A FEASIBILITY STUDY OF AN IN SITU RETORTING PROCESS FOR OIL SHALE

Ву

ALLEN LAWRENCE BARNES

Bachelor of Petroleum Engineering Ohio State University Columbus, Ohio 1955

Master of Science Pennsylvania State University University Park, Pennsylvania 1960

Submitted to the faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1968

OKLAHOMA
STATE UNIVERSITY
LIBRARY

OCT 24 1968

A FEASIBILITY STUDY OF AN IN SITU
RETORTING PROCESS FOR OIL SHALE

Thesis Approved:

Thesis Adviser

A. Wielet

A. Wielet

Dean of the Graduate College

ACKNOWLEDGMENTS

The author acknowledges advice from committee members: Dr. A. M. Rowe, Dr. J. A. Wiebelt, Professor A. G. Comer and Dr. D. D. Grosvenor.

For technical assistance, the author expresses thanks to Mr. C. Martin.

For manuscript preparation, the author expresses gratitude to Mr. J. F. Ostrander and Mrs. T. I. Asher.

Lastly, the author acknowledges the support of Sinclair Oil & Gas Company through the use of their facilities in conducting this investigation.

TABLE OF CONTENTS

Chapte	r	Page
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	3
III.	THEORETICAL DEVELOPMENT	15
	General Description of Problem	15
	Geometric Considerations	15
	Process Considerations	18
	Flow Path	18
	Investigation Limitations	19
	Important Controllable Parameters	21
	Value of Heat Transfer Study	21
	Plan of Attack	21
	Models I and II	21
	Model III	26
	Model IV	28
	Variable Coefficients	31
	Thermal Capacity and Endothermic Heat Loss .	31
	Thermal Conductivity	34
	Description of Process Variables	37
	Temperature	37
	Injection Rate	38
	Well Spacing	38
	Time	38
	Heat Soaking	39
	Air-Oil Ratio	39
IV.	APPROACH TO NUMERICAL SOLUTIONS	41
	Numerical Procedure	41
	Description of Numerical Models	42
	Model I	44
	Model II	49
	Model III	51
	Model IV	53
	Determination of Iteration Parameters	55
	Grid Spacing	55
	Time Incrementation	55
	Tolerance Incrementation	57

	•				
	Chapter				Page
	Solution Validity				59
	Check of Lauwerier Solution				59
	Solutions Using Limiting Coefficients .				60
	Heat Balance				63
	Effect of Assumptions				63
	Convection Difference Equation				63
	Velocity				65
	Infinite Heat Transfer Coefficient				66
		-	Ť	•	
	V. RESULTS AND DISCUSSION	•	•	•	69
	Results from Model I and Model II				69
	General Discussion			•	69
	Effect of Temperature		٠		96
	Effect of Injection Rate				100
	Effect of Soaking				106
	Effect of Bounded Systems		•		109
	Air-Oil Ratios	•	•	-	115
	Heat Utilization				121
	Results from Model IV				122
					127
	Results from Model III				
	Significance of Results				133
	General Remarks				133
	Feasible Air-Oil Ratios				133
	Project Design				136
	Experimental Pilot	•	•	•	136
	VI. SUMMARY AND CONCLUSIONS		•	4	138
	A SELECTED BIBLIOGRAPHY	•			141
	DEFINITION OF TERMINOLOGY			•	144
•	APPENDICES				
	A. DIFFERENTIAL EQUATIONS	•	٠	•	146
	Derivation of Convection Equation				146
	Derivation of Conduction Equation	·	•	Ī	147
	Derivation of Combined Conduction-Convection	•	•	•	,
	Equation			۰	148
	B. DIFFERENCE EQUATIONS	•	•	v	151
	Variable Spacing Scheme		•		151
	Convection Difference Equations for THERMAB3		ıd		
	THERMAB4		Id	•	152
	THERMAB4				155
	Conduction Difference Equations for THERMAR1		•	•	160

Page
vection Difference 2
ME STEPS 173
m THERMAB3
NGS 183

LIST OF FIGURES

Figur	e	Page
1.	Schematic Diagram of In Situ Oil Shale Retorting Arrangement	16
2.	Pattern Arrangement of Wells	17
3.	Injected Gas and Hydrocarbon Flow Through Retorted Low Permeability Zone	20
4.	Model I Convection Through Constant Width Fracture	22
5.	Model II Countercurrent Flow Through Constant Width Fractures	24
6.	Model III Convection Through Growing Retorted Limited Permeability Zone	27
7.	Isometric Schematic of Symmetric Element of Conical Ellipsoidal Retorted Region	30
8.	Total Heat Requirement for Retorting Oil Shale	33
9.	Thermal Conductivity Versus Temperature	36
10.	Arrangement of Grid Network for Models I and III	45
11.	Arrangement of Grid Network for Model II	5 0
12.	Arrangement of Grid Network for Model IV	54
13.	Time Increment and Tolerance Sequence	58
14.	Comparison of Numerical and Analytical Solutions Fracture Temperatures	61
15.	Comparison of Numerical and Analytical Solutions Positions of 600°F Isotherms	62
16.	Comparison of 700°F Isotherm Positions using Constant and Variable Values of Nonlinear Coefficients	64
17.	Effect of Infinite Heat Transfer Coefficient Assumption	68

Figur	re	Page
18.	Position of 700°F Isotherm Versus Time Run 1	71
19.	Temperature Distribution After 86,100 Hours Run 1	72
20.	Position of 700°F Isotherm Versus Time Run 2	73
21.	Temperature Distribution After 86,100 Hours Run 2	74
22.	Position of 700°F Isotherm Versus Time Run 3	75
23.	Temperature Distribution After 86,100 Hours Run 3	76
24.	Position of 700°F Isotherm Versus Time Run 4	77
25.	Temperature Distribution After 89,100 Hours Run 4	78
26.	Position of 700°F Isotherm Versus Time Run 5	79
27.	Temperature Distribution After 86,100 Hours Run 5	80
28.	Position of 700°F Isotherm Versus Time Run 6	81
29.	Temperature Distribution After 86,100 Hours Run 6	82
30.	Position of 700°F Isotherm Versus Time Run 7	83
31.	Temperature Distribution After 88,600 Hours Run 7	84
32.	Position of 700°F Isotherm Versus Time Run 8	85
33.	Temperature Distribution After 86,100 Hours Run 8	86
34.	Position of 700°F Isotherm Versus Time Run 9	87
35.	Temperature Distribution After 83,000 Hours Run 9	88
36.	Positions of 700°F Isotherms Versus Time Run 10	89
37.	Temperature Distribution After 86,100 Hours Run 10	90
38.	Positions of 700°F Isotherms Versus Time Run 11	91
39.	Temperature Distribution After 86,100 Hours Run 11	92
40.	Positions of 700°F Isotherms Versus Time Run 12	93
41.	Temperature Distribution After 84,800 Hours Run 12	94
42.	Effect of Injection Temperature Upon Retorting Rate	97

Figur	e	Page
43.	Effect of Injection Temperature Upon Retorting Rate with a Heat Injection Rate of 10,000 BTU/hr-ft	98
44.	Effect of Injection Temperature Upon Retorting Rate with a Heat Injection Rate of 20,000 BTU/hr-ft	99
45.	Effect of Injection Temperature Upon Retorting Rate with an Air Injection Rate of 278 SCF/hr-ft	101
46.	Effect of Injection Temperature Upon Retorting Rate with an Air Injection Rate of 556 SCF/hr-ft	102
47.	Effect of Injection Rate Upon Retorting Rate with an Injection Temperature of 1000°F	103
48.	Effect of Injection Rate Upon Retorting Rate with an Injection Temperature of 1500°F	104
49.	Effect of Injection Rate Upon Retorting Rate with an Injection Temperature of $2000^{\circ}F$	105
50.	Effectiveness of Soaking with an Injection Temperature of 1500°F	107
51.	Effectiveness of Soaking with an Injection Temperature of 2000°F	108
52.	A Comparison of Retorting Rates with Bounded and Unbounded Systems	110
53.	A Comparison of Retorting Rates with Bounded and Unbounded Systems	111
54.	A Comparison of Retorting Rates with Bounded and Unbounded Systems	112
55.	A Comparison of Retorting Rates of Runs Using Bounded Systems	114
56.	Air-Oil Ratio for Injection Temperature of 1000°F	116
57.	Air-Oil Ratios at Injection Temperature of 1500°F	117
58.	Air-Oil Ratios at Injection Temperature of 2000°F	118
59.	Air-Oil Ratio for Injection Temperature of 3000°F	119
60.	Vertical Profile of 700°F Isotherm at 0 Feet Down Fracture After 89,100 hours	123
61.	Vertical Profile of 700°F Isotherm at 100 Feet Down Fracture After 89,100 Hours	124

Figur	'e	Page
62.	Vertical Profile of 700°F Isotherm at 200 Feet Down Fracture After 89,100 Hours	125
63.	Vertical Profile of 700°F Isotherm at 400 Feet Down Fracture After 89,100 Hours	126
64.	Position of 700°F Isotherm Versus Time Run 14	129
65.	Temperature Distribution After 86,100 Hours Run 14	130
66.	Positions of 700°F Isotherms After 86,100 Hours Runs 13 and 14	131
67.	Air-Oil Ratios at Injection Temperature of 2000°F Runs 13 and 14	132

CHAPTER I

INTRODUCTION

Oil reservoirs are becoming more expensive to discover. The consumption rate of domestic crude reserves has in recent times surpassed the discovery rate of new domestic reserves, and the trend is likely to continue since consumption continues to increase approximately 3 per cent per year. Because of this situation, oil companies are actively trying to develop substitute sources of liquid hydrocarbons.

It has been recognized for some time that oil shale deposits contain a tremendous hydrocarbon reserve. Over half of the known oil shale reserves are located in the United States, most of which lie in the Piceance Creek Basin of Western Colorado. The Colorado oil shale outcrops on the edges of the Piceance Creek Basin. At the outcrops the shale beds are relatively thin, from 25 to 50 feet thick. In the center of the basin the oil shale is as great as 2000 feet thick covered with 1000 feet of overburden. It has been estimated that there are over 1000 billion barrels of oil in shales having an oil content over 15 gallons per ton in this basin. This is some 30 times the present proven crude oil reserves in the United States.

Oil shale does not contain free oil but an organic matter called kerogen. Kerogen is only slightly soluble, if at all, when extracted with ordinary solvents for petroleum at room temperature. Kerogen yields petroleum hydrocarbons by destructive distillation. It must be

heated to approximately $700^{\circ}F$ where it decomposes into shale oil, gases and coke.

The United States Bureau of Mines and, more recently, oil companies have conducted considerable research on methods to economically recover oil from this shale. These methods involve the retorting of crushed oil shale at the surface, which is either strip or room and pillar mined. To date with prevailing oil prices this approach has not proved economically attractive.

Another approach to exploit the oil shale deposits, in particular the thick portion that is overlain by 1000 feet of overburden, is to retort the oil shale in place and produce the liquid and gaseous hydrocarbons through wells drilled into the shale. Little research has been done on this approach. There are several variations to the "in situ" retorting approach. These variations can be considered to belong to one of two groups based on the geometry of the system. The first group is in situ retorting conducted in a highly fractured or broken up matrix. The second is in situ retorting conducted through single fractures between producing and injection wells. This dissertation is concerned with the latter group.

The objective of this work was to make a preliminary feasibility study of in situ retorting oil shale by hot gas injection through wells interconnected by single vertical fractures. A knowledge of the temperature distribution under various assumed conditions will indicate whether experimental pilot testing of this approach to in situ retorting is justified. This dissertation is specifically concerned with theoretically predicting temperature distributions and total heat contents in oil shale under various assumed conditions.

CHAPTER II

REVIEW OF LITERATURE

Although there was little literature related to this specific problem, a number of papers on various aspects of oil shale have helped in developing the problem and in formulating a plan of attack.

Jaffe (1,2) gave an extensive description of worldwide oil shale deposits as to their compositions, sizes, locations and the extent to which they have been exploited. A more detailed description of the oil shale in the Green River Formations of Western Colorado was given in Reference 2. Williamson (3,4) described the nature of kerogen and its products of decomposition when retorted. In another paper, Williamson (5) described the various oil shale retorts that have been used in research efforts in this country as well as those used commercially in other countries. Scores of other articles concerning oil shale were referenced in these five papers.

The First Symposium on Oil Shale (6) held in 1964 resulted from the renewed interest in oil shale research. Papers in this symposium were essentially a review of oil shale technology up to that time. In one paper V. Dean Allred described characteristic properties of oil shale that might influence in situ processing. This paper was concerned with the process in a highly fractured matrix where it was visualized to be similar to in situ combustion in oil reservoirs.

The Second Symposium on Oil Shale (7) held in 1965 covered current

research in shale oil recovery. Lekas and Carpenter discussed the possibilities of fracturing oil shale with nuclear explosives for in situ retorting. They stated that information from surface retorts was partially applicable to in situ retorting the resulting fractured systems.

There were numerous U. S. Bureau of Mines reports available on oil shale assays, distillation properties, other chemical properties, mining methods, retorting and physical properties. Hubbard and Robinson (8) made a thermal decomposition study of the kerogen in three Colorado oil shales. They found the rate of decomposition increased with temperature and varied little between shale samples. At temperatures over 750°F essentially all hydrocarbons were driven off.

Sohnsæt al. (9) found for an experimental entrained-solids, oilshale retort that as the retorting temperature was raised, the portion
of the organic matter converted to gas increased, and that converted
to oil decreased. Liquid and gas products became more dehydrogenated.
Oils from Colorado oil shale gave good yields of stable gasolines
having low sulfur contents. High-temperature retorting resulted in
more naphtha production than can be obtained by cracking a conventionally retorted shale oil.

Carbonate decomposition varied from 4 per cent at $1000^{\circ}F$ to 89 per cent at $1650^{\circ}F$. Carbonate decomposition was 40 per cent complete at $1400^{\circ}F$ and 30 per cent complete at $1300^{\circ}F$. They reported that the heat of retorting to $1200^{\circ}F$ for 28 gallons-per-ton (GPT) shale with zero carbonate decomposition was approximately 425 BTU per pound. Carbonate decomposition required additional heat of 238 BTU per pound of shale.

Sohns et al. (10) made a study to determine the total heat necessary to retort Colorado oil shale to produce shale oil and other byproducts under conditions that would exist in commercial aboveground
retorting methods. This total heat consisted of: 1) the heat content
of the mineral and other nonvolatile portions of the shale at the final
retort temperature; 2) the heat of reaction resulting from conversion
of the organic matter in the shale to gas, oil and coke; 3) the heat of
decomposition of that portion of mineral carbonates that decompose
under the experimental conditions and other heats of reaction due to
changes in the mineral content of the shale; 4) the heat of vaporization of the oil and water; and 5) the heat content of the gas and oil
vapors at their exit temperature. The first three items comprised the
predominate portion of the heat requirement.

These investigators published plots of heat requirements versus temperature up to 1100°F for 28 GPT shale, for 57 GPT shale and for spent shale. They found for 57 GPT shale that the heat of retorting between 750 to 1100°F ranged from 261 to 378 BTU per pound. Heat of retorting ranged from 104 to 356 BTU per pound for 28 GPT shale between 450 to 1100°F. Heat content above 77°F for spent shale was determined at a temperature interval of 500 to 1100°F and ranged from 94 to 272 BTU per pound. Their data showed that the endothermic reactions occurring during the distillation of kerogen utilize 15 to 30 per cent of the heat supplied.

Gavin and Sharp (11) measured physical properties of oil shale. They found that average specific heats between 20 and 90°C ranged from 0.223 to 0.265 calorie per gm-°C for the samples studied. Thermal conductivities ranged from 0.00382 to 0.00518 calorie per sec-cm-°C.

Somerton and Boozer (12) reported thermal diffusivities and conductivities of some typical sedimentary rocks at temperatures from 200 to $1800^{\circ}F$. They used an unsteady state technique that became less accurate at high temperatures. Over $1500^{\circ}F$ the estimated error using this technique could be as large as 20 per cent. Thermal conductivities of all sedimentary rocks followed a similar and significant decreasing trend with temperature. Over $1200^{\circ}F$ it was found that thermal conductivities of rock become constant.

Recent work by Somerton (13) showed that the thermal conductivity at room temperature of a typical oil shale averages 0.6 BTU/hr-ft^oF parallel to bedding planes and 0.4 BTU/hr-ft^oF perpendicular to the bedding planes.

Shaw (14) reported average specific heats for five samples of Colorado oil shale measured at temperatures ranging from 50 to 450°F. Oil shale richnesses ranged from 1 to 89.2 gallons per ton. An empirical equation as a function of oil shale richness and temperature was derived from these measurements.

Somerton (15) presented results of experimental measurements of heat capacities of some sandstones, shales and siltstones. He found measured heat capacities agree closely with values calculated from known chemical compositions of the rocks. He found that heat capacities of these rocks increased from 0.19 to 0.21 BTU/1b-OF at 100OF to 0.28 to 0.30 BTU/1b-OF at 100OF. At 100OF the change in thermal capacities of these rocks with temperature had become negligible.

Jukkola et al. (16) measured the thermal decomposition rates of carbonates in oil shale. They found that dolomite in oil shale began to decompose somewhat below 1050° F, while the calcite began to

dissociate in the range of 1150-1200°F. Both dissociation temperatures were nearly 400°F lower than that of the corresponding carbonate in a relatively pure state. These investigators showed that at 1550°F near complete carbonate decomposition occurred in less than one hour in a nitrogen atmosphere at 760 mm pressure. At lower temperatures thermal decomposition rate was considerably slower. The reaction rate was increased by decreasing partial pressures of carbon dioxide.

Feldkirchner and Linden (17) in their study of hydrogasification of oil shale reported carbonate decomposition rates in excess of those reported by Jukkola (15). It was hypothesized that a lower concentration of carbon dioxide partially explained this. Also, ratios of calcite to dolomite were larger in these studies and therefore over 1200°F, decomposition rates would be expected to increase rapidly.

Dannenberg and Matzick (18) included a discussion of carbonate decomposition. They reported that Green River oil shale contains approximately 17 per cent mineral carbonates and that during surface retorting approximately 30 per cent of these carbonates are decomposed. They presented a detailed mineral composition of a typical Green River shale which shows that mineral carbonates are composed of 62 per cent dolomite and 38 per cent calcite. They estimated from this composition that 57,000 BTU per pound mol of carbon dioxide are liberated.

Matzick et al. (19) presented results from research and development carried out by the Bureau of Mines on the gas-combustion oil shale retorting process. This Bulletin covered work from 1944 through 1955. It included much of the material published in other Bureau publications. A 28-GPT shale was reported to be approximately 23 per cent dolomite and 16 per cent calcite. Decomposition of dolomite required 500 BTU per

pound and calcite required 700 BTU. From this it was calculated that a pound of oil shale would require 227 BTU for complete carbonate decomposition.

The reaction time for kerogen decomposition was studied and results showed that 90 per cent decomposition occurred in 10 minutes at $850^{\circ}F$; it occurred in 1000 minutes at $700^{\circ}F$; and it occurred in 5000 minutes at $650^{\circ}F$. Essentially 100 per cent decomposition occurred at $750^{\circ}F$ given sufficient time.

Thomas (20) presented results from retorting tests on oil shale conducted under simulated overburden pressures. The range of the investigation was from 25 to 2500 psi at temperatures up to 1000°F. No visible fracturing or exfoliation was found to occur in oil shales retorted under confining stresses of 100 to 2500 psia. Pore structure and permeability were created by removal of oil and water, decomposition of carbonates and the creation of microscopic expansion cracks. Thermal conductivities measured on raw and spent shale varied no more than 13 per cent under stress conditions in excess of 1000 psi. Induced permeabilities averaged about 10 md for overburden pressures in excess of 1000 psi. This compared with cores of spent shale obtained from a field test which showed an 11.3 md average. Qualitative results based on X-ray diffraction patterns indicated carbonate decomposition of dolomite under overburden pressure began at about 650°F compared to the usual 1000°F. This was attributed to the LeChatelier-Braun effect which requires that a stressed system react in a direction that leads to an equilibrium condition.

Several investigators have solved heat transfer problems applicable to rock matrices. Thomas (21) presented a simplified

mathematical model of underground conduction heating. He assumed that a horizontal fracture existed between wells and that the radial temperature distribution could be approximated by a step function along the fracture surface. Heat transfer away from the fracture was assumed to be by one-dimensional vertical conduction and all convection effects were neglected. An analytic solution for this model was obtained. He showed that for a wide range of air injection rates the heat transfer coefficient ranged from 0.5 to 4.0, but it could be considered infinite and very little error results.

Lesser et al. (22) developed a mathematical model that represented the conduction heating of oil shale. They assumed heat would be introduced by the injection of hot condensing gas into horizontal fractures through the formation. The fractures were assumed to be equally spaced; the flow of fluid was linear. The thermal conductivity and thermal capacity of the rock was considered constant and endothermic heat loss due to kerogen distillation was disregarded. Maximum temperature was taken to be 1000° F and thus carbonate decomposition was assumed to be negligible. They presented limited results for a 500-ft system, for 10 and 20-ft fracture spacing, for 1000 lbs/ft²hr injection rate at 1000° F and for two diffusivity values. In all cases several years were required to heat all of the formation to 700° F. Less than 32 per cent of the injected heat was utilized for heating the shale.

Lauwerier (23) solved a heat transfer problem analytically where convection heat transfer occurred in one dimension and heat was given up by conduction into the bounding media. Heat transfer in the bounding media was assumed to be by conduction only in a direction perpendicular to the direction of flow. The downstream boundary was infinite

in the direction of flow and coefficients were constant. He used the Laplace transformation to obtain the solution. This analytical solution has been useful in checking the accuracy of numerical solutions.

In order to conduct an adequate theoretical heat transfer study of the proposed problem it was necessary to solve nonlinear partial differential equations that described conduction and convection heat transfer. These equations had to be solved numerically. A review of numerical techniques was made to determine which technique to use.

Birkhoff (24) summarized the current status of partial difference methods for computing approximate numerical solutions of boundary value problems. He pointed out that the practical solution of most boundary value problems by difference methods was still more of an art than a science and that theoretical error bounds usually are hopelessly pessimistic, except for difference methods having a low order of accuracy. He stated that, although the order of magnitude of truncation errors could be computed theoretically, the actual bound depended on the size of the derivatives usually not known beforehand. For mesh lengths used in practice, cumulative round-off errors were usually much smaller than truncation errors. If round-off errors accumulated significantly, it was usually because they were amplified by "divergent" computing methods. He suggested that the usefulness of partial difference methods owed far less to the science of numerical analysis than it owed to improvements in computing machine technology.

Birkhoff pointed out that the Crank-Nicolson method was not well adapted to the solution of parabolic differential equations involving two-space variables because the method was implicit and therefore it converged very slowly for fine meshes. He suggested that the ADIP

(alternating-direction implicit procedure) was an excellent practical solution to circumvent this difficulty.

Peaceman and Rachford (25) described the alternating-direction implicit procedure as it was related to the conduction heat equation with constant coefficients. It involved difference equations similar to those for the implicit method; however, only one of the second derivatives, say $\partial^2 T/\partial x^2$, was replaced by a second difference evaluated in terms of the unknown temperature while the other derivative, $\partial^2 T/\partial y^2$, was replaced by a second difference evaluated in terms of known values of the temperature. Sets of simultaneous equations were formed that could be solved easily by matrix inversion. These equations were said to be implicit in the x direction. If the procedure was repeated for a second time step of equal size, with the difference equations implicit in the y direction, the overall procedure for the two time steps was stable for any given time step. Their analysis of this procedure showed that it required fewer operations than either the implicit or explicit approach. Example solutions of the two-dimensional steady and unsteady state heat equations were given for rectangular boundaries.

Douglas and Peaceman (26) extended the applicability of the ADIP by presenting solutions of more practical problems. The first example was that of flow around a corner which showed that a more complicated region than a rectangle can be treated. A problem involving a radiation boundary condition, which was nonlinear, was given; and therefore the method was extended to more general equations. The third example involved point heat sources and sinks in an elliptical region and so this extended the method to treat curved boundaries and singular points.

ADIP required less calculating time for these solutions than did other methods.

Douglas (27) discussed the problem of stability and error growth for linear parabolic and hyperbolic equations. He showed for wide classes of difference analogies of linear parabolic and hyperbolic differential equations with twice-dependent coefficients that stability implies convergence in the mean.

Brian (28) presented a finite difference method for solving three-dimensional transient heat conduction problems. The method was a modification of ADIP preserving its advantages of unconditional stability and simplicity while achieving the higher-order accuracy of Crank-Nicholson. The first three steps of the method were equivalent to ADIP for half of a time step. In the fourth step the temperatures at the advanced time level N+1 were computed explicitly with the distance differences formulated in terms of the $T_{x}^{n+\frac{1}{2}}$, $T_{y}^{n+\frac{1}{2}}$ and $T_{z}^{n+\frac{1}{2}}$ values found in the first three steps. The form of the fourth step was similar to the Crank-Nicholson form. The method had not been proven by example when the article was written.

Bruce et al. (29) developed a numerical procedure to solve a second order nonlinear partial differential equation which described unsteady state gas flow. The Crank-Nicholson method was used. A difference equation was written for each point in the domain and thus a matrix of equations was solved. The method of solution consisted of factoring the nonlinear terms into a product of assumed values of P and unknown values of P. The resulting linear set of simultaneous equations was solved by a Gaussian type elimination procedure for the unknown P's. These values were then used as assumed values of P for

the next iteration. The iterations were continued until the unknown values were equal to the assumed values. The Gaussian type elimination procedure was first suggested by L. H. Thomas of the Watson Scientific Computing Laboratory. The procedure avoided error growth associated with the back solution of the plain Gaussian elimination and also minimized the storage problems in machine computation. This elimination procedure (Thomas' algorithm) was applicable for a tridiagonal matrix. Proof of this algorithm was given in this paper.

Blair and Peaceman (30) presented experimental verification of numerical solutions of nonlinear equations which described a gas drive in an oil reservoir. The numerical solutions presented were obtained using the ADIP. A scale fluid sand model was used in the experimental tests. Excellent agreement was obtained for all tests presented. A convenient method to handle variable grid spacing in the numerical equations was also presented.

Stone and Brian (31) gave a method of analyzing the accuracy of finite-difference analogies of the differential systems which characterized some convective transport problems. The method could be used to treat equations containing both first and second order terms, but was limited to consideration of linear differential systems.

Larkin (32) showed that the alternating-direction explicit procedure (ADEP) suggested by Saul'ev could be extended to two or three dimensions. The technique for approximating the diffusion equation was explicit, stable for time steps of any size, and he concluded it was competitive with other methods of approximating the diffusion equation. Because it was an explicit method, it held a speed advantage over implicit computations over a single time level.

Quon et al. (33) used the ADEP to solve a nonlinear partial differential equation describing two-dimensional gas reservoir behavior. They found the method to be straightforward and they encountered no calculational problems. They concluded the method offered advantage over the forward difference method from a stability standpoint, thus permitting larger time steps. They said there was an advantage over the ADIP from a computational point of view since only one nonlinear algebraic equation had to be solved at a time, rather than a set of equations, representing a row or a column of grid points.

Coats and Terhune (34) compared the ADIP and ADEP for two-dimensional flow calculations. They performed analyses and example applications to compare accuracy and computing speed. They showed that the truncation error for the ADEP was an order of magnitude larger than that for the ADIP. The ADEP was found to be nonconservative in that it failed to preserve no-flow conditions at exterior boundaries. This caused errors in potential and in material balance which could become extremely severe if wells were near the insulated boundaries. Comparison of two example solutions showed ADIP accuracy superior to ADEP; however, the ADIP required about 60 per cent more computing time than the ADEP.

CHAPTER III

THEORETICAL DEVELOPMENT

General Description of Problem

Geometric Considerations

In situ retorting of oil shale requires that communication be established between wells drilled into the shale matrix because oil shale has no natural matrix permeability. This research is concerned with a process using a single fracture communication between wells. These fractures are induced hydraulically at pressures of approximately 2200 psia, and they have been observed to leave the well bore in a vertical orientation. The fracture height can be controlled within a range of a few to 100 feet.

Figure 1 illustrates the geometry of this problem. Gas is injected down the injection well through the fracture in both directions to two producers. A combustible gas mixture could be burned at the surface and the hot products of combustion injected or the combustible mixture could be injected and then ignited downhole near the fracture. The hot gas gives up heat to the shale matrix as it travels through the fracture and it is recovered at the producing wells.

Figure 2 is an areal view of the pattern arrangement of a system of wells. It is expected parallel lines of wells would be drilled, all reaching the same horizon in the shale. The wells would be

Figure 1. Schematic Diagram of In Situ Oil Shale Retorting Arrangement

Figure 2. Pattern Arrangement of Wells

alternately producing and injection wells. The spacing between wells and the lines would be determined ultimately by the optimum economic life of the process. A staggered injection-producing well sequence from one line to the next, thus resulting in a countercurrent flow arrangement, would be the most efficient pattern based on heat transfer considerations.

Process Considerations

Essentially all liquid and gaseous hydrocarbons are released from oil shale at or above 700°F; therefore the rate of movement of the 700°F isotherm in the matrix is an important consideration. The rate of movement of this isotherm is not simply a function of the source temperature and rate of heat injection. A complicated set of endothermic heat reactions takes place as oil shale is heated. Endothermic heat loss is experienced from 600 to 800°F when the kerogen decomposes into oil, gas and coke. Also, endothermic heat loss occurs as the mineral carbonates of the shale decompose. Under surface retorting conditions most of this carbonate decomposition takes place over 1000°F and it is essentially complete above 1600°F. Thermal conductivity of sedimentary rocks is known to decrease significantly with temperature, and the thermal capacity of shale has been shown (10,14) to increase somewhat with temperature. These variable properties of oil shale complicate the problem as to the optimum fluid injection temperature.

Flow Path

As the hot injected gases retort oil shale next to the fracture, this shale is expected to develop a limited matrix permeability on the order of 10-15 md (20). Figure 3 is a schematic illustrating this. Although limited injected gas flow may occur through this zone, most of the gas flow is expected to remain in the high capacity fracture until the retorted zone reaches the producing well. The fracture must remain open ahead of the retorted zone to maintain a flow path to the producer. Because of this requirement, injection pressures would remain high, in order to maintain a fracture along the entire flow path, through both retorted and nonretorted portions. Permeability in the retorted zone should be sufficient so that gases and vapors from the interior shale undergoing retorting can escape to the fracture and be carried to the producing well.

Investigation Limitations

The process of in place oil shale retorting is extremely complex.

Therefore, this investigation was limited to heat transfer. In particular, the limitations of this investigation were:

- 1. Pressure was not considered. It was assumed injection rates used in this study were possible. Any effect of pressure on carbonate decomposition and retorting temperature was not taken into account.
- 2. Retorting efficiency and ultimate recovery efficiency were not studied in any aspect, although outflow temperatures were limited to 900°F. This was done because it was recognized sustained high temperatures would crack heavy hydrocarbons to gases or even to carbon.
- 3. Oil richness was considered only with regard to heat retorting requirements. A 28-GPT sample was used for this.

4. The effect of vaporization and condensation on heat transfer was not considered explicitly. Mass transfer within or out of the shale was not taken into account in the heat transfer equations written for this problem.

Important Controllable Variables

Controllable variables that affect heat transfer in this process are injection temperature, injection rate, well spacing and time.

Carbonate decomposition has an effect on the process but its effect will be implicit with the temperature effect.

Value of Heat Transfer Study

A knowledge of the temperature distribution under various conditions will determine the feasibility of this retorting process from a heat transfer standpoint. The most optimistic air-oil ratio can be predicted from this knowledge. Therefore, heat transfer results can be used to determine if large expenditures for an experimental pilot test are warranted. The pilot test operation is necessary to determine optimum pressure and recovery operating conditions and to evaluate the overall economics of a commercial project.

Plan of Attack

Four models were used in this heat transfer study.

Models I and II

Figure 4 is a schematic of Model I. This was the basic model used to investigate the feasibility of oil shale in situ retorting by use

Figure 4. Model I -- Convection through Constant Width Fracture

of single fractures between wells. Heat is convected through the fracture from the injection well to the producing well. Heat is transferred to the shale by conduction. Conduction heat transfer is considered only in the horizontal direction, both parallel and perpendicular to the fracture. Vertical heat conduction is not considered in this model because of computer size and time limitations. The section cross-hatched in Figure 4 represents a symmetric element in a linear array of such a well system. Therefore it is necessary to consider only one such element because adiabatic boundary conditions exist on three sides and an infinite boundary exists in the y direction perpendicular to the fracture.

Model II shown in Figure 5 is a representative element in a symmetric areal array of wells. Figure 5 is similar to Figure 4 except two sides are bounded by fractures which carry hot gas flowing in opposite directions. In this model only the cross-hatched element between fractures is considered, as the no-heat flow condition exists on all sides. In both of these models the flow rate of only one half the fracture is considered as demanded by the adiabatic boundary condition of the symmetric elements.

The following two nonlinear partial differential equations describe heat transfer in these two models.

$$\frac{h}{2} \rho_{g} c_{g} v_{g} \frac{\partial T_{g}}{\partial x} + \frac{h}{2} \rho_{g} c_{g} \frac{\partial T_{g}}{\partial t} = K(T) \frac{\partial T_{s}}{\partial y} \bigg|_{y = \frac{h}{2}}.$$
 (A-1)

$$\frac{\partial}{\partial x} \left[K_{x}(T) \frac{\partial T_{s}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y}(T) \frac{\partial T_{s}}{\partial y} \right] - q(T) = \rho_{s} \frac{\partial}{\partial t} \left[c_{s}(T) T_{s} \right] . \quad (A-2)$$

Figure 5. Model II -- Countercurrent Flow through Constant Width Fractures

Derivations of these equations are shown in Appendix A. Equation (A-1) describes convection heat transfer in the fracture with heat loss into the shale. The product $\rho_g v_g$ represents the mass velocity which is considered constant. This is based on the assumption that near steady state conditions occur in the fracture. This condition is approached more nearly with time as the fracture is heated. The thermal capacity, c_g , of the gas is considered to be constant. With these assumptions the rate of heat transfer from an injection well can be taken as constant. The Model I boundary condition for the fracture is:

At
$$x = 0$$
, $T = T$ injection

For Model II we have in addition:

At
$$x = x_I$$
, $T = T_{injection}$.

Also, the heat transfer coefficient between the gas stream and fracture surface was considered infinite. This is equivalent to saying the rock surface and the gas stream temperatures are identical at any point along the fracture. Thomas (21) has shown this assumption leads to negligible error.

Equation (A-2) describes conduction heat transfer in the shale. Thermal conductivity and thermal capacity of the shale are considered a function of temperature. Endothermic heat losses are represented by q, which is also a function of temperature. Boundary and initial conditions in the shale for Model I are:

1. At
$$t = 0$$
, $T = T_0$ $0 \le x \le x_T$, $0 \le y \le \infty$.

2. At
$$x = 0$$
, $\frac{\partial T}{\partial x} = 0$ $\frac{h}{2} \le y \le \infty$.

3. At
$$x = x_1$$
, $\frac{\partial T}{\partial x} = 0$ $\frac{h}{2} \le y \le \infty$.

4. At
$$y = \frac{h}{2}$$
, $T = \text{fracture temperature } 0 \le x \le x_1$.

5. At
$$y = \infty$$
, $\frac{\partial T}{\partial y} = 0$ $0 \le x \le x_{I}$.

For Model II the boundary conditions are:

1. At
$$t = 0$$
, $T = T_0$ $0 \le x \le x_1$, $0 \le y \le y_3$.

2. At
$$x = 0$$
, $\frac{\partial T}{\partial x} = 0$ $\frac{h}{2} \le y \le y_{J-\frac{h}{2}}$.

3. At
$$x = x_1$$
, $\frac{\partial T}{\partial x} = 0$ $\frac{h}{2} \le y \le y_{3-\frac{h}{2}}$.

4. At
$$y = \frac{h}{2}$$
, T = fracture temperature $0 \le x \le x_1$.

5. At
$$y = y_{J-\frac{h}{2}}$$
, $T = \text{fracture temperature } 0 \le x \le x_{I}$.

Model III

This model was designed to investigate the change in heat transfer fer that might result from limited convective flow through the retorted zone. Figure 6 is a schematic of Model III. Heat transfer by conduction is considered in the horizontal direction both parallel and perpendicular to the fracture. Vertical heat conduction is assumed zero. Convection heat transfer occurs not only through the fracture but to a predetermined limited extent through the retorted shale adjacent to the fracture. As more shale is heated over 700°F and the retorted area grows, convection heat transfer is assumed to occur in the growing permeable zone. The proportional amounts of gas flowing in the fracture and permeable zone would change with the varying pressure conditions, and therefore these quantities must be arbitrarily set since pressure is not considered in this study. The

Figure 6. Model III -- Convection through Growing Retorted Limited Permeability Zone

cross-hatched section in Figure 6 represents a symmetric section in a linear array of wells. Adiabatic boundary conditions exist on three sides and an infinite boundary exists on the fourth side.

The following equation describes heat transfer in this model and is derived in Appendix A.

$$\frac{\partial}{\partial x} \left[K_{x}(T) \frac{\partial T_{s}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y}(T) \frac{\partial T_{s}}{\partial y} \right] - q(T) - \alpha \frac{\partial T_{s}}{\partial x} = \rho_{s} \frac{\partial}{\partial t} \left[c_{s}(T) T_{s} \right]. \tag{A-3}$$

This equation describes one-dimensional convection heat transfer and two-dimensional conduction heat transfer. In the portion of the matrix where convection is not present, the value of α is zero. The assumptions made for Models I and II regarding the convective parameters were also made for this model. Thermal conductivity, thermal capacity and endothermic heat loss were treated as functions of temperature. Boundary and initial conditions for this model are:

:1. At t = 0, T =:
$$T_0$$
 $0 \le x \le 1, 0 \le y \le \infty$.

2. At
$$x = 0$$
, $\frac{\partial T}{\partial x} = 0$ $\frac{h}{2} \le y \le \infty$.

3. At
$$x = 0$$
, $T = T_{constant}$ $0 \le y \le \frac{h}{2}$.

4. At
$$x = x_1$$
, $\frac{\partial T}{\partial x} = 0$ $0 \le y \le \infty$.

5. At
$$y = 0$$
, $\frac{\partial T}{\partial y} = 0$ $0 \le x \le x_T$.

6. At
$$y = \infty$$
, $\frac{\partial T}{\partial y} = 0$ $0 \le x \le x_{I}$.

Model IV

Model IV was designed to evaluate the assumption of no vertical conduction heat transfer in the first three models. In the real physical situation heat conduction will occur in three directions and

therefore the configuration of the retorted zone (which coincides with the 700°F isotherm) will be a conical ellipsoid whose cross section diminishes in the downstream fracture direction. A symmetric element of the ellipsoid is illustrated in Figure 7. If it is assumed that there is no heat flow in the vertical direction then the 700°F isotherm would be a straight line in the z direction. But if heat flow occurs in the z direction, the resulting isotherm would be as illustrated. The objective of Model IV is to compare the relative magnitudes of cross-hatched A and B and A' and B', etc. With this comparison the effect of the assumption that no heat flows vertically can be qualitatively evaluated.

In order to determine the profiles in the y-z direction, a conduction model was considered which used a heat source based on the temperature history at selected positions along the fracture of Model I. The use of this temperature history involves the assumption that the fracture temperature histories of a two- and three-dimensional problem would be the same. This assumption is probably good after the temperature envelope has progressed some distance from the fracture. In any event results from Model IV are considered only qualitatively to get an estimate of the error involved in the two-dimensional conduction heat flow assumption.

With this background Model IV involved the solution of

$$\frac{\partial}{\partial z} \left[K_z(T) \frac{\partial T_s}{\partial z} \right] + \frac{\partial}{\partial y} \left[K_y(T) \frac{\partial T_s}{\partial y} \right] - q(T) = \rho_s \frac{\partial}{\partial t} \left[c_s(T) T_s \right],$$

with boundary conditions of:

1. At
$$t = 0$$
, $T = T_0$ $0 \le z \le \infty$, $0 \le y \le \infty$.
2. At $z = 0$, $\frac{\partial T}{\partial z} = 0$ $\frac{h}{2} \le y \le \infty$.

3. At
$$z = \infty$$
, $\frac{\partial T}{\partial z} = 0$ $\frac{h}{2} \le y \le \infty$.

4. At
$$y = \frac{h}{2}$$
 T = Fracture temperature from $0 \le z \le 25$.

5. At
$$y = \frac{h}{2}$$
, $\frac{\partial T}{\partial y} = 0$ $25 \le z \le \infty$.

6. At
$$y = \infty$$
, $\frac{\partial T}{\partial y} = 0$ $0 \le z \le \infty$.

Variable Coefficients

Thermal Capacity and Endothermic Heat Loss

The function of oil shale thermal capacity, c_s(T), versus temperature is difficult to describe over a wide temperature range. The thermal capacity is easily measured up to 450°F. Beyond this temperature the character of oil shale begins to change as liquids are driven off and mineral composition is altered. In the 600 to 800°F range kerogen is distilled off and therefore there is a considerable endothermic heat requirement. Carbonate decomposition begins over 900°F and continues to at least 1600°F at atmospheric pressure. These endothermic heat requirements are comparable to the total heat content of the rock and therefore must be considered in this heat transfer problem.

Instead of obtaining a relationship of the heat capacity of oil shale versus temperature, it is more convenient to measure total heat requirement to raise a unit mass of oil shale to a specific temperature. This total heat requirement represents the heat content of the rock, endothermic heat loss, as well as heats of vaporization and the heat content of gas and vapors driven off. These latter two components of the total heat requirement are relatively minor; however their inclusion helps to compensate for the errors in the assumption that no mass

flow occurs out of the matrix. This assumption was made in the derivation of the conduction heat transfer equation in Appendix A. These
quantities can be treated together as long as the temperature at any
point increases monotonically for the duration of a calculation. If
temperature decreases then only rock heat content can be considered.
Since most of the runs in this work involved increasing temperatures
only, the heat content of the rock and the endothermic heat loss were
handled as a single quantity. For those cases where "heat soaking" was
studied, a rock heat content curve was used. For these cases, temperatures were declining. Curves of total heat requirement and oil shale
heat content are shown in Figure 8. These curves were used in all heat
transfer calculations in this work.

The curves were constructed on information from the literature. The heat content of the shale up to 450°F was obtained from Shaw (14). From 450 to 1100°F the total heat requirement curve was based on data from Sohns et al. (10). In this work oil shale heat requirements for spent shale, 28 GPT shale and 57 GPT shale at atmospheric pressures were presented. The 28 GPT data were used here. The Shaw (14) data were for 30 GPT shale. Calculations by Sohns et al. (10) indicated that at 1100°F total heat requirement of the 28 GPT shale above 77°F was 358 BTU/1b while it was 272 BTU/1b for spent shale. The difference of 86 BTU/1b represented heat loss up to 1100°F. Dannenberg and Matzick (18) presented material balance calculations, indicating that heat losses other than by carbonate decomposition would be 58 BTU/1b, thus indicating that at 1100°F, 28 BTU/1b was due to carbonate decomposition. Dannenberg and Matzick (18) and Matzick et al. (19) presented

Figure 8. Total Heat Requirement for Retorting Oil Shale

data indicating that the total carbonate decomposition endothermic heat requirement was 220 BTU/1b for a shale containing 17 per cent by weight mineral carbon dioxide.

The total heat requirement curve from 1100 to 1600°F was approximated by assuming that the remaining carbonate decomposition would take place in this range and that the endothermic heat requirement for this decomposition would occur linearly. In addition to this heat requirement, it was assumed that the thermal capacity of spent shale at 1100°F would remain constant at 0.268 BTU/lb-°F. This assumption is supported by work of Somerton (15) on sedimentary rocks. Combining the endothermic heat and spent shale heat content, the curve shown in Figure 8 was obtained. Over 1600°F the increase in heat requirement is due solely to the 0.268 BTU/lb-°F thermal capacity.

The heat content curve was assumed to be equivalent to the total heat curve up to 600°F. At 1100°F spent shale has a heat content above 0°F of 295 BTU/lb. From 600 to 1100°F, it was assumed the increase in heat capacity was linear. This assumption is supported by Sohns et al. (10) data. Above 1100°F a thermal capacity of 0.268 BTU/lb-°F was used.

Thermal Conductivity

A relationship of the thermal conductivity of oil shale as a function of temperature is not available. Such a relationship would be extremely difficult to measure because the oil shale composition changes markedly with temperature. The thermal conductivity of oil shale has been measured at low temperatures by several investigators (11), (13). Gavin and Sharp (11) report that conductivities measured

on 42 GPT shale at temperatures between 77 and 167°F ranged from 0.76 to 1.25 BTU/ft-hr°F. They reported data on a number of substances including limestone whose conductivities at a temperature of 200°F ranged from 0.94 to 1.18 BTU/ft-hr°F. Recently, Somerton (13) reported the thermal conductivity of 30 GPT oil shale parallel to the bedding planes to be 0.63 BTU/ft-hr°F at room temperature. He measured the thermal conductivity of the same samples perpendicular to the bedding planes to be 0.45 BTU/ft-hr°F.

Somerton and Boozer (12) reported thermal conductivities of sedimentary rocks as functions of temperature from 700 to $1800^{\circ}F$. They found that the thermal conductivities of all rocks showed a similar dependency on temperature and most of them at $200^{\circ}F$ ranged from 0.8 to $1.09 \text{ BTU/ft-hr}^{\circ}F$. Their values dropped to approximately 0.36 at $1200^{\circ}F$. Over $1200^{\circ}F$ conductivities were constant.

It was decided to use the thermal conductivity of limestone for this work because information on oil shale conductivity as a function of temperature was not available. The limestone values were used because of the similarity of the low temperature values of both limestone and oil shale as reported by Gavin and Sharp (11). Also, the mineral content of limestone and retorted oil shale are more alike than any of the other sedimentary rocks. The mineral content of oil shale is approximately 50 per cent dolomite and calcite. The thermal conductivity relationship of limestone as a function of temperature used for this research work is shown in Figure 9. Values range from 0.93 BTU/ft-hr^OF at 200°F to 0.36 BTU/ft-hr^OF at 1200°F. At temperatures less than 200°F a constant value of 0.93 BTU/ft-hr^OF was used. For temperatures in excess of 1200°F it was assumed that thermal

Figure 9. Thermal Conductivity Versus Temperature

conductivity was constant at 0.36 BTU/ft-hr^OF. The 0.93 BTU/ft-hr^OF lies in the range of measured shale values in the literature; however it is 0.18 BTU/ft-hr^OF higher than Somerton (13) recently measured.

Description of Process Variables

Temperature

As mentioned in the description of the problem, injection temperature is an important process variable that can be controlled. The temperature must be greater than 700°F to achieve substantially complete distillation of the kerogen. It would seem to be desirable from the standpoint of heating rate and thus retorting rate that the source temperature be as high as possible. Also, for the same injected heat, injection rates can be reduced as injection temperatures are increased. Reduced injection rates improve the economics of the process. At temperatures of 1800 to 2000°F silicates will begin to fuse. Therefore, temperatures in excess of these might glaze the injection bore hole and the entrance portion of the fracture and could possibly cause pressure and flow problems. Because of this, 2000°F is considered to be the most likely temperature to be used.

Endothermic heat losses become increasingly large over 1000°F. It is not intuitively evident whether the adverse effects of these heat losses could be overcome by either reduced injection rates or greater rates of heating possible with high injection temperatures. The differences in the rates of retorting rock versus time for all injection temperatures investigated when compared at equal heating rates are an important consideration in this study. Should these differences be insignificant, then the highest injection temperature would be preferred

because of reduced gas injection rates.

Injection Rate

A larger injection rate at the same injection temperature means an increase in heat injection per unit time. This serves to raise fracture temperatures and thus the rate of retorting rock will be increased. However, after hot gas has reached the producing well, a larger quantity of heat will be exhausted at the higher injection rate. Therefore, per cent heat utilization drops with increased injection rates after heat "breakthrough." This problem may be partially alleviated if provisions for utilization of exhaust heat have been made. The effect of injection rate on the process was investigated.

Well Spacing

The effect of spacing on retorting efficiency may not be pronounced; however, larger distances between injection and producing
wells may improve utilization of heat. Spacing between lines of wells
will be determined by the rate of heat penetration. The larger spacing
that is possible without affecting retorting efficiency, the more economic the process will become because fewer wells would be required.

Time

The optimum operating life of a project would be a function of equipment life and investment return, as well as process parameters.

When the rate of retorting drops below a certain value, oil production will not pay for operating expenses. This is obviously the termination point of the project. This time can be controlled by the rate

of heat injection, injection temperature and spacing. Results from this study should provide information to predict optimum project length.

Heat Soaking

In those cases where the producing well temperature becomes far in excess of the retorting temperature, continued operation would be impractical. This is so from a heat utilization standpoint as well as from the standpoint of cracking all liquid petroleum products into gas or, even worse, into carbon. It is anticipated that at this time the producing and injecting wells would be shut in and the shale would be allowed to "soak." When temperatures dropped sufficiently, injection would be resumed. The effect of this "soaking" on retorting efficiency and heat utilization was investigated.

Air-Oil Ratio

The air-oil ratio is defined here as the volume of injected air plus fuel required to produce one barrel of oil. From this ratio the compression cost to produce a barrel of oil can be calculated. This cost is the most important one when considering process economics.

The amount of injected air required to produce a barrel of oil is dependent on all process variables; however, the injection temperature will probably be the one which influences it most. Two-thousand-degree gas contains approximately twice the heat of 1000°F gas. Therefore, if retorted shale volumes were the same for equivalent heat injection rates, then the total volume of air injection at 2000°F would only be one half of that at 1000°F. Thus producing air-oil ratios would be

only one half as much, also.

In this study a theoretical optimum air-oil ratio versus time was determined for all cases studied. Oil production was considered a direct function of the volume of oil shale retorted while air injection was constant for all runs.

CHAPTER IV

APPROACH TO NUMERICAL SOLUTIONS

Numerical Procedure

The alternating direction implicit procedure (ADIP) was used to solve the difference equations describing heat transfer in the oil shale. The literature indicated that for heat models the alternating direction implicit procedure (ADIP) possessed advantages of speed over the explicit and implicit techniques. Coats (34) showed the method for two-phase fluid problems to be some 60 per cent slower than alternating direction explicit procedure (ADEP) but it was more accurate. The ADIP was used here because the literature contained much more supporting evidence of its versatility to heat flow problems. For steady state conduction heat transfer problems the ADIP has been proven absolutely convergent for any time step. However, the method is not absolutely convergent for any time step for nonlinear problems or problems containing convective terms.

The ADIP for two dimensions involves the use of two sets of difference equations. One set has the second derivative $\frac{\partial^2 T}{\partial x^2}$ replaced by a second difference written in terms of unknown temperatures while $\frac{\partial^2 T}{\partial y^2}$ is substituted by a second difference written in terms of known temperatures of the previous calculation. The second set of difference equations has $\frac{\partial^2 T}{\partial y^2}$ described by unknown temperatures and $\frac{\partial^2 T}{\partial x^2}$

described by known temperatures. The first set of difference equations is said to be implicit in the x direction and explicit in the y direction. The second set is implicit in y and explicit in x.

There are as many equations in each set as there are mesh points in the grid representing the problem. The method of solution involves starting with either type equation written for each point in the grid. This set of equations is then solved by matrix inversion. The matrix inversion technique used in this work is described in Appendix C. For the next time step or iteration (depending on the problem), equations written implicit in the opposite direction are solved by matrix inversion. This alternating procedure is then repeated over and over again throughout the duration of the problem.

Description of Numerical Models

The differential equations representing each model, derived in Appendix A, are represented in terms of difference equations in Appendix B. The difference equation analogous to the differential equation that describes convection heat transfer with heat loss into shale, as described for Models I and II, is derived. It uses a two-point backward difference term to represent change in fracture temperature and a three-point forward difference term to describe heat transfer into the shale. The solution is explicit as only one boundary condition is required.

Since ADIP was used, difference equations that describe heat flow in the shale are derived both implicitly and explicitly in each direction that is considered for each of the models. Central differences are used to represent the second order differential conduction terms.

Central differences are also used for the first order convection term in Model III. These equations are all rearranged into a similar form as follows:

$$A_{i} T_{i-1} + B_{i} T_{i} + C_{i} T_{i+1} = D_{i}$$

where the coefficients $A_{\hat{1}}$, $B_{\hat{1}}$, $C_{\hat{1}}$ and $D_{\hat{1}}$ are comprised of constants, functions of known temperatures, and known temperatures. The subscripts refer to the mesh point the equation represents.

Appendix B also includes a description of the variable spacing scheme used in addition to the derivations of difference equations for the five computer programs that were developed for this research work. The five computer programs were named THERMAB1, THERMAB2, THERMAB3, THERMAB4 and THERMAB5. THERMAB1 and THERMAB3 were developed to solve Model I. THERMAB2 was written to solve Model III. THERMAB4 was used for the solution of Model II and THERMAB5 was the program used to solve Model IV. Boundary conditions for each program are listed in Appendix B.

It is to be noted that the numerical derivations in Appendix B were derived using specific endothermic heat requirement and specific thermal capacity. Since only total heat requirement and content data were readily available, these data were used in all programs. To use it, all that was necessary was to replace the composite specific total heat requirement (identified as C in the appendix) by the total heat requirement divided by the temperature.

The curves describing thermal conductivity, total heat requirement and total heat content shown in Figures 8 and 9 were described by equations so that they could be used in these computer programs. The

thermal conductivity curve from 200 to 1200°F was represented by a fourth order polynomial obtained by a least squares fit. Above and below these temperatures conductivity values were constant. The curves for the total heat requirement and total heat content were each described by a series of linear equations.

Model I

Figure 10 shows the grid network representation of Models I and III. Grid points in the y direction are spaced closely near the fracture and farther apart away from the fracture. This permits fewer grid points to be used and still maintain uniform accuracy throughout the grid system. A method to determine the y grid spacing is given in Appendix D. The distance in the y direction is sufficient to represent an infinite boundary. The x spacing for these models is constant. The center line in the fracture coincides with the first row of mesh points.

A computer program, THERMAB1, was first written to numerically solve Model I assuming that thermal conductivity and capacity were constant and there was no endothermic heat loss. Difference equations for this program are the same as those used in THERMAB3 and THERMAB4, but with the above assumptions the resulting coefficients of the difference equations are simpler than those for THERMAB3 and THERMAB4. The difference coefficients for THERMAB1 are listed in Appendix B along with the appropriate boundary conditions for this model. A flow chart and program listing of THERMAB1 are shown in Appendix F.

The program for the general numerical solution of Model I is called THERMAB3. The detailed derivation of the numerical equations

Figure 10. Arrangement of Grid Network for Models I and III

and resulting coefficients used in this program are presented in Appendix B. In these equations it is assumed there is directional variable thermal conductivity, variable thermal capacity and endothermic heat loss, all functions of temperature. The boundary conditions for Model I are also listed. A simplified flow sheet and program listing of THERMAB3 are given in Appendix F.

The basic method of solution of Model I with reference to the THERMAB3 flow chart is summarized as follows:

- 1. Read in all input data and initialize all parameters.
- 2. Compute values of velocity as functions of x distance.
- 3. Calculate the variable spacing values as described in Appendix B (CALCY subroutine).
- 4. Calculate initial values of thermal conductivity, total heat requirement, total heat content and store all in temporary arrays. The latter two sets of values as well as temperature are also stored in permanent arrays.
- 5. Solve the convection equation explicitly (CONV subroutine).
- 6. Calculate new values for thermal conductivity and total heat requirement in the j=1 row (COND5 and CAPAC1 subroutines).
- 7. Solve the conduction equation using ADIP first sweeping in the x direction (COND1 subroutine).
- 8. Calculate new values of thermal conductivity and total heat requirement (COND4 and CAPAC subroutines).
- Check to see whether all newly calculated temperatures
 have changed from previously calculated temperatures by a
 prescribed tolerance.

- 10. If the changes for all temperatures are less than tolerance, store temperatures and latest values of total heat requirement in permanent arrays and go to next time step.
- 11. If tolerance is not satisfied for all temperatures, solve convection equation again (CONV subroutine).
- 12. Calculate new values for thermal conductivity and total heat requirement in the j=1 row (COND5 and CAPAC1).
- 13. Solve conduction equation sweeping in the y direction (COND2 subroutine).
- 14. Calculate new values of thermal conductivity and total heat requirement.
- 15. Check to see if new temperatures are within tolerance.
- 16. If so, repeat step 10.
- 17. If not, solve convection equation again, etc.

This is basically the procedure for THERMAB3 and THERMAB1; however, the thermal conductivity and total heat requirement steps are not included in THERMAB1. In short, the convection equation is solved along the j=1 row of the matrix. Using this as a boundary condition, the heat distribution in the shale is determined by first solving the conduction equation which is implicit in x and explicit in y. A check is made to see if temperatures have changed less than a prescribed tolerance. If they have, time is incremented; if not, the convection equation is resolved. Then the conduction equation written implicit in y and explicit in x is solved. A check is made to see if the new temperatures have changed less than the tolerance. If tolerance is satisfied, time is incremented; if not, the procedure is repeated

until the iteration procedure satisfies the tolerance. Convergence is obtained rapidly with this procedure.

The program has a built-in procedure to lengthen the time increment and to reduce the tolerance of iteration as time increases.

Details of this are given later in this chapter and in Appendix D.

The variable spacing sequence, convection routine, both conduction equation routines (COND1 and COND2), the thermal conductivity, and total heat requirement determination were written in subroutine form to facilitate programming.

A heat balance is included in this and all other programs used in this work. A double integration of the total heat requirement of the shale is made to obtain total heat utilized. The procedure used for integration is a two-dimensional Simpson rule with variable increments. The heat which flows in at the injection well and that which flows out of the producer is easily calculated since these end point temperatures in row j=l are known at the end of each time step. The balance of heat in, with the heat out plus heat utilized, is a main controlling factor as to the validity and accuracy of the solution.

To obtain information needed to evaluate the assumption that no heat flows vertically, THERMAB3 is written so that temperatures and heat utilizations can be printed out every time step for prescribed positions along the fracture. These temperatures serve as input data for THERMAB5.

A contour subroutine is used to record the y distances from the fracture of several desired temperatures at all positions in the \mathbf{x} direction. Linear interpolation is used between grid points.

If the fracture temperature at the producing well becomes a

specified amount greater than the retorting temperature (taken to be 900°F here), the program is written so that the use of the convection routine is stopped, this information is printed out, and the shale matrix begins to "soak." To do this, boundary conditions of the two conduction subroutines (COND1 and COND2) must be changed to be adiabatic on all sides. Instead of changing these boundary conditions, two new subroutines (COND6 and COND7) which are analogous to COND1 and COND2 except for the changed boundary conditions are used. When the temperature of the producing well falls below 800°F, the program is written to print this out and revert to the normal calculating routine.

As long as temperatures at a given matrix point are increasing, the total heat requirement values are used. They represent both heat content of the rock and endothermic heat requirements which are combined in the difference equations. During soaking if temperatures decrease only the heat content of the rock is available to be given up. Therefore a decision on which "heat capacity" value to use is made on the basis of whether the temperature of the point in question has been increasing or decreasing. A separate subroutine (CAPSK) to calculate rock heat content is used for the "soak" alternative.

Model II

Figure 11 represents the grid network of Model II. This model is bounded on two sides by fractures. The spacing of grid points in the y direction was determined in the same manner as it was for Model I, but the presence of the two fractures causes the y spacing to be greatest at the center of the model. The x spacing for this model is

Figure 11. Arrangement of Grid Network for Model II

constant. The center lines of the two fractures coincides with the first and last row of mesh points. The distance between fractures is 100 feet and the distance from injection to producing well along a fracture is 500 feet.

The program for the numerical solution of Model II is called THERMAB4. The numerical equations for convection heat transfer are similar to the one for THERMAB3 with the appropriate point to point nomenclature changes made for the convection heat transfer equation along the j=J row. The numerical equations for conduction heat transfer in this program are the same as the ones for THERMAB3. The boundary conditions appropriate for THERMAB4 are listed in Appendix B. A flow chart and program listing are given in Appendix F.

Procedures in THERMAB4 are similar to THERMAB3. The basic difference is that in place of solving one convection equation, two convection equations are solved (CONV and CONV2 subroutines). Then new values of thermal conductivity and total heat requirement in both the j=1 and j=J rows are calculated (COND5, COND8, CAPAC1 and CAPAC2 subroutines). The procedures to lengthen the time increment and to reduce the tolerance of iteration are the same as those in THERMAB3. A heat balance, a contour subroutine and the "soak" feature are also included in this program.

Model III

Figure 10 as described for Model I also represents the grid network for Model III. THERMAB2 is the program for the numerical solution of this model. The difference equations both implicit in x and explicit in y, and implicit in y and explicit in x are derived in

Appendix B. The appropriate boundary conditions are also listed. A flow sheet and program listing are listed in Appendix F.

This model, used to evaluate the influence of convection heat transfer in the shale matrix, does not contain a separate convection equation whose solution is a boundary condition for the solution of the conduction equations. Instead, the convection term is combined with the conduction equations and the boundary conditions are all adiabatic, except at j=1, i=1, where a constant injection temperature is the boundary condition. Initially, convection heat transfer occurs only in the j=1 row (the fracture); therefore a switch (called HH in THERMAB2) to set the convective term equal to zero elsewhere is used. When the matrix temperature at any point exceeds 700°F, it is assumed limited permeability is developed and therefore the convective term is included by setting HH=1. The relative proportion of the convection present above the fracture must be set arbitrarily as it is a function of pressure which is not considered in this study.

Basically, this program is similar to THERMAB3. Although iteration is not necessary between a convection and conduction solution, it is necessary because of the nonlinear temperature-dependent coefficients. Subroutines for this program include COND1 and COND2 which are the basic routines for solving (by matrix inversion) the implicit in x and implicit in y forms of the difference equation that describes this model. Within each of these subroutines there is a built-in procedure which is written to determine the thickness of the retorted zone in the y direction. In other words, the procedure is designed to determine how many grid points are above 700°F. After this is determined, the convection heat transfer can be distributed as desired

throughout this zone. In the run made with this model it was assumed 90 per cent of the gas flow occurred in the fracture and 10 per cent was distributed evenly along a vertical profile of the retorted zone.

Other subroutines used in this program are the same as those described for THERMAB3. The "soak" routine is not included.

Model IV

Figure 12 represents the grid network used to solve Model IV. In the y direction, distances between points are variable and are the same as the grid spacing for Model I. In the z direction, the first six grid points (representing 24.5 feet) are evenly spaced. From 24.5 feet to 281 feet the grid spacing is analogous to that in the y direction. The first grid points (m=1 through 6) at j=1 are held at the same temperature during a time step, but this temperature changes for each new time step. This temperature history is obtained from the resulting temperature history of a selected point along the fracture in Model I. For example, the temperature history of $T_{10,1}$ (x = 100 feet down the fracture) in Model I could serve as the source temperature for m=1 through 6, at j=1 for Model IV. All other boundary conditions for this model are the adiabatic condition. A flow chart and program listing are given in Appendix F.

The program for the numerical solution of Model IV is called THERMAB5. The numerical solution for this model consists of an iteration procedure between the two basic subroutines, COND1 and COND2. These subroutines represent the alternate conduction equations derived for the ADIP. Iteration is necessary, as before, because of the nonlinear temperature-dependent coefficients. The same auxiliary

Figure 12. Arrangement of Grid Network for Model IV

subroutines, mentioned before, are utilized in this program. In addition, a subroutine, CALCX, is necessary for this program because of the variable spacing in the z direction. This program is written to calculate variable spacing values needed for the difference terms written for the z direction.

Determination of Iteration Parameters

Grid Spacing

The first three grid points in the y direction for all models were chosen one foot apart; the third through sixth point were two feet apart. Beyond this, grid spacings in the y direction were determined basically by the technique developed in Appendix D. This spacing technique allows the use of a minimum number of grid points, while requiring the temperature difference between any two adjacent points be less than a predescribed $(\Delta T)_{max}$.

Grid spacing in the x direction was constant. Using THERMAB3, it was determined that a Δx spacing of 10 feet was most satisfactory under the circumstances involved. A heat balance discrepancy of approximately 18 per cent after 30,000 hours of calculated history was obtained using a Δx of 20 feet. This compared to a heat balance discrepancy of 6 per cent using a Δx of 10 feet, other parameters being equal. Delta x spacings of less than 10 feet were impractical because of the number of grid points involved for the size of system being studied.

Time Incrementation

The size of the time increments used in the initial work with THERMAB1, which included constant coefficients, had an insignificant effect on the accuracy and no effect on numerical stability. This was at least true with Δt 's of 1 to 100 hours. After 5000 hours of computed history the ergor in the heat balance was 2.5 per cent and after 10,000 hours, it was 1.0 per cent using a constant Δt of 50 hours. Systematically increasing Δt values from 1 to 50 hours resulted in a heat balance error of only 0.6 per cent after 5000 hours. It was possible to start calculations with Δt = 100 hours with no apparent instability.

With the use of the temperature-dependent coefficients of thermal conductivity, thermal capacity and endothermic heat loss, the time increment size and time of utilization were very critical. The development of a time increment sequence that was suitable from stability and speed of solution standpoints was developed to some extent from theoretical considerations, but largely by trial and error. Initially Jusing THERMAB3, it was discovered that the numerical procedure became unstable after only 40 time steps (200 hours of computed history) when using a Δt of 5 hours and a Δx of 10 feet. Because of this, the technique described in Appendix D was used to increase Δt systematically. Using this approach after five initial Δt 's of one hour, it was possible to increase the size of Δt to 38 hours before instability developed. Additional work showed, however, that this procedure had to be discontinued after a Δt of 15 hours for absolute stability. A Δt of 15 hours was used up to a cumulative time of 1000 hours of computed history; it was then increased to 30 hours and held constant up to 3000 hours. At 5000 hours' history, At was increased

to 50 hours and at 10,000 hours of history it was increased to 100 hours. This sequence was developed by trial and error using a Δt_0 of $2000^{\circ} F$, a Δx of 10 feet, an α of 10 BTU/hr-ft°F and a tolerance of iteration of 0.05. Actually with this tolerance it was possible to go to a Δt of 100 hours earlier but the tolerance sequence described below required that Δt not be incremented to 100 until 10,000 hours of history. The size of the time step was less critical when a Δx spacing of 20 feet was used. Computations were stable with a Δt of 50 hours as early as 1000 hours of history, with a Δt of 100 hours as early as 3000 hours and with a Δt of 200 hours as early as 10,000 hours of history. Also, the systematic incrementing procedure could be used up to 38 hours and remain there without stability trouble. But, because of heat balance error, the smaller Δx spacing of 10 feet was adopted.

Tolerance Incrementation

As temperatures increased, a tolerance of 0.05 represented a sizable temperature spread and therefore for accuracy it had to be decreased. By trial and error with Δt values of 15, 30, 50 and 100 at the times stated above, it was determined that the tolerance could be reduced to 0.04 at 3000 hours, to 0.03 at 4000 hours, to 0.02 at 5000 hours and to 0.01 at 20,000 hours. The time increment and tolerance sequences used for these programs are illustrated in Figure 13. With small time steps, a smaller tolerance could have been used earlier; however, due to the computer time involved with these runs, it was necessary to sacrifice some accuracy for speed.

A change in injection temperature and injection rate from the

Figure 13. Time Increment and Tolerance Sequence

 $T_0 = 2000^{\circ}F$ and $\alpha = 10$ BTU/hr-ft^oF, for which these Δt and tolerance sequences were developed, can cause instability when Δt is large and tolerance small. To avoid this, all programs were written as follows:

- 1. At 20,000 hours, tolerance was set at 0.01.
- 2. If instability resulted, tolerance was reset at 0.02, etc.
- 3. At 25,000 hours, a tolerance of 0.01 was tried again, etc. In all cases a tolerance of 0.01 was used after 25,000 hours. Instability was determined by installing a counter on the number of iterations per time step. After ten iterations the programs were set to alter the tolerance as described. After twenty iterations in the same time step at any stage throughout a run, all programs were written to stop calculations. This safeguard prevented excessive computer usage.

Solution Validity

Check of Lauwerier Solution

An analytical solution of a simplified version of the neat transfer problem solved here served as a check as to the validity of the numerical procedures used in this work. Lauwerier (23) solved a one-dimensional convection heat transfer problem which loses heat by conduction perpendicular to the direction of flow. Conduction heat flow in the bounding media was one dimensional perpendicular to the direction of fluid flow. It was assumed that flow path was infinitely long and coefficients were constant. The THERMAB1 solution (constant coefficients) should be very close to the Lauwerier solution up until the time of heat breakthrough at the producing well since the heat

conductance in the x direction has a relatively small effect compared to heat conductance in the y direction.

Figure 14 is a comparison of the fracture temperature determined with the Lauwerier solution to that determined with THERMAB1 after 5000 hours of history. Little difference can be noted between the solutions. Figure 15 is a comparison of the position of the 600°F isotherms after 5000 hours as determined by the two methods. Again little difference is noted. This comparison is the more significant because the position of the 600°F isotherm represents the degree of oil shale retorting as determined both numerically and analytically. The 600°F isotherm was considered because the ambient temperature was set at zero for these solutions but was considered to be 100°F in the physical problem.

Solutions Using Limiting Coefficients

Since nonlinear temperature-dependent coefficients were involved in this research problem, the above comparison does not represent complete verification of the numerical procedures. Another test that was used to support the validity of these numerical procedures (THERMAB3 and THERMAB4) was to calculate constant coefficient solutions using values of the coefficients determined at the minimum temperature and maximum temperature encountered in this study. If these solutions encompass a solution with variable coefficients then the results were qualitatively in the proper direction. Two tests of 5426 hours each were run. The first one used a thermal conductivity of 0.93 BTU/ft-hr°F and a thermal capacity of 31.5 BTU/ft³-°F. The second one used a thermal conductivity of 0.36 BTU/ft-hr°F and a

Figure 14. Comparison of Numerical and Analytical Solutions -- Fracture Temperatures.

Figure 15. Comparison of Numerical and Analytical Solutions -- Positions of $600^{\circ}\mathrm{F}$ Isotherms

thermal capacity of 54.0 BTU/ft^{3.0}F. These cases represent values of these two coefficients at 100 and 1600°F, respectively. Figure 16 shows results of these two tests and also the result of a test using variable coefficients. Since the results from the latter test fall between the results from the two bounding tests, it was concluded the numerical procedures gave results that are qualitatively reasonable.

Heat Balance

As mentioned, heat balances using THERMAB1 (constant coefficients) were excellent very early into a run. By 2500 hours the heat balance error was less than 1 per cent. Errors in the heat balance for the variable coefficient solution were somewhat larger, especially at early times. One of the main reasons for this was because the iterative tolerance was started at 0.05 compared to 0.01 for the constant coefficient solutions.

The fractional error in the heat balance during any one time step monotonically decreased throughout the life of a run. This error was denoted in the program listings of THERMAB3 and THERMAB4 as ER2 (see Appendix E) and had values as high as 0.20 during the first few hundred hours of a run but decreased to values of 0.02 to 0.13, depending on the parameters of the problem. Cumulative heat balance discrepancies for the various runs ranged from 0.02 to 0.14 after 80,000 hours. In all cases discrepancies were positive, i.e., stored heat plus produced heat was greater than injected heat.

Effect of Assumptions

Convection Difference Equation

Figure 16. Comparison of 700°F Isotherm Positions using Constant and Variable Values of Nonlinear Coefficients

Comparison runs were made using both two-point and three-point backward difference representations to approximate the differential term describing convection heat transfer. The three-point approximation would be expected to give greater accuracy where temperature gradients were not linear. Results from these comparison runs showed that after a few hundred hours there was no perceptible difference in accuracy and therefore the two-point difference representation was used.

Velocity

Referring to Equations (B-13), (B-14), (B-15) and (B-16), it can be seen that there are two terms containing v, velocity, in their denominators. Assuming a fracture width of one-eighth inch, it was calculated that fracture entrance velocity would be approximately 600 ft/hr at an injection pressure of 3000 psi and a heat flow rate (α) of 10 BTU/hr-ft^OF. The velocity at the fracture outflow end would be on the order of 20,000 ft/hr if outflow pressures were 100 psi. Therefore, the value of v would be large any place within the fracture. The terms containing v are inversely proportional to v and thus they would be extremely small and probably insignificant.

The actual values of v used in these numerical solutions were based on the assumption that pressure drop through the fracture would be linear and the injected gas would behave as a perfect gas. Therefore the velocity was an inverse function of the pressure and range from 600 and 20,000 ft/hr for an alpha of 10 BTU/hr-ft^OF. An exponential equation with the x distance as the variable was used to

to calculate velocity at any x position. The equation was $v = 600 \, + \, 0.8 \, \, \text{x} \, + \, \text{e}^{\textbf{.}0182 x} \ \, .$

A test was made to determine whether changes in the values of these velocities would affect the temperature solution. One run was made using velocities determined by doubling the values of all constants in the above equation. Fracture temperatures between the two runs varied less than two degrees at any point after 2500 hours. This showed that the effect of velocity on temperature distribution was insignificant providing the velocities were large. Because of this, the method of determining these velocities had little effect on the solution.

Infinite Heat Transfer Coefficient

In these numerical solutions it was assumed that the temperature of the shale at the fracture surface was the same as the gas temperature. This is the same as saying the heat transfer coefficient between gas and shale is infinite. Thomas (21) showed that for heat transfer coefficients of 5 to ∞ BTU/ft² hr⁰F, the heat penetration rates into a substance of low thermal conductivity were essentially the same. He also showed for coefficients as low as 0.05 BTU/ft² hr⁰F the average heat penetration was reduced only about 10 per cent. Eckert (36) indicates that heat transfer coefficients of air range from 2 to 50 BTU/ft²/hr⁰F over various flat surfaces. Assuming that the heat transfer coefficient of a fracture surface in oil shale fell into this category, we would expect that an infinite heat transfer coefficient assumption for this work would be valid. A check of this assumption was made by making a short run with the quantity K/L between the j=1

and j=2 rows set equal to a boundary layer heat transfer coefficient of 5 BTU/ft 2 -hr $^{\rm o}$ F. The j=2 row was then considered to be the shale surface with the j=1 row being the boundary layer surface.

Figure 17 shows a comparison of the results of this run with a run assuming an infinite heat transfer coefficient. As can be seen the positions of the 700° F isotherms for the two cases are very close, thus supporting the infinite heat transfer assumption. Longer runs would show even a less percentage difference in the positions of the isotherms.

Figure 17. Effect of Infinite Heat Transfer Coefficient Assumption

CHAPTER V

RESULTS AND DISCUSSION

A total of 18 runs were made for this study. Table I summarizes these runs along with their pertinent parameters. All runs were conducted for 86,000 to 90,000 hours (approximately 10 years) real time, excepting for Run 11, which was 110,000 hours. Nine runs were made for Model I (THERMAB3), three runs for Model II (THERMAB4), two runs, for Model III (THERMAB2) and four runs for Model IV (THERMAB5). Example output sheets for THERMAB3 and THERMAB4 are shown in Appendix E.

Computer time for these runs varied from 35 minutes to three hours in length. Model IV was solved in 35 minutes using THERMAB5.

Conventional 500-foot runs using THERMAB3 required about 1 hour 20 minutes of computer time, Model III required 1 hour 30 minutes to solve using THERMAB2 and Model II required 1 hour 40 minutes with THERMAB4. Run 9, 1000-foot system, required approximately three hours to solve using THERMAB3. This run used 2121 grid points.

Results from Model I and Model II

General Discussion

Results from the nine runs made for Model I are presented in Figures 18 through 35, and results from the three runs made for Model II are presented in Figures 36 through 41. Two figures are presented for each run. The first is a plot of the position of the 700°F

TABLE I SUMMARY OF COMPUTER RUNS

Run		Fracture	Injection		Injection Rate						
Number	Mode1	Length, ft Te	mperature,	F	α*	Bt	u/hr-ft	SCF,	/hr-ft	MMSCF/D - We	e11
1	I	500	1000		5.00	1	5,000	•	278	1.33	
2	Ī	500	1000		10.00		.0,000		556	2.67	
3	Ī	500	1500		6.67		.0,000		370	1.78	
4	Ī	500	1500		13.33		0,000		740	3.55	
5	I	500	2000		2.50		5,000		L39	0.67	
6	I	500	2000		5.00	1	.0,000		278	1.33	
7	I	5.00	2000		10.00	2	20,000		556	2.67	
8	· I	500	3000		3.33	1	.0,000	-	L56	0.75	
9	I	1000	2000		10.00	2	20,000	5	556	2.67	
10	II	500	1500		6.67	1	.0,000	3	370	1.78	
11	II	5:00	2000		5.00	1	.0,000	2	278	1.33	
12	ΙΙ	500	2000		10.00	2	0,000	5	556	2.67	
13**	III	500	2000		2.50		5,000]	L39	0.67	
14	III	500	2000		2.50		5,000	-	L39	0.67	
15	IV	Cross-section	Profile at	0	feet	along	fracture	of Rur	ı 6.		
16	IV	Cross-section	Profile at	100	feet	along	fracture	of Rur	ı 6.		
17	IV	Cross-section	Profile at	200	feet	along	fracture	of Rur	ı 6.	•	
18	IV	Cross-section	Profile at	400	feet	along	fracture	of Rur	ı 6.		

^{*}BTU/hr-ft^oF
**
100 per cent of gas flow in fracture.

Figure 19. Temperature Distribution After 86,100 Hours -- Run 1

Figure 20. Position of 700°F Isotherm Versus Time -- Run 2

Figure 21. Temperature Distribution After 86,100 Hours -- Run 2

Figure 22. Position of 700°F Isotherm Versus Time -- Run 3

Figure 23. Temperature Distribution After 86,100 Hours -- Run 3

Figure 25. Temperature Distribution After 89,100 Hours -- Run 4

Figure 26. Position of 700°F Isotherm Versus Time -- Run 5

Figure 27. Temperature Distribution After 86,100 Hours -- Run 5

Figure 28. Position of 700° F Isotherm Versus Time -- Run 6

Figure 29. Temperature Distribution After 86,100 Hours -- Run 6

Figure 30. Position of 700°F Isotherm Versus Time -- Run 7

Figure 31. Temperature Distribution After 88,600 Hours -- Run 7

Figure 32. Position of 700° F Isotherm Versus Time -- Run 8

Figure 33. Temperature Distribution After 88,100 Hours -- Run 8

Figure 34. Position of 700° F Isotherm Versus Time -- Run 9

Figure 35. Temperature Distribution After 83,000 Hours -- Run 9

Figure 37. Temperature Distribution After 86,100 Hours -- Run 10

Figure 39. Temperature Distribution After 86,100 Hours -- Run 11

Figure 41. Temperature Distribution After 84,800 Hours -- Run 12

isotherm versus time. The second is the temperature distribution at the end of 86,100 hours. Notice that in the case of the Model II runs, double countercurrent plots are presented. The temperature distribution curves are given to serve as reference information. For those runs where the "soak" alternative was studied, positions of the 700° F at the end of selected injection periods were plotted to insure that the farthest advance of the 700° F was recorded. For these runs the final temperature distribution was listed at the end of the injection cycle closest to 86,100 hours.

The plots of the positions of the 700°F isotherms versus time are the basic curves from which all other comparison curves were constructed. The areas under the 700°F isotherm at any time represent the volumes of oil shale retorted per foot of fracture thickness as calculated by the two-dimensional models. These volumes are compared with the parameters of the process in Figures 42 through 59.

In order to obtain accurate volumes of shale retorted, large plots of the positions of the 700°F isotherms versus time were made. The areas under these large plots were determined with a planimeter. Planimeter error averaged less than 1 per cent.

Fractional cumulative heat balance errors ranged from 0.02 to 0.14; however, heat balance error was found to lie within 0.05 to 0.10 for most cases. Two soak runs had the lowest errors and the 3000°F run had the largest error. It is noted that all heat balance errors were in the same direction, i.e., cumulative stored heat plus produced heat was greater than cumulative injected heat. With this in mind results from these runs can be considered on the optimistic side. However, retorted volumes determined here are not necessarily in error

to the same degree as the heat balance because only the position of the 700° F isotherm is involved.

The previously described iteration parameters developed with THERMAB3 for this work were satisfactory for all runs except for run 9. This was the only case studied with a 1000-foot fracture length. In this case, the time increment was held at 50 hours up to 30,000 hours of history instead of the usual 10,000 hours. This was necessary to get convergence within the prescribed tolerances.

Effect of Temperature

The effect of injection temperature upon retorting rate at several heat injection rates is shown in Figures 42, 43 and 44. These figures show that rates of retorting are all constant up to the time that the 700°F isotherm arrives at the producing well. For the cases shown in Figures 42 and 43 the 700°F isotherms do not reach the producers during the durations of the runs. At the highest injection rate of 20,000 BTU/hr-ft, it can be seen from Figure 44 that the rate of retorting for the 1500°F case decreases at approximately 20,000 hours; whereas, for the 2000°F case, it decreases at 25,000 hours. Figures 24 and 30 show at these times the 700°F isotherms have reached the producers. When the producers reached 900°F the alternating soakinjection routine was used. Figure 44 also shows that for the 2000°F, 1000-foot case, its rate of retorting remained constant, and therefore the 700°F isotherm did not reach the producer during the run.

Figures 42, 43 and 44 clearly show that the rate of retorting increases as the injection temperature is increased when compared at the same heat injection rate. Figure 43, which compares retorting

Figure 42. Effect of Temperature upon Retorting Rate with a Heat Injection of 5000 BTU/hr-ft

Figure 43. Effect of Temperature upon Retorting Rate with a Heat Injection Rate of 10,000 BTU/hr-ft

Figure 44. Effect of Temperature upon Retorting Rate with a Heat Injection Rate of 20,000 BTU/hr-ft

rates at four temperatures, shows the rate of retorting is increased to a smaller extent as the injection temperature increases. Rates of retorting at 1500, 2000 and $3000^{\circ}F$ are 2.35, 2.80 and 2.94 times the rate at $1000^{\circ}F$.

Results from these three figures are all the more striking since, for equal heat injection rates, it is necessary that the air injection for the 1000° F case be approximately twice that of the 2000° F case. This means that the air compression cost for the 1000° F case would be twice that of the 2000° F case, while the retorting rate is only about 35 per cent of the 2000° F case.

Figures 45 and 46 compare retorting rates at 1000 and $2000^{\circ}F$ for two gas injection rates. These comparisons are more significant as compression costs would be the same. These comparisons show the rate of retorting at $2000^{\circ}F$ is approximately 5.7 times that at $1000^{\circ}F$ when compared at the same gas injection rate.

Effect of Injection Rate

Figures 47, 48, and 49 show the effect of injection rate for a constant gas injection temperature. These figures show that up until the time the 700°F isotherm reaches the producer, the retorting rate is a direct function of injection rate when compared at the same temperature. After "breakthrough" of the 700°F isotherm, retorting efficiency falls off.

Breakthrough of the 700°F isotherm occurs at 90,000 hours for a heat injection rate of 10,000 BTU/hr-ft at 2000°F (see Figure 28). If this injection rate is doubled, using the same 500-foot system, then breakthrough occurs at 25,000 hours (see Figure 30). If the

Figure 45. Effect of Injection Temperature upon Retorting Rate with an Air Injection Rate of 278 SCF/hr-ft

Figure 46. Effect of Injection Temperature upon Retorting Rate with an Air Injection Rate of 556 SCF/hr-ft

Figure 47. Effect of Injection Rate upon Retorting Rate with an Injection Temperature of 1000°F

Figure 48. Effect of Injection Rate upon Retorting Rate with an Injection Temperature of $1500^{\circ}\mathrm{F}$

Figure 49. Effect of Injection Rate upon Retorting Rate with an Injection Temperature of $2000^{\circ}\mathrm{F}$

injection rate is 20,000 BTU/hr-ft but the system length is doubled to 1000 feet, then breakthrough again occurs beyond 80,000 hours (see Figure 34). These comparisons show that for a specified project life (here taken to be 86,100 hours or approximately 10 years), there is an optimum injection rate-system length combination and they are almost directly related. In other words, doubling the injection rate requires doubling the system's length for 700°F isotherm breakthrough to occur within the same period.

A comparison at a rate of 10,000 BTU/hr-ft shows that after 86,100 hours, the $700^{\circ}F$ isotherms are 500, 480 and 410 feet down the fracture, respectively, for the $1500^{\circ}F$, $2000^{\circ}F$ and $3000^{\circ}F$ injection temperatures (see Figures 22, 28 and 32). This behavior can be understood when it is remembered that the gas injection rate is inversely proportional to the injection temperature for a constant heat injection rate.

Effect of Soaking

For those cases where a producing well reached 900°F, heat injection was discontinued and the system was allowed to "soak." When the producing well temperature had decreased to 800°F, injection was resumed. The efficiency of the alternating soak-injection period is illustrated in Figures 50 and 51. Cumulative volume retorted is plotted versus cumulative heat injected. Prior to the soaking periods all runs show comparable retorting efficiencies at the same injection temperature. After the alternating injection-soak routine starts, the retorting efficiencies of these runs monotonically decrease with cumulative heat injected. The decrease is more dramatic when plotted against time as shown in earlier figures.

Figure 50. Effectiveness of Soaking with Injection Temperature of 1500°F

Figure 51. Effectiveness of Soaking with Injection Temperature of 2000°F

A comparison at cumulative heat injections of 120×10^7 BTU/ft shows the alternating injection-soak portion of a run to be only 60 per cent as efficient as the continuous injection portion using the 1500° F injection temperature. At 2000° F the same comparison shows an efficiency of 70 per cent. This therefore suggests it is preferable to increase the system's length or decrease the injection rate rather than use the soak technique.

Effect of Bounded Systems

Three runs were made for Model II (THERMAB4). Basic data from these runs are shown in Figures 36 through 41. Figures 52, 53 and 54 compare rates of retorting of bounded and unbounded systems using the same injection rates and temperatures. They show that retorting rates for bounded systems increase monotonically with time compared to the retorting rates for unbounded systems.

Final temperature distributions shown in Figures 37 and 39 after 86,100 hours indicate that the temperatures in the area between the retorted areas range between 500 and 600°F. In fact all temperatures in these areas exceed 550°F. The final temperature distribution shown in Figure 41 indicates all temperatures are greater than 600°F. These results show that with additional time, with or without injection, the entire volumes of the systems would be retorted.

Figure 38 shows the final positions of the 700°F isotherms after 109,100 hours. The isotherms are very close and all temperatures at this time were in excess of 650°F. This volume can be considered essentially completely retorted at this time. This run began the alternating injection-soak routine after 104,000 hours which indicates

Figure 52. A Comparison of Retorting Rates with Bounded and Unbounded Systems

Figure 53. A Comparison of Retorting Rates with Bounded and Unbounded Systems

Figure 54. A Comparison of Retorting Rates with Bounded and Unbounded Systems

the producer reached the maximum allowable temperature of 900°F near the end of the run. We can conclude, therefore, at a rate of 278 SCF/hr-ft (1.33 MMSCF/D per well) with a 2000°F injection temperature, it would take approximately 12 years to retort a symmetric element from a pattern array which had wells spaced 500 feet apart along parallel lines spaced 100 feet apart.

Figure 55 compares the retorting rates of the three runs conducted on bounded systems. The most pertinent observation from this figure is a comparison of runs at 2000°F with injection rates of 278 and 556 SCF/hr-ft. In the latter case the run utilized the alternating injection-soak routine throughout much of the time. A comparison of retorted volumes and cumulative injected volumes at the end of these two runs is illustrated. At the end of 85,000 hours the high injection rate case, using the soak routine, retorted 17,500 cubic feet per foot requiring 34.8 MMSCF/ft of injected gas. The slower injection rate case took 104,000 hours to retort the same volume but used only 29.0 MMSCF/ft of injected gas to do the job. This comparison shows it takes 20 per cent longer at the slower rate but requires only 80 per cent as much injected gas. This shows that the slower rate would be superior to the faster rate that resulted in alternating injection-soak during the latter part of the run.

This comparison, along with the unbounded soak runs, indicates the alternating injection-soak routine would be inefficient and that it is preferable to design a project by a combination of geometry, project life and injection rate which would allow complete retorting of a system by the time the producing well temperature reached 900°F. The fact that the retorting rate is constant until the 700°F isotherm

Figure 55. A Comparison of Retorting Rates of Runs Using Bounded Systems

reaches the producer also supports this conclusion. Retorting efficiency starts to drop off between $700^{\rm o}{\rm F}$ and $900^{\rm o}{\rm F}$, but a project could be designed to finish when the producing well reaches a temperature somewhere between $700^{\rm o}{\rm F}$ and $900^{\rm o}{\rm F}$.

Air-Oil Ratios

Theoretical air-oil ratios can be calculated from the results of all the runs on Model I and II. The air-oil ratio is an excellent yardstick for predicting process feasibility because the cost of air injection would be the principal expense in such a process. The volume of oil shale retorted at any time represents a certain quantity of oil. It has been assumed in this work that the average oil shale richness is 30 gallons per ton. If it is assumed that the oil is 100 per cent recoverable then an optimum air-oil ratio can be calculated by dividing the volume of air-fuel mixture injected by the oil production during a selected period of time. Figures 56, 57, 58 and 59 show air-oil ratios for the 12 runs.

Figure 56 shows that the producing air-oil ratio with an injection temperature of 1000°F would be constant at approximately 300,000 SCF/bbl for an unbounded system. A constant air-oil ratio would be expected prior to breakthrough of the 700°F isotherm since the rate of retorting is constant.

Figure 57 shows that up to the time of breakthrough at the producing well, the producing air-oil ratio with an injection temperature of 1500°F is 80,000 SCF/bbl for an unbounded system. At a high gas injection rate of 740 SCF/hr-ft using the alternating injection-soak routine, the air-oil ratio continued to increase with time and was

Figure 56. Air-Oil Ratio for Injection Temperature of $1000^{\circ}\mathrm{F}$

Figure 57 Air-Oil Ratios at Injection Temperature at 1500°F

Figure 58. Air-Oil Ratios at Injection Temperature of $2000^{\circ}F$

Figure 59. Air-Oil Ratio for Injection Temperature of 3000°F

160,000 SCF/bb1 at 80,000 hours producing history. With a rate of 340 SCF/hr-ft the air-oil ratio decreases for a bounded system from 80,000 to 38,000 SCF/bb1 after 80,000 hours.

Figure 58 compares air-oil ratios for six runs using a gas injection temperature of 2000°F. The air-oil ratio for all runs prior to 700°F isotherms breakthrough is 52,000 SCF/bbl. The unbounded soak run shows that the air-oil ratio increases to 86,000 SCF/bbl during the remaining life of the run. The air-oil ratio of the bounded soak run decreased throughout the run to 15,000 SCF/bbl at 82,500 hours. The bounded run with an air injection rate of 278 SCF/hr-ft shows the air-oil ratio decreasing to 5000 SCF/bbl at 104,000 hours. At this time the producing well had reached 900°F but the temperatures of the rest of the unretorted area as illustrated in Figure 38 are greater than 650°F. This means that this area would be retorted with practically no additional air injection, thus making the producing air-oil ratio extremely low.

Figure 59 illustrates that a 3000°F injection temperature will yield a producing air-oil ratio of 27,500 SCF/bb1 with an unbounded system.

It can be seen that the producing air-oil ratio is solely a function of the injection temperature prior to breakthrough of the 700°F isotherm at the producing well. The higher the operating temperature the lower the air-oil ratio will be. It is also obvious that the bounded systems will yield the lower average air-oil ratios. Run 11 was conducted 109,100 hours. At that time all temperatures were greater than 650°F, indicating the volume between fractures would be completely retorted. Dividing this volume into the cumulative air

injected gives an average theoretical air-oil ratio of 24,000 SCF/bbl over the 12-year project life. It is possible that air injection could be stopped earlier and the whole area still be retorted over a longer time. This would serve to lower the average air-oil ratio somewhat.

Heat Utilization

The fraction of the cumulative injected heat that is absorbed by oil shale is one measure of efficiency. The following table lists the twelve runs for these two models with their total times and fractional heats stored. These fractional values have been adjusted downward by the percentage heat balance error since the heat absorbed plus the heat produced was higher than the heat injected for each of the runs.

Run Number	Time, Hr <u>s</u> .	Fraction of Cumulative Injected Heat that is Absorbed by Oil Shale
Kair Namber	Time, III 5.	ADSOIDED BY OIL BRATE
1	89,100	0.83
2	86,100	0.59
3	89,100	0.73
4	88,500	0.47
5	86,100	0.94
6	89,100	0.84
7	85,800	0.67
8	88,100	0.92
9	83,200	0.85
10	89,100	0.72
11	109,100	0.78
12	84,800	0.65

Comparison of these values shows that heat utilization improves at reduced injection rates for the same system length. Also, the higher the injection temperature, the better the heat utilizations. The runs employing the soak routine during part of the time had lower heat

utilizations than other runs. Although Runs 10, 11 and 12 (Model II) indicate lower heat utilizations, it must be remembered that the heat absorbed by bounded systems is used more efficiently as far as retorting is concerned.

Results from Model IV

Results from Model IV will be discussed before those of Model III since Model IV was designed to evaluate the assumption of vertical adiabatic boundaries used in the preceding models. A qualitative estimate of the error involved when two-dimensional horizontal conduction heat transfer is assumed was made with THERMAB5 using results from Run 6 as source data. Vertical cross-section profiles were examined at 0, 100, 200 and 400 feet along the fracture using temperature histories at these positions from Run 6. Four separate runs with THERMAB5 were necessary to determine these profiles. The measured vertical conductivity (traverse to the bedding planes) of 30 gal/ton shale was found by Somerton (13) to be 0.71 of the horizontal conductivity (parallel with bedding planes) at room temperature. This ratio of vertical or horizontal conductivity was used in the variable conductivity subroutine in THERMAB5.

Final cross-sectional positions of the 700°F isotherms as determined with THERMAB5 at these four positions are shown in Figures 60, 61, 62 and 63. The areas encompassed by the 700°F isotherms are compared to the rectangular areas shown. These rectangular areas represent the cross-sectional retorted areas when vertical heat flow is assumed to be zero. At 0 feet down the fracture the cross-sectional profile is 5 per cent larger than the rectangular area. At 100, 200

VERTICAL DISTANCE FROM FRACTURE CENTERLINE, FEET

Figure 60. Vertical Profile of 700°F Isotherm at 0 Feet Down Fracture
After 89,100 Hours

Figure 61. Vertical Profile of 700°F Isotherm at 100 Feet Down Fracture After 89,100 Hours

Figure 62. Vertical Profile of 700°F Isotherm at 200 Feet Down Fracture After 89,100 Hours

Figure 63. Vertical Profile of 700° F Isotherm at 400 Feet Down Fracture After 89,100 Hours

and 400 feet down the fracture the cross-sectional profiles are 10, 17 and 21 per cent smaller than the rectangular areas. Applying these four errors to the final retorted volume of Run 6 in a weighted average manner, it was determined that the two-dimensional retorted volume determined by THERMAB3 in Run 6 was approximately 12 per cent higher than would be anticipated in an actual three-dimensional case.

It must be remembered that this result is qualitative, since source temperatures for these profiles were taken from the two-dimensional solution of which we are determining error. At large times these two-dimensional source temperatures should be near the average three-dimensional ones. In three dimensions the entire fracture height would not be at the same temperature as was assumed here.

Even though this is a qualitative result, it points out two facts. First, retorted volumes calculated with the two-dimensional unbounded models are high on the order of 10 per cent or more. Since heat balance errors are all on the plus side, errors in retorted volumes can no doubt be considered a few per cent higher than this. Second, results from Model II (bounded systems) would also be optimistic, since interference between heat sources would occur later than predicted by the two-dimensional model.

Results from Model III

Model III was designed to evaluate the effect of partial convective flow through the retorted zone. A combined conduction-convection equation was used with this model instead of separate equations, thus numerical procedures used to solve this model are different from the

numerical procedures used to solve Model I. The relative accuracy of these two models was compared in Runs 5 and 13. Boundary and initial conditions for these two runs were identical. Run 5 was made using THERMAB3, the program written to solve Model I; and Run 13 was made using THERMAB2, the program written to solve Model III. Although cumulative heat error was several per cent higher using Model III than it was using Model I, the resulting final position of the 700° F isotherm coincided with that obtained in Run 5 shown in Figure 26. This check indicates that this method of solution was valid and results from Model III could be compared directly with Model I.

Run 14 was made using the same parameters as Run 13, but it was assumed that behind the leading edge of the 700°F isotherm 10 per cent of the injected gas traveled through the retorted zone, evenly dispersed, while 90 per cent traveled through the fracture. Ahead of the leading edge of this isotherm, all of the gas flow was in the fracture. Figure 64 shows the position of the 700°F isotherm versus time for this run. Figure 65 shows final temperature distribution for this run. A comparison of this figure with Figure 27 shows a consierable shift of the isotherms to the right. This suggests an improvement of heat utilization. Figure 66 compares the final position of the 700°F with and without 10 per cent convection in the retorted matrix. As can be seen, the retorted volume of oil shale is larger assuming limited gas flow in the region. This leads to a reduced air-oil ratio as shown in Figure 67.

Injected gas flow in the matrix is expected to be negligible.

However, any convection in the retorted zone that may occur will serve

Figure 64. Position of 700° F Isotherm Versus Time -- Run 14

FIGURE 65. Temperature Distribution After 86,100 Hours -- Run 14

Figure 66. Positions of 700°F Isotherms After 86,100 Hours -- Runs 13 and 14

Figure 67. Air-Oil Ratios at Injection Temperature of $2000^{\circ}F$ -- Runs 13 and 14

to increase the rate of retorting and improve the process over that predicted by Models I and II.

Significance of Results

General Remarks

Results of this study give a guide as to the feasibility of retorting oil shale by hot gas injection through vertical fractures from a heat transfer standpoint. The resulting theoretical air-oil ratios, which are based on retorted volumes, are the most important yardsticks as to economic feasibility.

In this investigation the values of oil shale thermal capacity, thermal conductivity and endothermic heat loss as functions of temperature were approximated. Also oil shale is a heterogeneous matrix where values of these heat transfer parameters cannot be accurately predicted from point to point. These facts would lead to some difference between the calculated and the real heat distribution of a shale matrix, even if the calculated solution were exact. In this work it has been shown that the numerically calculated retorted volumes in two dimensions are probably 10 per cent or more above a numerical three-dimensional solution. This accuracy is considered sufficient for the type of heterogeneous system being studied. These results should be taken to be semiquantitative. They serve to indicate the range and direction of expected results.

Feasible Air-Oil Ratios

Economic air-oil ratios depend on a number of factors, the most

significant being the injection pressure. Results from this work indicate that retorting efficiency drops off when the 700°F isotherm reaches the producing well. This would indicate that a project should be designed so that the 700°F reaches the producer near the end of the project life. This being the case, it would be expected that high injection pressures (2000 - 2500 psi) would be required during the entire life of a project in order to keep the fracture opened. Pressures would be on the order of 2000 psi which would lead to compression costs on the order of 6 cents per MSCF of air compressed from atmospheric conditions.

High injection pressures are not as discouraging as might be supposed. This is because relatively high-pressured produced gas from the process could be reinjected to control the injection temperature. This reinjected produced gas could represent up to 70 per cent of the total gas injected. The cost of compressing this produced gas would be only a fraction of that to compress an equivalent amount of gas from atmospheric pressure. The reinjected produced gas would probably contain enough fuel so that make-up gas would not be needed after the process had been operating awhile.

Other factors such as project life, well costs, hydrocarbon product quality, etc., would have a bearing on total costs and thus determine what maximum air-oil ratio might be feasible. There have been indications that the quality of oil obtained from an in situ oil shale retorting process would be considerably improved over the quality from surface retorting. This means the oil would be more valuable per barrel and visbreaking would be unnecessary. A higher air-oil ratio could be tolerated if the oil quality should be improved.

With this as a background, it is clear low injection temperatures, i.e., 1000° F, are ruled out. An injection temperature of 2000° F should yield air-oil ratios of about 25,000 SCF/bbl and therefore would be in the feasible range. This assumes liquid recovery equivalent to USBM assay and that a field-wide pattern can be assumed to have the efficiency of the bounded system. This latter assumption would be close for a large development.

The type and quality of the recoverable hydrocarbon is very important. If a large portion of the hydrocarbon product were cracked to gas, the resulting air-oil ratio would increase over that indicated here, and therefore the process economics would become less attractive. The cracked gas would be so diluted with gas volumes of the 25,000 SCF/bbl magnitude that the resulting heating value of the exhaust gas would be too low to be commercially attractive.

If it were possible to operate with a 3000°F injection temperature, this retorting process would definitely look advantageous from a heat transfer standpoint. Although the unbounded 3000°F run showed an air-oil ratio of 27,000 SCF/bbl, a bounded case would give an average gas-oil ratio of about 12,000 SCF/bbl. This is based on the same ratio of retorted volumes as obtained between bounded and unbounded runs at 2000°F. A 12,000 SCF/bbl process would be very attractive. If the hydrocarbon product would be entirely cracked to gas the resulting exhaust gas heating value after scrubbing the carbon dioxide would be approximately 600 BTU/SCF. This would be a marketable product. In this limiting case the retorting process would still be attractive with a 3000°F injection temperature.

Project Design

This study has shown that the alternating injection-soak procedure is not efficient. Because of this and because retorting efficiency drops off after the producing well reaches 700°F, it would be desirable to design a project so that it would be terminated at this time. The feasible way to design an in situ project of this type would be to start with the project life desired. This optimum life is interrelated with many factors, and it would be necessary to analyze several cases to determine it. After deciding on a project length, the distance between injection and producing wells to be used must be selected. The longer the distance the more economical the process because of the need of fewer wells, assuming communication between wells was obtainable with equal ease. Distances between wells would probably be limited because establishing communication between wells would no doubt become more difficult at greater distances. This distance would have to be determined experimentally. Once project life and path length are established, the injection rate can then be set so that the 700°F isotherm will arrive at the producer in the allotted time.

Spacing between lines of wells would be a function of project life and injection temperature and would be easily determined. Injection temperature should be as high as feasible and would have to be determined experimentally in a pilot test.

Experimental Pilot

This heat transfer study has served to indicate whether adequate

heat penetration and utilization could be achieved under various assumed conditions. Results have shown that with high injection temperatures the theoretical air-oil ratios are within range of being economic. Experimental pilot testing would be necessary to develop methods of operation, to verify air-oil ratios and to determine operating costs. The first step in this testing would be to develop techniques to reliably communicate between wells at long distances apart with the assurance of nearly complete gas recovery. The maximum feasible continuous gas injection temperature and the resulting injection pressures are very important parameters to be determined initially with pilot operation. Equipment development, operating technique and resulting costs are important information affecting process economics that are determined from prolonged pilot operation. The resulting hydrocarbon product, whether it be predominately high or low quality oil or gas, must be determined. Finally, the actual producing airoil ratio possible for the process would be determined from a pilot test.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The objective of this work was to make a preliminary feasibility study of in situ retorting oil shale by hot gas injection through wells interconnected by single vertical fractures. A theoretical heat transfer study was conducted to achieve this objective. A knowledge of the heat distribution and content under various assumed conditions will indicate whether experimental pilot testing of this approach to in situ retorting is justified.

This analysis involved the simultaneous numerical solution of a nonlinear second or der partial differential equation, which describes two-dimensional conduction heat transfer in oil shale, and a nonlinear first-order partial differential equation which describes convection heat transfer in the fractures. Three nonlinear temperature-dependent coefficients that were taken into account in this work are the thermal conductivity, thermal capacity and retorting endothermic heat losses of oil shale. Vertical fractures were considered to be of finite height. Vertical conduction heat transfer was not considered; however an estimate of the error resulting from this limitation was made.

The effects of injected gas temperature, injection rate, system geometry, cyclic injection and time upon retorting efficiency were investigated.

The following conclusions have been made as a result of this study:

- 1. Results from this heat transfer study show that the rate of retorting oil shale is a function of the injection temperature; however, as the injection temperature is raised the retorting rate increases to a lesser extent.
- 2. The air-oil ratio is an inverse function of the injection temperature at a constant rate of heat injection and it is a stronger inverse function of the injection temperature at a constant volume of air injection.
- 3. The rate of retorting is constant with a constant injection temperature and rate up until the time when the 700°F isotherm "breaks through" at the producing well. At that time the retorting efficiency decreases.
- 4. The retorting rate with a constant injection temperature is a direct function of the heat injection rate until breakthrough of the 700° F isotherm at the producer.
- 5. High injection rates with the use of an alternating injection-soak routine when the producing wells reach 900° F are less efficient than lower continuous injection rates.
- 6. Retorting efficiencies are improved for bounded systems compared to analogous unbounded systems and likewise air-oil ratios are lower.
- 7. Retorting efficiency is improved if partial convection is assumed to occur in the retorted zone of the oil shale.
- 8. It was found that with an injection temperature of 2000°F and an injection rate of 1.33 MMSCF/D per well it would take approximately

12 years to retort a shale section developed with a pattern array of wells spaced 500 feet from producer to injector and 100 feet between rows of wells.

- 9. The error in the volume of rock retorted caused by the assumption of adiabatic boundaries in the vertical direction was estimated to be approximately 10 per cent high. However, results obtained from these two-dimensional models are adequate in light of the heterogeneous system being studied.
- 10. This work shows that it would be preferential to design a field project so that the 700°F isotherm arrives at the producing wells at the end of a project's life. The injection rate can be set to accomplish this if the project life and injection to producer well spacing is determined beforehand.
- 11. Injection temperatures on the order of 2000°F and higher give theoretical air-oil ratios in the economic range.

This heat transfer study shows that adequate heat penetration and utilization are possible. Results have shown that with the use of high injection temperatures the theoretical air-oil ratios are within the economic range. Experimental pilot testing would be necessary to develop methods of operation, to verify air-oil ratios, and to determine operating costs.

A SELECTED BIBLIOGRAPHY

- (1) Jaffe', Felix C. "Oil Shale -- Part 1, Nomenclature, Uses, Reserves and Production." <u>Mineral Industries Bulletin</u>, Colorado School of Mines, Vol. 5, No. 2 (March 1962).
- (2) Jaffe', Felix C. "Oil Shale -- Part II, Geology and Mineralogy of the Oil Shales of the Green River Formation, Colorado, Utah and Wyoming." <u>Mineral Industries Bulletin</u>, Colorado School of Mines, Vol. 5, No. 3 (May 1962).
- (3) Williamson, D. R. "Oil Shales -- Part III, The Natures and Origins of Kerogens." Mineral Industries Bulletin, Colorado School of Mines, Vol. 7, No. 5 (Sept. 1964).
- (4) Williamson, D. R. "Oil Shales -- Part IV, Retorting and Other Beneficiation of Oil Shales." <u>Mineral Industries Bulletin</u>, Colorado School of Mines, Vol. 7, No. 6 (Nov. 1964).
- (5) Williamson, D. R. "Oil Shales -- Part V, Oil Shale Retorts."

 <u>Mineral Industries Bulletin</u>, Colorado School of Mines,
 Vol. 8, No. 2 (March 1965).
- (6) "First Symposium on Oil Shale." <u>Quarterly of the Colorado School of Mines</u>, Vol. 59, No. 3 (July 1964).
- (7) "Second Symposium on Oil Shale." Quarterly of the Colorado School of Mines, Vol. 60, No. 3 (July 1965).
- (8) Hubbard, Arnold B. and Robinson, W. E. "A Thermal Decomposition Study of Colorado Oil Shale." <u>Bureau of Mines Report of Investigations</u> 4744 (1950).
- (9) Sohns, H. W., Jukkola, E. E., and Murphy, W. I. R. "Development and Operation of an Experimental Entrained-Solids, Oil-Shale Retort." <u>Bureau of Mines Report of Investigations</u> 5522 (1959).
- (10) Sohns, H. W., Mitchell, L. R., Cox, R. J., Barnet, W. I., and Murphy, W. I. R. "Heat Requirements for Retorting Oil Shale." <u>Industrial and Engineering Chemistry</u>, Vol. 43, No. 1 (1950) 33.
- (11) Gavin, Martin J. and Sharp, Leslie H. "Some Physical and Chemical Data on Colorado Oil Shale." <u>Bureau of Mines Report of Investigations 2152</u> (1920).

- (12) Somerton, W. H. and Boozer, G. D. "Thermal Characteristics of Porous Rocks at Elevated Temperatures." <u>Journal of Pet.</u> <u>Tech</u>. Vol. 12 (June 1960) 77.
- (13) Somerton, Wilbur H. Report to Sinclair Research, Petroleum Engineering Department, University of California (July 1964).
- (14) Shaw, R. J. "Specific Heat of Colorado Oil Shales." <u>Bureau of Mines Report of Investigations 4151</u> (1947).
- (15) Somerton, Wilbur H. "Some Thermal Characteristics of Porous Rocks." <u>Journal of Pet. Tech.</u> Vol. 10 (May 1958) 61.
- (16) Jukkola, E. E., Denhauler, A. J., Jensen, H. B., Barnet, W. I. and Murphy, W. I. R. "Thermal Decomposition Rates of Carbonates in Oil Shale." <u>Industrial and Engineering Chemistry</u>, Vol. 45, No. 12 (Dec. 1953) 2711.
- (17) Feldkirchner, H. L. and Linden, H. R. "Pipeline Gas from Oil Shale by Direct Hydrogasification." <u>I. & E. C. Process</u>

 <u>Design and Development</u>, Vol. 3, No. 3 (July 1964) 218.
- (18) Dannenberg, Raymond O. and Matzick, Arthur. "A Study of the Effects of Process Variables." <u>Bureau of Mines Report of Investigations</u> 5545 (1960).
- (19) Matzick, Arthur, Dannenberg, R. O., Ruark, J. R., Phillips, J. E., Lankford, J. C. and Guthrie, Boyd. "Development of the Bureau of Mines Gas-Combustion Oil-Shale Retorting Process."
 Bureau of Mines Bulletin 635 (1966).
- (20) Thomas, G. W. "Some Effects of Overburden Pressure on Oil Shale During Underground Retorting." SPE Jour. Vol. 6, No. 1 (March 1966) 1.
- (21) Thomas, G. W. "A Simplified Model of Conduction Heating in Systems of Limited Permeability." SPE Jour. Vol. 4, No. 4 (Dec. 1964) 335.
- (22) Lesser, H. F., Bruce, G. H. and Stone, H. L. "Conduction Heating of Formations with Limited Permeability by Condensing Gases." SPE Jour. Vol. 6, No. 4 (Dec. 1966) 372.
- (23) Lauwerier, H. A. "The Transport of Heat in an Oil Layer Caused by the Injection of Hot Fluid." Appl. Sci. Res. Vol. 5, Sec. A (1955) 145.
- (24) Birkhoff, Garrett. "Partial Difference Methods." SIAM J., Vol. 14 (1966) 17.

- (25) Peaceman, D. W. and Rachford, H. D. Jr. "The Numerical Solution of Parabolic and Elliptic Differential Equations." <u>J. Soc. Indus. Appl. Math.</u> No. 3 (1955).
- (26) Douglas, Jim Jr. and Peaceman, D. W. "Numerical Solution of Two-Dimensional Heat-Flow Problems." A.I.Ch.E. Jour. Vol. 1, No. 4 (Dec. 1955) 505.
- (27) Douglas, J. Jr. "On the Numerical Integration of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$ by Implicit Methods." J. Soc. Indus. Appl. Math. No. 3 (1955) 42.
- (28) Brian, D. L. T. "A Finite-Difference Method of High-Order Accuracy for the Solution of Three-Dimensional Transient Heat Conduction Problems." A.I.Ch.E. Jour. Vol. 7, No. 3 (Sept. 1961) 368.
- (29) Bruce, G. H., Peaceman, D. W. and Rachford, H. H. Jr. "Calculations of Unsteady-State Gas Flow through Porous Media."

 <u>Trans. AIME</u> (1953) Vol. 198, 79.
- (30) Blair, P. M. and Peaceman, D. W. "An Experimental Verification of a Two-Dimensional Technique for Computing Performance of Gas-Drive Reservoirs." SPE Jour. Vol. 3, No. 1 (March 1963) 19.
- (31) Stone, Herbert L. and Brian, P. L. T. "Numerical Solution of Convective Transport Problems." A.I.Ch.E. Jour. Vol. 9, No. 5 (Sept. 1963) 681.
- (32) Larkin, Bert K. "Some Stable Explicit Difference Approximations to the Diffusion Equation." Math. of Comp. (1964) Vol. 18, No. 86, 196.
- (33) Quon, D., Dranchuk, P. M., Allada, S. R. and Leung, P. K.

 "Application of the Alternating Direction Explicit Procedure to Two-Dimensional Natural Gas Reservoirs." J. Pet.

 Tech. Vol. 18 (June 1966) 137.
- (34) Coats, K. H. and Terhune, H. M. "Comparison of Alternating Direction Explicit and Implicit Procedures in Two-Dimensional Flow Calculations." SPE Jour. Vol. 6, No. 4 (Dec. 1966) 350.
- (35) Schneider, P. J. <u>Conduction Heat Transfer</u>. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1955) 242.
- (36) Eckert, E. R. G. and Drake, Robert M. Jr. Heat and Mass Transfer. McGraw-Hill Book Company, Inc., New York, New York (1959) 12.

DEFINITION OF TERMINOLOGY

h = fracture thickness = gas density ρ_g = gas thermal capacity = gas velocity vg = shale density $\rho_{\mathbf{S}}$ $c_s(T)$ = shale thermal capacity = endothermic heat loss q(T) = time = rate of heat flow Q Т = temperature . = temperature of gas T_{g} = temperature of shale $T_{\mathbf{S}}$ = initial temperature of formation T_0 $(\Delta T)_{max}$ = maximum allowable temperature difference between grid points or between time steps = horizontal distance from injection well along fracture х = horizontal distance from fracture perpendicular to fracture У = vertical distance from fracture centerline Ŕ(T) = thermal conductivity = thermal conductivity in x direction $K_{x}(T)$ $K_{\mathbf{v}}(\mathbf{T})$ = thermal conductivity in y direction $K_z(T)$ = thermal conductivity in z direction

I = number of grid points in x direction
J = number of grid points in y direction
M = number of grid points in z direction
i = subscript, refers to point location in x direction
j = subscript, refers to point location in y direction
m = subscript, refers to point location in z direction
n = superscript, refers to time step

= superscript, refers to iteration step

·k

APPENDIX A

DIFFERENTIAL EQUATIONS

Derivation of Convection Equation

Consider a differential element in the fracture.

$$\begin{array}{c|c}
-K(T) & \Delta_{x} & \frac{\partial T_{s}}{\partial y} \Big|_{y=\frac{h}{2}} \\
\frac{h}{2} & \rho_{g} c_{g} v_{g} T_{g} \Big|_{x} & \xrightarrow{x,0} & \frac{h}{2} & \rho_{g} c_{g} v_{g} T_{g} \Big|_{x+\Delta_{x}}
\end{array}$$

Therefore a differential heat balance results in

$$\frac{h}{2} \rho_{g} c_{g} v_{g} T_{g} \Big|_{x} - \frac{h}{2} \rho_{g} c_{g} v_{g} T_{g} \Big|_{x+\Delta x} - \left[-K(T) \Delta x \frac{\partial T_{g}}{\partial y} \right] \Big|_{y=\frac{h}{2}} = \frac{h}{2} \rho_{g} c_{g} \Delta x \frac{\partial T_{g}}{\partial t}$$
or
$$- \frac{h}{2} \rho_{g} c_{g} v_{g} \left(T_{g} \Big|_{x+\Delta x} - T_{g} \Big|_{x} \right) + K(T) \Delta x \frac{\partial T_{g}}{\partial y} \Big|_{y=\frac{h}{2}} - \frac{h}{2} \rho_{g} c_{g} \Delta x \frac{\partial T_{g}}{\partial t}$$
or
$$- \frac{h}{2} \rho_{g} c_{g} v_{g} \frac{T_{x+\Delta x} - T_{x}}{\Delta x} + K(T) \frac{\partial T_{g}}{\partial y} \Big|_{y=\frac{h}{2}} = \frac{h}{2} \rho_{g} c_{g} \frac{\partial T_{g}}{\partial t} .$$

In the limit we have

$$-\frac{h}{2} \rho_{g} c_{g} v_{g} \frac{\partial T_{g}}{\partial x} + K(T) \frac{\partial T_{s}}{\partial y} \Big|_{y=\frac{h}{2}} = \frac{h}{2} \rho_{g} c_{g} \frac{\partial T_{g}}{\partial t}$$

or

$$\frac{h}{2} \left. \rho_{\rm g} c_{\rm g} v_{\rm g} \, \frac{\partial T_{\rm g}}{\partial x} + \frac{h}{2} \, \rho_{\rm g} c_{\rm g} \, \frac{\partial T_{\rm g}}{\partial t} = K(T) \, \left. \frac{\partial T_{\rm s}}{\partial y} \right|_{\substack{y = \frac{h}{2}}} \, . \label{eq:kinetic_solution}$$

Let $\alpha = \frac{h}{2} \rho_g c_g v_g$.

Then:
$$\frac{\partial T_g}{\partial x} + \frac{1}{v_g} \frac{\partial T_g}{\partial t} = \frac{K(T)}{\alpha} \frac{\partial T_s}{\partial y} \Big|_{y=\frac{h}{2}}$$
 (A-1)

Derivation of Conduction Equation

Consider a differential element in the matrix where no mass flow occurs within or out of it.

$$Q_{x} = -\Delta y K(x,T) \frac{\partial T_{s}}{\partial x} \xrightarrow{Q_{y} + \Delta y} \frac{\partial T_{s}}{\partial y}$$

$$Q_{x} = -\Delta y K(x,T) \frac{\partial T_{s}}{\partial x} \xrightarrow{Q_{x} + \Delta x} \frac{\partial T_{s}}{\partial x}$$

$$Q_{x} = -\Delta x K(y,T) \frac{\partial T_{s}}{\partial x}$$

$$Q_{x} = -\Delta x K(y,T) \frac{\partial T_{s}}{\partial y}$$

A differential heat balance gives

heat in - heat out - endothermic heat loss = change in heat content.

$$\Delta t \left[Q_x + Q_y - Q_{x+\Delta x} - Q_{y+\Delta y} - \Delta x \Delta y \ q(T) \right] = \Delta x \Delta y$$

$$\left\{ \left[\rho_s c_s(T) T_s \right]_{t+\Delta t} - \left[\rho_s c_s(T) T_s \right]_t \right\} .$$

Then

$$-\frac{Q_{x+\Delta x}-Q_{x}}{\Delta x \Delta y}-\frac{Q_{y+\Delta y}-Q_{y}}{\Delta x \Delta y}-q(T)=\frac{\left[\rho_{s}c_{s}(T)T_{s}\right]_{t+\Delta t}-\left[\rho_{s}c_{s}(T)T_{s}\right]_{t}}{\Delta t}$$

Substituting in Fourier Law:

$$\frac{\left[K(x+\Delta x,T) \frac{\partial T_{s}}{\partial x}\right]_{x+\Delta x} - \left[K(x,T) \frac{\partial T_{s}}{\partial x}\right]_{x}}{\Delta x} +$$

$$\frac{\left[K(y+\Delta y,T) \frac{\partial T_{s}}{\partial y}\right]_{y+\Delta y} - \left[K(y,T) \frac{\partial T_{s}}{\partial y}\right]_{y}}{\Delta y} - q(T) =$$

$$\frac{\left[\rho_{s}c_{s}(T)T_{s}\right]_{t+\Delta t}-\left[\rho_{s}c_{s}(T)T_{s}\right]_{t}}{\Delta t}$$

In the limit we have

$$\frac{\partial}{\partial x} \left[K_{x}(T) \frac{\partial T_{s}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y}(T) \frac{\partial T_{s}}{\partial y} \right] - q(T) = \frac{\partial}{\partial t} \left[\rho_{s} c_{s}(T) T_{s} \right] . \tag{A-2}$$

Derivation of Combined Conduction-Convection Equation

Consider a differential element with constant density and a thickness of z.

$$Q_{y+\Delta y} = -\Delta x \ K(y+\Delta y,T) \frac{\partial T_{s}}{\partial y}$$

$$Q_{y+\Delta y} = -\Delta x \ K(y+\Delta y,T) \frac{\partial T_{s}}{\partial y}$$

$$Q_{x} = -\Delta y \ K(x,T) \frac{\partial T_{s}}{\partial x} \xrightarrow{x,y+\Delta y} Q_{x+\Delta x} = -\Delta y \ K(x+\Delta x,T) \frac{\partial T_{s}}{\partial x}$$

$$Q_{y} = -\Delta x \ K(y,T) \frac{\partial T_{s}}{\partial y}$$

A differential heat balance gives:

heat in - heat out - endothermic heat loss = change in heat content.

$$\begin{split} \Delta t \left[Q_{\mathbf{y}} + Q_{\mathbf{x}} + \Delta z \Delta y \; \rho_{\mathbf{g}} \mathbf{c}_{\mathbf{g}} \mathbf{v}_{\mathbf{g}} \mathbf{T}_{\mathbf{g}} \right]_{\mathbf{x}} &- Q_{\mathbf{y} + \Delta y} - Q_{\mathbf{x} + \Delta x} \\ &- \Delta z \Delta y \; \rho_{\mathbf{g}} \mathbf{c}_{\mathbf{g}} \mathbf{v}_{\mathbf{g}} \mathbf{T}_{\mathbf{g}} \bigg|_{\mathbf{x} + \Delta x} &- \Delta x \Delta y \; \mathbf{q}(\mathbf{T}) \right] &= \Delta x \Delta y \\ &\left\{ \left[\rho_{\mathbf{s}} \mathbf{c}_{\mathbf{s}}(\mathbf{T}) \mathbf{T}_{\mathbf{s}} \right]_{\mathbf{t} + \Delta t} - \left[\rho_{\mathbf{s}} \mathbf{c}_{\mathbf{s}}(\mathbf{T}) \mathbf{T}_{\mathbf{s}} \right]_{\mathbf{t}} \right\} \; . \end{split}$$

Assume $T_g = T_s$.

Rearranging

$$-\frac{Q_{x+\Delta x} - Q_{x}}{\Delta x \Delta y} - \frac{Q_{y+\Delta y} - Q_{y}}{\Delta x \Delta y} - \Delta z \frac{\rho_{g} c_{g} v_{g} \left(T_{s} \Big|_{x+\Delta x} - T_{s} \Big|_{x}\right)}{\Delta x} - q(T) = \frac{\left[\rho_{s} c_{s}(T) T_{s}\right]_{t+\Delta t} - \left[\rho_{s} c_{s}(T) T_{s}\right]_{t}}{\Delta t}.$$

Substituting in Fourier Law

$$\frac{\left[-\Delta y \ K(x+\Delta x,T) \ \frac{\partial T_{s}}{\partial x}\right]_{x+\Delta x} - \left[-\Delta y \ K(x,T) \ \frac{\partial T_{s}}{\partial x}\right]_{x}}{\Delta x \Delta y}$$

$$\frac{\left[-\Delta_{x} K(y+\Delta y,T) \frac{\partial T_{s}}{\partial y}\right]_{y+\Delta y} - \left[-\Delta_{y} K(y,T) \frac{\partial T_{s}}{\partial y}\right]_{y} - q(T)}{\Delta_{x}\Delta_{y}}$$

$$-\Delta z \frac{\rho_{g} c_{g} v \left(T_{s} \Big|_{x+\Delta x} - T_{s} \Big|_{x}\right)}{\Delta_{x}} = \frac{\left[\rho_{s} c_{s}(T) T_{s}\right]_{t+\Delta t} - \left[\rho_{s} c_{s}(T) T_{s}\right]_{t}}{\Delta_{t}}$$

In the limit

$$\frac{\partial}{\partial x} \left[K_{x}(T) \frac{\partial T_{s}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y}(T) \frac{\partial T_{s}}{\partial y} \right] - q(T)$$

-
$$\Delta z \rho_g c_g v_g \frac{\partial T_g}{\partial x} = \frac{\partial}{\partial t} \left[\rho_s c_s(T) T_s \right]$$
.

Let $2\alpha = \Delta z \rho_g c_g v_g$.

Then:

$$\frac{\partial}{\partial x} \left[K_{x}(T) \frac{\partial T_{s}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y}(T) \frac{\partial T_{s}}{\partial y} \right] - q(T) - 2\alpha \frac{\partial T_{s}}{\partial x} =$$

$$\frac{\partial}{\partial t} \left[\rho_{s} c_{s}(T) T_{s} \right]. \tag{A-3}$$

APPENDIX B

DIFFERENCE EQUATIONS

Variable Spacing Scheme

The interval $0 \le x \le x_I$ is divided into I intervals of arbitrary length, $\Delta x_{i+\frac{1}{2}}$, $0 \le i \le I-1$, so that

$$x_{i} = \sum_{r=0}^{r=i-1} \Delta x_{r+\frac{1}{2}} \quad 1 \le i \le I$$

with $x_0 = 0$, $x_T = \text{total distance in } x \text{ direction.}$

Similarly, the interval 0 \leq y \leq y $_J$ is divided into J intervals of arbitrary length, $\Delta y_{j+\frac{1}{2}}$, 0 \leq j \leq J-1 so that

$$y_{j} = \sum_{r=0}^{r=j-1} \Delta y_{r+\frac{1}{2}} \quad 1 \leq j \leq J$$

with $y_0 = 0$, $y_J = total$ distance in y direction.

Similarly, the interval $0 \le z \le z_M$ is divided into M intervals of arbitrary length, $\Delta z_{m+\frac{1}{2}}$, $0 \le m \le M-1$ so that

$$z_{m} = \sum_{r=0}^{r=m-1} \Delta z_{r+\frac{1}{2}} \quad 1 \leq m \leq M$$

with $z_0 = 0$, $z_M = total$ distance in z direction.

For the points on the boundary, the above definitions can be extended as follows:

$$\Delta x_{-\frac{1}{2}} = \Delta x_{\frac{1}{2}} \qquad \Delta x_{1+\frac{1}{2}} = \Delta x_{1-\frac{1}{2}}$$

$$\Delta y_{-\frac{1}{2}} = \Delta y_{\frac{1}{2}} \qquad \Delta y_{J+\frac{1}{2}} = \Delta y_{J-\frac{1}{2}}$$

$$\Delta z_{-\frac{1}{2}} = \Delta z_{\frac{1}{2}} \qquad \Delta z_{K+\frac{1}{2}} = \Delta z_{K-\frac{1}{2}}.$$

For ease of expression in difference form we can write:

$$\Delta x_{i} = \frac{1}{2} (\Delta x_{i-1} + \Delta x_{i+1}).$$
 (B-1)

$$\Delta y_{i} = \frac{1}{2} (\Delta y_{i-\frac{1}{2}} + \Delta y_{i+\frac{1}{2}}).$$
 (B-2)

$$\Delta z_{m} = \frac{1}{2} \left(\Delta z_{m-\frac{1}{2}} + \Delta z_{m+\frac{1}{2}} \right). \tag{B-3}$$

These relations are illustrated as follows:

Also we define:

$$(K_x)_{i+\frac{1}{2}} = 1/2 [(K_x)_i + (K_x)_{i+1}].$$
 (B-4)

$$(K_y)_{j+\frac{1}{2}} = 1/2 [(K_y)_j + (K_y)_{j+1}].$$
 (B-5)

Convection Difference Equations for THERMAB3 and THERMAB4

$$\frac{\partial T_g}{\partial x} + \frac{1}{v_g} \frac{\partial T_g}{\partial t} = \frac{K(T)}{\alpha} \frac{\partial T_s}{\partial y} \bigg|_{y=\frac{h}{2}}.$$
 (B-6)

Use backward difference for $\frac{\partial T_g}{\partial x}$. Use forward difference for $\frac{\partial T_g}{\partial y}$.

$$\frac{\left(\mathbf{T}_{i,1}^{n+1} - \mathbf{T}_{i-1,1}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta \mathbf{x}_{i}} + \frac{1}{\mathbf{v}_{i}} \frac{\left(\mathbf{T}_{i,1}^{n+1}\right)^{k+\frac{1}{2}} - \mathbf{T}_{i,1}^{n}}{\Delta \mathbf{t}} = \frac{3\left(\mathbf{K}_{i,3/2}^{n+1}\right)^{k} \left[\left(\mathbf{T}_{i,2}^{n+1}\right)^{k} - \left(\mathbf{T}_{i,1}^{n+1}\right)^{k+\frac{1}{2}}\right] - \left(\mathbf{K}_{i,5/2}^{n+1}\right)^{k} \left[\left(\mathbf{T}_{i,3}^{n+1}\right)^{k} - \left(\mathbf{T}_{i,2}^{n+1}\right)^{k}\right]}{2 \Delta \mathbf{y} \alpha}$$
(B-7)

Rearranging:

$$\left(T_{i,1}^{n+1} - T_{i-1,1}^{n+1} \right)^{k+\frac{1}{2}} + \frac{\Delta x_{i}}{\Delta t v_{i}} \left(T_{i,1}^{n+1} \right)^{k+\frac{1}{2}} =$$

$$\frac{\Delta x_{i}}{\Delta t v_{i}} \left(T_{i,1}^{n} \right) - \frac{3 \Delta x_{i}}{2 \Delta y \alpha} \left(K_{i,3/2}^{n+1} \right)^{k} \left(T_{i,1}^{n+1} \right)^{k+\frac{1}{2}} +$$

$$\frac{3 \Delta x_{i}}{2 \Delta y \alpha} \left(K_{i,3/2}^{n+1} \right)^{k} \left(T_{i,2}^{n+1} \right)^{k} + \frac{\Delta x_{i}}{2 \Delta y \alpha} \left(K_{i,5/2}^{n+1} \right)^{k} - \left(T_{i,3}^{n+1} \right)^{k} \right] .$$

Rearranging again:

$$\left(T_{\mathbf{i},1}^{n+1}\right)^{k+\frac{1}{2}} \left[1 + \frac{\Delta x_{\mathbf{i}}}{\Delta t \ v_{\mathbf{i}}} + \frac{3 \ \Delta x_{\mathbf{i}} \left(K_{\mathbf{i},3/2}^{n+1}\right)^{k}}{2 \ \Delta y \ \alpha}\right] = \frac{\Delta x_{\mathbf{i}}}{\Delta t \ v_{\mathbf{i}}} \left(T_{\mathbf{i},1}^{n}\right)$$

$$\left(T_{i-1,1}^{n+1}\right)^{k+\frac{1}{2}} + \frac{3 \Delta x_{i} \left(x_{i,3/2}^{n+1}\right)^{k}}{2 \Delta y \alpha} \left(T_{i,2}^{n+1}\right)^{k} +$$

$$\frac{\Delta x_{i} \left(x_{i,5/2}^{n+1}\right)^{k}}{2 \Delta y \alpha} \left[\left(T_{i,2}^{n+1}\right)^{k} - \left(T_{i,3}^{n+1}\right)^{k} \right].$$

Resulting in:

$$\left(T_{i,1}^{n+1}\right)^{k+\frac{1}{2}} = \frac{\left(T_{i-1,1}^{n+1}\right)^{k+\frac{1}{2}} + (D13) + (D14)^{k} + (D15)^{k}}{D16 + (D17)^{k}} ,$$
 (B-8)

where:

$$(D13) = \frac{\Delta x_{i}}{\Delta t} \frac{T_{i,1}^{n}}{\Delta t}.$$

$$(D14)^{k} = \frac{3 \Delta x_{i}}{2 \Delta x_{i}} \left(K_{i,3/2}^{n+1}\right)^{k} \left(T_{i,2}^{n+1}\right)^{k}.$$

$$(D15)^{k} = \frac{\Delta x_{i} \left(K_{i,5/2}^{n+1}\right)^{k} \left[\left(T_{i,2}^{n+1}\right)^{k} - \left(T_{i,3}^{n+1}\right)^{k}\right]}{2 \Delta y \alpha}.$$

(D16) =
$$1 + \frac{\Delta x_i}{\Delta t \ v_i}$$
.
(D17)^k = $\frac{3 \ \Delta x_i \left(K_{i,3/2}^{n+1}\right)^k}{2 \ \Delta y \ \alpha}$

Or also:

Boundary Condition:

$$\left(T_{1,1}^{n+1}\right)^{k+\frac{1}{2}}$$
 = Constant Temperature

$$\left(T_{1,1}^{n+1}\right)^{k+1}$$
 = Constant Temperature

Also, for THERMAB4 the countercurrent flow equations at y equal \mathbf{y}_{J} are:

where:

(D13) =
$$\frac{\Delta x_i T_{i,J}^n}{\Delta t v_i}.$$

$$(D14)^{k} = \frac{3 \Delta x_{i} \left(K_{i,J-\frac{1}{2}}^{n+1}\right)^{k} \left(T_{i,J-1}^{n+1}\right)^{k}}{2 \Delta y \alpha}.$$

$$(D15)^{k} = \frac{\Delta x_{i} \left(K_{i,J-3/2}^{n+1}\right) \left[\left(T_{i,J-1}^{n+1}\right)^{k} - \left(T_{i,J-2}^{n+1}\right)^{k}\right]}{2 \Delta y \alpha}.$$

D16 =
$$1 + \frac{\Delta x_i}{\Delta t \ v_i}$$
.

$$(D17)^{k} = \frac{3 \Delta x_{i} \left(K_{i,J-\frac{1}{2}}^{n+1}\right)^{k}}{2 \Delta y \alpha}.$$

And,

Boundary Condition:

$$\left(T_{I,J}^{n+1}\right)^{k+\frac{1}{2}}$$
 = Constant Temperature

$$\left(T_{I,J}^{n+1}\right)^{k+1}$$
 = Constant Temperature.

Conduction Difference Equations

for THERMAB3 and THERMAB4

$$\frac{\partial}{\partial x} \left(K_{x}(T) \frac{\partial T_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y}(T) \frac{\partial T_{s}}{\partial y} \right) - q(T) = \frac{\partial}{\partial t} \left(\rho_{s} c_{s}(T) T_{s} \right). \quad (B-12)$$

Where q(T) can be expressed as C'(T) $\frac{\partial T}{\partial t}$,

let
$$C(T) = C'(T) + \rho_S c_S(T)$$
,

let
$$(K_{X}) = (K_{Y}) = K$$
.

General Difference Representation -- Using Central Differences, Implicit in x, Explicit in y.

$$\frac{1}{\Delta x_{i}} \left(K_{i+\frac{1}{2}} \frac{T_{i+1,j}^{n+1} - T_{i,i}^{n+1}}{\Delta x_{i+\frac{1}{2}}} - K_{i-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i-1,j}^{n+1}}{\Delta x_{i-\frac{1}{2}}} \right)^{k+\frac{1}{2}} + \frac{1}{\Delta x_{i+\frac{1}{2}}} \left(K_{j+\frac{1}{2}} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{j+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{j-\frac{1}{2}}} \right)^{k} = \left(C_{i,j}^{n+1} \right)^{k} \left(T_{i,j}^{n+1} \right)^{k+\frac{1}{2}} - T_{i,j}^{n}$$

$$(B-13)$$

For constant x spacing and regrouping:

$$\left(T_{i+1,j}^{n+1}\right)^{k+\frac{1}{2}} - \left(T_{i,j}^{n+1}\right)^{k+\frac{1}{2}} - \frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}} \left(T_{i,j}^{n+1} - T_{i-1,j}^{n+1}\right)^{k+\frac{1}{2}}$$

$$- \frac{\left(\Delta x\right)^{2} \left(C_{i,j}^{n+1}\right)^{k}}{\Delta t \ K_{i+\frac{1}{2}}} \left(T_{i,j}^{n+1}\right)^{k+\frac{1}{2}} =$$

$$- \frac{\left(\Delta x\right)^{2}}{\Delta y_{i} \ K_{i+\frac{1}{2}}} \left(K_{j+\frac{1}{2}} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{j+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j-1}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{j-\frac{1}{2}}}\right)^{k}$$

$$- \frac{\left(\Delta x\right)^{2} \left(C_{i,j}^{n+1}\right)^{k}}{\Delta t \ K_{i+\frac{1}{2}}} \left(T_{i,j}^{n}\right) .$$

Rearranging:

$$\begin{split} \frac{K_{\mathbf{i}-\frac{1}{2}}}{K_{\mathbf{i}+\frac{1}{2}}} \left(T_{\mathbf{i}-1,\mathbf{j}}^{\mathbf{n}+1}\right)^{\mathbf{k}+\frac{1}{2}} &- \left[1 + \frac{K_{\mathbf{i}-\frac{1}{2}}}{K_{\mathbf{i}+\frac{1}{2}}} + \frac{\left(\Delta\mathbf{x}\right)^{2} \left(\overset{\bullet}{C}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1}\right)^{\mathbf{k}}}{\Delta t \quad K_{\mathbf{i}+\frac{1}{2}}}\right] \left(T_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1}\right)^{\mathbf{k}+\frac{1}{2}} + \\ &\left(T_{\mathbf{i}+1,\mathbf{j}}^{\mathbf{n}-1}\right)^{\mathbf{k}+\frac{1}{2}} &= -\frac{\left(\Delta\mathbf{x}\right)^{2}}{\Delta y_{\mathbf{i}} \quad K_{\mathbf{i}+\frac{1}{2}}} \left(K_{\mathbf{j}+\frac{1}{2}} + \frac{T_{\mathbf{i},\mathbf{j}+1}^{\mathbf{n}+1} - T_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1}}{\Delta y_{\mathbf{j}+\frac{1}{2}}} - K_{\mathbf{j}+\frac{1}{2}} + \frac{T_{\mathbf{i},\mathbf{j}+1}^{\mathbf{n}+1} - T_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1}}{\Delta y_{\mathbf{j}+\frac{1}{2}}} - K_{\mathbf{j}+\frac{1}{2}} + \frac{T_{\mathbf{i},\mathbf{j}+1}^{\mathbf{n}+1} - T_{\mathbf{i},\mathbf{j}-1}^{\mathbf{n}+1}}{\Delta y_{\mathbf{j}-\frac{1}{2}}} - K_{\mathbf{j}+\frac{1}{2}} + \frac{\left(\Delta\mathbf{x}\right)^{2} \left(C_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1}\right)^{\mathbf{k}}}{\Delta t \quad K_{\mathbf{i}+\frac{1}{2}}} - K_{\mathbf{i},\mathbf{j}} \cdot K_{\mathbf{i}+\frac{1}{2}} - K_{\mathbf{i},$$

Let
$$A1_{i} = \frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}}$$
.

Let
$$B1_{i} = -\left[1 + \frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}} + \frac{(\Delta x)^{2} (c_{i,j}^{n+1})^{k}}{\Delta t K_{i+\frac{1}{2}}}\right]$$
.

Let
$$C1_i = 1$$
.

Let D1_i =
$$-\frac{(\Delta \mathbf{x})^2}{\Delta y_i} \left(K_{j+\frac{1}{2}} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{i+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{j-\frac{1}{2}}} \right)^k$$

$$-\frac{\left(\Delta\mathbf{x}\right)^{2}\left(\mathbf{c}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1}\right)^{\mathbf{k}}}{\Delta\mathbf{t}\ \mathbf{K}_{\mathbf{i}+\frac{1}{2}}}\left(\mathbf{T}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}}\right).$$

Then:

$$A1_{i} \left(T_{i-1,j}^{n+1}\right)^{k+\frac{1}{2}} + B1_{i} \left(T_{i,j}^{n+1}\right)^{k+\frac{1}{2}} + C1_{i} \left(T_{i+1,j}^{n+1}\right)^{k+\frac{1}{2}} = D1_{i}. \quad (B-14)$$

Implicit in y, Explicit in x, Constant x Spacing

$$\frac{1}{(\Delta x)^{2}} \left[K_{i+\frac{1}{2}} \left(T_{i+1,j}^{n+1} - T_{i,j}^{n+1} \right) - K_{i-\frac{1}{2}} \left(T_{i,j}^{n+1} - T_{i-1,j}^{n+1} \right) \right]^{k+\frac{1}{2}} +$$

$$\frac{1}{\Delta y_{i}} \left(K_{j+\frac{1}{2}} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{j+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j-1}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{j-\frac{1}{2}}} \right)^{k+1} =$$

$$\left(C_{i,j}^{n+1} \right)^{k+\frac{1}{2}} \frac{\left(T_{i,j}^{n+1} \right)^{k+1} - T_{i,j}^{n}}{\Delta t} . \tag{B-15}$$

Regrouping:

$$\begin{split} & \left(\mathbf{T}_{\mathbf{i},j+1}^{n+1}\right)^{k+1} - \left(\mathbf{T}_{\mathbf{i},j}^{n+1}\right)^{k+1} - \frac{\mathbf{K}_{\mathbf{j}-\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\mathbf{K}_{\mathbf{j}+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}-\frac{1}{2}}} \left(\mathbf{T}_{\mathbf{i},j}^{n+1} - \mathbf{T}_{\mathbf{i},j-1}^{n+1}\right)^{k+1} \\ & - \frac{\left(\mathbf{c}_{\mathbf{i},j}^{n+1}\right)^{k+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\Delta\mathbf{t} \ \mathbf{K}_{\mathbf{j}+\frac{1}{2}}} \left(\mathbf{T}_{\mathbf{i},j}^{n+1}\right)^{k+1} = - \frac{\left(\mathbf{c}_{\mathbf{i},j}^{n+1}\right)^{k+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\Delta\mathbf{t} \ \mathbf{K}_{\mathbf{j}+\frac{1}{2}}} \left(\mathbf{T}_{\mathbf{i},j}^{n}\right) \\ & - \frac{\Delta\mathbf{y}_{\mathbf{j}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{(\Delta\mathbf{x})^{2} \ \mathbf{K}_{\mathbf{j}+\frac{1}{2}}} \left[\mathbf{K}_{\mathbf{i}+\frac{1}{2}} \left(\mathbf{T}_{\mathbf{i}+1,j}^{n+1} - \mathbf{T}_{\mathbf{i},j}^{n+1}\right) - \mathbf{K}_{\mathbf{i}-\frac{1}{2}} \left(\mathbf{T}_{\mathbf{i},j}^{n+1} - \mathbf{T}_{\mathbf{i}-1,j}^{n+1}\right)^{k+\frac{1}{2}} \right] \\ & - \mathbf{K}_{\mathbf{j}} = \frac{\mathbf{K}_{\mathbf{j}+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\left(\Delta\mathbf{x}\right)^{2} \ \mathbf{K}_{\mathbf{j}+\frac{1}{2}}} \left[\mathbf{K}_{\mathbf{j}+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}\right] \\ & - \mathbf{K}_{\mathbf{j}} = \frac{\mathbf{K}_{\mathbf{j}+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\mathbf{K}_{\mathbf{j}+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}} \\ & - \mathbf{K}_{\mathbf{j}} = \frac{\mathbf{K}_{\mathbf{j}} + \frac{1}{2}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\mathbf{K}_{\mathbf{j}+\frac{1}{2}}\Delta\mathbf{y}_{\mathbf{j}+\frac{1}{2}}} \\ & - \mathbf{K}_{\mathbf{j}} = \mathbf{K}_{\mathbf{j}} = \mathbf{K}_{\mathbf{j}} + \mathbf{$$

Let
$$Bl_{j} = -\left[1 + \frac{K_{j-\frac{1}{2}} \Delta y_{j+\frac{1}{2}}}{K_{j+\frac{1}{2}} \Delta y_{j-\frac{1}{2}}} + \frac{\left(c_{i,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta t K_{j+\frac{1}{2}}}\right]$$
.

Let
$$Cl_{j} = 1$$
.

Let
$$D1_{j} = -\frac{\Delta y_{j} \Delta y_{j+\frac{1}{2}}}{(\Delta x)^{2} K_{j+\frac{1}{2}}} \left[K_{i+\frac{1}{2}} \left(T_{i+1,j}^{n+1} - T_{i,j}^{n+1} \right) - K_{i-\frac{1}{2}} \left(T_{i,j}^{n+1} - T_{i-1,j}^{n+1} \right) \right]^{k+\frac{1}{2}}$$

$$-\frac{\left(c_{\mathbf{i},\mathbf{j}}^{n+1}\right)^{k+\frac{1}{2}}\Delta y_{\mathbf{j}}\Delta y_{\mathbf{j}+\frac{1}{2}}}{\Delta t K_{\mathbf{j}+\frac{1}{2}}} \left(T_{\mathbf{i},\mathbf{j}}^{n}\right).$$

Then:

$$A1_{j} \left(T_{i,j-1}^{n+1}\right)^{k+1} + B1_{j} \left(T_{i,j}^{n+1}\right)^{k+1} + C1_{j} \left(T_{i,j+1}^{n+1}\right)^{k+1} = D1_{j}.$$

(B-16)

Boundary Conditions for THERMAB3 (Heating Period)

1)
$$\left(T_{0,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{2,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for $2 \le j \le J$.

2)
$$\left(T_{I-1,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{I+1,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for $2 \le j \le J$.

3)
$$\left(T_{i,1}^{n+1}\right)^{k+1} = \left(T_{i,1}^{n+1}\right)^{k+\frac{1}{2}}$$
 for all i .

4)
$$\left(T_{i,J-1}^{n+1}\right)^{k+1} = \left(T_{i,J+1}^{n+1}\right)^{k+1}$$
 for all i.

Boundary Conditions for THERMAB4 (Heating Period)

1)
$$\left(T_{0,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{2,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for $2 \le j \le J-1$.

2)
$$\left(T_{I-1,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{I+1,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for $2 \le j \le J-1$.

3)
$$\left(\mathbf{T}_{\mathbf{i},1}^{n+1}\right)^{k+1} = \left(\mathbf{T}_{\mathbf{i},1}^{n+1}\right)^{k+\frac{1}{2}}$$
 for all \mathbf{i} .

4)
$$\left(T_{\mathbf{i},J}^{n+1}\right)^{k+1} = \left(T_{\mathbf{i},J}^{n+1}\right)^{k+\frac{1}{2}}$$
 for all \mathbf{i} .

Boundary Conditions for THERMAB3 and THERMAB4 (Soaking Period)

1)
$$\left(T_{0,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{2,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for all j.

2)
$$\left(T_{i-1,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{i+1,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for all j.

3)
$$\left(T_{i,0}^{n+1}\right)^{k+1} = \left(T_{i,2}^{n+1}\right)^{k+1}$$
 for all i .

4)
$$\left(T_{i,J-1}^{n+1}\right)^{k+1} = \left(T_{i,J+1}^{n+1}\right)^{k+1}$$
 for all i.

Conduction Difference Equations for THERMAB1

Using derivations for THERMAB3 and THERMAB4 and defining

$$K_{x} = K_{1-\frac{1}{2}} = K_{1+\frac{1}{2}},$$
 $K_{y} = K_{j-\frac{1}{2}} = K_{j+\frac{1}{2}}$

$$C = C_{1, j}^{n+1}$$

q = 0 , no endothermic heat loss.

For Constant Coefficients, Implicit in x, Explicit in y

Therefore: Al_i = 1.

Bl_i =
$$-\left[2 + \frac{(\Delta x)^2 C}{\Delta t K_x}\right]$$
.

Cl_i = 1.

Dl_i = $-\frac{(\Delta x)^2 k_y}{\Delta y_i K_x} \left(\frac{T_{i,j+1}^{-T_{i,j}}}{\Delta y_{j+\frac{1}{2}}} - \frac{T_{i,j}^{-T_{i,j-1}}}{\Delta y_{j-\frac{1}{2}}}\right)^k$

$$-\frac{(\Delta x)^2 C T_{i,j}^n}{\Delta t K_x}$$

Then:

$$A1_{i} \left(T_{i-1,j}^{n+1}\right)^{k+\frac{1}{2}} + B1_{i} \left(T_{i,j}^{n+1}\right)^{k+\frac{1}{2}} + C1_{i} \left(T_{i+1,j}^{n+1}\right)^{k+\frac{1}{2}} = D1_{i}.$$

Implicit in y and Explicit in x

$$Al_{j} = \frac{\Delta y_{j+\frac{1}{2}}}{\Delta y_{j-\frac{1}{2}}}.$$

$$Bl_{j} = -\left[1 + \frac{\Delta y_{j+\frac{1}{2}}}{\Delta y_{j-\frac{1}{2}}} + \frac{C \Delta y_{j} \Delta y_{j+\frac{1}{2}}}{\Delta t K_{y}}\right].$$

$$Cl_{j} = 1.$$

$$Dl_{j} = -\frac{K_{x} \Delta y_{j} \Delta y_{j+\frac{1}{2}}}{K_{y} (\Delta x)^{2}} \left(T_{i+1,j}^{n+1} - 2 T_{i,j}^{n+1} + T_{i-1,j}^{n+1}\right)^{k+\frac{1}{2}}.$$

$$-\frac{C \Delta y_{j} \Delta y_{j+\frac{1}{2}} T_{i,j}^{n}}{\Delta t K_{y}}.$$

Then:

$$A1_{j} \left(T_{i,j-1}^{n+1}\right)^{k+1} + B1_{j} \left(T_{i,j}^{n+1}\right)^{k+1} + C1_{j} \left(T_{i,j+1}^{n+1}\right)^{k+1} = D1_{j}.$$

Combined Conduction-Convection Difference

Equations for THERMAB2

$$\frac{\partial}{\partial x} \left[K_{x}(T) \frac{\partial T_{s}}{\partial x} \right] - 2\alpha \frac{\partial T_{s}}{\partial x} + \frac{\partial}{\partial y} \left[K_{y}(T) \frac{\partial T_{s}}{\partial y} \right] - q(T) = \frac{\partial}{\partial T} \left[\rho_{s} c_{s}(T) T_{s} \right].$$

Let: HH = 1 where convection is present,

HH = 0 where convection is absent,

$$q(T) = C'(T) \frac{\partial T_s}{\partial t}$$
,

$$C(T) = c_s(T) \rho_s(T) + C'(T)$$
 and $K_x = K_y = K$.

$$\frac{\partial}{\partial x} \left[K(T) \frac{\partial T_s}{\partial x} \right] - 2 \text{ HH } \alpha \frac{\partial T_s}{\partial x} + \frac{\partial}{\partial y} \left[K(T) \frac{\partial T_s}{\partial y} \right] = C(T) \frac{\partial T_s}{\partial t} . \quad (B-17)$$

<u>Using Central Differences Implicit in x, Explicit in y, Constant x</u>

<u>Spacing.</u>

$$\frac{1}{\Delta x_{i}} \left(K_{i+\frac{1}{2}} \frac{T_{i+1,j}^{n+1} - T_{i,j}^{n+1}}{\Delta x_{i}} - K_{i-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i-1,j}^{n+1}}{\Delta x_{i}} \right)^{k+\frac{1}{2}}$$

$$- 2HH\alpha \left(\frac{T_{i+1,j}^{n+1} - T_{i-1,j}^{n+1}}{2 \Delta x_{i}} \right)^{2}$$

$$+ \frac{1}{\Delta y_{i}} \left(K_{j+\frac{1}{2}} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{i+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{i-\frac{1}{2}}} \right)^{k}$$

$$= \left(C_{i,j}^{n+1} \right)^{k} \frac{\left(T_{i,j}^{n+1} \right)^{k+\frac{1}{2}} - T_{i,j}^{n}}{\Delta t} . \tag{B-18}$$

Rearranging:

$$\left(\mathbf{T}_{\mathbf{i},1,j}^{n+1} - \mathbf{T}_{\mathbf{i},j}^{n+1} \right)^{k+\frac{1}{2}} - \frac{K_{\mathbf{i}-\frac{1}{2}}}{K_{\mathbf{i}+\frac{1}{2}}} \left(\mathbf{T}_{\mathbf{i},j}^{n+1} - \mathbf{T}_{\mathbf{i}-1,j}^{n+1} \right)^{k+\frac{1}{2}}$$

$$- \frac{\Delta \mathbf{x}_{\mathbf{i}}}{K_{\mathbf{i}+\frac{1}{2}}} \left(\mathbf{T}_{\mathbf{i}+1,j}^{n+1} - \mathbf{T}_{\mathbf{i}-1,j}^{n+1} \right)^{k+\frac{1}{2}}$$

$$+ \frac{\left(\Delta \mathbf{x}_{\mathbf{i}} \right)^{2}}{\Delta \mathbf{y}_{\mathbf{i}}} \left(K_{\mathbf{j}+\frac{1}{2}} \frac{\mathbf{T}_{\mathbf{i},j+1}^{n+1} - \mathbf{T}_{\mathbf{i},j}^{n+1}}{\Delta \mathbf{y}_{\mathbf{i}+\frac{1}{2}}} - K_{\mathbf{j}-\frac{1}{2}} \frac{\mathbf{T}_{\mathbf{i},j-1}}{\Delta \mathbf{y}_{\mathbf{i}-\frac{1}{2}}} \right)^{k}$$

$$= \frac{\left(\mathbf{c}_{\mathbf{i},j}^{n+1} \right)^{k} \left(\Delta \mathbf{x}_{\mathbf{i}} \right)^{2}}{K_{\mathbf{i}+\frac{1}{2}}} \left[\left(\mathbf{T}_{\mathbf{i},j}^{n+1} \right)^{k+\frac{1}{2}} - \mathbf{T}_{\mathbf{i},j}^{n} \right].$$

Rearranging again,

$$\begin{split} \left(T_{i-1,j}^{n+1}\right)^{k+\frac{1}{2}} & \left(\frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}} + \frac{\Delta_{i}}{K_{i+\frac{1}{2}}} \right) - \left(T_{i,j}^{n+1}\right)^{k+\frac{1}{2}} \left[1 + \frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}} + \frac{\left(C_{i,j}^{n+1}\right)^{k} \left(\Delta_{i}}{K_{i+\frac{1}{2}}}\right)^{2}\right] \\ & - \left(T_{i+1,j}^{n+1}\right)^{k+\frac{1}{2}} \left(\frac{\Delta_{i}}{K_{i+\frac{1}{2}}} \right) - 1 = \\ & - \frac{\left(\Delta_{i,j}\right)^{2}}{\Delta y_{i}} \frac{1}{K_{i+\frac{1}{2}}} \left(K_{j+\frac{1}{2}} \right)^{2} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{i+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j}^{1} - T_{i,j-1}}{\Delta y_{i-\frac{1}{2}}}\right)^{k} \\ & - \frac{\left(C_{i,j}^{n+1}\right)^{k} \left(\Delta_{i}\right)^{2}}{K_{i+\frac{1}{2}}} \frac{T_{i,j}^{n}}{\Delta t} \\ \\ \text{Let:} \quad \text{Al}_{i} &= \left[\frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}} + \frac{\Delta x_{i}}{K_{i+\frac{1}{2}}} \right] \\ & \text{Bl}_{i} &= -\left[1 + \frac{K_{i-\frac{1}{2}}}{K_{i+\frac{1}{2}}} + \frac{\left(C_{i,j}^{n+1}\right)^{k} \left(\Delta x_{j}\right)^{2}}{K_{i+\frac{1}{2}}}\right] \\ \\ \text{Cl}_{i} &= \left(\frac{\Delta x_{i}}{K_{i+\frac{1}{2}}} + \frac{C_{i,j}^{n+1}}{K_{i+\frac{1}{2}}} - 1\right) \\ & \text{Dl}_{i} &= \frac{\left(\Delta x_{i}\right)^{2}}{\Delta y_{i}} \left(K_{j+\frac{1}{2}} \right)^{2} \frac{T_{i,j}^{n+1}}{\Delta y_{i+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{i-\frac{1}{2}}}\right)^{k} \\ &- \frac{\left(C_{i,j}^{n+1}\right)^{k} \left(\Delta x_{i}\right)^{2}}{K_{i+\frac{1}{2}}} \frac{T_{i,j}^{n}}{\Delta t} \\ \end{aligned}$$

Then:

A1
$$T_{i-1,j}^{n+1} + B1 T_{i,j}^{n+1} + C1 T_{i+1,j}^{n+1} = D1$$
 (B-19)

Implicit in y, Explicit in x, Constant x Spacing

$$\frac{1}{\Delta x_{i}} \left(K_{i+\frac{1}{2}} \frac{T_{i+1,j}^{n+1} - T_{i,j}^{n+1}}{\Delta x_{i}} - K_{i-\frac{1}{2}} \frac{T_{i,j}^{n+1} - T_{i-1,j}^{n+1}}{\Delta x_{i}} \right)^{k+\frac{1}{2}}$$

$$- 2HH\alpha \left(\frac{T_{i+1,j}^{n+1} - T_{i-1,j}^{n+1}}{2 \Delta x_{i}} \right)^{k+\frac{1}{2}}$$

$$+ \frac{1}{\Delta y_{i}} \left(K_{j+\frac{1}{2}} \frac{T_{i,j+1}^{n+1} - T_{i,j}^{n+1}}{\Delta y_{j+\frac{1}{2}}} - K_{j-\frac{1}{2}} \frac{T_{i,j-1}^{n+1} - T_{i,j-1}^{n+1}}{\Delta y_{j-\frac{1}{2}}} \right)^{k+1}$$

$$= \left(C_{i,j}^{n+1} \right)^{k+\frac{1}{2}} \frac{\left(T_{i,j}^{n+1} \right)^{k+\frac{1}{2}}}{\Delta x_{i}} - T_{i,j}^{n} \right). \tag{B-20}$$

Rearranging:

$$\left(\mathbf{T}_{\mathbf{i},\mathbf{j}+1}^{\mathbf{n}+1} - \mathbf{T}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1} \right)^{k+1} - \frac{\mathbf{K}_{\mathbf{j}-\frac{1}{2}} \Delta \mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\mathbf{K}_{\mathbf{j}+\frac{1}{2}} \Delta \mathbf{y}_{\mathbf{j}-\frac{1}{2}}} \left(\mathbf{T}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1} - \mathbf{T}_{\mathbf{i},\mathbf{j}-1}^{\mathbf{n}+1} \right)^{k+1}$$

$$- \frac{\left(\mathbf{c}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1} \right)^{k+\frac{1}{2}} \Delta \mathbf{y}_{\mathbf{j}+\frac{1}{2}} \Delta \mathbf{y}_{\mathbf{j}}}{\mathbf{K}_{\mathbf{j}+\frac{1}{2}} \Delta \mathbf{t}} \left(\mathbf{T}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1} \right)^{k+1} =$$

$$- \frac{\Delta \mathbf{y}_{\mathbf{j}} \Delta \mathbf{y}_{\mathbf{j}+\frac{1}{2}}}{\left(\Delta \mathbf{x}_{\mathbf{j}} \right)^{2} \mathbf{K}_{\mathbf{j}+\frac{1}{2}}} \left[\mathbf{K}_{\mathbf{i}+\frac{1}{2}} \left(\mathbf{T}_{\mathbf{i}+1,\mathbf{j}}^{\mathbf{n}+1} - \mathbf{T}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1} \right) - \mathbf{K}_{\mathbf{i}-\frac{1}{2}} \left(\mathbf{T}_{\mathbf{i},\mathbf{j}}^{\mathbf{n}+1} - \mathbf{T}_{\mathbf{i}-1,\mathbf{j}}^{\mathbf{n}+1} \right) \right]^{k+\frac{1}{2}}$$

$$\begin{split} & + \frac{2 \text{HH} \alpha}{2} \frac{\Delta y_{j}}{K_{j+\frac{1}{2}}} \frac{\Delta y_{j+\frac{1}{2}}}{\left(T_{i+1}^{n+1}, j - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}}} \\ & - \frac{\left(c_{i, j}^{n+1}\right)^{k+\frac{1}{2}}}{K_{j+\frac{1}{2}}} \frac{\Delta y_{j}}{\Delta y_{j+\frac{1}{2}}} T_{i, j}^{n} \\ & - \frac{\left(c_{i, j}^{n+1}\right)^{k+\frac{1}{2}}}{K_{j+\frac{1}{2}}} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta t} T_{i, j}^{n} \\ & - \frac{\left(c_{i, j}^{n+1}\right)^{k+\frac{1}{2}}}{K_{j+\frac{1}{2}}} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta t} \right) \\ & - \text{Let:} \quad \text{A1}_{j} = \left(\frac{K_{j-\frac{1}{2}}}{K_{j+\frac{1}{2}}} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta y_{j-\frac{1}{2}}} + \frac{\left(c_{i, j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta t} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta y_{j+\frac{1}{2}}} \frac{\Delta y_{j}}{\Delta t} \right] \\ & - \text{E1}_{j} = - \left[1 + \frac{K_{j-\frac{1}{2}}}{K_{j+\frac{1}{2}}} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta y_{j-\frac{1}{2}}} + \frac{\left(c_{i, j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta t} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta t} \frac{\Delta y_{j+\frac{1}{2}}}{\Delta t} \right] \\ & - \text{C1}_{j} = 1 \\ & - \text{D1}_{j} = \frac{\Delta y_{j}}{\left(\Delta x_{i}\right)^{2} K_{j+\frac{1}{2}}} \left[K_{j+\frac{1}{2}}\left(T_{i+1, j}^{n+1} - T_{i, j}^{n+1}\right) - K_{j-\frac{1}{2}}\left(T_{i, j} - T_{i-1, j}\right)^{k+\frac{1}{2}} \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \right] \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \right) \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \right) \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \\ & + \frac{HH \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i-1, j}^{n+1}\right)^{k+\frac{1}{2}} \right) \\ & + \frac{H \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i+1, j}^{n+1}\right)^{k+\frac{1}{2}} \\ & + \frac{H \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i+1, j}^{n+1}\right)^{k+\frac{1}{2}} \right) \\ & + \frac{H \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1} - T_{i+1, j}^{n+1}\right)^{k+\frac{1}{2}} \\ & + \frac{H \alpha}{\Delta x_{i}} \frac{\Delta y_{i}}{K_{i+\frac{1}{2}}} \left(T_{i+1, j}^{n+1}$$

Therefore:

$$A1_{j} T_{i,j-1}^{n+1} + B1_{j} T_{i,j}^{n+1} + C1_{j} T_{i,j+1}^{n+1} = D1_{j}$$
 (B-21)

Boundary Conditions for THERMAB2

1)
$$\left(T_{0,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{2,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for $2 \le j \le J$.

2)
$$\left(T_{1,1}^{n+1}\right)^{k+\frac{1}{2}} = T_{\text{constant}}$$
.

3)
$$\left(T_{I-1,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{I+1,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 for $1 \le j \le J$.

4)
$$\left(T_{i,0}^{n+1}\right)^{k+1} = \left(T_{i,2}^{n+1}\right)^{k+1}$$
 for $2 \le i \le 1$.

5)
$$\left(T_{1,1}^{n+1}\right)^{k+1}$$
 = T_{constant} .

6)
$$\left(T_{i,J-1}^{n+1}\right)^{k+1} = \left(T_{i,J+1}^{n+1}\right)^{k+1}$$
 for $1 \le i \le I$.

Conduction Difference Equations for THERMAB5

$$\frac{\partial}{\partial z} \left(K_z \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial T}{\partial y} \right) - q(T) = \frac{\partial}{\partial T} \left[\rho_s c_s(T) T_s \right]. \tag{B-22}$$

Where $q(T) = C'(T) \frac{\partial T}{\partial t}$, let $C(T) = \rho_S c_S(T) + C'(T)$.

Implicit in z, Explicit in y, Variable Grid Spacing

$$\frac{1}{\Delta z_{m}} \left[\frac{(K_{z})_{m+\frac{1}{2}} \left(T_{m+1,j}^{n+1} - T_{m,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}}} - \frac{(K_{z})_{m-\frac{1}{2}} \left(T_{m,j}^{n+1} - T_{m-1,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta z_{m-\frac{1}{2}}} \right] \\
- \frac{1}{\Delta y_{j}} \left[\frac{(K_{y})_{j+\frac{1}{2}} \left(T_{m,j+1}^{n+1} - T_{m,j}^{n+1}\right)^{k}}{\Delta y_{j+\frac{1}{2}}} - \frac{(K_{y})_{j-\frac{1}{2}} \left(T_{m,j}^{n+1} - T_{m,j-1}^{n+1}\right)^{k}}{\Delta y_{j-\frac{1}{2}}} \right] \\
= \left(C_{m,j}^{n+1}\right)^{k} \frac{\left(T_{m,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta y_{j}} - T_{m,j}^{n} \qquad (B-23)$$

Rearranging:

$$\begin{split} &\frac{\Delta z_{m-\frac{1}{2}} (K_{z})_{m+\frac{1}{2}} (K_{z})_{m+\frac{1}{2}} (T_{m+1,j}^{n+1} - T_{m,j}^{n+1})^{k+\frac{1}{2}} - (T_{m,j}^{n+1} - T_{m-1,j}^{n+1})^{k+\frac{1}{2}} + \\ &\frac{\Delta z_{m-\frac{1}{2}} \Delta z_{m}}{\Delta y_{j} (K_{z})_{m-\frac{1}{2}}} \left[\frac{(K_{y})_{j+\frac{1}{2}} (T_{m,j+1}^{n+1} - T_{m,j}^{n+1})^{k}}{\Delta y_{j+\frac{1}{2}}} - \frac{(K_{y})_{j-\frac{1}{2}} (T_{m,j}^{n+1} - T_{m,j-1}^{n+1})^{k}}{\Delta y_{j-\frac{1}{2}}} \right] \\ &= \frac{\left(c_{m,j}^{n+1}\right)^{k} \Delta z_{m-\frac{1}{2}} \Delta z_{m}}{(K_{z})_{m-\frac{1}{2}} \Delta t} \left[\left(T_{m,j}^{n+1}\right)^{k+\frac{1}{2}} - T_{m,j}^{n}\right]. \end{split}$$

Regrouping:

$$\begin{split} \left(T_{m-1,j}^{n+1}\right)^{k+\frac{1}{2}} - \left[\frac{\Delta z_{m-\frac{1}{2}}(K_{Z})_{m+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}}(K_{Z})_{m-\frac{1}{2}}} + 1 + \frac{\left(c_{m,j}^{n+1}\right)^{k}}{(K_{Z})_{m-\frac{1}{2}}} \frac{\Delta z_{m}}{\Delta t} \right] \left(T_{m,j}^{n+1}\right)^{k+\frac{1}{2}} + \\ & \frac{\Delta z_{m-\frac{1}{2}}(K_{Z})_{m+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}}(K_{Z})_{m-\frac{1}{2}}} \left(T_{m-1,j}^{n+1}\right)^{k+\frac{1}{2}} = \\ & \frac{\Delta z_{m-\frac{1}{2}}\Delta z_{m}}{\Delta y_{j}(K_{Z})_{m-\frac{1}{2}}} \left[\frac{(K_{y})_{j+\frac{1}{2}}(T_{m,j+1}^{n+1} - T_{m,j}^{n+1})^{k}}{\Delta y_{j+\frac{1}{2}}} - \frac{(K_{y})_{j-\frac{1}{2}}(T_{m,j}^{n+1} - T_{m,j-1}^{n+1})^{k}}{\Delta y_{j-\frac{1}{2}}} - \frac{\left(c_{m,j}^{n+1}\right)^{k}\Delta z_{m-\frac{1}{2}}\Delta z_{m}}{\Delta y_{j-\frac{1}{2}}} - \frac{\left(c_{m,j}^{n+1}\right)^{k}\Delta z_{m-\frac{1}{2}}\Delta z_{m}}{(K_{Z})_{m-\frac{1}{2}}\Delta t} \left(T_{m,j}^{n}\right) . \end{split}$$

Let:
$$A1_{m} = 1$$
.
$$B1_{m} = -\left[1 + \frac{\Delta z_{m-\frac{1}{2}} (K_{z})_{m+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}} (K_{z})_{m-\frac{1}{2}}} + \frac{\left(c_{m,j}^{n+1}\right)^{k} \Delta z_{m-\frac{1}{2}} \Delta z_{m}}{(K_{z})_{m-\frac{1}{2}} \Delta t}\right].$$

$$C1_{m} = \frac{\Delta z_{m-\frac{1}{2}} (K_{z})_{m+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}} (K_{z})_{m-\frac{1}{2}}}.$$

$$D1_{m} = -\frac{\left(C_{m,j}^{n+1}\right)^{k} \Delta z_{m-\frac{1}{2}} \Delta z_{m}}{\left(K_{z}\right)_{m-\frac{1}{2}} \Delta t} \left(T_{m,j}^{n}\right) +$$

$$\frac{\Delta z_{m-\frac{1}{2}} \Delta z_{m}}{\Delta y_{j} \left(K_{z}\right)_{m-\frac{1}{2}}} \left[\frac{\left(K_{y}\right)_{j+\frac{1}{2}} \left(T_{m,j+1}^{n+1} - T_{m,j}^{n+1}\right)^{k}}{\Delta y_{j+\frac{1}{2}}} - \frac{\left(K_{y}\right)_{j-\frac{1}{2}} \left(T_{m,j}^{n+1} - T_{m,j-1}^{n+1}\right)^{k}}{\Delta y_{j-\frac{1}{2}}} \right] .$$

Then:

$$A1_{m} \left(T_{m-1,j}^{n+1}\right)^{k+\frac{1}{2}} + B1_{m} \left(T_{m,j}^{n+1}\right)^{k+\frac{1}{2}} + C1_{m} \left(T_{m+1,j}^{n+1}\right)^{k+\frac{1}{2}} = D1_{m} . \quad (B-24)$$

Implicit in z, Explicit in y, Variable Grid Spacing

$$\frac{1}{\Delta z_{m}} \left[\frac{(K_{z})_{m+\frac{1}{2}} \left(T_{m+1,j}^{n+1} - T_{m,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}}} - \frac{(K_{z})_{m-\frac{1}{2}} \left(T_{m,j}^{n+1} - T_{m-1,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta z_{m-\frac{1}{2}}} \right] \\
+ \frac{1}{\Delta y_{j}} \left[\frac{(K_{y})_{j+\frac{1}{2}} \left(T_{m,j+1}^{n+1} - T_{m,j}^{n+1}\right)^{k+1}}{\Delta y_{j+\frac{1}{2}}} - \frac{(K_{y})_{j-\frac{1}{2}} \left(T_{m,j}^{n+1} - T_{m,j-1}^{n+1}\right)^{k+1}}{\Delta y_{j-\frac{1}{2}}} \right] \\
= \left(C_{m,j}^{n+1}\right)^{k+\frac{1}{2}} \left(T_{m,j}^{n+1}\right)^{k+1} + T_{m,j}^{n} . \tag{B-25}$$

Rearranging:

$$\frac{\Delta y_{j-\frac{1}{2}}(K_{y})_{j+\frac{1}{2}}(T_{m,j+1}^{n+1} - T_{m,j}^{n+1}]^{k+1}}{\Delta y_{j+\frac{1}{2}}(K_{y})_{j-\frac{1}{2}}[T_{m,j+1}^{n+1} - T_{m,j}^{n+1}]^{k+1}} - (T_{m,j}^{n+1})^{k+1} + (T_{m,j-1}^{n+1})^{k+1} - \frac{\Delta y_{j-\frac{1}{2}}\Delta y_{j}(C_{m,j}^{n+1})^{k+\frac{1}{2}}}{(K_{y})_{j-\frac{1}{2}}\Delta t} (T_{m,j}^{n+1})^{k+\frac{1}{2}} =$$

$$-\frac{\Delta y_{j-\frac{1}{2}} \Delta y_{j}}{\Delta z_{m} (K_{y})_{j-\frac{1}{2}}} \left[\frac{(K_{z})_{m+\frac{1}{2}} \left(T_{m+1,j}^{n+1} - T_{m,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}}} - \frac{(K_{z})_{m-\frac{1}{2}} \left(T_{m,j}^{n+1} - T_{m-1,j}^{n+1}\right)^{k+\frac{1}{2}}}{\Delta z_{m-\frac{1}{2}}} \right] \\ -\frac{\Delta y_{j-\frac{1}{2}} \Delta y_{j} \left(C_{m,j}^{n+1}\right)^{k+\frac{1}{2}}}{(K_{y})_{j-\frac{1}{2}} \Delta t} \left(T_{m,j}^{n}\right).$$

Let:
$$A1_j = 1$$
.

$$B1_{j} = -\left[1 + \frac{\Delta y_{j-\frac{1}{2}}(K_{y})_{j+\frac{1}{2}}}{\Delta y_{j+\frac{1}{2}}(K_{y})_{j-\frac{1}{2}}} + \frac{\Delta y_{j-\frac{1}{2}}\Delta y_{j}(C_{m,j}^{n+1})^{k+\frac{1}{2}}}{(K_{y})_{j-\frac{1}{2}}\Delta t}\right].$$

$$C1_{j} = \frac{\Delta y_{j-\frac{1}{2}}(K_{y})_{j+\frac{1}{2}}}{\Delta y_{j+\frac{1}{2}}(K_{y})_{j-\frac{1}{2}}}.$$

$$D1_{j} = -\frac{\Delta y_{j-\frac{1}{2}}\Delta y_{j}}{\Delta z_{m}(K_{y})_{j-\frac{1}{2}}}\left[\frac{(K_{z})_{m+\frac{1}{2}}(T_{m+1,j}^{n+1}-T_{m,j}^{n+1})^{k+\frac{1}{2}}}{\Delta z_{m+\frac{1}{2}}} - \frac{\Delta y_{j-\frac{1}{2}}\Delta y_{j}(C_{m,j}^{n+1})^{k+\frac{1}{2}}}{(K_{y})_{j-\frac{1}{2}}\Delta t}(T_{m,j}^{n})^{k+1}}\right].$$

Then:

$$A1_{j} \left(T_{m,j-1}^{n+1}\right)^{k+1} + B1_{j} \left(T_{m,j+1}^{n+1}\right)^{k+1} + C1_{j} \left(T_{m,j+1}^{n+1}\right)^{k+1} = D1_{j}. \quad (B-26)$$

Boundary Conditions for THERMAB5

1)
$$\left(T_{0,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{2,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 $2 \le j \le J$.

2)
$$\left(T_{M-1,j}^{n+1}\right)^{k+\frac{1}{2}} = \left(T_{M+1,j}^{n+1}\right)^{k+\frac{1}{2}}$$
 $1 \le j \le J$.

3)
$$\left(T_{6,1}^{n+1}\right)^{k+\frac{1}{2}} = T_{i,1}^{n+1}$$
 j = 1; desired i.

4)
$$\left(T_{m,1}^{n+1}\right)^{k+1} = T_{i,1}^{n+1}$$
 $1 \le m \le 6$; desired i.

5)
$$\left(T_{m,0}^{n+1}\right)^{k+1} = \left(T_{m,2}^{n+1}\right)^{k+1}$$
 $6 < m \le M$.

6)
$$\left(T_{m,J-1}^{n+1}\right)^{k+1} = \left(T_{m,J+1}^{n+1}\right)^{k+1}$$
 For all m.

APPENDIX C

MATRIX INVERSION TECHNIQUE

As shown in Appendix B all programs have two conduction equations, one implicit in the x direction and explicit in the y direction and the other implicit in the y direction and explicit in the x direction. In case of THERMAB5 we have the y and z directions. These equations are written for each mesh point and must be solved, a line at a time, as dictated by the alternating direction implicit method.

Each line of mesh points leads to a set of simultaneous equations of the form,

$$B_{1} T_{1} + C_{1} T_{2} = D_{1}$$

$$A_{r} T_{r-1} + B_{r} T_{r} + C_{r} T_{R+1} = D_{r}$$

$$A_{R} T_{R-1} + B_{R} T_{R} = D_{R}$$

where r = i, j or m,

which are most conveniently solved by use of a tridiagonal matrix algorithm suggested by Thomas (28). The algorithm is equivalent to a plain Gaussian elimination, but it avoids the error growth associated with the back solution of the elimination method and also minimizes the storage problems in machine computation.

The method may be summarized as follows (25):

Let:

$$w_1 = B_1$$
 $w_r = B_r - A_r b_{r-1}$
 $b_r = C_r/w_r$
 $g_1 = D_1/w_1$
 $g_r = (D_r - A_r g_{r-1})/w_r$
 $2 \le r \le R$
 $1 \le r \le R-1$

The solution is:

$$T_{R} = g_{R}$$

$$T_{r} = g_{r} - b_{r} T_{r+1} \qquad 1 \le r \le R-1.$$

Thus, w, b, and g are computed in order of increasing r, and T is computed in order of decreasing r.

APPENDIX D

VARIABLE GRID SPACING AND TIME STEPS

Variable Grid Spacing

To minimize error and improve stability considerations, it is desirable to choose Δy_j in equation B-2 so that the temperature difference between any $T_{i,j}$ and $T_{i,j+1}$ can be controlled to be less than a preselected ΔT_{max} . A systematic method of choosing y_j values can be based upon the heat distribution prescribed by the analytical solution of conduction heat transfer in a semi-infinite slab (22).

Consider the one-dimensional transient conduction heat problem described by:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial y^2}$$

with boundary conditions,

at
$$t=0$$
, $T=T_0$, for $y \ge 0$ at $y=0$, $T=T_1$, for $t \ge 0$ as $y \to \infty$, $T \to T_0$, for $t \ge 0$.

The solution is

$$\frac{T - T_0}{T_1 - T_0} = \operatorname{erfc}\left(\frac{y}{2\sqrt{\alpha t}}\right). \tag{D-1}$$

Recalling the general differentiation formula (35),

$$\frac{\partial}{\partial v} \int_0^V f(w) dw = f(v)$$
 (D-2)

and knowing that erfc = 1 - erf, we can write

erfc
$$\left(\frac{y}{2\sqrt{\alpha t}}\right) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\left(\frac{y}{2\sqrt{\alpha t}}\right)} e^{-\frac{y^2}{4\alpha t}} d\left(\frac{y}{2\sqrt{\alpha t}}\right)$$
.

Then:

$$\frac{\partial T}{\partial y} = (T_1 - T_0) \frac{\partial T}{\partial \left(\frac{y}{2\sqrt{\alpha t}}\right)} \frac{\partial \left(\frac{y}{2\sqrt{\alpha t}}\right)}{\partial y},$$

$$\frac{\partial T}{\partial y} = -(T_1 - T_0) \frac{2}{\sqrt{\pi}} \left(e^{-\frac{y^2}{4\alpha t}}\right) \left(\frac{1}{2\sqrt{\alpha t}}\right),$$

$$\frac{\partial T}{\partial y} = -\frac{T_1 - T_0}{\sqrt{\pi \alpha t}} e^{-\frac{y^2}{4\alpha t}}.$$
(D-3)

To determine the time when this gradient reaches its maximum value at any y we first differentiate the gradient with respect to t.

$$\frac{\partial^{2} T}{\partial y} = -\frac{T_{1} - T_{0}}{\sqrt{\pi \alpha}} \left(-\frac{1}{2} t^{-3/2}\right) e^{-\frac{y^{2}}{4\alpha t}} - \frac{T_{1} - T_{0}}{\sqrt{\pi \alpha t}} \left(-\frac{y^{2}}{4\alpha}\right) \left(-\frac{t^{-2}}{2}\right) \left(e^{-\frac{y^{2}}{4\alpha t}}\right)$$

$$\frac{\partial^{2} T}{\partial y} = \frac{T_{1} - T_{0}}{2t \sqrt{\pi \alpha t}} e^{-\frac{y^{2}}{4\alpha t}} \left(1 - \frac{y^{2}}{2\alpha t}\right). \tag{D-4}$$

Then setting $\frac{\partial^2 T}{\partial y \partial t} = 0$.

$$\frac{T_1 - T_0}{2t \sqrt{\pi \alpha}t} e^{-\frac{y^2}{4\alpha}t} \left(1 - \frac{y^2}{2\alpha t}\right) = 0 ,$$

which results in:

$$t = \frac{y^2}{2\alpha} . (D-5)$$

The temperature gradient at this time is obtained by substituting equation D-5 into equation D-3.

$$\frac{\partial T}{\partial y} = -\frac{\sqrt{2} (T_1 - T_0)}{y \sqrt{\pi} e^{\frac{1}{2}}}$$
 (D-6)

which is approximately

$$\frac{\partial T}{\partial y} \approx -\frac{T_1 - T_0}{2y} \quad . \tag{D-7}$$

Then using finite differences, the temperature difference between grid points can be limited to $(\Delta T)_{max}$ by requiring

$$\frac{T_1 - T_0}{2y_j} \le \frac{(\Delta T)_{\text{max}}}{\Delta y_j} \qquad \text{for all j.}$$
 (D-8)

Then,

$$y_{j+1} - y_{j} = \Delta y_{j} \le \frac{2y_{j}(\Delta T)_{max}}{(T_{1} - T_{0})}$$
 (D-9)

Let

$$\frac{\left(\Delta T\right)_{\text{max}}}{T_1 - T_0} = Ry .$$

Then $y_{j+1} - y_j \le 2 \text{ Ry } y_j$.

If we let
$$y_{j+1} = y_j$$
 (1 + 2 Ry), (D-10)

we can begin with some y_p and generate a y_j sequence, such that the temperature difference between points will never exceed a predesignated $(\Delta T)_{max}$.

$$y_j = y_P (1 + 2 Ry)^{j-P}$$
 (D-11)

When establishing this sequence, we want

$$\Delta y_{j+1} \ge \Delta y_{j}$$
 for all j

but if P = 2, equation D-7 implies $\Delta y_2 < \Delta y_1 \equiv y_2$ since $y_1 = 0$ and 2 Ry is less than 1.

Therefore we must select the initial Δy_j 's until y_j becomes large enough such that:

2 Ry
$$y_{j-1} \ge y_{J} - y_{J-1}$$
.

We can then set this $y_{j-1} = y_p$ and use equation D-11 to select values of y_j for j > p.

The Δy and Δz_m distributions for this work were based on this procedure.

Time Step Incrementation

It was necessary to begin with small Δt_n 's and systematically increase their values partially because of accuracy but mainly because of stability difficulties. The initial time step incrementation for these programs was based on theory similar to that used for the y spacing.

$$\frac{\mathbf{T} - \mathbf{T}_0}{\mathbf{T}_1 - \mathbf{T}_0} = 1 - \operatorname{erf}\left(\frac{\mathbf{y}}{2\sqrt{\alpha t}}\right).$$

$$\frac{\partial T}{\partial t} = (T_1 - T_0) \frac{\partial T}{\partial \left(\frac{y}{2\sqrt{\alpha t}}\right)} \frac{\partial \left(\frac{y}{2\sqrt{\alpha t}}\right)}{\partial t}$$

$$\frac{\partial T}{\partial t} = - (T_1 - T_0) \frac{2}{\sqrt{\pi}} \left(e^{\frac{y^2}{4\alpha t}} \right) \left(\frac{-y}{4\sqrt{\alpha t}^{3/2}} \right) .$$

$$\frac{\partial \mathbf{T}}{\partial t} = \frac{(\mathbf{T}_1 - \mathbf{T}_0) \mathbf{y}}{2\sqrt{\pi \alpha} t^{3/2}} e^{-\frac{\mathbf{y}^2}{4\alpha t}} . \tag{D-12}$$

To determine the position where the rate of heating reaches its maximum value at any t, the rate of heating is differentiated with respect to y.

$$\frac{\partial^{2} T}{\partial t \partial y} = \frac{T_{1} - T_{0}}{2\sqrt{\pi \alpha}t^{3/2}} e^{-\frac{y^{2}}{4\alpha t}} + \frac{(T_{1} - T_{0})y}{2\sqrt{\pi \alpha}t^{3/2}} \left(\frac{-2y}{4\alpha t}\right) \left(e^{-\frac{y^{2}}{4\alpha t}}\right). \tag{D-13}$$

Setting $\frac{\partial^2 T}{\partial t \partial y} = 0$, we have

$$\left(1 - \frac{2y^2}{4\alpha t}\right) \frac{(T_1 - T_0)}{2\sqrt{\pi \alpha} t^{3/2}} e^{-\frac{y^2}{4\alpha t}} = 0,$$

$$\frac{y^2}{2\alpha t} = 1, \text{ or } y = \sqrt{2\alpha t} . \tag{D-14}$$

The temperature gradient at this position is obtained by substituting equation D-14 into D-12.

$$\frac{\partial T}{\partial t} = \frac{(T_1 - T_0) \sqrt{2\alpha t}}{2 \sqrt{\pi \alpha} t^{3/2}} e^{-\frac{2\alpha t}{4\alpha t}}.$$

$$\frac{\partial T}{\partial t} = \frac{T_1 - T_0}{r \sqrt{2\pi}} e^{-\frac{1}{2}} . \tag{D-15}$$

0r

$$\frac{\partial T}{\partial t} \approx \frac{T_1 - T_0}{4t} . \tag{D-16}$$

The temperature change per time step can be limited to $(\Delta T)_{max}$ by requiring that:

$$\frac{T_1 - T_0}{4 t_n} \leq \frac{(\Delta T)_{\text{max}}}{\Delta t_n} . \tag{D-17}$$

which implies,

$$t_{n+1} - t_n \le \frac{4t_n (\Delta T)_{max}}{(T_1 - T_0)} = 4 R_t t_n$$

where
$$R_t = \frac{(\Delta T)_{max}}{T_1 - T_0}$$
.

Then if $t_{n+1} = t_n$ (1+4 R_t), we can begin with a t_p and generate a T_n sequence, such that the temperature change per time step nowhere exceeds $(\Delta T)_{max}$.

$$t_n = T_P (1+4 R_t)^{n-P}$$
 (D-18)

An initial time step Δt_0 was used until 4 R_t $t_n \ge \Delta t_0$, then this t_n was denoted t_p and equation D-18 was used to calculate t_n for n > P until stability of the system imposed a limit on the value of Δt_n .

The Δt_0 for these programs was one hour and R_t was selected to be 0.05. With this criteria t_P was five hours. It was necessary to discontinue the use of this relationship when Δt_n had reached 15 hours because of stability limitations. A Δt_n of 15 hours was maintained until t_n reached 1000 hours. At 1000 hours, Δt_n was raised to 30 hours; at 3000 hours, it was raised to 50 hours; and at 10,000 hours, it was raised to 100 hours.

APPENDIX E

EXAMPLE OUTPUT DATA

Example output data from IHERMAB3-Run no. 3

			**						
J= 1 2 3 4 5 6 7 8	9 10 1		13 14	15	16	17 1		20	21
1 1500.0 1465.9 1432.1 1365.5 1300.2 1236.3 1142.2 1050.7 93	6.2 833.7 714.	8 602.8 486				164.4 124.	100.0	100.0	100.0
2 1482.9 1450.7 1418.7 1354.8 1291.5 1229.1 1136.7 1046.2 93	2.9 831.3 713.					164.3 123.		100.0	100.0
3 1466.0 1434.5 1403.1 1340.4 1278.3 1217.0 1126.0 1036.9 92	5.2 825.2 708.					164.1 123.	100.0	100.0	100.0
4 1449.4 1418.2 1387.1 1325.1 1263.7 1203.1 1113.0 1025.0 91	5.1 816.9 702.					163.7 123.		100.0	100.0
5 1432.8 1401.8 1370.9 1309.4 1248.5 1188.3 1098.9 1011.8 90	3.6 807.2 694.	9 588.5 476	5.5 384.7	294.0	221.0	163.2 123.	100.0	100.0	100.0
6 1416.3 1385.5 1354.7 1293.5 1233.0 1173.0 1084.1 998.0 89	1.4 796.7 686.					162.5 123.	100.0	100.0	100.0
7 1399.8 1369.1 1338.4 1277.5 1217.3 1157.6 1069.1 983.8 87	8.9 785.9 678.	0 575.6 467	7.4 378.3	289.9	218.5	161.7 122.	100.0	100.0	100.0
8 1383.4 1352.7 1322.1 1261.4 1201.4 1141.9 1053.9 969.5 86	6.2 774.9 669.	2 568.8 462	2.5 374.8	287.6	217.1	160.9 122.	100.0	100.0	100.0
9 1367.0 1336.4 1375.9 1245.4 1185.6 1126.2 1038.6 955.2 85	3.4 763.9 660.	2 561.7 457	7.3 371.1	285.1	215.5	160.0 121.	100.0	100.0	100.0
10 1350.6 1320.1 1289.7 1229.4 1169.7 1110.4 1023.4 940.9 84	0.8 752.9 651.	3 554.7 452	2.1 367.3			159.0 121.	100.0	100.0	100.0
11 1334.2 1303.8 1273.5 1213.4 1153.8 1094.6 1008.3 926.8 82	8.3 742.0 642.	4 547.7 446	363.4	280.0	212.2	158.0 121.	.100.0	100.0	100.0
12 1317.9 1287.5 1257.3 1197.3 1137.9 1078.9 993.3 912.8 81	5.9 731.3 633.	6 540.7 441	1.7 359.5	277.3	210.4	156.9 120.	100.0	100.0	100.0
13 1301.6 1271.3 1241.2 1181.3 1121.9 1063.2 978.3 899.0 80	3.7 720.7 624.	9 533.7 436	5.5 355.7	274.7	208.7	155.8 119.	100.0	100.0	100.0
14 1285.3 1255.2 1225.1 1165.3 1106.0 1047.6 963.5 885.3 79	1.6 710.2 616.	3 526.9 431	1.3 351.8	272.1	206.9	154.7 119.	100.0	100.0	100.0
	9.8 700.0 607.	9 520.1 426	5.2 347.9	269.4	205.1	153.6 118.	100.0	100.0	100.0
	8.1 689.8 599.	5 513.4 421	1.1 344.1	266.8	203.3	152.5 118.	3 100.0	100.0	100.0
	6.7 679.9 591.	3 506.8 416	5.0 340.3	264.2	201.5	151.3 117.	7 100.0	100.0	100.0
	5.4 670.1 583.	3 500.2 411	1.1 336.5	261.6	199.7	150.1 117.		100.0	100.0
	4.3 660.5 575.	3 493.8 406	5.1 332.7	259.0	197.8	149.0 116.	100.0	100.0	100.0
	3.4 651.1 567.		1.2 329.0	256.3	196.0	147.8 115.		100.0	100.0
	2.8 641.8 559.	8 481.2 396	5.4 325.3	253.7	194.2	146.7 115.	100.0	100.0	100.0
	2.3 632.6 552.					145.5 114.		100.0	100.0
	1.9 623.6 544.	7 468.8 386	5.8 317.9	248.5	190.6	144.4 114.	100.0	100.0	100.0
	1.8 614.8 537.					143.2 113.		100.0	100.0
	1.8 606.0 529.					142.1 112.		100.0	100.0
	1.9 597.4 522.					140.9 111.		100.0	100.0
	2.2 588.9 515.					139.8 111.		100.0	100.0
	2.6 580.4 508.					138.6 110.		100.0	100.0
	3.1 572.1 501.					137.5 109.		100.0	100.0
	3.7 563.8 494.					136.4 109.		100.0	100.0
	4.4 555.6 487.					135.2 108.		100.0	100.0
	5.1 547.5 480.					134.1 107.		100.0	100.0
	6.0 539.5 473.		0.5 281.7			133.0 106.		100.0	100.0
	7.0 531.5 466.					131.9 106.		100.0	100.0
	8.0 523.6 460.		1.4 274.6			130.8 105.		100.0	100.0
	9.1 515.7 453.		7.0 271.1			129.7 104.		100.0	100.0
	0.3 507.9 446.		2.5 267.6			128.7 103.		100.0	100.0
	1.5 500.1 440.					127.7 102.		100.0	100.0
	2.8 492.4 433.					126.7 101.		100.0	100.0
	4.2 484.7 426.		9.3 257.3			125.8 100.		100.0	100.0
	5.6 477.1 420.		5.0 253.9			124.9 100.		100.0	100.0
	7.1 469.6 414.					124.1 100.		100.0	100.0
	8.8 462.2 407.					123.3 100.		100.0	100.0
	0.6 454.9 401.		2.4 244.3			122.5 100.		100.0	100.0
	2.5 447.8 395.		8.5 241.2			121.8 100.		100.0	100.0
	4.7 441.0 389.		4.8 238.4			121.1 . 100.		100.0	100.0
	7.4 434.6 384.		1.5 235.9			120.6 100.		100.0	100.0
	0.6 428.7 379.					120.1 100.		100.0	100.0
	4.7 423.8 375.		5.4 232.2			119.7 100.		100.0	100.0
	0.4 420.3 373.					119.5 100.		100.0	100.0
		0 325.7 274						100.0	100.0
88117.0 HDURS	00.9 410.7 372.	0 929.1 219	4. 7 530.0	107.7	. 7 7 • 1	117.4 100.	100.0	100.0	100.0
	::								
0.04894 DISCREPANCY IN HEAT BALANCE									
0.70402099E 09 BTU DF HEAT STORED IN RESERVOIR									
0.24409128E 09 BTU UF HEAT PRODUCED									
0.88157645E 09 BTU OF HEAT INJECTED									
0.13594491E 10 HTTOT									
0.41133696E 09 HTORG		·							
100.0TIME INCREMENT, HOURS									
									
-0.61596915E-01 ER2									
0.01000 TOLERANCE 0.58262092E 00 =INSTANT HEAT STORED									

Example output data from THERMAB3 —Run no. 3

DISTANCE	ISOTHERM	ISOTHERM	ISOTHERM	ISOTHERM	ISOTHERM	ISOTHERM	ISOTHERM	ISOTHERM
DOWN	DEGREES F	DEGREES F	DEGREES F	DEGREES F	DEGREES F	DEGREES F	DEGREES F	DEGREEES F
FRACTURE	300.0	500.0	600.0	700.0	900.0	1100.0	1300.0	1500.0
FEET								
	FEET INTO F	EET INTO	FEET INTO I	FEET INTO 1	EET INTO 1	FEET INTO F	EET INTO P	EET INTO
	WALL	WALL	WALL	WALL	WALL	WALL	WALL	WALL
0.	66.68	41.92	34.22	28.36	19.41	12.38	6.01	0.0
10.	66.64	41.86	34.13	28.27	19.29	12.22	5.73	0.0
20.	66.52	41.70	33.92	28.02	19.01	11.87	5.30	0.0
30.	66.33	41.44	33.65	27.65	18.62	11.44	4.82	0.0
40.	. 66.07	41.11	33.30	27.25	18.15	10.96	4.31	0.0
50•	65.76	40.73	32.90	26.83	17.68	10.46	3.79	0.0
60.	65.40	40.29	32.45	26.38	17.19	9.95	3.26	0.0
70.	65.01	39.82	31.98	25.90	16.69	9.43	2.73	0.0
80.	64.58	39.32	31.47	25.39	16.17	8.90	2.20	0.0
90.	64.12	38.80	30.95	24.86	15.64	8.36	1.66	0.0
100.	63.64	38.26	30.41	24.32	15.09	7.82	1.13	0.0
110.	63.14	37.70	29.85	23.76	14.53	7.28	0.59	0.0
120.	62.62	37.12	29.27	23.19	13.96	6.75	0.05	0.0
130.	62.09	36.53	28.69	22.60	13.44	6.20	0.03	0.0
140.	61.55	35.92	28.08	22.00	12.90	5.67	0.0	0.0
150.	60.99	35.31	27.47	21.48	12.36	5.13 4.59	0.0	0.0
160.	60.41	34.67	26.96	20.95	11.81		0.0	0.0
170.	59.83	34.03	26.44	20.41	11.25	4.05	0.0	0.0.
180.	59.21	33.51	25.91	19.86	10.70	3.51	0.0	0.0
190.	58.59	32.98	25.36	19.30	10.17	2.97	0.0	0.0
200.	57.94	32.44	24.80	18.72	9.64	2.44	0.0	0.0
210.	57.28	31.89	24.23	18.13	9.09	1.90	0.0	0.0
220.	56.60	31.33	23.65	17.59	8.54	1.37	0.0	0.0
230.	55.91	30.75	23.05	17.06	7.98	0.84	0.0	0.0
240.	55.19	30.16	22.43	16.52	7.45	0.31	0.0	0.0
250.	54.45	29.55	21.84	15.97	6.91	0.0	0.0	0.0
260.	53.70	28.92	21.30	15.40	6.36	0.0	0.0	0.0
270.	52.94	28.28	20.74	14.81	5.82	0.0	0.0	0.0
280.	52.37	27.63	20.17	14.22	5.28	0.0	0.0	0.0
290.	51.77	27.05	19.58	13.65	4.74	0.0	0.0	0.0
300.	51.16	26.49	18.98	13.10	4.18	0.0	0.0	0.0
310.	50.54	25.90	18.36	12.53	3,64	0.0	0.0	0.0
320.	. 49.89	25.30	17.76	11.95	3.10	0.0	0.0	0.0
330.	49.22	24.68	17.19	11.35	2.54	0.0	0.0	0.0
340.	48.53	24.04	16.61	10.76	1.98	0.0	0.0	0.0
350.	47.83	23.39	16.00	10.19	1.43	0.0	0.0	0.0
360.	47.10	22.71	15.38	9.61	0.87	0.0	0.0	0.0
370.	46.35	22.01	14.74	9.01	0.30	0.0	0.0	0.0
380.	45.58	21.39	14.08	8.39	0.0	0.0	0.0	0.0
390.	44.79	20.76	13.47	7.77	0.0	0.0	0.0	0.0
400.	43.98	20.11	. 12.85	7.18	0.0	0.0	0.0	0.0
410.	43.14	19.44	12.22	6.56	0.0	0.0	0.0	0.0
420.	42.46	18.75	11.56	5.93	Ó.0	0.0	0.0	0.0
430.	41.80	18.05	10.90	5.32	0.0	0.0	0.0	0.0
440.	41.15	17.42	10.28	4.70	0.0	0.0	0.0	0.0
450.	40.51	16.79	9.65	4.06	0.0	0.0	0.0	0.0
460.	39.91	16.16	9.01	3.44	0.0	0.0	0.0	0.0
470.	39.37	15.55	8.37	2.81	0.0	0.0	0.0	0.0
480.	38.92	14.99	7.77	2.17	0.0	0.0	0.0	0.0
490.	38.62	14.54	7.25	1.56	0.0	0.0	0.0	0.0
500.	38.52	14.32	6.93	1.00	0.0	0.0	0.0	0.0
- 3000	20026	1-036	0473	1.00	V•V			U• U

Example output data from THERMAB4-Run no. 11

<u>J= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 </u>
1 2000.0 1937.6 1877.9 1771.8 1688.4 1622.0 1537.5 1423.3 1276.0 1109.4 945.6 809.1 712.1 661.7 648.9 660.3 686.2 717.1 744.9 766.0 780.8 797.1 816.8 828.5 841.3
2 1955.4 1897.2 1842.1 1746.2 1671.4 1610.7 1529.9 1417.6 1271.6 1106.2 943.5 807.9 711.7 661.8 649.4 661.4 687.8 719.4 747.9 769.9 785.5 803.3 825.0 838.3 852.8
3 1911.3 1855.3 1803.1 1715.3 1647.9 1592.1 1514.6 1404.4 1260.9 1098.3 938.1 804.9 710.5 662.0 650.9 664.1 691.9 724.9 754.7 777.8 794.4 813.1 836.3 850.3 865.8
4 1868.3 1814.4 1765.0 1684.2 1622.4 1570.4 1495.7 1387.6 1246.6 1086.9 930.2 800.4 708.7 662.3 652.9 667.8 697.4 732.1 763.4 787.6 804.8 824.5 848.6 863.3 879.4
5 1826.6 1775.4 1728.9 1654.5 1597.5 1548.5 1475.8 1369.3 1230.4 1073.8 921.0 794.9 706.5 662.7 655.3 672.1 703.6 740.2 773.0 798.3 816.2 836.6 861.6 876.7 893.4
6 1785.6 1735.7 1690.8 1620.4 1567.4 1521.6 1452.3 1348.6 1212.6 1059.3 910.7 788.9 704.0 663.0 657.9 676.8 710.4 748.8 783.2 809.6 828.2 849.2 875.0 890.6 907.8
7 1748.6 1703.7 1663.3 1598.9 1547.6 1501.2 1430.9 1328.2 1194.5 1044.4 900.3 782.5 701.4 663.3 660.6 681.7 717.4 757.8 793.8 821.2 840.5 862.2 888.7 904.8 922.5
,
77.7 77
11 1612.5 1574.7 1541.3 1489.2 1447.2 1407.3 1343.4 1247.8 1122.8 985.1 857.9 757.2 690.9 665.0 672.4 702.8 747.5 706.2 838.8 870.7 892.6 916.9 946.6 964.7 984.6
12 1582.4 1546.4 1514.6 1464.7 1424.0 1385.0 1322.1 1228.1 1105.4 971.0 847.9 751.2 688.5 665.6 675.6 708.5 755.5 806.4 850.8 883.9 906.6 931.6 962.1 980.6 1000.9
13 1553.7 1519.4 1489.0 1440.9 1401.3 1363.1 1301.2 1208.8 1088.4 957.2 838.2 745.5 686.3 666.4 679.0 714.3 763.7 816.9 863.2 897.6 921.0 946.7 977.8 996.7 1017.5
14 1526.4 1493.6 1464.4 1418.1 1379.5 1341.9 1280.9 1189.8 1071.5 943.7 828.8 740.0 684.3 667.3 682.5 720.3 772.2 827.8 876.0 911.6 935.8 962.1 993.9 1013.2 1034.3
15 1500.3 1468.8 1440.7 1395.8 1358.0 1321.0 1261.0 1171.1 1054.9 93C.6 819.7 734.7 682.4 668.4 686.1 726.5 780.9 839.0 889.3 926.3 951.1 978.1 1010.4 1030.0 1051.3
16 1475.0 1444.4 1417.1 1373.2 1336.0 1299.6 1240.7 1152.4 1038.6 918.0 811.0 729.7 680.7 669.6 690.0 732.9 789.9 850.5 902.7 941.0 966.6 994.1 1027.0 1046.8 1068.5
17 1450.5 1420.8 1394.2 1351.2 1314.6 1278.9 1220.9 1134.2 1022.8 905.9 802.6 724.9 679.2 670.9 694.0 739.5 799.2 862.2 916.4 955.9 982.2 1010.3 1043.8 1063.9 1085.9
18 1426.7 1397.8 1371.8 1329.6 1293.6 1258.4 1201.5 1116.3 1007.4 894.0 794.5 720.2 677.8 672.5 698.2 746.3 808.7 874.2 930.4 971.1 998.0 1026.7 1060.8 1081.2 1103.5
19 1403.5 1375.3 1349.9 1308.4 1273.0 1238.3 1182.3 1098.6 992.2 882.4 786.6 715.8 676.6 674.1 702.5 753.4 818.6 886.6 944.8 986.7 1014.3 1043.5 1078.0 1098.7 1121.3
20 1380.8 1353.2 1328.3 1287.5 1252.6 1218.5 1163.4 1081.0 977.4 871.1 779.0 711.6 675.5 676.0 707.1 760.8 828.8 899.4 959.5 1002.7 1030.8 1060.5 1095.5 1116.5 1139.4
23 1315.6 1289.6 1266.0 1227.1 1193.7 1161.0 1108.3 1030.8 935.2 839.2 757.7 700.2 673.3 662.5 722.0 784.3 861.1 939.7 1005.8 1052.5 1082.3 1113.4 1149.8 1171.6 1195.3
24 1294.7 1269.1 1245.9 1207.6 1174.6 1142.3 1090.4 1014.6 922.0 825.3 751.2 696.8 672.9 685.0 727.4 792.7 872.7 954.0 1022.1 1069.9 1100.3 1131.9 1168.6 1190.5 1214.5
25 1274.1 1249.0 1226.2 1188.3 1155.7 1123.8 1072.8 998.9 909.1 815.7 744.9 693.6 672.6 687.7 733.0 801.5 884.5 968.6 1038.7 1087.5 1118.5 1150.4 1187.5 1209.7 1234.1
26 1253.9 1229.2 1206.7 1169.3 1137.0 1105.5 1055.6 983.6 896.7 810.5 738.8 690.5 672.6 690.5 738.8 810.5 896.7 983.6 1055.6 1105.5 1136.9 1169.3 1206.7 1229.2 1253.9
27 1234.1 1209.7 1187.5 1150.4 1118.5 1087.5 1038.7 968.6 884.5 801.5 733.0 687.7 672.6 693.5 744.9 819.7 909.1 998.9 1072.8 1123.8 1155.7 1188.3 1226.2 1249.0 1274.1
28 1214.5 1190.5 1168.6 1131.9 1100.3 1069.9 1022.1 954.0 872.7 792.7 727.4 685.0 672.9 696.8 751.2 829.3 922.0 1014.6 1090.4 1142.3 1174.6 1207.6 1245.9 1269.1 1294.7
29 1195.3 1171.6 1149.8 1113.4 1082.3 1052.5 1005.8 939.8 861.1 784.3 722.0 682.5 673.3 700.2 757.7 839.2 935.2 1030.8 1108.3 1161.0 1193.7 1227.1 1266.0 1289.6 1315.6
30 1176.3 1152.8 1131.3 1095.4 1064.7 1035.4 990.0 925.9 850.0 776.2 716.8 680.1 673.9 703.8 764.6 849.5 948.9 1047.1 1126.3 1179.7 1212.8 1246.7 1286.3 1310.3 1336.9
31 1157.7 1134.5 1113.3 1077.8 1047.6 1018.9 974.6 912.5 839.2 768.3 711.8 678.0 674.6 707.6 771.6 860.1 962.9 1063.9 1144.7 1198.9 1232.5 1266.9 1307.1 1331.5 1358.6
32 1139.4 1116.5 1095.5 1060.5 1030.8 1002.7 959.5 899.4 828.8 76C.8 707.1 676.0 675.5 711.6 779.0 871.1 977.4 1081.0 1163.4 1218.5 1252.6 1287.5 1328.3 1353.2 1380.8
33 1121.3 1098.7 1078.0 1043.5 1014.3 986.7 944.8 886.6 818.6 753.4 702.5 674.1 676.6 715.8 786.6 882.4 992.2 1098.5 1182.3 1238.3 1273.0 1308.4 1349.9 1375.3 1403.5
34 1103.5 1081.2 1060.7 1026.7 998.0 971.2 930.4 874.2 808.7 746.3 698.2 672.5 677.8 720.2 794.5 894.0 1007.4 1116.3 1201.5 1258.4 1293.6 1379.6 1371.8 1397.8 1426.7
38 1034.3 1013.2 993.9 962.1 935.8 911.6 876.0 827.8 772.2 720.3 682.5 667.3 684.3 740.0 828.8 943.7 1071.5 1189.8 1280.9 1341.9 1379.5 1418.1 1464.4 1493.6 1526.4
39 1017.5 996.7 977.8 946.7 921.0 897.6 863.2 816.9 763.7 714.3 679.0 666.4 686.3 745.5 838.2 957.2 1088.4 1208.8 1301.2 1363.1 1401.3 1440.9 1489.0 1519.4 1553.8
40 1000.9 980.6 962.0 931.6 906.6 883.9 850.8 806.4 755.5 708.5 675.6 665.6 688.5 751.2 847.9 970.9 1107.9 1228.1 1322.1 1384.9 1424.0 1464.7 1514.6 1546.4 1582.4
41 984.6 964.7 946.6 916.9 892.6 870.7 838.8 796.2 747.5 702.8 672.4 665.0 690.9 1757.1 857.9 985.0 1122.7 1247.7 1343.4 1407.3 1447.2 1489.2 1541.3 1574.7 1612.5
42 968.5 949.2 931.6 902.7 879.0 857.8 827.1 786.3 739.7 697.3 669.3 664.4 693.4 (63.3 868.2 999.5 1140.3 1267.6 1364.8 1429.9 1470.8 1514.4 1569.1 1604.4 1644.5
43 952.9 934.0 917.0 888.9 865.9 845.4 815.8 776.6 732.1 692.0 666.3 664.0 696.0 769.6 878.7 1014.3 1158.2 1287.6 1386.6 1452.9 1495.0 1540.6 1598.4 1635.6 1677.6
44 937.5 919.3 902.7 875.4 853.1 833.2 804.7 767.1 724.6 686.8 663.4 663.6 698.7 776.1 889.5 1029.3 1176.3 1307.9 1408.6 1476.5 1520.4 1568.6 1629.9 1668.8 1712.5
45 922.5 904.8 888.7 862.2 840.5 821.2 793.8 757.8 717.4 681.7 660.6 663.3 701.4 782.5 900.3 1044.4 1194.5 1328.2 1431.0 1501.3 1547.7 1598.9 1663.3 1703.7 1748.6
46 907.8 890.6 875.0 849.2 828.2 809.6 783.2 748.8 710.4 676.8 657.9 663.0 704.0 788.9 910.8 1059.3 1212.6 1348.6 1452.3 1521.6 1567.5 1620.4 1690.9 1735.7 1785.6
47 893.4 876.7 861.6 836.6 816.2 798.3 773.0 740.2 703.6 672.1 655.3 862.7 706.5 794.9 921.0 1073.8 1230.4 1369.3 1475.8 1548.5 1597.6 1564.5 1729.0 1775.4 1826.7
48 879.4 863.3 848.6 824.5 804.8 787.6 763.4 732.1 697.4 667.8 652.9 662.3 708.7 800.4 930.2 1086.9 1246.6 1387.6 1495.7 1570.4 1622.5 1684.2 1765.0 1814.4 1868.3
49 865.8 850.3 836.3 813.1 794.4 777.8 754.7 724.9 691.9 664.1 650.9 662.0 710.5 804.9 938.1 1098.3 1260.9 1604.5 1514.7 1502.1 1604.9 1715.3 1803.1 1885.3 1811.3
109117.0 HOURS
0.10441 DISCREPANCY IN HEAT BALANCE
0.18929052E 10 BTU OF HEAT STORED IN RESERVOIR
0.48211277E 09 BTU OF HEAT PRODUCED
0.21102226E 10 BTU GF HEAT INJECTEC
0.25361380E 10 HTTOT
0.25361380E 10 HTTUT
0.16112005E 09 HTORG 100.0TIME INCREMENT, HOURS
0.16112005E 09 HTORG 100.0TIME INCREMENT, HOURS 0.11658 ERI
0.16112005E 09 HTORG 100.0TIME INCREMENT, HOURS 0.11658 ER1 1.07495 ER2
0.16112005E 09 HTORG 100.0TIME INCREMENT, HOURS 0.11658 ERI

APFENDIX F

FLOW SHEET AND PROGRAM LISTINGS

THER MABI

Subroutine CONV

C THERMABI-A.L. BARNES OIMENSION THPS(15,51), TEMP(15,51), M(15,51), G(15,1), LUS(15), TNBG(15), TNBG(15), TTMPS (15,51), AREA(15), 215,51) COMMON TMPS, TEMP, W., G., Y., Y., YPLUS, YMEG, YMIO, JMAX, II 1A, DELTX, DEMON, DELTY, TIMPS, CAP, COMOX C TEMP-PERMANENT TEMPERATURE ARRAY C TMPS-TEMPORARY TEMPERATURE ARRAY 100 READ(5,10) IMAX, JMAX, DELTT, TOL, TIMX, ALPHA, DELTX, 1CC, KSKIP, NSTRT C MAX-MUMBER OF COLUMNS (K)	MAX,COND.DELTT,ALPH 22241 22241 22241	l 1 99 <u>2</u> C ·	7 IF(TIME.CT.3000.)GO TO 992 DELTY=15. GO TO 995 DELTY=50.	
COMMON TMPS,TEMP,W.G.Y.V.YPLUS,YMEG.YMID,JMAX,II 1A.DELTX.DENOM,DELTY,TTMPS,CAP,COMOX C TEMP-PERHAMENT TEMPERATURE ARRAY C VTMP=TEMPORARY TEMPERATURE ARRAY 100 READ(5,10)!MAX,JMAX,DELTT,TOL,TIMX,ALPMA,DELTX, 1CC.KSKIP,NSTRT	22241	c ´	2 DELTT=50.	
C VIMP=TEMPURARY TEMPERATURE ARRAY C TMPS=TEMPURARY TEMPERATURE ARRAY 10D READ(5,1D)1MAX, JMAX,DELTT,TOL,TIMX,ALPHA,DELTX, 1CC.KSKIP,NSTRT	22241			
C VIMP=TEMPURARY TEMPERATURE ARRAY C TMPS=TEMPURARY TEMPERATURE ARRAY 10D READ(5,1D)1MAX, JMAX,DELTT,TOL,TIMX,ALPHA,DELTX, 1CC.KSKIP,NSTRT	22241		KWHO IS THE SWITCH TO DETERMINE DIRECTION OF ADIP SWEEPIHORIZONTAL OR VERTICAL)	
10D READ(5,1D)IMAX, JMAX, DELTT, TOL, TIMX, ALPHA, DELTX,	22241	995	5 60 TD(991.53).KWHO	
1CC.KSKIP.NSTRT		l 6991	CALL CONV	
	22241	ı č	CONV IS A SUBROUTINE THAT SOLVES EXPLICT CONVECTION EQUATIONS ALONG THE FRACTURE	
C JMAX=NUMBER OF ROWS (J)		c	CALL CONOI CONDI IS A SUBROUTINE THAT SOLVES HORIZONTAL ADIP WITH THE CONV	22241
C OELTT=TIME STEP LENGTH, HOURS C TOL=TOLERANCE		č	SOLUTION AS A BOUNDARY CONDITION	
C TIME-MAYININ TIME UNIDE	22241	ı	IF(DENDM.EQ.Q.Q)GD TO 69 KK=1	22241 22241
C ALPHA-SPECIFIC HEAT X VELOCITY X DENSITY ALL OF C DELTX-DISTANCE BETWEEN POINTS ALONG THE FRACTUR C DELTY-DISTANCE BETWEEN POINTS INTO THE MALLIFIR	GAS) 22241	•	DO 84 N=1,JMAX DO 84 N=1,IMAX	22241
C DELTY-DISTANCE BETWEEN POINTS INTO THE WALLIFIR	ST 3 POINTS ONLY)		IF(ABS((VTMP(N,M)~TMPS(N,M))/TMPS(N,M)).GT.TOL)GD TO 86	22241
C AA=CONSTANT IN EQUATION WHICH GENERATES VELOCIT C BB=CONSTANT IN EQUATION WHICH GENERATES VELOCIT	Y 22241	1 84	4 CONTINUE DO 87 J=1,JMAX	22241 22241
C TT=INJECTION TEMPERATURE. DEGREES FAHRENHEIT		•	00 87 K=1,1MAX 7 TEMP(J ₃ K)=TMPS(J ₃ K)	22241
C TTT=RESERVOIR TEMPERATURE, DEGREES FAHRENHEIT C CC=CONSTANT IN EQUATION WHICH GENERATES VELOCIT	Y 22241	1 87	7 TEMP(J _* K)=TMPS(J _* K) GO TO 67	22241 22241
C KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURIN	IG RUN		6 DO 88 J=1,JMAX	22241
C NSTRT=SWITCH THAT ALLOWS STARTING RUN WITH CONS C FIELO TEMPERATURES	TANT OR VARIABLE		DO 88 K=1,:MAX 8 VTMP(J.K)=TMPS(J.K)	22241 22241
READ(5.2D)(Y(1).I=1.15)	22241	1	KWH0=2	
2D FORMAT(15F5.0) C Y=OISTANCE INTO THE WALL,FT.	22241 22241	1 1 51	GO TO 82 3 CALL CONV	22241
PP=0. Time=0.0	22241		CALL COND2	22241
OD 21 K=1,IMAX	22241	1 c	CONDZ IS A SUBROUTINE THAT SOLVES VERTICAL ADIP WITH THE CONV SOLUTION AS A BOUNDARY CONDITION IF(DENOM-ED.O.O)GO TO 69	
FK=K X=DELTX⇒FK	22241 22241	1	IF(DENDM.EQ.0.0)GD TO 69	22241
V(K)=AA+BB+X+EXP(CC+X)	22241	1	KK=2 DO 64 N=1,JMAX	22241
21 CONTINUE HTOUT=0.	22241 22241		DO 64 M=1,[MAX IF(ABS((VTMP(N,M)~TMPS(N,M))/TMPS(N,M)).GT.TOL)GO TO 65	22241 22241
KHHD=1	22241	64	4 CONTINUE	22241
ATMP=0.0 HTIN=0.	22241	1	00 66 J=1,JMAX 00 66 K=1,fMAX	22241 22241
10 FORMAT(215,F5.1,F5.2,F10.1,F10.1,6F5.1,F10.4/21	5)	. 66	6 TEMP(J.K)=TMPS(J.K)	22241
10 FORMAT(215,F5.1,F5.2,F10.1,F10.1,6F5.1,F10.4/21 IFINSTRILEQ.1)GO TO 81 READ(5,203)TIME,HTIN,HTOUT		65	GO TO 67 5 OO 83 J=1,JMAX	22241 22241
203 FORMATIFIO.0,2E18.8) C TIME=TIME, HOURS, ALREADY COMPLETED WHEN RUN RE			DO 83 K=1,IMAX	22241
C HTIN=BTU OF HEAT INJECTED WHEN RUN RESTARTED	STARTED	45	3 VTMP{J,K}≈TMPS{J,K} KNHO≃1	22241
C HTOUY=BTU OF HEAT PRODUCED WHEN RUN RESTARTED		47	GO TO 82 7 JBMAK=JMAX-2	22241 22241
00 74 K=1.IMAX			IBMAX=IMAX-2	22241
74 READ(5,73) (TMPS(J,K),J=1,JMAX) 73 FORMAT(15F5.0)		С	THIS ACCOUNTS FOR THE HEAT STORED IN ROCK Fimax=imax	22241 22241
GO TO 204 81 DO 75 K=1,IMAX			DO 40 J=1,JMAX	22241
00 75 J=1.JMAX			SUM=0. OO 80 K=1,18MAX,2	22241 22241
75 TMPS(J,K)=TTT 204 DD 205 K=1,IMAX		80	O SUM=SUM+TEMP(J;k)+4.eTEMP(J,k+1}+TEMP(J,k+2) O AREA{J}=SUM=(OELTX/3.)	2224Î 2224Î
00 205 J=1,JMAX		70	882=0-	22241
TEMP(J,K)=TMPS(J,K) 205			OO Jel, JeNe(Jel)	22241 22241
VTMP(1,1)=TT TEMP(1,1)=TT	22241	1	UU 9U J=1,3BMAX;2 HH[J]={Y[J=2]+[-Y[J]]}/H{[J] BB2-BB2+(H[J]=[HA[J]+1,1/6_=HA[J]])={{2,=HA[J]-1,}=AREA[J+2]+{HA[J]]+1,1==2=AREA[J+1]+HA[J]={2,=HA[J]}=AREA[J] HFATIC[ABPR]2-[YITY*(JMAX)=BBITY*(APPRIMAY*(ITT=TTT)=CAP=DBITX=.2 HFATIC[ABPR]2-[YITY*(JMAX)=BBITY*(APPRIMAY*(ITT=TTT)=CAP=DBITX=.2	22241
TMPS(1,1)=TT	22241	1 90	D BBZ=BBZ+{H(J)={HA(J)+1.]/{6.=HA(J)}}={{2.=HA(J}-1.}=AREA{J+Z}+{HA{ 1J}+1.}==Z=AREA(J+1}+HA(J)={2.=HA(J})=AREA{J}}	22241 22241
CALL CALCY C CALCY IS A SUBROUTINE THAT CALCULATES VARIABLE	22241		HEAT=(CAP+BB2)-(TTT+Y(JMAX)+OELTX+CAP+FIMAX+((TT-TTT)+CAP+DELTX+.2	
CDNDx=_0001	THERMAB1	ı c	THIS ACCOUNTS FOR HEAT OUT OF PRODUCER	22241
C CONDX=CONDUCTANCE IN X DIRECTION COND=0.6	THERMAB1	1	HTOUT=HTOUT+TEMP(1, [MAX) = DELTT = ALPHA HTTOT=HTOUT+HEAT	22241 22241
C COND=CONDUCTANCE IN Y DIRECTION	THERMAB1	ı	HTIN=HTIN+ALPHA•TT•DELTT	22241
CAP=35. 82 GO TO(993,994).KSKIP		27	ERR=ABS((HTIN-HTTOT)/HTIN) 7 FORMAT(14,15F7,1)	22241
994 IF(ATMP.NE.TIME) GO TO 995		,,	TIME=TIME+DELTT	22241
ATMP=ATMP+1. 993 IF(TIME.GT.1000.)GC TC 997			ATMP=TIME PP=PP+1.	
DELTT=5.			IF(PP.NE.2.)GD TO 891	
			PP=0. Write(8,33)	
		33	3 FORMAT{1H1,2X2HJ=5X2H 15X2H 25X2H 35X2H 45X2H 55X2H 65X2H 75X2H 85	22241
	•		1X2H 95X2H105X2H115X2H125K2H135X2H145X2H15) 00 36 K=1,IMAX	22241 22241

	WRITE(8.37)K,(TEMP(J,K),J=1,JMAX)	
87	WRITE(8,30)7IME,ERR,HEAT,HTOUT,HTIN	
30	FORMAT(F10.1,2x,5HHOURS/F10.5,2x,27HDISCREPANCY IN HEAT BALANCE/E1 18.8,2x,31HBTU OF HEAT STORED IN RESERVOIR/E18.8,2x,20HBTU OF HEAT	
	2PRODUCED/E18.8.2X,20HBTU OF HEAT INJECTED)	22241 22241
91	IF(TIME.GT.TIMX)GO TO 100	22271
•	GO TO(86,65),KK	
69	STOP	22241
	END	22241
	SUBROUTINE CALCY	22241
	DIMENSION TMPS(15,51), TEMP(15,51), H(15,51), G(15,51), Y(15), V(51), YP	22241
	1LUS(15), YNEG(15), YMIO(15), TTMPS(15,51), AREA(15), H(15), HA(15), VTMP(22241
	215,51)	
	COMMON TMPS.TEMP.W.G.Y.V.YPLUS,YNEG.YMID.JMAX,IMAX,CONO,DELTT.ALPH	22241
	1A,DELTX,DENOM,OELTY,TTMPS,CAP,CONDX	
	NMAX=JMAX-1	22241
	DO 2 J=1.NMAX	22241 22241
-	YPLUS(J)=Y(J+1)-Y(J)	
3	DO 3 J=2,JMAX YNEG(J)=Y(J)-Y(J-1)	22241 22241
•	YNEG(1)=YPLUS(1)	22241
	YPLUS(JHAX)=YNEG(JHAX)	22241
	DO 4 J=1, JMAX	22241
4	YMID(J)=0.5+(YPLUS(J)+YNEG(J))	22241
	RETURN	22241
	END -	22241
	SUBROUTINE CONV	22241
	DIMENSION TMPS(15,51), TEMP(15,51), W(15,51), G(15,51), Y(15), V(51), YF	22241
	1LUS(15), YNEG(15), YMIO(15), TTMPS(15,51), AREA(15), H(15), HA(15), VTMP(22241
	215,51)	
	COMMON TMPS, TEMP, W.G.Y.V, YPLUS, YNEG, YMID, JMAX; IMAX, COND, DELTT, ALPH	22241
	1A,DELTX,DENOM,DELTY,TTMPS,CAP,CONDX	222/1
	DD 40 K=2,IMAX CONMIN=COND	22241
	CONPUS=COND	
	D13=DELTX+TEMP(1,K)/(DELTT+V(K))+2.	
	D14=(3.*DELTX*CONMIN*TMPS(2,K))/(2.*DELTY*ALPHA)	
	D15=(DELTX+CONPUS+(TMPS(2,K)-TMPS(3,K)))/(2.+DELTY+ALPHA)	
	016=1.*(DELTX/(DELTT+V(K)))	
	O17=(3.=DELTX=CONMIN)/(2.=DELTY=ALPHA)	
	TMPS(1,K)=(TMPS(1,K-1)+D13+D14+D15)/(D16+D17)	
	IF(TMPS(1,K).GE.0.0) GO TO 4D	
	TMPS{1,K}=0.0	
40	CONTINUE	22241
	RETURN	22241
	END COND	22241
	SUBROUTINE CONDI	22241
	DIMENSION TMPS(15,51),TEMP(15,51),H(15,51),G(15,51),Y(15),Y(15),Y(15),YTMP(15),TMPS(22241
	215,51)	22241
*	COMMON TMPS, TEMP, M, G, Y, V, YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH	22241
	IA, DELTX, DENOM, DELTY, TTMPS, CAP, CONDX	
	B1=-(2.+(DELTX++2/DELTT)+(CAP/CONDX))	THERMAB1
	DO I J=2,JMAX	22241
	DO 2D K=1,IMAX	22241
	D14=-({DELTx=+2/YMID(J)}=(COND/CONDX)}	THERMAB1
	FF(J.LT.JMAX)GD TO 22	22241
	D15=(TMPS(J-1,K)-TMPS(J,K))/YPLUS(J)	22241
	GO TO 90	22241
	D15=(TMPS(J+1,K)-TMPS(J,K))/YPLUS(J)	22241
90	D16=(TMPS(J,K)-TMPS(J-1,K))/YNEG(J)	22241
	D17=(DELTX==2=CAP=TEMP(J+K))/(DELTT=CONDX)	
	01=014+(D15-D16)-D17 IF(K.NE.1)GD TO 3	22241 22241
	A1=0.0	22241
	C1=2.0	22241
	W(J,1)=C1/B1	22241
	G(J,1)=D1/B1	22241
	GO TO 20	22241
3	IF(K.NE.IMAX)GO TO 5	22241
	C1=0.0	22241
	A1=2.0	22241
_	GO TO 10	22241
- 5	A1=1.0	22241
	C1=1.0	22241

10	DENOM=B1-A1=W(J,K-1);	22241
	IF(DENOM.NE.O.)GD TO 18	22241
	WRITE(8,50)	
50	FORMAT(18H ZERO DENOMINATOR.)	22241
	GO TO 800 H(J ₊ K)=C1/DENOM	22241
	G(J,K)={D1-A1+G(J,K-1))/OENOM	22241
	CONTINUE	22241
	TTMPS(J.IMAX)=G(J.IMAX)	
	DO 30 1=2,IMAX	22241
	II=IMAX+1-1	22241
30	TTMPS(J,II)=G(J,II)-W(J,II)+TTMPS(J,II+1)	
- 1	CONTINUE	22241
	00 95 J=2.JMAX	
	DD 95 K=1,IMAX	
05	TMPS(J,K)=TTMPS(J,K)	
	CONTINUE	22241
300	END	2224
	SUBROUTINE CONO2	2224
	OIMENSION TMPS(15,51),TEMP(15,51),W(15,51),G(15,51),Y(15),V(51),YP	2224
	1LUS(15), YNEG(15), YMID(15), TTMPS(15,51), AREA(15), H(15), HA(15), VTMP(2224
	215,511	
	COMMON TMPS.TEMP.W.G.Y.V.YPLUS.YNEG.YHID.JMAX.IMAX.CDND.DELTT.ALPH	2224
	1A,DELTX,DENOM,DELTY,TTMPS,CAP,CONDX	
	DOF1 K=1,IMAX	2224
	DO 20 J=2,JMAX	2224
	A1=YPLUS(J)/YNEG(J)	2224
	B1=-(1.0+YPLUS(J)/YNEG(J)+(CAP+YMID(J)+YPLUS(J))/(DELTT+COND))	2224
	014=-((YMID(J)=YPLUS(J)/DELTX==2)=(CONDX/COND)) 1F(K.LT.IMAX) GO TO 24	HERMAB:
	D15=TMPS(J.K-1)-TMPS(J.K)	
	GO TO 25	
24	D15=TMPS(J,K+1)-TMPS(J,K)	
	IF(K.GT.1) GO TO 26	
	D16=TMPS(J,K)-TMPS(J,K+1)	
	GO TO 27	
	D16*TMPS(J,K)-TMPS(J,K-1)	2224
27	D17=(CAP+YMID(J)+YPLUS(J)+TEMP(J,K))/(DELTT+COND)	2224
	D1=D14=(015-016)-D17	2224
	IF(J.NE.2)GO TO 3	2224
	C1=1.0	2224
	W(2,K)=C1/B1 G(2,K)=(D1-A1=TMPS(1,K))/B1	2224
	GD TO 20	2224
3	IF(J.NE.JMAX)GD TO 10	2224
-	A1=A1+C1	2224
	C1=0.0	2224
10	OEND#=B1-A1*H(J-1,K)	2224
	IFIDENOM.NE.O.)GO TO 18	2224
	WRITE(8,50)	
	FDRMAT(18H ZERO DENOMINATOR.)	2224
18	W(J,K)=C1/DENOM	2224
20	G(J,K)=(D1-A1-G(J-1,K))/DENOM	2224
20	CONTINUE TTMPS(JMAX.K)≃G(JMAX.K)	2224
	NHAX=JMAX+2	2224
	DO 30 I=1.NMAX	2224
	II=JMAX-I	2224
30	TTMPS(II,K)=G(II,K)-W(II,K)+TTMPS(II+1,K)	
1	CONTINUE	2224
	DO 95 J=2,JMAX	
	DO 95 K=1,1MAX	
	TMPS(J,K)=TTMPS(J,K)	
	CONTINUE	2224
8 VD	RETURN	2224

THERMARZ-A.L. BARNES			
OIMENSION TMPS(17,51),TEMP(17,51),W(17,51),G(17,51),COND(17,51),Y	((22242	GD TO 995	
117), YPLUS(17), YNEG(17), YMID(17), TTMPS(17,51), AREA(17), H(17), HA(17)	71	996 1F(TIME.GT.3COD.)GO TO 997	
2,VTMP(17,51),CAPT(17,51),CAP(17,51),IS(10),SLTMP(10),DIST(8,51)	• •	DEL TT=30.0	
COMMON TMPS, TEMP, N.G.Y. YPLUS, YNFG, YMID, JMAX, IMAX, CGND, DELTT, ALPHA	4, 22242	GO TO 995	
IDELTX, DENOM, PO, PI, P2, P3, TTMPS, CAPT, CAP, TIME	.,	997 IF(TIME.GT.10000.)GG TO 998	
TEMP=PERMANENT TEMPERATURE ARRAY	22242	DEL TT=50.0	
TMPS=TEMPORARY TEMPERATURE ARRAY	22241	GO TO 995	
VTMP=TEMPORARY TEMPERATURE ARRAY		998 DELTT=100. C KWHO IS THE SWITCH TO DETERMINE DIRECTION OF ADID SUFERIHODITONIAL	
105 READ(5,10) PAX, JMAX, DELTT, TTT, TIMX, ALPHA, DELTX, DELTY, TT, KSKIP, TOL			
1NRUN, KSLCE, ISSN, LMAX, (IS(I), 1=1,5), (SLTMP(I), I=1, LMAX)	••	C OR VERTICAL)	
10 FORMAT(215,F5.1,F5.1,F10.1,F10.1,3F5.1,15/F5.2,915/8F10.1)		995 GO TO(991,53),KWHO	
IMAX=NUMBER OF COLUMNS (K)		991 CALL COND1	
JMAX=NUMBER CF ROWS (J)		C CONDI IS A SUBROUTINE THAT SOLVES HORIZONTAL ADIP	
DELTT=TIME STEP LENGTH, HOURS		IF(DENDM.EQ.C.O)GO TO 69	22242
TTT=RESERVOIR TEMPERATURE, DEGREES FAHRENHEIT		K1T=K1T+1	
TIMX=MAXIMUM TIME, HOURS		IF(KIT.GE-15)GO TO 222	
ALPHA=SPECIFIC HEAT X VELOCITY X DENSITY(ALL OF GAS)		KK=1	22242
C OELIX=DISTANCE BETWEEN POINTS ALONG THE FRACTURE		00 84 N=1,JMAX	
CELTY=DISTANCE RETWEEN POINTS INTO THE WALL(FIRST 3 POINTS ONLY)		00 84 M=1,IMAX	22241
TT=INJECTION TEMPERATURE, DEGREES FAHRENHEIT		IF(TMPS(N,M).LT.100.10) GD TO 84	
		IF(ABS((VTMP(N+M)-TMPS(N+M))/TMPS(N+M)).GT.TOL)GD TO 86	22241
KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN TOL=TOLERANCE		84 CONTINUE	22241
NRUN=RUN NUMBER		GO TO 67	22241
		86 DO 88 J=1,JMAX	22241
KSLCE=OPTION TO CALCULATE TUTAL HEAT CONTENT AND PRINT TEMPERATUR	KE	DO 88 K=1,IMAX	22241
AND TOTAL HEAT CONTENT		88 VTMP(J+K)=TMPS(J+K)	22241
ISSN=MAXIMUM NUMBER OF DESIRED SLICES FOR CROSS SECTION STUDY		KWHO=2	
LMAX=NUMBER OF ISOTHERMS DESIRED		GO TO 82	
IS(M)=VALUES OF DESIRED SLICES FOR CROSS SECTION STUDY		53 CALL COND2	22242
SLTMP(I)=TEMPERATURE OF DESIRED ISOTHERM		C COND2 IS A SUBROUTINE THAT SOLVES VERTICAL ADIP	
READ(5,20)(Y(11,1=1,17)		IF(DENOM.EQ.O.O)GO TO 69	22242
20 FORMAT(16F5.0/F5.0)		KK=2	22242
Y=DISTANCE INTO THE WALL, FEET		DO 64 N=1+JMAX	
TIME = 0.0	22242	DD 64 M=1,IMAX	22241
KIT=0		IF(TMPS(N,M).LT.100.10) GO TO 64	
HEAT=0 □		IF(ABS((VTMP(N,M)-TMPS(N,M))/TMPS(N,M)).GT.TOL)GO TO 65	22241
00 81 J=1,JMAX	22242	64 CONTINUE	22241
DO B1 K=1+IMAX	22242	GD TO 67	22241
TEMP(J,K)=TTT	22242	65 DO 83 J=1,JMAX	22241
VTMP(J+K)=TTT		00 83 K=1,1MAX	22241
81 TMPS(J,K)=TEMP(J,K)	22242	83 VTMP(J,K)=TMPS(J,K)	22241
FEMP(I,1)=TT		KWHU=1	22241
TMPS(1,1)=FT		GO TO 82	22241
VTMP(1,1)=TT	22241	67 DU 66 J=1,JMAX	22241
TTMPS(1,1)=TT	THERMAB2	DO 66 K=1.IPAX	22241
ATMP=0.C		IF(TMPS(J,K).LT.100.10) GD TD 66	22271
KWHD=1		CAP(J,K)=GAPT(J,K)	
OD=1.		TEMP(J,K)=TMPS(J,K)	
QQ=0.0	22242	66 CONTINUE	
PP=0.		PPP=PPP+1D.C	
PPP=0.0		IF(PPP.NE.10.)GO TO 741	
CALL CALCY	22242	PPP=0.0	
CALCY IS A SUBROUTINE THAT CALCULATES VARIABLE Y SPACING VALUES		S-XAML-XAMBL	22241
CALL COND4		IBMAX=IMAX=2	22241 22241
COND4 IS A SUBROUTINE THAT CALCULATES CONDUCTANCES		FIMAX=IMAX	22241
CALL CAPAC		C THIS ACCOUNTS FOR THE HEAT STORED IN ROCK	
CAPAG IS A SUBROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT		DD 40 J=1,JMAX	22241 22241
VALUES.		SUM=0.	22241
00 232 J=1,JMAX		DO 80 K=1,1EMAX,2	22241
DO 232 K=1,1MAX		8D SUM=SUM+CAP(J.K)+4.*CAP(J.K+1)+CAP(J.K+2)	22241
232 CAP(J,K)=CAPT(J,K)		40 AREA(J)=SUM-(DELTX/3.)	22241
82 GO TO(995,994), K\$KIP		882=C-	22241
994 IF(ATMP.NE.TIME) GO TO 995		00 90 J=1,J2MAX,2	22241
ATMP=ATMP+1.		H(J)=Y(J+1)-Y(J)	
IF(TIME.GT.5) GO TO 318		HA(J) = (Y(J+2)-Y(J+1))/H(J)	22241
DELTT=1.		9D BB2=BB2+(H(J)+(HA(J)+1.)/(6.*HA(J)))+((2.*HA(J)-1.)*AREA(J+2)+(HA(22241
GO TO 995		1J)+1.)++2*AREA(J+1)+HA(J)+(2HA(J))*AREA(J))	22241 22241
318 IF(DELTT-GE-15-)GD TO 993		HTORG=Y(JMAX)*DELTX*FIMAX*3149.+(CAP(I,1)-3149.)*DELTX*.25	22241
UU=0D-5.		C HTORG=INITIAL HEAT CONTENT OF ROCK AT 100 DEGREES FAHRENHEIT	
TME=5.*((1.2)**UU)		HEAT=882-HTORG	
DELTT=TME-TIME		C THIS ACCOUNTS FOR HEAT OUT OF PRODUCER	22241
IF(OELTT.LT.15.)GO TO 995		741 HTOUT=HTOUT+TEMP(1, IMAX) *DELTT*ALPHA	
DELTT=15.		HTTOT=HTOUT+HEAT+HTORG	22241
993 IF(TIME.GT.1000.1GO TO 996		HTIN=HTIN+ALPHA+TT+OELTT	22241
OELTT=15.0		HTINN=HTIN+HTORG	22241
		ERR=ABS((HTINN-HITOI)/HTTOI)	

		GO TO(4,5),KSLCE THIS ACCOUNTS FOR THE TEMPERATURE AND CULULATIVE HEAT PRINT OUT A' VARIOUS SELECTED POSITIONS ALONG THE FRACTURE.	THERMAB3
	4 26	. WRITE(6,26) . FORMAT(IHI,30x,*INPUT DATA FOR CROSS SECTION STUDY*//9x,*LOCATION . IFEET OOMN FRACTURE!*,2x,*TEMPERATURE*,9x,*TIME(HOURS)*,9x,*CUMULA	
		2IVE HEAT'//) JBMAX=JMAX-2	THERMAB3
		DO 70 K=1,IMAX DO 70 M=1,ISSN IF(K.NC.IS(M+1))GO TO 70	THERMAB3 THERMAB3
		BB3=0.0 O3 71 J=1,JBMAX,2 H(J)=Y(J+1)-Y(J)	THERMAB3 THERMAB3 THERMAB3
	71	HA(J)={Y(J+2}-Y(J+1)}/H(J) BB3=BB3+{{H(J)+(HA(J}+1.)/{6.*HA(J})}}*{{2.*HA(J}-1.}*CAP(J+2.K)+{	22241
		IA(J)+1.)**2*CAP(J+1,K)+HA(J)*(2HA(J))*CAP(J,K)))*DELTX AIS=IS(M) ALOCF=DELTX*AIS	
		WRITE(6,25)ALOCF,TEMP(1,K),TIME,BB3 FORMAT(9X,F10.1,20X,F10.1,10X,F10.1,7X,E18.8) CONTINUE	THERMAB3 THERMAB3 THERMAB3
	5	i IIME=TIME+DELTT IF(TIME=GT.3CCO.)GC TO 56 TOL=.O5	22241
	56	GO TO.55 IF(TIME.GT.4000.)GO TO 57	
	57	101=04 60 10 55 [[{ Time_gt.5000. GC 10 58	
	58	TOL=_03 GO TO 55 : IF(TIME_GT-15000.)GC TO 59	
	59	TOL=-02 GN TD 55 TOL=-01	
	55	ATMP=TIME OD=00+1 PP=PP+1.	
		IF(PP-NE-10-) GO TO 891 PP=0.	22242
	33	#RITE(6,33) FGMRATCHI,2X2HJ=5X2H 15X2H 25X2H 35X2H 45X2H 55X2H 65X2H 75X2H 8: 1X2H 95X2H105X2H115X2H125X2H135X2H145X2H15) MCONT=0 00 36 K=1,42	22242 22242 22242
	36	WRITE(6,37)K,(TEMP(J,K),J=1,JMAX)	22241
	37	FORMAT([4-17F7-1] WRITE(6,33) DD 24 K=43,IMAX	THERMAB3
_		WRITE(6,37)K,(TEMP{J,K),J=1,JMAX)	THERMAB3
8	87 30	WRITE(6,30) TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT FORMAT(F10,1,2x, SHHDURS/F1D,5,2x,2THDISCREPANCY IN HEAT BALANCE/E 18.8, 2X, 31HBTU OF HEAT STORED IN RESERVOIR/E18.8,2X,2OHBTU OF HEAT	22241 22241
		<pre>2PRODUCED/E18.8,2X,2OHBTU OF HEAT INJECTED/E18.8,2X,5HHTTOT/E18.8,: 3X,5HHTDRG/F10.1,21HTIME INCREMENT, HOURS)</pre>	2 22241
		INTERPOLATING ROUTINE FOR DETERMING POSITION OF SELECTED ISOTHERM: LET LMAX EQUAL NUMBER OF ISOTHERMS DESIRED SLTMP(I) REFERS TO TEMPERATURE OF DESIRED ISOTHERM	•
		DO 263; [=1, LMAX DD 260 K=1, LMAX DO 261 J=1, JMAX	
	٠.,	IF(TEMP(J,K).LT.SLTMP(I))GO TO 262 CONTINUE	
		CONTINUE : IF(J=EQ=1)GC TO 260 :DIST(T,K)=Y(J-1)+((TEMP(J-1,K)-SLTMP(I))/(TEMP(J-1,K)-TEMP(J,K)));	
	260	1(Y(J)-Y(J-1)) CONTINUE	
		CONTINUE WRITE(6,264)(SLTMP(1),1=1,LMAX)	
		FORMAT(1H1,6x,*DISTANCE*,7x,*ISOTHERM ISOTHERM ISOTHERM ISOTHE	THERMAB6
		<pre>1M ISOTHERM ISOTHERM ISOTHERM ISOTHERM*/8X,*DOWN*,9X,*DEGREES (2 DEGREES F DEGRE</pre>	THERMAB6
		SEES F'/TX, FRACTURE',4X,8Fl0.1/9X, FEET'/20X, FEET INTO FEET INTO 4FEET INTO FEET INT	THERMAB6
		SWALL ", 6x, "WALL", 6x, "WALL", 6x, "WALL", 6x, "WALL", 6x, "WALL", 6x, "WALL",	HEKMADO

266	66X, "MALL") OD 266 K=1,40 FR2=K-1. XFT=DELTX=FK2 MRITE(6,267)XFT,{OIST(I,KI,I=1,LMAX)} FORMAT(7X,F6.0,4X,8F10.2) MRITE(6,264)(SLIMP(I),I=1,LMAX) DO 265 K=61,1MAX	THERMANG THERMANG THERMANG THERMANG THERMANG THERMANG
265	XF1=CELTX=FK2 WRITE(6,267)XF1,(DIST(I,K),1=1,LMAX) WRITE(6,223)DD,KIT	THERMAR6
	FORMAT(3X,F10.0,15) KIT=0	
	IF(TIME.GT.TIMX)GO TO 105 GO TO(86,65),KK	22241
	WRITE(6,223)00,KIT STOP END	22242
	SUBROUTINE CALCY DIMENSION TMPS(17,51),TEMP(17,51),W(17,51),G(17,51),COND(17,51),Y	22242 22242
	<pre>[17), YPLUS(17), YNEG(17), YMID(17), TTMPS(17,51), AREA(17), H(17), HA(17 2, YTMP(17,51), CAPT(17,51), CAP(17,51), IS(10), SLTMP(10), DIST(8,51)</pre>	
	COMMON THPS,TEMP,w.G.Y.YPLUS,YNEG,YHID,JMAX,IMAX,COND,DELTT,ALPHA: IDELTX,DENDM,PO,P1,P2,P3,TTMPS,CAPT,CAP,TIME NMAX=JMAX-1	22242
2	00 2 J=1*NMAX YPLUS(J)=Y(J+1)-Y(J)	22242
	DD 3 J=2,JMAX YNEG(J)=Y(J)-Y(J-1)	22242 22242
	YPEG(1)=YPLUS(1MAX) YPLUS(JMAX)=YNEG(JMAX)	22242 22242
4	90 4 J=1,JMAX YMID(J)=0.5*(YPLUS(J)+YNEG(J))	22242 72242 22242
	RETURN END SURROUTINE COND1	22242
	Olmension TMPS(17,51),TEMP(17,51),W(17,51),G(17,51),COND(17,51),Y (17),YPLUS(17),YNEG(17),YMID(17),TTMPS(17,51),AREA(17),H(17),HA(17,	22242
	?+VTMP(17,51),CAPT(17,51),CAP(17,51),IS(10),SLTMP(10),DIST(8,51) COMMON TMPS,TEMP,H.G.Y.YPLUS,YNEG,YNID,JMAX,IMAX,COND,DELTT,ALPHA,	
	LDELTX,DENUM,PO,P1,P2,P3,TTMPS,CAPT,CAP,TIME- DD 1 J=1,JMAX	22242
	DO 2D K=1,1MAX IFIJ.NE.1)GD TO 35 IFIK.NE.1)GC TO 35	22242 THERMAB2 THERMAB2
35	FMAX=JMAX	THERMAB2
-	NDD=D DD=0+D	
	00 2 I=1,JMAX IF(TMPS(I,K).LT.700.)GC 10 4	
	DD=DD+1.0 NDD=DD	
4	CONTINUE 1F(DD-LT-2-)GO TD 7	
	IF(J_NE.1) GC TO 101 GG=0.9 GO TO 8	
101	FFF=1 IF(K.NE.2) GC TO 102	
:	ALPAl=(YMIO(J)*ALPHA*FFF*(TMPS(1,1)-TMPS(J,K+1)))/{(Y(NDD)+0.5*YP(US(NDD)-0.5)*(TMPS(J,K-1)-TMPS(J,K+1)))	-
102	GO TO 9 ALPA1=(YMID{J}/{Y(NOD}+0.5*YPLUS{NDD}5})*ALPHA*FFF	
7	GO 10 9 GG=1. ALPA1=ALPHA*GG	
9	AFFJ.EQ.1)GC TO 78 IFIJ.EQ.3/MXX)GC TC 70	22242
. 54	IF(K.EQ.I)GC TO 79 IF(K.EQ.IMX)GO TO 80	22242 22242 22242
	CXPUS=(COND(J,K)+COND(J,K+1))/2. CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242 22241 22241
	CYPUS={COND(J,K)+COND(J+1,K)}/2.	22241

				**
	CYMIN=(COND(J+K)+COND(J-1,K))/2.	~22241	G(1,2)=(D1-A1*TEMP(1,1))/B1	THERMAB2
	GO TO 77 CXPUS=(COND(J+K)+COND(J+K+1))/2.	22241 22241	GU TO 20	THERMAB2
	CXMIN=CXPUS	22241	3 IF(K.NE.IMAX)GO TO 11 41=41+C1	THERMAB2
	CYPUS=(COND(J,K)+COND(J+1,K))/2.	22241	C1=0.0	
	CYMIN=(COND(J,K)+CONO(J-L,K))/2.	22241	GO TO 11 ,	22242
80	GO TO 77	22241	11 DENOH=B1-A1+#(J,K-1)	22242
60	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242 22241	IF(DENOM.NE.O.)GO TO 18	22242
	CYPUS=(COND(J+K)+COND(J+1+K))/2.	22241	WRITE(6,50) 50 FORMAT(18H ZERO DENOMINATOR.)	22242 22242
	CYMIN=(COND(J,K)+COND(J-1,K))/2.	22241	GO TO 800	22242
	GD TO 77	22241	18 W(J,K)=CI/DENOM	22242
	IF(K.E0.1)GC TO 75	22242	G{J,K}={D1-A1+G{J,K-1}}}/DENOM	22242
	<pre>IF(K.EQ.IMAX)GO TO 76 CXPUS=(COND(J,K)+CCND(J,K+1))/2.</pre>	22242 22242	20 CONTINUE	22242
	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242	TTMPS(J,IMAX)=G(J,IMAX) NMAX=IMAX-2	THERMAB 2
	CYPUS=(COND(J+K)+COND(J+I,K))/2.	22242	IF(J.NE.1)GO TO 41	THERMAS2
	CYMIN=CYPUS ·	22242	00 30 I=1,NMAX	THERMAB 2
	GO TO 77	22242	II=IMAX-I	THERMAB2
io.	<pre>IF(K-E0-1)GC TO 72 IF(K-E0-IMAX)GC TO 73</pre>	22242	30 TTMPS(J, [I) =G(J, [I) -H(J, [I) +TTMPS(J, [I+1)	
	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22242 22242	GO TO 1 41 DO 42 I=2,IMAX	THERMAB2 THERMAB2
	CXMIN=(COND(J+K)+CGND(J+K-1))/2.	22242	II=IMAX+1-I	THERMAB2
	CYMIN=(COND(J,K)+COND(J-I,K))/2.	22242	42 TTMPS(J, II) =G(J, II) -H(J, II) *TTMPS(J, II+1)	
	CYPUS=CYMIN	22242	1 CONTINUE	22242
	GO TO 77	22242	DO 95 J=1,JMAX	
	CXPUS=(COND(J,K)+COND(J,K+1))/2. CXMIN=CXPUS	22242 22242	DO 95 K=1,IMAX	
	CYMIN=(COND(J,K)+COND(J-1,K))/2.	27.242	TMPS(J,K)=TTMPS(J,K) 95 CONTINUE	
	CYPUS=CYMIN	22242	IF(TIME.GT.5.)GQ TD 300	
	GO TO 77	22242	DO 301 K=1,42	
	CXMIN=[COND[J,K]+CEND[J,K-1]]/2.	22242	301 WRITE(6,302)(TMPS(J,K),J=1,JMAX)	
	CXPUS=CXMIN CYMIN=(COND(J+K)+COND(J-1+K))/2+	22242 22242	302 FORMAT(17F7-1) 300 CALL CAPAC	
	CYPUS=CYMIN	22242	300 CALL CAPAC CALL COND4	
	GO TO 77	22242	800 RETURN	22242
	CXPUS=(COND(J,K)+CCND(J,K+1))/2.	22242	END	22242
	CXMIN=CXPUS	22242	SUBROUTINE CCND2	22242
	CYPUS=(COND(J,K)+CCND(J+1,K))/2. CYMIN=CYPUS	22242 22242	DIMENSION TMPS(17,51), TEMP(17,51), H(17,51), G(17,51), COND(17,51),	Y(22242
	GO TO 77	22242	117), YPLUS(17), YNEG(17), YMID(17), TTMPS(17,51), AREA(17), H(17), HA(1 2, YTMP(17,51), CAPT(17,51), CAP(17,51), IS(10), SLTMP(10), DIST(8,51)	(1
	CXMIN=(COND(J,K)+COND(J,K+1))/2.	22242	COMMON TMPS, TEMP, W, G, Y, YPLUS, YNEG, YMIO, JMAX, IMAX, COND, DELTI, ALPH	22242
	CXPUS=CXMIN	22242	1DELTX,DENOM,PO,P1,P2,P3,TTMPS,CAPT,CAP,TIME	
	CYPUS=(COND(J+K)+CGND(J+1,K))/2.	22242	C1=1.0	22242
77	CYMIN=CYPUS CONTINUE	22242 22242	DO 1 K=1,IMAX DO 20 J=1,JMAX	22242
	1F(J.EQ.1)GC TO 89	22242	[F(K.NE.1]GD TO 35	22242 Thermab2
	IF(TMPS(J.K).GT.700.)GC TO 89		IF(J_NE.1)GO TO 35	THERMAS2
	HH=D+	22242	GO TO 2D	THERMAB2
	GO TO 641		35 FMAX=JMAX	
	HH=1. A1=CXMIN/CXPUS+{HH=ALPA1=DELTX}/{2.=CXPUS}	22240 22240	NDD=0	
	B1=-(1.+CXMIN/CXPUS+(DELTX**2/DELTT)*(CAPT(J,K)/(TMPS(J,K)*CXPUS))		DD=0.0 DO 2 I=1,JMAX	
	1	•	IF(TMPS(I,K).LT.700.)GD TO 4	
	C1=-((ALPA1*HH*DELTX)/(2.*CXPUS)-1.)		DD=0D+1.0	
	D14=-(DELTX**2/(YMID(J)*CXPUS))	22242	NDD=DD	
	IF(J.LT.JHAX)GO TO 24	22242	2 CONTINUE	
	D15=CYPUS*(TMPS(J-1,K)-TMPS(J,K))/YPLUS(J) GO TO 25	22242 22242	4 IF(DD.LT.2.)GO TO 7 IF(J.NE.1) GO TO 101	
24	D15=(CYPUS+(TMPS(J+1,K)-TMPS(J,K))}/YPLUS(J)	22242	GG=0.9	
25	IF(J.GT.1)GC TO 26	22242	GO TO 8	
	D16={CYMIN+(TMPS(J,K)-TMPS(J+1,K)))/YNEG(J)	22242	101 FFF=•1	
	GO TO 27	22742	IF(K.NE.21 GC TO 102	
	D16=(CYMIN*(IMPS(J,K)-TMPS(J-1,K)))/YNEG(J) D17=(DELTX**2=CAP(J,K))/(DELTT*CXPUS)	22242	ALPAI=(YMID(J)*ALPHA*FFF*(TMPS(1,1)-TMPS(J,K+1)))/((Y(NDD)+0.5*Y)	PL
	D1=D14=(D15-D16)-D17		1US(NDD)-0.5)*(TMPS(J,K-1)-TMPS(J,K+1))) GO TO 9	
	1F(J.EQ.1)GC TO 40	THERMAB2	102 ALPA1=(YMIO(J)/(Y(NDD)+0.5=YPLUS(NDO)5))=ALPHA=FFF	
	IF(K.NE.1)GC TO:3	THERMAB2	GO TO 9	
		THERMAB2	7 GG=1.0	
		THERMAB2	8 ALPAI=ALPHA+GG	
		THERMAB2	9 IF(J.EQ.1)GO TO 78	22242
		THERMARS		
	GO TO 20	THERMAB2 THERMAB2	61 IF(J.EQ.JMAX)GO TO 70	22242
40				22242 22242 2 2242

			GD TO 20	
	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22241		2242
	CYPU\$={COND(J+K)+COND(J+1+K)}/2.	22241	AI=AI+CI	
	CYMIN=(COND(J,K)+COND(J-1,K))/2.	22241	CI=0.0	
70	GO TO 77	22241		2242
,,,	CXPUS={COND(J,K}+COND(J,K+1))/2. CXMIN=CXPUS	22242		2242
	CYPUS=(COND(J,K)+COND(J+1,K))/2.	22242 22241		2242
	CYMIN=(COND(J,K)+COND(J-1,K))/2.	22241		2242
	GO TO 77	22241	G(J,K)=(D1-A1+G(J-1,K))/DENOM	2242
80	CXMIN=(COND(J,K)+GOND(J,K-1))/2.	22242	20 CONTINUE	_
	CXPUS=CXMIN CYPUS=(COND(J,K)+COND(J+1,K))/2.	22242	TTMPS(JMAX,K)=G(JMAX,K)	
	CYMIN=(COND(J,K)+COND(J-1,K))/2.	22241	NMAX=JMAX-2 THERM 1F(K.NE.1)GC TO 41 THERM	
	GO TO 77	22242 22 241	1F(K-NE-1)GE TO 41 THERM OD 30 [=1,NMAX THERM	
78	IF(K.EQ.1)GO TO 75	22242	II=JMAX+I THERM	
	IF(K.EQ.IMAX)GO TO 76	22242	30 TTMPS(II,K)=G(II,K)-W(II,K)*TTMPS(II+1,K)	A11.E
	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22242	GO TO 1 THERM	AB2
	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242	41 00 42 1=2,JMAX THERM	AB2
	CYPUS=(COND(J,K)+COND(J+1,K))/2.	22242	II=JMAX+1-I THERM	1AB2
	CYMIN=CYPUS GD TO 77	22242	42	
70	IF(K.EQ.1)GD TD 72	22242	DO 95 J=1,JMAX	2242
	IF (K.ED. IMAX)GO TO 73	22242 22242	DO 95 K=1.1PAX	
	CXPUS=(COND(J,K)+CONO(J,K+1))/2.	22242	$TMPS(J_{+}K) = TTMPS(J_{+}K)$	
	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242	95 CONTINUE	
	CYMIN={COND{J,K}+COND(J-1,K)}/2.	22242	1F(TIME.GT.5.)GN TO 300	
	CYPUS=CYMIN	22242	90 301 K=1,42	
	GO TO 77	22242	3D1 WRITE(6,302)(TMPS(J,K),J=1,JMAX)	
12	CXPUS={COND(J,K)+COND(J,K+1)}/2. CXMIN=CXPUS	22242	302 FORMAT(17F7-1) 300 Call Capac	
	CYMIN={COND(J,K)+COND(J-1,K)}/2.	22242	CALL COND4	
	CYPUS=CYMIN	22242 22242		242
	GO TO 77	22242		242
73	CXMIN=(CONO(J,K)+COND(J,K-1))/2.	22242	SUBROUTINE CGND4	
	CXPUS=CXMIN	22242		242
	CYMIN=(COND(J+K)+CONO(J-1,K))/2.	22242	117), YPLUS(17), YNEG(17), YMID(17), TTMPS(17,51), AREA(17), H(17), HA(17)	
	CYPUS=CYMIN	22242	2, VTMP(17,51), CAPT(17,51), CAP(17,51), IS(10), SLTMP(10), DIST(8,51)	
75	GO TO 77 CXPUS={CDND{J,k}+COND{J,k+1}}/2.	22242 22242	COMMON TMPS,TEMP,W.G,Y,YPLUS,YNEG,YMID,JMAX,IMAX,COND,OELTT,ALPHA, 22 1DELTX,OENOM,PD,P1,P2,P3,TTMPS,CAPT,CAP,TIME	242
.,	CXMIN=CXPUS	22242		242
	CYPUS=(COND(J,K)+COND(J+1,K))/2.	22242		242
	CYMIN=CYPUS	22242	IF(TIME.EQ.O.D)GD TO 9	4.72
	GO TD 77	22242	IF(TMPS(J+K)-LT-200-) GC TC 5	
76	CXMIN=(COND(J,K)+CONO(J,K-1))/2.	22242	9 IF(TMPS(J.K).GE.200.)GO TO 1	
	CKPUS=CXMIN	22 242	COND(J,K)=0.9 GO TO 5	
	CYPUS=(CONO(J+K)+CONO(J+L,K))/2. CYMIN=CYPUS	22242	1 IF(TMPS(J,K).GT.1200.)GD TO 7	
77	CONTINUE	22242	TSQ=TMPS(J,K)=TMPS(J,K)	
• • •	IF(J.EQ.1)GO TO 89	22242 22242	TCUB=TMPS(J,K)+TSQ	
	IF(TMPS(J,K).GT.700.1GB TO 89	22272	COND(J,K)=.12561573E+118377799E-2=TMPS(J,K)+.10902421E-5+TSQ15	
	HH=0.	2224D	1D84869E-9+TCUB	
	GO TO 91	22240	GO TO 5	
	HH=1.	22240	7 COND(J,K)=0.36	
91	AI=+(YPLUS(J)+CYMIN)/(YNEG(J)+CYPUS)	22242	5 CONTINUE	
	BI=-(1.0+(YPL0S(J)+CYMIN}/(YNEG(J)+CYPUS)+CCAPT(J+K)+YMID(J)+YPLUS I(J))/(DELTT+CYPUS+TMPS(J+K)))	•		242
	C1=1.	22240	SUBROUTINE CAPAC	242
	D14=-{YPLUS(J)*YMID(J))/(DELTX*CYPUS)	22240	DIMENSION TMPS(17,51), TEMP(17,51), W(17,51), G(17,51), CUND(17,51), Y(22	242
	IFIK-LT-IMAXIGO TO 24	22242	117) .YPLUS(17) .YNEG(17) .YMID(17) .TTMPS(17,51) .AREA(17) .H(17) .HA(17)	
	D15=CXPUS*(TMPS(J,K-1)-TMPS(J,K))/OELTX	22242	2.VTMP(17.51).CAPT(17.51).CAP(17.51),IS(10),SLTMP(10),DIST(8.51)	
	D17=0.0		COMMON TMPS,TEMP,W.G.Y,YPLUS,YNEG,YMID,JMAX.IMAX.COND.DELTT.ALPHA. 22	242
	DIG=CXMIN*(TMPS(J*K)-TMPS(J*K-1))/DELTX	22242	IDELTX.DENOM.PO.PI.PZ.P3.TTMPS.CAPT.CAP.TIME	
24	GO TO 26 IF(K.GT.1)GO TO 25	22242 THERMAR2	DO 232 J=1,JMAX DO 232 K=1,1MAX	
	D15=CXPUS=(TMPS(J,K+1)-TMPS(J,K))/DELTX	22242	IF(TIME.EQ.O.O)GO TO 9	
	D16=CXMIN=(TMPS(J,K)-TMPS(J,K+1))/DFLTX	22242	IF(TMPS(J,K).LT.100.01) GO TO 232	
27	017=0.		9 IF(TMPS(J+K)-GT-450.)GO TO 233	
	GO TO 26	THERMAB2	CAPT(J:K)={23.5+.30T={TMP\${J:K}-100.}}=134.0	
25	D15=CXPUS=(TMPS(J.K+1)-TMPS(J.K))/OELTX	22242	GD TO 232	
	DIG=CXMIN+(TMPS(J,K)-TMPS(J,K-1))/DELTX	22242	233 IF(TMPS(J+K).GT.900.1G0 TO 234	
	DIT={ALPA1=HH•YPLU\${J}*YM{D(J}*{FMPS{J*K+F)-TMPS{J*K-F}F}/{2.*CYPU IS*DELTXF	22242 22242	CAPT(J-K)=[130.0+.344+[TMPS(J-K)-450.]]=134.0 GO TO 232	
	D18=(CAP(J,K)+YHIO(J)+YPLUS(J))/(DELFT+CYPUS)	26272	234 FFFTMPS(J,K)-GT-1100-FG0 TO 235	
99	D1=D14+(D15-D16)+D17-D18		CAPT(J.K)=134.0+(285.0+.485+(TMP\${J.K}-900.1)	
	IF(K.NE-1)GC TO 10	THERMAR2	GD TO 232	
	1F(J.GT.2)GC TD 3		235 IF(TMPS{J.K).GT.1600.)G0 TO 236	
	W(2,1)=C1/B1	THERMAB2	CAP F(J,K)=134.0+(382.0+.6240+(TMPS(J,K)-110D.1)	
	G(2,1)=(D1-A1*TEMP(1,1))/R1	TUE 0 M 4 0 3	GQ 70 232	
10		THERMAR2 THERMAB2	230 CHT 1131K1-134*04(834*04*54(#1213*K)+1800*1)	
10		THERMAB2	232 CONTINUE RETURN	
	W(1,K)=C1/BI	ENTANE	る関わ	
	G(1,K)=D1/B1	22242		

Thermab3

Subroutine CALCY (Variable grid spacing)

Subroutine CONV


```
ZERVOIR TEMPERATURE, DEGREES FAHRENHEIT', /5x, Flo.4, 2x, '=TOLERANCE (PE 3R CENT'/10x,15,2x, ==OPTION TO INCREASE TIME STEP LENGTH DURING RUN 6'/20x,'(1) INDICATES TIME STEP LENGTH REMAINED CONSTANT DURING RUN 6'/20x,'(2) INDICATES TIME STEP LENGTH MAS INCREASED DURING RUN'/5x 6,Flo.4,2x,*=MASS X VELOLITY X DENSITY/ALL OF GAS) '7/5x,Flo.1,2x,*=DISTANCE BETWEEN POINTS ALONG THE FRACTURE, FEET'// 95x, "THE CONSTANTS IN THE EQUATION HHICH GENERATES VELOCITY ARE'/10 1x,Flo.3,2x,*=a8*/10x,Flo.3,2x,*=c1*//5x,Flo.1,2 2x,*=MAXIMUM ITME, HOURS'/10x,Flo.3,2x,*=IMAX'/10x,Flo.3,2x,*=JMAX'/5x,Fl
         THERMAB3-A.L. BARNES
DIMENSION IMPS(21,51),THEP(21,51),M(21,51),Q(21,51),Y(21),Y(51),YP
1LUS(21),YNEO(21),YMEO(21),TMPS(21,51),AREA(21),M(21,1M(21),YTMP(
221,51),CAPT(21,51),CAP(21,51),CAN(21,51),TS(10),SLTMP(10),DIST(81),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(10),TS(1
                                                                                                                                                                                                                                                                                         22241
              CCAPY:
TEMP=PERMANENI TEMPERATURE ARRAY
VTMP=TEMPORARY TEMPERATURE ARRAY
TMPS=TEMPORARY TEMPERATURE ARRAY
KHT IS THE SWITCH TO TURN HEAT ON OR OFF
                                                                                                                                                                                                                                                                                          22241
                                                                                                                                                                                                                                                                              22241
THERMAB6
                                                                                                                                                                                                                                                                                                                                                                        30.1,2X, LENGTH OF SYSTEM, FEET 1
TENTH=0.0
                                                                                                                                                                                                                                                                                                                                                                KWTSP IS THE SWITCH TO PRINT INFORMATION AT THE TIME HEAT IS SHUT THERMAB6
              KWIST IS THE SWITCH TO PRINT INFORMATION AT THE TIME HEAT IS TURNED ON TINHIT-CUMULATIVE TIME OF HEAT INJECTION
                                                                                                                                                                                                                                                                                                                                                            203 FORMAT(F10.0,2E18.8)
                                                                                                                                                                                                                                                                                                                                                                           THE=TIME, HOURS, ALREADY COMPLETED WHEN RUN RESTARTED
HTIN=BTU OF HEAT INJECTED WHEN RUN RESTARTED
HTDUT=BTU OF HEAT PRODUCED WHEN RUN RESTARTED
                                                                                                                                                                                                                                                                              THERMARA
THEMMADE

THEMMA
                                                                                                                                                                                                                                                                                                                                                                           TIMHT=TIME
ATMP=TIME
             JMAX=NUMBER OF RONS (J)
DELIT=TIME SIEP LENGTH, HOURS
TOL=TOLERANCE
TIMX=MAXIMUM TIME, HOURS
ALPHA=SPECIFIC HEAT X VELOCITY X DENSITY(ALL OF GAS)
DELIX=OLISTANCE BETWEEN POINTS ALONG THE FRACTURE
DELIY=OLISTANCE BETWEEN POINTS INTO THE WALL(FIRST 3 POINTS ONLY)
AA=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
BB=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
TT=INJECTION TEMPERATURE, DEGREES FAHRENNEIT
TTT=MESERVOIR TEMPERATURE, DEGREES FAHRENNEIT
                                                                                                                                                                                                                                                                                                                                                              107 74 K=1,1MAX

74 READ(5,73)(TMPS(J,K),J=1,JMAX)

73 FORMAT(16F5,0/5F5,0)

GU TO 204

81 DO 75 K=1,1MAX
                                                                                                                                                                                                                                                                                                                                                          00 75 K=1,1MAX

00 75 J=1,JMAX

75 TMPS(J,K)=TTT

204 00 205 K=1,1MAX

00 205 J=1,JMAX
              TITHERSETION TEMPERATURE, DEGREES FAMERHEIT
TITHERSERVOIR TEMPERATURE, DEGREES FAMERHEIT
CC=CONSTANT IN EQUATION WHICH GENERATES VELOCITY
KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN
                                                                                                                                                                                                                                                                                                                                                                           TEMP(J,K)=TMPS(J,K)
TEEP(J,K)=TMPS(J,K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            THERMAB3
                                                                                                                                                                                                                                                                                                                                                            205 VTMP(J.K)=TMPS(J.K)
              KSKIP-OPTION TO INCREASE TIME STEP LENGTH DURING RUN
NRUN-RUN NUMBER
KSLCE=OPTION TO CALCULATE TOTAL HEAT CONTENT AND PRINT TEMPERATURE
AND TOTAL HEAT CONTENT
ISSN=MAXIMUM NUMBER OF DESIRED SLICES FOR CROSS SECTION STUDY
ISIM|=VALUES OF DESIRED SLICES FOR CROSS SECTION STUDY
LMAX=NUMBER OF ISOTHERMS DESIRED
                                                                                                                                                                                                                                                                                                                                                                            TMPS(1,1)=TT
TEMP(1,1)=TT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       22241
                                                                                                                                                                                                                                                                                                                                                                             VTMP(1+1)=TT
                                                                                                                                                                                                                                                                                                                                                                             CALL CALCY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       22241
                                                                                                                                                                                                                                                                                                                                                                            CALCY IS A SUBROUTINE THAT CALCULATES VARIABLE Y SPACING VALUES
               SLIMP(I)=TEMPERATURE OF DESIRED ISOTHERM
KSTRT=SWITCH THAT ALLOWS STARTING RUN WITH CONSTANT OR VARIABLE
                                                                                                                                                                                                                                                                                                                                                                            CAPAC IS A SUBROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT
                                    FIELD TEMPERATURES
                                                                                                                                                                                                                                                                                                                                                                           CALL CAPSK
   READ(5,20)(Y(I),I=1,JMAX)
20 FORMAT(16F5.D/5F5.D)
                                                                                                                                                                                                                                                                                                                                                    C.
                                                                                                                                                                                                                                                                                                                                                                            CAPSK IS A SUBROUTINE THAT CALCULATES HEAT CAPACITY VALUES
                                                                                                                                                                                                                                                                                                                                                                            CALL COND4
                Y-DISTANCE INTO THE WALL, FEET
                                                                                                                                                                                                                                                                                                                                                                           COND4 IS A SUBROUTINE THAT CALCULATES CONDUCTANCES DD 232 J=1, JMAX
                                                                                                                                                                                                                                                                               THERMARA
                                                                                                                                                                                                                                                                                                                                                         DU 232 K=1,IMAX
CAPPYIJ,K)=CAPY(J,K)
232 CAP(J,K)=CAPT(J,K)
FIMAX=IMAX
                KWTSP=1
                                                                                                                                                                                                                                                                                THERMAB 6
                TIMHT=0.0
                                                                                                                                                                                                                                                                                THERMAB6
               KWTST=1
PP=1.
                                                                                                                                                                                                                                                                               THERMAB6
                                                                                                                                                                                                                                                                                                                                                        HIMAX=IMAX
HIDRG=Y(JMAX)=DELTX=FIMAX=3149.+(CAP[1,1]-3149.1*DELTX*.25
HIDRG=INITIAL HEAT CONTENT OF ROCK AT 100 DEGREES FAHRENHEIT
82 GO T01995,9941,XSKIP
94 IF(ATMP.NE.TIME) GO TO 995
ATMP=ATMP+1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      22241
               PPP=1.0
                                                                                                                                                                                                                                                                                          22241
                SMAX=LMAX
                CH=2500D.
                                                                                                                                                                                                                                                                                                                                                         ATMP=ATMP+1.

IF(TIME.GT.5.0)GO TO 318

DELTT=1.

GO TO 995

318 IF(DELTT.GE.15.0) GO TO 993
               FTSYT={SMAX-1.}*DELTX
ATMP=0.0
              DD=1.D
KWHD=1
                KIT=D
                                                                                                                                                                                                                                                                                                                                                                           UU=DD-5.0
                 HTOUT=D.
                                                                                                                                                                                                                                                                                                                                                                           TME=5.0+((1.2) -+ UU)
DELTT=TME-TIME
               HIIN=0.
                                                                                                                                                                                                                                                                                                                                                                           IF(DELTT.LT.15.)GO TO 995
DELTT=15.
                DO 21 K=1,1MAX
                                                                                                                                                                                                                                                                                          22241
                                                                                                                                                                                                                                                                                          22241
                                                                                                                                                                                                                                                                                                                                                          993 IF(TIME.GT.1000.)GO TO 996
DELTT=15.0
                 X=DELTX+FK
                V(K)=(AA+BB+X+EXP(CC+X))+2.
                                                                                                                                                                                                                                                                               THERMAB3
    21 CONTINUE
DO 76 I=1,LMAX
                                                                                                                                                                                                                                                                                                                                                                           GD TO 995
                                                                                                                                                                                                                                                                                                                                                            996 IF(TIME.GT.3000.)G0 TD 997
    00 76 K=1,IMAX
76 DIST(1,K)=0.0
                                                                                                                                                                                                                                                                                                                                                                           DELTT=30.0
                                                                                                                                                                                                                                                                                                                                                                         GO TO 995
IF(TIME.GT.10000.) GG TO 998
       MRITE(6,9)NRUN,TT,TIT,TOL,KSKIP,ALPHA,DELTX,(Y(1),I=1,21),AA,BB,CC
L,TIMX,IMAX,JHAX,FTSY
9 FORMAT(IHI,5X,*INPUT DATA FOR THERMAB3 RUN NUMBER*,2X,15//5X,F10.1
                                                                                                                                                                                                                                                                                                                                                                           DELTT=50.0
                                                                                                                                                                                                                                                                                                                                                                           GD TO 995
             1,2X, "=INJECTION TEMPERATURE, DEGREES FAHRENHEIT"/5X, F10.1,2X, "=RES
                                                                                                                                                                                                                                                                                                                                                           998 DELTT=100.
                                                                                                                                                                                                                                                                                                                                                                           KWHO IS THE SWITCH TO DETERMINE DIRECTION OF ADIP SWEEP(HORIZONTAL OR VERTICAL)
```

		GD 10(991,53),KWH8	
	991	GB TG(142,140),KHT	THERMAB6
		GO TO(158,141),KWTSP	THERMAB6
-	141	KWTSP=1 TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST	
-		STOPPED	
		WRITE(6,33)	
		DO 46 K=1,42	THERMAB6
	40	WRITE(6,37)K,(TEMP(J,K),J=1,17) WRITE(6,250)	THERMAB6
	250		THERMAB6
		DO 251 K=1,42	THERMAR6
	251	WRITE(6,252)K, (TEMP(J,K), J=18, JMAX)	THERMAB 6
	252	FORMAT([4,4F7.1) WRITE(6,33)	THERMAR6
		00 44 K=43, IMAX	THERMAB6
	44	WRITE(6,37)K,(TEMP{J,K},J=1,17)	THERMAB6
		WRITE(6,250)	THERMAR6
		DO 253 K=43,IMAX	THERMAB6
	253	WRITE(6,252)K,(TEMP(J,K),J=18,JMAX) WRITE(6,30)TIME,ERR,HEAT,HTOUT,HTIN,HTTOT,HTORG,DELTT,ER1,ER2,TOL	THERMAB6
		WRITE(6,150) TIMET, KWHO	INEKHADO
	150	FORMAT(1H-,2x,*HEAT INJECTION STOPS, PRODUCING WELL TEMPERATURE	THERMAB6
		FORMAT(1H-,2x,*HEAT INJECTION STOPS, PRODUCING WELL TEMPERATURE LEXCEEDS 8DD DEGREES F.*/2x,*CUMULATIVE TIME OF HEAT INJECTION EQUA	THERMAB6
		2LS*,2X,F10.1,151	
r		CALL CONTR	
ċ		CONTR IS A SUBROUTINE THAT CALCULATES THE POSITION OF SELECTED ISOTHERMS	
٠	158	CALL COND6	
C		COND6 IS A SUBROUTINE FOR THE HORIZONTAL ADIP SOLUTION WITH	
С		ADIABATIC BOUNDARY CONDITIONS	
		GD TO 45	T.::::::::::::::::::::::::::::::::::::
	159	GO TD(143,159), KWTST KWTST=1	THERMAB6
С	.,,	TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST	THEKHAGO
c		STARTED	
		WRITE(6,33)	
		00 32 K=1,42	
	32	WRITE(6,37)K,(TEMP(J,K),J=1,17) WRITE(6,250)	
		00 275 K=1,42	
	275	WRITE(6,252)K, (TEMP(J,K),J=18,JMAX)	
		WRITE(6,33)	
	24	DO 36 K=43+[MAX	
	26	WRITE(6,37)K,{TEMP(J,K),J=1,17) WRITE(6,250)	
		DO 276 K=43, IMAX	
	276	WRITE(6,252)K,(TEMP(J,K),J≃18,JMAX)	
		WRITE(6,30) TIME, ERR, HEAT, HTDUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TDL	THERMASS
		WRITE(6,255) CALL CONTR	
		GD TO 143	
	53	GO TO(146,145),KHT	THERMAB6
		GO TD(170,261),KWTSP	
_	261	KHTSP=1	
Č		TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST STOPPED	
•		WR [TE (6,33)	
		00 31 K=1,42	
	31		
		WRITE(6,250) DO 271 K=1,42	
	271	WRITE(6,252)K, (TEMP(J,K),J=18,JMAX)	
		WRITE(6,33)	
		00 34 K=43, IMAX	
	34	WRITE(6,37)K,{TEMP(J,K),J=1,17}	
		WRITE(6,250) DD 272 K=43,IMAX	
	272	WRITE(6,252)K, (TEMP(J,K),J=18,JMAX)	
		WRITE(6,30) TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL	
		WRITE(6,150) TIMHT	THERMAB6
	1.70	CALL CONTR CALL COND?	
c	2.0	COND? IS A SUBROUTINE FOR THE VERTICAL ADIP SOLUTION WITH	
:		ADIABATIC BOUNDARY CONDITIONS	
		GO TO 171	
	146	GO TO(43,157),KWTST KWTST=1	
•	237	TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST	THERMAB6
		STARTED	
		WRITE(6,33)	
		DO 38 K=1,42 WR(TE(6,37)K,(TEMP(J,K),J=1,17)	
	38		

	WRITE(6,250) DO 278 K=1,42	
278	WRITE(6,252)K,(TEMP(J,K),J=18,JMAX)	
	WRITE(6,33)	
	DO 39 K=43,1MAX	
39	WRITE(6,37)K,(TEMP(J,K),J≈1,17) WRITE(6,250)	
	DO 279 K=43,IMAX	
279	WRITE(6,252)K+(TEMP(J+K),J=18,JMAX)	
	WRITE(6,30) TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL	THERMAB6
255	WRITE(6,255)KWHO FORMAT(1H-,2X, HEAT INJECTION STARTS. PRODUCING WELL TEMPERATURE	
2,5,5	18 LESS THAN 700 DEGREES F 15)	LIHEKMADO
	CALL CONTR	
	GO TO 43	THERMAB6
143	CALL CONV CONV IS A SUBROUTINE THAT SOLVES EXPLICIT CONVECTION EQUATIONS	
	ALONG THE FRACTURE	
	CALL CONDS	
:	CONDS IS A SUBROUTINE THAT CALCULATES NEW CONDUCTANCE VALUES	
	ALONG THE J=1 ROW CALL CAPC1	
;	CAPCI IS A SUBROUTINE THAT CALCULATES NEW TOTAL HEAT REQUIREMENT	
;	VALUES ALDNG THE J=1 ROW	
	GO TU(144,47),KHT	
. 144	CALL CONDI CONDI IS A SUBROUTINE THAT SOLVES HORIZONTAL ADIP WITH THE CONV	22241
	SOLUTION AS A BOUNDARY CONDITION	
47	' IF(DENOM.EQ.D.O)GO TO 69	22241
	KIT=KIT+1	
	IF(III-EQ.5)GO TO 296	
	IF(KIT.GT.16)GO TO 222	
	KK=1	
	DO 84 N=1,JMAX DO 84 H=1,IMAX	22241
	IF(TMPS(N,H).LT.100.10) GO TO 84	22241
	IF(ABS((VTMP(N+M)-TMPS(N+M))/TMPS(N+M)).GT.TDL)GO TO 86	22241
84	CONTINUE	22241
86	GO TO 67 DO 88 J=1,JMAX	22241 22241
•	DD 88 K=1,1MAX	22241
88	VTMP{J+K}=TMPS(J+K)	22241
	KWH0=2	
296	GD TD 82 DD 297 K=1,1MAX	
	DO 297 J÷l,J#AX	
	TMPS(J,K)=TEMP(J,K)	
297	' VTMP(J,K)=TEMP('J,K) IIT=0	
	CH=CH+5000.	
	TOL=TOL+.01	
	GO TO B2	
	CALL CONV	
	CALL CAPCI	
171	GD TO(149,148),KHT	
149	CALL COND2 COND2 IS A SUBROUTINE THAT SOLVES VERTICAL ADIP WITH THE CONV	22241
:	SOLUTION AS A BOUNDARY CONDITION	
148	: IF(DENOM.EQ.D.0)G0 TO 69	22241
	KK=2 DO 64 N=1.JMAX	22241
	DO 64 M=1,1MAX	22241
	IF(TMPS(N,M).LT.100.10) GO TO 64	*****
	IF(ABS((VTMP(N,H)-TMPS(N,M))/TMPS(N,H)).GT.TOL)GO TO 65	22241
64	CONTINUE GO TO 67	22241 22241
65	00 83 J=1,JMAX	22241
	DO 83 K=1,IMAX	22241
83	VTMP{J,K}=TMPS{J,K} KWHO=1	22241
	GO TO 82	22241
67	00 66 J=1,JMAX	22241
	DO 66 K=1, [MAX	22241
	<pre>IF(TMPS(J,K).LT.100.10) GO TO 66 CAP(J,K)=CAPT(J,K)</pre>	
	TEEP(J,K)=TEPP(J,K)	

	CAPPY(J,K)=CAPY(J,K) TEMP(J,K)=TMPS(J,K)		57	IFITIME.GT.5000
66	CONTINUE			TOL=.03
	GO TO(152,153),KHT		58	GO TO 55 IF(TIME.GT.CM)G
152	TIMHT=TIMHT+DELTT		,,,	TOL = . 02
	HTOUT=HTOUT+TEMP(1,IMAX)•DELTT+ALPHA HTIN=HTIN+ALPHA+TT+DELTT			GO TO 55
153	IF(TEMP(1,1MAX).LE.900.)GD TO 48			TOL = . 01
•	IF(KHT.EQ.2) GO TO 174		23	ATMP=TIME DD=DD+1.
		THERMAB6		PP=PP+1.
	KHT=2 IF(TEMP(1,[MAX).GE.800.)GO TO 49	THERMAB6		IF(PP.NE.20.) G
70	TEMP(1,1)=TT			PP=0.
	TMPS(1,1)=TT		. 33	WRITE(6,33) FORMAT(1H1,2X2H
	VTMP(1,1)=TT			1X2H 95X2H105X2H
	IF(KHT.EQ.1) GO TO 175 KHTST=2	THERMAB6		DD 92 K=1,42
175	KHT=1	THERMAB6	92	WRITE(6,37)K,(T
213	IF(KHT.EQ.2)GD TD 183		31	FORMAT(14,17F7.
49	PPP=PPP+1.			WRITE(6,250)
	IF(PPP.LT.19.)GD TO 741			DO 29D K=1,42
	IF(PPP.EQ.19.)GO TO 381 1F(PPP.NE.20.)GO TO 741		290	WRITE (6,252) K, (
	PPP=0.0		151	IF(TEMP(1,43).L' WRITE(6,33)
381	JBMAX≈JFAX-2	22241		DD 24 K=43, IMAX
	IBMAX=IMAX-2	22241 22241	24	WRITE (6,37) K, (T)
Ċ	THIS ACCOUNTS FOR THE HEAT STORED IN RDCK DO 4D J=1,JMAX	22241	752	IF(TEMP(18,43).1
	SUM=0.	22241		WRITE(6,250)
	DD 80 K=1,IBMAX,2	22241	299	DO 299 K=43, [MA] WRITE(6,252)K, (
	SUM=SUM+CAP(J,K)+4. +CAP(J,K+1)+CAP(J,K+2)	222/1	887	WRITE(6,30)TIME
40	AREA(J)=SUM*(DELTX/3.)	22241 22241		IHETIN
	BB2=0. DO 90 J=1,JBMAX,2	22241	30	FURMAT(F10.1,2X
	H(J)=Y(J+1)-Y(J)	22241		18.8,2X,31HBTU OF 2PRODUCED/E18.8,2
	HA(J)=(Y(J+2)-Y(J+1))/H(J)	22241		3X,5HHTORG/F10.1
	BBZ=BBZ+(H(J)+(HA(J)+1.)/6.+HA(J)))+((2.+HA(J)-1.)+AREA(J+2)+(HA(4HER2/F10.5,3X,9H
	1J)+1.)*=2*AREA(J+1)+HA(J)*(2HA(J))*AREA(J)) ER2=((882-HEAT-HTORG)+{TEMP{1,IMAX}*DELTT*ALPHA})/{ALPHA*TT*OELTT}	22241	С	WRITE(6,223)DD,
	HETIN=(BB2-HEAT-HTORG)/(ALPHA*TT*DELTT)			INTERPOLATING RO
	HEAT=882-HTORG		891	KIT=0
С	THIS ACCOUNTS FOR HEAT OUT OF PRODUCER	22241		IIT=0
141	HTTÖT⊐HTOUT+HEAT+HTGRG HTINN=HTIN+HTORG			IF(TIME.GT.TIMX)
	ERR=ABS((HTINN-HTTDT)/HTTDT)		222	GD TO(86,65),KK WRITE(6,223)DD,
	ER1=ABS((HTINN-HTTDT)/HTINN)		223	FORMAT(3X,F10.0
	GO TO(4,5),KSLCE	THERMAB3	69	STOP
C	THIS ACCOUNTS FOR THE TEMPERATURE AND CULULATIVE HEAT PRINT DUT AT VARIOUS SELECTED POSITIONS ALONG THE FRACTURE.			SUBROUTINE CALCY
	WRITE(6,26)	THERMAB3		DIMENSION THPS(2
	FORMAT(1H1,30X,*INPUT DATA FOR CROSS SECTION STUDY*//9X,*LDCATION(1LUS(21), YNEG(21)
	1FEET DOWN FRACTURE) ,2X, TEMPERATURE, 9X, TIME(HOURS), 9X, CUMULAT			221,511,CAPT(21,
	2IVE HEAT*//) JBMAX=JMAX-2	THERMAB3		351), TEEP(21,51)
	DO 70 K=1,1MAX	THERMAB 3		COMMON TMPS.TEMS 1A.DELTX.DENOM.DE
	DO 70 M=1,ISSN	THERMAB3		ZCAPPY
	IF(K.NE.IS(M+1))GO TO 70	THEOMADO		I-X AML=X AMN
	BB3=0.0 DO 71 J=1.JBMAX.2	THERMAB3 THERMAB3	-	DU 2 J=1,NMAX
	H(J)=Y(J+1)-Y(J)	THERMAB3	2	YPLUS(J)=Y(J+1)- DD 3 J=2,JMAX
	HA(J)=(Y(J+2)-Y(J+1))/H(J)	22241	3	YNEG(J) = Y(J) - Y(
	BB3=BB3+((H(J)+(HA(J)+1-)/(6.+HA(J)))+((2.+HA(J)-1.)+CAP(J+2,K)+(H	1		YNEG(1) = YPLUS(1)
	<pre>IA(J)+1.)==2=CAP(J+1,K)+HA(J)=(2HA(J))=CAP(J,K))}=DELTX AIS=IS(M)</pre>			YPLUS(JMAX)=YNE
	ALOCF=DELTX+ALS		4	DO 4 J=1, JMAX YMID(J)=0.5*(YPI
	WRITE(6,25)ALOCF, TEMP(1,K), TIME, 883	THERMAB3	•	RETURN
		THERMAB3		END
	CONTINUE TIME=TIME+DELTT	THERMAB3 22241		SUBROUTINE CONV
•	IF(TIME=0T-3000.)GD TO 56	22241		DIMENSION TMPS(2 1LUS(21),YNEG(21)
	TOL=.05			221,51),CAPT(21,
	GO TO 55			351),TEEP(21,51),
56	FIFITIME.GT.4000.1GD TO 57			COMMON TMPS, TEM
	10L=+04 '			1A,D£LTX,DENDM,DE

	57 IF(TIME.GT.5000.)G0 T0 58	
	TOL=+03 GO TO 55	
	58 IF(TIME.GT.CM)GO TO 59	
	TOL=.02 GO TO 55	
	59 TOL=+01	
	55 ATMP=TIME	
86	DD=DD+1. PP=PP+1.	
86	IF(PP.NE.20.) GO TO 891	
	PP=0.	
	WRITE(6,33)	22241
		22241 22241
86	DD 92 K=1,42	.2271
B6	92 WRITE(6,37)K,(TEMP(J,K),J=1,17)	
	37 FORMAT(14,17F7.1) IF(TEMP(18,1).LT.100.1)GO TO 751	22241
	WRITE(6,250)	
	DO 29D K=1,42	
	290 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX) 751 IF(TEMP(1,43).LT.100.1)GO TO 752	
	WRITE(6,33) THE	RMAB3
41 41	DD 24 K=43,IMAX THEF	RHAB3
41	24 WRITE(6,37)K,(TEMP(J,K),J=1,17) 752 IF(TEMP(18,43),LT.100.1)GO TO 887	
41	WRITE(6,250)	
41 41	DO 299 K=43,IMAX	
71	299 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX) 887 WRITE(6,30)TIME-ERR.HEAT-HTOUT-HTIN-HTINT-HTOPG.DELTT.ER1.ER2.TOL.	
41	887 WRITE(6,30) TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL, 1HETIN	
41	30 FORMAT(F10-1,2X,5HHOURS/F10-5,2X,27HDISCREPANCY IN HEAT BALANCE/F1	22241
41 41	18.8,2X,31HBTU OF HEAT STORED IN RESERVOIR/E18.8.2X.20HBTU DE HEAT	22241
41		22241
41	3X,5HHTORG/F10.1,21HTIME INCREMENT, HOURS/F10.5,3X,3HER1/F10.5,3X,3 4HER2/F10.5,3X,9HTOLERANCE/E18.8,2X,*=INSTANTEDUS HEAT STORED*)	
41	WRITE(6,223)DD,KIT	
	C INTERPOLATING ROUTINE FOR DETERMING POSITION OF SELECTED ISOTHERMS	
	CALL CONTR 891 KIT=O	
41	IIT=0	
	IF(TIME.GT.TIMX)GO TO 10D	
	GD TO(86,65),KK 2 222 WRITE(6,223)DD,KIT	22241
	223 FORMAT(3X,F10.0,I5)	
B 3		2241
	END 2 Subroutine calcy	22241
83		2241
83	llus(21), yneg(21), ymid(21), ttmps(21,51), area(21), h(21), ha(21), ytmp; 2	22241
83 83	221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8,	MAB3
B3		2241
B 3	IA.DELTX.DENOM.DELTY.TTMPS.CAP.CAPT.TIME.LMAX.SLTMP.DIST.TEEP.CAPY.	
B3	ZCAPPY	
B3		22241
B3		2241
B3		2241
41		22241
		22241
	DO 4 J=1,JMAX 2	2241
B3		22241
B3		2241
B3	SUBROUTINE CONV	
41		2241
	<pre>LUS(21),YNEG(21),YMID(21),TTMPS(21,51),AREA(21),H(21),HA(21),VTMP(221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8,</pre>	2241
		MAB3
	COMMON TMPS.TEMP.W.G.Y.V.YPLUS.YNEG.YMID.JMAX.IMAX.COND.DELTT.ALPH. 2	2241
	<pre>1A,DELTX,DENDM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY, 2CAPPY</pre>	
	EURIT I	

00 40 K=2,1MAX CONMIN=(CDN0{1,K}+CDN0{2,K}}/2.	22241	3 IF(K.NE.IMAX)GD TD 5 22241 C1=0.0	
COMPUS=(COMD(2,K)+COMD(3,K))/2. D13=DELTX+TEMP(1,K)/(DELTT+V(K))		A1=1.+CXHIN/CXPUS 22240	
D14=(3, eDFLTYeCONMINETMOS(2, K3)/(2, eDFLTYeALDHA)		GO TO 10 5 A1=CXMIN/CXPUS 22240	
D15=(DELTX=COMPUS=(TMPS(2,K)-TMPS(3,K)))/(2.*DELTY=ALPHA) D16=1.*(DELTX=(DELTT=V(K)))		C1=1.0 10 DENOM=B1-A1•W(J+K-1) 22241	
017=(3, +DFLTX+CDNN(N)/(2, +DFLTY+ALPHA)		[F(DENDM.NE.O.)GC TO 18 22241	
TMPS(1,K)=(TMPS(1,K-1)+013+014+015)/(016+017) IF(TMPS(1,K).GE-100.)GO TO 40	+ - +	WRITE(6,50) 50 FORMAT(18H ZERO DENDMINATOR.) 22241	•
IMPS(1,K)=100.	22241	GO TO 800 18 W(J+K)=C1/DENOM	
RETURN FND .	22241	G(J,K)=(D1-A1-G(J,K-1))/UENOM 22241	
SUBROUTINE CONDI	22241	2D CONTINUE TYMPS(J,IMAX)=G(J,IMAX)	
OIMENSION TMPS(21,51),TEMP(21,51),W(21,51),G(21,51),Y(21),V(51),YP	22241 22241	DD 3D I=2.IMAX II=IMAX+1-I	
221,511,CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8,		30 TTMPS(J,II)=G(J,II)-W(J,II)*TTMPS(J,II+1)	
COMMON TMPS, TEMP, W.G., Y. V. YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH	HERMAB3 22241	1 CONTINUE DD 95 J=2,JMAX	
1A, DELTX, DENCM, DELTY, TTMPS, CAP, CAPT, TIME, LMAX, SLTMP, DIST, TEEP, CAPY, 2CAPPY		DD 95 K=[,IMAX TMPS(J,K)=TTMPS(J,K)	
00 1 J=2, JMAX	22241 22241	95 CONTINUE	
ON 2D K=1,1MAX 51 IF(J=EQ-JMAX)GO TO 70	22240	CALL CAPAC Call Cand4	
<pre>IF(K_eEQ₊1)GC TO 75 IF(K_eEQ₊1MAX)GO TO 76</pre>	22240 22240	800 RETURN END :	
CXMIN=(COND(J*K)+COND(J*K-1))/S*. CXPUS=(COND(J*K)+COND(J*K+1))/S*.	22240 22240	SURPOUTINE CONDS	
CYPUS=(CONO(J+K)+COND(J+1+K))/2.	22240	OIMENSION TPPS(21,51),TEMP(21,51),W(21,51),G(21,51),Y(21),V(51),YP 22241 1LUS(21),YNEG(21),YMIO(21),THMS(21,51),AREA(21),H(21),YMA(21),YMA(22),E1,21),CAPT(21,51),	
CYMIN=(COND(J,K)+COND(J-1,K))/2. GO TO 77	22240 22240	221,51),CAPT(21,51),CAPP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8, 351),TEEP(21,51),CAPP(21,51),CAPPY(21,51)	
70 IF(K.EQ.1)GC TO 72 IF(K.EQ.IMAX)GD TO 73	22240 22240	351),TEEP(21,51),CAPY(21,51),CAPPY(21,51) COMMON THPS, TEMP,M.G.Y.V.,YVELS,YNEG,YNTO,JMAX,IMAX,CONO,DELTT,ALPH. 22241 14,DELTX,DENGM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,	
CXPUS={CDND{J,K}+1}}/2.	22240	ZCAPPY	
CYMIN=(CDND(J,K)+CDND(J-1,K))/2. CXMIN=(CDND(J,K)+CDND(J,K-I))/2.	22240 22240	00 1 K=1,IMAX 00 20 J=2,JMAX	
CYPUS=CYMIN GD TO 77	22240 22240	61 IF(J.EQ.JMAX)GO TO 70 22240 1F(K.EQ.1)GO TO 75 22240	
72 CXPUS=(COND(J,K)+COND(J,K+1))/2. CXMIN=CXPUS	2224D	IF(K.EQ.IMAX)GO TC 76 22240	
CYMIN={COND(J,K)+COND(J-1,K)]/2.	22240 22240	CXPUS=(COND(J,K)+COND(J,K+1))/2. 2240 CXMIN=(COND(J,K)+COND(J,K-1))/2. 22240	
CYPUS=CYMIN GO TO 77	22240 22240	CYPUS=(COND(J,K)+COND(J+1,K))/2. 22240 CYMIN=(COND(J,K)+COND(J-1,K))/2. 22240	
73 CXMIN=(COND(J,K)+COND(J,K-1))/2. CXPUS=CXMIN	22240 22240	CO TO 77 23360	
CYM[N=(CDND(J-K)+CDND(J-1-K))/2.	22240	IF(K.EQ.IMAX)GO TO 73 22240	
CYPUS=CYMIN GO TO 77	22240 22240	CXMIN=(COND(J+K)+COND(J+K-1))/2. 22240	
75 CXPUS={CDND{J,K}+CDND{J,K+1}}/2. CXMIN=CXPUS	22240 22240	CYMIN=(COND(J,K)+COND(J-1,K))/2. 22240 CYPUS=CYMIN 22240	
CYPUS=(CONO(J,K)+CONO(J+1,K))/2. CYMIN=(CONO(J,K)+CONO(J-1,K))/2.	22240 22240	GO TO 77 22240 72 CXPUS=(CONO(J,K)+CONO(J,K+1))/2. 22240	
GO TO 77	22240	CXMIN=CXPUS 22240	
76 CXMIN=(COND(J,K)+COND(J,K-11)/2. CXPUS=CXMIN	22240 22240	CYMIN={CDND(J-1,K}+COND(J-1,K})/2. 22240 CYPUS=CYMIN 22240	
CYPUS={COND(J,K}+COND(J+1,K})/2.	22240 22240	GO TO 77 73 CXMIN=(CONO(J,K)+COND(J,K-1))/2. 22240	
77 CONTINUE	22240	CXPUS=CXMIN 22240	
B1=-[1.+CXMIN/CXPUS+(DELTX+*2/DELTT)+(CAPT(J,K)/(TMPS(J,K)+CXPUS}) 1)		CYMIN=(COND(J,K)+COND(J-1,K)}/2. 22240 CYPUS=CYMIN 22240	
D14=-(DELTX**2/{YMID(J)*CXPUS}) IF(J.LT.JMAX)GO TO 22	22240 22241	GO TO 77 22240 75 CXPUS={COND{J,K}+CONO{J,K+1}}/2. 22240	
D15=CYPUS*{(TMPS(J-1,K)-TMPS(J,K))/YPLUS(J)) GD TO 9D	22241 22240 22241	CXMIN=CXPUS 22240 CYPUS=(COND{J,K}+COND{J+1,K}}/2. 22240	
22 D15=CYPUS+((TMPS()+1.K)-TMPS()+K1)/YPUUS()))	22240	CYM1N={CONO(J+K)+COND(J-1,K))/2. 22240	
90 D16=CYMIN+((TMPS(J,K)-TMPS(J-1,K))/YNEG(J)) 017=(DELTX+*2*CAP(J,K))/(DELTT*CXPUS)	22240	GD TO 77 76 CXMIn={COND(J,K)+CONO(J,K-1)}/2. 22240	
D1=014*(015~016)-017 IF(K.NE.1)GD TO 3		CXPUS=CXMIN 22240 CYPUS=(COND(J,K)+CDND(J+1,K)}/2. 22240	
A1=0.0 C1=1.+CXMIN/CXPUS	22240	CYMIN=(COND(J,K)+CONO(J-1,K))/2. 22240 77 CONTINUE 22240	
W(J+1)=C1/B1	22240	A1=(YPLUS(J)=CYMIN)/(CYPUS=YNEG(J)) 81=-(1.0+(YPLUS(J)=CYMIN)/(YNEG(J)=CYPUS)+(CAPT(J,K)=YMIO(J)=YPLUS	
G(J,1)=D1/81 GD TO 2D		1(J))/(DELTT+CYPUS+TMPS(J.K)))	
		Ol4=-(YMID(J)=YPLUS(J)/(OELTX==2=CYPUS)) 1F(K-LT-IMAX) GO TO 24	
		DIS=(TMPS(J,K-1)-TMPS(J,K))+CXPUS	
		GO TO 25	2:
			⊢ ⊢

24	D15={TMPS{J,K+1}-TMPS(J,K)}*CXPUS		GO TO 5
25	IF(K.GT.1) GO TO 26		1 [F(TMPS(J,K).GT.1200.)GO TO 7
	D16={TMPS(J+K)-TMPS(J+K+1)) *CXMIN		TSQ=7MPS(J,K)=TMPS(J,K)
	GO TO 27		TCU8=TMPS(J,K)+TSQ
	D16={TMPS(J,K)-TMPS{J,K-1)}*CXMIN		COND(J,K)=.12561573E+118377799E-2*TMPS(J,K)+.10902421E-5*TSQ15
	D17=(CAP(J,K)=YMID(J)=YPLUS(J))/(DELTT=CYPUS)	22241	1084869E-9*TCUB
	D1=D14*(D15-D16)-D17 IF(J.NE.2)GO TO 3	22241	GO TO 5 7 COND(J,K)=0.36
	C1=1.0		5 CONTINUE
	W(2,K)=C1/B1		RETURN 22242
	G(2,K)=(D1-A1+TMPS(1,K))/B1		END 22242
	GO TO 20		SUBROUTINE COND5
3	IF(J.NE.JMAX)GO TO 10	22241	DIMENSION TMPS(21,51), TEMP(21,51), W(21,51), G(21,51), Y(21), V(51), YP 22241
	A1=A1+C1		1LUS(21),YNEG(21),YMID(21),TTMPS(21,51),AREA(21),H(21),HA(21),VTMP(22241
	C1=D.O		221,51),CAPT(21,51),CAP(21,51),CDND(21,51),IS(10),SLTMP(1D),OIST(8,
ĬΟ	DENOM=81-A1-W(J-I,K)		351),TEEP(21,51),CAPY(21,51),CAPPY(21,51) THERMAB3
	IF(DENOM.NE.O.)GD TO 18		COMMON TMPS, TEMP, W, G, Y, V, YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH 22241
E0	WRITE(6,50) FORMAT(18H ZERO DENOMINATOR.)	22241	<pre>la,deltx,denom,delty,ttmps,cap,capt,time,lmax,sltmp,dist,teep,capy, 2cappy</pre>
20	GO TO 800	22241	00 5 K=1, IMAX 22242
18	W(J,K)=C1/OENDM-	22241	IF(TMPS(1,K).GE.200.)GO TO 1
	G(J,K)=(D1-A1-G(J-1,K))/DENOM	22241	COND(1,K1=0.9
20	CONTINUE		GO TO 5
	TTMPS(JMAX,K)=G(JMAX,K)		1 IF(TMPS(1,K),GT.1200.)G0 TD 7
	NAAX=JMAX-2		TSQ=TMPS(1,K)+TMPS(1,K)
	DO 3D [=1,NMAX		TCUB=TMPS(1,K)+TSQ
	II=JMAX-I		COND(1,K)=_12561573E+118377799E-2*THPS(1,K)+.10902421E-5*TSQ15
	TTMPS(,K)=G(,K)-W(,K)*TTMPS(+1,K)		1084869E-9*TCUB
	CONTINUE DO 95 J=2,JMAX		GO TO 5 7 COND(1,K)=0.36
	00 95 K=1,IMAX		5 CONTINUE
	TMPS(J+K)=TTMPS(J+K)		RETURN 22242
95	CONTINUE		END 22242
	CALL CAPAC		SURROUTINE CAPCI
	CALL COND4		DIMENSION TMPS(21,51), TEMP(21,51), W(21,51), G(21,51), Y(21), V(51), YP 22241
800	RETURN		<pre>1Lus(21), YNEG(21), YMID(21), TTMPS(21,51), AREA(21), H(21), HA(21), YTMP(22241</pre>
	END		221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8,
	SUBROUTINE CAPAC		351),TEEP(21,51),CAPY(21,51),CAPPY(21,51) THERMAB3
	OIMENSION TMPS(21,51),TEMP(21,51),W(21,51),G(21,51),Y(21),V(51),YP LLUS(21),YNEG(21),YMID(21),TTMPS(21,51),AREA(21),H(21),HA(21),VTMP(22241 22241	COMMON TMPS, TEMP, N.G., Y. V. YPLUS, YNEG, YMIO, JMAX, IMAX, COND, DELTT, ALPH 22241
	221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8,	22241	<pre>la,deltx,denom,delty,timps,cap,capt,time,lmax,slimp,dist,teep,capy, 2cappy</pre>
		IERMAB3	DO 232 K=1,IMAX
	COMMON THPS, TEMP, W, G, Y, V, YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH	22241	IF(TMPS(1,K),GT.450.)GO TO 233
	LA,DELTX,DENOM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,		CAPT(1,K)=(23.5+.307*(TMPS(1,K)-100.))+134.0
- 2	2CAPPY		GO TO 232
	DO 232 J=1,JMAX		233 IF(TMPS(1,K).GT.900.)G0 T0 234
_	DD 232 K=1,IMAX		CAPT(1,K)=(130.0+.344+(TMPS(1,K)-450.))+134.0
9	IF(TMPS(J,K).GT.450.)GO TO 233 CAPT(J,K)=(23.5+.307=(TMPS(J,K)-100.))=134.0		GO TO 232 234 IF(TMPS(1,K).GT.1100.)GO TO 235
	GO TO 232		CAPT(1,K)=134.0*(285.D+.485*(TMPS(1,K)-900.))
244	IF(TMPS(J.K).GT.900.)G0 T0 234		60 10 232
	CAPT(J,K)=(130.0+.344*(TMPS(J,K)-450.))*134.0		235 IF(TMPS(1,K).GT.1600.)GG TG 236
	GO TO 232		CAPT(1,K)=134.0*(382.0+.6500*(TMPS(1,K)-1100.))
234	IF(TMPS(J,K).GT.1100.)GC TO 235		GD TD 232
	CAPT(J ₊ K)=134.0*(285.0+.485*(TMPS(J ₊ K)-900.))		236 CAPT(1,K)=134.D+(694.0+.268+(TMPS(1,K)-16D0.))
	GO TO 232		232 CONTINUE
235	IF(TMPS(J,K).GT.1600.)GC TO 236		RETURN
	CAPT(J,K)=134.0*(382.0+.650D*(TMPS(J,K)-1100.)) GO TO 232		END Subroutine cond?
236	CAPT(J,K)=134.0*(694.0+.268*(TMPS(J,K)~1600.))		DIMENSION THPS(21,51),TEMP(21,51),W(21,51),G(21,51),Y(21),Y(51),YP 22241
	CONTINUE		1LUS(21), YNEG(21), YMIO(21), TTMPS(21,51), AREA(21), H(21), HA(21), YTMP(22241
	RETURN		221.51),CAPT(21,51),CAP(21,51),COND(21,51),[S(10),SLTMP(10),DIST(8,
	END .		351),TEEP(21,51),CAPY(21,51),CAPPY(21,51) THERMAB3
	SUBROUTINE COND4		COMMON TMPS,TEMP,W.G.Y.V.YPLUS,YNEG,YMIO,JMAX,IMAX,COND;DELTT,ALPH 122241
	DIMENSION TMPS(21,51),TEMP(21,51),W(21,51),G(21,51),Y(21),V(51),YP	22241	IA, DELTX, DENDM, DELTY, TTMPS, CAP, CAPT, TIME, LMAX, SLTMP, DIST, TEEP, CAPY,
	LUS(21), YNEG(21), YMID(21), TTMPS(21,51), AREA(21), H(21), HA(21), YTMP(22241	2CAPPY
	221,51},CAPT(21,51},CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8, 351),TEEP(21,51),CAPY(21,51),CAPPY(21,51) TH	IERMAB3	DO 1 K=1, IMAX
	COMMON TMPS,TEMP,W.G.Y.V.YPLUS,YNEG,YMCO,JMAX,IMAX,COND,DELTT,ALPH	22241	00 20 J=1,JMAX IF(TMPS(J+K)-LT-600-)GO TO 9 THERMAB3
	IA, DELTX, DENOM, DELTY, TTMPS, CAP, CAPT, TIME, LMAX, SLTMP, DIST, TEEP, CAPY,	71	IF(TEEP(J+K).LT.TEMP(J,K))GO TO 9
	2CAPPY		CAPT(J+K)=CAPY(J+K) THERMAB3
	DO 5 J=1,JMAX	22242	CAP(J,K)=CAPPY(J,K) THERMAB3
	DO 5 K=1,IMAX	22242	9 IF(J_EQ.1)GO TO 78
9	IF(TMPS(J.K).GE.200.)GD TO 1		61 IF(J.EQ.JMAX)GO TO 7D
	COND(J,K)=0.9		

	IF(K.EQ.1)GC TO 79 IF(K.EQ.1MAX)GC TO 80		10 DENOM=81-A1*W(J-1,K)		
	CXPUS=(COND(J,K)+COND(J,K+1)}/2.	22240	IF(DENOM.NE.O.)GO TO 18 WRITE(6.50)		
	CXMIN=(COND(J.K)+CDND(J.K-11)/2.	22240	50 FORMAT(18H ZERO DENOMINATOR.).	22241	
	CYPUS=[COND[J,K]+COND[J+1,K]]/2. CYMIN=[COND[J,K]+COND[J-1,K]]/2.	22240 22240	GO TO BOD 18 W(J,K)=C1/DENDM	22241	
	GO TO 77	22240	G(J,K)=(D1-A1*G(J-1,K))/DENOM	22241	
	79 CXPUS=(CDND(J,K)+COND(J,K+1))/2. CXMIN=CXPUS	22240	20 CONTINUE TTMPS(JMAX,K)=G(JMAX,K)		
	CYPUS=(COND(J+K)+COND(J+1,K))/2.	22240	1-XAML=XAMN		
	CYMIN={COND(J,K)+COND(J-1,K)}/2. GO TO 77	22240	DO 30 I=1,NMAX II=JMAX-I		
	80 CXMIN=(COND(J.K)+COND(J.K-1))/2.		TI=SMAX-1 TIMPS(II,K)=G(II,K)-W(II,K)+TIMPS(II+1,K)		
	CXPUS=CXMIN CYPUS=(CONO(J+K)+COND(J+1,K))/Z.	22240	1 CONTINUE		
•	CYMIN=(COND(J,K)+COND(J-1,K))/2.		00 95 J±1,JMAX 00 95 K±1,IMAX		
	GO TO 77 78 IF(K-EQ-1)GO TO 75	22240	TMPS(J,K)=TIMPS(J,K)		•
	IF(K.EQ.IMAX)GO TO 76		95 CONTINUE CALL CAPAC		
	CXPUS={CDND{J,k}+CDND{J,k+1}}/2. CXMIN={COND{J,k}+CDND{J,k-1}}/2.		CALL COND4		
	CYPUS={COND(J,K}+CCND(J+1,K))/2.		CALL CAPSK 800 RETURN	THERMAB3	
	CYMIN=CYPUS GD TO 77		END		
	70 IF(K.ED.1)GC TO 72	22240	SUBROUTINE COND6 DIMENSION TMPS(21,51),TEMP(21,51),H(21,51),G(21,51),Y(21),Y(51	.YP 22241	
	IF(K.EQ.IMAX)GD TO 73		<pre>1LUS(21),YNEG(21),YMID(21),TTMPS(21,51),AREA(21),H(21),HA(21),V 221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIS</pre>	MP(22241	
	CXPUS={COND{J,K}+COND{J,K+1}}/2. CXM[N={COND{J,K}+COND{J,K-1}}/2.		221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIS 351),TEEP(21,51),CAPY(21,51),CAPPY(21,51)	THERMAB3	
	CYMIN=(COND(J.K)+COND(J-1.K))/2.		COMMON TMPS, TEMP, W, G, Y, V, YPLUS, YNEG, YMIO, JMAX, IMAX, COND, DELTT, A	LPH 22241	
	CYPUS=CYMIN GO TO 77	22 24 0 2 224 0	<pre>1A,DELTX,DENOM,OELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,C/ 2CAPPY</pre>	PY,	
	72 CXPUS=(COND(J,K)+COND(J,K+1))/2.		DO 1 J=1,JMAX	22242	
	CXMIN=CXPUS CYMIN={COND{J,K}+COND{J-1,K}}/2.	22240	00 20 K=1,1MAX 1F{TMPS{J,K}.LT.600.}GO TO 9	22241 THERMAB3	-
	CYPUS=CYMIN	22240	IF(TEEP(J,K).LT.TEMP(J,K))GD TO 9		
4	GO TO 77 73 CXMIN=(COND(J,K)+CONO(J,K-1))/2.		CAPT(J,K)=CAPY(J,K) CAP(J,K)=CAPPY(J,K)	THERMAB3 Thermab3	-
	CXPUS=CXMIN	22240	9 IF(J.EQ.1)GO TO 78	22242	
	CYMIN=(COND(J,K)+COND(J-1,K))/2. CYPUS=CYMIN	22240	9 IF(J.EQ.1)GQ TO 78 51 IF(J.EQ.JMAX)GO TO 70 IF(X.EQ.1)GO TO 79	22242	
	GO TO 77	22240	IF(K-EQ-IMAX)GO TO BO	22242 22242	
	75 CXPUS={CONO(J,K)+COND(J,K+1)}/2. CXMIN=CXPUS		CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240	
	CYPUS={CONO{J,K}+CONO{J+1,K}}/2.		CXMIN=(CONO(J,K)+COND(J,K-1))/2. CYPUS=(COND(J,K)+COND(J+1,K))/2.	22240 22240	
	CYMIN=CYPUS GD TO 77		<pre>EYMIN={CONO{J,K}+CONO{J-1,K}}/2.</pre>	22240	
	76 CXMIN={CONO(J,K)+COND(J,K-1})/2.		GO TO 77 79 CXPUS=(COND(J,K)+CONO(J,K+1})/Z.	22240 22241	
	CXPUS=CXMIN CYPUS=(COND(J+K)+COND(J+1,K))/2.		CXMIN=CXPUS	22241	
	CYMIN=CYPUS		CYPUS=(COND(J,K)+COND(J+1,K))/2. CYMIN=(COND(J,K)+COND(J-1,K))/2.	22241 22241	
	77 CONTINUE	22240	GO TO 77	*****	
	Al={YPLUS(J) =CYMIN}/(CYPUS=YNEG(J)) Cl=1.	22240	80 CXMIN={COND(J,K)+COND(J,K-1})/2. CXPUS=CXMIN		
	B1=-(1.0+(YPLUS(J)*CYMIN)/(YNEG(J)*CYPUS)+(CAPT(J,K)*YMID(J)*YPLUS 1(J))/(DELTT*CYPUS*TMPS(J,K))		CYPUS=(COND(J,K)+COND(J+1,K)}/2.		
	D14=-{YMID(J)*YPLUS(J)/(OELTX**2*CYPUS)}		CYMIN=(CONO(J,K)+COND(J-1,K))/2. GO TO 77	22240	
	IF(K.LT.IMAX) GO TO 24		78 IF(K.EQ.1)GO TO 75	22240	
	D15=(TMPS(J,K-1)-TMPS(J,K))		<pre>IF(K.EQ.IMAX)GO TO 76 CXPUS=(CONO(J,K)+COND(J,K+1))/2.</pre>		
	24 D15=(TMPS(J,K+1)-TMPS(J,K)) +CXPUS		CXMIN=(COND(J.K)+COND(J.K+1)}/2.		
	25 IF(K _G GT _* 1) GO TO 26 D16=(TMPS(J _* K)-TMPS(J _* K+1))*CXMIN		CYPUS=(COND(J,K)+COND(J+1,K))/2. CYMIN=CYPUS		
	GO TO 27		GO 10 77	22240	
	26 D16=(TMPS(J,K)-TMPS(J,K-1))*CXMIN 27 D17=(CAP(J,K)*YMID(J)*YPLUS(J))/(DELTT*CYPUS)		70 IF(K.EQ.1)GO TO 72 IF(K.EQ.IMAX)GO TO 73		
	D1=D14+(015-016)-017	22241	CXPUS=(COND(J,K)+COND(J,K+1))/2.		
	IF(J.NE.1)GO TO 3 C1=C1+A1		CXMIN=(COND(J,K)+COND(J,K-1))/2. CYMIN=(COND(J,K)+COND(J-1,K))/2.		
	A1=0.0		CYPUS=CYM1N		
	W(1,K)=C1/B1 G(1,K)=O1/B1		GO TO 77 72 CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240	
	GO TO 20		CXMIN=CXPUS	22240	
	3 IF(J.NE.JMAX)GO TO 10 A1=A1+C1	22241	CYMIN={COND{J,K}+COND{J-1,K}}/Z. CYPUS=CYMIN	22240	
	C1=0.0			26270	
				÷	
		•			2
					13

	GO TO 77	22240
73	CXMIN=(COND(J,K)+COND(J,K-1))/2. CXPUS=CXMIN	22240
	CYMIN={CDND(J,K)+CDND(J+1,K))/2.	
	CYPUS=CYMIN GD TD 77	
75	CXPUS=(CDND(J,K)+COND(J,K+1))/2.	
	CXMIN=CXPUS CYPUS=(COND(J+K)+COND(J+1,K))/2.	
	CYMIN=CYPUS	
7/	GD TO 77	
76	CXMIN=(COND(J,K)+COND(J,K-1))/2. CXPUS=CXMIN.	
	CYPUS={COND(J,K)+COND(J+1,K)}/2.	
77	CYMIN≃CYPUS Continue	22240
	Bl=-(1.+CXMIN/CXPUS+(DELTX=*2/DELTT)=(CAPT(J.K)/(TMPS(J.K)=CXPUS))	
	1) D14=-{DELTX**2/{YM{D{J}*CXPUS}}}	22240
	IF(J.LT.JMAX)GO TO 22	22241
	D15=CYPUS=({TMPS(J-1,K}-TMPS(J,K}}/YPLUS(J)) GO TO 25	22240
22	D15=CYPUS=((TMPS(J+1,K)+TMPS(J,K))/YPLUS(J))	22240
	TF(J.GT.1) GD TO 90	
	D16=(THPS(J,K)-THPS(J+1,K))*CYMIN/YNEG(J) GD TO 23	
	D16=CYMIN*((TMPS(J,K)-TMPS(J-1,K))/YNEG(J)}	2224D
23	D17={DELTX**2*CAP{J,k}}}/{DELTT*CXPUS} D1=D14*{D15-D16}-D17	
	IF(K.NE.1)GO TO 3	
	A1=0.0 C1=1.+CXMIN/CXPUS	22240
	W(J,1)=C1/B1	22240
	G(J,1)=D1/81 GD TD 20	
	IF(K.NE.IMAX)GD TO 5	22241
	C1=0.0	
	A1=1.+CXMIN/CXPUS GO TO 10	2224D
5	A1=CXMIN/CXPUS	22 24 D
10	C1=1.0 OENDM=B1-A1:W{J,K-1}	22241
•	IF(DENOM.NE.O.)GO TO 18	22241
50	WRITE(6,50) FORMAT(18H ZERO DENOMINATOR.)	22241
	GO TO 800	22271
, 18	W(J,K)=C1/DENOM	22241
20	G(J,K)=(D1-A1*G(J,K-1))/DENOM CONTINUE	22241
	TTMPS(J,IMAX)=G(J,IMAX)	
	00 30 [=2, MAX I= MAX+1-	
	TTMPS(J, II) =G(J, II) -W(J, II) +TTMPS(J, II+1)	
1	CONTINUE 00 95 J=1,JMAX	
	OΠ 95 K=1+IMAX	
95	TMPS(J,K)=TTMPS(J,K) CONTINUE	
7.	CALL CAPAC	
	CALL CONO4 CALL CAPSK	HERMAB3
800	RETURN	neknad3
	END SUPERIOR CONTR	
	SUBROUTINE CONTR DIMENSION TMPS(21,51),TEMP(21,51),W(21,51),G(21,51),Y(21),V(51),YP	22241
	1LUS(21), YNEG(21), YMIO(21), TTMPS(21,51), AREA(21), H(21), HA(21), YTMP(22241
	221,51),CAPT(21,51),CAP(21,51),CONO(21,51),IS(1D),SLTMP(10),DIST(8, 351),TEEP(21,51),CAPY(21,51),CAPPY(21,51)	HERMAB3
	COMMON TMPS, TEMP, W, G, Y, V, YPLUS, YNEG, YMIO, JMAX, IMAX, CONO, DELTT, ALPH	22241
	la, Deltx, Denom, Delty, TTMPS, CAP, CAPT, TIME, LMAX, SLTMP, DIST, TEEP, CAPY, 2CAPPY	
	00 263 I=1,LMAX	
	00 260 K=1+1MAX	
	00 261 J=I,JMAX	

	IF(TEMP(J.K).LT.SLTMP(1))GO TO 262	
261	CONTINUE	
	IF(J.EQ.1)GO TO 260	
	DIST(I,K) *Y(J-1)+((TEMP(J-1,K)-SLTMP(I))/(TEMP(J-1,K)-TÉMP(J,K)))*	
1	[{Y(J}-Y(J-1)]	
	CONTINUE	
263	CONTINUE	
- 7-	WRITE(6,264)(SLTMP(1),1=1,LMAX)	
264	FORMAT(1H1,6X,*DISTANCE*,7X,*ISOTHERM ISOTHERM ISOTHERM ISOTHER	THERMAR
	LM ISOTHERM ISOTHERM ISOTHERM ISOTHERM*/8x,*DOWN*,9x,*DEGREES F	
	DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGRE	THERMAS
	BEES F'/7X, FRACTURE', 4X, 8F1D.1/9X, FEET'/20X, FEET INTO FEET INTO	THERMAN
	FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO 122x.	THERMAR
	SWALL',6x,'WALL',6x,'WALL',6x,'WALL',6x,'WALL',6x,'WALL',6x,'WALL',	
		THERMAR
		THERMAB
		THERMAB
		THERMAR
266		THERMAD
	FORMAT(7X, F6.0, 4X, 8F10.2)	· · · · ·
	WRITE(6,264)(SLTMP(I),I=1,LMAX)	
		THERMAB
		THERMAN
		THERMAB
265		THERMAB
	RETURN	····EKIIAO
	FNO	
		THERMAB:
	DIMENSION TMPS(21,51), TEMP(21,51), W(21,51), G(21,51), Y(21), V(51), YP	
	LUS(21), YNEG(21), YMIO(21), TTMPS(21,51), AREA(21), H(21), HA(21), VTMP(
	221,51),CAPT(21,51),CAP(21,51),COND(21,51),IS(10),SLTMP(10),DIST(8.	
		THERMAD
	COMMON THPS. TEMP. W.G.Y.V.YPLUS. YNEG. YHID. JMAX. IMAX. COND. DELTT. ALPH	
1	LA.DELTX.DENOM.OELTY.TTMPS.CAP.CAPT.TIME.LMAX.SLTMP.DIST.TEEP.CAPY.	
	CAPPY	
		THERMAS
		THERMAD
		THERMAB
		THERMAD
		THERMAS
2 3 3		THERMAS
		THERMAB
		THERMAD
234		THERMAD
		THERMAB
		THERMAS:
236		THERMAD
232		
232		THERMAB3 Thermab3

THERMAB4

Subroutine CALCY Subroutine CONV Subroutine CONV2 (Variable grid spacing)

Subroutine COND8

		· · · · · · · · · · · · · · · · · · ·
C THERMAB4+A.L. BARNES		1,TIMX,IMAX,JMAX,FTSYT
DIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP		9 FORMAT(HIA,5%, INPUT DATA FOR THERMAB6 RUN NUMBER*,2%,15//5%,F10.1
1LUS(25), YNEG(25), YMID(25), TTMPS(25, S1), AREA(25), H(25), HA(25), VTMP(1,2X,*=INJECTION TEMPERATURE, DEGREES FAHRENHEIT*/5X,FIO.1,2X,*=RES
225,51),CAPT(25,51),CAP(25,51),CAP(25,51),1S(10),SLTMP(10),DIST(8, 351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)		ZERVOIR TEMPERATURE, DEGREES FAMRENHEIT /5x, F10.4, 2x, *=TULERANCE(PE
COMMON TMPS, TEMP, W.G.Y. V. YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, &LPH		3R CENT*/10X,15,2X,*=OPTION TO INCREASE TIME STEP LENGTH DURING RUN 4*/20X,*(1) INDICATES TIME STEP LENGTH REMAINED CONSTANT DURING RUN
<pre>ia,deltx,denom,delty,ttmps,cap,capt,time,umax,sltmp,dist,teep,capy,</pre>		51/20X+1(2) INDICATES TIME STEP LENGTH WAS INCREASED DURING RUN-/5X
2CAPPY C TEMP=PERMANENT TEMPERATURE ARRAY	22241	6,FIO.4,2X,"=MASS X VELOCITY X DENSITY(ALL OF GAS)
C VTMP=TEMPORARY TEMPERATURE ARRAY	22241	7/5X,FIO.1,2X,*=DISTANCE BETWEEN POINTS ALONG THE FRACTURE, FEET*//
C TMPS=TEMPORARY TEMPERATURE ARRAY	22241	85%, THE DISTANCE INTO THE WALL, FEET, IS GIVEN BELOW://3%,25F5.1// 95%, THE CONSTANTS IN THE EQUATION WHICH GENERATES VELOCITY ARE:/10
	HERMAB6	1X+F10.3+2X+*=AA*/10X+F10.3+2X+*=BB*/10X+F10.3+2X+*=CC*//5X+F10.1.2
C KNTSP IS THE SWITCH TO PRINT INFORMATION AT THE TIME HEAT IS SHUT I	HERMAR6 HERMAR6	ZX, "=MAXIMUM TIME, HOURS"/10X, I5, 2X, "=1MAX"/10X, I5, 2X, "=JMAX"/5X, F1
	HERMAR6	30.1,2x,'LENGTH OF SYSTEM, FEET') TENTH=0.0
	HERMAB6	10 FORMAT(215,F5-1,F5-2,F10-1,F10-1,6F5-1,F10-4/1015/8F10-1/215,F10-1
C TIMHT=CUMULATIVE TIME OF HEAT INJECTION T 100 READ(5,10)IMAX, JMAX, DELTT, TOL, TIMX, ALPHA, DELTX, DELTY, AA, RB, TT, TTT,	HERMAB6 22241	1)
<pre>100 RFAD(S)(0)(FMAX, 0)(E)(1)(FMAX, 0)(E)(FMAX, 0)(E)(E)(FMAX, 0)(E)(E)(E)(E)(E)(E)(E)(E)(E)(E)(E</pre>	22241	IF(KSTRT.EQ.1)GO TO 81 READ(5,203)TIME,HTIN,HTCUT
2,KR,TTTT		C TIME=TIME, HOURS, ALREADY COMPLETED WHEN RUN RESTARTED
C IMAX=NUMBER OF COLUMNS (K) C JMAX=NUMBER OF RUMS (J)		C HTIN=BTU OF HEAT INJECTED WHEN RUN RESTARTED
C JMAX=NUMBER OF RUHS (J): C DELTT=TIME STEP LENGTH;HOURS		C HTOUT=BTU OF HEAT PRODUCED WHEN RUN RESTARTED 203 FORMAT(F10.0,2E18.8)
C TOL=TOLERANCE		ATMP=TIME
C TIMX=MAXIMUM TIME, HOURS		DO 74 K=1,1MAX
C ALPHA=SPECIFIC HEAT X VELOCITY X DENSITY(ALL OF GAS) C DELTX=DISTANCE BETWEEN POINTS ALONG THE FRACTURE		74 READ(5,73)(TMPS(J,K),J=1,JMAX) 73 FORMAT(16F5-0/9F5-0)
C DELTY=DISTANCE BETWEEN POINTS INTO THE WALL(FIRST 3 POINTS ONLY)		GC TO 204
C AA=CONSTANT IN FOUATION WHICH GENERATES VELOCITY		81 DO 75 K=1,IMAX
C BB=CUNSTANT IN EQUATION WHICH GENERATES VELOCITY C TT=INJECTION TEMPERATURE, DEGREES FAHRENHEIT		DD 75 J=1,JMAX 75 TMPS(J,K)=TTT
C TITERESERVOIR FEMPERATURE, DEGREES FAHRENHEIT		19 105 13, N1=111 204 DD 205 K=1, IMAX
C CC=CONSTANT IN EQUATION WHICH GENERATES VELOCITY		DO 205 J=1.JMAX
C KSKIP=OPTION TO INCREASE TIME STEP LENGTH DURING RUN C NRUN=RUN NUMBER		TEMP(J,K)=TMPS(J,K) TEEP(J,K)=TMPS(J,K) THERMARR
C KSLCE=OPTION TO CALCULATE TUTAL HEAT CONTENT AND PRINT TEMPERATURE		TEEP(J;K)=TMPS(J;K) 205 YTMP(J;K)=TMPS(J;K)
C ANO TOTAL HEAT CONTENT		TMPS(1,1)=TT
C ISSN@MAXIMUM NUMBER OF DESIRED SLICES FOR CROSS SECTION STUDY C ISSME VALUES OF DESIRED SLICES FOR CROSS SECTION STUDY		TEMP(1,1)=TT 22241
C LMAX=NUMBER OF ISOTHERMS DESIRED		VTMP(1,1)=TT 22241 TEMP(JMAX,IMAX)=TTTT 22241
C SLTMP(I)=TEMPERATURE OF DESIRED ISOTHERM		TMPS(JMAX, IMAX) = ITIT
C KSTRT=SWITCH THAT ALLOWS STARTING RUN WITH CONSTANT OR VARIABLE C FIELD TEMPERATURES		VIMP(JMAX,IMAX)=TITT 22241
C FIELD TEMPERATURES C KR=OPTION TO SET INJECTION TEMPERATURE TO TITT OR TEMP(1, IMAX)		IF(KR.EQ.1)GC FO 181 22241 S=0.0
C TITT=INJECTION TEMPERATURE AT JMAX,IMAX		Z2241 TEMP(JMAX, IMAX) = IEMP(1, IMAX) 22241
READ(5,20)(Y(I),I=1,JMAX)		TMPS(JMAX, I MAX) = TMPS(1, I MAX)
20 FORMAT(16F5.0/9F5.0) C Y=DISTANCE INTO THE WALL, FEET		VINP(JMAX)=VIMP(1,1MAX) 191 CALL CALCY 22241
KHT=1	HERMAB6	C CALCY IS A SURROUTINE THAT CALCULATES VARIABLE Y SPACING VALUES
	HERMAB6	CALL CAPAC
	HERMAR6	C CAPAC IS A SUBROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT C VALUES.
PPP=0.0	TIERMANO	CALL CAPSK
PP=0.		C CAPSK IS A SUBROUTINE THAT CALCULATES HEAT CAPACITY VALUES
TIME≃O.O SMAX=IMAX	22241	CALL COND4
FTSYT=(SMAX-1.)+OELTX		COND4 IS A SUBROUTINE THAT CALCULATES CUNDUCTANCES 00 232 J=1, JMAX
ATMP=0.0		00 232 K=1,IMAX
0D=1.0 K₩H0=1		CAPPY(J,K)≈CAPY(J,K) 232 CAP(J,K)=CAPT{J,K)
CM=25000.		FIMAX=IMAX
11T=0		HTURG=Y(JMAX)+9ELTX+FIMAX+3149_+{CAP(1_11=3149_1=0ELTY=_50
KIT=0 HTOUT≖0.		THUNG=INITIAL HEAT CONTENT OF ROCK AT 100 DEGREES FAHRENHEIT
HTIN=0.		82 GO TO(995,994),KSKIP 994 IF(ATMP.NE.TIME) GC TO 995
DO 21 K=1,IMAX	22241	ATMP=ATMP+1.
FK=K X=DELTX=FK	22241	1F(TIME.GT.5.0)GO TO 318 DELTT=1.
	22241 HERMAB3	GD TO 995
21 CONTINUE	22241	318 IF(OELTT-GE-15.0) GO TO 993
00 76 [=1,LMAX		UU=DD-5,0
DD 76 K=1,IMAX 76 DIST(T,K)=0.0		TME=5.0+((1.2)++UU) DELTT=TME-TIME
WRITE(6,9)NRUN, TT, TTT, TCL, KSKIP, ALPHA, DELTX, (Y(I), I=1,25), AA, BB, CC		IF(OELTT-LT-15.)GO TO 995
		DELTY=15.

	993	IF(TIME.GT.1000.)GG TO 996 DELTI=15.0 GO TO 995	
	996	IF(TIME.GT.3000.)G0 TO 997 DELTT=30.0	
	997	GO TO 995 IF(IME_GT.10000.)GO TO 998	
	000	0ELTT=50.0 GO TO 995 DELTT=100.	
c	•	KWHO IS THE SWITCH TO DETERMINE DIRECTION OF ADIP SWEEP(HORIZONTAL OR VERTICAL)	
		GO TO(991,53),KWHO GO TO(142,140),KHT	THERMAB6
		GD TD(158,141),KHTSP	THERMAB6
_	141	KWTSP=1	
c		TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST STOPPED WRITE(6,33)	
		DO 46 K=1,42	THERMAB6
	46	WRITE(6,37)K,(TEMP(J,K),J=1,17) WRITE(6,250)	THERMAR6
	250	FORMAT(1H1,2x,'J= 18',5x,'19',5x,'20',5x,'21',5x,'22',5x,'23',5	
		LX,*24*,5X,*25*1	
	251	00 251 K=1,42 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX)	THERMAR6
		FORMAT(14,8F7.1)	THE RES
		WRITE(6,33)	THERMAR6
	44	00 44 K=43,IMAX HRIFE(6,37)K,(TEMP(J,K),J=1,17)	THERMAB6
	77	WRITE(6,250)	THERMAB6
		DO 253 K=43.IMAX	THERMAB6
	253	WRITE(6,252)K, (TEMP(J,K), J=18, JMAX) WRITE(6,30)TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL	THERMAR6
		WRITE(6,150)TIMHT	THERMAB6
		FORMAT(1H-,2X,*HEAT INJECTION STOPS, PRODUCING WELL TEMPERATURE	THERMAB6
		LEXCEEDS 800 DEGREES F.*/2x.*CUMULATIVE TIME OF HEAT INJECTION EQUA	THERMAB6
	•	PLS',2X,F10,1) CALL CONTR	THEKHADO
C		CONTR IS A SUBROUTINE THAT CALCULATES THE POSITION OF SELECTED	
С	158	ISOTHERMS CALL COND6	
С	1,00	COND6 IS A SUBROUTINE FOR THE HORIZONTAL ADIP SOLUTION WITH	
С		ADIABATIC BOUNDARY CONDITIONS	
	142	GO TO 45 GO TO(143,159),KHTST	THERMAB6
		KHTST=1	THERMAR6
C		TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST	
٠		HRITE(6,33)	
		DD 32 K=1,42	
	32	WRITE(6,37)K,(TEMP(J,K),J=1,17) WRITE(6,250)	
		DO 275 K=1,42	
	275	WRITE(6,252)K, (TEMP(J,K), J=18, JMAX)	
		WRITE(6,33) DO 36 K=43,IMAX	
	36	WR1 TE(6,37) K, (TEMP(J,K), J=1,17)	
		WRITE(6,250) DO 276 K=43,IMAX	
	276	WRITE(6,252)K, (TEMP(J,K), J=18, JMAX)	
		HRITE(6,30) FIME, ERR, HEAT, HTUUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL	THERMAB6
		WRITE(6,255) CALL CONTR	
		GO TO 143	
		GO TO(146,145), KHT	THERMAB6
		GO TU(170,261),KNTSP KNTSP=1	
		WRITE(6,33)	
		DO 31 K=1,42	
	51	WRITE(6,37)K,(TEMP(J,K),J=1,17) WRITE(6,250)	
		DO 271 K=1,42	
	271	WRITE(6,252)K, (TEMP(J,K),J=18,JMAX)	

	DELTT=15.0 GO TO 995 996 IFITIME.GT.3000.1GO TO 997		DO 34 K=43,[MAX 34 WRITE(6,37)K,(TEMP(J,K),J=1,17)	
			WRITE(6,250)	
	DELTT=30.0		DO 272 K=43, IMAX	
	GO TO 995		272 WRITE(6,252)K, (TEMP(J,K),J=18,JMAX)	
	997 IF(TIME.GT.10000.)G0 TO 998		WRITE(6,30) TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT, ERI, ER2, TOL	THERMAB6
	0ELTT=50.0		WRITE(6,150)TIMHT	THERMAB6
	GO TO 995		CALL CONTR	
	998 DELTT=100.		170 CALL CONO7	
	KWHO IS THE SWITCH TO DETERMINE DIRECTION OF ADIP SWEEP(HORIZONTAL		C COND? IS A SUBROUTINE FOR THE VERTICAL ADIP SOLUTION WITH	
	C OR VERTICAL)		C ADIABATIC BOUNDARY CONDITIONS	
	995 GO TO(991,53),KWHO		GD TO 171	
	991 GD TD(142,140),KHT	THERMAB6	146 GO TO(43,157),KWTST	
	140 GD TD(158,141),KHTSP	THERMAB6	157 KWTST=1	THERMAR6
	141 KWTSP=1		WRITE(6,33)	
	TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST		00 38 K=1,42 38 WRITE(6,37)K,(TEMP(J,K),J=1,17)	
	C STOPPED		WRITE(6,250)	
	WRITE(6,33)	THERMAB6	00 278 K=1,42.	
	DO 46 K=1,42 46 WRITE(6,37)K,(TEMP(J,K),J=1,17)	THERMAB6	278 WRITE(6,252)K, (TEMP(J,K), J=18, JMAX)	
	WRITE(6,250)	THERMAR6	WRITE(6,33)	
	250 FORMAT(1H1,2x,*J= 18*,5x,*19*,5x,*20*,5x,*21*,5x,*22*,5x,*23*,		00 39 K=43,1MAX	
	1x,+24,5x,+25+1	•	39 WRITE(6,37)K,(TEMP(J,K),J=1,17)	
	00 251 K=1,42	THERMAS 6	WRITE(6,250)	
	251 WRITE(6,252)K, (TEMP(J,K), J=18, JMAX)	THERMAB6	00 279 K=43,IMAX	
	252 FORMAT(14.8F7.1)		279 WRITE(6,252)K, (TEMP(J,K), J=18, JMAX)	
	WRITE(6,33)	THERMAR6	WRITE(6,30) TIME, ERR, HEAT, HTDUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL	THERMAB6
	00 44 K=43,IMAX	THERMA86	WRITE(6,255)	THERMAS6
	44 WRITE(6,37)K, (TEMP(J,K), J=1,17)	THERMAB6	'255 FORMAT(1H-,2X, "HEAT INJECTION STARTS. PRODUCING WELL TEMPERATURE	ITHERMAB6
	WRITE(6,250)	THERMAB6	15 LESS THAN 700 DEGREES F. 1	THERMAR6
	DO 253 K=43,IMAX	THERMAB6	CALL CONTR	
	253 WRITE(6,252)K,(TEMP(J,K),J=l8,JMAX)	THERMAB6	GO TO 43	THERMAB6
	WRITE(6,30) TIME, ERR, HEAT, HTOUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL		143 CALL CONV	
	WRITE(6,150)TIMHT	THERMAB6	C CONV IS A SUBROUTINE THAT SOLVES EXPLICIT CONVECTION EQUATIONS	
		THERMAB6	C ALONG THE FRACTURE	
	1EXCEEDS 800 DEGREES F.*/2X,*CUMULATIVE TIME OF HEAT INJECTION EQUA	ATHERMAB6	CALL CONV2	
	2LS',2X,F10.1)	THERMAB6	C CONV2 IS A SUBROUTINE THAT SOLVES EXPLICIT CONVECTION EQUATIONS	
	CALL CONTR		C ALONG THE J≠JMAX RCW	
	C CONTRISTA SUBROUTINE THAT CALCULATES THE POSITION OF SELECTED		CALL CONDS	
	C ISOTHERMS		C CONDS IS A SUBROUTINE THAT CALCULATES NEW CONDUCTANCE VALUES	
	158 CALL COND6		C ALDNG THE J=1 ROW	
	C COND6 IS A SUBROUTINE FOR THE HORIZONTAL ADIP SOLUTION WITH		CALL COND8	
	C ADIABATIC BOUNDARY CONDITIONS	•	C CONDU IS A SUBROUTINE THAT CALCULATES NEW CONDUCTANCE VALUES	
	GD TO 45		C ALONG THE J±JMAX RCW	
	142 GO TO(143,159), KHTST	THERMAB6	CALL CAPC1	
	159 KWTST=1	THERMAR6	C CAPCL IS A SUBROUTINE THAT CALCULATES NEW TOTAL HEAT REQUIREMENT	
	TEMPERATURES AND HEAT DATA ARE PRINTED IF HEAT INJECTION HAS JUST		C VALUES ALONG THE J=1 ROW	
	C STARTED		CALL CAPC2	
	WRITE(6,33)		C CAPCE IS A SUBROUTINE THAT CALCULATES NEW TOTAL HEAT REQUIREMENT	
	00 32 K=1,42		C VALUES ALONG THE J=JMAX ROW	
	32 WRITE(6,37)K,(TEMP(J,K),J=1,17) WRITE(6,250)		45 GU TD(144,47),KHT 144 CALL CONDI	22241
	DO 275 K=1,42			22241
	275 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX)		C CONDI IS A SUBROUTINE THAT SOLVES HORIZONTAL ADIP WITH THE CONV C SOLUTION AS A BOUNDARY CONDITION	
	WRITE(6,33)		47 IF(DENDM.EQ.D.D)GO TO 69	22241
	DD 36 K=43+IMAX		KIT=KIT+1	22241
	36 WRITE(6,37)K,(TEMP(J,K),J=1,17)		[IT=[IT+]	
	WRITE(6,250)		IF(]IT.FG.5)GD TO 296	
	DO 276 K=43,1MAX		IF(KIT.GT.10)GD TO 222	
	276 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX)		KK=1	22241
	WRITE(6,30) FIME, ERR, HEAT, HTUUT, HTIN, HTTOT, HTORG, DELTT, ER1, ER2, TOL	THERMAB6	DO 84 N=1.JPAX .	
	WRITE(6,255)		DD 84 M=1.IMAX	22241
	CALL CONTR		IF(TMPS(N,M).LT.100.10) GD TO 84	
	GO TO 143		<pre>IF(ABS((VTMP(N+M)-TMPS(N+M))/TMPS(N+M)).GT.TDL)GO TO 86</pre>	22241
	53 GO TO(146,145),KHT	THERMAB6	84 CONTINUE	22241
	145 GO TU(170,261),KHTSP		GC TO 67	22241
	261 KWTSP=1		86 DD 88 J=1,JMAX	22741
	WRITE(6,33)		DO 88 K=1, [PAX	22241
	00 31 K=1,42		88 VTMP(J,K)=TMPS(J,K)	22241
	31 WRITE(6,37)K,(TEMP(J,K),J=1,17)		KWHD=2 GO TO 82	
	WRITE(6,250) DO 271 K=1,42			
			296 DO 297 K=1,IMAX DD 297 J=1,JMAX	
•				
,	271 WRITE(6,252)K+(TEMP(J+K)+J=18+JMAX)		TMPS(J*K)=TEMP(J*K)	

297	VTMP(J,K)=TEMP(J,K)		HT1NN=HTIN+HTORG	
	IIT=0		ERR=ARS((HTINN-HTTOT)/HTTOT)	
	CM=CM+5000. TBL=FDL+.01		ER1=ABS((HTINN-HTTOT)/HTINN)	
	GO TÚ 92		183 GO TO(4,5),KSLCE C THIS ACCOUNTS FOR THE TEMPERATURE AND CULULATIVE HEAT PRINT OUT AT	THERMAB3
43	CALL CONV		C VARIOUS SELECTED POSITIONS ALONG THE FRACTURE.	•
	CALL CONV2		4 WRITE(6,26)	THERMAR3
147	CALL CONDS CALL CONDS		26 FORMATIIHI, 30x, 'INPUT DATA FOR CROSS SECTION STUDY'//9x, 'LOCATION'	(THERMAB3
	CALL CAPCI		IFEET DOWN FRACTURE)',2X,'TEMPERATURE',9X,'TIME(HOURS)',9X,'CUMULAT	THERMARS
	CALL CAPC2		JBMAX=JMAX-2	THERMABS
	GO TO(149,148),KHT CALL COND2	2224	DO 70 K=1.IMAX	THERMAB 3
c 177	COND2 IS A SUBROUTINE THAT SOLVES VERTICAL ADIP WITH THE CONV	22241	DO 70 M=1,ISSN IF(K.NE.1S(M+1)}GD TO 70	THERMAN3
¢	SOLUTION AS A BOUNDARY CONDITION		BB3=0.0	THERMAB3
	IF(DENOM.ED.0.0)GO TO 69	22241	DO 71 J=1,JBMAX,2	THERMAB3
921	KK=2 OD 64 N=1,JMAX	22241	H(J)={(J+1)-Y(J)) H(J)=(Y(J+2)-Y(J+1))/H(J)	THERMAR3 22241
	DO 64 M=1, EMAX	22241	71 BB3=BB3+((H(J)+(HA(J)+1.)/(6.*HA(J)))+((2.*HA(J)-1.)*CAP(J+2,K)+()	H 22241
	1F(TMPS(N,M).LT.100.10) GO TO 64		1A(J)+1.}**2*CAP(J+1,K}+HA(J)*(2HA(J))*CAP(J,K)1}*DELTX	
	IF(ABS((VTMP(N,M)-TMPS(N,M))/TMPS(N,M)).GT.TUL)GO TO 65 CONTINUE	22241 22241	AIS=IS(M)	
0.4	GO TO 67	22241	ALDCF=DELTX*AIS WRITE(6,25)ALDCF,TEMP(1,K),TIME,RB3	THERMAB3
65	DO 83 J=1,JMAX	22241	25 FORMAT(9x,F10.1,20x,F10.1,10x,F10.1,7x,E18.8)	THERMAB3
	00 83 K=1,IMAX	22241	70 CONTINUE	THERMAR3
83	VTMP(J,K}=TMPS(1,K) KWHO=1	22241.	5 TIME=TIME+DELTT IF(TIME+GT-3000.)GO TO 56	22241
	GO TO 82	22241	TOL=.05	
67	00 66 J=1,JMAX	22241	GO TO 55	
	OO 66 K=1,[MAX IF(TMPS(J,K).LT.100.10) GO TO 66	22241	56 IF(TIME.GT.4000.1GD TO 57	
	CAP(J,K)=CAPT(J,K)		TOL=.04 GO TO 55	
	TEEP(J,K)=TEMP(J,K)		57 IF(TIME.GT.5000.)G0 TO 58	
	CAPPY(J,K)=CAPY(J,K)		TOL=.03	
66	TEMP(J,K)=TMPS(J,K) CONTINUE		GO TO 55 58 TF(TIME.GT.CM)GO TO 59	
	GO TO(152,153),KHT	THERMAB6	TOL =-02	
152	T1MHT=TIMHT+OELTT	THERMAR6	G9. TO 55	
	HTIN=HTIN+ALPHA=TT=DELTT=2. HTOUT=HTOUT+TEMP(1,IMAX)=DELTT=ALPHA=2.		59 TOL=.01 55 ATMP=TIME	
c	THIS ACCOUNTS FOR HEAT GUT OF PRODUCER	22241	0D=D0+1.	
153	[F(TEMP(1,IMAX).LE.900.)GO TO 48		PP=PP+1.0	
	IF(KHT.EQ.2) GO TO 174 KWTSP=2	THERMAB6	IF(PP.NE.20.) GO TO 891	
174		THERMABO	WRITE(6,33)	22241
	IFITEMP(1, IMAX).GE. 800.)GO TO 49	· · · · · · · · · · · · · · · · · · ·	33 FORMAT(1H1,2X2HJ=4X2H 15X2H 25X2H 35X2H 45X2H 55X2H 65X2H 75X2H 8	5 22241
	TMPS(1,1)=TT	22243	1X2H 95X2H105X2H115X2H125X2H135X2H145X2H15)	22241
	TEMP(1,1)=TT VTMP(1,1)=TT	22241 22241	00 92 K=1,42 92 WRITE(6,37)K,(TEMP(J,K),J=1,17)	
	TEMP (JMAX, IMAX) = TTTT	22241	37 FORMAT(14,17F7.1)	
	TMPS(JMAX, IMAX) = ITTT		WRITE(6,250)	
	VTMP(JMAX,[MAX)=TTTT IF(KHT.EQ.1) GO TO 175		00 290 K=1,42 290 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX)	
		THERMAB6	WRITE(6,33)	THERMARS
175		THERMAR6	00 24 K=43,IMAX	THERMAB3
4.0	[F[KHT.EQ.2]GD TO 183		24 HRİTE(6,37)K,(TEMP(J,K),J=1,17)	
. 49	PPP=PPP+1.0 IF(PPP.LT.19.)GO TO 741		WRITE(6,250) OO 299 K=43,IMAX	
	[F{PPP.EQ.19.)GO TO 381		299 WRITE(6,252)K,(TEMP(J,K),J=18,JMAX)	
	IF(PPP.NE.20.)GD TO 741		887 WRITE(6,30)TIME, ERR, HEAT, HTUUT, HTIN, HTTOT, HTORG, OELIT, ER1, ER2, TOL,	•
3,01	PPP=0.0 JRMAX=JMAX-2	22241	1HETIN 30 FORMAT(F10-1,2x,5HHOURS/F10-5,2x,27HDISCREPANCY IN HEAT BALANCE/E)	1 22241
	IRMAX=IMAX-2	22241	18.8,2X,31HBTU OF HEAT STORED IN RESERVOIR/E18.8,2X,20HBTU OF HEAT	22241
С	THIS ACCOUNTS FOR THE HEAT STORED IN ROCK	22241	ZPRODUCEO/E18.8.2X.20HBTU UF HEAT INJECTED/E18.8.2X.5HHTTOT/E18.8.2	2 22 24 1
	XAML,1=L 0A 00 -0=MU2	22241 22241	3X,5HHTORG/F10.1,21HTIME INCREMENT, HOURS/F10.5,3X,3HER1/F10.5,3X,3	3
	DU 80 K=1*10hvx*5	22241	HERZ/F10.5.3X,9HTOLERANCE/E18.8,2X,"=INSTANTEOUS HEAT STORED") WRITE(6,223)DD,KIT	
	SUM=SUM+CAP(J,K1+4.*CAP(J,K+1)+CAP(J,K+2)		CALL CONTR	
40	AREA(J)=SUM=(DELTX/3.)	22241	891 KIT=0	
	BB2=0. DD 90 J=1,JBMAX,2	22241 22241	IIT=0 IF(TIME.GT.TIMX)GD TO 100	
	H(J)=Y(J+1)-Y(J)	22241	GD TO(86,65),KK	22241
	HA(J)=1Y(J+2)-Y(J+1))/H(J)	22241	222 WRITE(6,223)DD,KIT	
	BB2=BB2+(H{J}**(HA{J}*1.)/{6.*HA{J}}}*((2.*HA{J})-1.)*AREA(J+2)+(HA{ 1J}+1.)**2*AREA(J+1)+HA{J}*(2HA(J))*AREA(J})	22241 22241	223 FORMAT(3X,F10.0,15) 69 STOP	20015
	ER2=((BB2-HEAT-HTORG)+2.*(TEMP(1, IMAX)*DELTT*ALPHA))/(ALPHA*TT*	22471	OT SIUF	22241
	10ELTT*2.)			
	HETIN=(BB2-HEAT-HTORG)/(ALPHA*TT*DELTT*2.)			
741	HEAT=BB2-HTORG HTTUT=HTOUT+HEAT+HTORG			
	· · · · · · · · · · · · · · · · · · ·			

END	22241	CXPUS=CXMIN	22240
SUBROUTINE CALCY	22241	CYMIN={COND(J,K)+COND(J-1,K})/2.	22240
DIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP		CYPUS=CYMIN	22240
LLUS(25), YNEG(25), YMID(25), TTMP\$(25,51), AREA(25), H(25), H(25), VTMP(GO TO 77	2224D
225,511,CAPT(25,511,CAP(25,511,CODD(25,51),IS(10),SLTMP(1Q),DIST(8,		75 CXPUS=(COND(J,K)+COND(J,K+11)/2.	22240
351), TEEP(25,51), CAPY(25,51), CAPPY(25,51)		CXMIN=CXPUS	22240
COMMON TMPS,TEMP, W,G,Y,Y,YPLUS,YNEG,YMID,JMAX,IMAX,COND,DELTT,ALPH 1A,DELTX,DENGM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,		CYPUS=(COND(J,K)+CDND(J+1,K))/2.	2224D 22240
2CAPPY		CYMIN=(CUND(J,K)+CGND(J-1,K))/2. GD TO 77	22240
I-XAML=XAMN	22241	76 CXMIN=(CDND(J,K)+COND(J,K-1))/2.	72240
DO Z J=1,NMAX	22241	CXPUS=CXMIN	2224D
2 YPLUS{J}=Y{J+1}-Y{J}	22241	CYPUS=(COND(J,K)+COND(J+1,K))/2.	2224D
DO 3 J=2,JMAX	22241	CYMIN=(COND(J,K)+COND(J-1,K))/2+	2224D
3 YMEG(J}=Y(J)-Y(J-1)	Z2241	77 CONTINUE	2224D
YNEG(1)=YPLUS(1)	22241	Bl=-{l.+CxMIN/CXPUS+{DELTX++2/DELTI)+{CAPT{J,K}/(TMPS(J,K)+CXPUS}}	
YPHU\$(JMAX) = YNEG(JMAX)	22241	1)	
4 YMID(J)=0.5=(YPLUS(J)+YNEG(J)) DD 4 J=1,JMAX	22241	D14=-(DELTX-02/(YMID(J)-CXPUS))	22240
RETURN	22241 22241	22 D15=CYPUS+({TMPS(J+1+K)-TMPS(J+K)}/YPLUS(J)} 9D D16=CYMIN+({TMPS(J+K)-TMPS(J-1+K)}/YNEG(J)}	22240 22240
END	22241	D17=(DELTX++2+CAP(J,K))/(DELT(+CXPUS)	22240
SUBROUTINE CONV	22241	D1=D14+(D15-D16)-D17	
DIMENSION TMPS(25,51).TEMP(25,51).W(25,51).G(25,51).Y(25).V(51).YP		IF(K.NE.1)GO TO 3	
lus(25), yneg(25), ymi0(25), ttmps(25,51), area(25), h(25), ha(25), ytmp(A1=0.0	
225,511,CAPT(25,51),CAP(25,51),COND(25,51),IS(10),SLTMP(1D),DIST(8,		CI=1.+CXMIN/CXPUS	2224D
351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)		W(J,1)=01/81	
COMMON TMPS.TEMP.W.G.Y.V.YPLUS.YNEG.YMID.JMAX,IMAX,COND.DELTT.ALPH		G(J,1)=D1/81	
<pre>IA.DELTX.DENDM.DELTY.TTMPS.CAP.CAPT.TIME.LMAX.SLTMP.DIST.TEEP.CAPY.</pre>		GO TD 20	
2CAPPY DO 40 K=2,IMAX	2224	3 IF(K.NE.IMAX)GO TO 5	22241
CONNIN=(COND(1, K)+COND(2, K)}/2.	22241	C1=O.D A1=1.+CXMIN/CXPUS	2224D
COMPUS=(CDND{2,K}+CONO{3,K})/2.		GD 10 10	22240
D13=DELTX=TEMP(1,K)/(DELTT=V(K))		5 Al=CXMIN/CXPUS	22240
D14=(3. *DELTX*CONMIN*TMPS(2,K))/(2. *DELTY*ALPHA)		C1=1.0	
D15=(DELTX=CONPUS=(TMPS(2,K)-TMPS(3,K)))/(2.*DELTY*ALPHA)		10 OENOM=81-A1+W(J,K-1)	22241
D16=1.+(DELTX/(DELTT+V(K)))		IF(DENOM.NE.O.)GC TO 18	22241
D17=(3.+DELTX+CONMIN)/(2.+DELTY+ALPHA)		WRITE(6,50) .	
TMPS(1,K)=(TMPS(1,K-1}+Ö13+D14+D15)/(D16+D17)		5D FORMAT(18H ZERO DENOMINATOR.;	22241
[F(TMPS(1,K).GE.1D0.)GO TO 40		GO TO 800	
TMPS(1,K)=100.		18 W(J,K)=C1/DENOM	22241
40 CONTINUE	22241	G(J,K)=(D1-A1+G(J,K-1))/DENOM	22241
RETURN END	22241 22241	20 CONTINUE TIMPS(J, IMAX)=G(J, IMAX)	
SUBROUTINE CONDI	22241	DD 3D I=2, IFAX	
DIMENSION THPS:(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP	22241	I [= IMAX+1-1	
1LUS(25), YNEG(25), YMID(25), TTMPS(25,51), AREA(25), H(25), HA(25), VTMP(3D TTMPS(J,II)=G(J,II)-w(J,II)+TTMPS(J,II+1)	
225,511,CAPT(25,51),CAP(25,51),CDND(25,51),IS(10),SLTMP(1D),OIST(8,		1 CONTINUÉ	
351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)		DO 95 J=2,MMAX	
COMMON TMPS, TEMP, W, G, Y, V, YPLUS, YNEG, YHIO, JMAX, IMAX, COND, DELTT, ALPH		DO 95 K=1,IMAX	
1A.DELTX.DENOM.DELTY.TTMPS.CAP.CAPT.TIME.LMAX.SLTMP.D1ST.TEEP.CAPY.		TMPS(J,K)=TTMPS(J,K)	
ZCAPPY		95 CONTINUE	
MMAX=JMAX→1 DO 1 J=2+MMAX		CALL CAPAC Call Cond4	
DO 20 K=1.1MAX	22241	80D RETURN	
51 IF(J.EQ.JMAX)GD TO 70	22240	END	
1F(K.FQ.1)GC TO 75	22240	SUBRUUTINE CEND2	
IF(K.EQ.IMAX)GG TO 76	22240	DIMENSION THPS(25,51), TEMP(25,51), W(25,51), G(25,51), Y(25), V(51), YP	
CXPUS=(CDND(J,K)+CDND(J,K+1))/2.	22240	1LUS(25), YNEG(25), YNID(25), TTMPS(25,51), AREA(25), H(25), HA(25), VTMP(
CXMIN=(COND(J+K)+COND(J+K-1})/2.	2224D	225,51},CAPT(25,51},CAP(25,51),COND(25,51),IS(1D),SLTMP(ID),DIST(8,	
CYPUS=(COND(J+K)+COND(J+I+K))/2.	22240	351), TEEP(25,51), CAPY(25,51), CAPPY(25,51)	
CYM[N=(COND(J,K)+CONO(J-1,K)}/Z.	22240	COMMON TMPS.TEMP.W.G.Y.V.YPLUS.YNEG.YMIO.JMAX.IMAX.COND.DELTT.ALPH 1A.DELTX.DENOY.DELTY.TTMPS.CAP.CAPT.TIME.LMAX.SLTMP.DIST.TEEP.CAPY.	
GO TO 77 7D [F(K.EQ.1)GO TD 72	22240	2CAPPY	
IFIK.EQ.IMAXIGO TO 73	22240 22240	MMA X=JMA X-1	
CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240	NMAX=HMAX=2	
CXMIN=(COND(J,K)+COND(J,K-1))/2.	22240	DD 1 K=1.IMAX	
CYMIN=(CDND(J,K)+COND(J-1,K))/2.	22240	DO 20 J=2,MMAX	
CYPUS=CYMIN	22240	61 IF(J_EO.JMAX)GO TO 70	2224D
GO TO 77	22240	IF(K.EQ.1)GO TO 75	22240
72 CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240	IF(K.EQ.IMAXIGO TO 76	22240 22240
CXMIN=CXPUS	22240	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240
CYMIN=(COND(J,K)+COND(J-1,K))/2.	22240	CXMIN=[COND(J,K)+CDND[J,K-1])/2. CYPUS=(COND(J,K)+CDND[J+1,K)}/2.	22240
CTUS=CTAIN GO TO 77	22240 22240	CAMIN=(CDND(1 ⁺ K)+COND(1 ⁻ 1 ⁺ K))\S•	2224D
73 CXMIN={COND(J,K)+COND(J,K-1)}/2.	22240	GO TO 77	22240
The second secon		70 IF(K.EQ.1)GC TO 72	22240

		· · · · · · · · · · · · · · · · · · ·	
<pre>IF(K.EQ.IMAX)GO TO 73 CXPUS=(COND(J,K)+COND(J,K+1))/2.</pre>	22240 22240	<pre>1A,DELTX,DENOM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY, 2CAPPY</pre>	
CXMIN=(COND(J,K)+CDND(J,K-1))/2	22240	DO 232 J=1,JMAX	
CYMIN=(COND(J,K)+COND(J-1,K))/2. CYPUS=CYMIN	22240 22240	DO 232 K=1,IMAX 9 IF(IMPS(J;K).GI.450.1GD TD 233	
GO TO 77	-22240	CAPT(J.K)=(23.5+.307*(TMPS(J.K)-100.))*134.0	
72 CXPUS={COND(J,K)+CDND(J,K+1))/2.	22240 22240	GO TO 232 233 IF(TMPS(J,K).GT.900.)GD TO 234	
CXMIN=CXPUS CYMIN=(CDND(J,K)+COND(J-1,K))/2.	22240	CAPT(J,K)={130.0+.344*(TMPS(J,K)-450.1):=134.0	
CYPUS=CYMIN	22240 22240	GO TO 232 234 1F(TMPS(J,K).GT.1100.)GC TO 235	
GO TO 77 73 CXMIN=(COND(J,K)+CDND(J,K-1))/2.	22240	CAPT(J,K)=134.0*(285.D+.485*(TMPS(J,K)-900.))	
C XPUS=C XMIN ·	22240 22240	GO TO 232 235 IF(TMPS(J,K).GT.1600.)GC TO 236	
CYMIN=(CDND(J+X)+COND(J-1,K))/2. CYPUS=CYMIN	22240	CAPT(J,K)=134.0*{382.0*.6500*(TMPS(J,K)-1100.}}	
GO TO 77	22240 2 22 40	GD TD 232 236 CAPT(J,K)=134.D*(694.D+.268*(TMPS(J,K)-1600.))	
75 CXPUS=(COND(J,K)+CGND(J,K+1))/2. CXMIN=CXPUS	22240	232 CONTINUE	
CYPUS=(COND(J,K)+CDND(J+1,K))/2.	22240 22240	RÉTURN END	•
CYMIN=(CDND(J,K)+CDNO(J-1,K))/2. GO TO 77	22240	SUBROUTINE COND4	22242
76 CXMIN=(CONO(J,K)+CCND(J,K-1))/2.	22240 22240	DIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP 1LUS(25),YNEG(25),YMID(25),TTMPS(25,51),AREA(25),H(25),HA(25),VTMP(
CXPUS=CXMIN CYPUS=(COND(J+K)+COND(J+1,K))/Z.	22240	225,51),CAPT(25,51),CAP(25,51),COND(25,51),IS(1D),SLTMP(10),DIST(8,	•
CAWIN=(CDND(7+K)+CDND(7-1+K))/S+	22240 22240	351),TEEP(25,51),CAPY(25,51),CAPPY(25,51) COMMON TMPS,TEMP,H,G,Y,V,YPLUS,YNEG,YMIC,JMAX,IMAX,COND,DELTT,ALPH	
77 CDNTINUE C1=1.0		la, del tx, denom, del ty, ttmps, cap, capt, time, lmax, sl tmp, dist, teep, capy,	
A THE LIGHT OF THE PROPERTY OF	22240	2CAPPY DD 5 J=1,JMAX	22242
A1=(YPCUS(J)*CYMINI/(YNEG(J)*CYPU B1=-(1.0+(YPCUS(J)*CYMINI/(YNEG(J)*CYPU 1(J))/(DELTT=CYPUS*MPS(J,K))}	1214fraki/14Klaiwin(214ikro2	DD 5 K=1,IMAX	22242
O14=-(YMID(J)*YPLUS(J)/(OELTX*#2*CYPUS	11	9 IF(TMPS(J,K).GE.200.)GC TG 1 CONO(J,K)=0.9	
IF(K.LT.IMAX) GO TO 24 D15={TMPS(J,K-1}-TMPS(J,K)}-CXPUS		GO TO 5	
GO TO 25		1 IF(TMPS(J,K).GT.1200.)GD TO 7 TSQ=TMPS(J,K)*TMPS(J,K)	
24 D15=(TMPS(J,K+1)-TMPS(J,K))+CXPUS 25 IF(K.GT.1) GO TO 26		TCUB=TMPS(J,K)+TSQ	
D16={TMPS{J,K}-TMPS{J,K+1}}*CXMIN		COND(J,K)=.12561573E+118377799E-2*TMPS(J,K)+.10902421E-5*TSQ15	
GO TD 27		1084869E-9•TCU8 GO TO 5	
26 DI6=(TMPS(J,K)-TMPS(J,K-1))*CXMIN 27 D17=(CAP(J,K)*YMID(J)*YPLUS(J))/(DELTT	CYPUS 1	7 CDND(J,K)=0.36	
D1=D14=(D15-D161-O17	22241	5 CONTINUE Return	22242
IF(J.NE.2)GD TO 10 W(2,K)=C1/B1		END '	22242
G{2,K}={D1-A1*TMPS(1,K))/B1		SUBROUTINE COND5 DIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP	
GO TO 20 10 DENDM=81-A1*W(J-1.K)		1LUS(25), YNEG(25), YMID(25), TTMPS(25, 51), AREA(25), H(25), HA(25), VTMP(
IF(DENOM.NE.O.)GO TO 18		225,51),CAPT(25,51),CAP(25,51),CDND(25,51),IS(10),SLTHP(10),DIST(8, 351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)	
WRITE(6,50) 50 FORMAT(18H ZERO DENOM1NATOR.)	22241	COMMON TMPS: TEMP: W.G.Y.V.YPLUS: YNEG. YMID: JMAX: IMAX: COND. DELTT: ALPH	
GO TO 800		<pre>1A,DELTX,DENOM,DELTY,TIMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY, 2CAPPY</pre>	
18 W(J,K)=C1/OENDM IF(J.NE.MMAX)GU YO 19	22241	DO 5 K=1,IMAX	22242
D1=D1-C1+TMPS(JMAX+K)		<pre>IF(TMPS(1,K).GE.200.)GC TO 1 COND(1,K)=0.9</pre>	
19 G(J,K)=(D1-A1+G(J-1,K))/DENOM 2D CONTINUE	22241	GO TO 5	
TTMPS(MMAX,K)=G(MMAX,K)		1 IF(TMPS(1,K).GT.1200.1G0 TO 7 TSQ=TMPS(1,K).TMPS(1,K)	
DO 30 I=1,NMAX II=MMAX-I		TCUB=TMPS(1,K) +TSQ	
3D TTMPS(11,K)=G(11,K)-W(11,K)+TTMPS(11+1,	ιK)	COND(1,K)=.12561573E+118377799E-2*TMPS(1,K)+.10902421E-5*TSQ15 1084869E-9*TCUB	
1 CONTINUE 00 95 J≈2,mmax		GD TO 5	•
00 95 K±1,IMAX		7 COND(1,K)=0.36 5 CONTINUE	
TMPS(J,K)=TTMPS(J,K) 95 CONTINUE		RETURN	22242
CALL CAPAC		END Subroutine capc1	22242
CALL COND4 800 RETURN		DIMENSION TMPS(25.51).TEMP(25.51).W(25.51).G(25.51).Y(25).V(51).YP	
END		1LUS(25), YNEG(25), YMID(25), TTMPS(25,51), AREA(25), H(25), HA(25), VTMP(225,51), CAPT(25,51), CAP(25,51), COND(25,51), IS(10), SLTMP(10), DIST(8,	
SÚBRDUTINE CAPAC DIMENSION TMPS(25,51),TEMP(25,51),W(25,	511.G(25.51).Y(25).V(51).YP	351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)	
1bus(25).YMEG(25).YMID(25).TTMPS(25.51)	AREA(25).H(25).HA(25).VTMP(COMMON TMPS,TEMP,W,G,Y,V,YPLUS,YNEG,YMID,JMAX,IMAX,COND,DELTT,ALPH 1A,DELTX,DENOM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,	
225,51),CAPT(25,51),CAPT(25,51),CAPP(25,51),CAPPY(25,51),CAPPY(25,51),CAPPY(25,51)	51), IS(10), SLTMP(10), D1ST(8,	2CAPPY	
COMMON THPS, TEMP, W, G, Y, V, YPLUS, YNEG, YM	D, JMAX, IMAX, COND, DELTT, ALPH	DO 232 K=1,1MAX IF{TMPS{1,K}.GT.450.)GD TO 233	
•			

	C107/1 kl-100 F. 207-1740F11 kl 100 kl-101 A			
	CAPT(1,K)=(23.5+.307*(TMPS(1,K)-100.))*134.0 GO TO 232		IFIK-LT-IMAX) GO TO 24	
233	IF(TMPS(I,K).GT.900.)GO TO 234		015=(TMPS(J,K-1)-TMPS(J,K))+CXP	· ·
	CAPT(1,K)=(130.0+.344+(TMPS(1,K)-450.1)+134.0		GO TO 25	
	GO TO 232		24 D15=(TMPS(J,K+1)-TMPS(J,K))=CXP	us
234	IF(TMPS(1,K).GT.1100.)GO TO 235 CAPT(1,K)=134.0*(285.0+.485*(TMPS(1,K)-900.))		25 IF(K.GT.1) GD TO 26 D16=(TMPS(J,K)-TMPS(J,K+1))*CXM	***
	GO TO 232		GO TO 27	IN
235	IF(TMPS(1,K).GT.1600.)GD TO 236		26 016=(TMPS(J,K)-TMPS(J,K-1))*GXM	in
	CAPT(1,K)=134.0*(382.0+.6500*(TMPS(1,K)-1100.))		27 017=(CAP(J,K)=YMID(J)=YPLUS(J))	
224	GD TO 232 CAPT(1,K)=134.0*(694.0+.268*(TMPS{1,K}-1600.))		01=014*(D15-D16)-017 IF(J.NE.1)GD TO 3	22241
	CONTINUE		C1=C1+A1	
	RETURN		A1=0.0	
	END		W(1,K)=C1/R1	
	SUBROUTINE COND?		G(1,K)=D1/B1	
	OIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP LUS(25),YNEG(25),YMIO(25),TTMPS(25,51),AREA(25),H(25),HA(25),VTMP(GO TO 20 3 IF(J.NE.JMAX)GO TO 10	22241
	225,51),CAPT(25,51),CAP(25,51),COND(25,51),IS(10),SLTMP(10),DIST(8,		AI=AI+C1	222.
	351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)		C1=0.0	
	COMMON TMPS, TEMP, W.G., Y., YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH		10 DENOM=81-A1+w(J-1,K) IF(DENOM.NE.D.)GD TO 18	
	<pre>la,Deltx,Denom,oelty,ttmps,cap,capt,time,lmax,sltmp,dist,teep,capy, 2Cappy</pre>		WRITE(6,50)	
	DO 1 K=1,IMAX		50 FORMAT(18H ZERO DENGMINATOR.)	22241
	00 20 J=1, JMAX		GD TD 800	
	IF(TMPS(J,K).LT.600.)GO TO 9 LF(TEEP(J,K).LT.TEMP(J,K))GO TO 9	IERMAB3	18 W(J,K)=C1/DENOM G(J,K)=(01-A1+G(J-1,K))/DENOM	22241 22241
		IERMAB3	20 CONTINUE	22241
	$CAP\{J,K\} = CAPPY\{J,K\}$	ERMAB3	<pre>FTMPS(JMAX,K)=G(JMAX,K)</pre>	
9	IF(J.EQ.1)60 TO 78		NHA X=JHA X-1	
91	IF(J.EQ.JMAX)G0 TO 70 IF(K.EQ.1)GG TO 79		XAMN,1=1 OE DO I—XAML=11	
	IF(K.EQ.IMAX)GD TO 80		30 TTMPS(II,K)=G(II,K)-H(II,K)+TTM	PS(II+1+K)
	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240	1 CONTINUE	
	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22240	DO 95 J=1,JMAX	
	CYPUS=(CDND(J,K)+CDND(J+1,K))/2. CYMIN=(CDND(J,K)+CDNO(J-1,K))/2.	22240 22240	DD 95 K=1,1MAX TMPS(J,K)=TTMPS(J,K)	
	GD TO 77	22240	95 CONTINUE	
79	CXPUS=(COND(J,K)+COND(J,K+1))/2.		CALL CAPAC	
	CXMIN=CXPUS CYPUS={COND(J+K)+COND(J+1,K)}/2.	22240	CALL COND4 CALL CAPSK	THERMAB 3
	CYMIN=(COND(J+K)+COND(J-1,K))/2.		BOO RETURN	INCRMADO
	60 10 77	22240	END	
80	CXMIN=(COND(J+K)+COND(J+K-1))/2.	22210	SUBROUTINE CONDS	11 1/20 511 6/25 511 4/251 1/511 40
	CYPUS=(COND(J+K)+COND(J+1,K))/2.	22240	1LUS(25).YNEG(25).YMID(25).TIMPS	1},w(25,51),G(25,51),Y(25),V(51),YP 22241 (25,51),AREA(25),H(25),HA(25),VTMP{
	CYMIN=(CDND(J,K)+CCND(J-1,K))/2.		225,511,CAPT(25,51),CAP(25,51),C	OND(25,51),1S(10),SLTMP(10),DIST(8,
	GO TO 77	22240	351), TEEP (25,51), CAPY(25,51), CAP	PY(25,51)
78	IF(K.EQ.1)GO TO 75 IF(K.EQ.1MAX)GO TO 76		COMMON IMPS, TEMP, N, G, Y, V, YPEUS,	YNEG,YMID,JMAX,IMAX,COND,DELTT,ALPH APT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,
	CXPUS=(COND(J,K)+COND(J,K+1))/2.		ZCAPPY	and the common of the control of the
	CXMIN=(COND(J,K)+CDNU(J,K-1))/2.		DO 1 J=1,JMAX	22242
	CYPUS=(CUND(J,K)+CUND(J+1,K))/2. CYMIN=CYPUS		00 20 K=1,1MAX	22241
	GD TO 77	22240	IF(IMPS(J,K).LT.600.)GC TO 9 IF(TEFP(J,K).LT.TEMP(J,K))GU TO	THERMAR3
70	IF(K.E0.1)GC TO 72		CAPT(J,K)=CAPY(J,K)	THERMAR3
	1F(K.EQ.IMAX)GD TO 73		CAP(J,K)=CAPPY(J,K)	THERMAR3
	CXPUS={COND(J,K)+COND(J,K+1))/2. CXMIN={COND(J,K)+CDND(J,K~1))/2.		9 IF(J.EQ.1)GC TO 7H 51 IF(J.EQ.JMAX)GO TO 70	22242 22242
	CYMIN=(COND(J,K)+COND(J-1,K))/2.		IF(K.EQ.1)GG TO 79	22242
	CYPUS=CYMIN	22240	IF(K.EQ.[MAX]GD TC 80	22242
72	GO TO 77 CXPUS=(COND(J,K)+COND(J,K+1))/2.	22240	CXPUS=(COND(J,K)+COND(J,K+1))/2 CXMIN=(CUND(J,K)+CDND(J,K-1))/2	
12	CXMIN=CXPUS	22240	CYPUS=(COND(J,K)+COND(J+1,K))/2	. 22240
	CYMIN={CUND(J+K)+CUND(J-1,K))/2.		CYMIN={COND(J,K)+COND(J-1,K)}/2	• 22240
	CYPUS=CYMIN	22240	GD TU 77	22240
73	GO TO 77 CXMIN={COND(J,K}+COND(J,K-1))/2.		<pre>79 CXPUS=(COND(J,K)+COND(J,K+1))/2 CXMIN=CXPUS</pre>	· 22241
	CXPUS=CXMIN	22240	CYPUS=(COND(J,K)+COND(J+1,K))/2	22241
	CYMIN=(COND(J,K)+COND(J-1,K))/2.		CAMIN=(COND(1*K)+COND(1+1*K))\S	• ' 22241
	CYPUS=CYMIN GO TD 77	22240	GO TO 77 8D CXMIN={COND{J,K}+COND{J,K-1}}/2	
75	CXPUS=(COND(J+K)+COND(J,K+1))/2.		CXPUS=CXMIN	•
	CXMIN=CXPUS		CYPUS={CI3ND{J,K}+CCND{J+1,K}}/2	•
	CYPUS=(COND(J,K)+COND(J+1.K))/2.		CYMIN=(COND(J,K)+COND(J-1,K))/2 GO TO 77	
	CYMIN=CYPUS GO TO 77		78 IF(K.EC.1)GC TO 75	22240
76	CXMIN=(COND(J+K)+CUND(J+K-1))/2.		IFIK.EO.IMAXIGO TO 76	
	CXPUS=CXMIN		CXPUS=(COND(J,K)+COND(J,K+1))/2	•
	CYPUS={COND(J+K)+COND(J+1,K}}/2.			
77	CYMIN=CYPUS CONTINUE	22240		
• •	Al=(YPLUS(J)=CYMIN)/(CYPUS=YNEG(J))	22240		
	C1=1.			
	B1=-(1,-0+(YPLUS(1)+CYMIN)/(YNEG(J)+CYPUS)+(CAPT(J,K)+YHIOIJ1+YPLUS (J))/IOELTT+CYPUS-TMPS[J,K)) D14=-(YMIOIJ1+YPLUS(J)/(DELTX+-Z+CYPUS))			

		t.		
	CXMIN=(COND(J,K)+COND(J,K-1))/2.		CALL CAPSK	THERMAR 3
	CYPUS=(COND(J,K)+COND(J+1,K))/2.		800 RETURN	
	CYMIN=CYPUS		END	
	GO TO 77	22240	SUBROUTINE CONTR	
70	1F(K.EQ.1)GO TO 72		DIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP	
	<pre>IF(K.EQ.IMAX)GD TO 73 CXPUS=(COND(J,K)+COND(J,K+1))/2.</pre>		<pre>llus(25), yneg(25), ymid(25), ttmps(25,51), area(25), h(25), ha(25), ytmp(225,51), capt(25,51), cap(25,51), cond(25,51), is(10), sltmp(10), dist(8,</pre>	
	CXMIN=(COND(J*K)+COND(J*K-I))/2*		351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)	
	CYMIN=(COND(J,K)+COND(J-1,K))/2.		COMMON TMPS, TEMP, W, G, Y, V, YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH	
	CYPUS=CYMIN		IA, DELTX, DENOM, DELTY, TTMPS, CAP, CAPT, TIME, LMAX, SLTMP, DIST, TEEP, CAPY,	
	60 10 77	22240	2CAPPY	
72	CXPUS=(COND(J,K)+COND(J,K+1})/2.		DO 263 I=1+LMAX	
	CXMIN=CXPUS	22240	DO 260 K=1.IM4X	
	CYMIN=(COND(J,K)+COND(J-1,K))/2.	22240	DO 261 J=1,JMAX	
	CYPUS=CYMIN GD TO 77	22240	IF(TEMP(J,K).LT.SLTMP(I))GO TO 262 261 CONTINUE	
73	CXMIN=(COND(J,K)+COND(J,K-1))/2+	22240	J=JMAX	
	CXPUS=CXMIN	22240	262 IF(J.EQ.1)GD TD 260	
	CYMIN=(COND(J,K)+COND(J-1,K))/2.		DIST(I,K)=Y(J-1)+((TEMP(J-1,K)-SLTMP(I))/(TEMP(J-1,K)-TEMP(J,K)))*	
	CYPUS=CYMIN		1(Y(J)-Y(J-1))	
	GO TO 77		260 CONTINUE	
75	CXPUS=(COND(J,K)+COND(J,K+1))/2.		263 CONTINUE	
	CXMIN=CXPUS		WRITE(6,264)(SLTMP(I),I=1,LMAX)	
	CYPUS={COND(J,K)+COND(J+1,K))/2.		264 FORMAT(1H1,6X,*DISTANCE*,7X,*ISOTHERM ISOTHERM ISOTHERM ISOTHER	
	CYMIN=CYPUS GD TO 77		1M ISOTHERM ISOTHERM ISOTHERM ISOTHERM*/8X,*DOWN*,9X,*DEGREES F 2 DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F DEGREES F	
76	CXMIN=(COND(J,K)+COND(J,K-1))/2.		3EES F'/7x, FRACTURE', 4x, 8F10.1/9x, FEET 1/20x, FEET INTO FEET INTO	THERMARA
,,,	CXPUS=CXMIN		4FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO FEET INTO 122X,	THERMARA
	CYPUS=(COND(J,K)+COND(J+1,K))/2.		SWALL . 6X, WALL .	
	CYMIN=CYPUS			THERMAB6
77	CONTINUE	22240		THERMA86
	B1=-(1.+CXMIN/CXPUS+(DELTX==2/DELTT)={CAPT(J,K}/{TMPS(J,K}=CXPUS)}			THERMAB6
	1)			THERMAB6
	D14=-(DELTX+=2/(YMID(J)+CXPUS))	22240 22241		THERMAB6
	IF(J.LT.JMAX)GO TO 22	22240	267 FORMAT(7X,F6.0,4X,8F10.2) WRITE(6,264)(SLTMP(II),I=1,LMAX)	
	D15=CYPUS+((TMPS(J-1,K)-TMPS(J,K))/YPLUS(J)) GD TD 25	22240		THERMAB6
22	D15=CYPUS+((TMPS(J+1,K)-TMPS(J,K))/YPLUS(J))	2224D		THERMAB6
	IF(J.GT.1) GD TD 90	CEE 10		THERMAB6
	D16=(TMPS(J,K)-TMPS(J+1,K)) +CYMIN/YNEG(J)		265 WRITE(6,267)XFT,(DIST(I,K),I=1,LMAX)	THERMAB6
	GO TO 23		RETURN	
	D16=CYMIN+((TMPS(J,K1-TMPS(J-1,K))/YNEG(J))	22240	END	
23	DIT={DELTX++2*CAP(J+K}}/{DELTT+CXPUS}			THERMAB3
	D1=D14=(D15-D16)-D17		DIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),Y(51),YP 1LUS(25),YNEG(25),YMID(25),TTMPS(25,51),AREA(25),H(25),HA(25),YTMP(
	1F(K.NE.1)GO TO 3 A1=0.0		225,51),CAPT(25,51),CAP(25,51),COND(25,51),IS(10),SLTMP(10),DIST(8,	22241
	C1=1.+CXMIN/CXPUS	22240	351), TEEP(25,51), CAPY(25,51), CAPPY(25,51)	
	W(J,1)=C1/81		COMMON TMPS, TEMP, W.G.Y.V. YPLUS, YNEG, YMID, JMAX, IMAX, COND, DELTT, ALPH	22241
	G(J,1) = 0.1/81		1A,DELTX,DENOM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,	
	GÓ TO 20		2CAPPY	
3	IF(K.NE.IMAX)GO TO 5	22241	DO 232 J=1,JMAX	
	C1=0.0	22212	00 232 K=I,IMAX	
	Al=1.+CXMIN/CXPUS	22240	IF(TMPS(J,K).GT.450.)GD TO 233 CAPY(J,K)={23.5+.307={TMPS(J,K)-100.}}=134.0	
	GD TO 10 A1=CXMIN/CXPUS	22240	GD TD 232	
>	C1=1.0		233 IF(TMPS(J,K).GT.600.)GO TO 234	
10	DENOM=B1-A1+W(J+K-1)	22241	CAPY(J,K)=(13D.O+.344*(TMPS(J,K)-450.))*134.0	
•	IF(DENUM.NE.O.)GO TO 18	22241	GO TO 232	
	WRITE(6,50)		234 IF(TMPS(J,K)_GT.11DO.)GD TD 236	
50	FORMAT(18H ZERO DENOMINATOR.)	22241	CAPY(J,K)=134.D*(18D.O+.23O*(TMPS(J,K)-600.))	
	GO TO 800		GO TD 232 236 CAPY(J+K)=134.0*(295.D+.258*(TMPS(J,K)-1100.))	
18	W(J,K)=CI/DENDM	22241	232 CDNTINUE	
30	G(J,K)=(D1-A1*G(J,K-1))/DENOM	22241	RETURN	
20	CONTINUE TTMPS(J+IMAX)=G(J+IMAX)		END	
	DD 30 I=2,IMAX		SUBROUTINE CAPC2	
	II=IMAX+1-I		DIMENSION TMPS(25,51), TEMP(25,51), W(25,51), G(25,51), Y(25), V(51), YP	
30	TTMPS(J, II) =G(J, II) -W(J, II) +TTMPS(J, II+1)		1LUS(25), YNEG(25), YMID(25), TTMPS(25,51), AREA(25), H(25), HA(25), VTMP(
	CONTINUÉ		225,51),CAPT(25,51),CAP(25,51),COND(25,51),IS(10),SLTMP(10),DIST(8,	
	DO 95 مَا = 1, JMAX		351),TEEP(25,51),CAPY(25,51),CAPPY(25,51)	
	DO 95 (K=1,IMAX		COMMON THPS,TEMP,W,G,Y,V,YPLUS,YNEG,YMID,JMAX,IMAX,COND,DELTT,ALPH 1A,DELTX,DENOM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,	
	TMPS(J,K)=TTMPS(J,K)		2CAPPY -	
75	CONTINUE CALL CAPAC		DO 232 I=1,IMAX	
	CALL COND4			

```
K=1MAX+1-1

IF(TMPS(JMAX,K),GT.450.) GD TO 233

CAPT(JMAX,K)=(23.5+.307*(TMPS(JMAX,K)=100.))*134.d

GO TO 232

233 IF(TMPS(JMAX,K),GT.900.) GD TC 234

CAPT(JMAX,K)=(130.0+.344*(TMPS(JMAX,K)-450.))*134.0

GD TO 232
  234 IF(TMPS(JMAX,K).GT.1100.) GD TO 235 
CAPT(JMAX,K)=134.D+(285.D+.485+(TMPS(JMAX,K)-90D.))
 CAPT(JMAX,K)=134.0*(285,0+.485*(TMPS(JMAX,K)-900.))
GO TO 232
235 [F(TMPS(JMAX,K).GT.1600.) GO TO 236
CAPT(JMAX,K)=134.0*(382.0+.6500*(TMPS(JMAX,K)-1100.))
GO TO 232
 GU 1U 232
236 CAPT(JMAX,K)=134.D*(694.D*.268*(TMPS(JMAX,K)-1600.))
232 CONTINUE
                       RETURN
                RETURN
END
SUBROUTINE CONDB
OIMENSION TMPS(25,51),TEMP(25,51),W(25,51),G(25,51),Y(25),V(51),YP
LUS(25),YNEG(25),YHID(25),TTMPS(25,51),AREA(25),H125),HA(25),YTMPS
(225,51),CAPT(25,51),CAP(25,51),COMD(25,51),TS(10),SLTMP(10),DIST(8,
351),TEEP(25,51),CAPY(25,51),CAPY(25,51),CAPY(25,51)
COMMON TMPS,TEMP,M,G,Y,Y,YPLUS,YNEG,YMID,MMAX,HMAX,COND,DELTT,ALPH
1A,DELTX,DENDM,DELTY,TTMPS,CAP,CAPT,TIME,LMAX,SLTMP,DIST,TEEP,CAPY,
CCAPPY
DO S.T.,LMAY
                    2CAPPY
D0 5 [=1,IMAX
K=IMAX+1-I
IF(TMPS(JMAX,K).GE.2DO.) G0 T0 1
CDNDIJMAX,K)=0.9
             GD TO 5
1 IF(TMPS(JMAX,K).GT.1200.) GO TO 7
                       TSQ=TMPS(JMAX,K)+TMPS(JMAX,K)
TCUB=TMPS(JMAX,K)+TSQ
                  COND(JMAX,K)=.12561573E+1-.18377799E-2*TMPS(JMAX,K)+.10902421E-5*T
1SQ-.15D84869E-9*TCUB
            GO TO 5
7 CONDIJMAX,K1=0.36
5 CONTINUE
                      RETURN
END
                END
SUBAROUTINE CCNV2
DIMENSION THPS:75,511,TEMP!25,511,H(25,511,G(25,511,Y(25),V(51),YP
LUS1251,YNGG(25),YMID(25),TTMPS(25,511,AREA(25),H(25),HA(25),YTMP(
225,511,CAPT(25,511,CAPT(25,511),COND(25,51),IS(10),SLTMP(10),DIST(8,
351),TEEP(25,511,CAPP(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511),CAPPV(25,511
                  2CAPPY
DO 40 I=2,IMAX
                      K=IMAX+1-I
CONMIN=(COND(JMAX,K)+CGND(JMAX-1,K))/2.
                     COMPUS=(CONDIJMAX-1,K)+CONDIJMAX-2,K))/2.
D13-DELTX=TEMPIJMAX,K)/(DELTT=V[1])
D14-(3.-DELTX=CONMIN-TMPS[JMAX-1,K))/(2.*DELTY=ALPHA)
D15=(DELTX=CONPUS=(TMPS[JMAX-1,K))-TMPS[JMAX-2,K)))/(2.*DELTY=ALPHA)
        1)
016=1.*(DELTX/(DELTT*V([]))
017=(3.*DELTX*CONMIN)/(2.*DELTY*ALPHA)
THPS(JMAX,K)=(TMPS(JMAX,K)+1+D13*D14*D15)/(D16+D17)
IF(TMPS(JMAX,K)=100.) G0 TO 40
THPS(JMAX,K)=100.D
40 CONTINUE
                      RETURN
END
```


Subroutine COND! (Horizontal sweep)

Subroutine COND2 (Vertical sweep)

THERMAB5

Subroutine CAPAC Subroutine COND4

Z.LAPI(19,23), 323), TP(1350), COMMON TPRS,T DENMON, TIMPS,C C TEMP-PERMANEN C TEMP-PERMANEN C VIMP-TEMPORAN XIII- O CM-30000. 100 READ(5,10) I MA 1(1), I=1, LMAX) 1 FORM-MIZIS,FS C I MAX-NUMBER O C JMAX-NUMBER O C G DELTI-TIME ST C TIM-MAXIMUM C TITRESERVOR C TIM-ESSENVOR C KSKIP-OPTION C NNTP-NUMBER O C L MAX-NUMBER O C L	.l.FS.2.F10.1.FS.0.12,315/8F10.1) F COLUMNS (K) F RONS (J) FP LEMOTH.HOURS THE, HOURS TEMPERATURE, DEGREES FAHRENHEIT TO INCREASE TIME STEP LENGTH DURING RUN FR STEPS F TIME STEPS F ISDTHERMS DESIRED	DO 232 K=1, IPAX 232 CAP(J,K)=CAPT(J,K) CALL COND4 C COND4 IS A SURROUTINE THAT CALCULATES CONDUCTANCES 82 GD TO(1995, 994), KSKIP 994 IF(ATMP.ME.TIME) GG TD 995 ATMP-ATMP+1 IF(ITME.GT.5.)GO TO 318 DEL TT=1. GO TO 995 318 IF(DELTT.GE.15.)GO TD 993 UU-DD-5. TME=5.*((1.2)**UU) DEL TT=TME-TIME FF(DELTT.LT.15.)GO TD 995 DEL TT=15.0 GD TO 995 996 IF(TITME.GT.3000.)GD TO 996 DEL TT=15.0 GO TO 995 997 IF(TITME.GT.3000.)GD TO 997 DEL TT=30.0 GO TO 995 998 DEL TT=15.0 GO TO 995 999 DEL TT=15.0 GO TO 995 DEL TT=15.0 DEL TT=15.	THERMABS THERMABS THERMABS
C SITMP[1]=TEMP READ[5,20] Y(1) 20 FORMAT[16F5.0 C Y=01STANCE IN READ[5,3] II X(31 FORMAT[16F5.0 C X=THE VERTICA C DF THE F WRITE[6,9] NRU 11.23) 9 FORMAT[11H,5X 1,2X,"-MRSERVO 2ERANCE[PER CE 3DURING RUN'/2 4DURING RUN'/2 5/5X,"THE DIST 65X,FID-1,2X," 7MAX"/75X,"THE 8 THE FRACTURE KHMO=1 DD=1.0 PP=0. TIME=0.0 ATMP=0.0 NN=1	ERATURE OF DESIRED ISOTHERM 1),1=1,1MAX1 /3F5.0) 10 THE MALL, FEET J),J=1,1FAX2 /7F5.0) L DISTANCE PERPENDICULAR TO THE DIRECTION OF THE RACTURE N,TTI,TDL,KSKIP,(Y(I),1=1,19),TIMX,IMAX,JMAX,(X(I),I=THERMAB5 N,TIT,TDL,KSKIP,(Y(I),1=1,19),TIMX,IMAX,JMAX,(X(I),I=THERMAB5 N,TINPUT DATA FOR THERMAB5 RUN NUMBER*,2X,15//5X,F10.1THERMAB5 NT)*/10X,15,2X,*=OPTION TO INCREASE TIME STEP LENGTH THERMAB5 NT)*/10X,15,2X,*=OPTION TO INCREASE TIME STEP LENGTH THERMAB5 NT)*/10X,15,2X,*=OPTION TO INCREASE TIME STEP LENGTH THERMAB5 OX,*(12) INDICATES TIME STEP HAS INCREASED OURING RUN*THERMAB5 OX,*(12) INDICATES TIME STEP HAS INCREASED OURING RUN*THERMAB5 OX,*(11) INDICATES TIME STEP HAS INCREASED OURING RUN*THERMAB5 WANTHUM TIME, HOURS*/10X,15,2X,*=IMAX*/10X,15,2X,*=JTHERMAB5 WERTICAL DISTANCE PERPENDICULAR TO THE DIRECTION OF THERMAB5 IS GIVEN BELOW*/3X,23F5.1)	C KHHU IS THE SHITCH TO DETERMINE DIRECTION OF ADIP SWEEP(HORIZONTAL C OR VERTICAL) 995 GO TO1991,531,KHHO 991 CALL COND1 C COND1 IS A SUBROUTINE THAT SOLVES ADIP IN THE Z DIRECTION IIT=IIT+1 KIT=KIT+1 IF(IIT-EQ.5)GO TO 296 IF(KKIT-GT.15)GO TO 222 IF(CENDM-EQ.0.0) GO TO 69 KK=1 DO 84 N=1,JPAX DO 84 N=1,JPAX DO 84 N=1,JPAX OO 84 M=1,IPAX IF(ABS(VIMP(N.M)-TMPS(N,M))/TMPS(N,M)).GT.TOL)GO TO 86 CONTINUE GO TO 67 86 DO 89 J=1,JMAX 87 VIMP(J,K)=TMPS(J,K) KNHO2=K)=TMAX 88 VIMP(J,K)=TMPS(J,K) KNHO2=K)=TMAX DO 297 K=1,JMAX TMPS(J,K)=TEMP(J,K) TMPS(J,K)=TEMP(J,K) IIT=0 TOL=TOL+=01	THERMABS
00 76 T=1,LMA 00 76 K=1,1MA 76 DIST(I,K)1=0.0 READ(5,200)IT 200 FORMAT(BFID.1 C PSOURCE TER 00 81 J=1,JMA 00 61 K=1,1MA TEMP[J,K)=TIT VIMP[J,K)=TIT 11 THP S(J,K)=TER 00 172 K=1,6 TEMP(LYMT=PF) VIMP(LYMT=PF) 172 TMP S(1,K)=TPF C C C C C C C C C C C C C C C C C C C	X P(1), i=1, nntp) PERATURES, DEGREES FAHRENHEIT X THERMAB5 THERMAB5 THERMAB5 THERMAB5 THERMAB5 THERMAB5 THERMAB5 THERMAB5 NN) NN) NN) NN) NN) BROUTINE THAT CALCULATES VARIABLE Y SPACING VALUES BROUTINE THAT CALCULATES I SPACING VALUES BROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT THERMAB5 BROUTINE THAT CALCULATES TOTAL HEAT REQUIREMENT	CM=CM+500D, GO TO 82 53 CALL CDNO2 C CDND2 IS A SUBROUTINE THAT SOVLES ADIP IN THE Y DIRECTION IF(DENOM.EQ.O.O) GO TO 69 KK=2 00 64 N=1,JMAX 00 64 M=1,JMAX 1F(ABS((VTMP(N.M)-TMPS(N.M))/TMPS(N.M)).GT.TOL) GO TO 65 64 CONTINUE GO TO 67 65 00 83 J=1+JMAX 00 83 K=1+JMAX 00 83 K=1+JMAX 01 NHP(J,K)=TMPS(J,K) KMHO=1 GO TO 62 67 00 66 J=1,JMAX DO 66 K=1,JMAX	THERMABS
			237

	•		
	JBMAX=JMAX-2	THERMAR5	
	IBMAX=IMAX-2	THERMARS	4 YMID(J)=0.5*(YPLUS(J)+YNEG(J)) 22241
	FIMAX=IMAX	THERMARS	RETURN 22241
C	THIS ACCOUNTS FOR THE HEAT STORED IN ROCK DO 40 J≈1,JMAX	22241 22241	END 22241
	SUM=0.	22241	SUBROUTINE CALCX DIMENSIUN TMPS(19,23),TEMP(19,23),W(19,23),G(19,23),Y(19),YPLUS(19THERMAB5
	DO BO K=1,18MAX,2	22241	1), YNEG(19), YMIO(19), TIMPS(19,23), AREA(19), H(19), HA(19), YMP(19,23) THERMABS
	E(K) = x(K+1) - x(K)		2,CAPT(19,23),CAP(19,23),X(23),XPLUS(23),XNEG(23),XMIC(23),COND(19,THERMAB5
	EA(K)=(X(K+2)-X(K+1))/E(K)		323),TP(1350),E(23),EA(23),SLTMP(8),DIST(8,23)
8) SUM=SUM+(E(K)+(FA(K)+1.)/(6.+EA(K)))+((2.+EA(K)-1.)+CAP(J+2.K)+(EA	ı	COMMON THPS, TEMP, W, G, Y, YPLUS, YNEG, YMID, JMAX, IMAX, CONC, DELIT, THERMABS
	1{K}+1.}**2*CAP{J+1,K}*EA{K}*(2EA{K})*CAP{J,K}} D AREA{J}=SUM		IDENUM, TTMPS,CAP,CAPT,X,XPLUS,XNEG,XMIO,IP,NN,TIME,LMAX,SLTMP,DIST THERMARS
4	BB2=0*	22241	NMAX=IMAX-I THERMAB5 DO 2 K=1,NMAX THERMAB5
	DO 90 J=1.JBMAX.2	22241	2 XPLUS(K) = X(K+1) - X(K) THERMAD
	H(J)=Y(J+1)-Y(J)	22241	DD 3 K=2 x I MAX THERMAD 5
	HA(J) = (Y(J+2)-Y(J+1))/H(J)	22241	3 XNEG(K)=X(K)-X(K-1) THERMAB5
9	D BR2=BB2+(H(J)*[HA(J)+[.]/(6.*HA(J]))*((2.*HA(J)-1.)*AREA(J+2)+(HA)		XNEG(1)=XPLUS(1) THERMARS
	1J)+1.)==2=AREA(J+1)+HA(J)=(2HA(J))=AREA(J))	22241	XPLUSTIMAX) = XNEG(IMAX) THERMAD5
c.	HTORG=Y(JMAX)•X(IMAX)•3149. HTORG=INITIAL HEAT CONTENT OF ROCK AT 100 DEGREES FAHRENMEIT	THERMAR5	DO 4 K=1,IMAX THERMAR5 4 XMID(K)=0.5*(XPLUS(K)+XNEG(K)) THERMAR5
· ·	HEAT=882-HTGRG	THERMAB5	RETURN THERMAND
74	L TIME=TIME+DELTT	THERMABS	END THERMADS
	IF(TIME.GT.3000.)GO TD 56		SUBROUTINE CONDI 22241
	TOL=.05		DIMENSION TMPS(19,23),TEMP(19,23),W(19,23),G(19,23),Y(19),YPLUS(19THERMAB5
_	GO TO 55		1).YNEG(19).YMID(19).TTMPS(19.23).AREA(19).H(19).HA(19).VTMP(19.23)THERMAB5
,	5 IF(TIME.GT,4000.)GO TO 57 TOL=.D4		2,CAPT(19,23),CAP(19,23),X(23),XPLUS(23),XMEG(23),XMID(23),COND(19,THERMAB5
	GD TD 55		323),TP(1350),E(23),EA(23),SLTMP(8),DIST(8,23) COMMON TMPS,TEMP,W,G,Y,YPLUS,YNEG,YMID,JMAX,IMAX,COND,DELTT, THERMAB5
5	7 IF(TIME.GT.5000.)G0 TO 58		IDENOM, ITMPS, CAP, SAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST THERMADS
	TOL=.03		NMA X=IMAX-7
	GO TO 55		DO 1 J=1, JMAX THERMAB5
5	3 IF(TIME.GT.CM)GO TO 59		DD 20 K≈1,1M4X THERMAB5
	TOL = . 02		IF(J-GT-1)GO TO 9
5	GO TO 55 9 TOL=.01		IF(K.GT.6)GO TD 9 THERMAR5 GO TO 20 THERMAR5
	5 ATMP=TIME		9 [FtJ-E0.1]60 to 78
	DD=DD+1.		51 IF(J-EO-JMAX)GD TD 7D 22242
	PP=PP+1.0		IF(K.EQ.1)GC TO 79 22242
	NN=NN+I		IF(K.EQ.IMAX)GD TO 8D 22242
	IF(PP.NE.1D.) GD TO 891	THERMAB5	CXPUS={COND(J,K)+COND(J,K+1))/2. 22241
	PP=0.0 WRITE(6,33)	THERMARS	CXMIN=(CDND(J,K)+CDND(J,K-1))/2. 22241
3	B FORMAT(1H1,2X2HJ=5X2H 15X2H 25X2H 35X2H 45X2H 55X2H 65X2H 75X2H 8	5 22241	CYPUS=(COND(J,K)+COND(J+1,K))/2. 22241 CYMIN=(COND(J,K)+COND(J-1,K))/2. 22241
-	1x2H 95X2H105x2H115x2H125x2H135X2H145X2H155X2H165X2H17)		60 10 77 22241
	DD 36 K=1,IMAX		79 CXPUS=(COND(J,K)+COND(J,K+1))/2. 22241
	WRITE(6,37)K,(TEMP(J,K),J=1,17)		CXMIN=CXPUS 22241
3	FORMAT(14,17F7.1)		CYPUS={COND(J,K)+COND(J+1,K))/2. 22241
210	WRITE(6,21D) FORMAT(1H1,2%,*J= 18*,5%,*19*)		CYMIN=(COND(J,K)+COND(J-1,K))/2.
210) FORMAT(1H1,2x,*J= 18*,5x,*19*) OO 211 K=1,IMAX		GO TO 77 22241 80 CXMIN=(COND(J,K)+COND(J,K-1))/2. 22242
211	HRITE(6,212)K, (TEMP(J,K), J=18,19)		80 CATINETOUNDISTRIFTUNDISTRIFT/72. 22242 CXPUS=CXMIN 22241
	FORMAT(14,2F7.1)		CYPUS=(CONO(J,K)+CONO(J+1,K))/2. 22241
88	WRITE(6.30)TIME.HEAT.HTCRG.DELTT	THERMAB5	CYMIN=(COND(J,K)+COND(J-1,K))/2. 22241
30	FORMATIFID.1,2x, "HOURS"/E18.8.2x, "BTU OF HEAT STORED IN RESERVOIR"	THERMAB5	GD TO 77 22241
		THERMAB5	78 IF(K-EQ-1)GD TD 75
С	CALL CONTR CONTR IS A SUBROUTINE THAT CALCULATES THE POSITION OF SELECTED		IF(K.EQ.1MAX)GD TO 76 22242 CXPUS=(COND(J,K)+COND(J,K+1))/2. 22242
č	ISOTHERMS		CXMIN=(COND(J,K)+COND(J,K-1))/2. 22242
	KIT=D		CYPUS=(COND (J,K)+COND(J+1,K))/2. 22242
	IIT=0		CYMIN=CYPUS 22242
_	IF(NN.GT.NNTP)GO TO 100		GO TO 77 22242
c	BELOW A NEW SOURCE TEMPERATURE IS CALLED IN DO 173 K⇒1.6	THERMABS	70 IF(K.EQ.1)GO TO 72 22242 IF(K.EQ.1MAX)GO TO 73 22242
	VTMP(1,K)=TP(NN)	THERMAD	IF(K.EO.IMAX)GO TO 73 22242 CXPUS=(COND(J,K)+COND(J,K+1))/2. 22242
17	THPS(1,K)=TP(NN)		CXMIN=(COND(J,K)+COND(J,K-1))/2. 22242
•	GO TO (86,65),KK		CYMIN={COND(J,K}+COND(J-1,K})/2. 22242
222	WRITE(6,223)DD,KIT		CYPUS=CYMIN 22242
	FORMAT(3X,F10.0,15)	THERMARS	GO TO 77 22242
69	STOP	THERMASS	72 CXPUS=(COND(J,K)+COND(J,K+1))/2. 22242
	SUBROUTINE CALCY	22241	CXMIN=CXPUS 22242 CYMIN=(COND(J,K)+COND(J-1,K))/2. 22242
	DIMENSION TMPS(19,23), TEMP(19,23), W(19,23), G(19,23), Y(19), YPLUS(19		CYPUS=CYMIN 22242
	1), YNEG(19), YMID(19), TTMPS(19,23), AREA(19), H(19), HA(19), YTMP(19,23)	THERMABS	GO TO 77 22242
	2,CAPT(19,23),CAP(19,23),X(23),XPLUS(23),XNEG(23),XMID(23),COND(19,	THERMAB5	73 CXMIN=(COND(J,K)+COND(J,K-1))/2. 22242
•	323), TP(1350), E(23), EA(23), SLTMP(8), DIST(8,23)	THERMARS	CXPUS=CXMIN 22242
	COMMON TMPS.TEMP.W.G.Y.YPLUS.YNEG.YMID.JMAX.IMAX.COND.DELTT. 10ENOM.TTMPS.CAP.CAPT.X.XPLUS.XNEG.XMID.TP.NN.TIME.LMAX.SLTMP.DIST		
	NMAX=JMAX-1	22241	
	DO 2 J×1,NMAX	22241	
2	* *PLUS{J}=Y{J+1}-Y{J}	22241	
	DO 3 J=2, JMAX	22241	
3	YNEG(J) *Y(J) -Y(J-1)	22241 22241	
	YNEG(1)=YPLUS(1) YPLUS(JMAX)=YNEG(JMAX)	22241	
	DD 4 J=1,JMAX	22241	

CYMIN=(COMD(J,K)+COMD(J-1,K))/2. CYPUS=CYMIN GO TO 77	22242 22242 22242	2,CAPT(19,23),CAP(19,23),X(23),XPLUS(23),XNEG(23),XMID 323),TP(1350),E(23),EA(23),SLTMP(8),DIST(8,23)	
75 CXPUS=(CDND(J,K)+CDND(J,K+1))/2.	22242	COMMON THPS, TEMP, N, G, Y, YPLUS, YNEG, YMID, JMAX, IMAX, COND	DELTT, THERMASS
CXMIN=CXPUS	22242	1DENOM.TTMPS.CAP.CAPT.X.XPLUS.XNEG.XHID.TP.NN.TIME.LMA	X, SLTMP, DIST THERMAB5
CYPUS=(COND(J,K)+COND(J+1,K))/2.	22242	NMAX=JMAX-2	***
CYMIN=CYPUS	22242	DO 1 K=1+IMAX	
GD TO 77	22242	DD 20 J=1,JMAX	
76 CXMIN=(COND(J,K)+CDND(J,K-1))/2.	22242	IF(J_GT_1)GD TD 9	THERMABS
CXPUS=CXMIN	22242	IF(K.GT.6)GD TO 9	THERMAB 5
<pre>CYPUS=(COND(J,K)+COND(J+1,K))/2.</pre>	22242	GD TO 2D 9 IF(J.EQ.1)GD TO 78	THERMAB5 22242
CYMIN=CYPUS	22242	61 IF(J.EQ.JMAX)GD TD 70	22242
77 CXMIN=CXMIN*.71428		IF(K,E0.1)GD TO 79	22242
CXPUS=CXPUS#;71428		IF(K.EQ.IMAX)GD TD 8D	22242
B1=-{1.+(XNEG(K)*CXPUS)/(XPLUS(K)*CXMIN);(XNEG(K)*X 1))/(CXHIN*DELTT*TMPS(J;K));	MID(KI*CAPI(J*K	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22241
C1=(XNEG(K)=CXPUS)/(XPLUS[K)=CXMIN)	THERMAB5	CXMIN=(COND(J,K)+CDND(J,K-1))/2.	22241
A1=1.0	Mekhado	CYPUS=(COND(J,K)+CDND(J+1,K))/2.	22241
D14=-(XMID(K)+XNEG(K)/(CXMIN+YMID(J)))	THERMAB5	CYMIN=(COND(J+K)+COND(J-1,K))/2.	22241
IF(J.LT.JMAX)GO TD 22	22241	GO TO 77	22241
D15=CYPUS*(TMPS(J-1,K)-TMPS(J,K))/YPLUS(J)	THERMAB5	79 EXPUS=(COND(J,K)+COND(J,K+1))/2. CXMIN=CXPUS	22242
GO TO 90	22241	CYPUS={COND(J,K)+COND(J+1,K)}/2.	22242 22241
22 DISECYPUS (TMPS(J+1,K)-TMPS(J,K))/YPLUS(J)	THERMAB 5	CYMIN=(COND(J,K)+COND(J+1,K))/2.	22241
90 IF(J.GT.1)GD TD 91		GO TO 77	22241
D16=CYMIN+(TMPS(J,K)-TMPS(J+1,K))/YNEG(J)	THERMA85	80 CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242
GO TO 92 91 O16=CYMIN•{TMPS(J,K)-TMPS(J+1,K})/YNEG(J)	THERMAB 5	CXPUS=CXMIN	22242
92 D17=(XNEG(K)+XMID(K)+CAP(J,K))/(DELTT+CXMIN)	THERMADO	CYPUS=(COND(J,K)+COND(J+1,K))/2.	22241
DI=D14*(D15-D16)-D17	22241	CYMIN=(CDND(J,K)+CDND(J-1,K))/2.	22242
1F(J.GT-1)GO TO 4	THERMAB5	GD TO 77	22241
IF(K.GT.7)G0 TO 3	THERMAB5	78 IF(K.EQ.1)GG TO 75	22242
H(1,7)=C1/B1	THERMAB5	IF(K.EQ.IMAX)GD TD 76	22242
$G(1,7) = \{D1 - A1 + TMPS(1,6)\}/B1$	THERMAB5	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22242
GD TD 20	THERMAR5	CXMIN=(CDND(J,K)+CDND(J,K-1))/2. CYPUS=(CDND(J,K)+CDND(J+1,K))/2.	22242 22242
4 IF(K.NE.1)GO TO 3	22241	. CYMIN=CYPUS	22242
C1=C1+1.	THERMAB5	GO TO 77	22242
A1=0.0	22241	7D IF(K.E0.1)GD TO 72	22242
W(J,1)=C1/B1	22241	IF(K.EQ.IMAX)GO TO 73	22242
G(J+1)=D1/B1 GD TO 20	22241 22241	CXPUS=(COND(J,K)+COND(J,K+1))/2.	22242
3 IF(K.NE.IMAX)GD TO 5	22241	CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242
AI=1.+CI	THERMAB5	CYMIN=(COND(J,K)+CGND(J-1,K))/2.	22242
C1=0.	THERMAB5	CYPUS=CYMIN	22242
GD TO 10	22241	_ GO TO 77	22242
5 A1=1.0	22241	72 CXPUS≂(COND(J,K)+CDND(J,K+1J)}/2. CXMIA=CXPUS	22242
10 DENOM=81-A1*W(J,K-1)	22241	CYMIN=(CDND(J,K)+CDND(J-1,K))/2.	22242
IF(DENOM.NE.O.)GO TO 18	22241	CYPUS=CYMIN	22242 22242
WRITE(6,50)	22241	GD TO 77	22242
50 FDRMAT(18H ZERD DENOMINATOR.) GO TO 800	22241 22241	73 CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242
18 W(J+K)=C1/DENDM	22241	C XPUS=C XMIN	22242
G(J,K)=(D1-A1+G(J,K-1))/DENDM	22241	CYMIN=(COND(J,K)+COND(J-1,K))/2.	22242
20 CDNTINUE	22241	CYPUS=CYMIN	22242
TTMPS(J, [MAX)=G(J, [MAX)		GO TO 77	22242
IF(J.NE-1)GO TD 31		75 CXPUS=(CDND(J,K)+CGND(J,K+1})/2.	22242
00 30 [=1,NMAX		CXMIN=CXPUS	22242
I I = I MAX-1		CYPUS=(COND(J,K)+COND(J+1,K))/2. CYMIN=CYPUS	22242
<pre>30 TTMPS(J,II)=G(J,II)-H(J,II)+TTMPS(J,II+1)</pre>		GO TO 77	22242
GO TO 1		76 CXMIN=(COND(J,K)+COND(J,K-1))/2.	22242 22242
31 DO: 32 I'=2, I MAX		CXPUS=CXMIN	22242
[I=IMAX+1-]		CYPUS=(COND(J,K)+COND(J+1,K))/2.	22242
<pre>32</pre>	22241	CYMIN=CYPUS	22242
DO 95 J=1.JMAX	20241	77 CXMIN=CXMIN=.71428	
DO 95 K=1,1MAX		CXPUS=CXPUS=.71428	
TMPS(J,K)=TTMPS(J,K)		BI=-(1.+(CYPUS+YNEG(J))/(YPLUS(J)*CYMIN)+(YNEG(J)*YHI	D(J)+CAPT(J,KTHERMAB5
95 CONTINUE		1))/(DELTT+CYMIN+TMPS(J+K))	THEOMETE
OD 172 K=1,6	THERMAB5	A1=1. C1={YNEG(J)*CYPUS}/{YPLUS{J}*CYMIN}	THERMAB5 Thermab5
172 TMPS(1,K)=TP(NN)		D14= -(YMID(J)=YNEG(J)/(CYMIN=XMID(K)))	IHEKMADO
CALL CAPAC		IF(K.LT.IMAX) GD TD 24	
CALL COND4	****	D15= CXPUS+(TMPS(J,K-1)-TMPS(J,K))/XPLUS(K)	THERMAB5
BOO RETURN :	22241 22241	GO TO 25	THE MAD D
END SUBROUTINE COND2	22241 22241	24 DIS= CXPUS+(TMPS(J,K+1)-TMPS(J,K))/XPLUS(K)	THERMAB5
OURROUTING COMINS - DIMENSION TMPS(19,23),TEMP(19,23),H(19,23),G(19,23)		25 1F(J.LT.2)GC TO 26	THERMAB5
1), YNEG(19), YMID(19), TTMPS(19,23), 4REA(19), H(19), HA(19).VIMP(19.23)THERMAB5	IF(K.GT.1)GC TO 26	THERMAB5
111111111111111111111111111111111111111			

	D16=CXMIN+(TMPS(J,K)-TMPS(J,K+1))/XNEG(K)	
	GO TO 27	THERMAB5
26	D16=CXMIN=(IMPS(J,K)-TMPS(J,K-1))/XNEG(K) D17=(CAP(J,K)=YMIO(J))*YNEG(J))/(DELTT=CYMIN)	THERMAB5
٠ .	01=014*(D15-016)-017	THERMAB5 22241
	IF(K.GT.6)GO TO 4	THERMAB5
	IF(J.GT.2)GD TO 3 W(2,K)=C1/B1	THERMAB5 22241
	G(2,K)=(D1~A1*TMPS(1,K))/B1	22241
4	GO TÓ 20 IF(J.GT.1)GO TO 3	22241 THERMAB5
	C1=C1+A1	THERMARS
	AI=0.0 W(1,K)=C1/B1	THERMAB5
	G(1,K)=DI/B1	THERMAB5
. 2	GO TO 20	THERMAR5
	IF(J.NE.JMAX)GO TO 10 'A1≈A1+C1	22241 22241
	C1=0.0	22241
10	DENOM=B1-A1-W(J-1,K) 1F(DENOM.NE.C.)GD TD 18	22241 22241
	WR1TE(6,50)	22241
	FORMAT(18H ZERO DENOMINATOR.) H(J,K)=C1/DENDM	22241
10	G(J,K)=(D1-A1+G(J-1,K))/DENDM	22241 22241
20	CONTINUE	22241
	TTMPS(JMAX,K)=G(JMAX,K) IF(K.GT.6)GO TO 31	
	DO 30 I=1;NMAX	
30	<pre>II=JMAX-I ITMPS(II,K)=G(II,K)-W(II,K)+TTMPS(II+I,K)</pre>	
	GO TO 1	
31	DO 32 I=2,JMAX	
32	II=JMAX+1-I TTMPS(II,K)=G(II,K)-W(II,K)*TTMPS(II+1.K)	
1	CONTINUE	22241
	00 95 J=1,JMAX 00 95 K=1,IMAX	THERMAB5
	TMPS(J+K1=TTMPS(J+K)	INEKHABO
95	CDNTINUE DD 172 K=1,6	
172	TMPS(1,K)=TP(NN)	THERMAB 5
	CALL CAPAC CALL COND4	
800	CALL LUND4	
	RETURN	22241
	FND	22241 22241
	FND	22261
	ENO SUBROUTINE CAPAC DIMENSION TMPS(19,23),TEMP(19,23),H(19,23),G(19,23),Y(19),YPLUS(1 J1,YNEG(19),YMID(19),TTMPS(19,23),ARFA(19),H(19),HA(19),VTMP(19,23)	22241 9THERMAB5)THERMAB5
	END SUBROUTINE CAPAC DIMENSION TMPS(19,23),TEMP(19,23),W(19,23),G(19,23),Y(19),YPLUS(1: 11,YNEG(19),YMID(19),TIMPS(19,23),AREA(19),W(19),HA(19),VTMP(19,23) 2,CAPT(19,23),CAP1(19,23),X(23),XPLUS(23),XNEG(23),XNE	22241 9THERMAB5)THERMAB5
į	END SUBROUTINE CAPAC DIMENSION THPS(19,23),TEHP(19,23),W(19,23),G(19,23),Y(19),YPLUS(1: 11.*NEG(19),TMID(19),TTMPS(19,23),ARA(19),W(19),HA(19),VTMP(19,23 2CAPF(19,23),CAP1(19,23),K231),XMID(23),COND(19, 323),TP(1350),G(23),EA(23),SLTMP(8),DIST(8,23) COMMON IMPS,TEMP,M,GY,YPPUS,YMEG,YMID,MAX,IMAX,CONG,DELTT.	22241 9THERMAB5)THERMAB5 •THERMAB5
į	END SUBROUTINE CAPAC DIMENSION TMPS(19,23), TEMP(19,23), M(19,23), G(19,23), Y(19), YPLUS(1) LI, NNEG(19), YMTD(19), TTMPS(19,23), ARFA(19), M(19), HA(19), VTMP(19,23) 2, CAPT(19,23), CAP(19,23), X(23), XPLUS(23), XMEG(23), XMID(23), COND(19,23), TMPS(19,23), TMPS(19,13), TMPS(19,13), TMPS(19,13) COMMON TMPS, TEMP, N, G, Y, YPLUS, YMEG, YMTD, MAX, LMAX, CONG, DELTT, LDEMON, TMPS, CAP, CAPT, X, XPLUS, XMEG, XMTD, TP, NN, TIME, LMAX, SLTMP, DIST	22241 9THERMAB5)THERMAB5 •THERMAB5
į	END SUBROUTINE CAPAC DIMENSION TMPS(19,23),TEMP(19,23),W(19,23),G(19,23),Y(19),YPLUS(1: 11.*NEG(13),TMID(13),TTMPS(19,23),ARA(19),W(19),HA(19),VTMP(19,23) 2CACPF(19,23),CAP1(19,23),K213),ARA(19),SUTMP(19,23) 233),TP(1350),E(23),EA(23),SLTMP(18),DIST(18,23) COMMON IMPS,TEMP,M,GY,YPLUS,YWEG,YMID,MAX,IMAX,CONC,DELTT, 1DENOM,TIMPS,CAP,CAPT,X,XPLUS,XMEG,XMID,TP,NN,TIME,LMAX,SLTMP,DIST 1DENOM,TIMPS,CAP,CAPT,X,XPLUS,XMEG,XMID,TP,NN,TIME,LMAX,SLTMP,DIST 1DC 23/16-11-MAX	22241 9THERMAB5)THERMAB5 •THERMAB5
į	END SUBROUTINE CAPAC DIMENSION TMPS(10,23), TEMP(10,23), H(10,23), G(10,23), Y(10), YPLUS(1 DIMENSION TMPS(10,23), TEMP(10,23), ARFA(10), H(10), HA(10), YTMP(10,23 2,CAP(10),23), CAP(10), Z3), X(23), XPLUS(23), XNEG(23), XMID(23), CDD(10,23) 323), TP(1350), E(23), EA(23), SLTMP(8), DIST(8,23) COMMON TMPS, TEMP, M, GY, Y, YPLUS, YNEG, YMID, MAX, IMAX, CONC, DELTT, DENOM, TTMPS, CAP, CAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DC 222 L=1, JMAX DC 222 K=1, JMAX TETTIME CEO., OOJ GC TC 9	22241 9THERMAB5)THERMAB5 •THERMAB5
į	END SUBROUTINE CAPAC DIMENSION THPS(19,23), TEMP(19,23), H(19,23), G(19,23), Y(19), YPLUS(1) 11, YNEG(19), YRID(19), TTMPS(19,23), ARFA(19), H(19), HA(19), YTMP(19,23) 2, CAPT(19,23), CAP(19,23), X(123), XPLUS(23), XNEG(23), XMID(23), COND(19,23), TP(18), TP(18,23) 2, TP(18), SUBS(19,23), SUBS(18,23) COMMON TMPS, TEMP, N, G, Y, YPLUS, YNEG, YMID, JMAX, TMAX, CONG, DELTT, 1DEMON, TIMPS, CAP, CAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 232 J=1, JMAX 1F(TTME, EQ. G, ODG TO 9 1F(TTMPS, LX, LY, LAN, CO, OD) GD TO 232 1F(TTME, LY, LY, LX, LX, LOO, OD) GD TO 232	22241 9THERMAB5)THERMAB5 •THERMAB5
	END SUBROUTINE CAPAC DIMENSION THPS(19,23), TEMP(19,23), M(19,23), G(19,23), Y(19), YPLUS(1) I.N.WEG(19), YMTD(19), TTMPS(19,23), ARFA(19), M(19), HA(19), VTMP(19,23) 2.CAPT(19,23), CAP(19,23), K(23), XPLUS(23), XMEG(23), XMID(23), COND(19,23) 3.7), TP(1380), F(23), EAL(23), SLTMP(18), DIST (18,23) COMMON TMPS, TEMP, N.G.Y, YPLUS, YMEG, YMTD, JMAX, TMAX, CONG, DELTT, 1DEMON, THPS, CAP, CAPT, X, XPLUS, XMEG, XMTD, TP, NN, TIME, LMAX, SLTMP, DIST DO 232 J=1, JMAX IF(TTME-EQ.0-DIGG TO 9 IF(TMPS(14,K).LT.100.01) GD TO 232	22241 9THERMAB5)THERMAB5 •THERMAB5
9	END SUBROUTINE CAPAC DIMENSION THPS(19,23), TEMP(19,23), H(19,23), G(19,23), Y(19), YPLUS(1) L1, VNEG(19), YTD(19), TTMPS(19,23), AREA(19), H(19), HA(19), VTMP(19,23) 2-CAPT(19,23), CAP(19,23), X(23), XPLUS(23), XNEG(23), XMID(23), COND(19,23), TY(130), E(23), EA(23), XLTMP(8), DIST(8,23) COMMON THRPS, TEMP, HAGY, YPVLUS, YNEG, YHID, MAX, HMAX, CONC, DELTT, DENGM, TTMPS, TEMP, HAGY, YPVLUS, YNEG, YHID, MAX, HMAX, CONC, DELTT, DENGM, TTMPS, TEMP, CAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 232 L=1, MAX DO 232 K=1, MAX DO 232 M=1, MAX DO 232 M=1, MAX DO 232 M=1, MAX	22241 9THERMAB5)THERMAB5 •THERMAB5
9	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], H[19,23], G[19,23], Y[19], YPLUS[1] LI, NHEG[19], YMED[19], TTMPS[19,23], AREA[19], H[19], HA[19], VTMP[19,23] 2, CAPT[19,23], CAP[19,23], X[23], XPLUS[23], XMEG[23], XMID[23], CONDOIL 19 232], TP[1350], E(23), EA(23), SLTMP(3), DIST(8,23] COMMON THPS, STEMP, N, GY, YPLUS, YNEG, THID, JMAX, JMAX, COND, DELTT, JDENGM, TTMPS, CAP, CAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 232 L-1, JMAX DO 232 K-1, JMAX DO 232 K-1, JMAX TO 234 K-1, JMAX TO 235 K-1, JMAX	22241 9THERMAB5)THERMAB5 •THERMAB5
9	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], M[19,23], G[19,23], Y[19], YPLUS[1] I.N.WEG[19], YMED[19], TTMPS[19,23], ARFA[19], M[19], HA[19], VTMP[19,23] 2.CAP[1[9,23], CAP[19,23], K23], XPLUS[23], XMEG[23], XMED[23], XMED[22241 9THERMAB5)THERMAB5 •THERMAB5
9 233	END SUBROUTINE CAPAC DIMENSION THPS[10,23], TEMP[19,23], M[19,23], G[19,23], Y[19], YPLUS[1] I, *NEG[19], *YRID(19), TTMPS[19,23], ARFA[19], M[19], HA[19], VTMP[19,23] 2, CAPT[19,23], CAP[19,23], K23], XPLUS[23], XMEG[23], XMID(23], COND[19,23] 3, TP[1300], H2[23], EAL[23], SLTMP[18], DIST[8,23] COMMON TMPS, TEMP, N, G, Y, YPLUS, YMEG, YMID, JMAX, IMAX, CONG, DELTT, IDEMON, THPS, CAPT, X, XPLUS, XMEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 232 J=1, JMAX IF(TIME, LEO, LOJGO TO 9 IF(TMPS[1], K1), LT, 100, 01] GD TO 232 IF(TMPS[1], K1), LT, 100, 01] GD TO 232 IF(TMPS[1], K1, LT, 100, 01] IF(TMPS[1], K1, LT, 100, 01] IF(TMPS[1], K1, LT, 100, 01] CO TO 232 IF(TMPS[1], K1, G1, 900, 160 TO 234 CAPT[1], K1)=[130, 0+, 344*(TMPS[1], K) -450, 1)*134.0 GO TO 232 IF(TMPS[1], K1, G1, 130, 0+, 344*(TMPS[1], K) -450, 1)*134.0 GO TO 232 IF(TMPS[1], K1, G1, 130, 0+, 344*(TMPS[1], K1, -900, 1)	22241 9THERMAB5)THERMAB5 •THERMAB5
9 233 234	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], H[19,23], G[19,23], Y[19], YPLUS[1] LINNEG[19], YRID[19], TTMPS[19,23], AREA[19], H[19], HA[19], VTMP[19,23] 2.CAPT[19,23], CAP[19,23], X[23], XPLUS[23], XNEG[23], XMID[23], CONDOIL 232], TP[1350], E(23), EA(23), SLTMP(3), DIST(8,23] COMMON THPS, STEMP, M, GV, YPLUS, YNEG, YHID, JMAX, JMAX, COND, DELTT, JDENGM, TTMPS, CAP, CAPT, X, XPLUS, XNEG, XHID, TP, NN, TIME, LMAX, SLTMP, DIST DO 232 L-1, JMAX DO 232 K-1, JMAX DO 232 K-1, JMAX TETTIME, CAP, CAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 1232 LFI, JMAX CO 252 K-1, JMAX CO 253 K-1, JMAX CO 254 K-1, JMAX CO 255 K-1, JMAX	22241 9THERMAB5)THERMAB5 •THERMAB5
9 233 234	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], H[19,23], G[19,23], Y[19], YPLUS[1] LINNEG[19], YRID[19], TTMPS[19,23], AREA[19], H[19], HAI[19], VTMP[19,23] 2, CAPT[19,23], CAP[19,23], K2[23], XPLUS[23], XNEG[23], XMID[23], CONDOIL 233], TP[1350], H[23], EAL(23), SLTMP(3), DIST(8,23] COMMON TMPS, TEMP, N, GY, YPLUS, YNEG, THID, JMAX, JMAX, COND, DELTT, JDENGM, TTMPS, CAP, CAPT, X, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 222 H1, JMAX DO 232 K1, JMAX CAPTIJ, K1, G1, G1, G1, G1, G1, G1, G1, G1, G1, G	22241 9THERMAB5)THERMAB5 •THERMAB5
9 233 234 235	END SUBROUTINE CAPAC DIMENSION THPSI(19,23), TEMP(19,23), M(19,23), G(19,23), Y(19), YPLUS(1) I.N.WEG(19), YMTD(19), TTMPSI(19,23), ARFA(19), M(19), HA(19), VTMP(19,23) 2.CAPT(19,23), CAPT(19,23), CAPT(19,23), XMEG(23), XMEG(2	22241 9THERMAB5)THERMAB5 •THERMAB5
9 233 234 235	END SUBROUTINE CAPAC DIMENSION THPS(19,23),TEMP(19,23),H(19,23),G(19,23),Y(19),YPLUS(11),NEG(19),MTD(19),TTMPS(19,23),ARFA(19),H(19),HA(19),VTMP(19,23) 2,CAPT(19,23),CAPT(19,23),K123),XPLUS(23),XMEG(23),XMID(23),XMID(23),TMD(23),T	22241 9THERMAB5)THERMAB5 •THERMAB5
9 233 234 235	END SUBROUTINE CAPAC DIMENSION THPS(19,23), TEMP(19,23), H(19,23), G(19,23), Y(19), YPLUS(11), NEG(19), YMID(19), TIMPS(19,23), AREA(19), H(19), HA(19), VTMP(19,23) 2, CAPT(19,23), CAPT(19,23), X(23), XPLUS(23), XMEG(23), XMID(23), COND(19,23), TYLUS(23), COMMON TMPS, TEMP, N, G, Y, YPLUS, YNEG, YMID, JMAX, TMAX, CONC, DELTT, 1DEMON, TIMPS, CAP, CAPT, XX, XPLUS, XNEG, XMID, TP, NN, TIME, LMAX, SLTMP, DIST DO 22Z L=1, JMAX DO 22Z L=1, JMAX 1F(TIME, EGO.GO) GO TO 9 1F(TMPS(1,1K), LT, 100,01) GD TD 232 1F(TMPS(1,1K), LT, 100,01) GD TD 232 1F(TMPS(1,1K), LT, 100,01) GD TD 234 CAPT(1,1K), LT, 100,01) GD TD 234 CAPT(1,1K), LT, 100,01) GD TD 235 CAPT(1,1K), LT, 100,01) GC TD 236 CAPT(1,1K), LT, 100,016C TD 235 CAPT(1,1K), LT, 100,016C TD 236 CAPT(1,1K), LT, 100,0	22241 9THERMAB5)THERMAB5 •THERMAB5
9 233 234 235	END SUBROUTINE CAPAC DIMENSION THPS(19,23),TEMP(19,23),M(19,23),G(19,23),Y(19),YPLUS(1) 1),YNEG(19),YMTD(19),TTMPS(19,23),ARFA(19),M(19),HA(19),VTMP(19,23) 2,CAPT(19,23),CAPT(19,23),XCAP(19,23),XMEG(23),XMEG(23),XMED(23	22241 9THERMABS 9THERMABS 9THERMABS 9THERMABS 9THERMABS 9THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS[10,23], TEMP[10,23], M(10,23), G(10,23), Y(10), YPLUS(1) I, *NEG(10), *YEID(10), TTMPS[10,23], ARFA(10), M(10), HA(10), YTMP(10,23) 2, CAPT(10,23), CAPT(10,23), CAPT(10,23), XMEG(23), XMEG(2	22241 9THERMABS THERMABS THERMABS THERMABS THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS(19,23),TEMP(19,23),M(19,23),G(19,23),Y(19),YPLUS(11),NEG(19),YM(10),TIMPS(19,23),ARFA(19),M(19),HA(19),VTMP(19,23) 2,CAPT(19,23),CAPT(19,23),X(23),XPLUS(23),XMEG(23),XMID(23),COND(19 23),TP(139),G(23),CAPT(23),STMP(18),DIST(18,23) COMMON TMPS,TEMP,N,G,Y,YPLUS,YMEG,YMID,JMAX,TMAX,CONC,DELTT, 1DEMON,TIMPS,CAP,CAPT,X,YPLUS,XMEG,XMID,TP,NN,TIME,LMAX,SLTMP,DIST DO 23Z J=1,JMAX DO 23Z J=1,JMAX IF(ITME-E0.0.0)GO TC 9 1F(ITMPS(1,K).LT.100.01) GO TO 232 1F(ITMPS(1,K).LT.100.01) GO TO 232 1F(ITMPS(1,K).LT.100.01) GO TO 232 1F(ITMPS(1,K).LT.100.01) GO TO 234 CAPT(1,K).LT.100.01) GO TO 234 CAPT(1,K).G(1,900.)GO TC 234 CAPT(1,K).G(1,900.)GO TC 235 1F(1MPS(1,K).GT.100.)GC TO 235 1F(1MPS(1,K).GT.100.)GC TO 235 1F(1MPS(1,K).GT.100.)GC TO 236 CAPT(1,K)=134.0*(285.0*.485*(ITMPS(1,K)-900.)) GO TO 232 1F(1MPS(1,K).GT.1100.)GC TO 236 CAPT(1,K)=134.0*(694.0*.247*(ITMPS(1,K)-1100.)) GO TO 232 1F(1MPS(1,K)=134.0*(694.0*.247*(ITMPS(1,K)-1600.)) CONTINUE RETURN END SUBROUTINE COND4 DIMENSIUN TMPS(19,23),TEMP(19,23),M(19,23),G(19,23),Y(19),YPLUS(11),YMEG(19),TMPS(19,23),AREA(19),M(19),HA(19),YTMP(19,23)	22241 9THERMABS THERMABS THERMABS THERMABS THERMABS THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS(19,23), TEMP(19,23), H(19,23), G(19,23), Y(19), YPLUS(1) I, NREG(19), YMID(19), TIMPS(19,23), AREA(19), H(19), HA(19), VTMP(19,23) 2, CAPT(19,23), CAPT(19,23), K2(23), XPLUS(23), XMEG(23), XMID(23), COND(19 23), TP(1380), E(23), EAL(23), SLTMP(18), DIST(18,23) COMMON TMPS, TEMP, N.G.Y.YPLUS, YNEG, YMID, JMAX, TMAX, CONC, DELTT, 1DC 322 J=1, JMAX DO 222 J=1, JMAX DO 222 J=1, JMAX FICTIME.EO.GO.1GO TO 9 IFTTMPS(1, KN.LT.100.01) GD TO 232 IFTTMPS(1, KN.LT.100.01) GD TO 232 IFTTMPS(1, KN.LT.100.01) GD TO 232 IFTTMPS(1, KN.LT.100.01) GD TO 234 CAPT(1, KN.LT.100.01) GD TO 234 CAPT(1, KN.LT.100.01) GD TO 235 IFTTMPS(1, KN.LT.100.01) GD TO 236 CAPT(1, KN.LT.100.01) GC TO 236 CAPT(1, KN.LT.100.01) GC TO 236 CAPT(1, KN.LT.100.01) GD TO 236 CAPT(1, KN.LT.100.01) TO	22241 9THERMABS THERMABS THERMABS THERMABS THERMABS THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], M[19,23], G[19,23], Y[19], YPLUS[1] I, YNEG[19], YRID[19], TTMPS[19,23], ARFA[19], M[19], HA[19], VTMP[19,23] 2, CAPT[19,23], CAPT[19,23], K2P[19,23], XNEG[23], XNEG[23]	22241 9THERMABS THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], M[19,23], G[19,23], Y[19], YPLUS[1] I, YNEG[19], YTD[19], TTMPS[19,23], ARFA[19], M[19], HA[19], VTMP[19,23] 2, CAPT[19,23], CAPT[19,23], K29[19,23], XNEG[23],	22241 9THERMABS THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], M(19,23), G(19,23), Y(19), YPLUS(1) 11, NREG[19], YMED(19), TTMPS[19,23], AREA[19], H(19), HA(19), VTMP(19,23) 2, CAPT(19,23), CAPT[19,23], K(23), XPLUS(23), XMEG[23], XMED(23), X	22241 9THERMABS THERMABS THERMABS THERMABS THERMABS 9THERMABS 1THERMABS THERMABS THERMABS THERMABS
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPS[19,23], TEMP[19,23], M1[19,23], G[19,23], Y[19], YPLUS[1] 11, YNEG[19], YMED[19], TTMPS[19,23], AREA[19], H1[9], HA[19], VTMP[19,23] 2, CAPT[19,23], CAP[19,23], K2[23], XPLUS[23], XNEG[23], XMED[23],	22241 9THERMABS THERMABS THERMABS THERMABS THERMABS 1HERMABS 1HERMABS THERMABS THERMABS THERMABS THERMABS THERMABS THERMABS 22242
9 233 234 235 236 232	END SUBROUTINE CAPAC DIMENSION THPSI(19,23), TEMP(19,23), M(19,23), G(19,23), Y(19), YPLUS(1) I, YNEG(19), YRID(19), TTMPSI(19,23), ARFA(19), M(19), HA(19), VTMP(19,23) 2, CAPT(19,23), CAPT(19,23), K(29), XPLUS(23), XNEG(23), XMID(23), COND(19,23), TP(19), CAPT(19,23), CAPT(19,23), CAPT(19,23), CAPT(19,23), CAPT(19,23), CAPT(19,23), TP(18), DIST(18,23) COMMON TMPS, TEMP, N, G, Y, YPLUS, YNEG, YMID, JMAX, TMAX, CONG, DELTT, 100 232 J=1, JMAX DC 232 K=1, JMAX IF(ITME-EQ.0.01GC TO 9 IF(ITMPSIJ, K). LT. 100.01) GD TO 232 IF(ITMPSIJ, K). LT. 100.01) GD TO 232 IF(ITMPSIJ, K). LT. 100.01) GD TO 232 IF(ITMPSIJ, K). LT. 100.01 GD TO 234 CAPTIJ, K). 130.0 \(\dangle \). 344*(TMPSIJ, K) \(\dangle \). 450.1) \(\dangle \). 344.0 GD TO 232 IF(ITMPSIJ, K). G(1.100.1GC TO 235 CAPTIJ, K). 134.0 \(\dangle \). (285.0 \(\dangle \). 485*(TMPSIJ, K) \(\dangle \). 900.1) GD TO 232 IF(ITMPSIJ, K). G(1.100.1GC TO 236 CAPTIJ, K). 134.0 \(\dangle \). (382.0 \(\dangle \). 6240*(TMPSIJ, K) \(-100.1)\) GD TO 232 CAPTIJ, K). 134.0 \(\dangle \). (382.0 \(\dangle \). 6240*(TMPSIJ, K) \(-100.1)\) GD TO 232 CAPTIJ, K). 134.0 \(\dangle \). (382.0 \(\dangle \). 6240*(TMPSIJ, K) \(-100.1)\) GD TO 232 CAPTIJ, K). 134.0 \(\dangle \). (382.0 \(\dangle \). 6240*(TMPSIJ, K) \(-100.1)\) GD TO 232 CAPTIJ, K). 135.0 \(\dangle \). (392.0 \(\dangle \). 6240*(TMPSIJ, K) \(-100.1)\) GD TO 232 CAPTIJ, K). 135.0 \(\dangle \). (392.0 \(\dangle \). (393.0 \(\dangle \). (493.0 \(\dangle \). (494.0 \(\dangle \)	22241 9THERMABS THERMABS THERMABS THERMABS THERMABS 1HERMABS 1HERMABS THERMABS THERMABS THERMABS THERMABS THERMABS THERMABS 22242

```
TSQ=TMPS(J,K,*TMPS(J,K)
TCUB=TMPS(J,K)*TSQ
COND(J,K)=.12551573E+1-.18377799E-2*TMPS(J,K)+.10902421E-5*TSQ-.15
1084869E-9*TCUB
GO TO 5
7 COND(J,K)=.0.36
5 CONTINUE
RETURN
END
SUBROUTINE CONTR
DIMENSION TMPS(19,23)*TEMP(19,23)*W(19,23)*,Q(19,23)*Y(19)*YPLUS(19THERMABS
1)*VNEG(19)*YRIG(19)*,TTMPS(19,23)*,AREA(19)*,H(19)*,HA(19)*,YMPG(19,23)*THERMABS
2)*CAPT(19,23)*CAP(19,23)*,XZ(23)*,XED(223)*X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23)*,X*MIOZ(23
```

VITA

Allen Lawrence Barnes Candidate for the Degree of Doctor of Philosophy

Thesis: A FEASIBILITY STUDY OF AN IN SITU RETORTING PROCESS FOR OIL SHALE

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Wooster, Ohio, September 28, 1932, the son of Earl E. and Florence Belle Barnes.

Education: Graduated from Wooster Township grade school, Wayne County, Ohio, in 1946; attended Miami University, Oxford, Ohio, from 1950 to 1952; received Bachelor of Petroleum Engineering from The Ohio State University, in May, 1955; received Master of Science degree from The Pennsylvania State University in January, 1960; took graduate work at The University of Tulsa during academic years, 1960-1961, 1965 and 1966-1967; completed requirements for the Doctor of Philosophy degree in September, 1967.

Professional Experience: Teaching assistant in the Department of Mining and Petroleum Engineering at The Ohio State University during academic year of 1954~1955; employed as petroleum engineer with Magnolia Petroleum Company from 1955 to 1958; served in the United States Navy for six months during 1957 with The Office of Naval Petroleum Reserves, Washington, D. C.; employed as a research engineer with the Research Division, Sinclair Oil & Gas Company from 1959 to 1965 and 1966 to 1967; served as teaching assistant at Oklahoma State University during academic year of 1965-1966.

Professional Organizations: Member of AIME and API.