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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem. Inertial navigation systems have 

taken on a major share of the navigation and guidance of most space ve­

hicles and ballistic missiles as well as many military aircraft and 

marine vessels. Accurate performance of inertial systems depends not 

only upon environmental conditions but also upon basic inertial com• 

ponent limitations. Inertial system accuracy is especially sensitive 

to gyro dr;i..ft. 

In some current.military aircraft applications, inertial naviga­

tors must be put into operation while airborne, and this can result in 

significant accuracy degradation unless some method is employed to re­

move or trim the gyro drift. This condition may become quite severe if 

the inertial system has been exposed to a low temperature environment 

prior to operation. 

This thesis is concerned with the problem of reducing gyro drift 

in an inertial navigation system on a moving vehicle. Three solutions 

to this problemare considered: third-order leveling, Bayesian learn~ 

ing, and empirical estimation. 

1.2 Outline of Solution Methods ·and 1Previous Work irt the Area. 

The third-order leveling method, which is presented in Appendix D, 

represents a standard approach to minimize gyro drift. Since it has 

been actually implemented on inertial navigators, this method serves as 

1 
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a basis of comparison for the other methods. 

The Bayesian learning techniques discussed in this paper have pre-

viously been applied to some problems in the area of pattern recogni-

tion (8), (12). -Ho and Lee (6) discuss in general the applicability 

of the Bayesian approach to estimation of control system states under 

the assumption of Gaussian noise with completely known statistical 

properties; since their investigation is limited to estimation, gener-

ation of a control signal is not discussed. 

In a recent book, Aoki (2) presents a general study of optimiza-
' 

tion and the generation of control signals in a closed loop fashion. 

For the case of known noise variance, he makes frequent use of Bayes' 

rule although his control policy is established from dynamic program-

ming considerations. He abandons Bayesian techniques altogether for a 

minimax approach when he considers the case of an.unknown noise vari-

ance; he further restricts the unknown variance to be a member of a 

finite number of known values. 

The Bayesian learning technique is used in this paper for learning 

or estimating the gyro drift for both the case where the noise variance 

is specified and the case for unknown variance. For the known noise 

case,.it is assumed that both the noise process and the a priori den• 

sity of the gyro.drift are normally distributed. In the latter case, 

the noise process is assumed normal while the joint a priori density 

of the gyro drift and the unknown noise variance is assumed to follow 

a Gaussian-inverted Wishart law. The estimates formed are used in a 

feedback loop to cancel the unwanted gyro drift. 

A survey of recent control system literature will.reveal that the 

Kalman filter approach (7) is almost exclusively being applied to esti-



mation problems similar to the one of this paper. The Kalman method, 

which is somewhat of a special case of Bayesian learning, is not appli­

cable if the noise variance is unspecified. 

The empirical estimation procedure presented in this paper essen­

tially makes use of the sample mean as the basic estimate. Although 

this technique may lack the mathematical elegance of the Bayesian or 

the Kalman methods, it allows one to relax some assumptions which may 

be unrealistic in many applications. Specifically, one does not have 

to know the density laws for the gyro drift nor of the noise process. 

The empirical method shares in common with the other two methods the 

advantage that the estimate can be cast into a recursive form • 

. The expected value of the squared error between the estimate and 

the actual gyro drift will be used as the criteria of goodness. The 

Bayesian estimate is optimal in that it minimizes the mean squared 

error while the empirical method is suboptimal. 

lt should be mentioned that the system model is linear. The prob­

lem would no doubt be very difficult to solve for a nonlinear system. 

3 



CHAPTER II 

DEVELOPMENT OF THE SYSTEM MODEL 

2.1 Introduction. A brief description of the,class of inertial 

navigation systems to be investigat.ed in this thesis is presented in 

this chapter •. The system error model is developed for use in the suc­

ceeding work. Since the treatment here is, of necessity, limited; the 

reader may want to refer to one of many texts (10), (14) on .the subject. 

2.2 Inertial Navigation Systems·.· Inertial navigation implies the 

direction of a vehicle in the coordinates of inertial space rather than 

only in the reference frame of the earth or some other body. The term 

inertial navigation system is generally accepted to mean an assemblage 

of gyroscopes, accelerometers, and ancillary electromechanical equip­

ment which typically are functionally arranged as follows: Three gyro­

scopes are mounted on a platform with their input axes mutually orthog­

onal so as to define a rectangular coordinate frame; associated with 

these gyros are ampli(iers, motors, etc., interconnected to maintain 

the platform coordinates fixed in space • 

. A set· of platform-mounted accelerometers, each aligned along the 

axes defined by the gyroscope inputs> sense platform accelerations 

along these axes; associated with each of these instruments are inte­

grators which ideally provide instantaneous velocity and distance 

traveled. 

Typically the platform on which the inertial instruments are 
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mounted is suspended by a gimbal system to provide angular isolation 

from the environment. The gyros sense angular motion of the platform 

and provide signals to platform gimbal servos to maintain desired plat­

fornJ orientation. 

The above assembly of equipment is truly an inertially referenced 

system due to inherent properties of the instruments. That is, the 

gyroscopes sense angular changes with respect to the "stars" and the 

accelerometers measure absolute linear accelerations. The system acts 

to resolve an acceleration into components along the inertial frame. 

For relatively short periods of operation, less than four or five 

hours, the three axes defined by the inertial sensors can be consi­

dered to be independent of each other so long as there are no large 

errors. Thus one can consider the computations associated with each 

axis individually if he neglects crosscoupling between the azes. 

2.3 Rotation 0£ Coordinate Re£erence Frame. -Inertial navigation 

systems used for navigation.over the surface of the earth are called 

cruise inertial systems. Most of these are mechanized to operate with 

their ~espective axes oriented in the direction of east, north, and 

up and are sometimes referred to as local-level, north•oriented sys­

tems. Such a system is said tc;> be aligned when the proper a:ids (azi­

muth) coincides with the vertical vector (local-level) and the appro­

priate axis is pointed north (north-oriented). The system to be dis-

cussed in this thesis is of this type. 

As a local~level system is moved from along some path over the 

surface of the earth, control signals are generated to maintain aver­

tical azimuth axis. This control signal is required since an inertial 



system does not have the earth for a reference. 

Consider, for example, the situation depicted in Figure 2.3.1 • 

. The vertical and east axes are labeled while the north axis is assumed 

to point into the plane of the paper. Suppose that this coordinate 

frame, assumed to be locally-leveled initially, is Garried an angular 

distance east 0a; then, in order to maintain the U-axis vertical, the 

coordinate axes must be rotated by the same,ang~e 0a. To maintain the 

proper orientation qontinuously, the coordinate reference frame needs 

to be rotated at an angular rate 0a. · It should be noted that the ro­

tation rate 0a, being an angular velocity, is not measured by the sen-

sors and it must therefore be provided by computation or mechanized in 

a manner to be discussed below. 

Figure 2.3.1. Rotation of Coordinate 
Reference Axes 

6 

Also illustrated in Figure ~.3.1 is the effect of an error in com-

putation of the angle 0a• If the system makes an error in the compu-



tation of 0a (or 0a) there will be an error in the orientation of the 

axes~ That is, if the system provides a computed angular distance 0c 

while the actual angular distance traveled is 0a, there will result an 

error angle 0e = 0c - 0a about tpe north axis of the coordinate frame. 

Or, in terms of angular rates, 0e = 0 - 0. c a 

2.4 Basic Inertial Sensors. The two basic types of sensors used 

7 

in an inertial navigation system are accelerometers and gyroscopes and, 

in a complete system, there are three of each. It should be added that 

the functi.ons of two sensors are sometimes combined in a single instru-

ment; however, functionally they can be regarded as separate units. 

An accelerometer model, sufficient for the purposes of this 

thesis, is presented in Figure 2.4.1. The device is assumed to be a 

transducer which converts the net acceleration input to a proportional 

voltage output. The net acceleration illustrated is the sum of the 

actual acceleration aa and the apparent acceleration due to gravitation 

effects ag; when a local .. leveled __ system is properly aligned, that is, 

to the local vertical, the north- and the east-axis accelerometers will 

sense no gravitational accel.eration but the azimuth-axis accelerometer 

will measure g plus any actual upward accelerations. 

a 
a 

Figure 2.4.1. Model of an Accelerometer 
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The accelerometer is very carefully designed so that it is sensi• 

tive to linear accelerations only in the direction of its defined axis. 

For the north~oriented, local-level system, one accelerometer is mounted 

with its sensitive axis pointed in a north-south direction; an identi-

cal instrument is pointed east-west. A third could be mounted with its 

sensitive axis in the vertical direction but often this unit is omitted. 

The gyroscopes, typically of the integrating type, are used as 

sensors in a so-called platform servo loop to maintain proper coordi-

nate orientation. A description of the details of platform servo loops 

is too lengthy to be included here. It suffices for the purpose here 

to state that one can achieve rotation of the coordinate frame by ap-

plying a control signal to the appropriate platform servo and that the 

servo acts? with the gyroscope as a sensor, to keep the reference 

coordinates stabiliz~d. 

Rotation of the reference coordinates at an angular rate 0d can 

be accomplished by applying a signal to the platform servo. Over a 

time of observation t the net angular rotation will be given by 

0c(t) = st 0d(x) dx. 
0 

(2.4.1) 

Therefore the model presented in Figure 2.4.2 will be used for the 

gyroscope~platform servo which will be hereafter referred to simply 

as the gyro. 

Figure 2.4.2. Model of a Gyro Including 
the Gyro Drift 
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One will note in Figure 2.4.2 that an additional signal eG(t) has 

been included as an input to the integrator. This signal represents 

the so-called gyro drift which is assumed to be a normal stochastic 

process. Unwanted torques p~oduced in the gyroscope cause its charac-

teristics to change or drift randomly from the desired operating condi-

tion. These spurious drifts can be grouped as: 

(a) constant drifts [mean value of eG(t)J and 

(b) variational drifts [variance of eG (t)]. 

These drifts will be discussed further in the next chapter. 

2.5 Interconnection of the Inertial Elements. The use made of 

the gyro which has its sensitive axis vertical (the azimuth-gyro) is 

different from east- and north-gyros (the level gyros) in that it is 

normally operated in an open loop manner with no corrective input sig-

nals being applied. The azimuth gyro simply performs the function of 

maintaining proper orientation of the coordinate axes about the ver-

tical. 

Since crosscoupling between the three axes is being ignored, the 

description of the mechanization for each axis can be discussed indi-

vidually. With the exception of some corrective input signals applied 

to compensate for the earth turning rate and Coriolis effects, the 

functional description of the mechanization for each of the level axes 

will be identical. 

The (basic, unaided) east channel functionally includes the fol-

lowing components: the east=axis accelerometer, two integrators, the 

-1 north~axis gyro, and a gain constant R • The net measured east ac-

celeration ac is integrated to give computed velocity vc in the east-
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ward direction. The resulting velocity is integrated to give computed 

distance traveled. Computed velocity is also used to maintain the 

platform level-orientation through r_o_tation of the coordinate frame 

about the north axis by applying vcR~l to the north gyro. 

Similarly, the north channel includes the north-accelerometer, two 

integrators, the east-gyro and the gain constant R~l which provide 

analogous functions. 

2.,6 Velocity Damped Channel. The accuracy of an inertial navi· 

gation system is excellent for a short period of operation but decreases 

with increasing operating time. The long term accuracy of a doppler 

radar, conversely, is quite good yet· it tends to be noisy. · Combining 

the two systems has been found to give a low-noise velocity measurement 

with good accuracy characteristics for large operating times. 

This thesis is specifically limited to the doppler radar aided 

channel, a functional block diagram of which is presented ;in Figure 

2.6.1. The following list describes the symbols and notation em­

ployed: 

va = actual velocity 

vc = computed velocity 

vr = reference velocity provided by the doppler radar 

ev = error in the doppler radar reference velocity 

d0 = computed linear distance 

0a = actual angular distance traveled 

00 = computed angular distance traveled 

0e = 00 - ~a= error in platform level 

aa = actual acceleration (east) 
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ag = gravitation acceleration sensed (caused by error in level) 

GB = gyro drift, 

2 g = gravitational acceleration (32.2 feet/sec) 

R = earth radius (2.09 x 107 feet) 

Some of the terms in the above list have been previously discussed 

and the remainder will now be described to complete a functional des• 

cription of the model under investigation. The term 0e represents the 

difference between actual angular distance traveled and computed angu-

lar distance. This term arises from the fact that the system actually 

rotates the platform through angle 0c in an attempt to keep the coordi­

nate frame level rather than through the proper angle 0a; the tilt 

angle 0e is the amount of error between the east-axis attitude and the 

actual axis level. 

When 0e is zero,.the east accelerometer will sense only the actual 

east acceleration aa• However, a non-zero tilt angle will result in an 

additional acceleration due to gravity of 

(2.6.1) 

The angle 0e is assumed to be small enough (less than one milliradian) 

to allow the small angle approximation to be valid; therefore 

(2.6. 2) 

The net measured acceleration is therefore given by 

a = a - g 0 c a e (2.6. 3) 

where the minus sign appears because of the sign convention of the 



Doppler Radar 
r---
1 + 

Gyro r----· -1 
I 

+ + I 
I 

L - - .- - eG(t)_J 

Figure 2. 6 .1. Velocity-Aided Channel Model 

+ 

Figure 2.7.1. Error M.odel of System 

12 
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assumed coordinate system. 

The gain constants Ki and K2 were arbitrarily chosen as .02 and 

100 respectively to give typical platform dynamic characteristics. 

With this selection of parameters, the system has a time constant of 

100 seconds and a damping ratio of about 0.8. 

·' 1 1 : 2. 7 Development of· the· System· Error Model. The system model pre-

sented in Figure 2.6.1 describes the overall system behavior. However, 

it is desirable to have a different model of the system which describes 

only the behavior of system errors as functions of time. This model 

can be readily obtained by defining velocity error ve and distance 

error de with the following equations: 

(2.7.1) 

(2. 7. 2) 

where dais the actual distance traveled; also one can show 

(2. 7. 3) 

(2. 7 .4) 

By considering the physical quantities involved, one can establish 

v - da• a -

(2. 7 .5) 

(2.7.6) 

(2.7.7) 

The system of differential equations describing the behavior of 

the model of Figure 2.6.1 is 

(2.7.8) 

(2. 7 0 9) 
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d = v • c c 
(2. 7 .10) 

Solving Equations 2.7.1 through 2.7.10 for the error terms gives the 

following set of differential equations: 

• 

d = v • e e 

(2. 7 .11) 

(2. 7.12) 

(2.7.13) 

It is especially important to note that this set of differential 

equation models the system errors in terms of the error sources GB and 

ev and that these equations are independent of true system values. In 

other words, the solution of this set of differential equations des-

cribes how errors propagate as functions of time and error source in-

puts and not as functions of aa, Va ~nd ~a• A block diagram of this 

error model is presented in Figure 2.7.1. 

In the analysis which is to follow, use will be made of the sig'" 

nal v8 ~ ev; the reader will note this signal per se is not available 

f::,r measurement since it is the difference of two nonobservable quan-

tities. However vc - vr is a physically measurable quantity and since 

(2. 7 .14) 

the nonobserv-able property is circl,lmvented. 



CHAPTER III 

THE SYSTEM STATE MODEL 

3.1 Introduction. The functional model of the system to be in· 

vestigated in this thesis was developed in the previous chapter. The 

variables ve and 0e are time functions which physically represent in• 

stantaneous velocity error and tilt error respectively. In this chap-

ter the input error processes are discussed and a state model of the 

system is developed. 

3.2 -Gyro Drift. There are two random inputs to the system: 

gyro drift eG(t) and reference velocity error e (t), both of which are v . 

assumed to be normal random processes. Present day high quality gyros 

have small variations about their mean values; standard deviations 

less than .01 degrees per hour are not uncommon. Moreover, the rate 

at which the gyro drifts about its mean, as measured by the so called 

correlation time, is quite slow (4), (5). Thus the effect on instan-

taneous velocity error by the variations of gyro drift is quite small 

in comparison to effects caused by other error sources such as ev(t). 

It will therefore be assumed that the gyro drift eG(t) is a constant 

random process. 

The mean value GB of the gyro drift or gyro bias is assumed to be 

a random variable. If an inertial navigation system is pre-aligned 

before use on a stationary base, the gyro biases can be essentially 

canceled by.one of several trim techniques (14). 

15 
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However 3 under many current military practices, the system is put 

into operation while airborne and ground alignment techniques are there-

fore not available. If the system is started after a prolonged period 

of exposure at low temperature, the value of GB can be comparatively 

large, typically about two degrees per hour (14). In this thesis, 

the probability density function of GB is assumed to be given by 

fGB (z) 1 = ,r.;- exp 
v2ncro 

(3.2.1) 

A ~ 2 The mean µ, 0 and variance 0 0 in Equation 3.2.1 are assumed to be known. 

3.3 Reference Velocity Noise. The second error source to be dis-

cussed is reference velocity noise e (t) which is assumed to be asso­v 

ciated with an airborne doppler radar. As is customary, it will be 

assumed that ev(t) is a normal random process which is band-limited 

white noise. Thus at any given time t, the probability density func-

tion of ev(t) is assumed to be 

(3.3.1) 

and the power spectrum of ev(t) is, by assumption, 

The following values are assumed for the standard deviation and corner 

frequency of the power spectrum: 

crv = 1 foot/second 

b = 1 radian/second 

Else.where in this thesis an assumption will be made that crv is not the 

above value but is some unknown number following a known probability 
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density·la.w. 

It is desired to have a state model representation of the refer-

ence velocity error process. This can be obtained by first modeling 

the process as unity white noise pa~sed through a shaping filter and 

then writing the state model for the shaping filter. The shaping fil-

ter has a transfer function given by 

H(s) :::: 
[2bcr 

v 
s + b 

Therefore the reference velocity error process state model is as illus-

trated in Figure 3.3.1. The process v(t) is assumed to be a nonnal, 

white noise stochastic process with the following respective prob-

ability density function and autocorrelation function: 

fv(t) (v) 

where o(·) is the delta function. 

= -1. exp[ v 2 J 
2rr L 2 

(3.3.2) 

(3.3.3) 

3.4, System Sta.te Model. The complete state model of the system 

with the learning loop is presented in Figure 3.4.1. The procedure 

for learning will be discussed below. Represented on the diagram are 

the system states x1 (t), x2 (t), and x3 (t) which are respectively ve­

locity error, tilt error, and reference velocity error. Inputs to the 

system are gyro drift mean or bias GB and the unity white-noise process 

v(t). 

The learning loop performs the function of providing an optimum 
,... 

estimate G of GB, given a time sequence of measurements y(T), y(2T), 
/\ 

••• , and canceling GB by subtracting G. The procedure of estimating 
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v(t) 

:x:z (t) 

+ 

Figure 3.3.1. State Model of Reference 
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b 
y(t) 

" '"---G-......1 Learning 
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Sampler 

Figure 3.4.1. Block Diagram of System State Model 
with the LeaTiting Loop · 
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GB will be referred to as learning, a terminology carried over from 

pattern recognition. 

" It will be sh,own that the solution for G can be expressed recur-

sively, that is, as each new measurement is obtained, the previous 

estimate of GB can be revised to reflect the additional information. 

This minimizes the storage requirement for the mechanization of the 

estimator or learning machine in that only the previous estimate has 

to be stored rather than the entire history of measurements. 

Mathematically, the state model can be expressed as the following 

set of equations: 

x1 (t) = .a~ .,-g l\ x1 (t) + 0 

x2 (t) (1 + K2) /R 0 -K2/R x2 (t) 1 

x 3 (t) 0 0 

y (t) = [1 

-b 

0 

x 3 (t) 0 

-~ x1 (t) 

X2 (t) 

x3(t) 

Or, using the vector-matrix symbolization, 

where 

. 
x(t) = !'~(t) + _!i'y(t) 

. ~(t) = 

y {t) = ~.'~(t;) 

Xl (!:) 

X2 (t:) 

x 3 (t) 

y(t) 

0 rB -G1 
0 v(t) 

crv./2b 

and !', _!!', and g_• are the respective coefficient matrices. 

The measurement y(t) is the difference between the two states 
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x (t) and x (t). Some simpli~ication in subsequent notation for re-
l 3 

cursive estimates will be realized by the following change of vari• 

ables: 

. ~:(t) = z1 (t) :;: 1 0 0 x1 (t) = M~(t) 

z2 (t) 0 1 0 x2 (t) 

z3 (t) 1 0 -1 x3 (t) 

Effecting this change of variables results in the following system of 

equations: 

where 

i(t) = ~ !.(t) + !! ]:(t) 

y (t;) = £. ~ (t) 

-1 
!= M~'M = 0 -g 

1/R 0 

b -g 

!! = M !!' = o o 

. -1 r, 
£. = £.'M = Lo 0 

-Kl 

K2/R 

-~-b 

A block diagram of the system in terms of the transformed state 

variables is presented in Figure 3.4.2. 
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CHAPTER IV 

RECURSIVE SOLUTION OF THE STATE MODEL 

4.1 General Solution of State Model and the Initial State. The 

usual form of the state solution of the model . 
!.;=~~+l!Y.. (4.1.1) 

in terms of the initial vector ~(t0) and the ~transition matrix {(t) = 

exp ~t) is given by (9) 

~(t) = !(t - to)~(to) + Jt !(t - x) .!! y_(x) dx, t ;;:: to 
. to 

(4.1. 2) 
y(t) = Q ~(t), t;;:: t 0 • 

The transition matrix is discussed in Appendix A. 

A more useful form of Equation 4.1. 2 can be obtained by defining 

the two vectors 

which w:nl result 

B = 0 B ·- 0 -1 -2 

1 0 

0 1 

in the following equation: 

- ./zbcrv J! {(t - x) B2 v{x) dx. 
0 

To establish initial conditions for the system, it will be 

22 

(4. 1. 3) 

{4.1.4) 
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assumed that the input random processes have been applied long be(ore 

(i.e., when t 0 = -~) the learning procedure is initiated. · The initial 

time for starting the learning process will be chosen when time is 
(\ 

zero; therefore G is zero for negative time. It is obvious from the 

form of the transition mB;tri:x:, Equation A. 7, that f (cx:,) = Q.; hence the 

initial state vector is found from Equation 4.1.3 to be 

~(O) (4.1.5) 

where GB has been removed from the integrand since it is a constant 

random process. 

" 4.2 Recu:rsi:ve State Solution. l'he compensating signal G is com-

puted as each measurement in the time sequence y(T), y(2T), .••• is 

.obtained where no measurement is made at the initial instant. The 
I\, 

initial. estimate of GB will be denoted by G0 ?nd t;he succeeding esd-
A I\ 

mates will be denoted by Gn. The estimate G is therefore a piecewise 

continuous (step) function with its discontinuities occurring at the 
(\ 

sampling instants; hence, the form of G is 

(\ (\. 

G = Gn, nT s. t < (n + 1) T. (4. 2.1) 

Since the basic nati,ire of the learning system is discrete, it is 

desirable to have a solution which explicitly describes the behavior 

of the system .at the sampling instants. This recursive form of the 

solution can be simply obtained by substituting Equation 4.2.1 into. 

Equation 4.1.4 and evaluating the result at the sampling times to get 



. . A . 

~(nT + t) = !(T)!_(nT) + (GB ... Gn) j11T+T !(nT + T - x) !i dx 
nT 

~ nT+T . · 
- v2bcrv JnT !(nT + T - ~)~v(x) dx, n .~ O 

24 

( "G ) where GB - n appears outside the integral sign since it is constant 

over the time of integration. 

It can be shown, by a simple change of integration variable, that 

the integral in the second term is the same for all non-negative inte-

gers n which can be used to simplify the appearance of Equation 4.2.2. 

Further simplification can be achieved by using the definition· 

nT+T 
g = -,J2bcr J !(nT + T - ·x)B v(x) dx, n ~ 0 
.::.n+l v nT -2 

to obtain the desired result 

where 

/\ 

~(nT + T) = !(T)!.(nT) + (GB - Gn)i + ~+l' n ~ 0 

T 
i= J !(T - x)~1 dx. 

0 

(4. 2. 3) 

(4.2.4) 

(4. 2.5) 

The vectors i and !ht are discussed in Appendices A and B respectively. 

Similarly, one can define 

(4.2.6) 

and 
. 0 
~ = -./2br:Jv J !(-x)~ v(x) dx .. ~ (4.2. 7) 

to have an expression for Equation 4.1,5 which is analogous to Equa-

tion 4.2.4. 

(4.2.8) 



CH.APTER V 

RECURSIVE ESTIMATES 

5.1 Introduction. In the next chapter, the learning algorithms 

will be derived from a Bayesian formulation. However, to use Baye 1 s 

rule, it will be .. :necessary to have the density functions which describe 

the proce.sses. In this chapter, a useful chain of recursive relations 

will be derived for the various conditional means and covariance 

matrices. Frequent reference to the Appendix will be made where 

several properties are developed. 

5.2 Definitions and Notation for Some Conditional Means and 

Covariances. Using the notation r(nT) = {y(T), ••• , y(nT)}, the fol­

lowing definitions, which are strongly motivated by the work of 

Kalman (7), will be made: 

~ = E[~(O) I G,,,J -0 .D 

" ~n = E[~(nT)IGB, r(nT)J, n ~ 1 

e = z (nT) - ~ n .~ 0 
-n - -n' 

T 
~ = E~!q) IGB) 

fn = E[~~TIGB, r(nT)J, n ~ 1 

" . ~i = E[~ (T) I GB] 

i~ = E[~(nT)IGB, y(nT - T)J, n ~ 2 

" e' = z(nT) - z' n ~ 1 -n - -n' 

25 

(5. 2.1) 

(5. 2. 2) 

(5. 2. 3) 

(5. 2.4) 

(5.2.5) 

(5. 2.6) 

(5. 2. 7) 

(5. 2.8) 

(5. 2. 9) 
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(5. 2.10) 

Also it will prove useful to incorporate the following notational 

conveniences: 
,.. ,.. 

A' A 
z = z1, (n) ' 

z = zi_ (n) (5.2.11) -n -n 
I\ 
z2 (n) \; (n) 

I\ ~, (n) z3 (n) 
3 

5.3 Transition of Estimates. The first pair of transition equa-

tions are contained in the following properties: 

Property B.4.5. 
f\ I\ A 

For n ~ 1, ~ 1 = !(T)z l + (GB - G )9. 
n 11.- n-1 -

Property B.4.6. For n ~ 1, P* = !(T)P !T(T) + H -n 11. .. 1 -· 

!! is given by Equation B.3.5. · These properties, which are derived in 

Appendix B,, describe the transitional relations of ~ 1 to ~' and -n- -n 

P 1 to P*. To complete the recursive chain, the relationship of -n- . -n 

~ 1 to~ and P* to P w,Lll be established. -n -n -n -J;J. 

It was shown in Appendix B, Property B.4.1, that both ~(nT) and 

y(nT) are linear combinations of the normal random variables GB, 

••• , g. 
~ 

l'herefore ~(nT), GB' and r(nT - T) are jointly normal 

and it follows that the density function of ~(nT), conditioned by GB 

and r(nT ... T), is normal (11). The mean vector and covariance matrix 

of this density function are given by Equations 5.2.2 and 5.2.5. 

Letting !rt= {y1 , .•• , rn}, one has 

(
. ) 3/2 1 1 

~ I Ftil i12 
exp[-~ - ~')T F~\--l(li - ~')/2]. 

. 11. -n -n (5.3.1) 
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The matrix P* has an inverse since it is P. ositive definite. How• . --n 

ever, the matrix~ is not positive definite since it has a row and 

column of zeros. This {ollows fro~ Equation 5.2,2 and the fact that 

y(nT) = Q !_(nT) = z3 (nT) 

which, together, imply 
A 
z3(n) = y(nT), n ~ 1. 

Moreov~r, for i = i, 2, or 3, 

= Q. , n ~ 1, 

Hence the P matrix has the form 
"""'n 

where~ is a 2 x 2 matrix defined by Equation 5.3.5. 

A 
The vectors~ and !n will be defined as 

!n = [z1 (nT}J 

z2 (nT) .. 

in =[~i (n)l • 
z2(n}J 

(5. 3. 2) 

(5. 3. 3) 

(5. 3.4) 

(5. 3. 5) . . 

(5. 3.6) 

I\ 
The covariance matrix:9.n and mean vector ~n can be comput~d from f*n 

I\ 
and~ using the equation 

f!.(nT) I GB,!_(nT - T) 

fz 3(nT) IGB,!_(n~/ .. TJ 
(5. 3. 7) 

which follows from Equation 5.3.2. Since both density functions on 

the right hand side of Equation 5.3.7 are normal, th~ conditional den-

sity function on the left hand side is also normal; hence 
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1/2 . . 
1 ~ 1 ) " T -1 A - ~ exp[- (q - q ) Q (q - q ) I 2] • 
2TI J2-al, · - ..!11 ..;n - ~ 

(5. 3. 8) 

The density function in the numerator of Equation 5.3.7 is given by 

Equation 5.3.1. 

The following notation will be introduced to carry out the com­

" putation of~ and !n: 

9.o = [qij (n)J 

P* = [p .. (n)]. 
11 l.J 

(5. 3. 9) 

(5.3.10) 

Using Equation 5.3.10, the denominator of Equation 5.3.7 can be 

written 

(5. 3.11) 

Substitution of Equations 5.3.1, 5.3~8, and 5.3.11 into Equation 5.3.7 

and using Equations 5.3.9 and 5.3.10 will give the following result: 

P12 (n)-p13 :n)p23 (n) /p33 (n)J (5. 3.12) 

Pz2 (n) .. P23 (n) IP33 (n) 

(5. 3.13) 

5.4 Modifications for the Case when a is Unknown. The pre-

ceding portion of this thesis carried the assumption that av was a 
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known value. 2 In this section, this assumption is not made, and cr 
v 

will be treated, apalogous to G13' as a random variable; specifically, 

the random variable p will be defined as 

2 
p = 1/av • (5.4.i) 

Most of the material presented before this section will not be 

affected and the modifications to be made will be minor. It cap be 

seen that the results will be the same; only ·some of the interpre-

tations and definitions will be altered. 

The basic difference stems from the expression for the noise con-

volution term !n which, using Equation 5.4.1, is written 

!o = (.fi.h/p) J0 !(-x)~zv(x)dx 
-ao 

(5.4.2) 

(5 .4. 3) 

Also all of the various conditional expectations are interpreted 

to be. conditioned also by p; for example E(!n!!fp)_, E[~(n)lp, GB' 

r(nT)], etc •. This interpretation is made explicit by the following 

definitions assuming that crv is a random variable: 

A 
z0 = E[z(O)lp, GB] 
,., 
~ = E(z(nT)lp, GB, r(nT)], n ~ 1 

I\ 
~ = ~(nT) - ~' n ~ 0 

~ = pE~~ Tl P, G:5) 

~ = pE[~~TIP, GB, r(nT)J, n ~ 1 

~ = E[~(T)IP, qBJ 

A I I ~ = E[~(nT) p, GB' r(nT - T)], n ~ 2 
A . ~ = ~ (nT) - ~, n ~ 1 

(5 .4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5 .4. 8) 

(5 .4. 9) 

(5.4.10) 

(5.4.11) 
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Pt = pE (§_i~iTI P, GB) 

~ = pE[~~TIP, GB' y(nT - T)J, n ~ 2 

(S.4.12) 

(S.4.13) 

I\ 
In Chapter VII it is shown that Gn is a linea~ combination of the 

random variables r(nT) as before •. Based primarily on this result, it 

can be shown, with the minor alteration of tncltiding pin the proofs, 

that 

P* l = m(T)P {T(!) + H, n ·~ 0 11+ ~ -n -, 

I\ 
where Gn is changed as per Chapter VI and g is given by 

T T T 
li = 2b J !(T - x)&2&2 ! (T - x) dx. 

0 

(S.4.14) 

(S.4.15) 

(S.4.16) 

. /\ 
Computation of z, 8, and 9 remain unchanged from the previous -o -o -

At 
analysis as, of course, does e-. However, the initial covariance 

matrix P is computed from -o 

fa= 2b JO !(-t)&2&2T(T(at) dt. 
-(J) 

(S.4.17) 

Finally, Equations 5.3.9 and 5.3.10 will be retained and Equa-

tions 5.3.12 and 5.3.13, for computation of ~n and ~n respectively, 

remain valid • 

. It should be mentioned that the modiftcations associ~ted with the 

assumption that av is a random variable are also discussed in Appen-

dix B. 



CHAPTER VI 

APPLICATION OF BAYESIAN LEARNING TO SYSTEM 

6.1 Definitions and Discussion of Bayesian Learning. This chap-

· ter presents a general discussion of the application of Bayesian 

learning to the system and the "learning equations'' are derived first 

for the case of crv known: and then for crv a random variable. 

Several notational definitions are introduced to aid in the sue-

ceeding derivations. Define !(n) and~ by 

l (n) = {Y (T) , •• ·~ , y (nT)}, n ~ 1 (6.1.1) 

(6.1. 2) 

From Equations S:.2.6, 5.2.7, 5.2.11, 5.3.2, and 6.1.2, it follows that 

~3 (1) = E[y (T) I GaJ 

~j(n) = E[y(nT)IGB, r(nT - T)], n ·~ 2. 

(6 .1. 3) 

(6 .1. 4) 

Define the sequence m31 (1), m32 (1), .... , m31 (n), m32 (n), • • • by 

~3(n) =m31 (n)G13 +m32 (n), n~ 1 (6.1.5) 

where m31 (n) and m32 (n) are restricted to not be functions of GB; in 

. " other words, m31 (n) is the coefficient of GB in z3(n) and m32 (n) is 

the remaining term. Define the sequence p33 (1), ••• , p33 (n), ••• by 

El " 2 p33 (1) = -l[y(T) - zj(l)J IGB} (6.1.6) 

P33 (n) = E{[y(nT) - ~j(n)J 21GB, :r(nT - T)}, n ~ 2. (6.1.7) 

The notation for a normal density function with meanµ and variance 

31 
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2 . · Z cr will be N(µ,, cr ) • 

~lthough the notation used for the sequences might appear overly 

complicated, it is consistent with that used in Chapter VII. When it 

is clear from the ~ontext, the samp~ing instant number will be omitted; 
I\ 

for example, p33 will be used rather than p33 (n), zj rather than 

~3 (n), etc. 

It was observed in Section 5.3 that the density function y(nT) 

conditioned by.GB and r(nT - T) is normal; therefore, using the above 

definitions, one may write 

fy (T) I GB,..... N[m31 (l)GB + m32(1}, P33 (l)] (6 .1.8) 

fy (nT) I GB, y (nT - T) "". N[ m31 (n) GB + m32 (n) ' p 33 (n) J , n :2: 2 • (6.1. 9) 

Physically, the sequence of numbers y1 , ••• , y0 , ••• represent 

the time sequence of measurements of the state z3 or the difference be­

tween velocity error v and reference velocity error e. The measure-e . v 

ments are related to the gyro drift physically by the system.: qr, 

mathematically, by the state model. 
A 

It is desired to find a function Gn of the set of measurements 

which will minimize the expeyted square of the difference between G:S 

A A A 2 
and Gn. That is, one would like to find G0 such that E[(GB - Gn) J 

I\ 

is a minimum. The desired function Gn is well known (13) to be given 

by the equation 

(6.1.10) 

/\. 
The estiimite Gn is used as a control signal to cancel GB by feeding 

A 
back -G0 to the gyro. Thus Equation 6.1.10 is referred to as the con-

trol policy. 
A 

To compute Gn, it is necessary to know the density function of 
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GB conditioned by the measurements y (n) •. The desired density functions 

will be computed from Bayes' rule; the procedure for estimating a ran-

dom variable by finding its density function using Bayes' rule and an 

assumed a priori density function of the random variable is referred 

to as Bayes' learning, 

One might interpret the a priori, density as the expression of his 

previous knowledge of the random variable to be estimated and the den-

sity functions given by Equations 6.1.8 and 6.1.9 as an expression of 

the systei;n behavior. The a posteriori density function he might re-

gard as the blending of system measurements with previous experience. 

The form of Bayes I rule to be employed is given by 

fy (T) I GB .fGB 

fy(T) 

== fy (nT) I GB,r (nT ... 1') fGBI r (nT .. '.t) 

fy (nT) ll (nT - 1') 

(6.1.11) 

, n ;;:;: 2 (6.1.12) 

where orie will n.ote in Equation 6.1.12 that at each step of ,;:tpplying 

·Bayes' rule, the J?revious a posteriori density function is used as the 

a priori density. 

6,2 Learning GB with· dv Known. In this secti,on it will be 

assumed that crv has the known value of unity. The a prior;i.. density 

function of GB will be N (µ0 , ~O 2) as in Chapter III. Thus 

fGB rv N <µ.\, ~O 2) • (6.2.1) 

The desired learning Equations 6.2.3 and 6.2.4 will be given as 

part of the conclusion of the following theorem. 
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Theorem 6 .2.1. If the density function of GB is assumed to be given 

by Equation 6,2.1 and if, for any positive integer n, the conditional 

density function of y(nT) given r(nT - T) and GB is assume9 to be 

given by Equation 6.1.8 or 6.1. 9, then the density function of GB, 

conditioned by r(nT), is of the form 

(6.,2.2) 

I\ A 
where crn and µn are computed from 

(6. 2. 3) 

(6.2.4) 

This result is identical to that which one wo~ld obtain using a 

Kalman formulation of the problem. 

The proof of this theorem is relatively simple since it can be 

easily estabU.shed that the a posteriori function is normal by an 

argument similar to that presented in Section 5.3. Thus the proof can 

be accomplished by showing Equations 6.2.3 and 6.2 .• 4 are valid. 

Nilsson (12) shows that, for normal densities, only the argument of 

the exponentials of the normal density functions need be considered. 

He further shows that the normal a posteriori density function is 

easily established by manipulating the terms of the argument into the 

form required for the normal density function. 

Proof: 

Substitution of Equations 6.1.8 and 6.2.1 into Equation 6.1.11 

results in 



where J 1 is a constant. Denoting the argument of the product of the 

exponentials as arg1 , one may proceed 

2 
= - (yl - m31z ~ m32) -

2P33 

/\. 2 
(z - µ,o) 

2 /\ 2 
cro 

Setting n = 1 in Equations 6.2.3 and 6.2.4 and substituting into the 

expression for arg1 gives, after completing the square in z, 
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Thus the a posteriori density function has the desired form as one can 

see by identifying the first term as the argument of the exponential. 

To complete the proof, one can show, in a manner exactly similar 

to that above, if the form of the a priori density given by Equation 

6.2.2 for n - 1 and Equation 6.1.9 are substituted into Equation 

6.Ll2, then using Equations 6.2.3 and 6.2.4 will result in the 

a posteriori density function being given by Equation 6.2.2. There-

fore, by induction, the theorem is proved. 

6.3 Learning GB with cr Unknown. In the previous section, where 

crv was known, the assumption that GB was a normal random variable re-

sulted in the a priori and a posteriori density functions being of the 

same type; specifically, they were both normal. This so called repro-
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ducing property is quite desirable (8) from a computational point of 

view. -2 Both p(crv) and GB are assumed to be random variables in this 

section and, in order to obtain the reproducing property, the a priori 

density function will have to be modified, 

In keeping with the discussion of Section 5.4, Equations 6.1.6 

and 6.1.7 will have to be altered to reflect Equfltions 5.4.9 through 

5.4.12 as follows: 

(6.3.1) 

(6. 3. 2) 

Therefore the density function of y(nT), conditioned by p, GB' and 

the previous measurements, is given by 

Keehn (8) shows that if a normal inverted-Wishart joint density 

function is used .as the a priori density for Bayesian learning of in-

dependent patterns with unknown means and covariances, then the repro-

ducing property is obtained. Motivated by his results, one can define 

the joint a priori density function for GB and p to follow a normal. 

inverted-Wishart law; that is, for u > O, r 0 > 3, 

(6.3.!,) 
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where r(•) is the ganuna function and U(•) is the unit step function. 

Examination of Equation 6.3.S reveals that GB is distributed normally 

with.mean ~O aQd variance l/w0u where w0 reflects the confidence one 

has that ~O is the true mean. The variance follows an inverted-Wishart 

law with parameters r 0 and s0 • 

The symbol Wi will be used to denote a joint normal, inverted­

/\ Wishart probability density tunction with parameters~-, w., r. and 
l. l. l. 

s1 ; thus 

rv 
Also K. will be defined by 

.l. 

Therefore 

., . 

• (6.3.6) 

(6.3.7) 

It will now be shown that the following choice of recuisive rela-

tions re~ults in the reproducing property for the learning procedure: 

wi = wi-l + m!1 (i)/p33 (t) (6.3.8) 

wi~i = ~i-lwi-1 + m31 (i)[yi - m32(i)]IP33Ci) (6.3.9) 

(6.3.10) 

(6.3.11) 

Rather than rewrite Equations 6.1.8, 6.1.9~ 6.1.11, and 6.1.12 to 

reflect the additional random variable p, it will be noted that ob-



vious changes in notation ~ust be made. 

Using 'Equations 6.3.5 and 6.3 • .'.h one can write 

I 1/2 2 f(y1 z,u)f(z,u) = (u/2Tip33) exp[-u(y1~m31z-m32) /2p33J • 

ro-2 

,v 2 
K0u 
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(6.3.12) 

Combining the products of exponentials into the exponential of the 

sum, completing the square in z, and substitution of Equations 6.3.8 

through 6.3.11 gives 

f (y 1 1 z, u) f (z , u) 

r -2 
_1_ 

-- Kou 2 

bTIP33 

Using Equation 6.3.7, one can rewrite Equation 6.3.13 as 

(6.3.13) 

(6.3.14) 

Now f (y 1) can be evaluated from Equation 6. 3.14 as follows: 

JCX) f(y11z,u)f(z,u)dzdu 
-ao 

(6.3.15) 

Substitution of Equations 6.3.14 and 6.3.15 into Equation 6.1.11 

yj.elds 

f(z,uly) "'W. 
1 1 

(6.3.16) 

Thus, at the first step of the computational sequence, the reproducing 
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property is exhibited. 

Similarly, using 

Equations 6,3.8 through 6.3.11, Equation 6.3.4, and Bayes' rule, one 

can show 

(6. 3.18) 

Therefore, by induction, the following theorem is proved: 

Theorem 6.3.1. If the a priori density function given by Equation 

6.3.1 is used in Bayes' rule, Equations 6.1.11, and Equation 6.1.12, 

and if Equations 6.3.8 through 6.3.11 ar'e employ~d recursivel.y, then, 

for each i= 1, 2, ••• , the a posteriori density function is given by 

Equation 6.3.7 

Equations 6.3.8 and 6.3.9 will be referred to as the learning 

equations for cr unknown. Finally, by direct integration, one can 
v 

obtain the control policy 

/\ A 
Thus Gn is a linear combination of the a priori ~ean ~O and the set of 

measurements l (n) 



CHAPTER VII 

" ALGORITHMS FOR COMPUTING G 
n 

" 7.1 Computational Procedure for Evaluating G0 when crv is Known. 

In this section the recursive solution for estimating GB is obtained 

under the assumption that the value o_f crv is known. It was found 

expedient to define two sets of 3 x 2 matrices M and Z by the fol .. -n -n 

lowing equations: 

(7 .1.1) 

(7 .1. 2) 

where M = [m .. (n)] and Z = [z .. (n)J. The elements m.iJ.(n) and zi·J· (n) 
11 l.J -n l.J 

are restricted so as not to contain GB. Thus the first columns of the 

1 1 
matrices, denoted M and Z respectively, are the vectors of coeffi--n -n 

cients of GB while the second columns, denoted respectively~ and 

z2 are vectors of the remaining terms. -n' 

From Property B.4.5 and Equations A.12 and 7.1.1, one may pro-

ceed 

'\1 (T) fl\2 (T) 013 (T) 
/\ 

= -1 R 
GB+ 91 (GB - Go) 

1 + K2 
021 (T) 022 (T) 023 (T) K/g 92 

031 (T) 032 (T) 033 (T) -1 03 
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where, for i::;: 1, 2, 3 

"' m. 2 (1) ::;: 9.G0 • 
1. . 1. 
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(7 .1. 3) 

(7.1.4) 

The associat~d covariance matrix ff can be computed by substitution of 

Ro, given by Equation 5.2.4, into the equation of Property B.4.6. 

Using the learning Equations 6.2.3 and 6.2.4 along with Equation 
I\ 

6.1.10 one can obtain the first control G1 a~ follows: 

(7.1.5) 

(7~1.6) 

(7 .1. 7) 

" Computation of ~land g_1 can be performed using Equations 5.3.3, 

5.3.13, 5.3.12, and 5.3.5 in the following 10anner: 

Q. = 1 

I\ 
~1::;: 

/\ 
- z')/p 

3 33 
I\ - z')/p 

3 33 

(7 .1.8) 

(7 .1. 9) 

(7.1.10) 
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Equation 7.1.8 can be put into the form .of Equatio~ 7.1.2 using Equa-

tion 7.1.3 as follows: 

I\ 

~ ~ mllGB + ml2 + P13(Yi - m31GB - m32)/p33 

m21GB + m22 + P23(Yi - m31GB - m32)/P33 

Yi 

where, for i = 1, 2, 

and 

(7 .1.11) 

(7.1.12) 

(7.1.13) 

(7.1.14) 

(7.1,15) 

The above computations form a complete set for the first sampling esti­

mate. For the nth sampling instant, one assumes that Gn-l' 

and 

have been comput~d. 

and i, as follows: 
-n 

Rn-1 = [9.u-1 Q] 
QT O 

Then he may compute P* from -n 

P* = !(T)P 1!T(T) + _H -n -n-

(7.1.16) 

(7.1.17) 

(7.1.18) 



Thus 

i' = {(T) (zl G + z2 ) + (G - Gn·-l)i --u '-n-1 B -n-1 B ···· 

::: [{ (T) Z l l + [) GB + [{ (T) Z 2 l - ea ] . 
-n- · '""n- - n•l 

2 . 2 A 
M == {(T)Z l - 9G 1• -n -n- - n-

/\ 
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(7 .1.19) 

(7.1.20) 

(7.1.21) 

At this stage in the computiitions, the control Gn can be computed 

using Equations 7.1.18, 7.1.20, and 7.1.21 in the following equations: 

A I\ 
G ::,: µ. • n n 

(7 .1. 22) 

(7.1.23) 

(7.1.24) 

th 
To complete the computations for then sampling instant, the 

Z matrix can be obtained from 
--n 

z 31 (n) == 0 

and P can be found us~ng Equations 5.3.12 and 7.1.17. 
-n 

" 

(7 .1.25) 

(7.1.26) 

(7 .1.27) 

(7 .1.28) 

7.2 Computational Procedure for Evaluating Gh when cr is Un-
v 

known. The previous section presented a detailed computationql proce-



44 

dure under the assumption that crv is known. When the assumption is 

· made that crv is a random variable, all of the above procedure remains 

unchanged with the following e~ceptions: 

Exception a. Eq~ation 7.1.5 is replaced by 

(7.2.1) 

and Equation 7. L 6 is replaced by 

(7. 2. 2) 

Exception b. Equation 7.1.22 is replaced by 

(7. 2. 3) 

and Equation 7.1.23 is replaced by 

(7 .2.4) 

The matrices Hand Ra do not have to be changed since they were 

comp4ted for a unity value of crv• If, however, it had been assumed 

that crv was some other known value in the previo~s seetion, Hand~ 

would have to be recomputed for the assumption cr is a random vari­
v 

able. 

" 7.3 · SuIIllllary. In this chapter the recursive estimate Gn for GB 

was obtained both for crv known and unknown; the recursive relation-

ships for these twQ cases were shown to be nearly identical. The com­

putational sequence was started with~ and 1u; then the matrices~, 

Z, P and P* were computed recursively with the parameters~,~, 
11-n 11 . n n 

A 
and G0 being computed at each step. AlthQugh the computations required 



become very tedious for hand calculation, their recursive nature is 

ideally suited to digital compute~ evaluation. 
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CHAPTER VIII 

EMPIRICAL LEARNING 

8.1 Introduction. In this chapter the assumptions that GB is a 

normal random variable and that v(t) is a normal random process will 

be relaxed. It is therefore assumed that a time sequence of ;meas.u.re• 

ments y (k'l') are available of the state z (t) from which an estimate 
3 

" A 
Gn of GB is to be constructed. As before, the estimate Gn will be 

applied as a control signal to cancel the unwanted gyro drift GB. 

The author has arbitrarily selected the term empirical learning 

to describe the estimation procedure used although some other termi• 

nology would serve equally as well. The choice resulted from investi-

gations of the empirical distribution function (15). 

8.2 Empirical Estimate. The assumptions made in this chapter 

will now be reviewed. The state model presented in Chapter III and 

illustrated in Figure 3.4.2 will be used. The gyro drift GB is as­

sumed to be a random variable and the driver v(t) is assumed to be a 

white stationary random process with zero mean and autocorrelation 

·function 

E[v(t)v(t + 'I")] = c5 ('!"). (8.2.1) 

The variance cr 2 of the reference velocity error e (t) is assumed to v v 
be a fixed unknown number. The other system parameters are assumed 

unchanged. 

As before, it is assumed that the first measurement y(T) is 

46 
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available at time T and the other measurements are made at equal time 

" intervals. It is desired tq form a new estimate Gn of GB as each 

measurement is observed. 

The recursive solution to the state equation was shown in Chap-

ter IV to be 

(8. 2, 2) 

(8 .• 2. 3) 

y (nT) = f ~(nT) (8.2.4) 

where the notation used in Equation 8,2.2 has been altered slightly 

to account for the fact that no control is applied over the time inter-

val from zero to the first sampling instant. 

The s.olution, in nonrecursive form, cc;ln be written 

- ~ ,in-k (T)9a . n :?: 1 
!!.. - k-1' k.-::1 

I\ 
where G0 = o. Letting 

gives 

S = 0 -1 -

Q(n) = ~(nT) + ~' n:?: 1 

nT 
Q(n) = 9 GB+ crv/2b J !(nT - t)~2v(t)dt. 

-0 •CD 

Summing the terms of Equation 8.2.8 gives 

(8. 2.5) 

(8. 2.6) 

(8.2.7) 

(8. 2. 8) 
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n n 
~ G(k) = n9 GB+ crv,JZb ~ !(kT- t)li2v(t)dt. 

k=l --0 k::l 
(8.2.9) 

" The empirical estimate Gn will be defined by 

(8.2.10) 

where e03 is the third element of the vector~· .Thus 

I\ n kT 
Gn ·=GB+ K ~ J ~33 (kT - t)v(t)dt 

n k::l -oo 
(8.2.11) 

where K = crvtiI,;e03 • Taking the expected value of Equation 8.2.11 

gives 

(8.2.12) 

/1. 
Hence Gn is an unbiased estimate of GB. 

2 A. 
The variance cremp(n) of Gn about GB is given by 

2 
a emp (n) (8.2.13) 

To express this variance, the following preliminary computation is 

made: 

~ (n) 
2 n kT 

= E[.K_ ~ J !(kT - t)&2v(t)dt • 
n2 k::l -~ . 

n mT TT 
~ J liz! (mT - x)v(x)dx] 

Ill=l -(I) 

_ K2 n n JkT J.mT 
-,--. ~ ~ . 

n2 k::l m=l -co -c,:, 

T T 
!(kT ~ t)li2li2! (mT - x)E[v(t)v(x)Jdxdt 
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2n~k mT . TT 
13 (n). = !L ~ . ~ J !(kT "' t)!i!!2! (mT - t)dt 

n2 k:::l 1 -c:o 

n kT T 
+ ~ J !(kT - t)~2~2!T(ml - t)dt} 

m = .. rs, . 

k+l 

2 n { k n = !L t I: !(kT - mT)P + P ~ !T(mT - kt)}. 
n2 k:::l m:::l -0 -0 m = 

(8.2.14) 

k+l 

Using Equation 8.2.10, one can rewrite Equation 8.2.13 as 

(8.2.15) 

Combining Equations 8.2.14 and 8.2.15 as per Equation 8.2.9 results in 

the following expression fqr the varianGe: 

2 n k 
a;mp (n) = !L I: J I: £. ! (kT - mT) P 

n 2 k::: 1 liµ::: 1 · --0 

n T 
+ Ro I: @. (~T - kT) ~} • 

fl·= 

(8.2.16) 

k+l 

If .one uses the constituent matrix representation of the transi-

tion matrices, he can show, by elementary series methods, that the 

right hand side of Equation 8.2.16 tends to zel'o as n increases with-

out bound. The details of this cumbersome but straightforward compu-

tati1;m will not be included in this thesis. One has the result that 

lim 2 
~emp(n) = O. (8.2.17) n-m 

8.3 Recursive Empirical Estimate. It is desirable to express 

the empirical estimate l'ecursively as was done for the Bayes~ formu-

lation.c: This can be done by combining Equat:tons 8.2.6, 8.2.7, and 
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8.2.10 into the following fonn: 

I\ n 
G -n - E [y(kT) + f ~k]/n903 , 

\(.=l 
n ;;:: 1. (8.3.1) 

Then the recursive estimate will be 

(8. 3. 2) 

A 
Thus to form the empirical estimate Gn it is necessary to store 

the previous estimate and the vector ~n-l; then, as the new measure-

ment is obtained, the old estimate is updated by Equation 8.3.2 to 

reflect the additional information. The reader can observe that the 

terms of Equation 8.3.1 which involve y(kT) represent the sample mean 

of the measurements multiplied by the inverse transition parameter 

e~~ while tho~e terms involving ~k represent the compensation for the 

control signal sequence. 

By making the following definitions, the empirical variance can 

also be cast into a recursive form: 

2 n k 
fe(n) = K_ E { E 0(kT-mT)P 

n 2 k=l 111::l - --0 

n 

+ fa ,E .[(mT-kT) J, 
ID= 

n ~ 1 

k+l 

Q'.. (n) 
n 
E [.[(jT-T)fo + fotT(jT-T)], n;;:: 1. 

j=l 

Equation 8.3.4 can immediately be put into the recursive form 

Using Equations 8.3.3 and 8.3.5, one can also show 

P (n+l) -e 

2 = n Re(n) + <,;t(n+l) 

(n+l) 2 
n ~ 2. 

<e.3.3) 

(8. 3.4) 

(8. 3.5) 

(8. 3.6) 
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Then the empirical variance is given by 

(8.3.7) 

Therefore the desired recur~ive form of the variance is given by Equa­

tions 8.3.5 through 8.3.7. 



CHAPTER IX 

DISCUSSION AND COMPARISON OF ESTIMATION METHODS 

9.1 Introduction. In this chapter characteristics of the var-

ious methods of estimating gyro drift are considered and some compari-

sons between them are made. To generate data for the recursive esti-

mate, digital computer simulation and computation were employed. The 

computer simulation can be grouped into two classes: those runs for 

which reference velocity noise was simulated and those without noise 

simulated. The former group served the primary purpose of verifying 

the theoretical performance predictions while the latter provided data 

for comparison of the estimation methods. 

The computer runs without noise simulated can be considered to 

represent the expected estimate of the gyro drift conditioned by the 

I\ 
gyro drift value. Thus the normalized curves of Gn/GB may be inter-

preted as the ensemble average of a.large number of sample functions. 

9.2 Estimating GB with Known Variance. Illustrated in Figures 

9.2.1 through 9.2.4 are the characteristics of the ]3a.yesian learning 

procedure for a known velocity error variance of one foot 2/second2• 

As illustrated in Figures 9.2.1 and 9.2.2, decreasing the time be-

tween samples ~ends to improve the speed of convergence. However, as 

one might suspect from the fact that there is a pole at minus one, 

decreasing the sampling time below one second does not greatly in-

crease the convergence speed as can be seen from Figure 9.2.1. Intui-
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tively one would expect a larger sampling rate to speed convergence 

since information is availab~e at a faster rate which is confirmed by 

the curves. The data illµstrated are for the nominal values of zero 

A A 
and one degree per hour for µ0 and cr0 respectively. 

A A The effect of varying the a priori density parameters µ0 and cr0 

for a sampling period of one second is illustrated in Figures 9.2.3 

and 9.2.4 respectively where smoothed curves are drawn through the 

data points. Varying the a priori mean has the effect which one would 

expect including synnnetry apout GB. 
A 

Small values of cr0 imply that one 

has confidence in the a priori mean and correspondingly less confi• 

dence in the measurements; this is borne out in the slower convergence 

speed observed in the curves for the smaller a priori variance values. 

Figure 9.2.5 presents a comparison between the variance of the 

estimate (about the true value of gyro drift) for the empirical method 

and the known variance Bayesian learning technique; while the sampling 

period for these curves is one s~cond, the curves for other sampling 

periods are similar. Using a mean squared-error criteria, the curves 

clearly indicate that one would prefer the Bayesian approach for cases 

with specified noise variances. 

It is interesting to compare the convergence rates of the Baye-

sian and empirical estimates with the time response of the third-order 

leveling system as shown in Figure D.2. The normalized mean value of 

the empirical estimate is unity since it is an unbiased estimate; one 

may examine the mean squared error as a function of time, Figure 9.2.5, 

as a measure of convergence speed. The speeds of response for the 

recursive estimation methods are much faster than that for the third-

order system. 
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9.3 Estimating GB with Unknown Variance. Use of the Gaussian-

inverted Wishart density provides a means whereby one can find a re-

cursive Bayesian estimate of the mean if the variance is unknown. From 

an engineering point of view, the formulation appears most desirable 

for in many applications the variance is not known. 

However, if one compares the Bayesian learning equations for the 

case of known variance, Equations 6.2.3 and 6.2.4, with those for un-

specified variance, Equations 6.3.8 and 6.3.9, he finds them to be 

identical by letting 

(9.3.1) 

In formulating the sets of recursive conditional expectations, the two 

-2 
cases differed in that a random variable p was introduced for cr when 

v 
the variance was unknown. Essentially this is equivalent to normal-

izing the unknown variance; that is, if the true value of cr is un­v 

known, the Gaussian-inverted Wishart formulation is identical to the 

known variance formulation with the value of cr taken as unity. 
v 

Since, in the case for known variance crv was actually unity, the. 

curves presented in Figures 9.2.1 through 9.2.4 also represent the 

behavior of the unknown variance case if Equation 9.3.1 is employed. 

In reference to Equation 6.3.5, the Gaussian-inverted Wishart 

a posteriori density function was noted to be a modified normal den-

. f G • h I\ d • ( )-l sity or B wit mean µnan variance wnp • The parameter wn' 

which will be referred to as the pseudovariance, was observed to be a 

measure of confidence in ~n as the true mean. Actually, the variance 

of GB conditioned by the data is given by 



2 
O' 

r s = n n 
(r .. J)w 

n n 

The parameters rn and s0 are defined in Equations 6.3.10 and 6.3.11 

respectively. Since these parameters have little intuitive appeal, 
,... 

.and since wn is directly associated with crn2 as given by Equation 

9.3.1, w will be taken as the measure of goodness of the estimation 
n 

procedure, rather than the actual variance, for purposes of compari-

son to the empirical method. 

The curves of Figure 9. 3.1 afford a comparison of the empirical 

method to the unknown variance method, with the a priori values w0-l 

" and µ.0 of one and zero degrees per hour respectively, for a sampling 

period of one second. For noise variance values greater than unity, 

. the variance of the empirical estimate is always greater than the 

pseudovariance. The empirical variance is initially less than the 

2 pseudovariance for crv = 0.5 but the situation reverses after about 

40 seconds. In the time region :Ulustrated, the pseudovariance is 

greater for crv2 = 0.1. 

This tendency was verified by the computer simulation results. 

To serve as a typical e~ample, the results of an actual computer run 

are presented in Figure 9.3.2. The simulation conditions are as 

follows: 

T= 1.0 sec 

G = 1.0 degree/hr 
B 

-1 0.1 degree2/hr2 w = n 
I\. 
µ.0 = o.o degree/hr 

a 2 = 0.1 v feet2/sec 2 
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Examination of the simulation results confirms the prediction that the 

empirical estimate is better for the stated conditions. 

Thus one will note that there are conditions for which the empiri­

cal method has smaller errors than the Bayesian technique. Although 

the pseudovariance can be varied by changing the a priori parameter w0 , 

there will still be values for the noise variance which result in bet­

ter estimates from the empirical formulation. 

The less confidence one has that the assumed density laws repre­

sent a true description of the random processes, the more he should be 

inclined to favor the empirical approach with its fewer assumptions. 

Moreover, if he uses the empirical formulation, he will be relieved of 

making a choice of the a priori parameters. Insofar as the empirical 

esttmation requires no a priori knowledge, it may intuitively be con­

sidered self-adjusting to the actual noise conditions which is more 

in keeping with adaptive control system philosophy. 

Figure 9.3.3 illustrates how changing the sampling period effects 

the squared error of the empirical estimate. The curves are for a crv 

of unity. One may again observe that the empirical method, for the 

sampling periods illustrated, is much faster than the third-order lev­

eling method. 



CHAPTER X 

SUMMARY AND CONCLUSIONS 

10.1 Summary. The system model was developed in Chapters II and 

III and the solution to the state equations was found. 

Chapters IV through VII are devoted to development of the Baye-

sian learning algorithms under the assumption that the reference vel~ 

2 ocity error process is normal with variance crv. For the case of crv 

known, the a priori density function of the gyro drift was assumed to 

be normal which is consistent with published experimental results. 

-2 For crv unknown, p, the reciprocal of the variance a...., , was assumed to 

be a random variable and the joint a priori density function of p and 

the gyro drift was assumed to follow the Gaussian•inverted Wishart law 

(a modified Gaussian distribution). 

In formulating the Bayesian solutions, the author chose to repre-

sent recursive estimates and covariance matrices similar to a Kalman 

formulation. This was done only after he had repeated failures with 

more direct approaches which tended to mask statistical dependence of 

the noise drivers and the observations. The uninitiated reader, 

working similar problems, might avoid this pitfall by using the Kalman 

forms as a framework for the Bayesian learning procedure. 

The empirical estimation procedure was developed in Chapter VIII • 

. Recursive forms of the estimate and the expected squared error were 

established. 
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The characteristics of the various estimation techniques were pre­

sented in Chapter IX. Also some comparisons were made with emphasis on 

the expected squared error. 

10.2 Conclusions. For sampling periods less than twenty seconds, 

the empirical method and the Bayesian methods converged to the true 

value of gyro drift much faster than the conventional third-order lev­

eling method. With the assumption that the velocity variance was spec­

ified, the Bayesian leart).ing technique resulted in the minimum mean 

squared error of the estimate. 

When this assumption was relaxed, the Bayesian learning procedure 

was still found to give a satisfactory estimate of the gyro drift. 

However,· for low values of unknown reference velocity noise, the em­

pirical estimation method was found to result in smaller mean squared 

error values than the Bayesian technique; for large noise variances, 

the opposite situation existed. 

A recursive form of the estimate was found for the empirical 

method which is very desirable for digital computer mechanization. 

The empirical formulation has the distinct practical advantage of re­

quiring a minimum knowledge of the velocity error random process and 

of the gyro drift. In this sense, it better represents ·an adaptive-

. learning philosophy. 

10.3 Recommendations for Further Study. An interesting exten­

sion of this thesis would be to consider the problem of finding an 

optimum sampling period in a d~cision theoretic framework. It would 

be necessary to select some cost function,. or criteria of goodness, 

and to as~ume a more complete system model. One could consider, for 
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example, the trade off between performance and equ:f.pment complexity. 

In considering the problem.of finding the Bayesian estimate, when 

the noise variance was unknown, the problem was formulated using the 

Gaussian ... inverted Wishart joint a priori density function. Essentially 

the gyro drift and the noise variance were learned. The gyro drift 

estimate was used in a f~edback loop to cancel the gyro drift. The 

estimate of the noise variance was not formed explicitly since it was 

not needed to satisfy the stated optimality criteria. The learned 

variance could perhaps be used to satisfy a different criteria such as 

finding the minimum mean square estimate of actual system velocity. 
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APPENDIX.A 

EVALUATING THE TRANSITION MATRIX 

Of many methods which are available to find the transition matrix 

At 
e- the particular method used here, which is called the constituent 

-1 
matrix method (9), is to expand [s~ - ~] in partial fractions about 

the eigenvalues. Thus the form will be 

where the C matrix is called the constituent matrix associated with 
-i 

the ith eigenvalue. 

By direct substitution, one can obtain 

[s~ - fil = s g 

-1/R s KzlR 

-b g s+Ki+b 

and its inverse 

[s!J. - fil-l = s 2 + s(Ki_+b) + ~ Kz -g (s+b) 

g 
bs - -

R 

(s+Ki) (s+b) 

-g(s+b) 

2 2 
(s + b) [ (s + a) + w J 
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(A.1) 

(A.2) 

2 
s + 2. 

R 



- 2 1/2 
where a= K1/2 and w = [g(l + K2/R - a J • The reader will recall 

that b = 1. Using the formula 

-1. 
]. 

' 

one can obtain the following constituent matrices: 

Fors= -b = ,-1, 

£1 = - Kl + gK2/R O 

(K1 + K2)/R O 

-(1 + g/R) 0 

Fors= -a+ jw, 

Q.2 = 
g 

jw - a -
R 

jw + .a + (l+K2) 

R 

jw - a - g 
R 

-g (jw - a + 1) 

-g (jw - a + 1) 

(j2w) (1 + jw - a) 

1 + g/R 

2 g 
-2jaw + 2a - .,...,K2 R 

-2jaw + 2a2 ID{ 
R 2 

and finally one will note that, for s = -jw - a, 

where conj(•) is the complex conjugate. 

(A. 3) 

(A.4) 

(A.6) 

Expressing the complex exponential terms as sines and cosines, 
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collecting the real and imaginary parts of ,Q.2 and ,Q.3 and substituting 

the numerical values results in the following expression for the tran-

sition matrix: 
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At 
.02025 o.o .02025 -t (A. 7) e- = e + 

4.883 x 10 -6 o.o -4.883 x 10-6 

-1.020 o.o 1.020 

1.020 o.o - .02025 -.Olt cos (.00746t) e 

-4.883 x 10-6 1.0 4.883 x 10-6 

1.020 o.o -.02025 

1.346 4316. -.006067 e-.Oltsin(.00746t) 

-6.543 x ·10-4 -1.346 -6.571 x 10-6 

1.346 4316. -,006067 

Only the second column of the transition matrix has appearance 

simple enough to warrant expression in terms of the literal system 

parameters •. This column can be obtained by taking the inverse Laplace 

transform of the second column of Equation A.2 as follows: 

= 

s + 2a 

-g 

2 2 
(s + a) + w 

-at 
- (ge sin wt)/w 

e-at(cos wt+~ sin wt) 
w 

.. at 
· (ge · sin wt) /w 

(A.8) 

The following integrals of Equation A~ 8 are used in the body of 



this thesis: 

T 
i = J cal2 dt 

0 

,.. Jco 9 = cal dt. 
-0 0 2 

By direct integration, these integrals are found to be 

9 = ___ R ___ _ 

1 + K2 
.. (1 -aT -aT • e cas wT) + (ae sin w'r)/w 

-a'r . 2 2 -aT . 
2a (1 - e cos wT) + (w - a ) e sin wT 

g wg 

-aT ·aT 
.. (1 - e cos wT) + (ae sin wT) /w 

. " R s. = _....____ -1 
"'.'*Q l + .K2 

•l 
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(A. 9) 

(A.10) 

(A.11) 

(A.12) 



APPENDIX B 

CONDITIONAL EXPECTED VALUES AND ~LATIONSHIPS 

B.1 Introduction. Several properties of the various expected 

values will be established in this appendix. The case for av known is 

first treated and then the case for crv unknown is shown to be similar 

with a slight modification. 

B.2 Expected Value of Cn.!- The reader will recall the following 

definitions for g: 
~ 

where 

!}_2 = 0 

0 

1 

~[ :v(x)] :==. o 

E[v(x)v(y)J = o (x - y). 

(B. 2 •. 1) 

(B.2.2) 

(B.2.3) 

(B.2.4) 

(B.2.5) 

The vector !n can be displayed in terms of the elements of the 

transition matrix through the use of Equation B.2.3 and the notation 

0 (t) = [0 .. (t)J to obtain 
- l.J 
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nT 
gn = crvl2b J 013 (nT - t) v(t) dt, n ~ 1. 
- nT-T 

023 (nT - t) 

0 33 (nT - t) 
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(B.2.6) 

Using Equations B.2.1 and B.2.4 with an interchange of expected 

value and integration, one can perform the following steps: 

0 
= crv./2b J !(-x);§.2E[v(x)J dx 

-co 

= 0. (B. 2. 7) 

Similarly, one can show E (g ) = 0 for n ~ 1 and obtain -n 

E (~) = 0, n .~ 0. (B. 2. 8) 

B.3 Variance of~..!.. In a like manner, using Equations B.2.1 

and B.2.5 along with an interchange of expectation and integration, 

one may proceed 

E(~~) = E[2bcrv2 JO !(-x)]!2v(x) dx JO 1!2T!T(-y)v(y) dyJ 
•00 -w 

2 0 T T 
= 2bcr v J _@, (-x) 1!2]!2 ! (-x) dx. (B.3.1) 

-oo 

Similarly, for n ~ 1, 

T 2 JnT TT E(.2n~n) = 2bcrv !(nT - x)]!2]!2 ! (nT - x) dx 
nT-T 

(B.3.2) 

but this equation can be further reduced by a single change of variable 

of integration to 
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2 JT . . T T = 2bcrv . !(T .. t)~&2 ! (T - t) dt, n ;;;;: 1 
0 

(B. 3. 3) 

or 

E (~~) = E (~l~-i) , n · ;;;;: 1. (B. 3.4) 

T The covariance matrix E(a1a 1) will be denoted as .H; hence 

E(~~) = li, n ·~ 1. (B. 3.5) 

If m ~ 1 and n :.:: 1 with m I=. n, then 

T z mT nT TT 
E(~) = 2bcrv J J !(mT ... x)&z&2 ! (nT - y). 

mT-T nT-T 
(Bo 3. 6) 

E[v(x) v(y)J dydx 

but, since the variables x and y are in non-overlapping intervals, it 

follows from Equation B.2.5 that 

(B. 3. 7) 

The restriction that m;;;;: 1 and n;;;;: 1 is omitted in Equation B.3.7 

since an identical argument would be valid if m = O, n I=. 0 or m I=. O, 

n = O. 

B.4 Recursive Properties of Conditional Expectations. In Chap-
A 

ter VII it is shown that Gn is a linear combination of the variables 

l_(nT) which followed from a property of normal distributions. This 

result is used in this section. 

Property B.4ol. For n > 0, ~(nT) is a linear combination of the n+2 

random variables GB,~' ••• , g. 
-rt 



Proof: 

The notation Ln (GB, ~, ••• , fut) will be used to symbolize a 

linear combination of the variables; the proof will be by induction. 

" A. since G0 is a linear combination of µ0 and~· 

3. (a) Assume ~(nT) = Ln (GB, .20' •• q ~) • 

hence ~(nT + T) = !(T)Ln (GB, .20' • • •, ~) + 

" (GB - G )9 + g 1 • n - "'-Il+ 

" " . (c) But since Gn is a linear combination of µ0 and z.(nT), 

and y(nT) = Q ~(nT), then 

~(nT + T) = Ln+l (GB' .20' ••• , ~, ~+l), 

and the theorem follows. 
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Since G and v(t) are independent and normal, g is a normal ran-B . ~ 

dom variable which is statistically independent of GB. Moreover, from 
. ,. 

Equations B.2.8 and B.3.7, it follows that~ and~ are independent 

if n J. m; therefore, the n+2 random variables GB' ~, ••• , .2.n are 

jointly-normal, statistically independent random.variables. From this 



fact and Property ;B.4,1, and from Equations B.2.8, B.3.5, and B.3.7, 

one reaches the immediate conclusions: 

Property B.4.2. E[~IGBJ = O, n = O, 1 

E[~IGB,r(nT - T)J = o, n ~ 2. 

Property B.4.3. E[~nlG:s,i(nT - T)] = 0, m ,J n, m ~ O, n ~ 1. 

Property B.4.4. E[.sn~~IGn,r(nT ·- T)] = H, n ~ 1. 
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The following two properties establish transitional relationships 

of the estimates. 

Property B. 4. 5. For n ~ 1, ~ = !(T) ~-l + (GB - Gn-l) ~ • 

Proof: 

1. From Equations 4.2.4, 5,4.6, and 5.4.7, 

~ = E[!,(nT)IGB,r(nT - T)] 

= 8{ [!(T)!,(nT - T) + (GB .. Gh_1)~ + ~] I . 

GB,I_(nT - T) }• 

2. Using the linearity property qf the conditional expectation 

along with Equations 5.4.1 and 5.4.2, and Property B.4.2, 

one can write 

or 



II /\ I\ 
z': ~(T)z l + (GB - G 1)9, -n ~ -n- n- -

which was to be established. 

Property B.4.6. For n ~ 1, P* = {(T)P 1{T(T) + fl. -n -n-

Proof: 

1. From Equations 4.2.4, 5.4.3, and 5.4.8, and Property B.4.5 

above, one can perform the following steps: 

e 1 = z (nT) -n - "' - z' -n 

/\ 

= {(T)&(nT - T) + (GB - Gn-l)~ + ~ 

= {(T)e l + g • -n- -n 

2. Using the result of step 1, along with Equations 5.4.9 and 

5.4.10, one can continue 

P* = E[e'e'TIGB,y(nT - T)J -n -n-n -

+ g gTIGB,y(nT - T)] 
..;;,n..;;,n -

where the last step is valid since g is independent of the 
=il 

other variables and~ has .zero mean. 

J. M:3.king use of Equations 5.4.4 and 5.4.5, and Property B.4.4, 

one finally obtains the desired result 
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B.S Modifications for the Case .of Unknown av.!.. The previous work 

in this appendix rests on the assumption that a is known (taken numer­v 

ically as unity). Since this assumpt;i.on is relaxed elsewhere in this 

thesis, some modifications must be made in the preceding equations. 

When av is not known, av2 is set equal to 1/p and thereafter 

treated as a random variable (analogous to GB). Thus all of the above 

conditional expectations will also have pas an additional condition, 

for example E[~(T)jp, GB' y(T)J, and the equations involving ~n will 

h -1 · · 1 f 2 f 1 ave p appearing in pace o av; or examp e, 

1/2 0 
~ = (2b/p) J !(~x)~ v(x) dx • 

... a, 2 

To minimize the impact on notation, the symbolization for the various 

means and conditional estimates will not be changed and only a slight 

change will be made in the equations involving covariance terms; spe-

.. 1 
cifically a factor of p will appear. " The symbols z 1 P*, etc., will 

-n --n 

be used for both cases of av known and unknown since no confusion will 

result because they are always treated in separate sections. 

" It is shown in Chapter VII that the optimum estimate Gn of GB 

I\ given the measurement remains a linear combination of µ0 and y(nT). 

Moreover, the following equations are valid as can be shown by a triv-

ial change in previous arguments: 
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Since crv = 1.0, 

T 
E <-2.1-fa I p) 

T TT 
= (2b/p) J .@.(T - x)~~2 ! (T - x) dx 

0 

= g/p • 

Also, one can write 

E[~~IP, GB' r(nT - T)] = fi/p~ n ~ 2 

E[~~fl p, G:sJ = Q., n ~ 2, n = 0 

E[g gTI p, GB, y(nT ... T)] = Q., n ~ 2, m I:. n. 
-m-n -

A more complete discussion of the changes is presented in Section 

5.4. 

.. 



Al'PENDIX C 

CONVERGENCE AND STABILITY 

C.l Introduction. In this appendix convergence of the Bayesian 

a posteriori density function to the actual gyro drift value is consi-

dered for the case of known crv. To simplify the discussion, it will 

be assumed that the learning loop is open; that is, the estimate of 

GB is computed but it is not applied as a control signal. The results 

can readily be extended to the closed loop case, i.~., using the es-

.timate as a control signal, by observing that the closed loop formu-

lation merely accounts for the fact that there is a control signal. 

Convergence for Bayesian learning for the case of unknown a is . v 

not specifically discussed in this appendix because it can be estab-

lished by a nearly identical argument. 

Since stability is often a problem in closed loop control systems, 

a brief discussion of stability is also presented in the final section 

of this appendix • 

. C.2 Convergence of the Bayesian Estimate. The inertial system 

is operated with some unknown value GB of constant gyro drift and a 

sequence of measurements is observed from which an estimate of the gyro 

drift value is to be constructed. Over the operating period, this 

value remains constant. If the system is shut off, allowed to cool, 

and started again, the gyro drift will assume some new value for the 

second period of operation. 
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Consistent with the Bayesian approach (13), GB is assumed to be a 

random variable. The probability density function of GB is assumed to 

be normal with mean µ0 arid positive variance ~02• 

Each measurement y(kl) is a random .variable which is a known func-

tion of the gyro drift and of a convolµtion of the random reference 

velocity error process; this functi~nal relationship is dictated by 

the assumed state model. Estimates of GB' which were constructed as 

linear combinations of the measurements, are also random variables. 

It is important in the following discussion to distinguish be-

tween the random variables ~(kT) and actual data ~k" In this appendix, 

the random variable r(kT) will be referred to as measurements and .ln_, 

which is a set of measured values or a sample function, will be re-

ferred to as data. 

The estimates of GB, empirical as well as Bayesian, have been ob-

served to be random variables which are functions of the measurements. 

The equations developed for these estimates specify how one is to con-

struct numerical estimates from the data. Here again, one needs to 

distinguish .a random variable, the estimate, from a number, the esti-

mate of GB given the data. 

In Chapter VIII, the empirical estimate, which will be denoted as 
A A 
Ge in this appendix to distinguish it from the Bayesian estimates Gn, 

was formed as 

A n 
G (n) = _1_ I: y(kT) , n ::.::: 1 e 

003 ~1 n 
(C. 2.1) 

and the mean square error 

2 
E{ [8e (n) - GB] 2}, n ::.::: 1 er emp (n) = (C.2.2) 
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was found to approach zero as n became infinite 

lim 2 ( ) CJemp n = o. 
n-+a:, 

(C.2.3) 

The empirical estimate is formed without any knowledge of the 

probability density functions of either GB or the noise driver. If, 

in fact, the random variable GB is known to be normal with mean µ0 and 

variance ~02 and the reference velocity error is known to be normal 

with varian~e av2, the empirical estimate is constructed exactly as 

though this information is not known. In other words, the empirical 

estimate ignores, or is independent of, the a priori knowledge. 

The optimal Bayesian estimate~ with a known, is given by v 

A 

Gn = E[GBlf(nT)], n ~ 1. (C.2.4) 

Presented data lri' the numerical Bayesian estimate is evaluated as 

" " I µn = Gn , n ·~ 1. 
r(nT) = ~ 

/\. 
The mean square error of the estimate G is n 

I\ which becomes, for the numerical estimate µn given the data~, 

(C. 2. 5) 

(C.2.6) 

(C.2.7) 

In the following theorem, it is shown that this error becomes arbi-

trarily small as more data is obtained. 

Theorem C.2.1. Given a sequence of data y, the mean squared error . =-n 

A 2 
an, as rui;pressed by Equation C.2.7, of the numerical Bayesian esti-
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II. mateµ of Equation C.2.5 tends to zero as the sample size increases 
n 

with.out bound; that is, 

lim " 2 
(J = 0. n ... (I) n 

(C.2.8) 

Proof: 

The Bayesian estimate of Equation C.2.4 is known (13) to be a 

function of the measurements which results in the minimum expected 

squared error as given by Equation C.2.6. Given data, the Bayesian 

numerical is computed from Equation C.2.4 and the associated mean 

squared error is expressed by Equation C.2.7. 

The empirical estimate is, in general, a different function of 

the measurements and therefore its expected squared error can be no 

less than the minimum; it follows that 

" 2 (J <. 
n -

2 
cr (n) • emp (C.2. 9) 

Combining the properties expressed by Equations C.2.3 and C.2.9, 

the conclusion of Equiition C.2.8 follows. 

It is interesting to observe that Figure 9.2.S illustrates the 

Inequality C.2.9. 

C.3 Convergence of the Bayesian a posteriori Density Function. 

Convergence, with probability one, of the numerical estimate to GB is 

established by the following theorem. 

Theorem C.3.1. Under the hypothesis of l'heorem C.2.1, 

I an - GBI .... 0' with probability one, as n ..... 00. 
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Proof: 

It is desired to show, that for every e > O, P(lµ 0 ~ GBI ~ e) ~ 0 

as n ~oo. From Tchebycheff's inequality, 

Since, from Theorem C.2.1, lim ~ = 0 and the conclusion follows. 
n~a> n 

Intuitively, the results of the above two theorems imply that as 

the data sample gets larger, the a posteriort density function ap-

proaches an impulse or spike centered about GB. 

C.4 Stability with the Learning Loop. The question of stability 

is answered as a result of convergence of the estimate to the true 

d 'f 1 I h ' ' 1 -l f gyro rL t va ue. n t e empLrLca case, n appears as a actor or 

weight of the nth measurement. Therefore, as n gets very large, the 

effective gain of the loop goes to zero and the system behavior ap-

proaches that of the original system before the learning loop was 

added. Or, from a different viewpoint, the difference between gyro 

drift and its estimate acts as a system driver and, since the dif-

ference converges to zero, the driver tends to zero. 

For the Bayesian estimate, with known variance, a similar sit­

uation exists for a 2 tends to zero as n approaches infinity. In the 
n 

-1 unknown variance case, w also tends to zero. Therefore, convergence n 

of the estimate to the true value implies stability. 



APPENDIX D 

THIRD-ORDER LEVELING 

A well established method (10) to cancel the gyro bias is illus-

trated by the error model of Figure D.l. The value 9f the control 

constants K1, ·K2, and K3 are often chosen to give a critically damped 

system with some specified time constant. It will be assumed that the 

system constant~ are as follows: 

~ = 0.03 

K2 = 194 

K3 = 0 .649. 

The above selection of valu.es will result in a critically damped sys-

tern with a 100 second time constant or 

" It can be shown that the corrective signal G(t) has an expected 

time response given by 

A 2 2 
E[G(t)IGBJ = -[1 - (1 +at+ at /2)exp(-at)JGB (D.1) 

" which is illustrated graphically in Figure D.2. The variance of G(t) 

is initially zero and grows to a steady .. state.value, of about 

2 -13 2 2 cra = 2.7 x 10 rad /sec. (D.2) 

This compensation method,.usually referred to as third-order 

leveling, is compared with the other methods in Chapter IX. 
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Figure D.l. Third-Order Level~ng Loop 
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