fracture is heated.‘ The ther-

mal capacity, of the gas is considered to be constant. With these

Cg>

assumptions the rate of heat transfer from an injection well can be

taken as constant. ThevMbdel I boundary condition for the fracture

-is:

Atx=0,T=T, ., .
injection

For Model II we have in addition:

At x = X1 T = Tinjection

Also, the heat transfer coefficient between the gas stream and frac-
ture surface was considered infinite. This is equivalent to saying

the rock surface and the gas stream temperatures are identical at any

. point aiong the fracture. Thomas (21) has shown this assumption leads

to negligible error.
Equation (A-2) describes conduction heat transfer in the shale.
Thermal conductivity and thermal capacity of the shale are considered

a function of temperature. Endothermic heat losses are represented

by q, which is also a function of temperature. Boundary and initial

conditions in the shale for Model I are:

1. Att=0,T=T, O<Sx<x,0Syso,

oT : -}—ISySm

2. At x = = 2

|
o
It
o
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OT _ h

4. Aty = %, T = fracture temperature 0 = x < X1-

5. Aty =®, %% =90 0 =x <= Xp-
For Model II the boundary conditions are:
1. At t=0,T= T0 0=x=<x7, 0=y =<yj;.
2. At x = ,-g% 0 %SySyJ_%a
3. At x = x71, %5 =0 % <y.< YJ,% .

4., Aty = %, T = fracture temperature 0 < x = Xq-

h, T = fracture temperature 0 = x = Xp-

Model TII

This model was designed to investigate the change in heat trans~
fer that might result from limited convective flow through the re-
torted zone. Figure 6 is a schematic of Model IIT. Heat transfer
by conduction is considered in the horizontal direction both parallel
and . perpendicular to the fracture. Vertical heat conduction is
assumed zero. Convection heat transfer occurs not only through the
fracture but to a predetermined limited extent through the retorted
shale adjacent.to the fracture. As more shale is heated over 700°F
and the retorted area grows, convection heat transfer is assumed to
occur in the growing permeable zone. The proportional amounts of gaé
flowing in the fracture and.permé?ble zone would change with the vary-
ing pressure conditions, and therefore these quantities must .be

arbitrarily set since pressure is not considered in this study. The
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cross~-hatched section in Figure 6 represents a symmetric section in a
linear array of wells. Adiabatic boundary conditions exist on three
sides and an infinite boundary exists on the fourth side.

The following equation describes.heatvtransfer in this model and

is derived in Appendix A.

%—; [KX(T) .:—}T{—S ] +'g—y- [Ky(T) :-—:ﬁ} q(T) -0 ;{3 = Pg 2_5 [cS(T) TS]‘.

(A-3)
Thié equétion describes one-dimensional convection heat transfer and
two-dimensional conduction heat transfer. In the portion of the
matrix where convection .is not present, the value of o ‘is zero. The
aséumptions made : for Models I and II regarding the convective parame-
ters were also made for this model. Thermal conductivity, tHermal -ca-
'paéityﬁandeendotherpic-heatrloss were . treated:as functions Qfﬂtgmpera;.

ture. Boundary and initial conditions for this model are:

1. .AtAt=O,T=-T0 0<x=,0=y=<®,
2, Atx=0,%;]{—:=0 | %Sysw,
3. Atx=0,T=T 0sy<i
‘ ’ constant y 2"
T
4. At x = X1s 3y =0 0<y <=,
5. Aty=0,g—§='0 0<x<x.
6. Aty =, %% =0 0= x < xq.

Model IV

Model IV was designed to evaluate -the assumption of no vertical
conduction heat transfer in the first three models. In the real

physical situation heat conduction will occur in three directions and
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fherefore the configuration of the retorted zone (which coincides with
the 700°F isotherm) will be a conical ellipsoid whose cross section
diminishes in the downstream fracture direction. A symmetric elemeqt
of the ellipsoid is illustrated in Figure 7. If it is assumed that
there is no heat flow in the vertical direction then the 700°F iso-
therm would be a straight line in the z direction. But if heat flow
occurs in the z direction, the resulting isotherm would be as illus-
‘trated. The objective of Model IV is to compare the relative magni-
tudes of cross~hatched A and B and A' and B', etc. With this compari-
son the effect of the assumption that no heat flows wvertically :.can be
qualitatively evaluated.

In order to detérmine the profiles in the y=z direction, a con-
duction model was considered which used a heat source based on the
temperature history at selected positions along the fracture of Model
I. The use of this temperature history involves the assumption that
the fracture temperature histories of a two- and three-dimensional
problem would be the same. This assumption is probably good after
the temperature envelope has progressed some distance from the frac-
ture. In any event results from Model IV are considered only qualita-
tively to get-an estimatée of .the error involved in ‘the two=dimensional
conduction heat flow assumption.

With this background Model IV involved the solution of

dT JT
o —s1 2 s . o
dz [KZ(T) 3z . oy [KY(T) oy 1D = 05 33 [CS(T) TS] ’

|

with boundary conditions of:

1. At £=0,T=T, 0<zs<® 0<y<w,
= T = <
2. At z = 0, Sz 0 5 =Y < o,
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aT h
3. Atz=,§2=0 E’Syswa
‘ h ' , , L
4, At y = 5 T = Fracture temperature from . =0 < 'z <25, ..

selected points in Model I.

5. Aty 0 25<2z < w.

O}IO}
< I
I

6. At y = o, %% =0 0 <2z <o,

Variable Coefficients
Thermal Capacity and Endothermic Heat Loss

The fuietion of oil‘shale thermal capacity, cg(T), versus tempera-
ture is d%fficult to describe over a wide temperature range. The
thermal capacity is easily measured up to 450°F. Beyon& this tempera-
ture the character of oil shale begins to change as liquids are driven
off and mineral composition is altered. 1In the 600 to 800°F range
ke;ogen is distilled off and therefore there is a considerable endo-
thermic heat requirement. Carbonate decomposition begins over 900°F
and continues to at least 1600°F at atmospheric pressure, These‘endOw
thermic,hea£ requirements are comparable to the total heat content of

“the rock and therefore must be considered in this heat transferproblem..

Instead of obtaining a relationship of the heat capacity of oil

shale versus temperature, it is more convenient to measure total heat

requirement to raise a unit mass of oil shale to a specifict&mﬁeﬁéture;
This tota} heat requirement represents the heat content of the rock,
endothermic heat loss, as well as heats of vaporization and the heat
content of gas and vapors driven off. These latter twb,components of
the total heat requirement are rélatively minor; however their inclu-

sion helps to compensate for the errors in the assumption that no mass
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flow occurs out of the matrix. This agsumption was made in the deri-
vation of the conduction heat transfer equation in Appendix A. These
quantities can be treated together as long as the temperature at any
‘point increases monotonically for the duration of a calculation. If
temperature decreases then only rock heat content can be considered.
Since most of the runs in this work involved increasing temperatures
bnly, the heat content of the rock and the endothermic heat loss were
handled as a single quantity. For those cases where "heat soaking' was
studied, a rock heat content curve was used. For these cases, tempera-
tures were declining. Curves of total heat requirement and oil shale
heat content are shown in Figure 8. These curves were used in all heat
transfer calculations in this work.

The curves were constructed on information from the literature.
The heat content of the shale up to 4500F was obtained from Shaw (14).
From 450 to 1100°F the total heat requirement curve was based on data
from Sohns et al. (10). In this work oil shale heat requirements for
spent shale, 28 GPT shale and 57 GPT shale at atmospheric pressures
were presented. The 28 GPT data were used here. The Shaw (14) data
were for 30 GPT shale. Calculations by Sohns &t al.(10) indicated that
at 1100°F total heat requirement of the 28 GPT shale above 77°F was
358 BTU/1b while it was 272 BTU/1b for spent shale. The difference of
86 BTU/1b represented heat loss up to 1100°F. Dannenberg and Matzick
(18) presented material balance calculations, indicating that heat
losses other than by carbonate decomposition would be 58 BTU/lb, thus
indicating that at llOOOF, 28 BTU/1b was due to carbonate decomposi-

tion. Dannenberg and Matzick (18) and Matzick et al. {(19) presented
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data indicating that the total carbonate decomposition endothermic
heat requirementwas 220 BTU/lb for a shale containing 17 per cent by
weight mineral carbon dioxide.

The total heat requirement curve from 1100 to 1600°F was approxi-
mated by assuming that the remaining carbonate decomposition would
take place in this range and that the endothermic heat requirement for
this decomposition would occur linearly. - In addition to this heat
requirement, it was assumed that the thermal capacity of spent. shale
at 1100°F would remain constant at 0,268 BTU/1lb~°F. This assumption
is supported by work of Somerton (15) on sedimentary rocks, Combining
the endothermic heat and spent shale heat content, the curve sﬂown in
Figure 8 was obtained. Over 1600°F the increase in heat requirement
is due solély to the 0.268 BTU/lb-°F thermal capacity.

The heat content curve was assumed to be equivalent to the total
heat curve up to 600°F, At 1100°F spent shale has a heat content
above 0°F of 295 BTU/lb. From 600 to 1100°F, it was assumed the in-
crease iniheat capacity was linear. This assumption is supported by
Sohns et al. (10) data. Above 1100°F a thermal capacity of 0.268 BTU/

1b-°F was used.
Thermal Conductivity

A relationship of the thermal conductivity of oil shale as a
function of temperature is not available, Such a relationship 'would
be extremely difficult to measure because the o0il shale composition
changes markedly with temperature. The thermal conductivity of oil
shale has been measured at low temperatures by several investigators

(ll), (13). Gavin and Sharp (1ll) report that conductivities measured
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on 42vGPT shale at temperatures between 77 and 167°F ranged from 0.76
to 1,25 BTU/ft—hroF. They reported data on a number of substances in-
cluding limestone whose conductivities at a temperature of 200°F ranged
from 0.94 to 1.18 BTU/ft~hr®F. Recently, Somerton (13) reported the
thermal conductivity of 30 GPT oil shale parallel to the bedding planes
to be 0.63 BTU/ft-hr®F at room temperature. He measured the thermal
conductivity of the same samples perpendicular to the bedding planes to
be 0.45 BIU/ft-hr°F.

Somerton andJBoozer (12) reported thermal conductivities of sedi-
mentary rocks as functions of temperature from 700 to 1800°F. They
found that the thermal conducitivities of all rocks showed a similar
dependency on temperature and most of them at 200°F ranged from 0.8 to
1.09 BTU/ft-hr®F. Their values dropped to approximately 0.36 at
1200°F. Over 1200°F conductivities were constant.

It was decided to use the thermal conductivity of limestone for
this work because Information on oil shale conductivity\as a function
of temperature was not available. The limestone values were used
because of the similarity of the low temperature values of both lime-
stone and oil shale as reported by Gavin and Sharp (11). Also, the
mineral content of limestone and retorted oil shale are more alike than
any of the othér sedimentary rocks. The mineral content of oil shéle
is approximately 50 per cent dolomite and calcite. The thermal con-
duétivity relationship of limestone as a function of temperature used
for this research work is shown in Figure 9. Values range from 0.93
BTU/£t-hr®F at 200°F to 0.36 BTU/ft-hr®F at 1200°F. At temperatures
less than 200°F a constant value of 0.93 BTU/ft-hr°F was used. For

temperatures in excess of 1200°F it was assumed that thermal
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conductivity was constant at 0.36 BTU/ft-hr°F. The 0.93 BTU/ft-hrCF
lies in the range of measured shale values in the literature; however -

it is 0.18 BTU/ft-hr®F higher than Somerton (13) recently measured.
Description of Process Variables
Temperature

As mentioned in the description of the problem, injection tempera-
ture is an important process variable that can be controlled. The tem~-
perature must be greater than 700°F to achieve substantially complete
distillation of the kerogen. It would seem to be desirable from the
standpoint of heating rate and thus retorting rate that the sburce‘tem=
'peraturebbe as high as possible. Also, for the same injected heat,
injection rates ﬁan be reduced as injection temperatﬁres are increased.
Reduced injection rates improﬁe the economics of the process. At tem-
peratures of 1800 to 2000°F silicates will begin to fuse. Therefore,
temperatures in excess of these might glaze the\injection bofe hole
and the entrance portion of the fracture and could possibly cause
pressure and flow problems. Because of this, 2000°F is considered to
be the most likely temperature to be used.

Endothermic heat losses become increasingly large over 1000°F. Tt
‘is not intuitively evident whether the adverse effects of these heat
losses could be overcome by either reduced injection rates or greater
rates 6f heating possible with high injection temperatures. The differ-
ences in the rates of retorting rock versus time for all injection tem-
'peratureé investigated when compared at equal heating rates are an im-
portant consideration in this study. Should these differences be .in-

significant, then the highest injection temperature would be preferred
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because of reduced gas injection rates.
Injection Rate

A larger injection rate at the same injection temperatufe means an
increase in heat injection pef unit time. This serves to raise fracture
temperatures and thus the rate of retorting rock will be increased.
However, after hot gas has reached the producing well, a 1argér quéntity
,of heat will be exhausted at the higher injection rate. Therefore, per
cent heat utilization drops with increased injection rates after heat
"breakthrough." This problem may be partially alleviated if provisions
for utilization of exhaust heat have been made. The effect of injecs”

tion rate on the process was investigated.
Well Spacing

The effect of spacing én retorting efficiency may not be pro-
nounced; however, larger distances between injection and producing
wells may. improve utilization of heat. Spacing between lines of wells
will be determined by the rate of heat pemetration. The larger spacing
that is possible without affecting retorting‘efficiency, the more eco-

nomic the process will become because fewer wells would be required.
Time

The optimum operating life of a project would be a function of
equipment :1ife and investment return, as well as process parameters.
When the rate of retorting drops below a certain value, oil production
will not pay for operating expenses. This is obviously the termi-

nation point of the project. This time can be controlled by the rate
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of heat injection, injection temperature and spacing. Results from
this study should provide information to predict optimum project

length.
Heat Soaking

In those cases where the producing well temperature becomes far
in excess of the retorting temperature, continued operation would be
impractical. This is so from a heat utilization standpoint as well as
from the standpoint of cracking all liquid petroleum producté into
gas or,'even worse, into carbon, It is anticipated that at this time
the producing and injecting wells would be shut in and the shale would
be allowed to "soak.'" When temperatures dropped sufficiently, injec=
tion would be resumed. The effect of this ''soaking'" on retorting

efficiency and heat utilization was investigated.
Air-0il Ratio

The air=oil ratio is defined here as the volume of injected air
plus fuel required to produce one barrel of oil. From this ratio the
-compression cost to produce a barrel of oil can be calculated, This
cost is the most important one when considering process economics.

The amount of injected air required to produce a barrel of oil is
dependent on all process variables; however, the injection temperature
will probably be the one which influences it most. Two=-thousand-degree
gas contains approximately twice the heat of 1000°F gas. Therefore,

if retorted shale volumes were the same for equivalent heat injection
rates, then the total volume of air injection at 2000°F would only be

one half of that at 1000°F. Thus producing air-oil ratios would be



40

only one half as much, also.

In this‘study a theoretical optimum air-oil ratio versus time was
determined for all cases studied. O0il production was considered a
direct function of the volume of oil shale retorted while air . injec-

tion was constant for all runs.



CHAPTER IV
APPROACH TO NUMERICAL SOLUTIONS
Nunmerical Procedure

The alternating‘direction implicit procedure (ADIP) was used to
solve the difference.equatiohs describing heat transfer in the oil.
shale. The literature indicated that for heat models the alternating
direction implicit procedure (ADIP) possessed advantages of speed over
the explicit and implicit techniques. Coats (34) showed the method
for two-phase fluid problems to be some 60 per cent slower than alter-
nating direction.explicit procedure (ADEP) but it was more accurate.
The ADIP was used here bécause the literature contained much more
suppofting evidenée-of its versatility to heat flow problems, For
steady state conduction heat fransfer problems the ADIP has been
proven absqlufely convergent fo; any time step. However, the method
is ‘not absolutely convergent for any time step fof nonlinear problems
or problems containing convec;ive terms.

The ADIP fbr two dimensions involvesvthe use of two sets of dif=-
foren . oo 22T

erence equations. One set has the second derivative ) replaced by
a second difference written in terms of unknown temperatures while
32T

) is substituted by a second difference written in terms of known

oy

temperatures of the previous calculation. The second set of differ-
2 2

ence equations has §-§ described by unknown temperatures and EL%

‘ oy dx%
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described by known temperatures. The first set of difference equa-
tions ris. seid to be implicit in the x direction and explicit in the
y‘direction. The second set is implicit in y and explicit in x.

There are as many equations in each set as there are mesh points in
the grid representing the prpblem. The method of solution .involves
starting with either type equation written for each point in the grid.
This set of equations is then .solved by matrix inversion. The matrix
inversion technique esed in this work is described in Appendix C. For
the next time step or iteration (depending on the problem), equations
written implicit in the opposite direction are solved by matrix in-
version. This alternating procedure is then repeated over and over

again throughout the duration of the problem.
Description of Numerical Models

The differential eﬁuations representing each model, derived in
Appendix A, are represented in terms of difference equations in
Appendix ‘B, The difference equation analegous to the differential
equation that describes convection heat transfer with heat:léss into

shale, as described for Models I_,epd_'II‘9 is derived. It uses a two-

‘point backward difference term to represent change in fracture tem-
peratere and a three-point forward difference term to describe heat
transfer into the shalé. . The 'solution is éxplicit as only one bgundary
condition is required.

Since ADIPwas used, difference equations that describe heat flow
in the shale are deri&ed both implicitly and explicitly in each dir-
ection that is considered for each of the models. Central differences

are: used to represent the second order differential conduction terms.
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Central differences are alsoc used for the first order convection term
in Model TIII. These equations are all rearranged into a similar form

as follows:

+ =
By Ty T8y Ty +C Ty =0y

where the coefficients Ai’ Bi’ Ci and Di are comprised of constants,
functions of known temperatures, and known temperatures. The sub~
scripts refer to the mesh point the equation represents.

Appendix B also includes a description of the variable spacing
scheme used in addition to the derivations of difference equations for
the five computer programs that were developed for this research work.
The five computer programs were named THERMAB1, THERMAB2, THERMAB3,
THERMAB4 and THERMABS5. THERMABL and THERMAB3 were developed to solve
Model I. THERMAB2 was written to solve Model IITI. THERMAB4 was used
for the solution of Model II -and THERMABS was the program used to solve
Model IV. Boundary conditions for each program are listed in Appen=
dix B.

It is to be noted that the numerical derivations in Appendix B
were derived using specific endothermic heat requirement and specific
thermal capacity. Since only total heat reqﬁirement and content data
were readily available, these data were used in all programs. To use
it, all that was necessary was to replace the composite specific total
heat requirement (identified as C in the appendix) by the total heat
requirement divided by the temperature.

The curves describing thermal conductivity, total heat require-
ment and total heat content shown in Figures 8 and 9 were described by

equations so that they could be used in these computer programs. The
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thermal conductivity curve from 200 to 1200°F was represented by a
fourth order poiynomial obtained by a least squares fit. Above and
below these temperatures conductivity;values were constant, The
curves for the total heat requirement and total heat content were each

described by a series of linear equationmns.
Model I

Figure 10 shows the grid network representation of Models I and
III. Grid points in the y direction are spaced closely‘near the
fracture and fafther apart away from the fracture. This permits fewer
grid points to be used and still maintain uniform accuracy throughout
the grid systém. A method to determine the y grid spacing is given in
Appendix D. The distance in the y direction is sufficient to repre-
sent an infinite bouﬁdary. The x spacing for these models is con-
stént. The center line in the fracture coincides with the first row
.of mesh points.

A computer program, THERMABl, was first written to numerically
s6lve Model I assuming that thermal conductivity and capacity were
constant and there was no endothermic heat loss. Difference equations
for this program are the same as those used in THERMAB3 and THERMAB4,
but with the above assumptions the resulting coefficients of the dif-
ference equations are: simpler than those for THERMAB3 and THERMAB4.
The difference coefficients for THERMABl are listed in Appendix B
along with the appropriate boundary conditions for this model. A flow
.chart and program listing of THERMABL are shown in Appendix F,

The program for the general numerical solution of Model I is

called THERMAB3. The detailed derivation of the numerical equations
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and resulting coefficients used in this program are presented in
Appendix B. In these equations it is assumed there is directional
variable thermal conductivity, variable thermal capacity and endo-
thermic heat loss, all functions of temperature. The boundary condi-
‘tions for Model I are also listed. A simplified flow sheet and pro-
gram listing of THERMAB3 are given in Appendix F.

The basic method of solution of Model I with reference to the
THERMAB3 flow chart is summarized as follows:

1. Read in all input data and initialize all parameters.

2. Compute valués of velocity as fumnctions of x distance.

3. Calculate the variable. spacing values as described in
Appendix B (CALCY subroutine).

4. Calculate initial values of thermal conductivity, total
heat requirement, total heat content and store all in
temporary arrays. The latter two sets of values as well
as temperature are also stored in permanent arrays.

5. Solve the convection equation explicitly (CONV subroutine).

6. Calculate new valués for thermal conductivity and total
heat requirement in the j=1 row (COND5 and CAPAC1 sub-
routines).

7. Solve the conduction equation using ADIP first sweeping
in the x direétion (COND1 subroutine).

8. Calculate new values of thermal conductivity and total
heat requirement (COND4 and CAPAC subroutines).

9. Check to see whether all newly calculated temperatures
have changed from previously calculated temperatures by a

prescribed tolerance.
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10. If the changes for all temperatures are less than
tolerance, store temperatures and latest values of
total heat reqﬁirement in permanent arrays and go
to next time step.

11. 1If tolerance is not satisfied for all temperatures,

solve convection equation again (CONV subroutine).

12, Calculate new values for thermal conductivity and

total heat requirement in the j=1 row (COND5 and CAPACL).

13. Solve conduction equation sweeping in the y direction

(COND2 subroutine).

14, -Calculate new values of thermal conductivity and total

heat requirement.

15. Check to see if new temperatures are within tolerance.

16, 1If so, repeat step 10.

17. 1If not, solve convection equation again, etc.

This is basically the procedure for THERMAB3 and THERMABl; how-
ever, the thermal conductivity and total heat requirement steps are
not included in THERMABL. 1In short, the convection equation is solved
along the j=1 row.of the matrix. Using this as a boundary condition,
the heat distribution in the shale is determined by first solving the
conduction equation which is implicit in x and explicit in y. A check
is made to see if temperatures have changed less than a prescribed
tolerance. TIf they ﬁave, time is incremented; if not, the convection
equation is resolved. Then the .conduction equation written implicit
in y and explicit in x is solved. A check is made to see if the new
temperatures have changed less than the tolerance. If tolerance is

satisfied, time is incremented; if not, the procedure is repeated
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until the iteration procedure satisfies the tolerance. GConvergence is
obtained rapidly with this procedure.

The program has a built-in procedure to lengthen the time incre-
ment and to reduce the tplerance of iteration as time increases.
Details of this are given later in this chapter and in Appendix D.

The 'variable spacing sequence, convection routine, both conduction
equation routines (GONDL and COND2), the thermal conductivity, and
total heat requirement determination were written in subroufine form
to facilitate programming.

A heat balance is included in this and all other programs used in
this work. A double integration of the total heat requirement of the
shale is made to obtain total heat utilized. The procedure used for
integration is a two-dimensional Simpson rule with variable increments.
The heat which flows in at the injection well and that which flows out
of the producer is easily calculated since these end point tempera-
tures in row j=1 are known at the end of each time step. The balance
of heat in, with the heat out plus heat utilized, is a main control-
ling factor as to the validity and accuracy of the solution.

To obtain information needed to evaluate the assumption that no
‘heat flows vertically, THERMAB3 is: written so that temperatures and
heat utilizatibns .«can. be printed out every time step for prescribed
positions along the fracture. These temperatures serve as iﬁput data
for THERMABS.

A contour suBroutine is used to record the y distances from the
fracture of several desired temperatures at all positions in the x
direction. Linear interpolation is used between grid points.

If the fracture temperature at the producing well becomes a
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specified amount greater than the retorting temperature (taken to be
900°F here), the program is written so that the use of the convection
routine is stqpped, this information is printed out, and the shale
matrix begins to "soak." To do this, boundary conditions of the two
conduction subroutines (COND1 and COND2) must be changed to be adia-
batic on all sides. Instead of changing these boundary conditions,
two new subroutines (COND6 and COND7) which are analogous to COND1 and
COND2 except for the changed boundary conditions are used. When the
temperature of the producing well falls below 800°F, the program is
written to print this out and revert to the normal calculating rou-
tine.

As long as temperatures at a given matrix point are increasing,
the total heat requirement values are used. They represent both
heat content of the rock and endothermic heat requirements which are
combined in the difference equations. During soaking if temperatures
decrease only the heat content of the rock is available to be given
up. Therefore a decision on which "heat capacity" value to use is
made on the basis of whether the temperaturs of the point in question
has been increasing or decreasing. A separate subroutine (CAPSK) fo

calculate rock heat content is used for the '"soak'" alternative.

Model II

Figure 11 represents the grid network of Model II. This model
is bounded on two sides by fractures. The spacing of grid points in
the y direction was determined in the same manner as it was for Model
I, but the presence of the two fractures causes the y spacing to be

greatest at the center of the model. The x spacing for this model is..
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constant. The center lines of the two fractures coincides with the
first and last row of mesh points. The distance Between fractures
is: 100 feet and the distance from injection to producing well along
a fracture "is 500 feet.

The program for the numerical solution of Model II is called
THERMAB4. The numerical equations for convection heét transfer are
similar to the one for THERMAB3 with the appropriate point to poiunt
nomenclature changes made for the convection heat transfer equation
along the j=J row. The numerical equations for conduction heat trans-
fer in this program are the same as the omes for THERMAB3. The bound-
ary conditions appropriate for THERMAB4 are listed in Appendix B. A
flow chart and program listing are given in Appendix F.

Procedures in THERMAB4 are similar to THERMAB3. The basic dif-
ference is that in place of solving one convection equation, two con-
vection equations are solved (CONV and CONV2 subroutines). Then new
values of thermal conductivity and total heat requirement in both the
j=1 and. j=J rows are calculated (COND5, COND8, CAPACl and CAPAC2 sub-
routines). The procedures to lengthen the time increment and to re-
duce the tolerance of iteration are the same as those ianHERMABB. A
heat balance, a contour subroutine and the "soak" feature are also

included in this program.’
Model TIII

Figure 10 as described for Model I also represents the grid net-
work for Model III. THERMAB2 is the program for the numerical solu-
tion of this model. The difference equations both implicit in x and

explicit in .y, and implicit in y and explicit in x are derived in
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Appendix B. The appropriate boundary conditions are also listed. A
flow sheet and program listing are listed in Appendix F.

This model, used to evaluafe the influence of convection heat
transfer in the shale matrix, does not contain a separate convection
equation whose solution is a boundary condition for the solution of
the conduction equations. Instezi, the convection term is combined
with the conduction equations and the boundary conditions are all
adiabatic,.except at j=1, i=l, where a constant. injection tempera-
ture is the boundary condition. Initially, convection heat transfer
occurs only in the j=1 row (the fracture); therefore a switch (called
HH in THERMAB2) to set the convective term equal to zero elsewhere is
used. When the matrix temperature at any point exceeds 700°F, it is
agsumed limited permeability is developed and therefore the convective
term is included by setting HH=1. The relative proportion of the con-
vection present above the fracture must be set arbitrarily as it is a
function of pressure which is not considered in this study.

Basically, this program is similar to THERMAB3., Although itera-
tion is not necessary between a convection and conduction solution,
it is necessary because of the nonlinear temperature-dependent coef-
ficients. Subroutines for this program include COND1 and CONDZ which
are the basic routines for solving {(by matrix inversion) the implicit
in x and implicit in y forms of the difference equation that describes
this model. Within each of these subroutines there is a built=-in
procedure which is written to determine the thickness of the retorteé
zone in the y direction. 1In other words, the procedure is designed to
determine how many grid points are above 700°F. After this is deter-

mined, the convection heat transfer can be digtributed as desired
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throughout this zone. In the run made with this model it was assumed

90 per cent of the gas flow occured in the fracture and 10 per cent

was distributed evenly along a vertical profile of the retorted zone.
Other subroutines used in this program are the same as those

described for THERMAB3. The ''soak'" routine is not included.
Model IV

Figure 12 represents the grid network used to solve Model IV.

In the y direction, distances between points are variable and are the
same as the grid spacing for Model I. 1In the z direction, the first
six grid points (representing 24.5 feet) are evenly spaced. From
24.5 feet to 281 feet the grid spacing is analogous te that in the y
direction. The first grid points (m=1 through 6) at j=1 are held at
the same temperature during a time step, but this temperature changes
for each new time step. This temperature history is obtained from the
resulting temperature history of a selected point along the fracture
in Model If For example, the temperature history of TlO,l (x = 1001
feet down the fracture) in Model I could serve as the source tempera-
ture for m=1 through 6, at j=1 for Model I¥. All other boundary con-
ditions for this model are the adiabatic condition. A flow chart and
program listing are given in Appendix F.

The program for the numerical sclution of Model IV is called
THERMAB5. The numerical solution for this model consists. of an
iteration procedure between the two basic subroutines, COND1l and
COND2. These subroutines represent the alternate conduction equations
derived for the ADIP. 1Iterationr 1s necessary, as before, because of

the nonlinear temperature=-dependent coefficients.: The same auxiliary
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subroutines, mentioned before, are utilized in this program. In addi-
tion, a subroutine, CALCX, is. necessary for this program because of
the variable spacing in the z direction. This program is written to
calculate variable spacing values needed for the difference terms

written for the z direction.
Determination of Iteration Parameters
Grid Spacing

The -first three grid points in the y direction for all models
were chosen one foot apart; the third through sixth point were two
feet apart. Beyond this, grid spacings in the y direction were deter-
mined basically by the technique developed in Appendix D. This spac-
ing technique allows the use of a minimum number of grid points,
while requiring the température.difference between any two adjacent
points be less than a predescribed (AT)maX.

Grid spacing in the x direction was constant. Using THERMAB3,
it was determined that a Ax spacing of 10 feet was most satisfactory
under the circumstances involved. A heat balance discrepancy of ap-
proximately 18 per cent after 30,000 hours of calculated history was
obtained using a Ax of 20 feet. This compared to a heat balance dis-
crepancy of 6 per cent using a Ax of 10 feet, other parametefs being
equal. Delta x spacings .of less than.10 feet were impractical because
of the number of grid points involved for:the size of system being

studied.

Time Incrementation
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The size of the time increments used in thé initial work with
THERMAB1, which included constént-coeffiéients, had an insignificant
effect on the accuracy and no effect on numerical stability. This was
at least true with At's of 1 to 100 hours. After 5000 hours of com-
puted history the ergor in the heat balance was 2.5 per cent and after
10,000 hoursj it was 1.0 per cent using a constant At of 50 hours.
Systematically increasing At values from 1 to 50 hours resulted in a
heat balance error of only 0.6 per cent after 5000 hours. - It was
possible to start calculations with At =-100 hburs with no apparent
instability.

With the use of the temperature-dependent coefficients of thermal
conductivity, thermal caﬁacity and endothegmic heat loss, the time
-increment size and time of utilization were very critical. The devel-=-
. opment of a time increment sequence=that was suitable from stability
and speed of solution standpoints was developed to some extent from
theoretical considerations, but largely by trial and error. Ini-
tially/using THERMAB3, it was discovered that the numerical procedure
became unstable after only 40 time steps (200 hours of computed his-
tory) when using a At of 5 hours and a Ax of 10 feet. Becauseléf
this, the technique described in Appendix D was used to increase At
syétematically. Using this approach after five initial At's of one
hour, it was poésiﬁle to increase the size of At to 38 hours before
instability developed. Additional work showed,jhowever, that this
procedure had to be discontinued after a At of 15 hours for absolute
stability. A At of 15 hours was used up to a cumulative time of 1000
hours of computed history; it was then increased to 30 hours and held

constant up to 3000 hours. At.5000 hours' history, At was increased
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to 50 hours and at 10,000 hours of history it was increased to 100
hours. This sequence was developed by trial and error using a Aty of
2000°F, a Ax of 10 feet, an @ of 10 BTU/hrnftoF and a tolerance of
iteration of 0.05. Actually with thisvtolerancevit was possible to

go to a At of 100 hours earlier but the tolerance sequence described
below required that At not be incremented to 100 until 10,000 héurs of
Ihistory. The size of the time step was less critical when a Ax‘spacing
of 20 feet was used. Computations were stable with a At of 50 hours
as early as‘1000 hours of history, 'with a At of 100 hours as eariy as
3000 hours and with a At of 200 hours as early as 10,000 hours of
history. Also, the systematic incrementing procedure «could be used

up to 38 hours and remain there without §tability t;rouble° But,
because of heat balance'error,bthe smaller Ax spacing of 10 feet was

adopted.
Tolerance Incrementation

As temperatures increased, a tolerance of 0.05 represented a
sizable temperature spread and therefore.for accuracy it had to be-
decreased. By tr¥al and error with At values of 15, 30, 50 and 100
at the times stated above, it was determined that the tolerance could
be reduced to 0.04 at 3000 hours, to 0.03 at 4000 hours, to 0.02 at
5000 hours and to 0.01 at 20,000 hours. The" time increment and toler~
‘ance sequences used for these programs are illustrated in Figure 13.
With small time steps, a smaller tolerance could have been used ear-
lier; however, due to the .computer time involved with these runs, it
was. necessary to sacrific% some accuracy for speed.

A change in injection temperature and.injection rate from the
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T0’=:2000°F and o = 10 BTU/hr-ftoF, for which these At and tolerance
sequences were developed, can cause ingtability when At is large and
tolerance small. To avoid this, all programs were written as follows:

1. At 20,000 hours, tolerance was set at 0.01.

2. If instability resulted, tolerance was reset at 0.02, etc.

3. At 25,000 hours, a tolerance of 0.0l was tried again, etc.
In all cases a tolerance of 0.01 was used after 25,000 hours. Insta-
bility was determined by installing a counter on the number of itera-
tions per time step. After ten iterations the programs were set to
alter the tolerance as described. After twenty iterations in the
same time step at any stage throughqut a run, all programs were
written to stop calcﬁlations. Ihis safeguard prevented excessive

computer usage.
Solution Validity
Check of Lauwerier Solution

An analytical solution of a simplified version of the neat trans-
fer problem solved here served as a check as to the validity of the
numerical procedures used in this work. Lauwerier (23) solved a one-
dimensional convection heat transfer problem which loses heat by
conduction perpendicular to the direction of flow. Conduction heat
flow in the bounding media was one dimensional perpendicular to the
direction of fluid flow. It was assumed that flow path was infinitely
long and coefficients were constant. The THERMABL solution (constant
coefficients)'should be very close to the Lauwerier solution up until

the time of heat breakthrough at the producing well since the heat
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condﬁctance in the x direction has a relatively small effect compared’
to heat conductance in the y direction.

Figure 14 is a comparison of the fracture temperature determined
with the Lauwerier solution to that determined with THERMAB1 after
5000 hours of history. Little difference can be noted between the
solutions. Figure 15 is a comparison of the position of the 600°F
isotherms after 5000 hours as determined by the two me;hods. Again
little difference is noted. This comparison is the more significant
because the position of the 600°F isotherm represents the degree of
oil shale retorting as determined both numerically and analytically.
The 600°F isothenﬁmas considered because the ambient temperature was
set at zero for these solutions Butmws considered to be 100°F in the

physical problem.
Solutions Using Limiting Coefficients

Since nonlinear temperature-dependent coefficients were involveéed
in this research problem, the above .comparison does not represent
complete verification of the numerical procedures. Another test that
was used to support the validity of these numerical procedures
(THERMAB3 and THERMAB4) was to calculate constant coefficient solu-
tions using values of the coefficients determined at the minimum tem-
perature and maximum temperature encountered in this study. If these
solutions encompass a solution with variable coefficients then the
results were qualitatively-in the proper direction. Two tests of
5426 hours each were run. The first one used a thermal conductivity
of 0.93 BTU/ft-hr°F and a thermal capacity of 31.5 BTU/ft3-°F. The

second one used a thermal conductivity of 0.36 BTU/ft-hr®F and a
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thermal capacity of 54.0 BTU/ft3w9F. These cases represent values of
these tﬁo coefficients at 100 and 1600°F, respectively. Figure 16
shows results of these two tests and also the result of a test using
variable coefficients. Since the results from the latter test fall
between the results from the twoe bounding tests, it was concluded the

numerical procedures gave results that are qualitatively reasonable.
Heat Balance

As mentioned, heat balances using THERMABL (constant coefficients)
were excellent very early into a run. By 2500 hours the heat balance
error was less than 1 per cent. Errors in the heat balance for the
variable coefficient solution were somewhat larger, especially at
early times. One of the main reasons for this was because the itera-
tive tolerance was started at 0.05 compared to 0.0l for the constant
coefficient solutions.

The fractional error in the héat balance during any one time step
monotonically decreased throughout the life of a run. This error was
denoted .in the prograﬁ listings of THERMAB3 and THERMAB4 as ER2 (see
Appendix E) and had values as high as 0.20 during the first few
hundred hours of a run but decreased to values of 0.02 to 0.13, de-
pending on the parameters of the problem. Cumulative heat balance
discrepancies for the variousg runsg ranged from 0.02 to 0.14 after
80,000 hours. 1In all cases discrepanciesg were positive, i.e., stored

heat plus produced heat was greater than injected heat.
Effect of Assumptions

Convection Difference Equation
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Comparison runs were made using both two-point and three-point
backward difference representations to approximate the differential
term degcribing convection heat transfer. The three-point approxima-
tion would be expected to give greater accuracy where temperature
gradients were not linear. Results from these compérison runs showed
that after a few hundred hours there was no perceptible difference in
accuracy and therefore the two-point difference representation was

used.
Velocity

Referring to Equations (B=-13), (B-14), (B-15) and (B-16), it can
be seen that there are two terms containing v, velocity, in their
denominators. Assuming a fracture width of one-eighth inch, it was
calculated that fracture entrance velocity would be approximately 600
ft/hr at an injection pressure of 3000 psi and a heat flow rate () of
10 BTU/hr-ftoF. The velocity at the fracture outflow end would be on
the order of 20,000 ft/hr if outflow pressures were 100 psi. There~
fore, the value of v would be large any place within the fracture.
The terms containing v are inversely proportional to v and thus they
would be extremely small and probably insignificant.

The actual values of v used in these numerical solutions were
based on the assumption that pressure drop through the fracture would
be linear and the injected gas Would.behave as a perfect gas. There-
fore the velocity was an inverse funétion of the pressure and range
from 600 and 20,000 ft/hr for an alpha of 10 BTU/hr-ft°F. An ex-

ponential equation with the x distance as the variable was used to
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to calculate velocity at any x position. The equation was
v = 600 + 0.8 x + e O182%

A test was made to determine whether changes in the values of
these velocities would affect the temperature solution. One run was
made using velocities determined by doubling the values of all con-
stants in the above equation. Fracture temperatures between thé two
runs vafied less than two degrees at any point after 2500 hours. This
showed that the effect of velocity on temperature distribution was in-
significant providing the velocities were large. Because of fhis, the

method of determining these velocities had little effect on the soclu-

tion.
Infinite Heat Transfer Coefficient

In these numerical solutions it was assumed that the temperature
of the shale at the fracture surface was the same 23 the gas tempera-
ture. This is the same as saying the heat transfer coefficient be-
tween gas and shale is infinite. Thomas (21) showed that for heat

-transfer coefficients of 5 to BTU/ftz-lhrOF9 the heat penetration
‘rates into a substance of low thermél conductivity were essentially the
same. He also showed for coeffiéients as low as 0.05 BTU/ftzﬁhroF the
average heat penetration was reduced only about 10 per cent. Eckert
(36) indicates that heat transfer coefficients of air range from 2 to
50 BTU/ftthroF over various flat surfaces. Assuming that the heat
transfer coefficient of a fracture surface inoil ghale fell into this
category, we would expect that an infinite heat transfer coefficient
assumption for this work would be valid. A check of this assumption

was made by making a short run with the quantity K/L between the j=1
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and j=2 rows set equal to a boundary layer heat transfer coefficient
of 5 BTU/ftz-'h_roF° The j=2 row wasvthen considered to be the shale
surface with the j=1 row being the boundary layer surface.

Figure 17 shows a comparison of the results of this run with a
ruﬁ assuming an infinite heat transfer coefficient. As can .be seen
the positions of the 700°F isotherms for the two cases are very close,
.thus supporting the infinite heat transfer assumption. Longer runs
would show even a less percentage difference in the positions of the

isotherms.
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CHAPTER V
RESULTS AND DISCUSSION

A total of 18 runs were made for this study., Table I summarizes
these runé along with their pertinent parameters. All runs were con-
ducted for 86,000 to 90,000 hours (approximately 10 years) real time,
excepting for Run 11, which was 110,000 hours. Nine runs were made
for Model I (THERMABB), three runs for Model II (THERMAB4), two runs
,for Model III (THERMAB2) and four runs for Model IV (THERMAB5). Exam-
ple bu;put sheets for THERMAB3 and THERMAB4 are shown in Appendix E.

Computer time for these runs varied from 35 minutes to three
hours in length. Model IV was solved in 35 minutes using THERMABS.
Conventional 500-foot runs using THERMAB3 required about 1 hour 20
minutes of computer time, Model III required 1 hour 30 minutes to
solve using THERMAB2 and Model TI required 1 hour 40 minutes with
THERMAB4. Run 9, lOOO-foot gystem, reduired approximately three hours

to solve using THERMAB3. This run used 2121 grid points.

Results from Model I and Model II
General Discussion

Results from the nine runs made for Model I are presented in
Figures 18 through 35, and results from the three runs made for Model
I1 are-presented ianigures 36 through 41. Two figures are presented
for each run. The first is a plot of the position of the 700°F
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TABLE I

SUMMARY OF COMPUTER RUNS

Inijection Rate

Run Fracture Injection 7

Number Model Length, ft Temperature, F o Btu/hr-ft SCF/hr-£ft MMSCF/D - Well
1 I 500 1000 5.00 5,000 278 1.33
2 I 500 1000 10.00 10,000 556 2.67
3 I 500 1500 6.67 10,000 370 1.78
4 I 500 1500 13.33 20,000 740 3.55
5 I 500 2000 2.50 5,000 139 0.67
6 I 500 2000 5.00 10,000 278 1.33
7 I 500 2000 10.00 20,000 . 556 2.67
8 1 500 3000 3.33 10,000 156 0.75
9 I 1000 2000 10.00 20,000 556 2.67
10 IT 500 1500 6.67 10,000 370 1.78
11 IT 500 2000 5.00 10,000 278 1.33
12 I1 500 2000 10.00 20,000 556 2.67
13%% ITI 500 ~ 2000 2.50 5,000 139 0.67
14 III 500 2000 2.50 5,000 139 0.67
15 v Cross-section Profile at =0 feet along fracture of Run 6.

16 Iv Cross-section Profile at 100 feet along fracture of Run 6.

17 Iv Cross-section Profile at 200 feet along fracture of Run 6.

18 Iv Cross-section Profile at 400 feet along fracture of Run 6

*BTU/hr-£t°F
Jeof

100 per cent of gas flow in fracture.
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.
isotherm versus time. The second is the temperature distribution at
the end of 86,100 hours. Notice that.in‘the case of the Model II .
runs, double countercurrent plots are presented. The temperature
distribution .curves are given to serve as reference information. For

" alternative was studied, positions of the

those runs where the "soa
700°F at the end of selected injection periods were plotted to insure
that the farthest :advance of the 700°F was recorded. For these runs
the final temperature distribution was listed at the -end of the injec-
tion cycle closest to 86,100 hours.

The plots of the positions of the 700°F isotherms versus time
are the basic curves from which all other comparison curves were -con-
‘structed. The areas under the - 700°F isotherm at any time represent
the volumes of oil shale retorted per foot of fracture thickness as
" calculated by the two-dimensional models. These>volumes are compared
with the parameters of the.process in Figures 42 through 59.

In order to obtain accurate volumes of shale retorted, large
plots of the positions of the 7000F isotherms versus time were made.
The areas under these large: plots were determined with a planimeter.
Planimeter error averaged less than 1 per cent.

Fractional cumulative heat balance errors ranged from 0.02 to
0.14; however, heat balance error was found to lie within 0.05 to 0.10
for most cases. Two soak runs had the -lowest errors and‘the 3000°F
w run had the 1argestiérror. It is noted that all heat balance errors
Were:in the same direction, i.e., cumulative stored heat plus produced
heat was greater than cumulative injected heat. With this in mind
results from these runs can»be considered on the optimistic side.

However, retorted volumes determined here are not necessarily in error
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to the\same degree as the heat balance because only the position of
the 700°F isotherm is involved.

The previously described iteration parameters developed with
THERMAB3 for this work were satisfactory for all runs except for run
9. This was the only case studied with a 1000=~foot fracture length.
In this case, the time increment was held at 50 hours up to 30,000
hours of history instead of the usual 10,000 hours. This was neces-

'sary to get convergence within the prescribed. tolerances.
Effect of Temperature

The effect of injection temperature upon retorting rate at
several heat injection rates is shown in Figures 42, 43 and 44. These
figures show that rates of retorting are all constant up to the time
that the 700°F isotherm arrives at the producing well. For the cases
shown in Figures 42 and 43 the 700°F isotherms do not reach the pro-
ducers during the durations of the runs. At the highest injection
rate of 20,000 BTU/hr-ft, it can be seen from Figure 44 that the rate
of retorting fof the '1500°F case decreases at approximately 20,000
hours; Qhereas, for the ZOOOOF’case, it decreases at 25,000 hours.
Figures 24 and 30 show at these times the 7009F isotherms have reached
the producers. When the producers reached 900°F the alternating soak-
injection routine was used. Figure 44 also shows that for the 2000°F,
1000-foot case, its rate of retorting remained constant, and therefore
the 700°F isotherm did not reach the producer during the run.

Figures 42, 43 and 44 clearly show that the rate -of retorting
increases as the injection temperature‘is increased when compared at

the same heat injection rate. Figure 43, which compares retorting
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rates at four temperatures, shows the-rate»?f retorting is increased
to.a smaller extent as the injection temperature increases. Rates
of retorting at 1500, 2000 and 3000°F ~are 2.35, 2.80 and 2.94 times
the rate at 1000°F.

Results from these three figures are all the more striking since,
for equal heat injection rates, it is necessary that the air injec~
tion for the 1000°F case be approximately twice that of the 2000°F
case. This means that the air compression cost for the 1000°F case
would Be twice ‘that of the 2000°F case, while the retorting rate is
only about 35 per cent of the 2000°F case.

Figures 45 and 46 compare retorting rates at 1000 and 2000°F for
two gas injection rates. These comparisons are more significant as
compression costs would be the same. These comparisons show the rate
of fetorting at 2000°F is approximately 5.7 times that at 1000°F when

compared at the same gas ‘injection rate.
Effect of Injection Rate

Figures 47, 48, and 49 show the effect of injection rate for a
constant gas injéction temperature. These figures show that up until
the time the 700°F isotherm reaches the producer, the retorting rate
is a direct fﬁnction of injection rate when compared at the same
temperature. After '"breakthrough" of the 700°F isotherm, retorting
efficiency falls off.

Breakthrough of the 700°F isotherm occurs at 90,000 hours for
a heat injection rate of 10,000 BTU/hr-ft at 2000°F (see Figure 28).
If this injection rate is doubled, using the same 500-foot system,

then breakthrough occurs at 25,000 hours (see Figure 30). If the
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injection rate is 20,000 BTU/hr-ft but the system length is doubled to
1000 feet, then breakthrough again cccurs beyond 80,000 hours {see
Figure 34). These comparisons show that for a specified project life
{here taken to be 86,100 hours or apprcximately 10 years), there is an
optimum injection rate-system length combination and they are almost
directly related. In other words, doubling the injection rate requires
doubling the system's length for 700°F isotherm breakthrough to occur
within the same period.

A comparison at a rate of 10,000 BTU/hr-ft shows that after 86,100
hours, the 700°F isotherms are 500, 480 and 410 feet down the fracture,
. respectively, for the 15000F9 2000°F and 3000°F injection temperatures
(see Figures 22, 28 and 32). This behavior can be understood when it
is remembered that the gas injection rate is inversely proportional to

the injection temperature for a constant heat injection rate.
Effect of Soaking

For those cases where a producing well reached 900°F,vheat injec-
tion was discontinued and the system was allowed to "soak." When the
producing well temperature had decreased to 800°F, injection was re-
sumed. The efficiency of the alternating soak=-injection period is
illustrated in Figures 50 and 51. Cumulative volume retorted is
plotted versus cumulative heat injected. Prior to the soaking periods
all runs show comparable retorting efficiencies at the same injection
temperature. After the alternating injection~§oak routine starts, the
retorting efficiencies of these runs monotonically decrease with
cumulative heat injected. The decrease is more dramatic when plotted

against time as shown in earlier figures.
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A comparison at cumulative heat injections of 120 x 107 BTU/ft
shows the alternating injection-soak portion of a run to be only 60
per cent as efficient as the continuous injection portion using the
1500°F injection temperature. At 2000°F the same comparison shows an
efficiency of 70 per cent. This therefore suggests it is preferable. .
to increase the system's length or decrease the injection rate rather

than use the soak technique.
Effect of Bounded Systems

Three runs were made for Model II (THERMAB4). Basic data from
these runs are shown in Figures 36 thfough 41. Figures 52, 53 and 54
compare rates of retorting of bounded and unbounded systems using the
same injection rates and temperatures. They show that retorting rates
for bounded.systems increase monotonically with time compared to the
retorting rates.for unbounded systems.

Final temperature distributions shown in Figures 37 and 39 after
86,100 hours indicate that the temperatures in the area between the
retorted areas range between 500 and 600°F. 1In fact all temperatures
in these areas exceed 550°F. The final ‘temperature di§tribution’$hown
in Figure 4l.indicated’all temperatures are greater thdan 600°F. These
results show that with additional time, with or without injection,
the entire volumes of the systems would be retorted.

Figure 38 shows the final positions of the 700°F isotherms after
109,100 hours. The isotherms are very close and all temperatures at
this time were :in excess of 650°F. This volume can be consgidered
essentially completely retorted at this time. This run began the.

alternating injection-soak routine after 104,000 hours which indicates
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the producer reached the maximum allowable temperature of 900°F near
the end of the run. We can conclude, therefore, at a rate of 278 SCF/
hr-ft (1.33 MMSCF/D per well) with a 2000°F injection temperature, it
would take approximately 12 years to retort a symmetric element from a
pattern array which had wells spaced 500 feet apart along parallel
lines spaced 100 feet apart.

Figure 55 compares the retorting rates of the three runs con-
ducted on bounded systems. The most pertinent observation from this
figure is a comparison of runs at 2000°F with injection rates of 278
and 556 SCF/hr-ft. 1In the latter case the run utilized the alternat-
ing injection-soak routine throughout much of the time. A comparison
of retorted volumes and cumulative injected volumes at the end of
these two runs is illustrated. At the end of 85,000 hours the high
injection rate case, using the soak routine, retorted 17,500 cubic
feet per foot requiring 34.8 MMSCF/ft of injected gas. The slower:
injection rate case took 104,000 hours to retort the same volume but
used only 29.0 MMSCF/ft of injected gag to do the job. This compari-
son shows it takes 20 per cent longer at the slower rate but requires
only 80 per cent as much injected gas. This shows that the slower
rate would be superior to the faster rate that resulted in alternating
injection=soak during the latter part of the run.

This comparison, along with the unbounded scak rung, indicates
the alternatiﬁg injection-soak routine would be inefficient and that
it is preferable to design a project by a combination of geometry,
project life and injection rate which would allow complete retorting
of a system by the time the producing well temperature reached 900°F.

The fact that the retorting rate is constant until the 700CF isotherm
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reaches the producer also supports this conclugion. Retorting effi-
ciency starts to drop off between 700°F and 900°F, but a project could
be designed to finish when the producing well reaches a temperature

somewhere between 700°F and 900°F.
Air-0il Ratios

Thecretical air-cil ratios can be calculated from the results
of all the rﬁns on Model I and II. The air-oil ratio is an excellent
yardstick for predicting process feasibility because the cost of air
injection would be the principal expense in such a process. The
volume of o0il shale retorted at any time represents a certain quantity
of oil. It has been assumed in this work that the average o0il shale
richness is 30 gallons per ton. If it is assumed that the oil is 100
per cent recoverable then an oﬁtimum air-oil ratio can be calculated
by dividing the volume of air-fuel mixture injected by the oil pro-
duction during a selected period of time. Figures 56, 57, 58 and 59
show air-oil ratios for the. 12 runs.

Figure 56 shows that the producing air-oil ratio with an injec-
tion temperature of 1000°F would be constant at approximately 300,000
SCF/bbl for an unbounded system. A constant air=-oil ratio would be
expected prior to breakthrough of the 700°F isotherm since the rate
of retorting is constant.

Figure 57 shows that up to the time of breakthrough at the produc~
ing well, the producing air-oil ratio with an injection temperature of
1500°F is 80,000 SCF/bbl for an unbounded system. At a high gas in~-
jection rate of 740 SCF/hr-ft using the alternating injection-soak

routine, the air-oil ratio continued to increase with time and was
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160,000 SCF/bbl at 80,000 hours' producing history. With a rate of
340 SCF/hr-=ft the air-oil ratio decreases for a bounded system from
80,000 to 38,000 SCF/bbl after 80,000 hours.

Figure 58 compares air=-oil ratios for six runs using a gas in-
jection temperature of 20000F. The air-o0il ratio for all runs prior
to 7009F isotherms breakthrough is 52,000 SCF/bbl. The unbounded
soak run shows that the air-oil ratio increases to 86,000 SCF/bbl
during the remaining life of the run. The aiz-oil ratio of the
bounded soak run decreased throughout the run to 15,000 SCF/bbl at
82,500 hours. The bounded run with an air injection rate of 278 SCF/
hr-ft shows the air-oil ratio decreasing to 5000 SCF/bbl at 104,000
hours. At this time the producing well had reached 900°F but the
temperatures of the rest of the unretorted area as illustrated in
Figure 38 are greater than 650°F. ‘This means that this area would be
retorted with practically no additional air injection, thus making the
producing air-oil ratio extremely low.

Figure 59 illustrates that a SOOQOF injection temperature will
yield a producing air~oil ratio of 27,500 SCF/bbl with an unbounded
system. »

It can be seen that the.producing air-oil ratio is solely a
function of the injection temperature prior to breakthrough of the
700°F isotherm at the producing well. The higher the operating tem-
perature the lower the air-oil ratio will be. It is also obvious
that the bounded systems will yield the lower average air-oil ratios.
Run 11 was conducted 109,100 hours. At that time all temperatures
were greater than.GSOoF, indicating the volume between fractures would

be completely retorted. Dividing this volume into the cumulative air
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injected gives an average theoretical air-oil ratio of 24,000 SCF/bbl

over the l2=-year project life. It is possible that air injection

could be stopped earlier and the whole area still be retorted over a

longer time. This would serve to lower the average air-oil ratio

somewhat.

Heat Utilization

The fraction of the cumulative injected heat that is absorbed by

oil shale is one measure of efficiency.

the twelve runs for these two models with their total times and

The following table lists

fractional heats stored. These fractional values have been adjusted

downward by the percentage heat balance error since the heat absorbed

plus the heat produced was higher than the heat injected for each of

the runs.

Run Number

89,100
86,100
89,100
88,500
86,100
89,100
- 85,800
88,100
83,200
10 89,100
11 109,100
12 84,800

oo~NOoOLBLPRPWDN &

Comparison of these values shows that heat utilization improves at
reduced injection rates for the same system length.
the injection temperature, the better the heat utilizations.

employing the soak routine during part of the time had lower heat

Time, Hrs.

Fraction of Cumulative
Injected Heat that is
Absorbed by 0il Shale

QO OCOCOOCOOOO0OO

.83
.59
.73
47
.94
.84
.67
.92
.85
.72
.78
.65

Also, the higher

The runs
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utilizations than other runs. Although Runs 10, 11 and 12 (Model II)
indicate lower heat utilizations, it must be remembered that the heat
absorbed by bounded systems is used more efficiently as far as retort-

ing is concerned.
Results from Model IV

Results from Model IV will be discussed before those of Model III
since Model IV was designed to evaluate the agsumption of vertical
adiabatic boundaries used in the preceding models. A qualitative
estimate of the error involved when two-dimensional horizontal con-
duction heat transfer is assumed was made with THERMAB5 using results
from Run 6 as source data. Vertical cross-section profiles were
examined at 0, 100, 200 and 400 feet along the fracture using tempera-
ture histories at these positions from Run 6. Four separate runs
with THERMAB5 were necessary to determine these profiles. The meas-
ured vertical conductivity (traverse to the bedding planes) of 30 gal/
ton shale was found by Somerton (13) to be 0.71 of the horizontal
conductivify(parallel with bedding planes) at room temperature. This
ratio of vertical or horizontal conductivity was used in the variable
conductivity subroutine in THERMABS5.

Final cross=-sectional positions of the 700°F isotherms as deter-
mined with THERMAB5 at these four positions are shown in Figures 60,
61, 62 and 63. The areas encompassed by the 700°F isotherms are com-
pared to the rectangular areas shown. These rectangular areas repre-
sent the cross-sectional retorted areas when vertical heat flow is
assumed to be zero. At 0 feet down the fracture the cross-sectional

profile is 5 per cent larger than the rectangular area, At 100, 200

i
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and 400 feet down the fracture the cross-sectional profiles are 10,

17 and 21 per cent smaller than the rectangular areés. Applying these
four errors to the final retorted volume of Run 6 in a weighted
average manner, it was determined that the two-dimensional retorted
volume determined by THERMAB3 in Run 6.was approximately 12 per

cent higher than would be anticipated in an actual three-dimensional
case.

It must be remembered that this result is qualitative, since
source temperatures for these profiles were taken from the two-
dimensional solution of which we are determining error. At large
times these two-dimensional source témperatures should be near the
average three-dimensional ones. In three dimensions the entire frac-
ture height would not be at the same temperature as was assumed hére.

Even though this is a qualitative result, it points out two
facts. First, retorted volumes calculated with the two-dimensional
unbounded models are high on the order of 10 per cent or more. Since
heat balance errors are all on the plus side, errors in retorted
volumes can no doubt be considered a few per cent higher than this.
Second, results from Model II (bounded systems) would also be optimis-
tic, since interference between heat sources would occur later than

predicted by the two~dimensional model.
Results from Model ITI

Model IIT was designed to-evaluate the effect of partial convec-
tive flow through the retorted zone. A ¢combined conduction-convection
equation wasiused~with¢§his”model;instead of separate equations, thus.

numerical procedures used to solve this model are different from the
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numerical procedures used to solve Model I. The relative accuracy of
these two models was compared in Runs 5 and 13. .Boundary and initial
conditions for these two runs were identical. Run 5 was made using
THERMAB3, the program written to solve Model I; and Run 13 was made
using THERMAB2, the program written to solve Model III. Although
cumulative heat error was several per cent higher using Model III
than it was using Model I, the resulting final position of the 7000F
isotherm coincided with that obtained in Run 5 shown in Figure 26.
This check indicates that this method of solution was valid and
results from Model III could be compared directly with Model I.

Run 14 was made using the same parameters as Run 13, but it was
assumed that behind the leading edge of the 700°F isotherm 10 per cent
of the injected gas traveled throﬁgh the retorted zone, evenly dis-
persed, while 90 per cent traveled through the fracture. Ahead of
the leading edge of this isotherm, all of the gas flow was in the
fracture. Figure 64 shows the position of the 700°F isotherm versué
time for this run. Figure 65 shows final' temperaturé.distribution: for
this run. A comparison of this figure with Figure 27 shows a consi-=-
erable shift of the isotherms to the right. This suggests an improve~
ment of heat utilization. Figure 66 compares the final position of
the 700°F with and without 10 per cent convection in the retorted
matrix. As can be seen, the retorted volume of oil shale is larger
assuming limited gas flow in the region. This leads to a reduced air-
oil ratio as shown in Figure 67.

Injected gas flow in the matrix is expected to be negligible.

However, any convection in the retorted zone that may occur will serve
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to increase the .rate of retorting and improve the process over that

predicted by Models I and II.
Significance of Results
General Remarks

Results of this study give a guide as to the feasibility of re-
torting oil shale by hot gas injection through vertical fractures from
a heat transfer standpoint. The resulting theoretical air-oil ratios,
,whiﬁh are based on retorted volumes, are the most important yardsticks
as to economic feasibility.

In this investigation the values of 0il shale thermal capacity,
thermal conductivity and endothermic heat loss as functions of tempera-
ture were approximated. Also o0il shale is a heterogeneous matrix
where values of these hegt transfer parameters cannot be accurately
predicted from point to point. These facts would lead to some differ-
ence between the calculated and the real heat distribution of a shale
matrig, even if the calculated solution were exact. In this work it
has been shown that the numerically calculated retorted volumes in two
dimensions are probably 10 per cent or more above a ﬁumerical three-
dimensional solution. This accuracy is considered sufficient for the
type of heterogeneous system being studied. These results should be
taken to be semiquantitative. They serve to indicate the range and

direction of expected results.
Feasible Air-0il Ratios

Economic air-oil ratios depend on a number of factors, the most
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significant being the injection pressure. Resgults from this work
indicate that retorting efficiency drops off when the 700°F isotherm
reaches the producing well. This would indicate that a project should
:Be designed so that the-7000F reaches the producer near the end of the
project life. This being the case, it would be expected that high
injection pressures (2000 - 2500 psi) would be required during the
entire life of a project in order to keep the fracture opened. Pres-
sures would be on the ordervof 2000 psi which would lead to compres-
sion costs on the order of 6 cents per MSCF of air compressed from
atmospheric conditions.

High injection pressures are not as discouraging as might be
supposed. This is because relatively high-pressured . produced gas
from the process coﬁld be reinjécted to control the injection tempera-
ture. This»reinjepfed produced gas could represent up to 70 per cent
of the total gas injected. The cost of compressing this prbduced gas
would be‘only a fraction of that to compress an equivalent amount of
gas ‘from atmospheric pressure.. The reinjected produced gas would
prpbably contain enough fuel so that make-up gas would not be needed
affer the process had been operating awhile.

Other factors such as project life, well costs, hydrocarbon prod-
uct quality, etc., would have a bearing on total costs and thus deter-
mine what ﬁaximum air-oil ratio might be feasible. There have been
indications”thaf the quality of oil théined from an in situ oil shale
retorting PrQCess would be considerably improved‘over the quality
_from surface réqutith uThis means. the o0il would be more valuable per
barrel and visb?eakiﬁgwwould-be unnecessary. A higher air=oil ratio

could be tolerated if the oil quality should be improved.
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With this as a background, it is clear low injection temperatures,
i.e.,v1000°F, are ruled out. An injection temperature of 2000°F should
yield air-oil ratios of about 25,000 SCF/bbl and therefore would>be in
the feasible range. This assumes liquid recovery equivalent to USBM
assay and that a field-wide pattern can be assumed to have the effi-
ciency of the bounded system. This latter assumption would be close
for a large development.

The type and quality of the recoverable hydrocarbon is very im-
portant. If a large portion of the hydrocarbon product were cracked
to gas,the resulting air-oil ratio would increase over that indicated
here, and therefore the process economics would become less attractive.
The cracked gas would be so diluted with gas volumes of the 25,000
SCF/bbl magnitude that the resulting heating value of the exhaust gas
would be too low to be commercially attractive.

If it were possible to operate with a 3000°F injection tempera-
ture, this retorting process would definitely look advantageous from
a heat transfer standpoint. Although the unbounded 3000°F run showed
an ajr-oil ratio of 27,000 SCF/bbl, a bounded case would give an aver-
age gas-oil ratio of about 12,000 SCF/bbl. This is based on the same
ratio of retorted volumes as obtained between bounded and unbounded
runs at 2000°F. A 12 ,000 SCF/bbl process would be very attractive.

If the hydrocarbon product would be entirely cracked to gas the re-
sulting exhaust gas heating value after scrubbing the carbon dioxide
would be approximately 600 BTU/SCF. This would be a marketable prod-
uct. In this limiting case the retorting process would still be

attractive with a 3000°F injection temperature.
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Project Design

This study has shown that the‘alternating injection-soak procedure
is not efficient. Because of this and because retorting efficiency
drops off after the producing well reaches 700°F, it would be desira-
ble to design a project so that it would be terminated at this time.
The feasible way to design an in situ project of this type would be
to start with the project life desired. This optimum life is inter-
related with many factors, and it would be necessary to analyze
several cases to determine it. After deciding on a project length,
the distance between injection and producing wells to be used must be
selected. The longer the distance the more economical the process
because of the need of fewer wells, assuming communication between
wells was obtainable with equal ease. Distances between wells would
probably be limited because establishing communication between wellé
would no doubt become more difficult at greater distances. This dis-~
tance would have to be determined experimentally. Once project life
and path lengthare established, the injection rate can then be set
so that the 700°F isotherm will arrive at the producer in the allotted
time.

Spacing between lines of wells would be a function of project
life and injection temperature and would be easily determined. Injec-
tion temperature should be as high as feasible and would have to be

determined experimentally in a pilot test.
Experimental Pilot

This heat transfer study has served to indicate whether adequate



137

heat penetration and utilization could be achieved under various
assumed conditions. Results have shown that with high injection tem-
peratures the theoretical air-oil ratios are within range of being
economic. Experimental pilot testing would be necessary to develop
methods of operation, to verify air-oil ratios and to determine operat-
ing costs. The first step in this testing would be to develop tech-
niques to reliably communicate between wells at loné distances apart
with the assurance of nearly complete gas recovery. The maximum
feasible continuous gas injection temperature and the resulting injec-
tion pressures are very important parameters to be determined initially
with pilot operation. EQuipment development, operating technique and
resulting costs are important information affecting process economics
that are determined from prolonged pilot operation. The resulting
hydrocarbon product, whether it be predominately high or low quality
0oil or gas, must be determined. Finally, the actual producing air-

0il ratio possible for the process would be determined from a pilot

test.



CHAPTER VI
SUMMARY AND CONCLUSIONS

The objective of this work was to make a preliminary feasibility
study of in situ retorting oil shale by hot gas injection through
wells interconnected by single vertical fractures. A theoretical
heat transfer study was conducted to achieve this objective. A
knowledge of the heat distribution and content under various assumed
conditions will indicate whether experimental pilot testing of this
approach to in situ retorting is justified.

This analysis involved the simultaneous numerical solution of a
nonlinear second or-der partial differential equation, which describes
two~dimensional conduction heat transfer in oil shale, and a nonlinear
first-order partial differential equation which describes convection
heat transfer in the fractures. Three nonlinear temperature-dependent
coefficients that were taken into account in this work are the thermal
conductivity, thermal capacity and retorting endothermic heat losses
of 0oil shale. Vertical fractures were considered to be of finite
height. Vertical conduction heat transfer was not considered;
howeyer an estimate of the error resulting from this limitation was
made.

The effects of injected gas temperature, injection rate, system
geometry, cyclic injection and time upon retorting efficiency were

investigated.

138
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The following conclusions have been made as a result of this
study:

1. Results from this heat transfer study show that the rate of
retorting oil shale is a function of the injection temperature;
however, as the injection temperature is raised the retorting rate
increases to a lesser extent.

2. The air-oil ratio is an inverse function of the injection
temperature at a constant rate of heat injection and it is a stronger
inverse function of the injection temperature at a constant volume of
air injection.

3. The rate of retorting is constant with a constant injection
temperature and rate up until the time when the 700°F isotherm
"breaks through" at the producing well. At that time the retorting
efficiency decreases.

4. The retorting rate with a constant injection temperature is
a direct function of the heat injection rate until breakthrough of
the 700°F isotherm at the producer.

5. High injection rates with the use of an alternating injection-
soak routine when the producing wells reach 900°F are less efficient
than lower continuous injection rates.

6. Retorting efficiencies are improved for bounded systems com-
pared to analogous unbounded systems and likewise air-oil ratios are
lower.

7. Retorting efficiency is improved if partial convection is
assumed to occur in the retorted zone of the oil shale.

8. It was found that with an injection temperature of 2000°F and

an injection rate of 1.33 MMSCF/D per well it would take approximately
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12 years to retort a shale section developed with a pattern array of
wells spaced 500 feet from producer to injector and 100 feet between
rows of wells.

9. The error in the volume of rock retorted caused by the assump-
tion of adiabatic boundaries in the vertical direction was estimated
to be approximately 10 per cent high. However, results obtained from
these two-dimensional models are adequate in light of the heterogene-
ous system being studied.

10. This work shows that it would be preferential to design a
field project so that the 700°F isotherm arrives at the producing
wells at the end of a project's life. The injection rate can be set
to accomplish this if the project life and injection to producer well
spacing is determined beforehand.

11. 1Injection temperatures on the order of 2000°F and higher give
theoretical air-oil ratios in the economic range.

This heat‘transfer study shows that adequate heat penetration and-
ﬁgilization are possible. Results have shown that with the use of
high injection temperatures the theoretical air-oil ratios are within
the economic range. Experimental pilot testing Woﬁld be necessary
to develop methods of operation, to verify air-oil ratios, and to

determine operating costs.
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Cs(T)

-q(T)

X(T)
K, (T)

Ky (T

K, (T)

DEFINITION OF TERMINOLOGY

fracture thickness
gas density

gas thermal capacity
gas velocity

shale density

shale thermal capacity
endothermic heat loss
time

rate of heat flow
temperature
temperature of gas
temperature of shale

initial temperature of formation

maximum allowable temperature difference between grid

points or between time steps

horizontal distance from injection well along fracture
horizontal distance from. fracture perpendicular to fracture
vertical distance from fracture centerline

thermal conductivity

‘thermal conductivity in x direction

thermal conductivity in y direction

thermal donductivity,in z direction
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aumber of grid points in x direction

number of grid points in.y direction

number of grid points in z direction

subscript, refers to point location.in_x direction
subscript, refers to point location in y direction
subscript,_referé to point location in z direction
superscript, refers to time step

superscript, refers to iteration step



APPENDIX A

DIFFERENTIAL EQUATIONS

Derivation of Convection Equation

Consider a differential element in the fracture.

3T,
-K(T) éx S;— n
T K
h Z
Xs5 _
h - h
< p,cv T —> | | = 3 pgegv,T
2 Pefegel T %5 o 2 eeveel

Therefore a differential heat balance results in

oT - QT
h h S| h g
T pcvT l -~ p.cv. T ‘ =‘[-K(T) Ax —= , == pn_c Ax —=
2 Pg%"g gl "2 "eee el > 4 y=§ 2 g™ 3t
QT oT
h <: :> s h g
or -=pcv (T - T + K(T) Ax-—~—\ == p,CcAx ——
27888 N8y gl dy ? 2 Pgtgtt 3¢
T - T T
U CHVELY .. A BT
2 PefeVs A d | h 2 Pg% 3t
In the limit we have
oT T oT
. b —=& — = b 8
2 Pele’s 5 T KD 35 b 2P
2
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or
no., Teon. e
2 PgCeVe 3x T 2 PeCg 5t
h
Let o = 5 PgCgVg
JT 1 T 3T
Then: —& E . K(T) .
e v _ Jt @ 3y | _h
=2

Derivation of Conduction Equation

147

(A-1)

Consider a differential element in the matrix where no mass flow

occurs within or out of it.

iy =
x,y+Ay
BTS
= - Ay R(x,T) T— —>
Qe Ay K(x,T) Sx. e (DT,

oT

~Ax R(y+Ay,T) S;E

—

_ = Ay K(x+Ax,T) S;—

X,y T x+Ax,y

A differential heat balance gives

%

Q

X+AX =
oT

oT

= - Ax K(y,T) S;E

heat in - heat out - endothermic heat loss =

change in heat
content.

B TQ + Q= Quupy Quupy = Oxby a(D] = Axly

{lpges (DTl p,

- [pscs(T)TS]t} .
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Then

St & ey Y o [pscs(T)T jt_m [psc (D1,
AXAY AxAy At

Substituting in Fobgler Law:

[K(x+Ax T) a ] [K(x T) 5% ]
Dx
: T BT
[K(y+Ay,T) §;§] [K(y T) J
— y+i J - q(T) =
Ay '
[pSCS(T)Ts]t_l_At - [PSCS(T)TS]t
At
.In the limit we have
AT oT
) s 3 s 3
o 2+ 5o 5 -am = Fleemr] . a

Derivation of Combined Conduction-Convection Equation

Consider a differential element with constant density and a

thickness of z.

BT
T Qy+A - Ax R(y+Ay,T) _y—
X,yHAY
AQAY PeeVelely, > —> 020y PgegVely liynx
L T P e (T)Tg T4
Qx = -Ay R(x,T) g;—-—€> , -—*'Qx+Ax - Ay R(x+0x,T) pye
' X,y xtHAX,y

ST
T Q = - ix K(y,T) ——
y Ty
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A differential heat balance gives:

‘heat in - heat out - endothermic heat loss = change in heat
content.

- Q

At [Qy + Q + AzAy pgc v T i}

288 y+iy ) Qx+Ax

- AzAy pgcgngg

{{psesmr,]

’ - AxAy q(T):I = Axly
x+Ax

- [pscs(T)Ts:lt} .

t+At
Assume Tg =Tg .
Rearranging
P cviT - T ->
Q - Q Q - 8 8 g~ 8| s
| xtbx  x _yHly Qy - Az x+A X (1) =
AxAy AxAy Ax
[p c (T)T ] - [p c (T ]
s 8 St s s S
At
Substituting in Fourier Law
ar or
[- by R(whhx,T) 5= - [- by R(x,T) 52
_ “x+Ax X _
AxhAy
BTS BTS
[- Ax R(y+Ay,T) So - [- Ay R(y,T) Fy
Y ytly Yy
- q(T)

Axhy



0 e v\T ‘ - T :) [p c (I)T J
- As g g &-s xthx s‘X g s s s erA e

Lo mr, ]

Ax At

In tﬁe limit

aT oT
3 —s| .2 —5]| .
ox [KX(T) x J 1 dy [Ky(T) dy (1)

PeleVe 3x ~ Bt LPsCs't el -

Let 2o = Az PgeVg -

Then:

oT

oT :
o s| .2 [ s s _
dx [KX(T) dx J + dy [Ky(T) dy 4 (1) - 2 dx

2 [pemr,] -

oT

150

(A-3)



APPENDIX B
DIFFERENCE EQUATIONS
Variable Spacing Scheme

The interval 0 .= x < x; 1s divided into I intervals of arbitrary

length, Axi+%, 0 <4i=<1I-1, so that

_r=i::l
' L, = P e 1<4is
*y jz a r+% 1=1
r=0
With‘xo =0, Xq = total distance in x direction.

Similarly, the interval 0 <y < y; is divided into J intervals of

0= j=J-1 so that

arbitrary length, Ay, , .,
itz
r=j-1
v = ' 1S 3 <
Y Z Mg 15359
. r=0

with Yo = 0, vy = total distan¢e in y direction.
Similarly, the interval O £ z'S z, is divided into M intervals

of arbitrary length, Az 0 =m = M-l so that

g
=m-1

= .1 s <
z_ z Az&% l1SmsM

=0
with z, = 0, zy = total distance in z direction.
For theapoints on the boundary, the above definitions can be
extended aé follows:

e e Mgy = brpy

2
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By.y = by, by g4y = Bygoy
Azn% = Az% AZK_I_l/2 = Asz% .

For ease of expression in difference form we can write:

ij = % (ij_% + Ayi+%), (B-2)
Azm = % (Azm_% + Azm_l_l/z). . (B'3)

These relations are illustrated as follows:

Axi_% Axi+%
i-1 7 | i | it
\_._“/_—-/
Ax,
i
Also we define:
(®) g4y = 1/2 LR 5 + &) 41l - (B-5)

Convection Difference Equations for THERMAB3 and THERMAB4

aTg . l_ BTg ) K(T) BTS (5-6)
ox Vg ot o oy h *
T BTS
Use backward difference for g;g . Use forward difference for S;— .
1 1
(p1 _ ot >k+2 (174 o
i, 1 i-1,1 + 1 \i,l i,1 _
Ax, Vi At
i
i
5 <Kn+1 >k [(Tn+l>k_ (Tn+1>k+2'} i <Kn+l )k[<Tn+l>k _ <Tn+l>k:|
N 1,372/ 1Ni,2/ i,1 - i,5/2 i,3 i,2
2 Ay o

(B-7)
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Rearranging:
- : L L
<Tn+l _ gotl )k"'z N by <Tn+l\k+2 _
1,1 i-1,1 Atvi i,1/ ‘
k
: n+l ) L
Axi (Tn ) ) 3 AXi (Ki,3/2 (Tn+l>k+2 +
At vy VLl 2 Ay o i,l
S \k k
© (ool > ( n+l
J % (Ki,B/Z (Tn+l>k L 2\ 570 [(Tn+l>k ) (Tn+l>k]
2 by a i,2 2 by a i,2 i,3
‘Rearranging again: .. Tk
[ o o+l )
1 7! . A
(Tn+1>k+f [1 N Axi_“;ﬂ%”éxi<gi,312. ] Lo (Tn )
i,1 At v, R At v, \Ti,l
ST 2 Ay o i
k
L o+l )
ot \E 3 by (Ki,3/2 A
i-1,1 | \ty,2) 7
1=1, 2 Ay a >
k
o+l >
AXi,(Ki,S/z [(Tn+l>k ) (Tn+l>%]
2 Ay a i,2 i,3 g
ﬁesulting in:
v k+3
[ e (T?T} 1) + (013) + (015 + o158
(Ti 1)1 =7 ’ k ) (3-8)
e D16 + (D17)
. where:u’”
n
. T,
(Dl3) == éf_l__l,_]._
At Vi

k k
. n+l ( n+l>
o 38 (Ki,3/2> Ti 2
(D14) L2/
L 2 Ay a

I
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ey (<2 )) (D) - (2]

(D15)k = -
: 2 Ay a
Axi
(P16) =1+ o0
L
k
n+1 )
o1k = 3 Ax, (Ki,3/2
2 Ay a
Or also:
NS <T9+1 ) + (013) + (017 4 (p15)FH3
_ i-1,1
<Ti,1> = , (B~9)

. 1/
p16 + (D17)K%

Boundary Condition::

n+1 bty ‘
(Tl 1) = Constant Temperature
R .
k1
<TT+1> = Constant Temperature
3 .

Also, for THERMAB4 the countercurrent flow equations at y equal Y5

are.;
ket
Lk (T?Ii J) + (013) + (016X + (d15)K
()" - ; - , (8-10)
i,J Kk
D16 + (D17)
.where:
.Axi T? 7.
(pD13) = —==,

At v,
i
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2y <Kn+l >k <Tn+l )k

T e
: 2 Ay a.
k k-
| Ax, (K9+1 ) [(T?+l ) - <T9+1 ) J
(DlS)k - i i,J=3/2 i,J-1 i,J-2
2 Ay a
Axi
D16 =1+ RS
i
k
nt+1 )
P Rt <K14J-%4
(n17)™ =
2 Ay a
And,
k+1 L L
kL <T:Ii J> + 013 + (14)5% 4+ (p15yKHE
<Tk J> = . ‘ (B-11)
’ k+% :
D16 + (D17)
Boundary Condition:
k+%
<T2+§> = Constant Temperature
k+1
'<T2+}> = Constant Temperature.
3

Conduction Difference Equations

for THERMAB3 and THERMAB4

& (ko §;§> + 5 (% §;§> - qm =% (s e mr,) . (B-12)

Where q(T) can be expressed as C'(T) %% ,

let  C(T) = C'(T) + Py c (T,

Ky) = K.

let (X



General Difference Representation -- Using Central Differences,

Implicit in x, Explicit in v.

ntl ot mhl _potl ey
1 i+l1,1 i.g i,] i=-1,1
— |K K. +
Axl i+ Ax Loz Ax
i+} -
n+l n+l n+l n+l
.. . . T, ., - T, . k
N i,j+l 1,] 1,] i,j-1 =
AY Kj+/2 A Kj'z A
J YJ+;2, YJ";z'
k+%
n+l k /Tn+%> ? .
i,j 1,] 1,]
At
For constant x spacing and regrouping:
k+% k+5 K, k+%
ntl ntl i-% [/ o+l n+1
+1 .3 T, |, - T, . -'T._l .
1 ,J 1’J i+% 15J 1 ;J
k
2 ( n+l> 1
_ (Ax) Fi,1 < n+l>k 2 _
i,]
At Ki+%
2 TM& _Tm{ fﬁl_ nt+l
S 15 e WS S ¥ I S oy
HAYi Rity \Ti+y Ay 1-% Ay
S i+s i-%
. k
cmz.(c‘.‘ﬂ)
, i, n
T At K <Ti >
i+y &

Rearranging:

15

(B-13)



Let

- Let

Let

Let

Ali

Bl

CL,
i

D1

, k
1 \KFE . K {Ax)’ Ci.t N
i-1,7 . tR.., T A Ti,j *
it t Ki+%
L atl o ontl
n-1 >k+2__ px)? (x,, bt i
i+1,] Dy, Ki+hy \its )
Vit
k
g™k o2 (o)
1,17 1,1 1,1 n
i-% o ) e (Ti,j>
ij-% At K
X. 1
I
Kty
X k
Ky @02 (1)
=_[1+K 2,‘+ . 9]‘]
. s 1
it ‘At Ki+%
= 1.
n+1 n+l n+l n+l
| T - T, T, . - T, . .k
R v oy : (k,,, il L g 13 1,41
' K, + i-%
T Paay N TRy byy-3
Lk
v 2 ( n+1>
e \C ) (Tn )
1,3
At Ki+%
k% kt+% kt+% :
n+l > ‘ ( n+1> ( n+1 ) . )
$-1, 14 + Bl ATy | + 0Ly (T 5 = DI, (B-14)
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Implicit in v, Explicit in X, Constant x Spacing

. k+%
1 n+l n+1> ( n+l o+l >] 2
2 [Ki+1/ (Ti+l i Y5 T Ry Ty 7 Tian +
(AX) 2 rl,] 5] 2 5] 5]
n+1l n+l nt+1 n+1
SR UL Wl U0 R WS 1,1-1>k+1 ]
by, VT i
i+s i-%
Lotk (Tn+l>k+l_ o
n+l> : i,j i,]
Ci,j At M (B'l5)
Regrouping:

(Tn+l >k+l _ <Tn+l>k+1 _ Kj—% ij+% <Tn+l _ il >k+l
1,5+l N
3

ted s T i-%
Kkt ket
n+l> v ( n+1>
Ay, . k+1 C, . Ay. Ay.
. (Ci,j Vi iy (Tn+l> AN 0% 71 iy <Tn )
= i,] i,]
: L
by W [ (0 gy g el e >k+2
i+15 i+l,] i,j] i-lé i,] i-1,7

(Ax)2 Ktk

Kisy D343
Let Al, = Koot Avrs
1 Ri+s BY3-%

k+%
<Cn+1> by. Ay

K. AY. PR 21
- X L
Let Bl = - (1 + P J+; e L itz
: - J+% 2Yi-% At K, 1 -
i+z

]
}—I

Let Cl,
N



+1 nt+l /
1, = - - [ PIC e ) - -
Let D Kivy \Tipn, i TiLs/) - Kooy \Ty 577500

(B-16)

Boundary Conditions for THERMAB3 (Heating Period)

] 1) ( O*§>k+% = (T;T§>k+% for 2 £ j<J
o (7 )7 = (e ) ez 2y 2
3) (T:T >k+1 = (T?T}>k+% for all i .
o (517 - (05)" srans

Boundary Conditions for THERMAB4 (Heating Period)

o (57 (g wereseom
2) (T?f}’j>k+% - (T?I};j>k+% for 2 £ § < J-1
3) <T§T1>k+l = (T?Ti>k+% for all i

4) (T§T§>k+l = (T§T§>k+% for all 1 .



k+% k+%
n+l>' _ < n+l> .
1) (TO,j = T2,j for all j
L L
2) .(Tn+l >k+2 = (T“H >k+2 for all j
T-1,] T+1, § :
k+1 k+1
n+l> _ ( n+l> .
3) <Ti,0 = Ti,Z for all i .
k+1 k+1
4) (Tr.l+l ) (Tr.H-l ) for all i .
i,J-1 i,J+1

Co
Using d

Ky

nduction Difference Equations for THERMABI
erivations for THERMAB3 and THERMAB4 and defining
= Ky-y = Kigy, R, =Ky = Ky
= ¢ott

|

=0 , no endothermic heat loss.

Coefficients, Tmplicit in x, Explicit in vy

For Constant

Therefo

re: Al, = 1.
1
2
Bl, = -[2+SA—X)--—c .
i At Ry
cl. = 1
1
W ky (Ti,e1 i1 TiLiTTii-1N8
DL, = - "N X A TTA
i oY1 Xy ity Vi-%
2 n
) (ax)“ ¢ Ti’i-

At Ky
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Then?
Cktk k+% k+%
n+1 ( n+l> ( o+l > _
Al (Ti_l,j)_ + Bl T, + 0L \Tity g = DL,
Implicit in v and‘Explicit in X
Ay,
Al..= A—--]-i-—;z .
Ay, ‘C Ay. Ay,
Bl, = - [1 M= Satind y3+%]
"] s At
1 AyJ"l/z Ky
Clj = ].
. S
- KX AYJAAYJ+% ntl n+1 n+l ket
DI, = =~ T, ., =2 T, T, R
] Ky (AX)Z l'+]-:J 1,] 1-1’.]
Ay, n
Gy by Ty
bt K, '
Then:
k+1 k+1 k+1
AL, (T?+% ) + B, (T?+%> +Cl, (T?+% ) = D1,
i,j-1 VL] jNTL, il j
Combined Conduction-Convection Difference
Equations for THERMAB2
QT oT oT o . o
§_[ s | S+ s - N ]
ko 52 -t & [Kym 51 - 9 =3 [pe(m 1, .
Let: HH = 1 where convection is present,

HE = 0 where convection is absent,
. oTg
q(T)= ¢'(T) 3T

C(T)= eg(T) pg("2+ C'(T) and Ky = K, = K.
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) s s §_ S| _ s
EE.[K(T) ox ] TZHH O Emt Yy [K(T) S =Mz G

Using Central Differences Imglicit in x, Explicit in y, Constant x

Spacing.
o+l ool Tn+1 _ Tn+l k+%
__A,l (K e O I % RO % i-l,j)
Xqy N itz hxg i-3 hxg
L
L
-2HH01< itl, i i ,1>
2 Axi
nt+l _ qntl nt+l oo+l
+ (K i,j+l i,i_ g . i,] 1,J’1>
By; N3t | i%
: Y54y byiy
L
n+ 1\ (T?+%>k+2 iy
(o) oy Ty _—
? At
Rearranging:

L
Kict / o+l _n#l \ET?
-v—v—-T ..T )
R,
2

(Tn+1 '-.Tn+l i ol
iy B 3

k%
1,1,] i,j>

. L
Ki+1/2 i+1,] i-1,j
(bx,)? AR L T, . =T, .k
+ i (K i,4#1  "i,j K i,i i,i-
toTE , Vit+% Vi-%
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Rearranging again,

k 2
/ \ 2
1 L n+.1> ( )
1 k+% I(:L_;2 Axi HHw. s k+% Kl_% \Ci ; \Axl) 1
T 1 4 =+ -1 L =8 4 T |
»J i+ i+% »J i+5 K., At 7
: i+3%
( el >k+% <Axi HHy
i+l,] Ki+%
2 nt+l nt+1
(Axy) ( S N VE T 08 B 1,1-1>k
Ay. K. .y \i+3 i-%
i7it+3 Ayi_i_% Ayl_%
k 2
(7)) () T
1,1 1 1,1
Ki-i-’% At
Ki 5 'Axi HBow
. = 2 o
Let: Ali [K. ) + X . ]
itz i+3
'Y <C“+1>k (Ax )2
S PN PR I i
K1+% Ki+% At
| Ax ., HHo
o, - ()
Lo YKy
2 k1 ol ntl +1
(8%,) Tyt T T T T4e1)
D1 =Ay T (Kjﬁ-%—-—zl_l—-#-KJ-l/z s 1,]
s Vivh by
k 2
(1) (ax,) 1° .
1,1/ 1 1,7
K, 1 At
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Then:‘
“hr mitl ‘ o+l . ntl
A;i_ri_l’j + Bl Ti’j + C1, Ti+1,j = DL, . _ v(B 19)

Jmplicit in v, Explicit in x, Constant X Spacing

+1 +1 +1 ot
1 R Ty 1"'T?—1 1)+
Ax <K1+/ a - Ky ’ , >
i Ax, e Ax,
1 - 1
- Sy < 1+1@1 1-1,1>k+2
2 Axi
. I i T o™ ek
N (K 9. N % R i,] 1L1f1>
AY Itz A J'% A
* Yj+% Yi-%
b
n+1 ket (T2+}> ” -2 i
= (ci j> 2wl 1 (B-20)
b At
Rearranging:
(Tn+1 _AT'n+1>k+1 Ky ij+%( ml oo+l >k+1
i,i+1 1,3/ Kopy Ayg oy Visd i,j-1

ij ij+% n+1 n+1 1 nt+l \
‘- ~ K., . \T, L~ T, ) =K, . \T, . =T, .
2 i+5 \NTi+l,5 Ti,j i-% \"1,] i-1,]
Ax ) K,
RN
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, 3
i+].,j i"]-’j
1
<Cn+l\k+2 A A
i) Y3 Yy
i,]
Riry bt
K, 4 ij 1
Let: Al, = <K /ZA +2>
J 5 3%
k+%
+1
o K, . < '> i 1
B1 =-{} yotzk Vowk LB i AY1]
"3 K ij_% At K, .
itz

Cl, =1
]

D1 ='Ay' Ay'+% [K <Tn+l - T“+l> - K (T - T )k+
j ) 2 j+1/2 i+l,j isj j"l/z i’j i'lsj'

<Axl Kj+%
1
+ Hilo Ayi Ayi+_1/2 <Tn+l _ ol >k+2
i+1,] i-1,]
AX. 1
itz
Therefore:
n+1l n+l v n+1
Alj Ti,j-l + Blj Ti’j + 01j Ti’j+l = Dlj . (B-21)
Boundary Conditions for THERMABZ
, k+% k+%
1) ‘<T8T§ = (T;+} for 2 € § <7
k+%
2) (Tn+l> =T
1,1 constant



f
J
|
i
kt+%s o k+%
3) (T?fi’j> = (T?Ii j> for 1< j<J .
k+1 k+1
4) (T2+é> = <T2+;> for 25 i <1 .
I 3
k+1
5 (1) =T .
1,1 constant
k+1 k+1
o () )T wersiar
: 5 3

Conduction Difference Equations for THERMAB53

2 (x, &)+ & (x, D) - qm =2
oz \Kz 37/ + e Ky 5y q(T) = 37 [pScS(T) TS] .

lag

(B-22)
Where q(T) = C'(T) %% , let C(T) = pgeg(T) + C'(T).
Implicit‘in z, Explicit in y, Variable Grid Spacing
k+% k+%
(X.) (Tn+l } Tn+l> (K.) (Tn+l | ontl )
1 [v z’m+% \"mbl, i m, i L% m-% \'m,j m-1, i 1
- Az -
m Azm+% Azm_%
k k
nt+1 n+1> ( okl _ ntl )
L (KY)1+% (Tm,i+l Tm,j, __(KY)i'% m, m,j-1 1
Ay . .
J Ay,
A 545 i-%
1
(Tn+l>k+2‘__
(e ) T 625
’J At

Rearranging:
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Doy Ky (. .n+,1>k+2,_ (1) ol )k’” N
Dy (Rp)p-y \'mtl,j o m, ] vm.§ o TmelL g

- ‘ o : k k

N _ ‘n+1> . < ol potl )

Dzyy b2y [ﬁKy)jf%,<?mlj+1 R A A R ]
by, (KD pox . |

i 2 bY 113 -y ﬂ

k
(Cn+1> Az . Az

: ‘ 1
\m, i/ m=% ~°m [( \n+1>k+/2 n ]
= — - g = T . - T » .
(Kz)m-%rAt m, ] m, J-

Regrouping:

k
Cval . : 'n+»1> _ 1
(21 ) [ g oy ] ()

, RS L S ‘ LYy
n1,3) LR ) 5 Bt m,3/
: 1
Azm-% (Kz)m+% <'n+1 >k+2 _
Azm'l'lé (Kz)m_lé m-]-,J
' ‘ k k
. , o+l n+1>‘ _ <n+1 _ o+l >
Loy By '[(Ky)j+% <Tm,1+1 ) 5 Mg~ T ]
by, (R)) ‘_1/ o :
j Z'm=% ij+% ij_%

Let: Al_=.1.
m

.B]_m =.- [1 + Az




DL = - ,
m m,J
(Kz)m_l/z At
' Kk k
n+l n+1> < n+l _  n+l >
Bz g bay - (Ky) <Tm,j+1 mt/ 5213 Tyt = Tmyi-1/ 7
AY' (Kz)m ¥ -
- Ay, Ay.
J 2 . yJ+1/2 YJ_
Then: _
k+1 E k+1/ k+3%
/ n+l > 2 ( n+l> 2 < n+1 > _
AL AT S + B (T, + 0Ly (Tt 5 = DI
Implicit in z, Explicit in y, Variable Grid Spacing
1 1
), (7D n+l>k+2 TR L >k+2
1 Zmts \ whl,] m,] _ MmN m,j m-l,
Az
" AZm+15 Az -y
)y (1™ - Tn+1>k+1 x) <Tn+1 n+1 >k+1
Ll [Ky s\t~ w9y g 7 Ty y
Ay L o
3 . Ay
5 343 V-
k+1
NG <T ﬂ) + 10
- (Cnﬂ) m, j _m
m, J At
Rearranging:
A .
Vi3 ) 14y [Tn+1 . +-1]k*-rl ( +1>k+l o+l >k+l
AYj"'}i (Ky)J_l m’j+1 m)j- m:j m,j-l
kt+%
n+1> 1
_ By, y B i <¢m,' ( n+1>k+2 _
m, j
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k+% kt+%
o+l +1 N +1 n+1
Ayi—% AY1 [(Kz)m+% (Tm+l i ; jzr (Kz)m-;( ; ? T;’lﬂ\ \ J
Az, (Ky)j_l/2 Azm+% Az -3
k+%
n+l>
by 09y (Cm,j (2 )
(Ky)J"/z At msJ
Let: Al, = 1 .
]
k+%
+1
A . by, ()
- - Yi-% (KY)J+% byioy AYJ m, ]
Bl A T 3 DU DY
- Yivr Yy % v i-%
o o Wiy By
i Ay, K).
? Yiey () 5oy
kt%
ml n+1
A sy (2 )
Dl. = - Yi-% AY; [( 2t P11 m, j _
] Azm (Ky)J_l/2 Az Zokl,
3
(X,) Tn+l Tn+l >k+l A A (Cn+l>k+2
z)m-3\ "y i “m-1,] ]_ Y5-37Y3 \ <Tn >
bz (Ky) 3-3 Ot s
Then:
k+1 k+1 k+1
{ n+l > ( nt+l > ( n+l > !
. = D1,. (B-26
5 T, 5-1 Bl Ty ) T Ty 5 g (B-26)
Boundary Conditions for THERMABS
kt+k kt+k
n+l> 2 ( n+1> .
= <
1) (To’j Ty ; 2<35<J
k+% k+%
n+1 _ (mntl .
2) (TM-l,j> = <TM+1 J> 1=3=7J
+1\EF2 okl
3) (Tg 1> = T i =1; desired i .



T

i,1

n+l
m,2

n+l
m,J+1

>k+l

>k+l

1 <m<6; desired i

6 <ms<sM.

For all m .
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APPENDIX C
MATRIX INVERSION TECHNIQUE

As shown in Appendix B all programs have two conduction equa~-
tions, one implicit in the x direction and explicit. in the y direction
and the other implicit in the y direction and explicit in the x direc-
tion. 1In case of THERMAB5 we have the y and z directions. These
equations are written for each mesh point and must be solved, a line
at a time, as dictated by the alternating direction .implicit method.

Each line of mesh points leads to a set of simultaneous equations
of the form,

B1 T1 +'C1 T2 L= D1

Ar Tr-l + B Ty +C. Tpyq =D

o =
_AR Tpep ¥ Bp Ty = Dp

where r =i, j or m,

which are most conveﬁiently solved by use of a tridiagonal matrix
algoyithm suggested by Thomas.(28)}' The algorithm is equivalentvto a
plain Gaussian elimination, but it avoids the error growth associated
with the back solution of the elimination method and also minimizes

.

the storage problems in machine computation.

The method may be summarized as follows-(Z5):
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Let:
w1 = By
= - < <
Wr Br A br-l 2 r R
b =C_[w 1=r <R-1
r r
g = Dy/wy
8, = (Dr - AL gr»l)/wr 2 £r £ Rog
The solution is:
Tp = &g
= - < < -
Tr_ 8y br Tr+1 1 r =< R-1

Thus, w, b, and g are computed .in order of increasing r, and T is

computed in order of decreasing r.



APPENDIX D
VARIABLE GRID SPACING AND TIME STEPS
Variable Grid Spacing

To minimize error and improve stability considerations, it is
desirable to choose ij in equation B-2 so that the temperature dif-
ference between any Ti,j and Ti,j+l can be controlled to be less than
a preselected ATmax' A systematic method of choosing yj values can be
based upon the heat distribution prescribed by the analytical solution
of conduction heat transfer in a semi-infinite slab (22).

Consider the one~dimensional transient conduction heat.problem

described by:

with boundary conditions,

at t =0, T= TO, for y 2 0
at y =0, T= Tl’ for t 2 0
as y—=®, T= TO’ for t 2 0
The solution is
T - TO ,
—— = erfc —la ) (D-1)
Tl- TO o

Recalling the general differentiation formula (35),

d Y _
o JO f(w) dw = £(v) (D-2)
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and knowing that erfc = 1 - erf, we can write

¥ )2 j\wla‘%/ “Tat )
erfe \Z/E?) =1 = TR . e d \Z/Qt

Then?

aT _ 2/0t
ay - (Tl TO) , ) 3 L]
\gﬂ;{ y
2
T 2 ZgE !
S; - (Tl TO),7= &e ) KZ/at>’
2

- -3
or _ _ 1 Tg o 4ot (D-3)
dy /Tt )

To determine the time when this gradient reaches its maximum

value at any y we first differentiate the gradient with respect to t.

2
- A
22T _ -1, (_ 1/2 t-3/2> o bot
3y ot /T
2
- A
1= T (_ ¥ [ t-2> (e 4at>
/ot wa) \
2
. - - .
a2T _ T, T o Lot (1 _ _IE) (D-4)
dy ot 2t /mat 20t/ °
2
. Q°T
Then setting S;“SE = 0.
5
f1” o T - )
2t /e 2at ?



which results in
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2
t = 2, (D-5)

equation D-5 into equation D-3.

a_

oy

which is approximately

o
dy

20

The temperature gradient at this time is obtained by substituting

/2 (T1- To)

=T (D-6)
y /e

T - T

—]-TY-—Q- . (D'7)

Then using finite differences, the temperature difference between grid

points can be limited to (AT)maX‘by requiring

Then,

Let

Then

T,-T (AT)ma

-y = .
Vi1~ ¥y =2 Ry Y

; 0.5 = X
Y Y
- Ay, <

nyl 73 73
‘ (AT) max - Ry
TlF TO

1f we let Yi41 = Y (1L + 2 Ry),

we can begin with some

temperature difference between

nated (AT)max.

for all j. | (D-8)
‘ 2y. (AT)max
' (D-9)
(Tl' TO)
(D-10)

Yp and generate a yj sequence, such that the

points will never exceed a predesig-

Vi = Yp (1+ 2 Ry)J'P . (D-11)
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When establishing this sequence, we want

> .
AYj+l ij for all j

since vy = 0 and

but if P = 2, equation D-7 implies,Ay2 < Ayl =y,

2 Ry is less than 1.
Therefore we must select the initial ij's until yj becomes large
enough such that:
2Ry Yy 25T Vg
We can then set this Yj—l = Yp and use equation D-11 to select values
of Yj for j > P.
" The ij and Azm distributions for this work were based on this

procedure.
Time Step Incrementation

It was necessary to begin with small Atn's and systematically
increase their values partially because of accuracy but mainly because
of stability difficulties. The initial time step incrementation for
these programs was based on theory similar to that used for the Yj

spacing.

T1m To “/et
NS ] oT a(ﬁ)
2e = 1m To) () o
3 Z -Zﬁ 2
L= (ry- To) 7= (e ) (ZT;;;§75>
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N

a7 (T1- Tdy -
Tt
To determine the position where the rate of heating reaches its
maximum value at any t, the rate of heating is differentiated with

respect to y.

- il - .
22 __ T e, O To”(-zl\ D (0-13)
3t dy ‘ ﬁatB/z 2/3513/2 bot/
2
Setting 52 gy = 0, we have
2
y
< 5 2y2> (T,- Tp) o bt _
bot —=3/2 ’
2
Eﬁ; =1, ory =/20t . (D-14)

The temperature gradient at this position is obtained by substi-

tuting equation D-14 into D-12.

(1,- T,) /ITE - 22E

3T bot
ol _ e

% g e

e _
T 1 "0 ~%
3 T o © (D-15)
pr
- T
d  TI1” o » ‘

The temperature change per time step can be limited to '(AT)maX
by requifing that:

T .- T (AT)max (>-17)

n n
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which implies,

4tn (AT)max
1™ S TT oty - ARt
1 0
(AT)max
where Rt =TT
1 0
Then if tn+1 = tn (1+4 Rt), we can begin with a tP and generate

a Tn sequence, such that the temperature change per time step nowhere

exceeds (AT) .
max

£ =T, (14 RO™F . (D-18)

An initial time step Aty was used until 4 R, t, = Ato, then
this t, was denoted tp and equation D-18 was used to calculate t,
‘for n.> P until stability of the system imposed a limit on the value
of At,.

The Ato for these programs was one hour and R, was selected to
be 0.05. With this criteria tp was five hours. It was necessary to
discontinue the use of this relationship when At, had reached 15
hours because of stability limitations. A At, of 15 hours was main-
tained until tn_reached,IOOO hours. At 1000 hours, Atn was raised

to 30 hours; at 3000 hours, it was raised to 50 hours; and at 10,000

-hours, it was raised to 100 hours.



APPENDIX E

EXAMPLE OUTPUT DATA
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Example output data from THERMAB3—Run no. 3

[

+051456

ER1

J= 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1500.0 1465,9 1432,1 1365.5 1300.2 1236.3 1142.2 1050.7 936.2 833.7 T1%.8 602.8 486.0 391.0 297.8 223.3 164.4 124.0 100.0 100.0 100.0
2 1482.9 1450.7 1418.7 1354.8 1291.5 1229,1 1136,.7 1046.2 932.9 831.3 713.1 601.7 485.3 390.6 297,.6 223.2 164.3 123.9 100.0 100,0 100.0
3 1466.0 1434,5 1403.1 1340.4 1278,3 1217.0 1126.0 1036.9 925.2 825.2 708.7 598.7 483.3 389.3 296.8 222.7 164.1 123.8 100.0 100.0 100,0
4 1449.4 1418.2 1387.1 1325.1 1263.7 1203,1 1113,0 1025.0 915.1 B816.9 702.4 594.1 480.3 387.3 295.6 222.0 163.7 123.6 100.0 100,0 100.0
S 1432.8 1401.8 1370.9 1309.4 1248.5 1188.3 1098.% 1011.8 903.6 807.2 694.9 588.5 476.5 384.7 294.,0 221.0 163.2 123.4 100.0 100.0 100.0
6 1416.3 1385,5 1354.7 1293.5 1233,0 1173.0 1084.1 998.0 B89l.4 T796.7 68B6.7 582.3 472.2 38l.7 292.1 219.9 162.5 123.1 100.0 100.0 100.0
7 1399.8 1369.1 1338.4 12717.5 1217.3 1157.6 L069.1 983.8 878.9 785.9 678.0 575.6 467.4 378.3 289.9 218.5 161.7 122.7 100.0 100.0 100.0
8 1383.4 1352.7 1322.1 1261.4 1201.4 1141.9 1053.9 969.5 B66.2 T74.9 669.2 568B.8 462.5 374.8 287.,6 217.1 160.9 122.4 100.0 100.0_100.0
9 1367.0 1336.4 1395,9 1245.4 1185.6 1126.,2 1038.6 9355.2 853.4¢ 163.9 660.2 561.7  457.3 371.1 285.1 215.5 160.0 121.9 100.0 100.0 100.0
10 1350.6 1320.1 1289.7 1229.4 1169.7 1110.4 1023.4 940.9 840.8 752.9 651.3 554.7 452.1 367.3 2B2.6 213.9 159.0 121.5 100.0 100.0 100.0
11 1334,2 1303.8 1273.5 1213.4 1153.8 1094.6 1008.3 926.8 828.3 742.0 642.4 547.7 446.9 363.4 280.0 212.2 158,0 121.0 .100.0 100.0 100.0
12 1317.9 1287.5 1257.3 1197.3 1137.9 1078.9 993.3 912.8 B815.9 731,3 633.6 540.7 441.7 359.5 277.3 210.4 156.9 120.5 100.0 100.0 100.0
13 1301.6 1271.3 1241.2 1181.3 1121.9 1063.2 978.3 B99.0 B803.7 T120.71 624.9 533.7 436.5 355.7 274.7 208.7 155.8 119.9 100.0 100.0 100.0
14 1285.3 1255.2 1225.1 1165.3 1106.0 1047.6 963.5 BA85.3 791.6 T710.2 616.3 526.9 431.3 351.8 272.1 206.9 154.7 119.4 100.,0 100.0 100.0
15 1269.1 1239.0 1209.0 1149.3 1090.1 1032.1 948,9 8f7l.8 7719.8 100.0 607.9 520.1 426.2 347.9 269.4 205.1 153,6 118.8 100.0 100.0 100.0
16 1252.9 1222.9 1193.0 1133.4 1074.3 1016.7 934.5 f58.5 768.1 6B%.8 599.5 513.4 421.1 344,1 266.8 203.,3 152.5 11R.3 100.0 100.0 100.0
17 1236.7 1206.8 1176.9 [117.4 1058.6 1001.5 920.2 B845.4 756.7 679.9 591.3 506.8 416.0 340.3 264.2 201.5 151.3 117.7 100.0 100.0 100.0
18 1220.6 1190.8 1160.9 1101.4 1043.0 986.3 906.1. 832.5 7T45.4 670.1 583.3 500.2 411.1 336.5 261l.6 199.7 150.1 117.1 100.0 100,0 100.0
19 1204.5 1174.7 1144.8 1085.5 1027.4 97l.3 892.2 819.8 7T34.3 660.5 575.3 493.8 406,1 332.7 259.0 197.8 149.0 116.5 100.0 100.0 100.0
20.1188.5 1158,7 1128.8 1067.7 1012.0 956.5 B878.,5 807.3 723.4 651.1 -567.5 487.4 401.2 329.0 256.3 196.0 147.8 115.9 100.0 100.0 100.0
21 1172.5 1142.7 1112.9 1054.0 996.8 942.0 865.0 795.1 112.8 64l.8 559.8 4Bl.2 396.4 325.3 253,7 1%94.2 146.7 115.3 100.0 100.G 100.0
22 1156.6 1126.3 1097.0 1033.5 931.8 927.6 851.8 783.0 702.3 632.6 552.2 475.0 391.5 321.5 251.1 192.4 145.5 114.6 100.0 100.0 100.0
23 1140.7 1111.0 1031.3 1023.1 9466.9 913.4 838.7 T771l.2 6I1.9 623.6 544.7 468.,8 386.8 317.9 248.5 190.6 144.4 114.0 100.0 100.0 100.0
24 1124.9 1095.2 1065.7 1007.9 952.,3 899.4 B825.9 759.6 681.8 614.8 537.3 462.7 382.0 314.2 245.8 188.8 143.2 113.3 100.0 190.0 100.0
25 1109.1 1079.6 1050.1 992.7 937.7 B885.6 B13.3 T48.1 AK1l.8 606.0 529.9 456.7 377.3 310.5 243.2 187.0 142.1 112.6 100.0 100.0 100.0
26 1093.3 1062.9 1034.7 977.8 923,4 871.9 800.8 736.8 661.9 597.4 522.7 450.7 372.6 306.9 240.6 185.2 140.9 111.9 100.0 100.0 100.0
27 1077.6 1048.4 1019.3 962.9 907.2 #258.5 7188.5 125.7 652.2 588.9 515.5 444.7 368,0 303.3 238,0 183.4 139.8 111.3 100.0 100.90 100.0
28 1062.0 1032.9 1004,0 948,2 £95.1 845,2 776.4 Tla.7 642.6 580.4 508.4 438.9 363.3 299.6 235.4 18l.6 13846 110.6 100.0 100.0 100.0
29 1046.4 1017.5 933.6 B88l.2 B832.0 T164.4 102.8 5H33.1 572.1- 50I.3 &33.0 358.7 296.0 232.8 179.8 137.5 109.6 100.0 100.0 100.0
30 1030.8 1002.1 919.1 8567.4 819.0 752.5 693.1 623.7 563.8 4%4.4 427.2 354.1 292.4 230.2 178.0 136.4 109.1 100.0 100.0 100.0
31 1015.3 986.9 904.7 R53.R R06.1 140.8 6R2.5 6l4.4 555.6 48T.4 421.4 349.5 288.9 227.6 176.3 135.,2 108.4 100.0 100.0 100.0
32 999.9  971.6 330.4 840.2° 793.4 729.2 672.C 605.1 547.5 480.6 415.7 345.0 285.3 225.0 174.5 134.1 107.6 100.9 1920.0 100.0
33 984.,4 956.5 876.2 B26.8 180.7 717.8 6h1.6 596.0 539.5 473.7 410.0 340.5 28l.7 222.4 172.T 133.0 106.8 100.0 100.0 100.0
34 969.1 941.4 862.2 813.5 768.2 T06.4 651.3 587.0 531.5 466.9 404.3 335.9 278.2 219.9 170.9 131.9 106.0 100.0 100.0 100.0
35 953.7 926.4 A48.2 400.3 155.8 695.2 641.1 578.0 523.6 460.2 398.6 331.4 274.6 217.3 169.1 130.8 105.1 100.0 100.0 100.0
36 938.4 91l.4 834.,3 787.3 743.5 684.0 631.0 569.1 5§15.7 453.4 393.0 327.0 271.1 214.7 167.4 129.7 104.3 100.0 100.0 100.0
37 923.2 896.5 820.6 TT74.3 7131l.4 673.0 621.0 560.3 507.9 446.7 3B7.4 322.5 267.6 212.1 165.6 '128.7 103.4 100.0 100.0 100.0
38 908.0 88l.7 806.9 76l.4 719.3 "662.0 611.0 .551.5 500.1 440.1 381.8 318.1 264.1 209.6 163.,8 127.7 102.5 100.0 100.0 100,.0
39 892.8 B66.9 793.3 1748.6 107.3 651.1 60l.1 542.8 492.& 433.5 376.3 313,7 260.7 207.0 162.1 126.7 10l.6 100.0 100.0 100.0
40 877.7 852.2 779.8 T736.0 695.4 640.4 591.4 534.2 484.7 426.9 370.7 309.3 257.3 204.5 .160.3 125.8 100.6 100.0 100.0 100.0
41 862.7 837.5 T6b.4 T123.4 683.6 629.7 581.7T 525.6 4&77.1 420.4 365.3 305.0 253,9 202.0 158.6 124.9 100.0 100.0 100.C 100.0
42 B847.7 822.9 753.1 710.9 672.0 619.1 572.1 517.1 469.6 414.0 359.9 1300.7 250.7 199.6 156.9 124.1 100.0 100,0 100.0 100.0
43  832.7 808.4 739.9 698,5 660.4 608.6 ©562.6 503.8 &62.2 407.7 35&.6 296.5 247.4 197.2 155.3 123.3 100.0 100.0 100.0 100.0
44 817.8 794.0 726.8 6B6.3  649.0 598.3 553.2 500.6 454.9 401.5 349.4 292.4 244.3 194.,9 153.8 122.5 100.0 100.0 100.0 100.0
45 803.0 779.7 756.3 7T13.8 674.2 637.7 588.2 544.1 492.5 447.8 395.4 344,4 288.5 241.2 192.7 152.3 121.8 100.0 100.0 100.0 100.0
46  788.3 T65.5 T43.1 7T01.1 662.4° 626.7 578.3 535.2 484.7 441.0 389.7 339.7 284.8 238.4 190.7 151.0 121.1,100.0 100.0 100.0 100.0
47 T73.7 751.4 7129.5 688.5 650.8 616.0 B568.7 526.6 477.4 434.6 384.4 335.3° 281.5 235.9 189.0 149.9 120.6 100.0 100.0 100.0 100.0
48  759.3  727.6 T16.2 676.3 639,6 605.7 559.7 S518.7 470.4 428.7 379.6 331.5 278.7 233.8 187.5 149.0 120.1 100.0 100.0 100.0 100.0
49  745.1 T724.1 703.4 664.7 629.1 596.2 551.5 511.6 a64.7 423.,8 375.T7 328.5 276.4 232.2 186.4 148.3 119.7 100.0 100.0 100.0 100.0
50 731.3 711.1 691.3 654.2 619.9 58HK.2 544.9 506.1 460.4 420.3 373.0 326.4 275.0 231.2 185.7 147.8 119.5 100.0 100,0 100.0 100.0
51 718.5 700.1 6A81.7 646.8 G6l4.2 583.7 541.6 503.6 458.5 41B.9 372.0 325.7 274.5 230.8 185.5 147.7 119.%4 100.0 100.0 10G.0 100.0
88117.0 HNOURS )
0.04894 DISCREPANCY IN HEAT BALANCE
0.70402099E 07 BTU BF HEAT STURED IN RESERVOIR
0.24609128E 09 RTU UF HEAT PRODUCED
0.88157645E 03  ATU 0OF HEAT INJECTED
0.13594491E 10 (7707
0.41133696E 09 HTORG
100.0TI¥E INCREMENT, HOURS

—-0.61596915E-01
TOLERANCE

[

.01000

ER2

0.58262092€ 00

=INSTANT AEAT STORED

081



Example output'data from THERMAB3.—Run no. 3

DISTANCE ISOTHERM ISOTHERM ISOTHERM  ISOTHERM [ISOTHERM ISOTHERM ISOTHERM [SOTHERM
DOWN DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DRGREEES F
FRACTURE 300.0 500.0 600.0 . 700.0 900.0 1100.0 1300.0 1500.0
FEET ’ -
FEET INTQ FEET INTO FEET INTO FEET INTO FEET INTO FEET LNTO FEET INTO FEET INTQ

WALL WALL WALL "WALL WALL WALL WALL WALL
0. “66.68 41.92 34,22 28.36 19.41 12.38 6.01 0.0
10. 66.64 41.86 34.13 28.27 19.29 12.22 5.73 0.0
20. 66,52 41.70 33.92 28.02 19.01 11.87 5.30 0.0
30. 66,33 4l.44 33.65 27.65 18.62 11.44 4.82 0.0
40, 66,07 41.11 33.30 27.25 18.15 10.96 4031 0.0
50. 65,76 40.73 32.90 26.83 17.68 10.46 3.79 0.0
60. 65.40 - 40.29 32.45 264,38 17.19 9.95 3.26 0.0
70. 65,01 33.82 31.98 25.90 16.69 9.43 2.13 0.0
80. 64,58 39.32 31447 25.39 16,17 8.90 2.20 0.0
30. 64.12 38.80 30.95 24.86 15.64 8.36 1l.66 0.0
100. 63,64 38.26 30.41 24,32 15.09 7.82 . 1.13 0.0
110. 63.14 37.70 29.85 23,76 14.53 T.28 0.59 0.0
120. 62,62 37.12 29.27 23.19 13.96 6.75 0.05 0.0
130. 62.09 36.53 28469 22.60 13.44 6420 0.0 0.0
140, 61.55 35.92 28.08 22.00 12.90 5467 0.0 0.0
150. 60.99 35.31. 27.47 21.48 12.36 5.13 0.0 0.0
160. . 60.41 34.67 26.96 20.95 11.81 . 4.59 0.0 0.0
170. 59.83 34,03 2644 - 20,41 11.25 4405 0.0 0.0
180. 59.21 | 33.51 25.91 19.86 10.70 3.51 0.0 0.0
190. 58.59 32.98 25.36 - 19.30 10.17 2497 C.0 0.0
200. 57.94 32.44 24.80 18.72 T 64 2.44 0.0 0.0
210. 57428 31.89 24,23 18.13 9.09 1.90 0.0 0.0
220. 56460 31.33 23.65 17.59 8.54 1.37 0.0 0.0
230. ) 55.91 30.75 23.05 17,06 7.98 0.8% 0.0 0.0
240, 55.19 30.16 22.43 16.52 T+45 0.31 0.0 0.0
250. - '54,.45 29.55 21.84 15.97 6.91 0.0 0.0 0.0
260. 53.70 28.92 21.30 15.40 6.36 0.0 0.0 0.0
270. 52.94 28,28 20.74 14.81 5.82 0.0 0.0 0.0
280. 52.37 27.63 20.17 14.22 5.28 0.0 0.0 0.0
290. 51.77 27.05 19.58 13.65 4. 74 0.0 0.0 0.0
300, 5l.16 26.49 18.98 13.10 4018 0.0 0.0 0.0
310. 50.54 25.90 18.36 12.53 3.64 0.0 0.0 0.0
320. . 49.89 25430 - 17.76 = 11.95 3.10 0.0 0.0 ° 0.0
330. 49,22 24.68 . 17.19 11.35 2.5% 0.0 0.7 0.0
340, 48453 244,04 16.61 10.76 1.98. 0.0 0.0 0.0
350. 47.83 23,39 16.00 10,15~ 1.43 0.0 0.0 0.0
360. 47.10 - 22:71 15.38 9.61 . 0.87 0.0 0.0 - © 0.0
370. 46435 22.01 14.74 9,01 0.30 0.0 0.0 0.0
380. 45458 21.39 14,08 8.39 0.0 0.0 0.0 0.0
390. 44,79 20.76 13.47 T 1T . 0.0 0.0 G. ¢ d.0
%00. 43.98 20.11 - 12.85 T.18 0.0 0.0 0.0 6.0
410, 43.14 19.44 12.22 6456 0.0 0.0 0.0 G.0
420. 42.46 18.75 11.56 5.93 0.0 0.0 -0.0 0.0
430, 41.80 18.05 10.30 5.32 0.0 8.0 0.0 0.0
440, 41415 17.42 10.28 4.70 0.0 0.0 0.0 0.0
450. 40,51 16.79 9.65 4,06 0.0 TG0 0.0 0.0
460, 39.91 16.16 ~ 9.01 3.44 0.0 0.0 0.0 0.0
470. 39.37 15.55 8.37 2.81 0.0 0.0 0.0 0.0
480, 38.92 14499 1.77 2417 0.0 0.0 0.0 G.0
490: 38.62 14.54 T.25 " 1.56 0.0 G.0 0.0 0.0
500. 38.52 14.32 6493 1,00 0.0 0.0 0.0 0.0

o)

o)



Example output data from THERMAB4—Run no. 11

J= 1 2 3 4 5 6 7T 2] 9 10 11 12 . 13 14 15 le 17 18 19 20 21 22 23 24 25
1 2000.0 1937.6 1877.9 1771.8 1688.4 1622.0 1537.5 1423.3 1276.0 L10G.4 945.6 B809.1 .T12.1 661.7 648.9 €60.3 686.2 T17.1 T44.9 T766.0 780.8 797.1 Bl6.8 828.5 84l.3
2 1955.4 1897.2 1842.1 174642 1671e4 161047 1529.9 14176 1271.6 11C€.2 943.5 80T7.9 Tll.7 661.8 649.4 66l.4 687.8 719.4 T47.9 T769.9 785.5 803.3 825.0 838:3 852.8
3 1911.3 1855.3 1803.1 1715.3 1647.9 159241 1514.6 1404.4 1260.9 1098.3 93B.1 804.9 710.5 662.0 650.9 664.1 691.9 724.9 754.7 777.8 7T94.4 B8I3.1 B836.3 850.3 865:8
4 186843 1814,4 1765.0 1684.2 1622.4 1570.4_1495.7 1387.6 1246.6 1086.9 930.2 800.4 708,7 662.3 652.9 667.8 697.4 732.1 7T63.4_ T87.6 B04.8 B824.5 B4B.6 863.3 879.4
S 1826.6 1775.4 1728.9 1654.,5 1597.5 1548.5 1475.8 1369.3 1230.4 1072.8 921.0 794.9 706.5 662.7 655.3 672.1 703.6 740.2 7T73,0 798.3 B8l6.2 836.6 861.6 876.7 B893.4
6 1785.6 173547 1690.8 1620.4 1567.4 1521.6 1452.3 1348.6 1212.6 1059.3 91C.7 78B.9 704.0 '663.0 657.9 676.8 710.4 748.8 783.2 80%.6 828.2 849.2 875.0 890.6 $07.8
7 1748.6 1703.7 1663.3 1598.9 1547.6 1501.2 1430.9 1328.2 1194.5 1044.4 900.3 782.5 7T0l.4 663.3 660.6 68l.7 717.4 757.8 793.,8 821.2 840.5 862.2 B888.7 904.8 922.5
8 1712.5 1668.8 1629.9 1568.6 1520.4 1476.5 1408.5 1307.9 1176.3 1025.3 889.5 7T76.1 698.7 663.6 663.4 686.8 7T24.7 767.1 804.7 833.2 853.1 875.4 902.7 919.3 937:5
9 1677.6 1635.6 1598.4 1540.6 1495.0 1452.9 1386.5 1287.€ 1158.2 1014.3 878.7 769.6 €96.0 664.0 666.3 692.0 732.1 776.6 815.8 B845.4 865.9 B88.9 917.0 934.0 952.9
10 164442 1604¢3 15691 1514e4 147048 1429.9 13648 1267.6 1140.4 95545 868.2 T63.3 £93.4 664%.4 66%.3 697.3 739.7 786.3 827.1 857.8 879.0 9$02.7 931.6 949.2 968.5
11 161245 1574.7 1541.3 1489.2 1447.2 1407.3 1343.4 1247.8 1122.8 985.1 857.9 757.2 690.9 665.0 672.4 7T02.8 747.5 796.2 838.8 B870.7 892.6 916.9 946.6 964:7 984.6
12 1582.4 1546.4 1514.6 1464.7 1424.0 1385.0 1322,1 1228.1 1105.4 S71.0 847.9 7T51.2 688.5 665.6 675.6 708.5 755.5 806.4 850,8 883.9 906.6 931.6 962.1 980.6 1000.9
13 1553.7 1519.4 1489.0 1440.9 1401.3 1363.1 1301.2 1208.8 1088.4 957.2 838.2 745.5 €86.3 666.4 679.0 Tl4.3 763.7 8l6.9 863.2 897.6 921.0 946.7 977.8 996.7 1017.5
14 1526.4 149346 1464.4 141841 1379.5 1341.9 1280.9 1189.8 1071.5 943.7 828.8 740.0 684.3 667.3 682.5 720.3 772.2 827.8 B876.0 911.6 935.8 962.1 993.9 1013'2 1034.3
15 150043 146848 1440.7 1395.8 1358.0 1321.0 1261.0 1171.1 1054.9 93C.6 819.7 T34.7 682.4 66B.4 686.1 726.5 780.9 B839.0 889,3 926.3 951.1 978.1 1010.4 1030.0 1051‘3
16 1475.0 1444.4 1417.1 1373,2 1336.0 1299.6 1240.7 1152.4 1038.6 918,0 811.0 729.7 €80.7 669.6 690.0 732.9 789.9 850.5 902.7 941.0 966.6 994.1 1027.0 1046-8 1068.5
17 1450,5 1420.8 1394.2 1351.2 1314.6 1278.9 1220.9 1134.2 1022.8 9C5.9 B802.6 T24.9 679.2 670.9 6%4.0 739.5 79%.2 B62.2 9lé.4 955.9 982.2 1010.3 1043.8 1063.9 1085‘9
18 1426.7 1397.8 13718 1329.6 1293,6 125844 1201.5 111643 1007.4 894.0 794.5 720.2 ¢€77.8 672.5 698.2 7T46.3 B08.7 874.2 930.4 971l.1l 998.0 1026.7 1060.8 1081:2 1103.5
19 1403.5 1375.3 1349.9 1308.4 1273.0 1238.3 1182.3 1098.6 .992.2 882.4 T86.6 T15.8 676.6 674.1 T02.5 753.4 81846 B86.6 944.8 986.7 1014.3 1043.5 1076.0 1098.7 1121.3
20 1380.8 1353.2 1328.3 1287.5 1252.6 1218.5 1163.4 1081.0 977.4 B871l.1 779.0 7Tll.6 £75.5 676.0 707.1 760.8 828.8 899.4 959.5 1002.7 1030.8 1060.5 1095.5 1116.5 1139:5
21 1358.6 1331.5 1307.1 1266.9 1232.5 1198.9 1144,7 1063.9 962.9 86C.1 T7l.6 7T0T.6 €T4e6 678.0 7T11.8 768.3 839.2 912.5 G3T4.6 1018.9 1047.6 1077.8 1113.3 1134.5 1157.7
22 1336.9 1310.3 1286.3 1246.7 1212.8 1179.8 1126.3 1047.1 94B.9 845.5 7T64.6 703.8 673.9 680.1 716.8 776.2 850.0 925.9 990.0 1035.4 1064+7 1095.4 1131.3 1152:8 1176.3
23 1315.6 1289.6 1266.0 1227.1 1193,7 1161.0 1108.3 1030.8 935.2 839.2 757.7 700.2 €73.3 682.5 722.0 784.3 86l.l 939.7 1005.8 1052.5 1082.3 1113.4 1149.8 1171.6 1195-3
24 1294.7 1269.1 1245.9 1207.6 1174.6 1142.3 1090.4 1014.6 922.0 825.3 751.2 696.8 €72.9 685.0 727.4 792.7 B72.7 954.0 1022.1 1069.9 1100.3 1131.9 1168.6 1190:5 12 4.5
25 12T4.1 1249.0 1226.2 1188.3 1155.7 1123.8 1072.8 998.9 909.1 B815.7 T44.9 693.6 €672.6 687.7 733.0 EOL.5 8B84.5 968.6 1038,7 1087.5 L118.5 1150.4 1187.5 1209.7 12 4'1
26 1253.9 1229.2 1206.7 1169.3 1137.0 1105.5 1055.6 983.6 8%96.7 BlC.5 738.8 690.5 672.6 690.5 738.8 8l0.5 B896.7 '983.6 1055.6 1105.5 1136.9 1169.3 1206.7 1229.2 12 3.9
27 1234.1 1209.7 1187.5 1150.4 1118,5 1087.5 1038.7 968.6 884.5 BCl.5 T733.0 687.7 672.6 693.5 7T44.9 819.7 90%.1 998.9 1072.8 1123.8 1155.7 1188.3 1226.2 1249.0 2 4.1
28 1214.5 1190.5 116846 1131.9 1100.3 1069.9 1022.1 954.0 'B72.7 752.7 727.4 685.0 672.9 69648 751.2 829.3 922.0 1014.6 1090.4 1142.3 1174.6 1207.6 1245.9 1269.1 1294'7
29 1195.3 1171.6 1149.8 1113.4 1082.3 1052.5 1005.8 939.8 86l.1 784.3 722.0 682.5 €73.3 7T00.2 757.7 839.2 935.2 1030.8 1108.3 1161.0 1193.7 1227.1 1266.0 1289:6 1315.6
30 1176.3 1152.8 1131.3 1095.4 1064.7 1035.4 990.0 925.9 850.0 776.2 716.8 680.1 £€73.9 703.8 T64.6 E€43.,5 348.9 1047.1 1126,3 1179.7 1212.8 1246.7 1286.3 1310.3 1336.9
31 1157.7 1134.5 1113.3 1077.8 1047.6 1018.9 974.6 912.5 839.2 7T68.3 7T11.8 6T8.0 6T4.6 707.6 T71.6 B60.1 962.9 1063.9 1144.7 1198.9 1232.5 1266.9 1307.1 1331.5 1358-6
232 1139.4 1116.5 1095.5 1060.5 1030.8 1002.7 959.5 899.4 B28.8 76C.8 707.1 676.0 675.5 711.6 779.0 B71l.1 977.4 1081.0 1163.4 1218.5 1252.6 1287.5 1328 3'1353-2 1380‘8
33 1121.3 1098.7 1078.0 1043.5 1014.3 986.7 944.8 B886.6 B18.6 T52.4 702.5 6T4.1 6T6e6 T15.8 7T86.6 882.4 992.2 1098.5 1182.3 1238.3 1273.0 1308.4 1349.9 1375.3 1403‘5
34 1103.5 1081le2 1060e7 1026.7 998.0 971.2 930.4 B874.2 BOB.T T4€6.3 698.2 672.5 677.8 7T20.2 7T94.5 894.0 1007.4 1116.3 1201.5 1258.4 1293.6 1329:6 1371.8 1397.8 1426.7
35 1085.9 1063.9 1043.8 1010.3 982.2 955.9 9l6.4 B62.2 799.2 7395.5 694.0 670.9 679.2 1724.8 802.6 905.9 102248 1134,2 1220.9 1278.8 1314.6 1351.2 1394.2 1420’8 1450‘5
36 1068.5 1046,8 1027.0 994.1 966.6 $941.0 902.7 850.5 783.9 T732.8 690.0 66%.6 €807 729.7 B8l1.0 918.0 103846 1152.4 1240.7 1299.6 1336.0 1373.2 1417‘1 1444.4 1475.0
37 1051.3 1030.0 1010.4 978.1 951.1 926.3 B889.3 B39.0 780.9 7T26.5 686.1 668.4 €82.4 T34.7 B1l9.7 930.6 1054¢9 1171.1 1261.0 1321.0.1358.0 1395.8 1440.7 1468.8 1500.3
38 1034.3 101342 993.9 962.1 935.8 911.6 876.0 827.8 T72.2 T20.3 682.5 667.3 68443 740.0 828.8 943.7 1071.5 1189.8 1280.9 1341.9 1379.5 1418.1 1464.4 1493‘6 1526'4
39 1017.5 996.7 977.8 946.7 921.0 897.6 863.2 8l6.9 763.7 Tl4.3 679,0 666.4 68643 745.5 838.2 957.2 108844 1208.8 1301.2 1363.1 1401.3 1440.9 1489‘0 1519.4 1553.8
40 1000.9 980.6 $62.0 931.6 $06.6 883.9 B850.8 806.4 755.5 TOB.5 675.6 665.6 688+5 751.2 847.9 970.9 1105.4 1228.1 1322.1 1384.9 1424.0 1464.7 1514.6 1546.4 1582.4
41 984.6 964.7 946.6 916.9 892.6 870.7 83848 719642 T4&T.5 TC2.8 6T2.4 665.0 €90.9 :T57T«1 857.9 985.0 11227 1247.7 1343.4 1407.3 1447.2 1439:2 1541.3 1574'7 1612'5
42 968.5 949.2 931.6 902.7 879.0 857.8 827.1 78603 139.7 69743  669.3 664.4 693.4 763.3 068.2 999.5 114043 1267.6 1364.8 1429.9 14708 1514.4 1569.1 1604.4 L6dk.2
43 952.9 934.0 917.0 'B8B8.9 865.9 B45.4 815.8 77646 T32.1. 692.0 66643 664.C 6960 T69.6 878.7 101443 1158.2 1287.6 138646 1452.9 1495.0 1540.6 1598:4 1635.6 1677.6
44 937.5 919.3 902.7 B875.4 853.1 833.2 804.7 767.1 T24.6 686.8 663.4 663.6 €98,7 T76.1 889,5 1029.3 1176.3 1307.9 1408.6 1476.5 1520.4 1568.6 1629.9 1663:8 l.712’=
45 922.5 904.8 888.7 862.2 840.5 821.2 793.8 757.8 7T17.4 68l.7 660.6 663.3 70l.4 782.5 900.3 1044.4 1194.5 1328,2 1431.0 1501.3 1547.7 1598.9 1663.3 1703.7 1745‘5
46 907.8  890.6 875.0 849.2 628.2 : 80%.6 783.2 748.,8 7T10.4 67€6.8 657.9 663.0 7T04.0 788.9 910.8 105%.3 1212.6 1348.6 1452.3 1521.6 1567.5 1620.4 1690‘9 1735-7 1785'6
47 B893.4 B8T6.7 861.6 B836.6 8l6.2 T98.3 TT3.0 -T740.2 T03.€ 672.1 65543 . 66247 T06e5 7949 92140 1073.8 1230+% 1369.3 1475.8 1548.5 1597.6 1654.5 1729:0 1775.4 1326.1
48 B879.4 863.3 848.6 824.5 B804.8 T87.6 T763.4 T132,1 697.4 667.8 652.9 662.3 708.7 800.4 93042 1086.9 124646 1387.6 1495.7 1570.4 1622.5 1684.2 1765.0 1314.4 1868.3
49 865.8 850.3 836.3 8l3.1 794.4 T77.8 754.7 724.9 691.9 664.1 65C.9 662.0 710.5 804.9 938.1 1098.3 1260+4% 1404.5 1514.7 1592.1 1647.9 1715.3 1803.1 1855.3 1911.3
50 852.8 838.3 825.0 803.3 785.5 769.9 7T47.9 7T19.4 687.8 661l.4 649.4 661.8 711.7 807.9 943.6 110643 1271.6 1417.6 1529.9 1610.7 1671.4 174642 1842:1 1897.2 1955.4
511 31133 828.5 B816.8 T97.1 . 780.8 766.0 7T44.8 7T17.1 686.2 66Ce3 64849 661.7 712.1 B809.1 945.6 1109:4 12760 1423.3 1537.5 1622.0 1688.4 1771.8 1877.9 1937:6 2000.0
09117.0 HOURS .
0.10441 DISCREPANCY IN HEAT 8ALANCE
0.18929052E 10" BTU OF HEAT STORED -IN RESERVOIR
0.48211277E 09 BTYU GF HEAT PRODUCED
0.21102226E 10 8TU CF_HEAT INJECTEC
0.25361380E 10 HTTOT
0.16112005E 09 HTORG

100.0TIME INCREMENT, HOURS

0.,11658 ERL

1.07495 ER2
0.01000

TOLERANCE

0.65431195E Q0

=INSTANT HEAT STORED

81



APPENDIX F

FLOW SHEET AND PROGRAM LISTINGS
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\_/

( om
'

System data

" Input

Compute

ve ocity

Initialize

parameters
Call CALCY

;

Set constant values

of capacitance and

conductance

Increase
time step length
during run? -~

End of time
step?

THERMABI

Vertical

Call CONV

'

Call COND2

;

Set KK=2

184

Time step length set

according to time

into run

vertical or

horizontal
sweep?

Horizontal

KWHO=1
Call CONV
Call CONDI
Set KK=1




Accuracy

reached?

THERMABI

Accuracy
reached?

Set Vimp{J,K}=

Tmps{J),K)

Set Temp{J,K}= Set Temp{J,K}=

Tmps{J,K)

Set Vtmp{J K]=

Tmps{J,K} Tmps{J.K}
Set KWHO= -
° 0=2 Calculote heat stored Set KWHO=1

in rock, heot injected

and heat produced

I

Increment time

temperatures?

Output
temperatures

heat dota

direction

Horizontal

KK=1

185

Vertical

KK

2
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THERMABI1
Subroutine Subroutine Subroutine
CONDI COND2 CALCY

(Horizontal sweep) (Vertical sweep) (Variable grid spacing)

=D =D =D
1 l 1

Calculate Calculate Calculate
coefficients | coefficients AYj+¥
" Matrix i
. a . Matrix Calculate
inversion . .
inversion .
routine - AYi—%
rouvtine

Set Tmps(J,K)= Set Tmps(J,K)=% Calculate

Ttmps{J,K} Ttmps(J,K) AYj

4 !
[ End ) ( End j ( End )

Subroutine CONV
( Start )

Calculate

coefficients

Calculate

temperatures

=D




c . THERMABl-A.L. BARNES
DIMENSION THPS(IS‘SI).TEHP(IS-SIH'( 15, 51)vG(lSoSl).'MS).V(SthP
ILUS(IS).VNEG(IS)vVNlDlli)'TTNPS(lS:SlhAREA( 151, HI15),HAL15) VTHP{
215,451}

COMMON TNPS.TEHP.I.G'V'V.VPLUS.VNEG.VHKD.JHAXQ IMAXCOND+DELTT,ALPH ~

1A+DELTX¢DENOM,DELTY,TTMPS,CAP,CONDX
TEMP=PERMANENT TEMPERATURE ARRAY
VTMP=TEMPORARY TEMPERATURE ARRAY
THPS=TEMPGRARY TEMPERATURE ARRAY
100 READ(S'lD)lNAX.JHAX.DELTT'TUL.TINX.ALPHA'DELTX.DELTV.AA.BB.TT.TTT.
© 1CCoKSKIP¢NSTRT
EMAX=NUMBER OF COLUMNS (K}
JMAX=NUKBER OF ROWS tJ}
OELTT=TIME STEP LENGTHsHOURS
TOL=TOLERANCE
TIMXsMAXINMUM TIME,HOURS
ALPHA=SPECTFIC HEAT X VELOCITY X DENSITY(ALL OF GAS}.
DELTX=DISTANCE BETWEEN POINTS ALONG THE -FRACTURE
DELTY=DISTANCE BETWEEN POINTS INTD THE-WALLUFIRST. 3 POINTS ONLY}
AA=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
BB=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
TT=INJECTION TEMPERATURE, OEGREES FAHRENHEIT
TTT=RESERVOIR TEMPERATURE, DEGREES. FAHRENHEIT
CC=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN
NSTRT=SWITCH THAT ALLOWS STARTING RUN WITH CUNSTANT OR VARIABLE
FIELO TEMPERATURES
READ(S5,42D) (Y(1),1=1,15)
20 FORMAT(1SFS.D}
c YoOISTANCE INTD THE WALL.FT.
PP=0.
TIME=0.0
0D 21 K=1,IMax
FK=K
X=DELTX#FK
VIK)=AA+BBs X+EXP(CCoX}
CONTINUE
HTOUT=0.
* KWHD=1
ATHP=0,0
HTINEO.
FORMAT{215,F5.1,F5.2,F10.1,F10.1,6F5.1,F10.4/215}
IF{NSTRT.EQ.1}GO TD 81
READ{5,203) TIME,HTIN,HTOUT
FORMAT{F10.0,2E18.8)
TIME=TIME, HCURS, ALREADY COMPLETEOD WHEN RUN RESTARTED
HTIN=BTU OF HEAT INJECTED WHEN RUN RESTARTEO
HTOUY=BTU OF HEAT PRODUCED WHEN RUN RESTARTED
ATMP=TIME
00 74 K=1,IK,
Tl‘READ(S.TB)(THPSKJ'K) J-l-JHAX)
73 FORMAT{15F5.0)
GO TO 204
81 DO 75 K=1,IMAX
00 75 Jel,JMAX
75 TMPS(J4K
20% DD 205 Kwl,IRAX
00 205 J=1,JMAX
TEMP{J,K}=THPS[J,K)
VIHP(J,K}=THPSTJ,K)
VIMP{1,1)=TT
TEMP(1,1}=TT
THPS(I.I)ITT
CALL caLC
c CALCY 1S A SUBRDUTINE THAT CALCULATES VARIABLE Y SPACING VALUES
CDNDX=. 0001

coo
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22241
22241

22241
22201
22241

22241
22241

22241
22241

22241
22241

22241

22241
22241
22241

22261
22261
22241
22241
22261
22241
22241

22241

22241
22241

22243

THERMAB1

c CDNDX:CUNDUCTANCE IN X DIRECTION THERMAB]

COND=0. 6

c COND=CONDUCTANCE IN Y DIRECTION THERMAB]

CAP=3S,
82 GO TO{993,994} +KSKIP
994 IF(ATMP.NE.TIME) GO TO 995
ATMP=ATMP+1.
IF(TIME.GT.1000.)G0 TC 997
DELTT=S.

99

Y5

o0 o0

oA

60 1O 995
1IF(TIME.GT.3000.1G0 TO 992
DELTT=15.
60 10 995
DELTT=5D. )
KWHO IS THE SWITCH TO DETERMINE DIRECTION OF ‘AOIP SWEEP{HORIZONTAL
OR VERTICAL}
995 60 TD(991,531 ,KWHO
991 CALL CONV
CONV IS A SUBROUTINE THAT SOLVES EXPLICT CONVECTION EQUATIONS
ALONG THE FRACTURE
CALL CONOD1
COND1 IS A SUBROUTINE THAT SOLVES HORIZONTAL ADIP WITH THE CONV
SOLUTION AS A BOUNDARY CONOITION
1F{DENOM.EQ.0.01GD TO 69
KK=]
DO B4 N=1,JMAX
DO BA M=1,IMAX
IF(ABSC{VTMP{N,M}~THPS{N, M} ) /THPS (N, M)} .GT.TOLIGD TO 86
CONTINUE
DO 87 J=1,JHAX
00 87 K=1,IMAX
TEMP(J4K)aTHPS{ JoK)
GO 10 67
86 DD 88 J=1,JMAX
DO 88 K=1,T1MAX
VMR LI, K} =THPS LI, K}
KWHO=2
60 To 62
CALL CONV
CALL COND2
CONO2 IS A SUBROUTINE THAT SOLVES VERTICAL AOIP WITH THE CONV
SOLUTION AS A BOUNDARY CONOITION
IF{DENOM.EQ.0.0)G0 TO &9
KK=2
DO 64 N=1,JMAX
DO 64 Mol IMAX
LF(ABST{VTMP (N, M3 ~THPSINSMI }/THPS (N, M} ) .GT.TOLIGO TO 65
CONTINUE
00 66 J=1,JMAX
00 66 K=1,IMAX
TEMP(JoKI=THPSEJ,K)
60 TO 67
65 00 B3 J=l1,JMAX
00 83 K»1,IMAX .
VTHP{J,K) »THPS 1 J,K}
KWHO=1
60 T0 B2
JBMAK=JMAX=-2
IBMAX=IMAX-2
THIS ACCOUNTS FOR THE HEAT STORED IN ROCK
FIMAX=IMAX
B0 40 J=1,JHAX
SUM=0. )
00 80 K=1,1BMAXs2 .
80 SUM=SUMSTEMP(J (K} 44, STEMP(J K41 F4TEMP(J,K+2)
40 AREA{J}=SUMe (DELTX/3.}
882%0.
00 90 Jel,JBNAK,2
HEJ =Y {J+1)=YL I}
HACJ)={Y(Je23=Y (J+11)/HEJ)
90 BB22BB2+(HIJ) o (HALJI+1.1/16.0HATJ) 1) 8{{2.0HALU}-1.) €AREAT IS 2} 4L HAL
1J141.1082¢AREACJ41I¢HALI) 0 (2o -HA{ J1 ) SAREALI])
HEAT=(CAP#BB2) = (TTTeY{JNAX} 6OELTX0CAPOF IMAX+{ {TT=TTT 1o CAPDELTX 0.2
150
THIS ACCOUNTS FOR HEAT CUT OF PROOUCER
HTOUT=HTOUT#TEMP (L, TMAX) @DELTT®ALPHA
HTTOT=HTOUT4HEAT
HTINsHTINFALPHA® TTeDELTT
ERR=ARS { (HTIN-HTTOT} /HTIN}
FORMAT{14+15F7.1}
TJIME=TIME4DELTT
ATHP=TINE
PPuPP+].
IF{PP.NE.2.1GD TO 891
PP=0, -
WRITE(8533)
33 FORMAT{1H]1,2X2HJ=5X2H 15¥2H 25X2H 3SX2H 45X2H 55X2H 65X2H 73X2H 85
1X2H 95X2H105X2H115X2H125K2H135X2H45X2H15 )
00 36 K=1,IMAX

99

N

N

99.

P

~

w

&

*

1

*

w

[

~

3

~

22241
22241
22241

L81



36 WRITE{B437TIKyITEMP{JsK) o d=1,JHAXE
BBT WRITE{B,30) TIME,ERR yHEAT 4HTOUTHTIN

30 FORMAT{F10.142Xy5HHOURS/F10.5,2Xs2THDISCREPANCY IN HEAT BALANCE/El 22241
18.8+2X,31HBTY OF HEAT STOREO IN RESERVOIR/EL8.842Xy20HBTU OF HEAT 22241
"2PRODUCED/E18.842X,20H8TU OF HEAT INJECTED) 22241

851 [IF{TIME.GT.TIMX1GO TO 100

GO TO(B6465} KK
69 smp 22241
22241
suanuunue ‘caLCY 22241
DIMENSION THPS(154513 ¢ TEMP{15,51),H{15:5112G{15,51)4Y{15),V(51),YP 22241
1LUS{15) , YNEGIL5) YMIOE15) s FTMPS{15,51) s AREA(L5) (HI15),HA{15),VTHPC 22241
215,51}
COKMON TMPS s TEMP,HsGyYeVs YPLUSy YNEGs YMID, JMAX, TMAX, CONO, DELTT,ALPH 22241
1A,DELTX,DENOM,OELTY, TTMPS,CAP,CONDX )
NMAX=JMAX-1 22241
DO 2 J=1,NMAX 22241
2 YPLUSLJ}=Y(Je1)-Y(J} 22241
DO 3 J=2,JMAX 22241
3 YNEGIJ)=Y(J)-Y{J-1} 22241
YNEG{1)=YPLUS(1} 22241
YPLUS{JHAX) =YNEG { JMAX) 22241
DO 4 J=1,JMAX 22241
4 YMID{J}=0.5¢{YPLUSC{JI+YNEGIJ)} 22241
RETURN 22241
- 22241
SUBROUTINE CONV 22241
DIMENSION THPS[15,51),TEMP{15,51)4H(15,511,G115+51)sY{15),V(51),YP 22241
1LUS{15) s YNEG (153, YMIO(15), TTMPS {15,515 AREAL15), HI151, HAT15)VTHP{ 22241
215,51)
COMMON THPS ,TEMP oG 1Y oVs YPLUS, YNEG, YNID, JHAX; INAX, GOND, DELTT,ALPH 22241
‘LA+DELTX+DENOM,DELTY, TTMPS, CAP,CONDX
DO 40 K=2,1MAX 22241
CONMIN=COND
CONPUS=COND
D13=DELTXe TEMP{1,K} /{DELTTaV(K))#2, .
D14=(3.¢DEL TX¢CONMIN®TMPS(2,K}) /(2. +0ELTYSALPHA}Y
O15={DELTX»CONPUS® { THPS {2, K)-TMPS(3,K}})/{2, sDELTY*ALPHA)
016=1,#{DELTX/ (DELTTV{K)}}
017=(3,2DEL TX*CONMIN} /(2. #DELTYSALPHA}
THPS{1,K) =1 THPS{1,K=11+D13+D14+D15}/ (D16+D17}
IF{TMPS(1,K}.GEs0.0} GO TO 4D
THPS{1,K}=0.0
40 CONTINUE 22241
RETURN 22241
22241
SUBROUTINE CENDL 22241
DIMENSION TMPS(154510 s TEMP {15,510 sW(15,5115G(1545L),Y(150,VI51),YP 22241
ugsu?umscus).vumns).nnpsus.su,nen15).m15).uA(15).vrnP( 22241
. 215451 -
COMMON TMPSTEMP oW ¢G oY oV o YPLUS, YNEGs YMIDs JMAX, IMAX, CONDy DEL TToALPH 22241
1AsDELTX,DENGM,DELYY,TTMPS,CAP,CONDX
B81=-12,+(DELTX«#2/DELTT) ¢{CAP/CONDX} ) THERMAB1
00 1 J=2,JMAX 22241
DO 2D K=1,INAX 22241
D14=—{ {DELTX#42/YMIO{J3 ) »{COND/CONDX) ) - THERMABL
TF{J.LT.JMAXIGD TO 22 22241
D15=(THPS{J=1,K}=THPS (J;K}}/YPLUS (I} 22241°
GO TO 90 22241
22 DIS=(TAPS(J+1,KI-THPS(J2K) ) /YPLUSTJ} 22241
90 D16={TMPS{JyKI=TMPS J~1,K}}/YNEG(J} 22241
D17=(DELTXee2¢CAPTEMP {J4K}}/{DELTT«CONDX}
01=D14e{D15-D161-D1T 22241
IFIK.NE.1)GO TO 3 22241
A1=0.0 22241
c1=2.0 22241
WEJ,11=C1/B1 22241
G{Js1)=D1/B1 22241
G0 1O 20 22241
3 YF(K.NE.IMAX)GD TO § 22241
- €1=0.0 22241
Al=2.0 22241
G0 TO 10 22241
5 Al=1.0 22241
Cl=1.0 22241

10 DENOM=Bl-AleW{J,K~1)},
IF{DENOM.NE.0.}G0 T0 18
WRITE(8,50)

FORMAT(18H ZERQ DENOMINATOR.}
GO TO 800

18 W{J4K)=CL1/DENOH |
6UJyKI={D1-ALG{JoK~11)/OENDH
CONTINUE
TTMPSCJ L IMAX) =G (Jy TMAXY

DO 30 1=2,IMAX

1laiMax+1-1
TTHPS(J.I!)SG(J.ll)-H(J'lI)'TYHPSIJ.XI#I)
CONTINUE

00 95 J=2,JKAX

00 95 K=1,IKAX
THPS(JsK)=TTHPS(J 4K}

95 CONTINUE

5

o

2

o

w
-0

800 RETURN

END
SUBROUTINE CONO2
OIMENSION THPS{15,513 4 TEMP{15¢513¢WI15,511,G15,513,Y(151,VI51},YP
1LUSE15),YNEG {15} YMID(L5) s TTMPS (15,5135 AREAL15},H{15) HALL5},VTHP(
215,511
COMMON TMPS s TEMP W4 Gy Y4V, YPLUS YNEG, YHT D,y JHAX, TKAX, COND, DEL TT5ALPH
1A/DELTX,DENOM,DELTY, TTHPS,CAP;CONDX
0071 K=1,IMAX
00 20 J=2,JMAX
~A1=YPLUS{J} /YNEG L)
Bl=—{1. ownuu.n/vNEc(Jlo(cn-vnwu)-musu))/wemncuuun
014=—1{YMID{J)=YPLUS{J} /DELTX*#2) & {CONDX/COND)}
LFIK.LT.IMAX) GO TO 24
D15=THPS{JoK-1)-THPS{J,K}
GO TO 25
24 D15=THPS(J,K+1)~ TNPS(J'K)
25 IFLK.GT.I} GO TO 26
D16=THPS{JyK)-THPS 1 JyKe1}
G0 T0 27
26 D16=TMPS{J,K)-TMPS{J;K~1])
21 un=(CAP-vnwu)-musu:-Tsnvu.n)/(nsmocuum
D1=D14{015-016)-017
IFUJ.NE.2)G0 TO 3
C1=1.0
WE2,K)=C1/B1 .
G(2yKI={D1-AleTMPS{L,K}}/BL
GO TO 20
3 IFCJ.NE.JMAXIGD TO.10
Al=zAleCl
-C1=0.0
10 OENOR=B1-ALeN({J-1,K}
IF{DENOM.NE.0.1GO0 TO 18
-WRITE{8,50)
50 FDRMAT{18H ZERD DENOMINATOR.}
18 WtJ4K)=C1/DENOM
G{J,K)={D1-A1eGJ~1,K} ) /DENOK
20 CONTINUE
TTMPSTJINAXy K1=G{IMAX (K}
NMAX=JMAX=-2
DO 30 I=1,NMAX
11=JMAX-1

30 TTMPS{IEKI=G{IL KI-W{II,K}«TTHMPS{II+1,K)

1 CONTINUE
00 95 J=2,JMAX
DO 95 K=1,1MAX
THPS(J+K}=TTMPS {J4K}
95 CONTINUE

800 RETURN
END
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THERMAB2

oD
I

system data

Input

Initialize Time step length set
parameters ~ } according to time
l .into run
Call CALCY
Vertical A
Vertical
or horizontal !
sweoep? l
Call CAPAC Horizontal '

Call COND2

l Call CONDI1 1
Call COND4 I — i
Set KK=2

Increment
iteration

counter

Set Cap{J,K)=
Capt{J,K}

Increase
time step length

during
run ?

Set KK=1
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Accuracy

Accuracy

reached? - reached?

No l
Set Vimp(J,K}= Set Cap(J K)= Set Vimp{},K}=
Tmps({J,K) Capt(J,K} Tmps(J,K)

‘Set Temp (K} =

_ Set Kwho=1
Set Kwho=2 Tmps(J,K)

Calculate

heat stored in

rock?

Yes

Calculate heat

stored in rock-

-

Calculate heat produced

& heat injected

" Calculate

heat at selected

cross sections?



THERMAB2

Output
'\ temperatures,

heat data, &

isotherms

Calculate heat stored

at selected crass

sectians

;

Cross saction

Set iteration

Qutput
f counter to zero

data

Job cumplotod"? )

! C

Tolerance set according

v )

to time into run

Horizontal Direction

just calculated?

Vertical
Print
temperatures?

No
KK=2

Calculate position

of specified

isotherms

191



< Start

)

:

Subroutine CONDI1
(Horizontal Sweep)

700° isotherm with

Calculate J position of

" respect to K position

position of 700°F

"This position

% 700°F?

Yes

THERMAB2

Convection

switch off

I

Yes |Set convection going

through J=1 equal
to 100%

to 90%

Set convection going

through J=1 equal B

Calculate percent of
total convection

applicable

v

Calculate avg.

conductances between
point in question &

surrounding points

This position

% 700°F. ?

Convection

switch on

—

Calculate

coefficients

:

Matrix

!

inversion routine|

Set Tmps(J),K)=)
Ttmps{J.K)

]

.

)
e D
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Subroutine COND2

( o —) (Vertical sweep)

Calculate J position of.

700° isotherm with-

Convection This position™
" respect to K position >

]

switch off "700°F. ?

| I

\ Yes |Set convection going Convection
- o
position of 700°F through J=1 equal switch on
to 100%
Calculate
Yes Set convection going coefficients
through J=1 equal B ]
to 90% l
Matrix
inversion rouﬁncl
“This position No
% 700°F?
Set Tmps(J) K}=
Ttmps{J) K]
Calcvlate percent of 1
total convection
applicabl
. ppicane * Calll CAPAC
Calculate avg. l
conductances between
point in question & Call COND4
surrounding points

I
e D




Subroutine CALCY

(Variable grid
spacing)

Caleulate

AYithe

l

Calculate

AYi—Y%

:

Calculate

AYj

!

(e

)

THERMAB2

Subroutine
CAPAC

Calculate Conductances

for each point

Subroutine
COND4

Start 3 C s'im j C 5'1" )

e

Calculate total heat

requirement of each

block

e
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THERMAB2-A.t. BARNES

OIMENSIUN TMPS{17,511.TEMP{17,51)+W{17,51),G{17,51),CONDt17,51},Y(
11714 YPLUSILIT)Y o YNEG(IT) o YMID(L17) o TTHPS(17451)AREALLITIHI1T)4HALLTY
2o VIMPI174511,CAPT{17,51)4CAP(17451),1S010},SLTMP(10},DISTI8,51}
COMMON TMPS 4 TEMP 3 WG oY s YPLUS ¢ YNFG, YMIDe JMAX, IMAX,CONDy DELTT s ALPHA,
IDELTX,DENOM PO, P121P2,P3,TTHPS,CAPT,CAP, TIME
TEMP=PERMANENT TEMPERATULRE ARRAY
TMPS=TEKPORARY TEMPERATURE ARRAY
VTMP=TEMPURARY TEMPERATURE ARRAY

105 READ{54 1O IFAXy JMAX (DELTT, TTT, TEMXsALPHA, DELTX,DELTY, TT,KSKIP, TOL,
INRUNGKSLCEy ISSNyLMAXy (IS(I}4i=1453, {SLTMPLE},I=1,LMAXY

10 FORMAT{Z2I5¢F5.14F5.1,F1041,F10.1,3F5,1415/F5.2,915/8F1C.1)

UMBER CF COLUPNS (K}

UMBER CF ROWS {J)

DELTT=TIME STEP LENGTH,HOURS

TTT=RESERVOIR TEMPERATURE, DEGREES FAHRENHEIT

TIMX=MAXIMUM TIME, HOURS

ALPHA=SPEGIFIC HEAT X VELODCITY X DENSITY(ALL OF GAS}

DELTX=DISTANCE BETWEEN POINTS ALCNG THE FRACTURE

DELTY=DISTANCE RETWEEN POINTS INTN THE WALL{FIRST 3 POINTS ONLY)

TT=INJECTION TEMPERATURE, DEGREES FAHRENHEIT

KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN

OLERANCE

RUN NUMBER

KSLCE=0PTION TU CALCULATE TUTAL HEAT CONTENT AND PRINT TEMPERATURE

AND TCTAL HEAT CCNTENT
ISSN=MAXIMUM NUMBER OF DESIRED SLICES FCR CROSS SECTION STUDY

LMA UMBER CF ISCTHERMS DESIRED

IS{MI=VALUES DOF DESIRED SLICES FOR CROSS SECTION STUDY
SLTMP{1)=TEMPERATURE OF DESIRED ISOTHERM
READ{5,20){Y{}},1=1,1T)

FORMAT{16F5.0/F5.0)

Y=DISTANCE INTQO THE WALL, FEET

TIME=0.0

2

5

DO Bl K=1,I¥AX
TEMP{J,K}=TTT
VIMP(JyKI=TTT
TMPS{J,K}=TEMP{J,K}
TEMP{1,1)=TT
TMPS{1,1}=TT
VTMP{L,1}=TT
TTMPS(1,11=TT
ATMP=0.0

8

=

-0
CALL caLcyY
CALCY IS A SURRQUTINE THAT CALCULATES VARIABLE Y SPACING VALUES
CALL COND4
COND4& IS A SUPROUTINE THAT CALCULATES COUNDUCTANCES
CALL CAPAC
CAPAG IS A SUBRUUTINE THAT CALCULATES TCTAL HEAT REQUIREMENT
VALUES.
00 232 J=1,JMAX

232 CAP(JyKI=CAPT{J,K}

82 GO TD{995,994) ,XSKIP

994 IF(ATMP.NE.TIME} GO TG 995

ATMP=ATMP+1.

IF(TIME.GT.5} GO TO 318

DELTT=1.

GO TO 993

IF(DELTT.GEL15.1G0 TO 993

UyU=0D-5.

TME= {{1.2)»=Uy}

DELTT=TME-TIVE

IFEOELTT.LT.15.1G0 TC 995

DELTT=15.

993 IF{TIME.GT.1C00.1GO TO 996
DELTT=15.0

31

®

22262

22242

222642
22241

22242

22242
22242
22242

22242

22241
THERMAB2

22242

22242

GO TO 995
996 LF{TIME.GT.3G00.)G0 TO 997
DELTT=30.0
GO 10 995
997 [F(TIME.GT.10000.)G6G TO 998
DELTT=50.0 :
GO TO 995
998 DELTT=100.
KWHD IS THE SWITCH TO DETERMINE DIRECTICN OF ADIP SWEEP{HORIZONTAL
OR VERTICAL}
995 GO TO(991,53),KWKO
991 CALL COAD1 .
c CONO1 IS A SUBROUTINE THAT SOLVES HORIZONTAL ADIP
[F{DENOM.EQ.C.0)GO TC 69
KIT=KIT+1
IF(KIT.GE.15160 TO 222

’
EF{TMPS{N,M}.LT.100.10} GO TO 84
IFCABSTIVIMP (N, M) =THPS (N,M)J/THPS (N, H) }.GT.TOLIGD TO 86
84 CONTINUE
GO TO 67
86 DO 88 J=1,JMAX
D0 68 K=1,IMAX
88 VTMP{J,K}=THPS{J,K)
KWHO=2
GO TO 82
53 CALL COND2
4 COND2 IS A SUBROUTINE THAT SOLVES VERTICAL ADIP
TF(DENDM.EQ.0.01GO TO 69
KK=2
DO 64 N=1,J¥AX
00 64 M=1,IMAX
IF({TMPS(N,*).LT.100.10} GO TO 64
IF(ABS{{VIMP (N, M} ~TMPS(N M) ) /TMPSIN,M1).GT.TOLIGO TU 65
64 CONTINUE N
GO TO 7
65 DO 83 J=1,JNMAX
00 3 K=1,1¥AX
B3 VIMP{J,K)=TMPSIJ,K}
KWHU=1
GO TO 82
67 DO 66 J=14JMAX
DO 66 K=1,1FAX .
IF{TMPS{J,K}.LT.100.10} GO TOU 66
CAP(J,KI=CAPT(J,K
TEMP (s K} =TEPS(J,K)
66 CONTINUE
PPP=PPP+1D.C
IF{PPP.NE.10.1GD TO 741
PPP=0.0
JBMAX=JMAX=-2
IBMAX=1#AX~2
FIMAX=IMAX -
c THIS ACCOUNTS FOR THE HEAT STORED [N ROCK
D0 40 J=1,JPAX
SUM=0.
DO 80 K=1,1BN¥AX,2
HD SUM=SUM+CAP{JsK) +4, 9CAP[J,K+1) +CAPI I, K42}
40 AREA(J)=SUM= (DELTX/3.}
RA2=C,
D0 90 J=1,J3MAX,2
H{di=ytJ+1)=Y{)
HALJ =Y 1J¢2)-Y (J+1)}/H{ )
9D BB2=BB2+{H{JI®(HALJI+1.}/ (6. 0HALJ)JJa{{2. #HA(JI-1, I#AREA(J+2}+{HAL
LU} 41.)%e28AREATJ+ 1 +HA{JI# (2, ~HA{J} ) ®AREA(Y) )
HTORG=Y (JMAX) @DELTX#FIFAX®3149. ¢ (CAPIL,1}-3149,}#DELTXs.25

[4 HTORG=INITIAL HEAT CONTENT OF ROCK AT 100 DEGREES FAHRENHEIT
HEAT=8B2-HTORG .
c THIS ACCOUNTS FDR HEAT CUT UF PRODUCER

741 HTOUT=KTOUT+TEMP (1, IMAX}eDELTT=ALPHA
HTTOT=HTOUT+HEAT+HTORG
HTIN=HTIN+ALPHA®TT#0ELTT
HTINN=HTIN+HTORG
ERR=ABSt {tHTINN-HTTOT}/HTTOT}
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22242

22241

22241
22241
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22241
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22241

22241
22241

22241
22241

22241
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GO TOl4+5),KSLCE - THERMAB3
THIS ACCOUNTS FOR THE TEMPERATURE ANO CULULATIVE HEAT PRINT [JUT AT
VARIOUS SELECTED PGSITIONS ALUNG THE FRACTURE.
4 WRITE(6426) THERMAB3
26 FORMAT{1H1,3CXs"INPUT DATA FOR CROSS SECTION STUDY*//9X,*LOCATION{THERMAR3
1FEET OOWN FRACTURE}?,2X,*TEMPERATURE®;9X¢*TIME{HOURS )y 9X, * CUMULATTHERMAR3

21VE HEAT'//} THERMAB 3
JBMAX=JMAX-2 THERMAB3
DO 70 K=1,IMAX THERMAB3
N0 70 M=1,IS5N THERMAB3
IF{K,NE.IS{R+1}}GO TO TC
B83=0.0 THERMAB3
00 7} J=1,JBMAX,2 THERMAB3
H{JY=Y{J+1}=-Y{.D) THERMAB3
HACII=IY(Je21=Y(J+1)}/HI) 22241

71 BB3=BR3+{{H{JI»(HALJI+1.1/(6.9HALI}I}o{{2.8HATJI=1. JaCAP(J+2,K)+{H
TALJI+1.1902¢CAPJ+1 1K)} +HALJ) @12, —-HATJ}} eCAPL 4K} ) ) #DELTX
AIS=ES(M)
ALOCF=DELTX#AIS
WRITE(6+25) ALOCF, TENP(1 4K}, TEME,BB3 : THERMAB3
25 FORMAT{9XsF10.1,20K,F10.1;10X,F10.1,TXsE18.81 THERMAB 3
70 CONTINUE THERMAB3
TIME=TINE+DELTT 22241
EF(TIME.GT.3600.1GC TO 56
T0L=,05
G0 T0. 55
IF{TIME.GT,4C00.}G0 TG 57
TOL=.04
GO TO 55
TF(TIME.GT.5000.1GC TO 58
TOL=,03
GO T0 55
IF(TIME.GT.15000,16C TO 59
TOL=.02
60 TO 55
59 TOL=,01
55 ATMP=TIME
00=00+1.
PP=PP+1.
IF{PP.NE.10.} GO TO 891

w

5

o

5

=

5

@

WRITE{6,33] 22242
33 FORMAT{1HL,2X2HJ=5X2H 15X2H 25X2H 35X2H 45X2H 55X2H 65X2H 75X2H 85 22242
1X2H 95X2H105X2H115X2H125X2H135X 2H145%2H151 22242
MCONT=0
00 36 K=144
36 HRITE(&.JT)K (TEMP(J,K} g 3=1, JHAX) 22241
37 FORMAT{14,1TF7.1}
WRITE{6433) THERMAB3
D0 24 K=43,IMAX THERMAB3
24 WRITE{64371Ko{TEMP{U,KE 4J=1,JPAX) THERMAB3
887 WRITE{6430) TIME JERR HEAT ;HTOUT HTIN, HTTOT, HTORG, DELTT
30 FORMAT{F10.1,2X+5HHDOURS/F10.5+2X,2THDISCREPANCY IN HEAT BALANCE/El 22241
18.8,2X,31HBTU OF HEAT STCRED IN RESERVOIR/ELB.8,2X,20HBTU OF HEAT 22241
2PRODUCED/E18.8,2X,20HBTU OF HEAT INJECTEO/ELB.8,2X,SKHTTOT/E18.8,2 22241
3%, SHHTORG/F10.1,21HTIME INCREMENT, HOURS)
INTERPOLATING ROUTINE FGR DETERMING POSITION OF SELECTED ISOTHERMS
LET LMAX EQUAL NUMBER OF [SOTHERMS DESIRED
SLTMP(I1} REFERS TG TEMPERATURE OF DESIRED ISOTHERM
DO 263 1=1,LMAX
00 260 »IMAX
DO 261 J=1,JFAX
IF(TEMP (34K} .LT.SLTKPLI}IGO TO 262
261 CONTINUE
262 1F1J.EQ.1IGC TO 260
DISTUT,KI=Y(J=13+((TEMP(J=1,KI=SLTMP (1) 1/ (TEMP(U=1,K)=TEMPLI,K} })®
LYESI-Y{I-1))
260 CONTINUE
263 CONTINUE
 WRITE(64264) (SLTHPLT) 4 1=1,LMAXS
264 FORMAT(1H1,6X,*DISTANCE®,7X,*ISOTHERM ISOTHERM [ISOTHERM TSOTHERTHERMABG
1M ISOTHERM ISOTHERM 1SOTHERM ISOTHERM®/8X,*DOWN®,9X, 'DEGREES FTHERMABG
2 DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGRETHERMABG
3EES F*/7X,'FRACTURE®,4X,B8F10.1/9Xs *FEET*/20X,"FEET INTO FEET INTO THERMAB6
4FEET INTD FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO!/22X,*THERMABG
SWALL® 36Xy "HALL® 56Xy *WALL® 16X+ *WALL? 46X ¢ PRALL * 46X P HALLY p 6Xy *HALL T s THERMABS

' 266
267

223
891
222

69

(PR

»

3

w

&N

101

66Xy "WALL®Y

D0 266 K=1,40

FK2=K-1.

XFT=DELTX®FK2

WRITE{64267)XFT,{DIST{I,K},I=1sLMAX}

FORMAT{7XyF640+4X+8F10.2)

WRITE{6¢264) (SLTMP(1)41=1,LMAX}

DO 265 K=41,I1MAX

FK2=K=1

XFT=CELTX®FK2

WRITE(6426TIXFTo{DISTII K}y 1515 LMAXS

WRITE{65223)0D,KIT

FORMAT{3X,F10.0415}

KEF=0

IF{TIME.GYV. TIMX}GO TO 105

GO TO(B6465) 4KK

WRITE(64223}00,KIT

sTop

END

SUBROUTINE CALCY

DIMENSION THPS{17,51)+sTEHP({17,451}, H(17.51).0(17'51).CUNU(17'51)nV(
117) . YPLUS{17) s YNEGLL1T)},YMIDILIT} s TTHPS{L1T¢51) 4 AREALLT},HI17},HALLT)
Z'VTHP(17'5I)yCAPl’(IT-5l)vCAP(l",El)vlS(lO).SLTHP(thD!ST(SvSl)
COMMON THMPS s TEMP WG Y s YPLUSyYNEG,YMIUy JMAXy THAX s CONDs DELTT; ALPHAy
IDELTX,DENOM,P04PL,P2+P3; TTHPS,CAPT,CAP, TIME

NMAX=JMAX~1

00 2 J=14NMAX

YPLUSEJI=Y{J+1}=-Y{J}

D0 3 J=2,JMAX

YNEGLJYI=Y{J)=-Y(J~1}

YNEG{1)=YPLLS{1}

YPLUS{JMAX)=YNEG{JMAX)

DO 4 J=1.JMAX

YMID{J}=0.52(YPLUS{JI+YNEG{JIY

RETURN

END

SURROUTINE CCND1

OLMENSION THPS{17,51) ¢ TEMP{LT4511,W(17+511,6(17,513,CONDILT,510,Y¢
117}, YPLUS{1 7]y YNEG{LT) ,YMIDILT} 4 TTMPS(17,513AREA{LITI,HILT)},HALLT}
24VTMP{17451) 4CAPT{17,51)4CAP{17,511,1S(10),5LTMP{10),01ST{8,51}
COMMON TMPS, TEMP W46y Yo YPLUSYNEG, YMID, JMAX, IMAXCONE, DELTT,ALPHA,
10ELTX¢DENOM,PC+PLyP2sP3 4 TTMPSsCAPT,CAPy T IME-

00 1 Jd=1,JMAX

00 2D K=1,IMAX

IFIJ.NE.1}GD TA 35

IF{K<NE.1}GC ¥D 35

GO TO 20

FMAX=IMAX

00 2 T=1,JMAX
IF(TMPS(I,K}.LT.700.1GC TO 4
D0=DD+1.0

NDD=DD

CONTINUE

IF(DD,LT.2.160 TD 7
IF(J.NE.1} GC TO 101

66=0.9

GO TO 8

FFF=.1

IF{K.NE.2} GC TN 102
ALPAL=(YMID(J}®ALPHA®FFFe(TMPS(1,1}-TMPS(J,K+1})}/{{Y(NDOD}+0.5#YPL
1USENDD}=0,53 {THPS{Jy,K=1)=THPSTJ,K+1}}])

GO 10 9

ALPAL={YMID{S}/ (YINODI40.5#YPLUS{NDD}-.5) } »ALPHA®FFF

GO 10 9

IF{J.EQ.1)GC TO 78
IF1J.EQ.JMAX]IGD TC 7D
IF{K.EQ.11GC TO 79
IF(KL,EQ.IMAXIGD TC 8D
CXPUS={COND{J,KI+COND{J4K+1}}/2.
CXMIN=(COND(J,K}+CONDIJsK=111/2.
CYPUS={COND(J,K}+COND{J+1,K}}/2,

THERMARS
THERMABG
THERMABRG
THERMARG
THERMABG

THERMARG

22241

22242
22242
22242
22242

22242

22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242

22242

22242
22242
THERMAB2
THERMAR2
THERMAB2

22242
22242
22242
22242
22241
22241
22241
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T

)

80

78

T2

73

75

17

89
641

24
25

26
27
99
556

4

=)

CYMIN={COND{JyK}+COND{J-1,K}}/2.
GO TO 77
CXPUS={CONO{JsK}+COND{J K+1)}/2.,
CXMIN=CXPUS

cYPu COND{J,K}+CCND{J+1,K}3/2.
CYMIN={COND{J;K}+CONO{J-1,K)}/2,
60 10 77
CXHIN-(CUND(J.K)'CGND(JvK-l))/Z.
CXPU XM

CYPU. CUND(J.K)OCCND(J*IyK))/2.
CYMIN={COND{J,K}+COND{J~1,K}}/2.
G0 1O 77

IF{K.ERN.1}GC TO 75
IF{K.EQ.IMAX)GOD TG 76
CXPUS={COND{J,K}+CCND{J,K+1)}/2.
COND{J,K}+CONDIJ, K-133/2.
COND {J4K}+CONDE{J+14K)) /2.
CYMIN=CYPUS

GO To 77

JF(K.EQL1IGC TO 72

IF(K.EQ.IMAXIGO TG 73
CXPUS={COND{JyK}+COND{J,Ke1}} /2.
CXMEIN={CUND{J,K} +CCND{S,K~1)1/2.
CYMIN={COND{J,K} +COND{J=1,K}}/2.
CYPUS=CYMIN

60 10 77

cxpu (COND(J,K)*CG‘JD(J K+113/2.

COND(J.K)*CCND(J 14K1¥/2.
CYPUS=CYMIN

GO TO 77

CXMIN= (CUND(J'K)*CCND(J,K 1011/2.

CUND(J'K)OCDV\D(J LeK¥1/2,
CYPUS=CYMIN

GO TO 77

CXPUS= (CUND(J,K)*CEND(J K+lddy/s2.

CUND(J K}+CCKRDUJ+1,K})/2.
CYMIN=CYPUS

GO TO 77

CXMEN= (CDND(J.K)’CDND(J.K 11)/72.

COND(J.K)+CGND(J¢1yK))/Z.
CYRIN=CYPUS

CONTINUE

1F{J.EQC.1}IGC TO 89
IF{THPS{J4K}.GT.700.)GC TO 89

HH=D.

GO TO 641

HH=1.
A1=CXMIN/CXPLS+{HH=ALPAL=DELTX}/{2.9CXPUS}

l'—(l ’CXH]N/CXPUS'(DELTXIOZIDELTT)l(CAPT(J'K)/lTHPS(JyK)ICXPUS))

CI—-((ALPAIDHH'DELTX)/(2.|CXPUS)'1 }
D14=—(DELTX*#2/[YMID(J}«CXPUS}?
IF(J.LT.JMAXIGOD TC 24

D15=CYPUS® (TMPS{J=-1,K}=-THPS(J,K))/YPLUSTJ}
G0 1O 25

D15= (CYPUS‘(TMPS(J#I'K)-TMPS(J,K)))/YPLUS(J)
IF(J.GT.11GC TO 26

DL6={CYMIN® [TMPS{JyKI=TFPS{J+1,K}II/YNEGLJ}
60 TO 27

D16= (CYHIN!(THPS(J.K)-TFPS(J-[.K))IILVNEG(J)
017={DELTXes22CAP{J,K}}/{DELTTaCXPUS}
D1=D14+{D15-D16}-017

IF{J.EQ.1IGC TO 40

IF{K.NE.1IGC TO 3

Cl=al+Cl

WiJs1)=C1/B1

G(Js11=01/B1

GO TO 20

IFIK.NE.2)GC TO 3

Wil,2)=C1/Bl

~22241
22241
22261
22241
22241
22241
22241
22242
22241
22241
22241
22241
22242
22242
22242
22242
22242
222642
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22242
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22242
22242
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22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242
22242

22242

22240
22240

22242
22242
22242
22242
22242
22242
22242
22242
22242

THERMAB2
THERMAB2
THERMAB2
THERMAB2
THERMAB2
THERMAB2
THERMAB2
THERMAB2

Gl1s2}=(D1-AL*TEMP{1,1})/B1
GO TO 20

3 IF{K.NE.IMAX)GOD TO 11
Al=al+Cl
C1=0.0
GO TO 11 .

11 DENOM=Bl-AleW{J,K-1}
IF{DENOM.NE.O.)GO TO 18
HRITE{6+50)

50 FORMAT(18H ZERQ DENOMINATOR.)
GC TO 800

18 W{J,K)=C1/DENO™
G{JyK}=(DI-AL®G(JsK~1}}/DENOM

20 CONTINUE
TTMPS{J s IMAX)=G(J, EMAXY
NHAX=TMAX-2
IF{J.NEL1IGC TO 41
00 30 I=1,NMAX
TI=1MAX-1

30 TTMPS(J,I1}=GUJyI0I-H{J,JE}aTTMPS{J, i1}
G0 TO 1 :

41 DO 42 1=2,IFAX
TI=IMAX+]1-1

42 TTMPS(JoE11=GCJsIT}-W(J,IT)8TTMPS{J, 1141}

1 CONTINUE
DO 95 J=1,JMAX

'
THPS{JsK)=TTHPS{J,K}

95 CONTINUE
IF{TIFE.GT.5.1G0 TD 300
DO 301 K=1,42

301 WRITE(64302) {TMPS{J¢K}sJ=1,JIMAX}
302 FORMAT{17F7.1}
300 CALL CAPAC

CALL COND4

800 RETURN

1

102 ALPAL={YMIO(J}/IYINDD)+0.5=YPLUSINDO}=o5)) sALPHASFFF
G0 TO 9

7

END
SUBROUTINE CCND2

DIMENSION THPS{17,51),TEMP{17,51),H{17,511,6(17,51),COND{17,521,Y¢
117) o YPLUSC1 7} YNEG{LT) s YMIDI{17) 4 TTMPS(17,51) 4AREA(LT),H(17) ,HALLT)
2y VIMP{17,51} yCAPT(17,51)4CAP(17,451),1S(10),SLTMP{20},DIST(8,51)

COMMON TMPS ; TEMP 4 WG+ Y YPLUS » YNEG 2 YMIO4 JMAXy IMAX, CONDyOELTT ALPHA,

LIDELTX¢DENOM,P0O,P14P24P3,TTHPS,CAPT,CAP, TIME
Ccl=l.0
D0 1 K=1,IMAX
DO 20 J=1,JMAX
{F(K.NE.11GD TO 35
IF{J.NE.1}GC TO 35
GO TO 2D
35 FMAX=JMAX
NDD
DD=0.0
DO 2 I=1,JMAX
IFLTMPS{I,K).LT.T700.160 TO 4
OD=0D+¢1.0
NDD=DD
2 CONTINUE
4 IF{DD.LT.2.3G60 TO 7
IF{J.NE.1) GO YEI 101
GG=D.9
GO TO 8
0l FFF=.1
IF(K.NE.2] GC TO 102

ALPAL=(YMID{J)#ALPHA®FFF& {TMPS{1¢1}~THPS{JyK+1} 3}/ ({Y{NOD}+0.5%YPL

LUSINDD}~0.5}#{THPS{J,K=1)=THPS(JyK+1}}}
60 TO 9

66=1.0
8 ALPAl=ALPHA*GG
9 IF{J.EQ.1}GO TO 78

<61 IFLJ.EQ.JIMAXIGO TD 70

IF{K.EQ.I}GD TO 79
IF{K.EQ.IMAX}IGO TO 80
CXPUS={COND(J,K}+COND{J,K+1)) /2.

THERMAB2
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THERMAB2

22242
22242
22242
22242
22242
22242
22242
22242
22242

THERMAB2
THERMAB2
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CXMIN={COND{JsK)+CONDIJoK~11}/2, 22241
CYPUS=(COND{J K} +CONDLJ+1,K} 172, 22241
CYMIN={COND{JyK) +COND{J=1,K}}/2. 22241
G0 TO 77 22241
79 CXPUS={COND(JsK}+COND{J,K+1)) /2. 22242
xeus 22242
COND[J,KI+CONDIJ+1,K)) /2. 22241
CYMIN={COND {JsK}+COND{J~1,K}) /2, 22241
60 TO 77 22241
80 CXMIN={COND {J,K}4CONDTJ,K=1)3/2. 22242
=CXMIN 22242
COND{J,X}+COND(J+1,K}1/2, 22241
CYMIN={COND (J,K}+COND(J-1,K} /2. 22242
6o 10 77 22241
78 IF{K.EQ.LIGD TO 75 22242
IF{K.EQ.IMAX}IGO TC 76 22242
CXPUS=(COND{J,K} +CONDEJ,Ke13)/2, 22242
CXMIN={COND{J,K}+COND{JsK-11372, 22242
CYPUS=(COND{J4K} +COND{J¢1,K)}/2. 22242
CYMIN=CYPUS 22242
GO 10 77 22242
70 IF(K.EQ.11G0 TO T2 22242
IF{K.EQ.IMAXIGO TO 73 22242
CXPUS={CONDtJ K} +COND{J, K1} 3/2. 22242
COND(J¢K)+COND{JyK=131/2. 22242
COND{ 44K} +COND(J-1,K}} /2. 22242
CYPUS=CYMIN 22242
G0 TO 77 22242
72 CXPUS={CONDJ,KI+COND(J K+13}/2. 22242
CXMIN=CXPUS 22242
CYMIN={COND(J,KI+COND{J=1,K}1/2, 22242
CYPUS=CYMIN 22242
G0 TO 77 22242
CXMIN={COND{J,K}4+COND{J,K-131/2. 22242
XMIN 22242
COND{J4K} +CONO{ J=1,K11/2. 22242
CYPUS=CYMIN 22242
60 T0 77 22242
75 CXPUS={COND{J,KI+COND{J,K+1)3/2, 22242
CXMIN=CXPUS N 22242
CYPUS=[CONO{J,KI+CONDCI+1,K)}/2, 22242
CYMIN=CYPUS 22242
60 T0 77 22242
76 CXMIN=(COND {J 4K} +CONO{JyK=1)3/2. 22242
"CXPUS=CXMEIN 22242
CYPUS=(CONO{JoKI+CONDTS+1,K) 1 /2, 22242
CYMIN=CYPUS 22242
77 CONTINUE 22242
1F{J.EQ.1160 TO 8% 22242
IF{THPS(J,K}6T.700.1GC TO 89
HH=0, 22240
6010 91 22240
89 HH=l, 22240
91 Alz+{YPLUS{JI@CYMIN}/{YNEG(J}«CYPUS] 22242
Bl=={1.0+(YPLOS{JI®CYMINY/(YNEG{JIsCYPUSL+LCAPT{J,KIeYMIDES JeYPLUS
1€J1)/(DELTT#CYPUSSTMPS{J,K3 3}
Cl=l. 22240
D1l4==tYPLUS{J)#YMID{J}}/{DELTX#CYPUS)
IF{K.LT.INAXIGO TO 24 22242
D15=CXPUS®{TMPStJyK=13-TMPS(J¢K1}/OELTX 22242
D17=0.0
D16=CXMINS { TMPS£JoK)=THPS{J4K=1))/DELTX -22242
GO TO 26 22242
24 IF(K.GT.116C TQ 25 THERMAR2
D15=CXPUS® ( TMPSTJsK+1)=THPS(JsK}3/DELTX 22242
DL6=CXMIN®(TFPS{JyK}~TMPS(J,K+1})/DELTX 22242
27 017=0.
GO TO 26 THERMAB2
25 D15=CXPUSE ¢ TMDPS{J K1) =TMPS{J,K3)/0ELTX 22242
D162CXMING{ TMPS{J K} =~TMPS { JeK-11/NELTX 22242
D1T7=(ALPALEHHSYPLUS (U} #YRLD(J) e { TMPS{JK+ L) ~-TMPS FJeK=11F)1/{2.0CYPU 22242
1SeDELTX} 22242
26 DLB=(CAP(J,K}8YMIO{J}#YPLUSLJ)) /(DELFTeCYPUSE
99 D1=D148{015-D16}+D1T~D18
556 IF{K.NE.1}GC TO 10 THERMAR 2
1F{J.GT.2)GC 10 3
W{2,1}%C1/8L FHERMAB2
LGE2,133I0L-ALOTEMPLL 1)) /RL
GO 10 2¢ THERMAR2
10 tF{J.NELLIGC TD 3 THERMABZ
Cl=Cleal THERMABZ
W(l4K}aC1/BL
GilsK}=DL/BL 22242

o

23

23

GO TO 20

IF(JLNE.JMAX)IGO TO L1

Al=Al+CL

C1=0.0

11 DENOM=Bl-AlwwW{J-1,K}
IF{DENDM.NE.0.)GO TO 18
WRITE{6,50}

50 FORMAT{18H ZERD DENOMINATOR.}

18 W(J4,KI=CL/DENOM

GlJyK}={D1-A12G{J=-1,K}}/DENOM

CONTINUE

TTMPS{ JMAX . K} =G { JMAK,K}

NMAX=JMAX-2

IF{K.NEL1IGC TQ 41

00 30 1=1,NMAX

II=JMAX=]

w

2|

o

30 TTMPS{ITK}I=GEIT(K}-W{ll,K)aTTMPS(ILI+1,K}

GO 10 1
41 00 42 1=2,JMAX
IT=Jrax+1-}

42 TTHPSIIIWK)=G{IT4K)-W(II,K)aTTMPS(1I+1,K}

CONTINOE

D0 95 J=1,JMAX

DO 95 K=1,IFAX
THPS(JsKI=TT¥PS(J,K)
CONTINUE
IFCTIME.GT,S.36N TC 300
00 301 K=1,42

9

w

301 WRITE{6,302} (THPSEJ,K) 4 =1,JMAX)
302 FORMAT{17F7.1)
300 CALL CAPAC

CALL COND4

800 RETURN
E

SUBROUTENE CCND4

DEMENSEON TMPS(17,51) ¢ TEMP{1T¢5L1)sW{17451)5G{1T4513sCONDCLT¢514Y(
L117) yYPLUSELT) o YNEGULT) ¢ YHID{17} o, TTMPS(17,513 AREACLT . HILT},HAELT}
2y VTMPULT4S51}+CAPT{L7451}4CAP{LT,512,ES(10},SLTMP{10},DIST{B,51}

COMMON TMPS y TEMP ¢WeGsY s YPLUS s YNEG 4 YMID, JMAXy IMAXCONDy OELTT,ALPHA,
1DELTX¢OENOM,PD+PL¢P24P3,TTHPS,CAPT,CAP, TIME

D0 5 J=1,JMAX

DD § Kwl,IMAX

IF{TIME.EQ.0.D}G0 TO ©

IF{TMPS{J,K).LT.200.1 GG TO 5
9 IF{TMPS{JsK},GE.200.)GC TO 1

COND{J;sK}=0.9

GO TO 5
1 IF{TMPS{JyK}.GT.1200.)G0 TO 7

TSQaTMPS{JoNIRTHPS{J,K}

TCUB>TMPS{J4K}®TSQ

CONDEJ4K) =2 22561 5T3E+1~o1B3TTTIFE-2eTHPS(J,KI+,10902421E~5¢T5G-.15
1084 8569E-9eTCUB

GO TQ 5
T COND{J,K}=0,36
5 CONTENUE

RETURN

SUBROUTINE CAPAC

DIMENSTON TMPS(17,51)9TEMP{17,51)¢W{17+51)sGILTs5L)4CUNDILT,51],Y(
1L7) s YPLUSCLT) o YNEG(LT) s YMIDELT} 4 TTMPSI2To51) JAREAL LTI, HILTI,HALLTY
24VTMP{LT,51) sCAPT{1 7513 4CAP(1T 4511, 1S{10),SLTMPLLO},015T(8,51}
COMMON TMPS,TEMP¢W¢GsY s YPLUSs YNEGsYMID, JMAX s IMAX,CONC, DELTT, ALPHA,
1DELTX,DENOR¢PO¢PL4P24P3,TTHPS,CAPT,CAP, TIME

D0 232 J=1,JMAX

DO 232 K=l,1KAX

IF(TIMELEQ.0.0360 TQ 9

TF(TMPS{J,K}.LT,100.01} GO TO 232

IF(TMPS{I4KT.GT.450,1G0 T 233

CAPT{J K} u{23.54.30To{ TMPS(J4K}-100.$15134.0

GO TO 232

IF{TEPS(JsK}.GT.900.1G0 TO 234 .
CAPT{JoXI*(130400.3440(THPSTI,K)-450,)10134.,0

60 10 232

@«

234 TF{TMPS{J4K1.GTa1100.3GC TO 235

CAPTLIoK}=134.00(285.0¢.485¢(TMPS{I,K}~900,}}
GO I 232 ~

IFL¥MPS{J4eK}oGT.160Q41G0 TO 236 .
CAPT{JsKI =134, 0%(382.04.62408(THPS{J,K}-1100,3}
GO TO 232

w

3
236 CAPT{J,K}=2134,00(694,04.24Ta{THPS(J,K)~1600,31} -
232 CONTINUE

RETURN
T
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THERMAB2
THERMAR2
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- THERMAB2
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Input

system data

Compute

velocity

:

general test

Output

data

| Initialize

parameters

'

Call CALCY
Call CAPAC
Call COND4

199

Thermab3

Call CAPSK

initialize

permanent
cap arrays

Increase
time step length
during run?

End of
time step?

Time step length set
according to time

into run

Vertical or

Vertical
horizontal
sweep?

Horizontal

KWHO=1
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THERMAB3

Heat inj.

Heat inj.

just started? just stopped?

. Ouvutput Output
Call CONV vipy , DVIPY
temperarures & Call CONDG temperatures &
| heat data heat data
Call CONDS
) Call CONTR Call CONTR
Call CAPCI
‘Call CONDI
Increment
Accuracy iiforuﬁon counter}
reached?

Excessive

Set Vimp{J,K)= ' iteration?

Tmps(J,K)
Set KK=1
Set Kwho=2 ]
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THERMAB3

Heat inj. Heat inj. Yes

just started? just stopped?

Ouvtput

—

Output

Call CONV

temperatures & temperature &

Call COND7

heat data heat data

'

-} call cONDS5

Call CONTR Call CONTR

I

]

Call CAPCI

Call COND2

Set Vimp(J K]=

Accuracy

Tmps{J,K) reached?

l

Set Kwho=1




THERMAB3

No

Set Cap(J K)=
Capt(J.K)

'

Set CappylJ K)=

Capy{J.K)

'

Set Teep(J,K)=

Temp(J,K)

Set Temp(J.K) =|

Tmps(),K)

well nmé.

Yes

202

high enaugh to

Prod.
well temp. _
jow enough to turn
on heat?

Heat already
on?

Set switch to print
information at time heat

inj. started

. shut oft heat
inj.?

(0
—3

Set switch to turn

heat inj. on or keep

it on

o

Yos
already off?

Set switch to print
information at time heat

inj. turned off

Set switch ta turn

| heat inj. orr or

»ko_o_p it oft




Calculate
heat stored in
rock?

Yes

THERMAB3

Calculate heat

stored in rock

Calculate heat inj.

and hoo; produced’

heat stored Yes

at cross sections?

increment time

Calculate heat stored at

selected cross sections

'

No

203

temperatures?

Output

temperatures &

heat data

Caill CONTR

Set iteration

counter to zero

Ouvtput
heat at

cross sections

Calcvlate
accumulative time

of heat inj.

>

Tolerance set

according to time

into run

Horizontal

Direction

just calculated?

Job completed?

End

Vertical




Subidutine

CONDI

(Horizontal sweep)

=D
l

THERMAB3

Subroutine
COND2

204

(Vertical sweep)

C=
l

Calculate avg.

conductances between

point in question and

surrounding points

Calculate avg.

point in question &

surrounding points

conductances between

l

»Calculcto

coefficients

Matrix inversion

routine
Set Tmps(J K}=
Ttmps(J K}

'

Call CAPAC

'

Call COND4

'
D

l

Calculate

coefficients .

!

Matrix inversion

routine

!

Set Tmps(J K}=
Ttmps(J,K)

:

Call CAPAC

l

Call COND4

l

(e

)
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THERMAB3

Subroutine COND6 Subroutine COND7
(Horizontal sweep)

(Vertical sweep)
C Start ' ) . Q Start )

Temperature

Temperature
increasing?

increasing?

Set Capt{J K)=.

Set Capt{J K=
Capy J.K}

: Capy(J.K)
Set Cap(J K)=

Set Cap(J, K=
Cappyllkl |

Cappy J.K)

1 ]

‘Calevlate avg.

Calculate avg.
conductance between g ' conductance between .
_point in question & Call CAPAC Call CAPAC point in question
surrounding points

. I Calculate
Call COND4

g 1

Calculate

Call COND4
coefficients :

[Matrix inversion

. Call CAPSK
' routine

i  Matrix inversion
Call CAPSK '

routine

I ; N
] (| JC e ) i

-Timps (J K)
[ S————— 1

I



Subrovutine
CONDS

=
B

THERMAB3

Subroutine
CAPCl

CoD
:

206

Subroutine
CAPSK

=
I

Calculate conductance
for each point in first

row along fracture

Calculate total heat
requirement for each

block along the first

1
oD

Subroutine
CAPAC

D =
I '

g l

Subroutine
COND4

Calcultute
heat capacity of
each block

Calculate total heat
requirement of each

block

" Calculate conductance

for each point

]
=D

Subroutine
CONTR

=
¥

Calculate position of

specified isotherms

)

e

l

Ovtput
position of

specified
isotherms




THERMAB3

Subroutine CALCY Sub
(Variable grid spacing)

C Start

)

Calculate

AYjt+

'

Calculate

AYi—Y%

y

Calculate

AYj

;

(" u

)

routine CONV

=D
l

Calculates avg.

conductances between
point in question &

surrounding points

'

Calculates

coefficients

'

Calculates

temperatures

:

C

)

207
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THERMAB3~A.L. BARNES
DIMENSION TMPS{21,51) 4TEMP(21,51)4W(21,511,6(21,513,Y1213,V{52},YP
1LUST213 o YNEG(21) 4 YMID{21) s TTHPS 121451}, AREA(2134H{211sHAL2L),VTMPL
221,51) ,CAPT(21,511,CAP{21,51},CONDI21,511,1S{20},SLTMP{10),DIST(8,
351) ,TEEP(21,451) 4CAPY (21,511 4CAPPY{21,51}
COMMON TMPS, TEMP W 3G sY Vg YPLUS, YNEG, YHEO s JHAXs IMAX o COND DELTT,ALPH
1AyDELTX,DENCM,DELTY, TTMPS s CAPSCAPT, TIME s LHAX, SLTMP,DIST, TEEP,CAPY,
2cAPPY
TEMP=PERMANENT TEMPERATURE ARRAY
VTMP=TEMPORARY TEMPERATURE ARRAY
THPS=TEMPORARY TEMPERATURE ARRAY
KHT 1S THE SWITCH TO TURN HEAT ON OR OFF
KWTSP IS THE SWITCH TO PRINT INFORMATION AT THE TIME HEAT 1S SHUT

OFF
KWTST IS THE SWITCH TO PRINT INFORMATION AT THE TIME HEAT IS
TURNED CN

TIMHT=CUMULATIVE TIME OF HEAT INJECTION

100 READ{5,10)1MAXs JHAX 4DELTT,TOL,TIMX, ALPHA, DELTX,DELTY 1 AAs BB, TT,TTT,
1CC +KSKIPyNRUNyKSLCE ( ISSNo{IS{MY 4M=145) y LMAXs [SLTMP{T), I=1,8),KSTRT
IMAX=NUMBER OF COLUMNS (X}
JMAX=NUMBER CF ROWS (J}
DELTT=TIME STEP LENGTH,HOURS
TOL=TOLERANCE
TIMX=MAXIMUM TIME, HOURS
ALPHA=SPEGIFIC HEAT X VELOCITY X- DENSITY{ALL OF GAS}
DELTX=0ISTANCE BETWEEN PDINTS ALONG THE FRACTURE
DELTY=DISTANCE RETWEEN POINTS INTO THE WALL{FIRST 3 PDINTS ONLY}
AA=CONSTANT IN EQUATION WHICH GENERATES VELOCITY

ONSTANT IN EQUATION WHICH GENERATES VELOCITY

NJECTION TEMPERATURE, DEGREES FARRENKEIT

TTT=RESERVOIR TEMPERATURE, DEGREES FAHRENHEIT

CC=CONSTANT IN EQUATION WHICH GENERATES VELOCITY

KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN

NRUN=RUN NUMBER

KSLCE=0PTION TO .CALCULATE TOTAL HEAT CONTENT AND PRINT TEMPERATURE

AND TOTAL 'HEAT CONTENT

ISSN=MAXIMUM NUMBER OF DESIRED SLICES FOR CROSS SECTION STUDY

IS(M)=VALUES OF DESIRED SLICES FOR CROSS SECTION STUDY

LMAX=NUMBER OF ISOTHERMS OESIRED

SLTHP{1}=TEMPERATURE OF DESIRED [SOTHERM

KSTRT=SWITCH THAT ALLOWS STARTING RUN WITH CONSTANT OR VARIABLE

FIELD TEMPERATURES

READ(5,203{Y(I},I=1,JMAX}

FORMAT{16F5.0/5F5,0)

Y=DISTANCE INTO THE WALL, FEET

KHT=1

KNESP=1

2!

5

CH=25000.
FTSYT={SMAX-1.)#DELTX

00 21 K=1,1KAX

FK=K

X=DELTX#fK

V{K)=(AA+BBeX+EXP(CCeX}}w2.

CONTINUE

00 76 1=1,LMAX

00 76 K=1,1MAX

T6 DIST{L,K}=0.0
WRITE(6,9INRUNs TT o TTToTOL KSKIP s ALPHAS; OELTX o (Y{1},1=1421}4AA,BB,CC
Le TIMXs IMAX, JMAXSFTSYT )

9 FORMAT{1H1,5Xs*INPUT DATA FOR THERMAB3 RUN NUMBER®,2X.15//5X,F10.1
122Xy *=INJECTION TEMPERATURE, DEGREES FAHRENHEIT'/5X,F10.1s2Xs*=RES

2

-~

22241
22241

THERMAB3
22241

22241

22241
THERMABG
THERMABS
THERMABS
THERMABSG
THERMABS
THERMABG

22241

THERMABS
THERMAB &
THERMABS
THERMAB 6

22241

22241
2224}
22241
THERMAB3
22241

-
5

203

coo

74
73

2ERVOIR TEMPERATURE: CEGREES FAHRENHEIT®/5XsF10.4,2X,*=TOLERANCE{PE
3R CENT'/10X,15,2X+*=0PTION TO INCREASE TIME STEP LENGTH DURING RUN
4% /20Xy (1} INDICATES TIME STEP LENGTH REMAINED CONSTANT DURING RUN
5%/2DXy*1{2) INDICATES TIME STEP LENGTH WAS INCREASED DURING RUN*/5X
64F10.492X,*=MASS X VELOCITY X DENSITY(ALL OF GAS} M
T/5XsF10.142X4*=DISTANCE RETWEEN POINTS ALONG THE FRACTURE, FEET*//
85Xy *THE DISTANCE INTO THE WALL, FEET, IS GIVEN BELOW®,/3X,21F6.1//
95X, YTHE CONSTANTS IN THE EQUATION WHICH GENERATES VELOCITY ARE*/10
IXeFI0e342Xs *=AAY /10X F104342X*=BBt/10XsF10e342Xy?=CCt//5X,F1l041s2
2X¢ *=MAXIMUM TIME, HOURS'/10Xs15,2Xs*=TMAX* /10Xy 15,2X,*=JMAX? /5X,F1
30.1,2X+ *LENGTH QF SYSTEM, FEET')

TENTH=D.0
FORMAT{2154F5.19F5.2,F10e14+F10a1,6F5.14F10.4/1015/8F10.1/15)
IF(KSTRT.EQ.1)G0 TO Bl

READ{5,203) TIME HTIN,HTCUT

FORMAT{F1D0.0,2E18.8)

TIME=TIME, HOURS, ALREADY COMPLETED WHEN RUN RESTARTED

HTIN=BTU OF HEAT INJECTED WHEN RUN RESTARTED

HTOUT=8TU OF HEAT PRODUCED WHEN RUN RESTARTED

TIMHT=TIME

ATMP=TIME

DO 74 K=1l,IVAX

READ(S, 73} ({ TMPS{J4K) pJ=1,JMAX]
FORMAT(16F5.0/5F5,0}

GO TO 204

204

o o oo o

99,

o

99

-3

DO 205 K=1,sIMAX
DO 205 J=1,JMAX

T

T

VIMP(1,13=TT

CALL CALCY

CALCY IS A SUBROUTINE THAT CALCULATES VARIABLE Y SPACING VALUES

CALL CAPAC

CAPAC IS A SUBROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT
va .

CALL CAPSK

CAPSK 1S A SUBROUTINE THAT CALCULATES HEAT CAPACITY VALUES

CALL COND# . .

COND4 ES A SUBROUTINE THAT CALCULATES CONOUCTANCES

D0 232 J=1,JMAX :

DO 232 K=1,IMAX

CAPPY(J4KI=CAPY (J,K}

CAP (J4K)=CAPT(J,K}

FIMAX=TMAX

HTORG=Y(JMAX} €DELTX#FIMAX#3149,4 (CAP{1,1}~3149.)#DELTXs,25

HTORG=INITIAL HEAT CDNTENT OF ROCK AT 100 DEGREES FAMRENHEIT

GO T0{995,9941 ,KSKIP

IF(ATMP.NE.TIME} GO TO 995

ATMP=ATMP+1.

IF(TIME.GT.5.0)60 TO 318

DELTY=1.

GO TO 995

IF(DELTT.GE.15.0) GO TO 993

Uu=pD-5.0

THE=5.00 [{1.2)asUU)

OELTT=THE-TIME"

IF(DELTT.LT.15.1G0 TO 995

DELTT=15. ~

1F(TIME.GT.1000.360 TO 996

DELTT=15.0

GO 10 995

IF(TIME.GT.3000.)G0 TO 997

"DELTT=30.0

99

o6
@

G0a 10 995

IF{TIME.GT.10000.} GG TO 998

DELTT=50.0

G0 10 995

OELTT=100. .

KWHO IS THE SWITCH TO DETERMINE OIRECTION OF AOIP SWEEP{RORIZONTAL
OR VERTICAL)

THERMAB3

22241
22241
22241

22241

80¢



aa

o0 oo

oo

oo

oa

oo

995 GO TOU991,53) ,KWHE
991 GO TU{142,140),KHT THERMABG
140 GO TO(158,1411 KATSP THERMABG
141 KWTSP=1

TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST

STOPPEL .

WRITE{6,23)

DO 46 K=1,42 THERMABG
46 WRITEL6,3TIK,(FEMP{JI4K) yI=1,1T} THERKABGE

WRITE{6,250) THERMARS
250 FORMAT[LHl42X,tJ= 18% 45K %19% (SX,*2D0%45X, 21"} THERHABG

DO 25F K=1,42 THERMABG
251 WRITE{69252)K,{TEMP(Jy4K] +d=184JMAX) THERMABS
252 FORMAT{l4,4F7.1} THERMABS

WRITE{6,33} THERMABG

D0 44 K=43,1MAK THERMABG
44 WRITE{6yITIK,ITEMP{J,K},J=1,17) THERMABS

WRITE{6,250) THERMABG

DO 253 K=43,IMAX THERMABS
253 WRITE(6,252) Ky {TEMP{J,K} »J=18,JHAX} THERMABG

WRITE{6430) TIHE yERR,HEAT sHTOUT ¢ HTINs HTTOT 4 HTORG, DELTT,ERL,ER2, TOL THERMABG
WRITE{6,150) TEMHT,KWHO
150 FORMAT{1H-+2X,*HEAT INJECTIDN STOPS, PRCDUCING WELL TEMPERATURE THERMABG
1EXCEEDS 80D DEGREES F.®/2X,*CUMULATIVE TIME OF HEAT INJECTION EQUATHERMABG
2LS*¢2XsF10. 1,15}
CALL CONTR
CONTR IS A SUBRDUTINE THAT CALCULATES THE POSITION OF SELECTED
ISOTHERKS
158 CALL COND6
COND6 5 A SUBROUTINE FCR THE HORIZONTAL ADIP SOtUTICN WITH
ADIABATIC BOUNDARY CONDITIONS

GD TB 45
142 GO TD(143,159),KWTST THERMABSE
159 KWTST=1 THERMABG
TEMPERATURES AND HEAT DATA ARE PRINTED L1F HEAT INJECTION HAS JUST
STARTED

WRITE(6,433}
DO 32 K=1,42
32 WRITE(643TIK{TEMP(I,K] ¢ =117}
WRITE(64250}
0D 275 K=1,42
WREITE{6:2521 Ky (L TENP LUK} yJ=184 JHAX]
WRITEU6,33}
DO 36 K=63,]MAX
WRETEC(6,3T) K {TEMP{JsK}od=1,1T}
WRITE{6,250}
DO 276 K=43,IMAX
WRITE(63252)Ky (TEMP{JyK) 4 2=1B,JMAX)
WRITE(6430) TIME 4ERRyHEAT HTDUT ¢ HTEN,HFTOT s HTORGyDELTT4 ERL4 ER2,.TOL THERMABS
WRITE{6,255)
CALL CONTR
GD TO 143
53 GO TO{146,145)+KHT THERMABS
145 GO TD{17Ds261} 4KWTSP
261 KWYSP=1
TEMPERATURES AND HEAT DATA ARE PRENTED IF HEAT INJECTION HAS JUST
STOPPED
WREITE(6,33}
00 31 K=1,42
WRITE{633TIKy({TEMPLJyK}4J=1,41T}
WRITE{6,4250}
D0 271 K=1,42
271 WRITE{64252)Ke {TEMP{JyK} +J=18,JHAX)
WRITE{6,33}
0D 34 K=43,[HAK
34 WRITE(6,3T)KATEMP{),K) 2 J=1,17}
WRITE{6+2501
DO 272 K=63,IHMAX
WRITE(6+252)Ke ETEMP { J2K) s =18, IMAX}
WRITE{6+30) TIME 4ERRyHEAT ¢ HTOUT s HTINs HTTOTs HTORGy DEL TT, ER1,ER2, TOL THERMABS
WRETE{641503 TIMHT THERMABS
CALL CONTR
CALL COND7
CONDT IS A SUBROUTINE FOR THE VERTICAL ADIP SOLUTION WITH
ADLABATIC BOUNDARY CONDITIONS
GO TO 171
146 GO TO43,157)4KWTST
157 XMTST=) THERMABS
TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST
STARTED
WRITE{6,33)
DO 38 K=]442
B WRITEC693TIKG(TEMPL{J K} o JulyL T}

21

w

3

L3

27

o

3

-

27

R

1T

o

-

a0 a0 a0

ca

o0

278

a

<

279

HRITE{6,250}

D0 278 K=1,42
WRITE{6+2523Ks {TEFP {J,K} s =184 JHAX}
WRITE{6,33)

DO 39 K=43,IMAX

WRITE{6,3TIK, (TEMP{J,K} 4 J=1,17)
WRITE({6.250)

DO 279 K=43,MAX

WRITE{64252)K, (TEKP{J4K) ¢ J=18,JMAX]

WRITE(6430) TIMF 4ERRyHEAT 4HTOUT s HTINyHVTOTs HTORG, CELTT,ER1; ER2, TOL THERMABG

WRITE{6,2551KWHO

255 FORMAT{1H-,2Xs'HEAT INJECTION STARTS. PROOUCING WELL TEMPERATURE ITHERMABG

45
144

47

]

by

a6

88

296

43
147

P2}
149

>

3

w

83

67

1S LESS THAN 700 DEGREES F.',I5}

CALL CONTR

GO TO 43

CALL onv

CONV IS A SUBROUTINE THAT SGLVES EXPLICIT CONVECTION EQUATIONS
ALONG THE FRACTURE

CALL conOs

CONDS IS A SUBROUTINE THAT CALCULATES NEW CONDUCTANCE VALUES
ALONG THE J=1 RCH

CALL CAPCL

CAPCI IS A SUBROUTINE THAT CALCULATES NEW TOTAL HEAT REQUIREMENT
VALUES ALDNG THE J=1 ROW

GO TOU144,&7) sKHT

CALL CDND1

COND1 15 A SUBROUTINE THAT SOLVES HORIZCNTAL AD1P WITH THE CONV
SOLUTICN AS A RDUNDARY CCNDITION

1F[DENO®.EQ.0.0160 TO 69

TIT=1[Tel

KIT=KIT+]

IF(IIT.EQ.5)60 TO 296

IF(KIT.GT416160 T 222

KK=1

DO B4 N=1,JPAX

DO 84 M=1,IMAX

IF{THPS(N,M).L7.100.10) GO TQ B4

IF{ABSU{VTHP (N M} ~THPS{N,H} 1/ THPS (NsM)3.GT.TOLIGO TO 86

CONTINUE

60 TO 67 .

DO 88 J=],JMAX

DD 88 K=l,IMAX

VIMP{J4K}=TMPS{J.K}
KWHD=2

GD TQ 82

DD 29T K=l,1MAX

ba 297 » JEAX

TMPS(J,X EMP{J,K}

VIMP{JyKI=TEMP(J,4K}

1IT=0

CM=CHM+5000.

TOL=TOL+.01

60 TQ B2

CALL CONV

CALL CONDS

CALL CcarCl

GO TO{149,148) ,KHT

CALL COND2

COND2 IS A SUBROUTINE THAT SOLVES VERTICAL ADIP WITH THE CONV
SOLUTION AS A BOUNOARY CONDITION

IF (DENON.EQ.D.01560 TO 69

KK=2

DO 64 N=],JMAX

DO 6& M=l,IMAX

IF{TMPS (N,M).LT.100.10) GO TO 6%

TFLABSE (VIMP (Ny M) =THPS {N,M1}/TNPS(N,H) ) .GT.TOLIGO TO 65

CONTINUE

GO 10 67

00 83 Jsl,JMAX

DO 83 K=l,IMAX

YTHP {J4K} =THP5{ J4K)

KWHO=1

GO TO 82

00 66 J=1,JMAX

DO 66 K=1.IMAX

EF{TMPS{J,K1.LT.100.10} GO TO 66

CAP (I KI=CAPT(J K}

TEEP{J. K} =TEFP{I,K)

THERMABG

22241

22241

22241

22241
22241
22241
2224%
22241
22241
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w
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15:

T4

CAPPYLJ,K}=CAPY(J4K)

TEMP{J4K}=THPS [ 54K)

CONTINUE

GO TOU152,153) 4KHT

TIMHT=TIMHT+DELTT

HTOUT=HTOUT#TEMP(1,IMAX} @DELTT#ALPHA

HTEN=HTIN#ALPHA®TT#DELTT

IF{TEMP{1,1MAX}.LE.900,}G0 TO 48

IF{KHT.EQ.2} GO TO 174

KWTSP=2 THERMAB6

6

o

w

174 KHT=2 THERMAB6

48 [F{TEMP{1,IMAX).GE.B00.160 TO 49
TEMP{1,1)=TT
THPS{L,13=TF
VTHP(1,41}=TT
1IF(KHT.EQ.1) GO TO 175
KWTST=2 THERMAB6

175 KHT=1 . THERMABS

TF(KHT.EQ.2)GD TD 183
49 PPP=PPP+1.
IF{PPP.LT.19.)GD TO 74l
I{F{PPP.EQ.19.)G0 7O 381
1F{PPP.NE.20.)G0 TD 741

PPP=0.0

381 JSBHAX=JHAX-2 22241
IBMAX=TMAX-2 22241
THIS ACCOUNTS FOR THE HEAT STORED IN RDCK . 22241
DO 4D J=1,JPAX 22241
SuM=0. 22241
DD 80 K=1,1BPAX,2 22241

80 SUM=SUM+CAP (J,K)+4.#CAP{J,K+114CAPLI K42}

40 AREA(3)=SUMs (DELTX/3.) . 22241
BB2=0. 22241
DO 90 J=1,JBHAX,2 22241
HUJ1=Y (Je1)=Y{J} 22241
HATII=(Y0J+2)-Y{J+2 D) /HE} 22241

9D BB2=8B2+ (H(J)={HALJI+1.3/16, sHALI} 1o {{2.0HALJI-1. ) #AREA{J+2) 4 THAL  2224]
14341, )9=2AREALJ+1)+HALI) € (2, ~HAL I} ) @AREAL D) 22241

ER2=((BB2-HEAT=HTORG} 4 {TEMP{1,[HAX}®*DELTT®ALPHA} )/ { ALPHA®TT#C0ELTT)
HETIN=(BB2-HEAT-HTORG}/ {ALPHAaT TeDELTT}

HEAT=RB2-HTORG

THIS ACCOUNTS FOR HEAT CUT DF PRODUCER 22241
HTTOT=HTOUT+HEAT+HTGRG

HTINN=HTEN+HTORG

ERR=ABS ({HTINN-HTTDT)}/HTTOT)

ER1=ABS{ {HTINN=HTTDT}/HTINN}

=

183 GO TO(4,5},KSLCE ) THERMAB3

THIS ACCOUNTS FOR THE TEMPERATURE AND CULULATIVE HEAT PRINT DUT AT
VARIDUS SELECTED POSITIGNS ALONG THE FRACTURE.
4 WRITE(6,26) THERMAB3
26 FORMATI1HL,30X,*INPUT DATA FOR CROSS SECTION STUDY*//9X,*LDCATION{THERMAB3
1FEET DOWN FRACTURE)'pZX.'TEHPERATURE'19X.'YXME(HUURS"v9X"CUHULAYTHERMABS

2IVE HEAT'//} THERMAB3
JBMAX=JMAX=-2 THERMAB3
DO 70 K= l.XPAX THERMAB)
DO 70 M=1,IS THERMAB3
IF{KoNE. IS(HGI))GD T0 70

BB3=0.0 THERMAB3
D0 71 J=1,JBMAX,2 THERMAB3
HUJ¥=Y{J+1)}-Y( ]} THERMAB3
HALJ)I={Y(Je2)-Y(J+1})/HJ) 22241

TL 8B3=BB3+{(HIJIe{HA{JI+1.1/16.oHA{J)} 1ol {2.9HA{I)-1,)8CAP(J+2,K}+(H

lA(J)’l-l"Z-CAP(J*I'K)*HA(J)'(Z.-HA(JH'CAP(J.K)))'DELTX

AIS=IS(M}

ALOCF=DELTX#AIS

WRLTE{6,25)ALOCF,TEMP{]1 K}y TIME,BB3 THERMAB3
25 FORMAT{9X,F10,1,20XsF1041,10X,F10.157XsE1B.8} THERMAB3
70 CONTINUE THERMAB3
5 TIME=TIME+DELTT 22241

IF{TIME.GT.3000.}GD TO 56

TOL=.05

GO 7O 55
56 IF{TIME.GT.4000.3GQ YO 57

TOL=.04 -«

GO TO 55

57 IF{TIME.GT.5000.)60 TO 58
TUL-.DB
60
IF(HNE GT CHIGO TO 59
TOL=.02
60 TO 55
59 TOL=.01
55 ATMP=TIHME
DD=DD+1.
PP=PP+l.
IF{PP.NE.20.} GO TO 891
PP=0.
WRITE(6,33)

5

33 FORMAT{1H1,2X2HJ=4X2H L5X2H 25X2H 35X2H 45X2H 55X2H 65X2H T5X2H 85

1X2H 95X2HI05X2H115X2H125X2H135X2H145K2H15)
DD 92 K=1s42
92 WRITE(6,371Ks{TEMP{J,K}J=1,1T}
37 FORMAT{I4,17F7.1)
IF{TEMP{18,1).LT.100.1)60 TO 751
WRITE{6,250}
DO 29D K=1,42
290 WRITE(64252)K, (TEKP{JsK} ,J=18,JHAX}
751 IF{TEMP{1,43).LT.100.1360 TO 752
WRITE16,33)
DD 24 3, IMAX
24 WRITE{6437IKyITEMPIJ,K),J=1,17)
752 IF(TEMP(18,43}.LT.100.2}G0 TO 887
WRITE(6,250) )
DO 299 K=43,IMAX
299 WRITE{65252)Ky (TEMP{J,K} yJ=184JHAK)
8897 WRITE{6,30) TIME,ERR+HEAT yHTOUT, HTIN, HTTOT , HTORG, DELTTo ER1¢ER2,TOL,
IHETIN
30 FORMAT{F10.152XsSHHOURS/F1045,2Xs2THDISCREPANCY IN HEAT BALANCE/E1
18.852Xy31HBTU OF HEAT STDRED IN RESERVDIR/E18.8,2X,20HBTU DF HEAT
2PRODUCED/E1848+2X,20HBTU OF HEAT INJECTED/EL8.8,2XySHHTTOT/E18.8,2
3X, SHHTORG/F10.1,21HTIME INCREMENT, HOURS/FL0.5¢3X,3HER1/F1D.5,3X3
4HER2/F10.5+3X,9HTOLERANCE/EL8.B8+2X, *=INSTANTEDUS HEAT STORED®}
WRITE{6,422310D,KIT
{NTERPOLATING ROUTINE FCR OETERMING POSITION OF SELECTED ISOTHERMS
CALL CONTR
891 KIT=0
11T=0
IF{TIME.GT.TIMX160 TO 10D
GD TO(B6465} KK
222 WRITE{6,223)DD,KIT
223 FORMAT{3X,F10.0,15)
69 STOP
END o
SUBROUTINE CALCY
DIMENSIDN TMPS(21,51)4TEMP{21,511+K{21y511»G(21451),Y1211,VI51),YP
1LUS{21} yYNEG (21} »YMID{21) 4 TTMPS {21,511, AREA{2114HIZL s HAL211,VTHPI
221,511 sCAPT{21,51) sCAP121,51)5CONDI21,51},ES(10),SLTMP{10},D15T8B,

22241
22241
22241

22241

THERMAB3
THERMAB3

2224)
22241
22241

22241
22241
22241

22241
22241

351),TEEP{21,51),CAPY{21,51),CAPPY({21,51} THERMAB3

COMMON TMPS+TEMPyHsG+YsVeYPLUS, YNEG, YMID, JMAX, IMAXs CONDy DELTT4ALPH
1AsDELTX,DENOMsDELTY s TTMPS4CAPyCAPT 4 TIME ) LMAX s SLTMP4DIST+ TEEPsCAPY
2CAPPY

NMAX=JMAX-1

DO 2 J=1,NMAX

YPLUS{JI=Y{J+1)-Y(J)

w N

VPLUS(JHAK)—VNEG(JHAK)

DO 4 J=1,JMAX

YMID{J}=0.5=(YPLUS{J)+YNEG(S])

RETURN

END

SUBROUTINE CCNV

DIMENSION TMPS{21+51)},TEMP{21,51)W{2145L1},G(21451),Y{21},V{51},YP
1LUS{21} »YNEG{21) s YMID{21) ¢ TTMPS {21451} ¢ AREA(21}sHI21)4HAL21},VTMP{
221+51) 4CAPT{21,51)4CAP{21451)+sCOND{21451)41S(10),SLTHP{10},DIST(8,

»

222641

22241
22241
22241
22241
22241
22241
22241
22241
22241
22241
22241

222641
22241

3511, TEEP (21,511 4CAPY{21+51},CAPPY(2]1,51} THERMAB3

COMMON THMPS s TEMP¢WeGsY Vo YPLUSs YNEG, YHIDy JMAXy IMAX s CONDy DELTT'ALPH
1A4DELTXoDENDM,DELTY TTMPS,CAP,CAPT,TIME vLHAXysLTHP'DIST'TEEPVCAP"
2CAPPY

22241

01¢



00 40 K=2,IKAX
CONMIN={COND{1,K)+COND(2,K)} /2.
CONPUS=(COND{2,K}+COND(3,K)}/2.

D13=DELTX#TEMP{L1,K) /{DELTT#V{K)}

D14=(3.*DELTXeCONMINOTMPS(2,K}} /(2. #DELTY®ALPHA)

D15={DELTX#CCNPUS®{ TMPS(2,K}~TMPS(3,K}})/{2.20ELTY*ALPHA}

D16=1.+{DELTX/(DELTTeV(K)})

N17={3.¢DELTX#CONMIN] /{2, «DELTY®ALPHA}

TMPS{1,K)=(TFPS{1,K-1)+013+D14+0151/{D16+017}

IF{TMPSAL,K).GE.100.1G0 TO 40

TMPS(1,K}=100.

CONTINUE

RETURN

END

SUBRGUTENE CCNDYL

OIMENSION TMPS(21,51)¢TEMP{2L,57),H(21,5114G{21,513+YL21},VIS1},YP
1LUS(21} 4 YNEGI21) »YMID (21} TTHPS (21,51} AREAC211sH{21),HAL22},VTHP(
2214511 +CAPT(21,513,CAP121,51)4CONDI21,51),1S(10),SLTMP{10},0EST(8,
3513y TEEP{2145114CAPY{21,511,CAPPY(21,51})

COMMON TMPS,TEMP WeG Y Vs YPLUS, YNEG, YMIEyJMAX, EMAX, COND, DELTT,ALPH
LA;DELTX,DENCH,DELTY, TTMPS,CAP,CAPT, TIMELMAX,SLTMP,DIST, TEEP,CAPY,
2CAPPY

D0 1 J=2,JMAX

DO 20 K=1,IMAX
51 IF(J.EQ.JMAXIGO TO 70

IF(K.EQ.136C TO 75
IFIK.EQ.IMAXIGD TO 76
CXPUS={COND{JoK}+COND(J,Ke1)1/2.
CXMEN=(CONDTJsKI4COND{J,K=111/2.
CYPUS={COND{J,K}+CONDtJ+1,K) /2.
CYMIN={COND({J,K}+CONO{J-1,K)}/2.
G0 TO 77

70 IF(K.EQ.11GC TO 72
IF{K.EQ.INAXIGD TO 73
CXPUS=ICONO {J+K3 +COND{J,K+133/2.
CXMIN={COND{J,K3+CONO{JsK-131/2.
CYMIN=(COND(J,K}+COND(J-1,K31/2.

CYPUS=CYMIN

GD TO 77

CXPUS=(COND {J,K}+CONO{J,K+1}1/2.

CXMIN=C XPUS

CYMIN={COND{ JyK} +COND{4=1,K11/2.

CYPUS=CYMIN

G0 TO 77
CXMIN=(CONO{JoK)+COND(J,K-13}/2.

CXPUS=CXMIN
CYMIN={CONO{JyK)4CONDTJ=14K}1/2.

CYPUS=CYMIN

GO 10 77
CXPUS={CDND{JsK}+COND{J,K+13}/2.

CXMIN=CXPUS
CYPUS={CDND{J,K}+CONDIJ+1,K})/2.
CYMIN={CDND { J,K}+COND{J-1,K})/2,

6o TO 77 :
CXMIN={COND{JyK}+COND{J,K-111/2.

CXPUS=CXMIN
CYPUS={COND(JyK)+COND{J+1,K)1/2.

CYMIN={COND (J,K}+COND{J-1,K}}/2.

CONTINUE
Bl==11.+CXMIN/CXPUS*{DELTXe#2/0ELTT) s (CAPTLJ K3/ ITMPSIS;KI9CXPUSE)
n

D14=-(DELTX®82/{YNID{J)aCXPUSI)

IF{J.LT.JMAX)GO TO 22
D15=CYPUS#{ {THPS(J=1,K)=TMPS(J,K}1/YPLUS{J)?

GO TO 9D
D15=CYPUS®{ (TMPS{J+1,K)~TMPS{J,K}}/YPLUS(II)"

YMIN®( (TMPS{JyK)I=TMPS(J-1,K])/YNEG(J}}

017=(DELTX#e2#CAP{JyK)}/(DELTTSCXPUS}

D1=014{015~016}-01T7
IF(K.NE.1}GOD TO 3

A1=D.D

C1=1.+CXMIN/CXPUS
W{Jy1)=C1/B1
G(J,11=D1/81
60 TO 20

4

o

T.
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22241

22241
22241
22241

22241
22241

THERMAB3

22241

22241
22241
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
2224D
22240
22240
22240
22240

22240
22241
2224D
22241
22240
22240

22240

3 IF{K.NE.IMAXIGD TD §
€1=0.0
Al=1.+CXMIN/CXPUS
GO T0 1D
5 Al=CXMIN/CXPUS
C1=1.0
10 DENOM=Bl-Aleh(JsK=1)
TF{DENOM.NE.O.1GC TO 18
HWRITE(6,50})
S0 FORMAT{18H 2ERO DENDFINATOR.}
GO TO 800
18 W{JsXK)=C1/DENOM
G(J,K)I={D1-ALleG{J,K-1)}/DENOM
20 CONTINUE
TTMPS(J,IMAX)I=G{Jy [ KAXY
00 3D I=2,IMAX
IT=IMAX+1-1
30 TTMPS{JII)}=GlJ,I1)-W{JeI1}=TTMPS{J, 1141}
1 CONTINUE
00 95 J=2,JMAX
0D 95 K=1sI1MAX
TMPS{J,K}=TTHPS{ J,K}
95 CONTINUE
CALL CAPAC
CALL COND4
800 RETURN
END -

SUBROUTINE CCND2 :
OIMENSION TMPS(21551)¢TEMP(21,511,RW{21,51)4G(2L¢51}¢Y(21),V(511,YP
1LUS{21) ,YNEG{21) 7 YMID(21), TTMPS {21,511, AREA(21) +HI21),HAL21),VTHP(
221,511 4CAPTI21,51) 4CAP(21,51},CONDI21,51},IS{103,SLTMP(10},01ST(8,
3513, TEEP{21,51),CAPY{21,51) (CAPPY{21,51)

COMMON THPS ,TEMP,H,G YV, YPLUS, YNEG, YNTD s JMAXs TMAX, COND, DELTTSALPH
1A,DELTX,0ENGH,DELTY, TTHPS ,CAP,CAPT, TIME,LMAX,SLTMP,DIST, TEEP,CAPY,
2CAPPY

D0 1 K=1,IMAX

D0 20 J=2,JFAX

61 IF{J.EQ.JMAXIGO TO 70

1F(K.EQ.116C YO 75

IF(K.EQ.IMAXIGO TC 76
CXPUS={COND (J,K} +COND(J,K+1)3/2.

CXMIN={COND (JsK)+COND(J,K-1)}/2,

CYPUS=[COND (JgK) $COND (J+15K)) /24
CYMINS{COND{J,K} +CONDEJ-1,K) 172,

GO T0 77

70 IF(K.EQ.1)GG TO 72

IF{K,EQ.IMAXIGO TO 73
CXPUS=(COND{JyK}+CONDIJ,K+133/2.

CXMIN={COND {J,K3+COND{JK-1)3/2,

CYMINS{COND{J,KI+CONDEJ-1,K}3/2.

CYPUSSCYMIN
G0 TO 77

72 CXPUS=(COND{J,K1+COND(J,K+13}/20

CXMIN=CXPUS
CYMIN={COND {JoK}+COND{J-1+K}1 /2.4

CYPUS=CYMIN

G0 10 77

73 CXMIN={CONO{J,K)+CONDIS4K-131/2,

CXPUS=CXMIN
CYMIN=(COND{J,K} +COND{J-1,K)3/2.

CYPUS=CYMIN

RCE .
75 CXPUS={COND{J,K}+CONDIJ,K+1)}/20

CXMIN=CXPUS .

CYPUS={COND{JsK)+CONDEJ+1,K11/20

CYMIN={COND(JsK}+COND{J=1,K}} /2.

60 10 77

76 CXMIN=(COND{JyKI+CONO{J,K-133/2.
CXPUS=CXMIN
CYPUS=(COND{JyK)+CDNDIJ+14K) }/2.

. CYMIN=(COND (J,K)+CONO{J~-1,K11/2.

77 CONTINUE

AL={YPLUSIJ}®CYMEIN} /(CYPUSSYREG{J))

Bl=—{1,0+(YPLUSIJ}sCYMIN}/{YNEG{J) *CYPUS} +{CAPTL{J,K) eYMID{J}oYPLUS
1{J3 3 /{DELTTSCYPUSSTMPS{J, K1)}

014=—{YMID{J)€YPLUS[J)/ (DELTX**2eCYPUS) }

1F{K,LTJINAX) GO TO 24

DI5={THPS{JsK-1)-TMPS{J 4K} } 8CXPUS

60 TD 25

22241
22240
22240

22241
22241

22241

22241

22241
22241

THERMAB3
22241

112



w

D15={THPStJ +K£1}-TMPS{J,4K) } #CXPUS

IF(K.GT.1} GO TO 26

D16={THPS{J4KI-THPS { J4K+1) J #CXMIN

60 TO 27

D16={TMPS(JsKI-TMPS{JoK-1) } #CXMIN
D17={CAP(J,K}aYMID{J)=YPLUS(J)}}/{DELTTeCYPUS)

D1=D14#(D15-D163-D17 22241
IF{J.NE.2]GO TO 3

Cl=1.0

W{2,K}=C1/B1

GE{23KY=(D1-AL=THPS(1,4K}} /Bl

60.TQ 20

IF{J.NE. JMAX)GO TO 10 22241
Al=Al+Cl

cl=0.0

10 DENOM=B1-AlsW(J-1,K)

IF(DENUM,NE.O.)GD TO 18

WRITEL6,50)

50 FORMAT(18H 2ERO DENOMINATOR.) 22241
GG TO 80D

18 W{J,K}=C1/DENDM" 22241
G{JyK)={D1l-A1=G{J-1,K))/DENOM 22241

2D CONTINUE

30

-

TTMPS{JMAX;K}=G { JMAX (K}

NMAX=JMAX-2

DO 3D I=1,NMAX

11=JHAX-T

TTMPSUET K} =G{IE,K)-W{IT,K}«TTMPS(II+1,K}
CONTINUE

00 95 J=2,JMAX

0D 95 K=1,IMAX

TMPS{J,K}=TTHPS 1 J,K)

95 CONTINUE:

CALL CAPAC
CALL COND4

BOO RETURN

o

23

w

234

~
w
n

236
232

9

END

SUBROUTINE -CAPAC

DIMENSION TMPS{21,51),TEMP{21,51),W121,513,6121,513,Y(21),V(51},YP 22241
LLUS{213 +YNEGI21) ,YMIN{21) s TTMPS (214513, AREA(21)H{ 211, HAL21),VTMP( 22261
221,51)4CAPT{2L,51),CAP{21,51},CONDI2], 511,1S(10),SLTHPL10,DISTE R,

3510, TEEP{21¢51),CAPY{21451)4CAPPY(21,51} THERMAB3
COMMON THPS s TEMP WG o YoV, YPLUS, YNEG, THID,JMAX, IMAK, COND, DELTT,ALPH 22261
1A, DELTX,DENOM, DELTY o TTMPS CAP,CAPT, TIME ,LMAX o SLTHP,01ST, TEEP 4CAPY,

2CAPPY

00 232 J=1,JMAX

DD 232 K=1,IMAX

IF(TMPS{JsK)4GT.450,)G0 TO 233
CAPT{J,K}=(23.5+.30Ts{TMPS{J,K}~100.)1)#134,0

GO TO 232

IF{TMPS(J4K)46T.900.1G0 TO 234

CAPT(J,K)=1130.0+.3448 (TMPS(J,K}-450.139134.0

GO0 TO 232

IF{TMPS{J4K).GT.1100.)GC TO 235
CAPTIJ4K1=134.0012085,0+.4858(TMPS{J,K1=900,)}

GO ¥O 232

TF{TMPS(J,K}.GT.1600.1GC TO 236
CAPT(J,K}=5134.0{382.0+.6500#(TMPS{J,K}-1100.)}

GO TO 232

CAPT{J,K)=134.08(694,0+.268¢(THPS{J;K)~1600.1}

CONTINUE

RETURN

SUBROUTINE CCOND4

OIMENSION THMPS(21, 511'TERP(21.51) W{21451}+G{21,513,Y{21),V{51),YP 22241
1LUS{21) ,YNEG(21} yYMID{21},TTHPS{21451) 4 AREA{2134HI 211, HA{21),VTHP{ 22241
2219511 4CAPT{214513 yCAP{21551)+COND(214513,1S{103,SLTMP{1D),01ST(8,

351) 4 TEEP{21,51)CAPY{21,51},CAPPY{2]1,51) THERRAB3
COMMDN TMPS ¢ TEMP ;W GsY ¢V YPLUSs YNEG, YHTDs JMAX, IMAX , CONDy DELTTyALPH 22241
1A, DELTX,DENOMsDELTY s TTHPS 4CAP,CAPT 4 TEME  LMAXSLTMP, DIST+ TEEP,CAPY,

2CAPPY

00 5 J=lyJMAX 22242
DO 5 K=loIMAX 22242
IFUTMPS{JK}.GE.200.3GD TO }

COND{J,K}=0.9

23

23

60 10 5
1 IF{THPS{J¥K}.6T.1200.360 TO 7
TSQ=TMPS({J, KIRTHPS{J,K}
TCUBSTHPS{J,K}=TSQ
COND(J3K}1=,125615T3E+1-,1837TT99E-2#THPS{J,K}+,10902421E-5TSQ-,15
1084869E-9=TCUB
60 TO 5
7 COND{J,K)=0.36
5 CONTINUE
RETURN 22242
22242
SUBROUTINE CONDS
DIMENSION THMPS{21+51),TEMP{21+51}+W{2145L)9G{2145L3,Y{2134V{5L),YP 22241
1LUS(21) s YNEG{21} ,YMIOI21¥+ TTHPS(21,51) ¢ AREA{213+H{2L),HA{21},VTHP{ 22241
2214513 4CAPTI21¢513+CAP(21,51)5COND(21+51),1S(10),SLTMPL10},0EST(8,
3513 4 TEEP{21,51) sCAPY{21,51}4CAPPY{21,51} THERMAB3
COMMON THPS; TEMP yWyG4Y ¢V YPLUS, YNEG, YMIDy JMAXy IMAX, COND DELTT4ALPH 22241
1A,DELTXsDENOM¢DELTY s TTMPS, CAP 4 CAPT s TIME s LMAX+ SLTMP, DEST, TEEP 4 CAPYy
2CAPPY
00 5 K=lol 22242
XF(TMPSH.K).GE 200. )GU TO 1
COND{1,K}=0D.9
GO TO 5
L IF(TMPS{1+K)+G6T.1200.}GG TO 7
TSQ=TMPS{1,K}#THPST1,K)
2K} ®#TSQ
y125615T3E+1-.18377799E-24TMPS{1,K}+,10902421E-5¢TSQ~,15
1084869E—9'TCUB .
GO .T0
CDND([.K)'U 36
CONTINUE
RETURN 22242
22242

o~

SURROUTINE CAPCY
DIMENSION TMPS{21,51)+TEMP{225511,W{2Ls51},6G{2L,51)+YE2L)4VI51},YP 22241
1LUS{21)+YNEG{21} ,YMID(21} 4 TTMPS (21,452} ¢AREAL2L)4H(21},HAL21)},VTMPL 22241
2214513 sCAPT{21451)4CAP{21451},COND{21,51},1S(103sSLTMP{1O0}+DIST(B,
3511, TEEP{2L,5L},CAPY{21,51),CAPPY(21,51} - THERMAB3
COMMON TMPS,TEMP yH 3G Y Vs YPLUS YNEG, YMIDyg JMAXy IMAXy CONDy DELTTALPH 22241
1A, DELTX,0ENOM,DELTY, TTMPS sCAP+CAPT, TIME,LMAX,SLTMP4DIST4TEEP+CAPY,

2CAPPY

DO 232 K=1,IMAX

IF{TMPS{1,K}.GT.450.160 TO 233
CAPT{14K)={23,5+.307a{TMPS{14K)-100.})%134.0

60 TO 232

233 IF{TMPS{1,K}.GT.900.1G0 TO 234

CAPT{1,K}={130,04.3448({THPS{1,K)=450, 112134,0
GO TO 232

IF{TMPS{1,4K).GT.1100.}GC TO 235
CAPT(1,K}=134.0#{285.0+.,4685%(TMPS{Ll,K}=-900,}1}
GO TO 232

IF{TMPS(1,K}.GT.1600.3GC TQ 236
CAPT{1,K}=134,00{382.0+.65002(TMPS{1,K)~1100.1}
GD TD 232

kS

W

236 CAPTU14K1=134.091694,0+,268+{TMPS(1,K)=-1600.)}
232 CONTINUE

RETURN

END

SUBROUTINE COND? -
OIMENSION TMPS(21451},TEMP{21951),W{2145134G{22¢513,Y(212,VI51),YP 22241
LLUS{21) s YNEG(21) 4 YMID(21) 4 TTMPS (21,51} 4 AREA{ 21}, HI 2134 HAC21},VTHP{ 22241
2214511 +CAPT{21,51),CAP{21,5134COND{21,511,15(10),SLTMP(10),DISTLB,

351}, TEEP(21,51) ,CAPY{21,51),CAPPY{21,51} THERMAB3
COMMON THMPS,TEMPsH4G oY VsYPLUS, YNEG, YMID, JMAX, IMAXyCOND: DELTT,ALPH 22261
LA,OELTX,DENO¥,DELTY,TTMPS 4CAP,CAPT,TIME,LMAX,SLTMP, DIST, TEEP4CAPY;
2CAPPY .

00 1 K=l,IMAX

00 2D J=1l,JMAX

IF{TMPS{J+K}.LT.600.}G0 TO 9 " THERMAB3
IF(TEEP{JyK}.LT.TEMP{J,K}}GC TD 9

CAPT{J¢K}=CAPY{JsK} THERMAB3
CAP{JyKI=CAPPY(J,K} THERMAB3

9 IF{J.EQ.1)G0 TO 78

61 IF{J.EQ.JMAX)GO TO 70

[4 %4



79

8

=

18

T0

24
25

26
27

w

IF{K.EQ.11G0 TQ 79
IF{K.EQ.IMAX)GO TO 80
CXPUS={COND{JoK) +COND{J,K+1}3/2.

CXNI COND{JsK}+COND{JsK~13}/2.4
CYPUS={COND{JoK}+CONDL{J+1,K}) /24
CYHMIN=[COND{JsK}+COND(J-1,K})1 /2.
GO TO 77
CXPUS=(COND{JsK}+CONDI{J,K+1)} /2.,
CXMI XPUS N

CYPU COND(JoK}+COND{J+14K}) /2.

CYMIN={COND{J K}+COND{J-1,K}}/2.

60 10 77

CXMIN={COND{JsX}+COND{J,K=11)/2,

CXPUS=CXMIN

CYPU: COND{JgK)+COND{(J+1,K}2)/2,

CYMIN={COND{J,K}+COND{J~1,K}} /2.

60 10 77

IF{K.EQ.1}G0 TO 75

IFI{K.EQ.IMAXIGO TO 76

CXPUS=(COND{JyK) +COND(J,K+1}3/2.

COND(JyK}+COND(J K~1}1/2.

COND{JyK}+CCND{J¢14K) 1 /2.

CYMIN=CYPUS

GD TO 77

IF(K.EDL1}GC TO 72

IF(K.EQ.IMAX)IGD TO 73

COND{J4K}+CCND{JsK+11)/2.

COND{JsK}+COND(J4K~1}13/2.

COND{JyK}+COND{J-1,K)} /2.

CYPUS=CYNIN

60 TO 77

CXPUS={COND (JoK}+CGND{JoK¢1}3/24
XPUS

CYMIN={COND { J,K}+COND{J-1,K}1/2.
CYPUS=CYMIN

G0 TQ 77
CXMIN=(COND{JsK)+CONO{JoK-1)1/2.

XMIN
COND{JsK}+CONDIJ-1,K}}/2.
CYPUS=CYMIN

GO 70 77

CXPUS={COND (JyK)+CONDTJ4K¢2)}/ 24
XPUS
CONO{JeK)+CONO{JI+1,K}} /2.
CYMIN=CYPUS

60 70 77
CXMIN={CONO{JsK}+COND{J,K=13)/2.
CXPUS=CXMIN

CYPUS={COND {JoK)+COND{J+1,K}}/2.
CYMIN=CYPUS

CONTINUE

Al={YPLUSU{J}SCYMIN} /{CYPUS®YNEG{J)}

1
1(J))/{DELTTSCYPUS®THPS (14K} }}
D14=—{YMID{J)®YPLUS{J)/ {OELTXse2eCYPUS})
IF{K.LT.IMAX) GO TO 24
D15=(TMPS{J,K-11=TMPS{J,K})«CXPUS
60 TO 25 )
D15={TMPS{J,K$1}~TNPS(JK]}eCXPUS
IF{K.GT.1} 60 T0 26 .
D16=(TMPS{JsK}=THPS{J¢eK+1) ] «CXMIN
60 Y0 27
D16=(THPS{J,K}=TMPS{J,K~1)) ¢CXMIN
D17={CAP{J,K)®YMID(J)#YPLUS{J)}/{DELTTeCYPUS}
D1=D14»{015-016)-017

IF{J.NE.1)}G0 TO 3
Cl=Cl+Al
A1=0.0
W(1,K)=C1/B1

G{1,K)}=01481 o

GO TO 20
1F{J.NE.JHAXIGO TO 10
Al=Al¢Cl

C1=0.0

=={1. 0+{YPLUS(J}«CYMIN)/ {YNEG(J} «CYPUS)I+{CAPT{JoK}sYHID{J )} YPLUS

22240
22240
22240
22240
22240

22240

22240

22240

22240

22240

22240
22240

22240

22240

22240
22240

22240
22240

22241

22241

10 DENOM=Bl-Al#W{J-1,K}
IF{DENOM.NE.0.)GO TO 18
WRITE(6450) -

50 FORMAT{18H ZERO DENOMINATOR.)
GO TO BOD

18 W(J3,K}=C1/DENDM
G(JyK)={D1-ALeG{J~1,K}}/DENON

20 CONTINUE
TTMPS(JMAX,K}=GlJMAX,K}

NMA X=JMAX~1
DO 30 I=1,NMAX
1I1=JMAX-1
30 TTMPS{IIKI=GUII,K)—W{II,K}eTTHPS{II+1,K}
1 CONTINUE .
DD 95 J=1,JMAX
DO 95 K=1,IMAX
THPS{J,K}=TTMPS{J+K}

95 CONTINUE
CALL CAPAC
CALL CONDé&

CALL CAPSK

800 RETURN
END .

SUBRDUTINE CCND6

DIMENSION TMPS{21+51)yTEMP{21,51)¢W{21s5L)1sG{2125L)4Y121)4VISL},YP
LLUS{21) ¢ YNEGI21) 4YMID{21),TTMPS {21551} AREA{21)4HI 211, HA121),VTMP(
2214513 4CAPT {21451} ,CAP{21,51},COND{21,51}+IS{10}sSLTHPLLO}4DIST{8y

351}, TEEP(21,511+CAPY{21,51),CAPPY (21,51}

COMMON THPS, TEMP s WsGyY ¢V YPLUS,YNEG, YHID, JMAX, IMAX4 CONDy DELTT,ALPH
1A,DELTX,DENOMyOELTY,TTMPS,CAPCAPT, TIME 4LMAX,SLTMP,DIST, TEEP,CAPY,

T 2CAPPY
00 1 J=1,JMAX
00 20 K=1,iMAX
IF{THPS{J,K). LT, 600,160 TO 9
IF{TEEP(J,K} . LT.TEMP{J,K}}IGD TO 9
CAPT{JyK}=CAPY[JsK}
CAP{J+K)=CAPPY(J.K}

9 [F{J.EQ.1}60 TO 78

5t IF(J.EQ.JMAX}IGO TO 70
IF{K.EQ.11GD TD 79
IF(K.EQ.IMAXIGO TO 80
CXPUS={COND{JyK}+COND{J,K+1}}/2,
CXMI CONO(J;KI+COND{J,K-1)}/2.
CYPU. COND (JoK}+COND{J*14K}}/2.
CYMIN={CONO (J,K}+CONO{J-1,K}1/2.
60 YO 77

T9 CXPUS={COND{J,K)+CONOTJsK+1}}/2.

XPUS

COND{JoK}+CCND{J+1,K}) /2.
CYMIN=ICOND {J¢K)+COND{J-1,K}1/2.
60 TO 77

B0 CXMIN={COND(JyK}+CONOtJ,K-1}1/2.

XMIN

COND [ J,K) «COND{J+1,K) }/2,

CONO (JoKI+COND(J=1,K}1/2.
60 TO 77

78 IF{K.EQ.1)60 TO 75
IF{K.EQ.IMAXIGO TO 76
CXPUS={CONO{JsK)+COND(J K+1) /2,
CXMINS(COND {J,K)+COND{JK=11}/2.
CYPUS={COND (J,K}+COND(J+1,K}}/2.
CYMIN=CYPUS
60 70 77

70 TF(K.EQ.1360 TO 72
IF(K.EQ.IMAXIGOD TO 73
CXPUS={COND {JoKI+COND(J,K+13}/2.
CXHIN={COND{J,K}+COND(J K~1)1/2..
CYMIN=(COND (JyK)}+COND{J=1,K}} /2%
CYPUS=CYMIN
G0 TO 77 .

72 CXPUS={COND{J,K)+COND{J,K+1)}/2.
CXMIN=CXPUS
CYMIN={COND{J,K}+COND{d-1,K}} /2.
CYPUS=CYMIN

22241

22241
22241

THERMAB3

22241
22241

THERMAB3
22241

22242
22241
THERMAB3

THERMAB3
THERMAB3

22240

22240

22240
22240
22240
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G0 10 77
CKH!N:(CDND(JpK)OCﬂND(J'K—U)/Z-
CXPUS=CXMIN
CYMIN={COND{JoK}+COND{J=14K}})/2.
CYPUS=CYMIN

GD TD 77
CXPUS={COND { JsK)}+COND{J,K+113/2.
CXMIN=CXPUS

CYPUS={COND {JsK}+COND(J+1,K} }/2,
CYMIN=CYPUS

6D TQO 77
CXMIN={COND{JsK}+COND{J,K~1)}/2,
CXPUS=CXMIN .
CYPUS={COND{J4+K}+COND{J+1,K}}/2,
CYMIN=CYPUS

CONTINUE
Bl=-(X.OCKHIN/CxPUS#(DELI’Xl!ZIDELT”I(CAPT(J.K)/(THPS(J.KICCKPUS))
1

Dllox-(DELTxilzl(VHID(J)!CXPUS))
IF{J.LT.JHAXIGO TO 22
D15=CYPUS®{(TMPS{J-1,K}-THPSTJeK})/YPLUS(J}])
GO TO 25

D15=f CVPUS'HTHPS(JH..K) THPS(J,KH/VPLUS(JH
IF{J.6T.1} GD TO 9

D16={ THPS{J,K}— THPS(JOanH'CVHIN/VNEG(J)
G0 TO 23

D16=CYMINs{ {TMPS{J,K)-THPS(J-1,K)}/YNEG{J)}
D17={DELTXew28CAP{J,K}}/(DELTT#CXPUS}
D1=D14%{D15-016)-D17

IF(K.NE.11G0 TO 3

Al=0.0

C1=1.4CXMIN/CXPUS

W{J,11=C1/B1

G{J,13=D1/81

GO TD 20

{FIK.NE.TKAXIGD TO §

C1=0.0

Al=1.+CXMIN/CXPUS

GO 1O 10

AL=CXMIN/CXPLS

Cl=1.0

OENOM=Bl-AlsW{J,K-1}

EF(DENOM.NE.0.)}GO 7O 18

WRITE{6,50}

FORMAT(18H ZERO DENOMINATOR.)

GO TO 800

WiJ,K}=C1/DENOM

G(JyK)={D1-Al*G{J,K-11) /DENOM

CONTINUE

TTHPS{J, IMAXY=G {J 1 MAX])

00 30 I=2,I1VAK

II=IMAX+1-]
TTMPS{JoII)=G{JeII}-H{Jo11)#TTMPSTJ, 1141}
CONTINUE

00 95 J= I,JVAx

00 95 K=1,1M

THPS(J,K)= TTP‘PS(J.K)

CONTINUE

CALL CAPAC

CALL CONO4

CALL CAPSK

RETURN

END

SUBROUTINE CONTR

DIMENSION TRPS{21,511 yTEMP{2L,51) ;H{2155135G121,511,Y(211,V{511,YP
1LUS{2114YNEG{21) +YMIO(21) s TTMPS {21451} AREAT21}¢HI21F,HAT21),VTHPE
221451)9CAPT{21,51}4CAP(2145114CONO{21+51}:1S{1D}+SLTHP({10},01ST{8,
351) ¢ TEEP(21451) yCAPY {21451} ,CAPPY{2]1,+51}

COMMON TMPS,TEMP ¥ G Y4V, YPLUS s YNEG, YMECy JMAX, IMAX 4 CONOy DELTT4ALPH

1A4QELTX yDENOM,DELYY, TTHPS,CAP+CAPT,TEIME LMAX,SLTMP,DIST,TEEP,CAPY,

2CAPPY
00 263 1=1,LMAX
00 260 o LMAX

00 261 J=1,JMAX

22240
22240

22240

22240

22241
22240
22240

22241
22241

22241

22241

THERMAB3

22241
22241

THERMAB3

22241

LFUTEMP{J,K).LT.SLTMP(T}}GO TO 262
261 CONTINUE
262 IF{J.EQ.1)G0 TO 260

DISTIT¢KI=Y{J-1 14+ ({TEMP {J=1,K)-SLTMP (I} )/{TEMP(J-1,K)I-TEMP{JsK)]}e

1YLII-Y(J-1)}

.260 CONTINUE

263 CONTINUE )
' WRITE(64264) {SLTHP{I) ¢I=1,LMAX)

264 FORMAT{LH]+6Xy*DISTANCE*7Xs*ISOTHERM ISDTHERM.

ISOTHERTHERMABS

1M ISOTHERM .ISOTHERN lSDTHERH !SDTHERH'/BX"DUHN'.‘JK"DEGREES FTHERNABS

2 DEGREES F DEGREES F

F DEGREES F DEGRETHERMABG
3EES F'/'ll"FRACTURE"ﬁx.aFlD.l/9l"FEE|"/ZOli'FEET INTD FEET INTO THERMABG .

4FEET INTO FEET INTD FEET INTO FEET INTO FEEF INTD FEET INTD*/22X,"THERMABG
SWALLY y6Xy THALL® 36Xy "WALL® 96X o "WALLY 36Xy *HALL* ¢ 65X, TWALL® 4 65Xy *WALL Sy THERMABS

66Xy *WALLY)

D0 266 K=1440

FK2=K-1

XFT=DELTX®FK2
266 WRITE{6,267)}XFT3(DIST{I K} oI=LyLHAX)
267 FORMAT(TX,F6.044XyBF10.2}
WRITE{6+264) (SLTHP{I},E=14LHAX)}
DO 265 K=4l,IMAX
FK2=K-1
XFT=DELTXeFK2
WRITE{6,267) XFT,{DIST{I,K},I=1,LMAK}
RETURN

26

w

SUBROUTINE CAPSK

DIMENSION TMPS{2E 4513 ¢ TEMP{21451) W (21951)9G(2145114Y021),V{51),YP
ILUS{21} 4 YNEG{21) yYMIO(21}4TTMPS {21451}, AREA(2114H{21 1, HAL21},VTMP(
221+51)4CAPT(21,51)+CAP{21,51),COND(21,51},I5110),SLTMP{10),DISY{8,

3511, TEEP{21,51) +CAPY{21,+51)+CAPPY{21,51)

COMMON THPSsTEMP WGy Y+ Vs YPLUSy YNEG YMIDyJMAX, IMAX, COND, DELT T4 ALPH
1A4DELTX,DENOM,0ELTY s TTHPSyCAP,CAPT, TIME, LMAX; SLTMP, DIST, TEEPCAPY,

2CAPPY
D0 232 J=1, JMAX
DO ‘232 K=1,IMAX
IF{TMPS({J,K).GT4450.)G0 TO 233
CAPY{(JyK}=123.5+.307{THPS{JyK}-100.}}*134.0
GO TO 232
233 IF{THPS{J,K}.GT.600.1G0 TO 234
CAPY{JsK)}S{130,0+.344% (THPS{J,K)~450.))#134.0
GD TO 232
234 IF{TMPS(J,K).GT.1100.160 TO 236
CAPY1JyK}=134.0"(180. OG.ZBDC(THPS(J.K) 60041}
GO TO 232
236 CAPY{J,K}= 13’0.0!(295 00.2580(THPS(J.K) 1100.1}}
232 CONTINUE
RETURN
END

THERMABS
THERMABS
THERMABS
THERMABS
THERMABS

THERMABG
THERMABS
THERMABS
THERMABS

THERMAB3
22251
22241

THERMAB3
22241

THERNAB3
THERMAR3
THERMABS
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
THERMAB3
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Input

system datao

Compute

veiocity

general test

Output

'doio

‘Iniﬁolize

parameters
:

Call CALCY
I

Call CAPAC
‘

Call COND4

215

THERMAB4

Call CAPSK

" Initialize

permanent
cap arrays

Increase
"time step length
during run?

End of
time 'step?

Time stop‘ length set
according to time

into run

Vertical or Vertical

horizontal
sweep?

Horizontal

KWHO=1



THERMAB4

just started?

Caill CONV
:

Call CONV2
'

Call CONDS
:

Call CONDS
!

Cail CAPCI
:

Call CAPC2

Heat inj.

216

Heat inj.
just stopped?

Output Output

temperatures & ~temperatures &

Call COND6

heat data heat data

No
Call CONTR o Call CONTR
Yes

L1

Call CONDI
"Accuracy ]
reached? ‘
Elncrolﬁonf

iteration counter

¢
!
!

Set Vimp(J K)=

Tmps{J,K}

:

!’ Set Kwho=2

Set KK=1

e




THERMAB4

Call' CONY

l

Call CONY2

;

Call CONDS

Yeos

Heat inj.

just started?

Yes

217

Heat inj. Y
s

just stopped?

Output

heat data

temperatures &

Call CONTR

Output
Call COND7 temperatures &
heat data
No
Call CONTR
Yes l
Call COND2

1

Call CONDS

!

Call CAPCI

!

Call CAPC2

Set KK=2

Set Vimp(J K}=
Tmps (J,K)

Accuracy
reached?

I

!

Set Kwho=1
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THERMAB4

Set Cap(J,K)=
Capt(J,K)

'

Set Cappy () K)=

Coapy{J.K}

'

Set Teep(J,K)=

Temp (J,K)

1
Set Temp{J,K] =

Tmps{J,K)

Yes

high enough to

shut off heat
inj.?

Z low enough to tusn:
on heat?

information at time heat

‘ — ':] Set switchito print

Set switch to turn inj. turned off

“Heat already:
on?

o

heat 'inj. on or keep

it on

Set switch to print ‘

information at time heat Set switch to tqm

inj. started ‘hooi inj. off or
 keep it off
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THERMAB4

temperatures?

Calculate
heat stored in
rock?

Calcylote heat

stored in rock

Output

temperatures &

Calculate heat inij.

heat data

and heat produced

Call CONTR

heat stored
at cross sections?

Set iteration

counter to zero.

Calculate heat stored at

selected cross sections

increment time

. l No
Output
No heat at
| cross sections
Yes

Calculate

Direction

Horizontal “ Vertical
N

accumulative time

just caiculated?

of heat inj.

l‘_

Tolerance set

according to time

into run

©




THERMAB4

Subrovutine
COND1

(Horizontal sweep)

=D
l

Calculate avg.
conductances between
point in question and

surrounding points

Calculate

cosfficients

;

Matrix inversion

routine

:

Set Tmps(J,K}=
Ttmps(J K}

'

Call CAPAC

l

Call COND4

'
C D

220

Subroutine
COND2

(Vertical sweep)

=
)

Calculate avg.
conductances between
point in guestion &

surrounding points

l

Calculate

coefficients

Matrix inversion

routine
Set Tmps(J),K)=
Ttmps({J.X)

:

Call CAPAC
Call COND4 |
=
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THERMAB4

Subroutine COND6

Subroutine COND7
(Horizontal sweep)

(Vertical sweep)
(e ) s )

Temperature

Temperatyre
increasing?

increasing?

Set Capt{J K)= Set Capt{J K}=
Capy 4K} CapylJ.K)

Set Cap{J,K)=

Set Cap{J K]=

Cappy(J.K) Cappy(J.K}
!Calculate avg. 1 Calculate avg.
conductance between

conductance between
: point in question & Call CAPAC Call |CAPAC ,point in question
surrounding points

‘Calculate

Calculate
‘Call COND4

Call COND4
coefficients

coefficients

l 4 l ]

Matrix inversion

Call CAPSK
routine

Matrix inversion
‘Call CAPSK '

‘ routine

Set Tmps(J,Kj= ( End )‘ End ‘) ' Set Tmps(J K=
Ttmps(J,K)

Ttmps (J K}

[ SSRGS

1




Subroutine

THERMAB4

Subroutine

222

Subroutine

CONDS CAPCI] CAPSK
( Start ) ( Start ) ( Start )
y Y y

Calculate conductance
for each point in first

row along fracture

Calculate total !uct
requirement for each

block along the first

Calculate

heat capacity of
each block

D

Subrouﬁne
CAPAC:

e )
:

=
(= )

Subroutine
COND4

=D
:

3
e D

‘Subroutine
CONTR

=
¥

Calculate total heat
requirement of each

block

" Calculate conductance

for sach point

Calculate position of

specified isotherms

l

Odtput
position of
specified

isotherms




THERMAB4
Subroutine CALCY Subroutine CONV

(Variable grid
spacing)

=D (=D =D
l l l

Calculate Calculate avg.

Subroutine CONV?2

Calculate avg.

conductances between conductances between -
AYj+¥;

_point in question & point in question &

l surrounding points surrounding points
Colculate ] . J
Calculate Calcvlate
AYi—% coefficients
coefficients
l ‘ l . y
Calculate Calculate Calculate
temperotures temperatures
AY

' l
— & D

Subroutine CONDS

Subroutine CAPC2

C=D (&
¢ 4

Calculate conductance

Calculate totol

for each point in last row| heat requirement for

-aleng fracture

7 each block along last row
l l

) &

223
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THERMAB4~A.L. BARNES
OIMENSIUN TFPS{25,5L) s TEMPI25,5114W(25,51)46(25,51),Y(251,VI5L},YP
1LUS{25) s YNEGI25) » YMID{25]+TTMPS (25,511 ¢ AREAL25),H(25),HAL25),VTMPL
225451) yCAPT{25,51) sCAP{25,51)4COND{25451141S¢10),SLTMP{10),DIST{8,
35134 TFEP{25,5L) 4CAPY{25,51}+CAPPY{25,51}
COMMON THPS, TEMP s WG oYy Ve YPLUSy YNEG, YRIDy JMAXy [MAX, COND, DEL TTyALPH
TASDELTXDENUMyUELTY ¢ TTMPSCAP,CAPT,TIME LMAX,SLTHPDIST,TEEPCAPY,
2CAPPY

00 76 I=1,LMAX
00 76 K=i,IMAX
T6 DISTLT,K)=0.0
WRLTE{6+IINRUNs TT o TTT o TCLyKSKIP ¢ ALPHA; DELTX o {Y({I)yT=1425)4AA,BA,CC

TEMP=PERMANENT TEMPERATURE ARRAY 22241
VTMP=TEMPORARY TEMPERATURE ARRAY
TMPS=TEMPORARY TEMPERATURE ARRAY 222641
KHT IS THE SKITCH TO TURN HEAT ON OR OFF THERMABS
KWTSP IS THE SWITCH TO PRINT INFORMATION AT THE TIME KEAT IS SHUT THERMABRG
OFF THERMABS
KWTST IS THE SWITCH FO PRINT INFORMATION AT THE TIME HEAT IS THERMARG
TURNED ON THERMABS
TIMHT=CUMULATIVE TI¥E OF HEAT INJECTION THERMABRG
100 RFAD{S, 10} IMAX, JMAX DELTTTOL,TIMXALPHA,DELTXDELTYAA, BB, TT,TTT, 22261
1CCoKSKIP ;NRUN,KSLCE ¢ TSSNo {ISIMY 3 M=1,5) o LHAX, {SLTMP{ E}y [=1,83,KSTRT
2eKR, TTTT
IMAX=NUMBER OF CULUMNS (K}
JMAX=NUMBER OF QUWS {J}
DELTT=TIME STEP LENGTH,HOURS
TOL=TOLERANCE
TIMX=MAXIMUM TI#ME, HOURS
PECIFIC HEAT X VELOCITY X DENSITY{ALL OF GAS)
ISTANCE BETWEEN POINTS ALONG THE FRACTURE
DELTY=DISTANCE RETWEEN PUINTS INTO THE WALL{FIRST 3 POINTS ONLY?}
AA=CONSTANT IN EOUATION WHICH GENERATES VELOCITY
UNSTANT IN EQUATION WHICH GENERATES VELUCITY
NJECTION TEMPSRATURE, DEGREES FAHRENHEIT
TTT=RESERVOIR TEMPERATURE, DEGREES FAHRENHEIT
CC=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
KSK{P=0PTION TO INCREASE TIME STEP LENGTH DURING RUN
NRUN=RUN NUMBFR
KSLCE=OPTION TU CALCULATE TUTAL HEAT CONTENT ANO PRINT TEMPERATURE
ANO TOTAL HEAT CONTENT
ISSN=MAXIMUM NUMBER OF DESIRED SLICES FOR CROSS SECTION STUDY
1S{M}=VALUES OF DESTRED SLiCES FOR CRUSS SECTION STUDY
LMAX=NUMBER UOF [SOTHERMS DESIRED
SLTMP{I}=TEMPERATURE OF DESIRED ISUTHERM
KSTRT=SWITCH THAT ALLOWS STARTING RUN WITH CUNSTANT OR VARIABLE
FIELD TEMPERATURES
KR=0PTION TO SET ENJECTJON TEMPERATURE TO TTTT OR TEMP{1,IMAX}
TTTT=INJECTION TEMPERATURE AT JMAX,IMAX
READ{5+203 (Y{I},I=1,JMAX}
20 FORMAT{16F5.0/9F5.0}
Y=DISTANCE 'INTO THE WALL, FEET
THERMADS
THERMABG
THERMARS
THERMARG
TXHE 0.0 22241
SMAX=THMAX
FTSYT=(5MAX~-1,) «0ELTX
ATMP=0.0
0D=1.0
KWHO=1
CM=25000.
HTIN=0,
DO 21 K=1,IMAX 22241
FK=K 22241
X=DELTX#FK 22241
V{Ki=(AA+BBeX+EXP(CCaX}} a2, THERMAB3
21 CONTINUE 22241

2 XaXal

oo

o o

20

18

23

31

Lo TIMKy IMAX, JMAX,FTSYT

9 FORMAT{IHL45X,*INPUT DATA FOR THERMABS RUN NUMBER's2X,15//5%,F10.1
152Xy *=INJECTION TEMPERATURE, DEGREES FAHRENHEIT!/SX,F10.1y2X,*=RES
2ERVUIR TEMPERATURE, DEGREES FAMRENHEIT?/5X;F10.442Xy*=TUOLERANCE (PE
3R CENT*/10Xs15,2X+*=0PTIOUN TO INCREASE TIME STEP LENGTH DURING RUN
4¢ /20Xyt {1) INDICATES TIME STEP LENGTH REMAINED CONSTANT DURING RUN

5t/20Xs*{2) INDICATES TIME STEP LENGTH WAS INCREASED DURING RUN‘/SX

69F10.442X,"=MASS X VELOCITY X DENSITY{ALL QOF GAS)
T/5K¢F104142X,*=DISTANCE BETWEEN POINTS ALONG THE FRACTURE, FEET‘//
85X, *THE DISTANCE INTO THE WALL, FEET, IS GIVEN BELOW?,/3Xs25F5.1//
954y *THE CONSTANTS IN THE EQUATICN WHICH GENERATES VELOCITY ARE‘/10
IXsF10.342Xs *=AAY/10X,F100372Xe*=BB*/10XyF10.3,2Xy*=CC*//5XF10.1,2
2Ky *=MAKIMUM TIME, HOURS'/L10XsI5,2Xy*=1MAX1/10X, 152K, *=JMAX*/5X,F1
30.142Xs 'LENGTH OF SYSTEM, FEET*}
TENTH=0.0

10 FORMATI215+F5.1¢F5.2,F10.14F10¢1,6F5.14F10.4/10E5/8F10.1/215,F10.1
1)

IF{XSTRT.EQ.1)GO TO 81
READ{S54203} TIME JHTIN,HTCUT
TIME=TIME, HOURS, ALREADY COMPLETED WHEN RUN RESTARTED
HTIN=RTU OF HEAT INJECTED WHEN RUN RESTARTED
HTOUT=BTU OF HEAT PRCOUCED WHEN RUN RESTARTED
FORMAT{F10.0,2E18.8}
ATMP=TIME
DO 74 K=1,IMAX
T4 READ(S, 73} (TMPS(J4K),J=1,JMAX}
73 FORMAT(L6F5.0/9F5.0)

GO TO 204
8l DO 75 K=l,I1MAX

D0 75 J=l.JMAX
T5 TMPS{JyK}=TTT

-

204 00 205 K=1,1MAX

DO 205 J=1,JMAX

TEEP(J4K

205 YTMP(J,K)I=TMPS{J,K}
T

TMPS{l,1

TEMP {11

VTMP{1,13=TT

TEMP(JMAX,THAX}=TTTT

THPS(JMAX [MAX) =TTTT

VIMP{JMAX, IMAXI=TTTT

IF{KR.EQ.1)GC TO 181

$=0.0

TEMP(JMAX, [MAX} =TEMP{]1,MAX}

TMP STJMAX [MAX) =TMPS {1, IMAX}

VIMP {IMAX IMAX) =VTMP (1, [MAK)

CALL caLcy

CALCY IS A SURROUTINE THAT CALCULATES VARIABLE Y SPACING VALUES

CALL CAPAC

CAPAC TS A SURROUTINE THAT CALCULATES TUTAL HEAT REQUIREMENT
VALUES.

CALL CAPSK

CAPSK IS A SURRNUTINE THAT CALCULATES HEAT CAPACITY VALUES

CALL COND#4

COND4 IS A SUBROUTINE THAT CALCULATES CONDUCTANCES

00 232 J=1, JMAX

0o 232 »IBAX

CAPPY{JsKI=CAPY {J,K)

CAP{J,K}=CAPT{J,K)

FIMAX=IMAX

HTORG=Y(JMAX}*NELTX*FIMAX®3149, ¢ (CAP{1, 1)=-3149. ) #DELTX",50

HTORG=INITIAL HEAT CONTENT OF ROCK AT 100 DEGREES FAHRENHEIT

B2 GO T0(995,9941,KSKIP

=

~

994 IF(ATMP.NE.TIME) GC TO 995

ATHMP=ATMP+1.
LF({TIME.GT.5.0360 TO 318
OELTT=1.

GO TO 995

IF{OELTT.GE.15.0} GO TO 993
uu=DD-5,0
TME=5.0%{{l.2}esuU)

DEL TT=TME~TIME
IF(OELTT.LT.15.3G60 TO 995
OELTT=15.

THERMAB3
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22241
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TF{TIME.GT.1000.3GC TO 996
DELTT=15.0
GO TO 995
IF{TIME.GT.3000.}GO TC 997
DELTT=30.0
GO TO 995 .
997 IFITIME.GT.10000.1G0O TQ 998
DELTT=50.0
GO TO 995
998 DELTT=100.
. KWHO IS THE SWITCH TO NETERMINE DIRECTION OF ADIP SWEEP{HORIZONTAL
OR VERTICAL}
995 GO TO{991+53)+KWHO

99

S

991 GO TO{1424140},KHT THERMABG
140 GO TO{158,141}+KNTSP THERMAB6
141 KWTSP=1

TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST

STOPPED

WRITE16,433)
DO 46 K=1,42 THERMABG
46 WRITE{643TIKy(TEMP(J9K} 2 J=1,41T) THERMABS

WRITE(6,2503 THERMARG
250 FORFAT{1HI(2X,%J= 189 45Xs%19%,5X,%20%,5X, 215X %22%,5%X,%23%,5

1Xy*24%45X%,%25%)

00 251 K=1,442 THERMAB 6
251 WRITE{642523Ky {TEMPLI4K)yJ=18,JMAX]) THERMARG
252 FORMAT{I4,8F7.1}

WRITE{6,433) THERMABG

DO 44 K=43,IFAX THERMABSG

44 WRITE(G643TIK(TEMP(J4K) ,J=1,1T7} THERMABG&

WRITE(6,2503 THERMABG

DO 253 K=43,1MAX THERMABG
253 WRITE{6,252)K,{ TEMP(JyK}¢J=18,JMAXY THERMAB G

WRITE(6430) TIME,ERRyHEAT4HTOUT 4 HTIN4HTTOT,HTORG, DELTT, ER1,ER2, TOL THERMABG

WRITE{64150) TIMHT THERMABS

150 FORMAT{IH-y2Xs*HEAT INJECTION STOPS, PROQUCING WELL TEMPERATURE ' THERMABG
1EXCEEDS 800 DEGREES F,'/2Xs*CUMULATIVE TEME OF HEAT INJECTION EQUATHERMABG
2LS*,2X4F10,1) THERMAB6
CALL CONTR -

CONTR IS'A SUBROUTINE THAT CALCULATES THE POSITION OF SELECTED
ISDTHERKS e

156 CALL COND6 X

COND6 IS A SUBRDUTINE FOR THE HORIZONTAL ADIP SOLUTION WITH
ADIABATIC BDUNDARY CONDITIONS
GD TO 45

142 GO TO{1434159),KNTST THERMABG

159 KWTST=1 THERMARG
TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST

STARTED
WRITE(6,33}
DD 32 K=1,42

32 WRITEL6,37)1Ky(TEMP(J,K},3=1,17)

WRITE(6,4250)
DO 275 K=1442

275 WRITE(642521Ky LTEMPIJ,K) 32184 IMAX)

WRITE16,33)
DD 36 K=43,IMAX

36 WRITE(6,37)Ky[TEMP(J4K] ,J=1,17}
WRITE(6,2501
DU 276 K=43,IMAX

276 WRITE1642521Ky { TEMP{JyK} ¢ J=184JMAX)

WRITE{6,30] FIME,ERR yHEATyHTUUT o HTIN¢HTTOT,HTORG,DELTT,ER1,ER2, TOL THERMABG
WRITE(64255) )

CALL CONTR

GO TO 143

53 G0 TO00146,145) 4XHT THERMABG

145 GO TULLT0,261) 4KWTSP

261 KWTSP=1
WRITE(6,33}

N0 31 K=1,42

31 WRITEL6,37)K (TEMPII K] pJ=1,1T7}

WRITE!6,250}
DO 271 K=1,42
271 WRITE(6,2523Ks (TEVP [J4K] 4 =184 JHMAX}

oo

oo

ca 00 0o an oo

HREITE(6533)
D0 34 K=43,IMAX
WRITEL6¢37)Ko{TEMP{J,K},J=1,17}
WRITE{6,250}
00 272 K=43,IMAX
WREITE(642521K, ({TEMP [ J4K) 43=18,JMAX)
WRITE(6430) TIME 4 ERRyHEAT 4HYOUT, HTINy HTTOTs HTORG DELTT, ER1,ER2, TOL THERMABG
WRITE{6,150) TIMHT THERMABG
CALL CONTR
170 CALL COND7
CONDT IS A SUBROUTINE FOR THE VERTICAL ADIP- SOLUTION WITH
ADIABATIC BOUNDARY CONDETIQNS
GD TO 171
146 GO TO{43,157},XKHTST
157 XWTST=1 THERMARG
WRITE(6433}
00 38 K=l,42
38 WRITE{6,3T)IKoITEMPIJ,K) 3 J=1,1T7}
WRITE(64250)
D0 278 K=1,42.
278 WRITE{6,252}Ks {TEMPLJ4K),J=18,JMAX}
WRITE{6433)
DO 39 K=43,1MAX
WRITE{643TIK ITEMP{JyK) 4 J=1,417)
WRITE{64250}
DO 279 K=43,IMAX .
279 WRITE{64252)Ks {ITEMP (JyK) J=18,JMAX]}
WRITE(6430) TEME yERR¢HEAT yHTOUT HTIN,HTTOT4HTORG+ DELTT,ER1,ER2, TOL FHERMABG

3

&

27

N

3

o

WRITE16,255} N - THERMAG 6
‘255 FORMAT{IH-,2X, *HEAT [NJECTION STARTS. PROOUCING WELL TEMPERATURE ITHERMABS

1S LESS THAN 700 DEGREES F.') THERMARS

CaLi CONTR

GO TO 43 THERMAB 6
143 CALL CONV

CONV S A SUBRUUTH!E THAT SOLVES EXPLICIT CONVECTION EQUATIONS
ALONG THE FRACTURE
CALL CONV2 .

CONV2 IS A SUBROUTINE THAT SOLVES EXPLECIT CONVECTION EQUATIONS
ALDONG THE J=JMAX RCW
CALL CONDS
CONDS IS A SUBRDUTENE THAT CALCULATES NEW CONDUCTANCE VALUES
ALDNG THE J=1 ROW
CALL CONDS .
CONDE IS A SUBROUTINE THAT CALCULATES NEW CONDUCTANCE VALUES
ALONG THE J=JMAX RCHW
CALL caPCl b
CAPCL IS A SUBROUTINE THAT CALCULATES NEW TOTAL HEAT REQUIREMENT
VALUES ALONG THE J=1 ROW .
CALL CcAPC2
CAPCZ §S A SUBRDUTINE THAT CALCULATES NEW TOTAL HEAT REQUIREMENT
VALUES ALONG THE J=JMAX ROW
45 GU TD{14&+473,KHT
144 CALL CONDL . . 22241
CONDY IS A SUBROUTINE THAT SOLVES HORIZONTAL AOIP WITH THE CONV
SOLUTION AS A BOUNDARY CONDITION

47 IF(DENDM.E4.0.0)G0 TD 69 22241
KIT=K[T+¢]
HIT=1LT+1
IF{IIT.FQ.5)GD TQ 296
IF{KIT.GT.1QIGD TQ 222
KK=1 22241
DD 84 N=l,JFAX
0D B4 M=1,IMAX 22241
IF{TMPS{N,M}.LT.100.10} GO TO B4
IF{ABSL(VTMPIN,M}=THPS(N,M}}/THMPS{N,M}}.GT.TOL}GO TD Bé 22241
B4 CONTINUE 22241
22241
22241
v 2224}
88 VIMP{J,K)=T¥PS(J,K} 22241
KWHD=2
GO TO 82

296 DO 297 K=1,1rAX
DD 297 J=1,JFAX
THPS{JsKI=TEMP{J,K)

Gee



co

297 VIMPLI4K}=TENFPLI,K)
[1r=0
CM=CMe50600.
TOL=T0L+.01
GO T 82
43 CALL CONV
CALL CONV2
147 CALL CONDS
CALL CONDB
CALL CApPCl
CALL CaPC2
171 GO TO(149,148) ,KHT
149 CALL CONDZ
COND2 T'S A SURROUTFNE THAT SOLVES VERTICAL ACIP WITH THE CONV
SOLUTICN AS A BOUNDARY CCNCITIDN
148 IF(DENOM.EN.0.0}GO TO 69
927

IF(THPS(N,M).LT.100.10) GO TG 64
IF(ABSU(VTMP (N, M}=TMPS{NyM))/TMPS{NyM)}.GT.TULIGO TO 65

64 CONTINUE

»

DL
63 VTMP[JyK}=TFMPSI 1,K)
KWHO=1

67 00 66 J
00 66 K
IF(TMPS{J4K).LT.100.10) GO TO &6
CAPLJyK}=CAPT(J,K)
TEEP(J,KI=TENP (J,K)
CAPPYLJ,K}=CAPY IS, K}
TEMP(J o K}=TFPS(J,K)
CONTINUE
G0 TO(E52,153) 4 KHT
TIMHT=TIMHT+0ELTT
HTINTHT IN+ALPHA®TTSDELTTo2,
HTOUT=HTOUT+TEMP {1, IMAX) sDELTTo ALPHA®Z,
THES ACCOUNTS FOR HEAT GUT OF PROOUCER
[EUTEMP (1,IMAX) . LEL900.}GO TG 48
IF(KHT.EG.2) GO TO 174
KRTSP=2
174 KHT=2
48 IFITEMP(1,1FAX)..GE,B00.)GO TO 49
THPS(1,1)=TT
TEHP(1,1)=TT
VTMP (L, 11=TT
TEMP (JMAX, I¥AX)=TTTT
FMPS[JMAX,EVAX) =TTTT
VTHP (JMAX, IFAX)=TTTT
TF(KHT.EQ.1) GO TO 175
KHTST=2
175 KHT=1
IF(KHT.EQ.216D TO 183
49 PPP=PPP+1.0
LF(PPP.LT.19.)G0 TO T4l
[F{PPP.EQ.19.)GO TO 381
[FIPPP.NE.2G.)GO TO T4l
PPP=0.0
381 JRMAX=JMAX-2
IAMAX=TMAX-2
THIS ACCOUNTS FOR THE HEAT STORED IN ROCK
D0 40 J=1,JFAX
SuM=0.
DO 80 K=1,10MAX,2
80 SUM=SUMCAP [J,K1+4.oCAP(J,K+1)+CAPLI,Ke2)
40 AREA(J)=SUM= (DELTX/3.)
882=0.
00 90 J=1,JBFAX,2
HEJI =Y (e LE =Y}
HA(II=TY (J+2)=Y{I+11 1 /410D
90 BB2=BR2+(H{JFeIHATJI)¢1.)/(6. ¢HATJ) }Tol(2.8HALJ)-1. JuAREA(J+2)+[HA(
1J141.10020AREATJ+1) +HAT I @ {2.~HATJ) ) sAREALJ})
ER2=((BB2-HEAT=HTORG)+2. #(TEMP( 1, IMAX) s DELTT®ALPHA) ) /L ALPHA®TT®
10ELTT2.)
HETIN={BB2~HEAT-HTORG}/ LALPHASTT«DELTT#2.}
HEAT=BB2-HTORG
741 HTTUT=HTOUT+HEAT+HTORG

6

ES

15

5

15

w

22241

22261
22241

22261

22241
22241
22241
22241
22241
222414

22241
22241
22241

THERMAB6
THERMARS

22241

THERMABG
THERMAB6

22241
22241
22241

THERMARS
THERMARG

22241
22241
22241
22241
22241
22241

22241
22241
22261
22241
22241
22241
22241

c
c

HTINN=HTIN+HTORG
ERR=ARS((HTEINN-HTTOT)/HTTOT)
ER1=ARS{(HTINN-HTTCT}/HTINN}

183 GO TO(%,5),KSLCE THERMAB3

THIS ACCOUNTS FOR THE TEMPERATURE AND CULULATIVE HEAT PRINT QUT AT
VARIOUS SELECTED POSITIGNS ALONG THE FRACTURE.
4 WRITE(6,26) THERMAR3
26 FORMAT(1H1,30X,*INPUT DATA FOR CROSS SECTIDN STUDY'®//9X,*LOCATION(THERMAB3
IFEET DOWN FRACTURE) * 42X, *TEMPERATURE* y9Xy.* TIME{HOURS) *,9X, * CUMULATTHERMAB3

2IVE HEAT'//) THERMAR3
JBMAX=JMAX-2 THERMABR3
DO 70 K=1,IMAX THERMAR3
DO 70 M=1,155N THERMAR3
IF(K.NE.IS(¥+1}1G0 TOD 70

BB3=0.0 THERMAB3
DO 71 J=1,JBMAX,2 THERMAB3
HUJ)=Y(J+1)=-Y(J) THERMAR 3

[Y(J+2)=Y(J+1)}/H() 22241
71 BB3=BB3+{(H{J)*#{HALJ)+1.)/ (6. #HACJI) ]IS (2. 2HA(J)=1.)eCAP(I+2,K])+{H
LACJ)+1, 1 eu20CAP{ U+ 4 KI+HALI) #(2.-HATJ) ) #CAP(JyK ) ) }DELTY
AIS=1S(M}
ALDCF=DELTX®AIS
WRITE (6425} ALOCF ¢ TEMP{1,K) TIME,RB3 THERMAB3
25 FORMAT{9X)F10.1,20X4F10.1410XsF10.1,7X,E18.8) THERMAB3
70 CONTINUE THERMAR3
TIME=TIME+DELTT 22241
IF(TIME.GT.3000.)G0 TO 56
TOL=.05
G0 TO 55
IF{TIME.GT.4C00.)G0 TO 57
TOL=.0
G0 TO 55
IF{TIME.GT.5000.360 ¥O 58
TOL=.03
G0 7O 55
TF{TIME.GT.CF)GO TD 59

W

5

*

5

N

5

@

PP=PP+1.0

IF{PP.NE.20.} GO TO 891

PP=0.

WRITE(6,33) 22241
33 FORMAT(1H1,2X2HJ=4X2H 15X2H 25X2H 35X2H 45X2H 55X2H 65X2H 75X2H B85 22241

1X2H 95X2H105X2H115X2H125X2H135X2H145X2H15) 22241

00 92 K=1,42
92 WRITE(6+3T)Ky [TEMP{U,K),J51,17
37 FORMAT(14,17F7.1}

WRITE(6,250)

00 290 K=1,42

290 HRITE(6,252)K,1 TEMP{JyK) 4 J=18,IMAX)

HRITE(6,33) THERMAR3
00 24 K=43,IMAX THERMAB3
24 WRITELS6,37IKW{TEMP{J4K) »4=1,1T7)

WRITE[6,250)
00 299 K=63,IMAX

299 WRITE(64252)K, [TEMP (J,K) sJ=18,JMAX)
887 WRITE(6+30)TIME,ERR,HEAT ,HTUUT,HTIN,HTTCT,HTORGy OELTToERL,ER2, TOL,

1HETIN

30 FORMAT{F10.1,2Xs5HHOURS/F10.5,2X,27HDISCREPANCY IN HEAT BALANCE/E1 22241
18.892Xy31HBTU OF HEAT STORED IN RESERVOIR/E18.8,2X,20HBTU OF HEAT 22241
2PRODUCEO/E1B.8¢2X,20HETU UF HEAT INJECTED/ELB.By2X,SHHTTOT/E18.8,2 22241
3Xs5HHTORG/F10.1,21HTIME INCREMENT, HOURS/F10.543X¢3HERL/F1045:3X,3
4HER2/F10.5,3X, 9HTOLERANCE/F18.8,2X, "=INSTANTEQUS HEAT STORED')
WRITE(6422310D,KIT
CALL CONTR

891 KiT=0

11T=0
IF{TIMELGT. TIMX)GO TO 100
GO TOU86,65) KK 22241

222 WRITE(6,223)DD,KIT
223 FORMATI3X,F10.0+15)

69 STOP 22241

9¢¢
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SUBRDUTEINE CALCY

DIMENSION TMPS{25,51),TEMP{25¢51),W{25,5135G125,511,Y125}sVI51),YP
LLUS (253 4 YNEG(251 ,YMID(25} s TTMPS (25,51} s AREAL25)yHI{ 250 4HA(25) . VTHP(
225¢513 ¢ CAPT {25,511 +CAP125,51),CONDI25,51)4I51103,SLTMP{10Q)},DISTI8,
351} TEEP(25,51) 4CAPY{25,51) 4CAPPY{25,51)

COMMON TMPS,TEMP 4 WsGsY s V2 YPLUS YNEG, YMID ¢ JMAX, IMAX, CONDo DEL TT,ALPH
« LAyDELTX,DENGHM;DELTY s TTHPS,CAP3CAPT; T IME (LMAX 4 SLTMP,DIST+ TEEPSCAPY,
2CAPPY

NMAX=JMAX-1

DO 2 J=1¢NMAX

YPLUSTJI =Y {J+1) =Y}

00 3 J=2,JMAX

YNEGL{JY=Y{J)~¥{J-1}

YNEG{1)=YPLUS{L)

YPLUS{JMAX) =YNEG{ JMAX)

DD & J=1,IMAX

YMIDIJ)}=0.58 [YPLUS{J}+YNEG{J}]

RETURN

N

w

»

SUBROUTINE CONV .

DIMENSION THPSU25,51) +TEMP{25+51),W{25+511,6(25,51},Y{25},VI51],YP
ILUS{25) yYNEG{25) ,YMID{25) , TTHPS {25,511 s AREAL25) ,HL 251, HAL25),VTHP{
2254513 4CAPT125,51) yCAP{25451)sCOND(25,513, [S{10}4SLTMP{1D),DIST( A,
3513, TEEP{25,451) sCAPY {25,511 ,CAPPY{25,51)

COMMON THPS ¢ TEMP ;WG oY 9V YPLUS, YNEG, YHIDe JMAX, IMAXy COND, DELTTyALPH
1AsDELTX¢DENDM,DELTY s TTMPS,CAPSCAPT T IHE s LMAX s SLTMP 4 DIST, TEEP4CAPY,
2CAPPY

DO 40 K=2,IMAX

CONMLN={COND{1,K}+COND{2,K}}/2.

CONPUS=(COND{2,K}+COND{3,K}}/2.

D13=DELTX*TEMP(1,K} /{DELTTaV(K}}

D14={3.eDELTXeCONKIN®TMPS(2,K})/ {2, *DELTYSALPHA}

D15={DELTX®CONPUS {THPS (2,K}~TMPS{3,K})}/¢2.oDELTY®*ALPHA}

D16=1.4+ (DELTX/{DELTT#V(K}}}

B17=1{3,eDELTX®CONMIN) /(2. «DELTY *ALPHA}

TMPS{1,K)={ TMPS{1,K-1}+013+4D14+D15)}/ (D1 6+4D17}

IF{THPS{1,K),GE.1D0.36G0 TO 40

TMPS(1,K}=100.

CUNTINUE

RETURN

END

SUBRDUTIRE COND1

DIMENSION TMPS{25,51)¢TEMP{25,51),W(25551},6(25,513,Y125},VI51),YP
1LUS{25) yYNEG{251 4 YMID{25) ; TTMPS 125451} 9 AREA{ 25}, H(25)4HA{25},VTMP]
2254511 sCAPT{25451) »CAP(25,51)9COND125,5294 151103 ,SLTMP{2D),0IST( 8,
351}, TEEP{25,51}1 ,CAPY(25,51),CAPPY(25,51}

COMMON TMPS ¢ TEMP WGy Y+ Vy YPLUS; YNEGs YHI O, JMAX, IMAX s COND ¢ DEL TTo ALPH
1A DELTXsDENOM,DELTY ; TTMPS,CAPCAPT o TINE (LMAX,5LTMP4D15T, TEEP,CAPY,
2CAPPY
MMAX=JMAX-~]1
DO 1J MMAX

DO 20 K=1,IMAX

-}

51 IFCJ.EQ.JMAXIGD TO TO

IF{K.EQ.1IGC TO 75
IF{K.EQ.IHAX)GG TO T6
CXPUS={COND( JoK)+CONDEJI,K+1)}/2.
CXMIN={COND{J,K}+COND(J,K-1}}/2.
CYPUS={COND (J4K}+COND{ J+1,K})/2.
CYMEN={COND(J,K) +CONOLJ-1,K}}/2,
G0 TO 77

70 IF{K.EQ.11GO YD T2

T.

T

IF{K.EQ.IMAX]IGO TO 73
CXPUS=(COND{J,X1+COND{ J,K+1}}/2.
CXMIN={COND{J,K}+COND{J,K~1}}/2,
CYMIN={CDND (J,K)+COND{J-1,K1}/2.
CYPUS=CYMIN

G0 TO 77
CXPUS={COND{J,K}+CONDIJI,K+1))/2,
CXMIN=CXPUS
CYMIN={COND{J,K}+COND(J-1,K}}/2,
CYPUS=CYMIN

GO TO 17

3 CXMIN={COND(J,K}+COND{JI,K-13}/2.
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CXPUS=CXMIN
CYMIN={COND{Jy,K)¢COND{J-1,K}}/2.
CYPUS=CYMIN

G0 TO 77
CXPUS={COND(J,K}+CONDIJ Ke1}}/2,
CXMIN=CXPUS .
CYPUS={COND{J,K)}+COND{J+1,K}}/2.
CYMIN={CUND(J,K} ¢CCNDLJ-1,K}} /2.
G0 TO 77
CXMIN={COND(J,K)+COND{J,K~1}}/2.
CXPUS=CXMIN
CYPUS={COND{J,K}+COND{3+1,K)} /2,
CYMIN={COND{J,X}+COND{J-1,K}}/2.
CONTINUE
Bl=={1,¢CXMIN/CXPUS+{DELTX##2/DELTT} «{CAPT{J,K)/(THPS(J,K}®CXPUSE)

1)

D14=—{DELTX®e2/{YMID(J]}*CXPUS})

D15=CYPUS®{ {THPS{J+]1 K} -TMPS(J,KII/YPLUSLI})
D16=CYMIN®{ {TMPS{J,K)-THPS(J-1,K)}/YNEG(J)}}
D17=(DELTX®#28CAP{J,K)}/(DFELTT®CXPUS])
D1=D14#{D15-D161~D17

IF(K.NE.1)GO TO 3

Al=D.D

Cl=1.+CXMIN/CXPUS

WiJ,11=C1/81

GtJ,13=D1/B1

6D TD 20 .
LF{K.NE.IHAX)GO TG 5 P
£1=0.0

Al=1.+CXMIN/CXPUS

GO TO 10

ALl=CXMIN/CXPUS

C1=1.0

OENOH=B1~AL=W(J,K-1}

IF(DENOM.NE.Q.1GC TO 18

WRITE{6,50) .
FORMAT{18H ZER0C DENCMINATOR. ;

GO TO BOCO

wiJ,K}=C1/DENOM

GiJyK}={D1-A1eG{JsK~1)}/DENOK

CONTINUE

TTMPS{J,TMAXYI=G{JyIMAX)

DD 3D I=2,IPAX

11=1mMax+]l-1

TTMPSUJ, IT1=G(J,11)~WlJ, I1) e TTHPS (I, 11413
CONTINUE

00 95 J
DD 95 K=1,IMAX
TMPS{J4KI=TTHPS{J,K)
CONTINUE

CALL CAPAC

CALL COND4

RETURN

JMMAX

SUBRUUTINE CCND2

DIMENSION THPS{25,51)+sTEMP(25,51)+W{2545L1+G(25,51),Y{25),VI51),YP
1LUSE25) s YNEGI25) 4 YMID{25) , TTMPS 125,510 s AREA(25}4H{25),HA{ 25} ,VTHP{
225,51} 4CAPT{25,513,CAP(25,51},CONDI25,513¢IS{1D)(SLTMPLID},DIST{ 8,
351) ,TEEP(25+511 ,CAPY{25,51),CAPPY(25,51)

COMMON TMPS ¢ TEMP ,WeGyY sV YPLUS, YNEG, YHIO, JMAX, IMAX,CONDyDELTT,ALPH
1A, DELTXsDENOF{DELTY s TTHPS (CAPyCAPT,, TIME ,LHAX o SLTMP, DIST, TEEP1CAPY,
2CAPPY

MMAX=JHMAX-L

NMAX=MMAX-2

DD 1 K=1,IMAX

DO 20 J=2,HMMAX

IF(JJEQ.JMAXIGO TO 70

IF{K.EQ.1}GO TO 75

IFIK.EQ.IMAKIGO YO 76

CXPUS={COND{J,K}+COND{JyK#1)}}/2.

CXMI. COND (JoKY+CONDLS,K=11)/2.

CYPU COND(JoK}+COND{J+1,K}}/2,

CYMIN=(COND{J,K}+CONDUJ-1,K}}/2¢

G0 TO 77

IF(K.EQ.1}GC TO T2

22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240
22240

2224C
22240
22240

22240

22241
2224D
22240

22241
22241

22261

22241

22240
22240
22240
22240
22240

22240,

22240
22240
22230

Lze



IF[K.EQ.IMAXIGD TO 73
CXPUS={CONO{J K} +COND{JsK+1}3/24
CXMIN={COND(J5K)+CDND(JsK-131/2.
CYMIN={COND{J,K}+CONO{J-1,K3}1/2.
CYPUS=CYMIN

GG TD 77
CXPUS={COND{JoK}+COND{Jy4K+113/2.
CXMIN=CXPUS
CYMIN=(COND{J,K}+CONDLJ-1,K1) /24
CYPUS=CYMIN

GO TO 77

73 CXMIN={COND{J,K}+COND(JoK=-1}1/2.
CXPUS=CXMIN .
CYMIN={CDOND{J,K}+COND{J~1+K}) /24
CYPUS=CYMIN

GO TD 77
CXPUS={COND{JsK}+CCOND{J4K+13)/24

T

~

7

w

CYPUS={COND{Jp,K}+CDOND(J+1,K)}/2.
CYMIN={COND { J,K}+CONOLJ-1,5K)}/2.
GO TD 77

CXMIN={CONO{J,K}+CCND{JoK-13}/2.

COND{J4K1+COND{J+1,K}1/2.
CYMIN=(COND (JyK3+COND{J=1,K}) /24
CONTINUE
Ci=1.0
Al=(YPLUS{J)#CYMIN]/{CYPUS®YNEG L)}
Bla=(1.0+{YPLUS (J)eCYMINLZ CYNEG(J}eCYPUSI+{CAPT{J,K)eYHIDIJ)@YPLUS
10J1)/(DELTT#CYPUS®TMPSTJ,K} )}
014=-{YMID(J)nYPLUS(J}/(DELTKan2eCYPUS)}
IF(K.LT.IMAX) GO TO 24
D1S={TMPS{J,K-11-THPS{J4K) } «CXPUS
60 10 25 -
24 D15=(TMPSI{J,Ke1}-THPSTJ,K} ) eCXPUS
25 IF{K.GT.1) GO TO 26
D16=(TMPS{J,K)=THPS (JyK+13) sCXMIN
G0 10 27
26 D16={TMPS{J,K)-TNPS{J,K-1]}*CXMIN
27 D17={CAP{J,K)oYMID(J)eYPLUSIJ}) /{DELTToCYPUS)
D1=D14#(D15-D143-017
IF{J.NE.21GD TO 10
W(2,K}=C1/B1
Gi24K}={D1~AL*THPS{1,K})/B1
G0 T0 20 .
DENDM=681-AlaW{J=-1,K)
IF(DENOM.NE.0.}GO TO 18
WRITE{6,50)
FORMAT{L1BH ZERO DENOMINATOR.}
G0 TO 800
18 W{J,K)=C1/DENDM
IFtJ.NELMHAX)IGO 1O 19
D1=D1~C1leTMPS{JMAX,K}
19 6(JyK)=(D1-AL#GIJ~1,K}}/DENCM
20 CONTINUE
TTHPS{MMAXyK}=G (MMAX K}
00 30 1=1,NMAX
11=MMAX-T
30 TTMPSI{1,KI=G{IT,KI~R(IT,K}eTTHPS{11+1,K)
CONTINUE
00 95 J=2,MMAX
D0 95 K=1sIMAX
TMPS{J KI=TTHPS LJeK)
CONTINUE
CALL CAPAC
CALL COND4
RETURN

7

3

1

o

5

o

-

9

w

80!

o

SUBRDUTINE CAPAC

OIMENSTION THPS{25,51) 4 TEMP{25,511sW{25451)5G{25,51),Y125)5VI51},YP
1LUS{251 YNEG{25) y YMID(25} 4 TTMPS(25+51) s AREAL25) 4 H{25),HAL25),VTMP{
225451)3CAPT (25451} +CAP{25,451),CONDt25,513,1S(10},SLTMP(10),015T¢{8,
A51) 4 TEEP{25+51)4,CAPY (25451} ,CAPPY{25,51)

COMMON TMPSyTEMP yWsGsY Ve YPLUSyYNEGYHI Dy JMAXy EMAX+CONDy OELTTALPH

22241

22241

22241

22241

23

LAYDELTX,DENOMyDELTY s TTMPS,CAPsCAPT 4 TIME 4 LMAX,SLTHP,DIST, TEEP,CAPY,

2CAPPY

DD 232 J=1,JMAX

DO 232 K=1,[MAX

IFITMPS(J3K},GT,450,1G0 TD 233
CAPY(JyK1=(23,5+,307«{TMPS{J,K}-100.3}#134.0
GO TO 232

IF{TMPS{J,X}.GT.900.)GD TO 234
CAPTUJsKY={130,0+.344¢{THPS{J,K)=450,1)2134.0
GO TO 232

4 TF{TMPS(J,K}.6T.1100.1GC TO 235
CAPT{JyK}=134.08(285.0+.485%(THPS{J,K}=-900.1}
GO 10 232

5 IF{TMPS(J,K}.6T.1600.)GC TO 236
CAPTUJ4K}=134.0%{382.0+.6500%(TH#PS{J,K}~-1200,}}
6o 1D 232

o

@

236 CAPT(JsK}=134.D%(694.0¢,2684{TMP5({J,K)-1600.}}
232 CONTINUE

RETURN

END

SUBROUTINE CEGND4

DIMENSIDON THMPS{25,513,TEMP{25,51},W125,51}+G(25,51),Y(25}4V{511,YP
1LUS{25) yYNEG(25) ,YMID{25} s TTMPS (25,51} AREAL251,B(25),HA(25)},VIMPL
225,51)4CAPT{25,511,CAP{25,51},COND{25,51),15{1D},SLTHP{10},DIST{8,
3513 2 TEEP{25,51) 4CAPY(25,51),CAPPY (25,51}

COMMON TMPS,TEMP,W,GsYsVoYPLUS, YNEG, YRIC,JMAX, IMAX, COND,DELTT,ALPH
LA ¢DELTX,DENCM,DELTY,TTMPS,CAP,CAPT, TIME L MAX,SLTMP,DIST,TEEP,CAPY,
2CAPPY

DD 5 J=1,JMAX

DD S5 K=1,IMAX

TF{TMPS(J,K).G6E.200,)6GC TG 1

COND{J,K1=0.5

GO0 TD 5

IF{TMPS(J,K}.6T.1200.)60 TO 7

TSQ=TMPS{J, K1« TMPS{J,K}

TCUB=TMPS{J,K}*TSQ

COND (J¢K}=.125615T3E41-. 1837 TT99E-28TMPS [ J,K}+.10902421E-5#TSQ-. 15
1084869E~9eTCULR

GO TO 5

7 COND{J4K}=0436

% CONTINUE

RETURN

END

SUBROUTINE CCND5

DIMENSION TMPSU25,51)sTEMP(25,51)+W{25,5134G125,51),Y{25),V{511,YP
1LUS(25} 4 YNEG(25) ,YMID{25}, TTMPS{25,511, AREA{25),H{ 25}, HA(25},VTMP(
225,510 4CAPT(25,511 4CAP({25,511,CONDI25,51),1S{101,SLTHP{10),DISTIE,
3513, TEEP(25,51) yCAPY(25,51) yCAPPY (25,51}

COMMON THPS +TEMP o HoGo YoV s YPLUS, YNEGs YMID, JMAX, IMAX, COND, DEL TT,ALPH
YASDELTX4DENOM¢DELTY,TTHPSCAP,CAPT,TIME,LMAX,SLTHP,DIST, TEEP,CAPY,
2cappY

DO 5 K=1,IMAX

EF(TMPS{1,K} .GE.200.)6C TO 1

COND{1,K}=0.9

G0 TO 5

[F{THPS {1,K}.6T.1200.160 TO 7

TSQ=TMPS(1,K)sTHPS (1K)

TCUB=TMPS{1,K1eTSQ .
COND{14K}=,12561573E+1~,18377T99E-24THPS (1,K )+, 1090242 LE-50 TSQ=.15
1084869E-9=TCUB

GO TO 5

COND{t1,K}=0.36

CONTINUE

RETURN

o

-

-

-

SUBROUTINE CAPC1

DIMENSION TMPS(25,51}+TEMP(25+5114H{2545115G425,5114Y1253,V{51),YP
1LUS(25) s YNEG{25) 4 YMID{25) 4 TTMPS {25,513, AREAL25},H( 25}, HAL25),VTHPY
2259513 9CAPT(25451),CAP(25451)¢COND(25,51},15{10},SLTMP(10},01ST18,
351} TEEP{25,51} +CAPY(25451),CAPPY{25,51}

COMMON TMPS s TEMP ¢WyG s Yy VyYPLUS, YNEG, YMID JMAX, IMAXyCONDoDEL TTyALPH
1A30ELTX,DENOMyDELTY, TTHPS,CAPCAPT,TIME,L MAX,SLTMP, DIST, TEEP4CAPY,
2CAPPY

00 232 K=1,1MAX

IF{TMPS{1+K}.GT.450,3G0 TO 233

22242

22242
22242

22242
22242

22242

22242
22242

8¢¢



CAPY(I.K)S(Z3.50.307¢(THP$(l.K) 100.3)0134.0

G0 T0 23

lF(THPS(l'K) GT.900.160 TO 234
CAPT{1¢K)13{130.0¢+344a{THMPS{1,K)-450.))%134.0

GO TO 232

IFETMPS(14K}.6T.1100.1G0 TG 235
CAPT{1+K)=134.0%(285.0+.4852(TMPS!1,K}=-900.)}

GO 70O 232

IF{TMPS{1,K).GT.1600,3G0 TO 236
CAPT(1sK}=134.0%{382,0+.65008{TMPS{]1,K}~ llOO 13

G0 TO 232

236 CAPTU1,+K)I=134,0%{694.0+,268¢{TMPS{1,K}—-1600.1}}

232 CONTINUE

RETURN

END

SURROUTINE CCNDT

OIMENSION TMPS{25451}4TEMP{25451)yW(25,5115G{25+51}sY{25)4V(52),YP
1LUS{25) ¢ YNEG{25} ,YMIO(25)} s TTMPS{25,51}4 AREA{25) ¢ H{ 251, HAL25)},VTMP{
22545135 CAPT (259513 4CAP{25451} ¢CONDI25451),1S120},SLTMPI10},DIST(8,
351) ,TEEP{25,51) 4CAPY (25,51} ,CAPPY{25,51}

COMMON THMPSyTEMPyWeGyY oV YPLUSs YNEG, YHEDy JMAX, IMAX, CONDy DELTTALPH
1A¢DELTKyDENOM,0ELTY s TTHPS,CAPyCAPT T IME,LMAXSLTMP, DIST, TEEP4CAPY,
2CAPPY

DD 1 K=1,IMAX

00 20 J=1,JRAX

IF{TMPS(J,X}.1T,600,160 TO 9

LF{.TEEP{J,K} . LT.TEMP{J,K}}GO TO 9

CAPT{JsK)=CAPY{J,K}

CAP(J,K}=CAPPY{J,K)

IF(J.EQ.1)GC TO 78

IF{J.EQ.JMAXIGO TO 70

IF(K.EQ.11GC TO 79

IF{K.EQ.IMAXIGO TQO 80

CXPUS={COND{JyKY+CONDIJoK+1))/2,

COND{J,K)+CONO(J,X=113/2.

COND {JoK}+COND{J+1,K1}/2.

23

W

23

&

~
w
w

-0

CYMIN={COND(J,K}+CONOLJ-1,K}} /2.
GO 1O 77
CXPUS=(COND{J4K)+COND(J4K+131 /2.

CYMIN={COND(JyK)+CONDLU~1,K31/2,
G0 10 7T
80 CXMXN-!CUND(J.K)OCUND(J.K 131/2.

CDND(J:KIGCUND(J*I.K))/Z.

CYMIN=({COND{J,K}+CCOND{J-1,K})/2,

GD TO 77

IF(K.EQ.1)GC TO 75

IF{K.EQ.IMAX}IGO TD 76

CXPU COND{J,K}+COND(J,K¢133/2.

CxXME COND{J,K}+CONOTJ,K=1)1/2.

cYpPu CUND{JseKI+CONDIJ+L,K}}/2.

CYMIN=CYPUS

Go TO 77

70 IF{K.EQ.11GC TO 72

1F(K.EQ.IMAX)IGD TO 73

CXPUS={COND{JsXI+COND{J,K¢1}13/2.

CXM] COND{JyK}+CONDId K~1337/2,

CYMr COND{JsK)+COND{J-1,KI}/20

CYPUS=CYMIN

G0 YO 77

cxpys= (CU’\ID(J.K)*CUM’J(J:K'I))/2.

Cxmi X

CYMIN= (CUND(J.K)OCLVD(J‘l K}1/2.

CYPUS=CYMIN

60 10 77

3 CXMIN-(CUND(J.K)OCOND(J.K—l))/Z.
MIN

-
@

7

N

COND(J,K)GCUND(J 15K32/2.
CYPUS=CYMIN

Gg 1D 77
CXPUS={COND { JoKI+COND{JsK+131}/2.
CXMEN=CXPUS

cypu COND{JyK}+COND{J+1oK}1/2,
CYMIN=CYPUS

GO TO 7T

76 CXMIN={CONN{J,K)*COND{J K-131/2.

7

w

MIN
CONDtJsK)+COND (] ,K} /2,

CYMiN=CYPUS

CONTINUE

Al={YPLUS(J)eCYMIN} /{CYPUSOYNEGIJ})

Cl=1,

Bl=—{1.04{YPLUS{J}oCYMIN)/[YNEG(J)SCYPUS}e{CAPT{SoK1eYNIDI ) eYPLUS
1(J1}/IDELTTaCYPUSETHPSL J,K) })

D14=-{YMID{JIeYPLUS{I} /INELTXew2eCYPUSH)

T

3

THERMAB3

THERMAB3
THERMAB3

22240
22240
22240
22240
22240

22240

22240
22240

22240

22240

22240
22240

22240

22240

22240
22240

22240
22240

24
25

26
27

3

10

50

18

20

30
1

95

800

-0

3

78

IFIK.LY,IMAX) GO TO 24

O15=[TMPS(J,K-1}-TMPS{J,K}}*#CXPUS

GG 10 25

D15={THPS{J ,K+1}-THPS{J,K}} eCXPUS

IFIK.6T.1) GO TO 26

D16={THPS{J,KI-TMPS{J,Ko1) }eCXMIN

GO TO 27

016={TMPSLJ4K}=TMPS{JoK-13) #CXMIN
017=(CAP{J,K}*YMID{JS}eYPLUSLJ}}/{DELTTeCYPUS}

01=014#({D15-D161-017 22241
IFtJ,NE,11G0 TO 3

Cl=Cl+Al

A1=0.0

WileK)=CL/A1

G(I,K)=01/Bl

G0 TO 2

1IF(J. NE JHAX)GD T0 10 22241

0
DENOM=B1-Alew{t-),K}
IF{DENO¥,NE.D.¥60 TO 18
WRITE{6,50}

FORMAT(18H ZERO DENGMINATOR.} 22261
6D TO 800

WlJ,K}=C1Z0ENOM 2224)
G1JsK1={01-ALeG{J-1,K]}/DENOM 22241
CONTINUE

FTHPSTIMAX, K} =G {JMAX K}

NHAX=JHAX-1

00 30 I=1,NPAX

T1=JMAX-1

TYMPSITIL (K)=GUIT (KY=WIE],K)#TTMPS{IL+1,K}

CONTINUE

DO 95 J=1,JMAX

N0 95 K=1,IMAX

TMPS(J,KI=TTNPS (J,K}

CONTINUE

CALL CAPAC

CALL COND4

CALL CAPSK THERMAB3
RETURN

SURROUTINE CCNR6

DIHMENSIUN TMPS{25,51)4TEMP125451),W(25,511s6125+51)1,Y125},VI511,YP 22241
1LUS{253 s YNEG{25} ,YMID{25) s TTMPS (25,51}, AREAL25),HI25), HAL25),VTIMPL

2254511 4CAPT{25,51),CAPL25,51}4COND(25,51),1S(103:SLTMP{10},01STI8,

3510, TEEP (254511 ,CAPY (25,510 4CAPPY (25,51

COMHON TMPS,TEMP o sGyYsVeYPLUS, YNEG, YM I, JMAX, IMAX COND4DELTT,ALPH

1A DELTX)DENCM4DELTY s TTMPS,CAP4CAPT, T IME,LMAX,SLTHP,DIST, TEEP,CAPY,

2CAPPY

DO 1 J=1,JMAX 22242
00 20 K=1,1FAX 22241
TF{TMPS1J,K}.LT.600.1G0 TO 9 THERMAB3
IFETEFPLJ,KILILFENPLI,KIIGU TD 9
CAPT(J,K)=CAPY{J,K} THERMAR3
CAP{J,K}=CAPPY({J,K} THERMAR 3
TF(JL.EQ.LIGC TO 78 N 22242
IF{J.EQ.JMAXIGD O T0 22242
IF{K.EQ.11GC TO 79 22242
IFIKLEQLIMAXIGD fC 60 22242
Cxpu: COND{J,K}+COND{J,X+13}/2, 22240
(431 CUND{JsK}+CONDIJsK~131/2. 22240
CYPU COND{J,KI+CONDIJ+14K3} /2, 22240
CYMIN={COND{J,KI1+CONDLJ-1,K} /2. N 22240
GD TU 77 22240
CXPLS= tCﬂanJ,KHCU'\ID(JyKOU)/2. 22241
22241
CUVDIJ,K)'CCND(J‘X:K))/2. 22241
CYMINS{CUOND(JsKI+CURD{JI=1 4K} }/2. - 22241
GO 10 TT
CXMIN={COND{J KI+COND{J,K=-11)/2,
XMIN

COND{JoKI4CCAND{J+1,K} /2,

CYMIN=LCONDtJ,K3+CCNDIJ-1,K}1/2.

G0 TO 77 22240
IF(K.EQ.LIGC TD 75

IF{KEC.IMAXIGE TO T6

CXPUS=(COND{JsK}+CONDII K+2) /2,

6¢7¢



7

o

7

N

7

N

7

w

7

ES

~
3

22
25

90
23

w

w

95

CXMIN={COND{J,K}+CCND(J,K-13)/2.
CYPU: CUND(JyK)*CUND(J*l.KH)Z.
CYMIN=CYPUS

GO T0 77

IFIK.EQ.1)GC TO 72
IF{K.EQ.IMAX)GOD TO 73

COND (JyK}+COND{JsK+1)) /2,
COND{J,K}+COND{J,K-1}}/2.
CYMIN=(COND{J,K}+COND{J=1+K}}/2.
CYPUS=CYMKIN

60 10 77
CXPUS=(COND{J,KI+COND(JyK+13}/2.
CXMIN=CXPUS
CYMIN=(COND{J,K}+COND{J~1,K}}/2.
CYPUS=CYMIN

60 T0 77
CXMIN=(COND{J+K}4COND{J K-11}/2.
CXPUS=CXMIN
CYMIN={COND{J,K}+COND{J~1,K}}/2.
CYPUS=CYMIN

GO 1O 77
CXPUS=(COND(JyK)+COND(J,K+1}})/2.
CXMIN=CXPUS

CYPUS={COND {JyK}+COND{J+1,K)}/2.
CYMIN=CYPUS

Go'TO 77
CXMIN=({COND{J,K)+COND(J,K=131}/2,
CXPUS=CXMIN
CYPUS={COND{J,K}+COND(J#1,4K}}/2.
CYMIN=CYPUS

CONTINUE
Bl=={1.+CXMIN/CXPUS+{DELTX#u2/DELTT}#{CAPT(J,K}/{THPS{I,K}=CXPUS)}

1)

D14=—(DELTXe#2/{YHID(J) CXPUS}}
IF{J.LT.JHAXIGO TO 22
D15=CYPUS*({{THPS{JI=1,K)-THMPS{JsK}}/YPLUSEI)}
GD TO 25
D15=CYPUS®{ (TMPS{J+1,K}-TMPS{J,K) }/YPLUSLID)
IF(J.GT.1} GO TD 90
D16=({TMPS (J,K}-THPS(J+1,K}) eCYMIN/YNEG(J)
60 To 23
DL6=CYMIN®{ {THPS{J,KI-THPS.{J=1,K}}/YNEG{J}}
D17={0ELTX%#2¢CAP (J,K}}/(DELTT#CXPUS)
D1=D14#{Di5-D16}-D17
IF{X.NE.1}GO TO 3
AL1=0.0
C1=1.4CXMIN/CXPUS
HiJ,11=C1/81
G{J,13=D1/81
60 TO 20
[F(K.NE.IMAX]GO TO 5
C1=0.0
Al=1.+CXMIN/CXPUS
60 TO 10
AL=CXMIN/CXPUS
C1=1.0
DENOM=B1-Al#H{JsK-11}
IF{DENUM.NE.0.)G0 TO 18
WRITE(6,50)
FORMAT{18H ZERO DENOMINATOR.}
GO TO 800
W{J,K}=CL/DENDM
G{JyKI={D1~A1#G{JsK~11}/DENOM
CONTINUE
TTHPS{J, EMAXI=G (J4 THAX)
DD 30 [=2,1MAX
IT=1MAX+1-1
TTMPS(JyT11=GJ,11)=W(J, TT}&TTMPS{I, T1+1)
CONTINYE
DO 95 J=1,JMAX
»IMAX
THPS (3, K} =TTHPS {J,K)
CONTINUE
CALL  CAPAC
CALL COND4

22240

22240
22240

22240
22240

22240

22240

22240
22241
22240

2224D

22240

22240

22241
22240
22240

22241
22241

22241

22241

CALL CAPSK

800 RETURN
END

261

262

-SUBROUTINE CONTR

DIMENSIUN TMPS{25,511+TEMP(25,51)4yW{25,511+6125:5114Y(25},V{51},YP
ILUS{25} 4 YNEG(25),YMID{25), TTMPS (25,51}, AREAL25}4H{25},HA{25),VTMPL
225451)+CAPT(25,51}4CAP(25,51),CONDI25+,51},I5{10),SLTMP{10)},DIST(8,
3511, TEEP(25,51),CAPY(25,51},CAPPY{25,51)

COMMON TMPS,TEMP W ;GsY 4V YPLUS, YNEGs YMIDs JMAXy IMAX, COND,y DELTT,ALPH
1A,DELTX,DENOM¢DELTY y TTMPSoCAP,CAPT, TIMELMAXSLTHP+DIST, TEEP,CAPY,
2CAPPY

DO 263 I=1,LMAX

DO 260 K=1,IMAX

DO 261 J=1,4JHAX

IF{TEMP{J4K).LT.SLTMP{I}IGO TC 262

CONTINUE

J=JHAX

IF{J.EQ.1)G0 TO 2860

DIST{I K}=Y{J-1}+{{TEMP{J=14KI=SLTMP{I))/{TEMP{J=1,K}=-TEMP{J,K})}e
HYLJ)-YtJ-13}

260 CONTINUE
263 CONTINUE

WRITE(6,264) {SLTMP{1),1=1,LMAX}

264 FORMAT(1H1+6Xy*DISTANCE® ,7X,*ISOTHERM ISOTHERM ISOTHERM TSOTHER

IM ISOTHERM ISOTHERM ISODTHERM ISOTHERM®/8X,*DOWN®,9X,*DEGREES F
2 DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGRE
3EES FY/7X,"FRACTURE® ,4X,8F10.1/9X,*FEET*/20X,*FEET INTO FEET INTO
4FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO®/22X,*
SWALL® +6Xs *HALLY 46Xy "HALL® 46X s "HALL® 9 6Xs *WALL 6K, *WALLY 46Xy *WALLY,
66Xy THALL'}

DO 266 K=1,40

FK2=K=~1

XFT=DELTX#FK2

266 WRITE{6,26TIXFT,{DIST(I,K),I=1,LMAX}

267

23

w

23

=

236
232

FORMAT(7X4F6.0,4X,8F10.2}
WRITE{6,264) (SLTHPU{I},I=1,LMAX)
DO 265 K=4l,IMAX

FK2
XFT=DELTX®FK2

WRITE(6+26TIXFT4{DIST{I,K},E=1,LMAX)

RETURN

END

SUBROUTINE CAPSK

DIMENSIUN TMPS{25451) 4 TEMP{25,51),W(25,51),5(25,51}¢Y{25},VI51),YP
1LUS (253 4 YNEG(25) s YMIDI25) s TTMPS {25, 51)y AREA(25) 4RI 25),HAL25},VTKP{
2254511 ,CAPT(25,513 ¢CAP{25,511,COND{25,51)+15{101,SLTMP(10},01ST{8,
351) 4 TEEP{25,51}+CAPY{25,51),CAPPY{25,51}

COMMON TMPS, TEMP ¢ 4G oY sV YPLUSy YNEG, YMID, JHAX, IMAX, COND,DELTT,ALPH
1A,DELTX+DENOM,DFLTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTHMP,DIST, TEEP,CAPY,
2CAPPY

DO 232 J=1sJMAX

DO 232 K=1,IMAX

IF{TMPS{J,K).6T.450.)GD TO 233
CAPY{JeK)=123.5+.307e{THPS{JyK)-100.})2134.0

GO TO 232

IF{TMPS{J,K}.6T.600.1G0 TO 234
CAPY(JsK)=(13D.0¢,344%{TMPS{}sK}=450.)}#134.0

GO TO 232

IF{TMPS{J,K).GT.11D0.)G0 TD 236
CAPY{J,K)=134,De(18D.0+,230#(THPS{J,K}=-600.})

GO TD 232

CAPY{JsK}=134,04{295.,0+.258¢{TMPS(J,K}-1100.}}

CDNTINUE

RETURN

END

SUBROUTINE CAPC2

DIMENSION TMPS(25,51) s TEMP125451},W{25,51)5G{25,5134Y(251,V{51},YP
ILUS{25} yYNEG(25) YMIDI(25) 4 TTMPS {25,511}, AREA{25),H{251,HAL25),VTMP{
2254511 ,CAPT(25,51)yCAP{25451)4COND{25,52),I5{10),SLTMP110},DIST8,
35114 TEEP (25,51} ,CAPY{25,51},CAPPY(25,51)

COMMON TMPS s TEMP Wy GoYs Vo YPLUS, YNEG, YMID, JMAXy IMAX( COND, DELTT,ALPH
1AyDELTX,DENOMDELTY , TTMPS,CAPsCAPT, TIME ,LMAX,SLTMP, DIST, TEEP,CAPY,
2CAPPY

DO 232 I=1,Ikax

THERMAB3

THERMABG
THERMABS
THERMABG
THERMABG
THERMAB6
THERMABS
THERMABS
THERMABS
THERMAB6
THERMABS
THERMABS

THERMABS
THERMAB 6
THERMABS
THERMABG

THERMAB3
22241
22241

22241

0¢c
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232
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K=IMAX+1-1

IF(TMPS{JMAX,K}.GT.450.} GO TG 233
CAPT(JHAXK}={23,5+,307T*(THPS(JMAX,K}-100.})=134.0

GO TD 232

EFITMPS{JHAX4K}.GT.900.) GD TC 234
CAPT{JMAXyK}={13D,0+.344={THPS({JHAX,K}~450D,))*134,0

GD TO 232

IF{THPS {JMAXK}.GT.1100.) GO TO 235
CAPT{JMAX,K}=134.D%{285.0+.4854 {TMPS (UJMAX,K}-90D.})

GD To 232

IF{THPS{JMAX 4K} .GT.1600.} GD TO 236
CAPT{JMAXK}=134.0%{382.0+.6500%{ TMPS{JMAX,K}~1100.}}

GO TO 232

CAPT{JMAX,K)=134.0%(694.0+.268% (TMPS{IMAX,K)—160D.1}

CONTINUE

RETURN

END

SURROUTINE CONDS

OIMENSION TMPS{25,51) s TEMP(25,51)+W{25,51)9G{25¢511,4Y{25},V(51),YP
1LUS{25) s YNEG(25) 4 YMID{25} , TTHPS {25,511, AREAU251+HI25)4HAL25},VTHP
2254511 sCAPT{25,451) 4CAP{25,51),COND(25,51},IS¢10},SLTMP(10},01ST(8,
3511, TEEP(25451) 4CAPY{25,51),CAPPY{25,51}

COMMON TMPSy TEMP 4 WeG oY sV YPLUS s YNEG,YMI Dy JMAX, IMAX, COND, DELTT,ALPH
1A4DELTX,DENCM,DELTY s TTMPS,CAP,CAPT, TIME,LHAX,SLTMP,DIST, TEEP,CAPY,
2CAPPY

D0 5 I=1,IMAX

K=IMAX+1-1

TF{THPS{JMAX,K).GE.200.} GO TO 1

COND{JHAX(K3=0.9

GD TO 5

IF(THPS{JHAX,K},GT.1200.} GO TO 7

TSQ=THMPS{JMAX, K}« THPS{JMAX,K)

TCUB=THMPS{JNAX,K} #TSQ
COND{JMAX,K}=0125615T3E+1=.183T7799E~22 THPS{ JHAX,K ) +.10902421E-5=T
15Q-.15084869E~9=TCUB

GO 1D 5

COND{JMAX,K}=0.36

CONTINUE

RETURN

END

SUBROUTINE CCNV2

OIMENSION THPSI25,51),TEMPI25,51)4H(25,51),G{25,51),Y{25),V{51),YP 22241
LLUS125) ,YNEG{25) ,YMID{25) 4 TTMPS {25,511 AREA(25) ,HI 2534 HA(253,VTHP( 22241
22549513 +CAPT125,51),CAP[25,51)4COND{25,51),ES{10},SLTHP110},DIST{8,
351}, TEEP {25,511 ,CAPY(25,51),CAPPY (25,511}

COBMON THPSTEMP4W,GyY Ve YPLUS, YNEG, YMIDy JMAX, IMAX, CONDy DEL TT,ALPH 22241
1A,DELTX,DENGM, DELTY, TTMPS,CAP;CAPT, T IHE ,LMAX,SLTMP,DIST, TEEP,CAPY,
2CAPPY

D0 40 I=2,IMAX

K=IMAX+1-1

CONMIN={COND{JMAX,K}+CCND{ JMAX=1,K}}/2,
CONPUS={COND(JMAX~1 4K} +COND{ JMAX~2,K}}/ 2.
D13=DELTX#TEMP{JMAX, K}/ (DELTT®Y(I)}
D14={3,#DELTX*CONMINETMPS { JMAX=1,K}}/ (2. #DELTY®ALPHA)
D15={DELTX®CONPUS#*{ TMPS{JMAX=1,K}-TMPS( JMAX=2,K)}}/{2.#DELTY*ALPHA

1)

Dl&6=1.+{DELTX/{DELTTaV(I}}}

D17={3,#DELTX*CONMIN) /{2.2DELTY=ALPHA)}
THPS{JHMAX,K)={ TMPS { JMAX ,K+1)+D13+4D014+4D15}/{D16+D17)
IF(TMPS(JMAX,4K).GE.100.} GC TO 40
TMPS(JHMAX,K}=100,D

CONTINUE

RETURN

END

1€¢
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THERMABS5-A.L. BARNES
DIMENSION TMPS{19,23)+sTEMP{19,23},W{19,233+6{19,23),Y{19),YPLUS{L9THERMABS
L3+ YNEG{19!1 4 YMID(19),TTMPS{19,23},AREA{19),H(19),HA{19},VTMP{19, 23} THERMABS
2+CAPT(19,23),CAP{19,23},X(23)4XPLUS{23),XNEGI23},XMIC(23),COND(19,THERMABS
3231, TP{1350)4E(23),EA{23),SLTMP(B),DIST(8,23)

COMMON TMPS,TEMP WG4 Y s YPLUS,YNEG,YMID, JHAX, IMAX,CONO,DELTT, THERMABRS
LDENOM, TTHPS 4 CAPyCAPT ¢ X XPLUS s XNEG o XMIDy» TPo NNy TIME, LMAX, SLTMP,DIST THERMABS
TEMP=PERMANENT TEMPERATURE ARRAY 222641

TMPS=TEMPORARY TEMPERATURE ARRAY
VTMP=TEMPORARY TEMPERATURE ARRAY

. CM=30000.
100 READ{5,10) {MAX s JHAXDELTT,TOLsTIMX, TTT,KSKIPyNRUNyNNTP, LMAX, {SLTMP

(1), 1=1,LMAX)
10 FORMAT{2I5,F5.,1,F5.2,F10.1+F5.0,12,315/8F10.1}
IMAX=NUMBER CF COLUMNS (K)
JMAX=NUMBER DF ROWS (J}
DELTT=TIME STEP LENGTH,HDURS
TOL=TOLERANCE
TIMX=MAXIMU¥ TIME, HOURS
TTT=RESERVDOIR TEMPERATURE, DEGREES FAHRENHEIT
KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN
NRUN=RUN NUMBER
NNTP=NUMBER CF TIME STEPS
LMAX=NUMBER OF ISDTHERMS DESIRED
SLTMP{1}=TEMPERATURE CF DESIRED ISOTHERM
READ(5,203 LY{I},I=1,JMAX}
FORMAT(16F5.0/3F5.0)
Y=DISTANCE INTO THE WALL, FEET
READ{5,311{X{J)yJ=1,IMAX}
FORMAT{16F5.0/7F5.0) ,
X=THE VERTICAL DISTANCE PERPENDICULAR TO THE DIRECTION OF THE

DOF THE FRACTURE

WRITE(6s9INRUNy TTT TOLoKSKIPo{Y(1),1=0, 190, TIMX, IMAX,JMAX, (X{]) s I=THERMABS
11,23)
9 FDRMATU{1H1,5X,*INPUT DATA FOR THERMABS RUN NUMBER®,2X,15//5X,F10«1THERMABS
142Xy "=RESERVOIR TEMPERATURE, DEGREES FAHRENHEIT®/S5X,F10.4s2X,*=TOLTHERMABS
2ERANCF(PER CENT}*/10X»15,2X,*=0PTION TO INCREASE TIME STEP LENGTH THERMABS
3DURING RUN®/20X,*{1)} INDICATES TIME STEP LENGTH REMAINED CONSTANT THERMABS
40URING RUN'/20X,*{2) INDICATES TIME STEP WAS INCREASED DURING RUNtTHERMABS
5/5X¢*THE DISTANCE INTO THE WALL, FEET, IS GIVEN BELOW!/3Xs19F6.0//THERMABS
65X F10e 142Xy *=MAXTMUM TIME, HDURS®*/10X,15,2Xs*=IMAX*/10X;s 542X, *=JTHERMABS
TMAX*//5Xy*THE VERTICAL DISTANCE PERPENDICULAR TO THE DIRECTION OF THERMARS
8THE FRACTURE IS GIVEN BELDHW*/3X,23F5.1}

2

o

3

-

THERMABS
THERMABS
D0 76 I=1,LMAX
DO 76 K=1,IMAX
76 DIST(I,Ki=0.0
READ{5,200} {TP{1) 4I=1,NNTP)
200 FORMAT{8F1D.I}
TP=SOURCE TEMPERATURES, DEGREES FAHRENHEIT
DO 81 J=1,JMAX THERMABS
DO 681 K=1,IMAX THERMABS
TEMP(J4K)}=TTT THERMABS
VIMP{J,K}=TTT THERMABS
Bl TMPS({J,K)=TEMP{J,K} THERMABS
D0 172 K=146 THERHAB?
TEMRA{FyToRp (NN}
VTMP{1,K}sSTP (NN}
172 TMPS{1,KI=TP(NN}
CALL CALCY THERMABS
CALCY IS A SUBROUTINE THAT. CALCULATES VARIABLE Y SPACING VALUES
CALL CALCX THERMABS
CALCX IS A SUBROUTINE THAT CALCULATES Z SPACING VALUES
CALL CAPAC THERMABS
CAPAC IS A SUBROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT
. VAL -
00 232 J=1,JMAX THERMABS

232

82
994

31

@

99

3

998

o0

395
991

[:]

>

86

88

5

w

6

*

65

83

67

66

DO 232 K=1,TFAX THERMABS
CAPI{J,K)=CAPT{J,K} THERMABS
CALY COND4 THERMABS
COND4 IS A SURRDUTINE THAT CALCULATES CONDUCTANCES

GO TO(995,994} 4 KSKIP

IF{ATMP.NE.TIME} GG TD 995

ATMP=ATMP+1.

IF{TIME.GT.5.)G0 TO 318

DELTT=1.

GO TO 995

IF(DELTT.GE.15.1G0 TD 993

UU=DD-5.

TME=5.+({1.2)esUU}

DELTT=TME-TIME

TE{DELTT.LT.15.)1G0 TD 955

DELTT=15.
IF{TIME.GT.10D0.)GD TO 996
DELTT=15.0
GD TD 995
IF{TIME.GT.3C00.}G0 TO 997
DELTT=30.0
60 TO 995
IF{TIME.GT.1000D.}GD TO 998
DELTT=50.0
GD TD 995
DELYT=100.
KWHU IS THE SWITCH TO DETERMINE DIRECTION DF ADIP SHEEP{HORIZONTAL

OR VERTICAL)
GO TD(991,531,KHKO
CALL CONDL THERHABS
CONDL IS A SUBROUTINE THAT SOLVES ADIP IN THE Z DIRECTION
EIT=ITT¢l
KET=KIT+1
IF(IIT.EQ.51G0 TD 296
IF(KIT.GT.15160 TD 222
IF(DENDM.EQ.0.0} GO TO 69 THERMABS
KK=1 THERMABS
DO B4 N=1,JFAK THERMABS
DD 84 M=1,IMAX THERMABS
IF(ABS{IVIMP (NyM}~TMPSIN, M1}/ THPS (NsM}) .GT.TOLIGO TD 86 THERMABS
CONTINUE THERMABS
GO TO 67 THERMABS
DO 88 J=1,JMAX THERMABS
DD 88 K=1,IMAX THERMABS
VIMP (J oK)} =THPS{J,K} THERMABS
KHHO=2
6D TD 82
DD 297 K=1,1MAX
DO 297 J=1,JFMAX
THPS {J,K}=TEMP{J,K}
VTMP {JoK}=TEMP{J,K}
11T=0
TOL=TOL+.01
CM=CM+5000.
GO TO B2
CALL COND2 THERMABS
COND2 IS A SUBRDUTINE THAT SOVLES ADIP IN THE Y DIRECTION
IF (OENOM.EQ.0.0} GO TO 69 THERMABS
Kk=2 THERMABS
DO 64 N=1,JMAX THERMABS
DO 64 M=1,IMAX THERMABS
IFUABST(VTMP{N,M}-TMPS(N,M)}/THPSINsH)).GT.TOL) GO TO 65 THERMABS
CONTINUE THERMABS
GO TO 67 THERMABS
00 .83 J=1,JMAX THERMABS
00 83 K=1,IMAX THERMABS
VTMP [J,K) =THPS (J,K} THERMABS
KHHO=1
60 TO 82 THERMABS
DO 66 J=1,JMAX THERMABS
DO 66 K=1,IMAX : THERMABS
CAP{J,K}=CAPT{J,K)}
TEMP {JyK}=STHPS (J,K} THERMABS
PPP=PPP+1.0
IF{PPP.NE.10.) GO TO 741 THERMABS
PPP=0. THERMABS

LET



oo

JAMAX=JMAX=-2 THERMABRS
IBMA MAX=-2 THERMARS
FIMAX=TMAX THERMABS
THIS ACCOUNTS FOR THE HEAT STCREO IN ROCK 22241
00 40 J=1,JraX . 22241
SUM=0. 22241
DO BO K=1,IRMax,2 22241
E(K)=X{K+1}=X{K)

EAIKI=IX{K#2)=~X{K+1}}/E(K)

B0 SUM=SUM+{E{K)e{FA{K)+1.)/16.8EA(K)}})®{{2,#EA{K)-1.12CAP{J+2,K)+{EA

LIKI+1.3oe20CAPTI] 4K} 4+EALKI#(2.~EA(KII®LAP (4K}

4D AREA{J}=SUM

BB2=0, 22241
D0 90 J=1,JBMAX,2 22241
HiJY=Y{Je1)-Y¥LI) 22241
HALJ}=(Y(J42)=YJ+1)}/HID) 22241

90 BB2=BB2+(H{JjelHA{I)I+1.}/(6.%HATII)}el{2,0HALJI-1,. YuAREALJ+2)+(HAL 22241

T4

1J)+1l.}ew2eAREA{J+1)+HAL I (2.-HALJ} ) =AREA{J)) 22241
HTOR {JMAXTeX(IMAX) #3149, THERMARS
HTORG=INITIAL HEAT CONTENT UOF ROCK AT 100 DEGREES FAHRENMEIT
HEAT=RB2~-HTCRG THERMABS
TIME=TIME+DELTT THERMABS
{F{TIMELGT42000.}GO TD 56

TOL=.05

GO Y0 5

5
56 IF{TIME.GT.4000.)G0 TO 57

TOL=.D04
G0 TD' 5

5
57 IF(TIME.GT.SDQD.3}GO TO 58

w
@

TOL=.03
GO TO 55
IF{TIME.GT.CM¥)GO TD 59
TOL=.D2
GO0 TO 55

59 TOL=.01
55 ATMP=TIME

DD=DD+1.

PP=PP+1.D

NN=NN+1

IF{PP.NE.1D.} GD TO 891 THERMABS
PP=0.0 THERMABS
WRITE{6,33) THERMABS

33 FORMAT{LH1,2X2HJ=5X2H 15XZH 25X2H 35X2H 45X2H 55X2H 65X2H T5X2H 85 22241

36
37

210

211
212
887

30

173

222
223
69

w N

1X2H 95X2H105X2H115X2H125X2H135X2H145X2H155X2H165X2H1T)
D0 36 K=1,IFAX
WRITE{69s3TIK{TEMP(J,K14J=1,1T7}
FORMAT{I4,17F7.1}
HWRITE{6.210} .
FORMAT(1H1+2X,*J= 18%,5X,*19¢}
00 211 K=1,IMAX
HRITE{64212)K, {TEMP{J,K},J=1B,19)
FORMAT{14,2F7.1}
WRITE{6,30} TIME {HEAT,HTCRG,DELTT THERMABS
FORMAT[F10.142X,*HOURS* /E18.B¢2X,*BTU OF HEAT STORED IN RESERVOIR®THERMABS
1/E18.892X+*HTORG*/F10.1,2X%,*TIME INCREMENT, HOURS®) THERMABS
CALL CONTR
CONTR {S A SUBROUTINE THAT CALCULATES THE POSITION OF SELECTED
TSOTHERMS

IF{NN.GT.NNTP}GO TO 1D0

BELOW A NEW SOURCE TEMPERATURE IS CALLED IN

DO 173 K=l,6 THERMABS
VTMP{1,K)=TP{NN)

THPS{1,K}=TPINN}

GO TO (86465),KK

WRITEL64223}D05KIT

FORMAT(3X,F10.0,15)

sTOP THERMABS
END THERMABS
SUBROUTINE CALCY 22241
DIMENSION THPS(19923)sTEMP{19523) 4W{199231,6G{19,233,Y(19),YPLUS(19THERMABS
114 YNEGU19), YRIO{19) ¢ TTMPS (19,23} 2 AREA{1934H(19) sHAL19) 4 VTMP (19, 23} THERMABS
2,CAPT(19923),CAP{19423) ¢X(23) ¢ XPLUS{23} ,XNEG(23},XMID{23),CONDI19, THERMABS
323)5TP{1350),E(23} EAL23),SLTMP{B},DIST{8,23}

COMMON TMPS ,TEMP yWyGyY s YPLUS ¢ YNEGoYMIDs JHAX, IMAX, COND,DELTY, THERMABS
10ENOM, TTHPS yCAP,CAPT X5 XPLUS s XNEG s XMID s TPy NNo TIME,LMAX, SLTHP,DIST THERMABS
NMAX=JHAX-1 22241
D0 2 J=1,NMAX . 22241
YPLUS{JI=Y(Je1)~Y{J) 22241
DO 3 Jx2, JMAK 22241
YNEG{J)=Y{J}=Y1J-1} 22241
YNEG(11=YPLUS{1) 22241
YPLUSEJMAX) =YNEG( JMAX) 22241
DD 4 Jwl,JMAK 22241

4

N

w

»

-0

T

)

8

o

78

70

T

~

T

w

YMID{J}=0.5%(YPLUS(JI+YKEG{J}) 22241
RETURN 22241
END 22241

SUBROUTINE CALCX

OIMENSIUN TMPS(19,23),TEFP{19,23),W(19,23),6(19,233,Y{19),YPLUS{I9THERMABS
1} YNEGUL9) y YPID(19) 2 TTHPS(19,23} 4AREA{19}+HI19)4HA{29},VTMP{19,23)THERMARS
2,CAPT{19423),CAP(19,23)4yX(23},XPLUS{23},XNEG{23},XMICI23},COND{19, THERMABS
323),TP11350),E(23),EA{23),SLTFP(81,DIST{8,23)

COMMON THPS,TEMPyW»G oY YPLUSYNEG,YMID, JMAX, IMAX,CONC,DFLTT, THERMARS
LOENUM, TTHPS ,CAP yCAPT o %y XPLUS y XNEG e XMID, TPy NNy TIME, LMAX, SLTMP,DIST THERMARS
NMAX=IMAX-1 THERMABS
DD 2 K=1,NMAX THERMABS
XPLUS(K}=X{K+1}=X{K} THERMABS
DD 3 K=2,1HAX THERMARS
XNEGIKE=X{K}=X{K=1} THERMABS
XNEG(1)=XPLUS(1) THERMABS
XPLUSTIMAX) =XNEG{THAX} THER¥AD S
DO 4 K=1,lHAX THERMARS
XMID(K}=0.5%{XPLUS(K}+XNEG{K}} THERMARS
RETURN THERMABS
END THERMARS
SURROUTINE CCNDY 22241

DIMENSIDN TMPS(19,23),TEMP(19,23},W{13,23),G{19,23),Y(193,YPLUSILIOTHERMARS
1)y YNEG{19) o YMIDI19) 4 TTMPS{19,23)AREALLO}+HI193,HAL19},VTMP{19,23) THERMABS
2,CAPT(19,231,CAP{19423},X123},XPLUSI23} ,XNEG(23},XMID123},CONDV19, THERMABS
323}1,TP{1350)4E(23},FEAL23),SLTMP{8),DIST(8,23)

COMMDN THPS,TEMPyWyGyY o YPLUS,YNEG,YHID s JMAX, IMAX4CONDyDELTT, THFRMABS
LDENQM, TTMPS yCAP4CAPT ¢X s XPLUS ¢ XNEG4XMID, TP NN, TIME, LMAX, SLTMP,DIST THERMABS
NMAX=IMAX-T

DO 1 J=1,JMAX THERMABS
0D 20 lelMaAX THERMABS
IF{J.GT.1GC TO 9 THERMABS
IFIK.GT.61G0 TD 9 THERMARS
GO TO 20 THERMABS
IF{J.EQ.1}G0 1O 78 22242
1F{J.EQ.JMAXIGO TO 70D 22242
IFI{K.EQ.1)GE TO 79 22242
IF{K.EQ.IMAX}GO TO 8D 22242
CXPUS={COND{J,K)+CONDItJ,K+1}31/2, 22241
CXMIN={CONO(JyK)+COND{J K-13}/24 22261
CYPUS={COND{JsK}+COND{J+14X})/2. 22241
CYMIN=ICOND(J,K}+CONDUJ-1,K)}/2. 22241
GO TO 77 22241
CXPUS=(COND{JoK}+CONDUJ4K#1}13/2. 22241
CXMIN=CXPUS 22241
CYPUS={COND(JyK) +CONDIJ+14K)}/2. 22241
CYMIN={COND (J4X)+COND{J-1,K}}/2. 22241
G0 1O 77 22241
CXMIN={COND{JsK}+COND{J,K-1)}/2. 22242
CXPUS=CXMIN 22241
CYPUS=(COND{J,KI+CONDLJ+1,K})/2. 222641
CYMIN={COND{J,K}+COND{J=1,K})/2, 22241
G0 T0 77 222641
IFIK.EQ.13G0 TO 75 22242
IF(KJEQ.LIMAXIGO TO 76 22242
CXPUS={COND{JyK}+COND{J K+1})/72. 22242
CXMIN={COND (JsK}+COND(J4K~1}}/2. 22242
CYPUS=(COND{JsKI+COND{J+1,K}2/2, 22242
CYMIN=CYPUS 22242
G0 TO 77 22242
IF(K.EQ.11GC TO 72 22242
IF{K.EQ.IHAXIGO TO 73 22242
CXPUS={COND(JoK)+COND(J Ke1}3/2, 22242
CXMIN={COND{J+K)+COND{JyK-1})/2. 22242
CYMIN={CONO{JoK}4+COND(J-1,K}}/2. 22262
CYPUS=CYMIN 22262
GO TO 77 22242
CXPUS={COND{ $4K}+COND[J,K+1}1/2. 22242
CXMIN=CXPUS 22242
CYMEN=(COND{J,K)+COND{J-1,K}}/2. 22242
CYPUS=CYMIN 22242
G0 10 77 22242
CXMIN=(COND(JoK}+CONDIJ¢K=1}}/2. 22242
CXPUS=CXMIN 22242
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CYMIN={COND { 3, K} +COND(J~1,K!1/2. 22242

CYPUS=CYMIN 22242
G0 TO 77 22242
CXPUS! anuu.K)ocuND(JvKu))/2. 22242
22242
CUND(J.KNCHND(JH K372, 22242
YPUS 22242
GO TO 77 22242
(COND{J,K}+COND(J K-1)372. 22242
XMIN 22242
COND (JoK} +CONDTJ+1,K) 372, 22242
CYMIN=CYPUS 22242
77 CXMIN=CXMIN®.T71428
CXPUS=CXPUS®.71428
Bl=—{1.+{XNEGI{K)#CXPUS}/ (XPLUS{K}=CXMKIN}+{XNEGIK)#XMID(K)#CAPT{J K
133/ (CXMINSOELTT®THPS(JoK1) Y
c1—(quG(x)-cxpusy/(xnus?m-cxmm THERMABS
Al=1.0 -
DIL4=— (XMID(K} ¢ XNEGIK)/ LCXMINSYHIDIII 1) THERMABS
IF(1J.LT.JMAXIGO TO 22 22241
D15=CYPUS*{THPS(J-1,K}-TMPS(J,K}}/YPLUSLJ} THERMABS
G0 T0 90 22241
22 DI'S=CYPUS® [ TMPSTJ+1,KI-THPSIJ,K3}/YPLUS{J) THERMABS
90 IF(J.6T.1)60 TO 91
O16=CYMIN® (THPS (J,K}-THPS{J+1,K})/YNEGIJY THERMABS
G0 TO 92
91 D16=CYMIN®{THMPS(J,K}=THPS{J=1,K})/YNFGL ) THERMABS
92 DL7={XNEG{K}«XMID(K)*CAP{J,K1}/ {DELYT#CXMIN}
D1=D14#(D15-016}-017 22241
1F{J.6T-1160 TO & THERMABS
IF{K.GT.7IG0 TD 3 THERMABS
Wll,71=C1/BL THERMABS
G{1,7)={D1-A1*TMPS(1,6)}/B} THERMABS
GD TD 20 THERMABS
4 1F{K.NE.1)6D TO 3 22241
Cl=Cl+I. THERMABS
A1=0.0 22241
Wid,1}=C1/B1 22241
GlJy11=01/81 22241
GD TO 20 22241
3 IF(K.NE.IMAX}GD TQ 5 22241
Al=l.+C1 THERMABS
Cl=0. THERMABS
GD TO 10 22241
5 AL=1.0 22241
10 DENOM=BI-AlsW(J,K-1} 22241
IF{DENOM.NE.0.)GO TO 18 22241
WRITE(6,50) 22241
50. FORMAT{1BH -ZERD DENOMINATOR.} 22241
GO TD 800 22241
18 W{J,K}=C1/DENDM 22241
GiJ,K)=ID1-AleG(J,K=1)}/DENDM 22241
20 CONTINUE : 22241
TTMPS{J, IMAX) =G (J,IFAX]
IF(J.NE.1)60 TD 31
00 30 E=1,NMAX
1I=IMAX-T'
30 TTMPS(Jo11)=6GlJ 111 =HIJ, TIFeTTHPSIJ II+1}
GD TO 1
31 D07 32 1=2,1MAX
T1=1MAX+1~1
32 TTMPS(J,11)=G(J, 111 -HIJ-T1}#TTHPSIJ, [1+1}
1 CONTINUE 22241
DO 95 J=1,JMAX
DO 95 K=I,IMAX
THPSIJ, K} =TTHPS {J,K)
95 CONTINUE
0D 172 X=1,6 THERMABS
172 TMPS{1,K}=TP{NN)
CALL CAPAC
CALL COND4
800 RETURN 22241
END 22241
SUBRDUTINE CCNDZ 22241

DIMENSION TMPS{19423},TEMP(19,23),H{19+23)5G(19,23),Y{19},YPLUS{L19THERMABS
13+ YNEGI{L9)}« YPID(19) s TT¥PS(19,23) +AREAIL19},HI19},HA{LT},VTMP{19,23) THERMABS

IF{J.GT.11G0 1O 9 -THERMABS
IF(K.GT.6}G0 TO 9 THERMABS
GO 70 -2D R THERMABS
9 IF{J.£Q.11GD TO 78 22242
61 [F(J.EQ.JHAXIGD TO 70 22242
IF(KJ.EQ.11GD TO 79 22242
IF{K.EQ.IMAX)GD TO 8O 22242°
CXPU: ICOND(J,K)*COND(J.K#I))/2. 22241
CXMIN={COND (J,K}+COND{JIK=10}/2. 22241
CYPUS={CONO{J,K}+COND(J#1,4KI}/2. 22241
CYMIN={COND{JsX}+CCNDCJ~1,K}}/2. 22241
G0 TO .77 22241
79 CXPUS= (COND(J.K)*EOND(J,K#I))/Z. 22242
CXMIN=CXPUS 22242
CYPUS= (CUND(JyK)*CCND(Jfl,K))/Z. 22241
CYMIN={COND{J,K)+COND{J-1,K}) /2. 22241
GO TO 77 22241
CXMIN= (CDND(J K}+COND{J,K=131/2. 22242
22242
CYPUS= (C[]ND(J, K}+COND{J+1,K)}/2, 22241
CYMIN={COND{J,KI+CONDtJ-1,K})/2. 22242
GO 10 77 22241
78 IF{K.EQ.11GC TO 75" . 22242
IF(K.EQ.IMAXIGD TO 76 22242
COND {J,K}+COND{J,K+1)) /20 22242
COND{J,K)+COND{J,K-11)/2. 22242
COND{JsKI+COND{J+1,K})/2. 22242
CYMIN=CYPUS 22242
GO YO 77 22242
70 IF{K.EQ.1)GD TO 72 22242
IF{K.EQ.IMAXIGO TO 73 22242
CXPU COND (J5K)+CDOND{J4K+11) /2. 22242
CXMI COND(JyX}+COND{J,K-131/2. 22242
CYMI COND(JyK}+#CONDIJ-1,KI}/2. 22242
CYPUS=CYMIN 22242
. 6O TO 77 22242
CXPUS=(COND(JyK)+COND{J,sK+1}13/2. 22242
XPUS 22242
CONDIJ,K}+COND{J~1,K}) /2. 22242
CYPUS CYMIN 22242
GD TO 77 22242
73 CXMIN={COND{JsK)+COND{JsK-1)}/2. 22242
22242
CYMIN={COND{J,K)+CDOND(J-1,K}}/2. 22242
CYPUS=CYMIN 22242
GD 7O 77 22242
75 CXPUS=(COND{JyK}+CCOND{J,K¢1}}/2. 22242
CXMIN=CXPUS 22242
CYPUS={COND{J,K}+CONDCJ+1,K}}/2. 22242
CYMIN=CYPUS 22242
GO TD 77 22242
76 CXMIN={COND(J,K}+COND{J,K-1)3/2. 22242
CXPUS=CXMIN . 22242
CYPUS={COND {JsK)+COND{J+1,K}}/24 22242
CYMIN=CYPUS 22242
7T CXMIN=CXMIN®.71428
CXPUS=CXPUS#*,.71428
Bl=—{14+(CYPUS®#YNEG{J))/{YPLUS(J)=CYMIN}+{YNEG({JI#YHMID{JI=CAPT{J,KTHERMABS
1)}/ (DELTTCYMIN®TMPS(J4K}})
Al=l. THERMABS
C1l={YNEG{J)=CYPUS}/{YPLUS{J}#CYMIN} THERMABS
Dl4= —(YMID(J)®"YNEG(J)/(CYMIN®XMID{K)}}
TF{K.LT.IMAX} GD TD 24
D15= CXPUS* {TMPS(JK-1}-TMPS[JeK)I/XPLUS{K) THERMABS
GO T0O 25
24 D15= CXPUS*{TMPS{J,K+1)—THMPS(JsK}}/XPLUSIK} THERMABS
25 IF{J.LT.2)GC TO 26 THERMABS
IF{K.GT.1)GC TO 26 THERMARS

21CAPT(19-23).CA?(lQpZE!!'X(ZZ)'XPLUS(ZS)vXNEG(ZS)pXMIU(Z?)vCDND(l‘J.YHERHABS
3233 ,TP(1350}) ,E(23),EA{23),SLTMP(8);DIST(B8,23)

CDMHDN TMPS s TEMP s Wy G,V,VPLUS'VNEG,VHID JMAl,IHAX.CDND,D'ELTTv THERMABS
10ENOM, TTHPS ,CAPS CAPT 4 Xy XPLUS s XNEG, XMID, TP.NN.T]HE-LHAX.SLTMP,UXST THERMABS
NMAX=JMAX-2

00 1 K=1,IMAX

DO 20 J=1,JMAX
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D16=CXMIN®{ THPS(J,K}~TMPS{J,K+1)}/XNEG(K} THERMABS™

GO TO 27 THERMABS
26 D16=CXMINs{TMPS(J,K)}=TMPS{J,K-13}/XNEGIK) THERMABS
27 D1 CAP{JyK)«YMIO{J)*YNEG{J} )}/ (DELTT=CYMIN} THERMABS

01=D14#{D15-016)-017 22241

IF{K.GT.63G0 1O 4 THERMABS

IF{J.GT.2)GD TO 3 THERMABS

W{2,.K 1/81 22241

G{2,K)=(D1~Al#TMPS{1,K}}/B1 22241

GO TO 20 22241
4 IF{J.GT.1360 TO 3 THERMABS

4 1+4A1 THERMAB S

THERMABS
THERMABS
THERMABS
THERMABS

3 [F{J.NE.JMAX}GO TO 1D 22241
‘Al=A14Cl 22241
C1=0.0 22241

10 DENOM=Bl-AlwW{J-1,X} 22241
IF{DENOM.NE.C.1GD TD 18 . 22241
WRITE(6450) 22241

50 FORMAT{18H ZERD DENOMINATOR.) 22241

18 H(J,K}=C1/DENDM 22241
G{JsKI=(D1-A12G1J~1,X}) /DENDM 22241

20 CONTINUE 22241

TTMPS{JMAX, K} =6 { JMAX,K)

1F(K.GT.6)60 TO 31

DO 30 I=1,NMAX

1T=JMAX-1

30 TTHPSUIT,K)=GUIIKI~HIII,K}aTTMPS(LI+]1,K]}

GO 10 1
31 DU 32 1=2,JMAX

TI=JMAX+1-1
32 TIMPS(II,KI=GIIT,K}-W{II,K}®TTMPSLII+1,4K)

1 CONTINUE 22241
D0 95 J=1,JHAX THERMABS
DD 95 K=1,IMAX THERMABS
TMPS(J,K1=TTMPS{J,K}

95 CONTINUE
DD 172 K=1,6 THERMABS

172 TMPS{1,K}=TP(NN}

CALL CAPAC

CALL CDND4
800 RETURN 22241

END 22241

SUBROUTINE CAPAC
DIMENSION TMPS{19,23),TEMP{19,23},W{19+231,G{19+23},Y{19),YPLUS({19THERMABS
114 YNEG{19) ¢ YNID(19), TTEPS(19,23 )4 ARFA{L9),H{ 193, HA{19},VTMP{ 19,23} THERMABS
2+CAPT{19423)4CAPI19+23),X{231,XPLUS{23),XNEG(23},XMID{233,COND! 19, THERMABS
323}, TPL1350),E{23},EAL23),SLTHP(8},DIST(8,23) .
COMMON TMPS o TEMPyWyG3Y s YPLUS,YNEGs YMIDs JMAX, IMAX,CONCSDELTT, THERMABS
1DENOM, TTHPS 4CAP yCAPT ¢ Xo XPLUS y XNEG s XMIOy TPy NNy T IMEy LMAXy SLTMP,DIST THERMABS
DO 232 J=1,JFAX
B0 232 K=1,1MAX
IF{TIME.EQ.0.0)GO TC 9
1F{TMPS{J,K}.LT.100.01} GD TD 232
9 IF{TMPS(J,K}.GT.450.360 TO 233
CAPT{JeK}={23,54.307({TFPSTJyK)=1D0.}}2134.0
GO TD 232
233 IF{TMPS{J,K1.06.900.3G0 TQ 234
CAPT{JsKI=(130,0+.344(TMPSI{J,K}~450.1)%134.0
GO TD 232
234 TF{TMPS{J,;K).GT.1100.)GC TO 235
CAPTIJ¢K)=134,00{285.04.4850{TMPS{J4K}=900,.})
G0 TQ 232
235 [F{THPS{J,K}.GT.1600.)GC TO 236
CAPT{JyK)=134,02{382.04,6240°{THPS{J,K)-1100.}}
GO TO 232
236 CAPT(J4sK)=134.00(694.04.24T#{THPSIJ,KI~1600.1}
232 CONTINUE
RETURN
END
SUBRUUTINE COND4 N 22262
DIMENSIUN THPS{19,23),TEMPIL19523)4H119,2314G119,233,Y{19},YPLUS{19THERMARS
LYo YNEG(19) 4 YMIDI19) 4 TTMPS{19423),AREALLS},HIL19),HAL 19}, VTMP (19,23} THERMARS
29CAPT119,231 4CAP(19,23),X(23),XPLUS(23)+XNEGI23)4XMEI01231,CONOL 19, THERMARS
3231,TP{1350),E123) ,EAL23},SLTFP{R},DIST (8,23}

COMMON TMPS, TEMP 4W»G Y, YPLUS s YNEGsYMIDy JMAX, IMAX4COND, DELTT, THERMABS
LDENDM; TTMPS yCAP CAPT o Ky XPLUS 9 XNEG s XMID, TPy NN TIME,LMAK, SLTMP,01ST THERMABS
0D 5 J=1,JMAX 22242
DO 5 K=l,IMAX 22242
IF{TMPS(J,K}.GE,200.1GC TO L

CONDtJ,K) 20,9

1 IFETMPS{J,K)L.6T.1200.3GC TO 7

TSQ=TMPS(J,Ks*THPS{J,K)

TCUB=TMPS{J,K}=TSQ

COND(JyK}=412561573E41-.183TT799E-2eTHPS (J,K)+.10902421E-58TSQ~. 15
1084869E-9aTCUB

60 10 5

COND(J,K}=0.36

CONTINUE

[LEN]

SUBRQUTINE CONTR
DIMENSION TMPS(19,23),TEMP{19,23),W(19,23),G(19+231,Y(19),YPLUS(19THERMABS
1}, YNEG(19), YMID (19} ,TTMPS(19923), AREALL19}yH{I9) ,HAC19),VTHP {19, 23] THERMASS
25CAPT(19,23),CAP(19,23) ,X(23} ,XPLUS {231 yXNEG{23} 1 XMID(23],¥0ND{.13, THERMABS
323),TP{1350),E(23) \EAL231,SLTMP(8),DIST18,23)
COMMON THPS yTEMP 4 W,54 Y4 YPLUSyYNEG, YHTDy JMAX, IMAX , COND,y DELTT, THERMABS
1DENDM,TTMPS s CAP,CAPT 4 X4 XPLUS yXNEG s XMIDy TP o NN, T TMEy LMAXs SLTHP,DIST THERMABS
00 263 I=1,LMAX
DO 260 K=1,INAX
DO 261 J=1,JMAX
LEUTEMPLJ,K}.LT.SLTHP(I) 16O TD 262
261 CONTINUE
J=JMAX
262 1F{J.EQ.1)GC TO 260 .
OTST{E,K}=Y{J=1 3+ ((TEMPLJ=1,K}=SLTMPLI} }/{TEMPLI=1,KI-TEHP{J,K}} 1
LUYLII-Y =103 -
260 CONTINUE
263 CONTINUE
MRITEL6,2641 {SLTMP(IY,E=1,LMAX
264 FORMAT(IHL,6Xs*DISTANCE',7X? {SOTHERM ISCTHERM ISGTHERM LSOTHERTHERMABG
IM ISOTHERM ISOTHERM ISOTHERM ISOTHERM!/BX,'DOWN®,9X,"DEGREES FTHERMABG
2 DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGRETHERMABS
BEES‘F'ITX"FRACYURE':‘X.SFID.)/QX"FEEY‘/ZOX,'FEET INTO FEET INTO THERMABG6
4FEET INTQ FEET INTD FEET INTO FEET INTO FEET INTD FEET INTD?®/22X,*THERMABG
SHALL® 46Xy *HALLY 46X s "HALL® 46Xy *WALLY 56Xy *WALL " 46X *WALL * 56Xy WALL *, THERMABS
66X "HALL'}
DO 266 K=, [MAX
266 WRITEL64267)XIK}, (DISTII,K},I=1,LMAX}
267 FORMATUTX,F6.1,4X,8F10.2)
RETURN
END
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