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' PREFACE

Mangement problems commonly arise from bu51ness sys~
tems in which people, machlnes, or materlals form waiting
lines for some type of serv101ng or processing., Waiting
line (queuing) systems create a major class of decision-
making problems in the management of business activities.
Queuing system problems occur.whenever a flow of arriving
traffic consisting of elements (people or things) estab-
lishes a variable demand for service at facilities of lim-
ited service capacity. Waiting time, or delay (the time
lapse between arrival and service o elements) varies
inversely with.the level of service capacity; i.e.,y the
number of service stations (servers) and the rate of serv-
icing maintained by each server. Management's objective _
in these problems is to select a '"best'" of alternative
system operating schemes; that is, one which maihtains an
economic balance between waiting time and service capac-
ity. Meeting this objective for any queuing system
requires a practiéal and effective‘analytical means of
solutions i.e.,FOf predicting delays produced at specific
arrivél and service‘capaCity levels. As one would expect,
'difficulty in determining suéh a means of solﬁtion in-

creases with the scope and complekity of various properties

iii



which distinguish different types of waiting line systems.

Analytical optimization and sensitivity analysis for
some situations in queuing theory is the primary objective
of this dissertation. Basic classification of queuing
theory is given here as a secondary objective. The con-
cepts for the subject research developed through discus-
sions with Dr. Shamblin, Associate Professor of Industrial
Engineering. A review of the literature did not reveal
any endeavors in the specific area for the sensitivity
analysis in queuing theory.

My interest in queuing theory began in 1965 as a stu-
dent of Dr. James E. Shamblin at Oklahoma State University.
Interest in the area continued to grow through my associa-
tion with him. The research resulting in this disserta-
tion was supported by a scholarship from Ein-Shams
University, U.A.R. Indebtedness is acknowledged to U.A.R.
Government for the years of financial support it provided.

The members of my Advisory Committee: Professors
W. J. Bentley, J. E. Shamblin, E. J. Ferguson, D. E. Bee,
and R. E. Venn, deserve special credit for guiding my
doctoral program and this investigation. A debt of grati-
tude is acknowledged to Dr. P. E. Torgersen,for serving on
my Advisory Committee, and Dr. W. J. Fabrycky,for his con-
tribution in my doctoral program,during their stay at
Oklahoma State University. Thanks is due each of them for

their inspiration and encouragement.
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I also express my gratitude to Miss Velda Davis for

her neat typing of my treatise.



TABLE OF CONTENTS

Chapter
I. INTRODUCTION & & & & 4w v o o o o o o o o o &

Queuing Theory . . . e e
Framing a Queuing Problem . e e e
Solution to a Queuing Problem . .
Optimal Queuing Pollcy e e e e e e .
Models . . . . e e e e e e e
Sensitivity . « « « + + o o o ¢ . . .
Literature Review . .

IT. GENERAL CLASSIFICATION AND DESCRIPTION

ITT.

Iv.

VI,

OF QUEUING THEORY . . . . . « . . . . .

Basic Structure of Queuing Problems . .
Classification of Queuing Systems . . .

DETERMINISTIC WAITING LINE MODELS .

Solution of Queuing Problems . . . .
The Decision Model . . .«
Models for No Initial Waltlng Llne o e

PROBABILISTIC WAITING LINE MODELS .. & o &

Poisson Arrivals With Exponential
Service . o + ¢ ¢ ¢ ¢ 0 v 0 e e e

POISSON ARRIVALS WITH CONSTANT ’
SERVICE TIME . . . . . « e 4 e o e s a e e

The Expected Total System Cost . .
The Minimum Expected Total Cost System
Sensitivity Analysis . . . . . .

POISSON ARRIVALS WITH ANY SERVICE
TI].VI.E DISTRIBU'—DION L L L . L L L] . L L] L o °

The Expected Total System Cost . . . .
Procedure to Find the Minimum

Expected Total System Cost . . . . .
Sensitivity Analysis . . . . . .« . . .

vi

Page

CONNTWNWNWN O - e

12

12
26

30
20
33
67

68

93
93
102

111
112

119
120



Chapter | Page

VII. SUMMARY AND CONCLUSIONS . . . . . . . . . . . 134
SUMMATY + « ¢ « o « « o o o o o & o « o o 134
Conclusion . O Y

Proposals for ﬁuéufe.S%uéy. e o s e o « . 138
SELECTED BIBLIOGRAPHY . ¢ « v v o o o o v v v o o o« « 140

APPENDIX A - PROBABILISTIC WAITING
' LINE MODELS & o & o o « o o o o « o « o 142

Arbitrary Arrivals With

Arbitrary Service . . . . . . . . 142
Poisson Arrivals With

Arbitrary Service Time

Distribution . . « ¢« ¢« « ¢« « o o 145

vii



Table
I.
IT.

IIT.

IV,

VI,
VII.
VIII.

IX,

XIG

XIT.
XIII,
XTIV,

XVI.

LIST OF TABLES

Arriﬁal'Time Distribution

General and Specific Classification |

of the System . .

Model Classifications . .

Channel Model .

. . . .

"Cost Components for g Single

Tabulation of Insignificant Limits

With Respect o K

Insignificant Limits at 4
and Different Velues of

Insignificant Limits at
Values of Farameter 2

ificant Idnits at = =
ferent Values cof the

IﬂolgnlllCaPt L]nlto of R
Values of o . .

=5 Periods
the FParameter R .

A =4 and Different

= Z Toriots and

;aL“Wﬁtﬂr i

=1 end Liiferent

The Range of Insignificant Limits Table:. .

General and Qpecific Classification of

the Case. . « . .

Tabulation of Equation (5~

. e . . . . .

29) Values . . .

Tabulation of Bguation (5-%1) . . . . . . .

Numerical Values of Sguation (6-27)

Numerical Values of Eguation (6-28) .

The Effect of Variance

viii

& ©

Page
16

29
34

37

vin
46

48



LIST CF FIGURES

Flgure ‘ ) Page
1. The Queuing FProcess . . . . e e e e e e 13
2. Clasgification df WUCUE v v v e e 4 e e .‘. . 20

~%. Four Basic pbtructures of |

‘ Service Facility « ¢ ¢ o« o v o & 4 4 e e e a s 22

ﬁaq“ Classification of bervice Facility ... . . « . . 23
5,' General Classification bf Yueuing Theory . .. 27
6. Single Channel System . . . . + o « « « C . 34

7. Cost Components for a vingle Channel Model . . . 38
8. K-S Curve . . i . o . . . . e e v .. .. . 45
9

. Insignificant Limits at A =5 and Different o
“Values of R v v v v v v v v 4 v v e e e e e e 4T

10, dInsignificant Limits at A =4 and Different oo
. Value’% Of‘R 2’ . . o . ° ° . . . < . LI . - L 49

11, Insignificant Limits :at A =3 Periods and - ‘
Different Values of R . . . « + ¢ « o o « o & 51

12, The Locus of S, at R=1 . w v v o o o o v o . W 54
13. Indifferent Range Surfacé wJ‘. } o e e 4 e e e 56
14. A Multiple Channel, Single Phase System . . . . . 58

15, The Tocus of S « v « v o v v 4 o o u e o ve o B2

h

16." 8;, and 8 -curves for Multiple Channel-
Single Phase Case . . . 4 S ee e e e e e e 65

17. EXpected Total System Cost Surface . . . . . . . 76

18.. Description of Optimal Case . . . . . . & Co. 80

ix .



Figure

19.

20.

2l.
22.
23.
24,
25.

The Insignificant Limits From the Lowest
Expected Total System Cost on the

Surface at ho—plane

The Insignificaht Limits From the Minimum
Expected Total System Cost at A-plane

Graph of Equation (5-29) . . .

Graphical Presentation of Equation (5-31)
Graphical Presentation of Equation (6-27)
Graphical Presentation of Eguation (6-28)

Effect of Variance on x|

and .

Page

83

86
104
109
126
131
133



CHAPTER I
INTRODUCTION
Queuing Theory

Queuing theory is a branch of applied mathematics
utilizing concepts from the field of stochastic processes.
It has been developed in an attempt to predict fluctuating
demands from observational data and to enable an enter-
prise to provide an adequate service for its customers
with tolerable waiting. However, the theory also
basically improves understanding of a queuing situation,
enabling better contrbl,: The theory provides one with’
predictions about waiting times, the number waiting at any
time, the length of busy periods and so forth. These pre-
dictions help the manager of the enterprise anticipate
situations and take appropriate measures to alleviate
congestion. In addition, it makes both the manager and
customer aware of a constant need for new ideas for
simplifying the complications of industrial éituationsi,

Such problems are characterized by a variable rate
of arrival of some kind of unit requiring some kind of
service and by a variable rate of completing the service

reqﬁired. Broad statements of policy covering such



situations are typically without specific meaning. For
example, '""Our policy is to provide the best possible serv-
ice to customers. We always employ enough sales clerks to
eliminate any possibility of customers having to wait for
the attention of a salesgirl.'" This statement is quite
vague and subject to a variety of interpretations. With
queuing theory, either analyticai or simulated, policy can
be quantified and everyone, thus, brought into precise
agreement as to what the statement of policy means.
Rational solutions of the problem of how many serv-
icing stations to provide requires minimizing the total
costs of keeping calling units waiting for service plus

the costs of providing service stations.
Framing a Queuing Problem

To solve queuing problems, management must take six
sets of estimates or forecasts. Some lean heavily on past
datas; some are matters of policy. The six sets are:

. Frequency distribution of service calls.

Costs of waiting.

°

. Distribution of service times.
Cost of maintaining service stations.

Relations of service stations to demand.

o

O v F W NN -

. Priority rule [9].
Defining Alternative Solutions

The types of alternative courses of action which may



require economic evaluation can be classified as follows:.
1. Changing the number of serving stations.
2, Reorganizing the service stations so that
the servicing time is changed.
%, Changing gueue discipline,

4, Changing service policy.
Solution to a Queuing Problem

The éolution to a gueuing problem involves a set of
specific values of the decision variables which minimize
the sum of the cost associated with the properties of a

specific queuing system.
Optimal Queuing Policy

The set of decision rules which minimizes these costs
are referred to as optimal queuing policy. Optimal deci-

sion policies are obtained by the use of models.
Models

A model is a mathematical representation of the
queuing syStem’s properties and interrelationships. In
order to construct a model, the associated properties and

resulting interrelationships must be specified or assumed.
Three Phases of Queuing Analysis

(1) The determination of the properties

(specification of assumptions) of a



queuling system.

(2) Mathematical model formulation and manipu-
lation for an optimal solution.

(3) An analysis or evaluation of the solution.
This analysis should evaluate the indif-
ferent range and the insignificant limits

" of a variable which give insignificant
effect on the optimal system cost.

Tt should be noted that the last phase will be de-

fined and referred to as Sensitivity Analysis of the

n Queuing Model and is the major topic of the research

reported in this treatise. Certain key questions and
issues arise in the analysis of queuing problems which are
of interest and significance both to the analyst and to
decision maker in his work. In addition, management needs
to have a general knowledge of the significance of the
additional mathematical sophistication of the various
models.

Thus, an essential step in any queuing analysis is
the determination of how far one needs to go in using the
variable in a certain model and when one should change the
real situation to the optimal one. A thorough sensitivity
analysis of the queuing model is necessary to help resolve
this question.

An important, yet often overlooked, property of any
decision model is the sensitivity to changes in parameter

values. If one has constructed a model that appears to



give reasonable, reliable results in trial applications
and that is relatively economical to solve and if the
variation in parameter values éan be evaluated, a whole
new dimension has been added to the decision-making proc-
ess, With a model one may explore various possible values
of this parameter and observe the effect of parameter
change on dimensions and resulting economic outcome,
either cost or profit. Thus, one could establish the
sensitivify of costs and decisions to change parameter
estimates.

There have been considerable research results report-
ed in the technical literature concerning the assumptions
of properties of various queulng systems and the formula-
tion of the resulting model. It is the intent of this
research to review these results and evolve analytical
optimization for the developed model. In addition, the
sensitivity analysis is given for each model. General and
specific classifications of the queuing theory are given
in Chapter II. ©Since the sensitivity is the major part of
this research, the following definition should be care-

fully noted.
Sensitivity

Sensitivity analysis evaluates the responsiveness of
management decisions to various factors associated with
such decisions. Sensitivity analysis can be used to

evaluate the responsiveness of a model to changes in
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various controllable factors (parameters), and to evaluate
the responsiveness of a model to various properties from
which the model is derived. It can be used to measure the
responsiveness of a model to non-optimal or incorrect
values of decision variables. This information can be
used to facilitate the appraisal of alternative courses of
action. These measures of responsiveness can be obtained
by a measurement of the change of the 6utput of a model

of a systém based on a controlled change to an input to
that model of a system.

The whole concept of queuing analysis is based on a
conceptualized mathematical model of the queuing system's
properties. Thus, as in using any mathematical model to
represent a physical system as an aid in the decision
process, it 1s of interest to know:

(1) The sensitivity of the model to the use

of "incorrect" (non-optimal) values of
decision wvariables.

(2) The sensitivity of the model to the use

of "incorrect'" estimates of the input
parameters.

(3) The sensitivity of the model to the use

of Y"incorrect' properties of the system
that define the model.

In regard to the sensitivity analysis of queuing
models, the following questionsgare posed:

(1) What is the effect of an error in the



decision variable on the total system cost
(TC)?

(2) VWhat are the insignificant limits of the
parameter (or the variable) which give
insignificant effect on the total system
cost?

(3) What is the indifferent range of the
parameter (or the variable) which gives
insignificant effect on the total system
cost?

These questions arise in the industrial environment
for several reasonsi i.e., (a) a production control manag-
er who can control the properties of the actual queuing
system may want to know whether it is worthwhile to change
the properties, (b) the optimal decision rules cannot be
employed,s or their employment may be more costly than some
alternative rules, (c¢) the detailed estimation of the
parameters may be too costly.

A measure of the sensitivity of a queulng system can
be calculated in terms of the change in the total system

cost of a queuing model. In this treatise, the only meas-

ure of sensitivity which will be utlllzed 1s the ratlo of

e e .

the difference between the actual and the optlmal total

e e e e e R T AT . Pt i e s
R i i SU— st

system costs to the optlmal total system costs. ThlS
S

sen81t1v1ty measure w111 be used in the calculatlon of the

1n51gn1flcant llmlts and the 1nd1fferegt range of the

[

I

parameter (or the varlable) 1n _use.



Literature Review

The original work in queuing theory was done by A. K.
Erlang, a Danish telephone engineer. ZErlang started his
work in 1905 in an attempt to determine the effect of
fluctuating service demand (arrivals) on the utilization
of automatic dial equipment. It has been only the end of
World War II that work on queuing models'has been extended
to other kinds of problems [1]. Since that time, the
field of queuing theory has been a fruitful area of re-
search by economists, mathematicians, statisticians, and
computer manufacturers. In the technical literature rela-
tive to the topic of queuing theory, attempts have been
made to define such terms as'the"queuing problems’',
"queuing systems', "waiting line models', "waiting line
systems', and '""delay phenomena'. It can be readily con-
cluded that there does not presently exist any commonly
accepted terms or definitions by the researchers in this
area, Churchman [5] classifies problem”involving queue
into two different types depending on their structure.

The first type of problem involves arrivals which are
randomly spaced and/or service time of random duration.
This class of problems includes situations requiring
either determination of the optimal number of service
facilities or the optimal arrival rate (or times of
arrival) or both. The second type of queuing problem is
not concerned with either controlling the times of arrivals

or the number of facilitiess but rather is concerned with



the order or sequence in which service is provided to
available units by a series of service points. Kaufmann
[6] showed the equations of state that are used in the
calculation of a number of different average dimensions.
These equations were first presented about thirty-five
years ago by the Danish engineer Erlang, in connection
with the problem of telephone communications. These are
generalized by means of so-called birth and death equa-
tions which allow one to describe a great many station
cases or permanent systems. Lajos Takats [7] developed

the Theory of Queues book. The aim of this book is to

give an introduction to the probabilistic treatment of
mass servicing. It is dealt with different models which
can be applied successfully to the theory of telephone
traffic, airplane traffic, road traffic, storage, opera-
tion of dams, serving of customer, and others. His
interest 1s chiefly in the time-dependent or transient
behavior of these processes. The purpose of the Queues

and Inventory text by Prabhu [8] is to give the similari-

ties between the mathematical formalisms of queuing and
inventory models which had been observed at a fairly early
stage of their development. He has made no attempt,
however, to establish a unified theory. He has treated
each topic separately by unified methods, using modified
notation, and the similarities between the results have
been pointed out wherever they exist. Frederick [10, 11]

wrote two articles, The purpose of the first'is to
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discuss and illustrate how to use queuing theory to
analyze a wide range of industrial problems, especially
those involving discussions regarding the amount bf
capacity to provide. Cost models, an example, and a dis-
cussion of how to determine the relevant costs are pre-
sented to give detailed guidance on how to conduct such
an analysis. Special consideration is given to the case
where pribritiesvare used in selecting members of the
queue for service, and a survey of the available results
for queuing models of this type is briefly presented. The
second article gives the practical application of queuing
theory to actual industriai problems. The many examples
presented illustrate the wide usage of problems that can
be formulated as queuing models. A broad conceptual pic-
ture of the general'approach to most of these problems is
given, with emphasis on the underlying cost consideration.
Arjan and Anand [12] described the basic structure of
queuing problem, the authors developed the philosophy of
queuing theory in terms of the components of the queuing
system and its characteristics drawing upon examples from
everyday life. A general discussion of approaches to the
solution of queuing problems isféiso présented. >In'1961;
Saaty [4] developed a textbook in queuing theory. The
principal purpose of this book is to produce a general
text and a summary of scattered papers and monographs on
the subject of queues. ©Secondarily, it includes a wide

Bibliography and indicates some unsolved problems. It
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also includes a descriptive introductory chapter most of
which is aimed at the layman. Many ideas are illustrated
with examples, and a number of exercises are intended to
fill in some of the omitted detail and develop results

along indicated lines. In Operations Economy by Fabrycky

and Torgersen [2], deterministic and probabilistic models
for waiting line situations are presented as a méans for
achieving economic operation of queuing systems.

From the_above, it can be easily seen that there has

not been such a trial made in sensitivity analysis of

gueuing theory. None of the references previously cited
coﬁsider the sensitivity analysis of queuing models. It
is this author's opinion that this is perhaps one of the
most significant aspects for decision models. Arne

Mjosund [16] mentioned in his article of Operations

Economy book review the following:

The first two introductory chapters expose the
reader to scientific approach in problem
solving in industry and to the construction

and manipulation of models. The ideas are well
formulated and defined. One important part of
model testing, sensitivity analysis, is, however,
lacking,

In this treatise, sensitivity analysis of queuing

models has been considered.



CHAPTER II

GENERAL CLASSIFICATION AND DESCRIPTION
OF QUEUING THEORY

Basic Structure of Queuing Problems

A common phenomenon occurring in everyday life is
that of " queuing' or waiting in a line. Queues (waiting
lines) are formed at bus stops, supermarket counters, and
ticket booths. Queues are also found in industry, in
shops where the machines wait to be repaired, at a tool
crib where mechanics wait to receive tools, in a warehouse
where the parts wait to be used, and in a sales deparfment
where the incoming customer orders wait to be processed.

In general, a queue is formed when either units
requiring services - commonly referred to as customers -
wait for service, or the service facilities stand idle and
wait for customers. Some customers wait when the total
number of customers requiring service exceeds the number
of service facilities; some service facilities stand idle
when the total number of service facilities exceeds the
number of customers requiring service,

Queuing theory can be applied to a wide variety of

operational situations where this imperfect matching

12



between the customers and service facilities is caused by
ones inability to predict accurately the arrival and serv-
ice times of customers. In particular, it can be used for

determining suitable number and type of service facilities.

Queuing Process

Basically, a queuing process is centered around a
service system which has one or more service facilities.
Customers requiring service are granted at different times
by an input source, commonly known as population. These
customers arrive at the service system and may or may not
enter the system depending upon the queue conditions. Any
customer entering the service system joins a queue for
service (a queue may be of zero length). The service fa-
cilities select customers for service by some rule,
commonly known as service discipline. After the service
is‘completed, the customer leaves the service system., The

queuing process is illustrated in Figure 1.

Service System

I__ - T §§%ﬂ§iﬁﬁiﬂ}f_l

Toout | Customers "
e | A Iserved
Source ‘ ‘ Cus-
l tomers

“Population” ' I

‘ ! _ =

Some Customers May Not Enter
The Service System

Figure 1. The Queuing Process
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Consider the example of mechanics arriving at a tool
crib to obtain tools. All the mechanics eligible for
service, but excluding those at the crib, comprise the
input source. The input source generates an input (a
customer requiring service) in the form of a mechanic
needing a tool. The mechanic then leaves the input source
and arrives at the service system. In the example, he
always enters the system, that is, he Jjoins the queue
irrespective of facilities. If a clerk is free, that is,
if he is not serving another mechanic, the incoming me-
chanic receives service immediately. If all the clerks
are busy, the incoming mechanic waits at the end of the
queue (assuming that the clerk serves mechanics on a
first-come, first-served basis). Any clerk becoming free
serves the mechanic at the front of the queue. Thus, the
mechanic Jjoining the queue has to wait in the queue until
all the mechanics in front of him are served. After a
mechanic has received the required tools, he leaves the
service system and Jjoins the input source, thus becoming
once more a potential customer.

Many practical situations can be put in the queuing
framework. The elements of a queuing process, namely,
the input source, queue, service facilities, and the serv-

ice discipline are discussed in more detail.

Input Source (Population)

An input source is characterized by:
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1. Its size
2. The arrival time distribution of the
customers

—

3., The attitude of the customers.

Size

An input source (population) is infinite or finite.
It is considered infinite if the rate at which the source
generates the customers is not appreciably affected by the
number of customers in the service system (customers in
queue and those in‘service). Alternately, the source is
considered finite if the rate is affected by the number of
customers in the éystem, In practice, the population is
considered infinite if the number of customers in the sys-
tem is not likely to be appreciable fraction of the size
of the population of potential customers.

Consider the example of a motel on a national highway.
The total number of guests in the motel at any time is a
very small fraction of the total population of potential
customers (motorists driving on the highway). It may be
said, therefore, that the customers arriving at the motelv
come from an infinite population. Now, consider the ex-
ample of maintenance of machines by a repair crew. Here
it is possible that an appreciable fraction of the ma-
chines will be out of order at any one time. Hence, the
customers (machines) in this example are regarded as

coming from a finite population.
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Arrival Time Distribution

The periods between the arrival of individual custom-
ers may be constant or scattered in some fashion. In a
clinic, patients may be given appointments in such a man-
ner that they arrive at the clinic at specified equal
intervals of time. On the other hand, the arrival times
of customers in a restaurant are distributed more or less
randomly and cannot be predicted. The arrival times can
nevertheless be described. For example, customers arrive

at a restaurant for service at intervals described in

Table I.
TABLE I
ARRIVAL TIME DISTRIBUTION
Time Between Percentage Cumulative
Customer Arrivals of Arrivals Percentage
of Arrivals
0=4.,99 minutes 42 4
5-9.99 minutes 23 65
10=14.99 minutes 18 83
15-19,.99 minutes 11 o4
20=-24,99 minutes 4 98
25 minutes and over 2 100

This table represents what is called the arrival-time
distribution. It shows, for instance, that a time period

of 15 minutes or less precedes the arrival of 83 out of
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every 100 customers.

One could also obtain the average time between the
customer arrivals and the average arrival rate (number of
customers arriving per unit time) from the arrival-time
distribution. DMany of these distributions found in prac-
tice can be approximated by one of the well-known mathe-
matical distributions, such as:

1. Constant time

2. Expénential

3. Erlang

4, Hyperexponential.

Exponential time distribution is a special case of Erlang
as well as hyperexponential distributions; whereas, the
constant time distribution is a special case of the Erlang
distribution.

Arrival-time distributions concerning many practical
situations such as failures of machines and arrivals of
customers in restaurants are found to be exponential.
However, there are some operational situations which have
an arrival-time distribution appreciably different from
exponential, Many of these nonexponential distributions
can be approximated by Erlang and hyperex?onential-
distributions.

It can be shown that the exponential arrival-time
distribution gives rise to "Poisson' arrivals (and vice
versa). In general, the arrivals will follow the Poisson

distribution whenever the following assumption is
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satisfied.

The total number of arrivals during any given time
interval is independent of the number of arrivals thét
have already occurred prior to the beginning of the time

interval,

Attitude of Customers

If a customer; on joining the service system, does
not get immediate service, the customer may:

1. Stay in the system until served.

2. Wait for certain time and leave the system

if service is not commenced bj that time.

3. Estimate the waiting time and then decide

whether to leave,

The first type of customers who stay in the system
(either voluntarily or involuntarily) until served, no
matter how long they have to wait, are called"patienf”
customers., Machines moved to an internal maintenance
shop in a plant for repairs are patient customersyi the
machines usually must be repaired whatever the waiting
time.

The last two types of customers are classified as
"impatient' customers, and an example is that of a cus-
tomer arriving in a clothing store. If the salesmen are
busy with other customers, a customer may Wait for some
time but then suddenly leave when his patience is ex-

hausted, or he may estimate that his waiting time will be
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excessive so that he leaves immediately.
Queue

A queue refers to the customers waiting for service.
This does not include the customers being served. Some
operational situations allow a queue for any size to form;
in others, the queue is characterized by its maximum per-
missible size, which may be infinite or finite.

In a sales department where the customer orders are
received, there is no restriction on the number of orders
that can come in so that a queue of any size can form.
When there is no limit on its size, the permissible queue
is said to be infinite.

In a gasoline station, the space for waiting of cars
is usually limited. If a motorist arrives when all the
space is occupied, he goes elsewhere for service. Thus,
the maximum size of the queue is limited by the space for
waiting. In many other situations, an incoming customer
may not enter the service system if a certain number of
customers are already waiting even though additional wait-
ing space is available. Queue size in this case is con-
trolled by the attitude of the customers. For instance,
if a motorist needing gasoline finds all the spaces on
both sides of the gas pumps occupied, he does not (in
most cases, at least) stop at this gas station but goes to
another. Because of this attitude of the the customers,

the maximum queue size will equal the number of gas pumps.



20

When there is a limit on its size, the permissible queue
is said to be finite.

In some finite queue systems, the maximum permissible
queue is of zero lengths; that is, no queue is allowed to
form. An example of such a situation is a parking lot.
When all the service facilities (parking spaces) are busy,
the incoming customers (motorists) do not wait but go
elsewhere,

An interesting feature of the situations with finite
gueues 1s that if any customers arrive at times when the
gueue length is fully that is, the maximum permissible
value, they do ndt enter the service system, and are,
therefore, lost. The interest in queuing theory for such
situations centers on the number of customers lost.

In some cases, there are more than one queue for one
service station. An example of this, the case where an
automatic machine has two input queues from previous dif-
ferent operations.

S0 whatever the queue, finite or infinite, it can be

classified as single queue or multiple queue.

Queue

I | * ]

Single Queue Multdiple Queue

Figure 2. Classification of Queue
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Service Facilities

There are four basic structures of waiting line situ-
ations which describe the general conditions at the serv-
icing facility. The simplest situation is where arriving
units form a single line to be served by single processing
facility, for example, a one~man barber shop. This is
called the single-channel, single phase case. If the num-
ber of processing stations is increased (two or more
barbers), but still draws on the one waiting line, it is
called a multiple-channel, single phase case, since a
~customer can be served by any one of the barbers. A sim-
.ple assembly line has a number of service facilities in
'series or tandom and is the single~-channel, multiplé Phase
vcése;. The last one is the multiple-channel, multiple-
phase case which might be illustrated by two or more par-
allel production lines. Figure 3 shows the four cases
diagrammed and labeled.

Therefore, the service facilities are characterized
by their arrangement, phases and channels. Figure 4 shows
the schematic classification of the four cases,

The service facilities have specific characteristics
with respect to service-time distributions as it is

explained below.

Service~Time Distributions

The time interval from the commencement of service to

the completion of service for a customer is known as the
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(d) Multiple Channel, Multiple Phase Case

Figure 3. Four Basic Btructures of Service Facility
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service time for the customér. The service times may be
either constant or scattered in some fashion for different
customers. The service~time distributions can be de-~
scribed in terms quite analogous to arrival time distribu-
tions. Thus, the service time distribution may be:

1. Constant time

2. Exponential

3. Erlang

4. Hyperexponential.

From the service~time distributions, one can obtain
the average service time and the average service rate
(services completed per unit time).

An example of constant service time is a nonstop
subway train service between two stations in a city.

Here, the arrival of customers (passengers) may be
Poisson, but their service time (time spent in the trains
while traveling between the two stations) is constant.
Scattered service times are found in supermarkets where
the girls at the cash register serve ﬁhe customers, at the
tool cribs where the clerks serve the mechanics, and in
many other coperational situations. Most of these have
been found to follow the exponential service time distri-
butions. However, there are some operational situations in
which the service time distribution is appreciably differ-
ent from eprnential° Many of these nonexponential dis-
tributions can be approximated by Erlang and

hyperexponential distributions.
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In general, service times follow the exponential
distribution whenever the chance of prolongation of serv-
ice (for a customer) is independent of how long ago the

service started.

Service Discipline

If any of the service facilities are free, the in—
coming customer is taken into service immediately. Should
all the services be busy, the customers in the queue may
be handled in a number of ways when a service facility
becomes free; some of these being:

1. The customers are taken into service in

order of their arrival. This is known as
“"first-come, first-served' service disci-
pline. This may, for instance, be found
at airports, where taxicabs gqueue while
waiting for passengers. The taxicabs in
this case are served (allotted passengers)
on a "first-come, first-served' basis.

2. The customers are selected for service at

random. This is known as the '"random’
service discipline. This is found in many
~operational situations where the customers
do not wait in a well organized line.

2., The customers are assigned priorities. The

service facility becoming free commences

service on the customer with the highest
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priority. If there is more than one customer
of the same priority in the queue, the serv-
ice facility may select a customer from among
these, either on the "first-come, first-served"
or "random'" basis. The processing of jobs on

a computer in some industries is done. For
example, on a priority basis with the de-~
bugging jobs having a higher priority than

the regular checked out jobs.

A variation of the service discipline involving pri-
orities is found in operational situations where the serv-
ice for a customer with a lower priority is interrupted
and the service for the incoming unit with higher priority
cdmmence_d° This is known as the "preemitive priority"

service discipline.
Classification of Queuing Systems

In summary, a queuing theory can be classified by
source input, queue, and service facility. Figure 5
gives a clear classification for the whole possible cases
in queuing theory. Queuing theory is classified with
respect to the source input as finite or infinite. That
is, the population which the customers call for service
is either finite or infinite in number. It is classified
with respect to queue as either the service system has a
single queue or a multiple queue. The service facility is

classified with respect to the channels and phases,; either
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single or multiple as shown in Figure 5. For example,
case IV as shown in Figure 5 is classified as follows:

Source input: infinite

Queue : single

Service facility: Multiple channel, multiple phase.

The previous classification is called the general
classification. ©Should assumptions be made to solve the
situation in a particular way it would be called a specif-
ic classification. For example, the attitude of the cus-
tomer is patient, the arrival time distribution is
exponential, the service time distribution is constant,
etc. Table II shows the general and specific classifica-

tions of the system.



TABLE IT

GENERAL AND SPECIFIC CLASSIFICATION OF THE SYSTEM

Source General Classification Specific Classification
Input Source i. Finite i. Arrival time
distribution
ii. Infinite ii. Attitude of
customers
Queue i. Single i. Finite
) ii. Multiple ii. Infinite
Service i. Channel i. ©Service time
Facility a. ©Single distribution
b. Multiple ii. ©Service discipline:
ii. Phase a. XHirst come,

a., Single
b. Multiple

first served
b. Random
¢. Priority
ceooag €tC.

62



CHAPTER III
DETERMINISTIC WAITING LINE MODELS
Solution of Queuing Problems

In the previous chapter, the description and the
classification of the Waiéing line system was discussed.
Here, the solution of queuing problem is taken into con-
sideration. /For an operational situation that has been
formulated as a queuing problem, the input source, the
service system, and the service discipline are identified.
wa methods are available for solving the problem, the
mathematical approach and the simulation approach.

In the mathematical approach, the actual arrival and
service—time_distributions are approximated by one of the
well-known mathematical distributions to arrive at rela-
tionéhips that describe the queuing process. From those
“relationships, one can determine the various operatibnal
characteristics. ZHurther, if the relevant costs ére
known, conditions can be determined'under which the opera-
tional situation gives optimal resultsy that is, minimizes
the total cost or maximizes the profit.

In the simulation approach, statistics concerning

arrivals and service times are duplicated mechanically,

30
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either from historical or assumed data. This is known as
the Monte Carlo method and is particularly valuable when a
computer is available. By duplicating a large number of

. arrivals with the operational situation on paper, one can
'determine the operational characteristics and the costs or
profit (if the relevant costs due to waiting, idle time,
etc., can be determined) resulting from changes in condi-
tions such as the number of facilities, service rates,
service discipline, etc.

The simulation approach is used in preference to the
mathematical approach when the queuing system cannot be
easily analyzed by mathematical means. Most of the
analytical work for the solution of queuing problems has
been concerned with operational situations in which the
arrivals are Poisson“and the service times follow the con-
stant time or exponential distributions.

_The objective. of.. this chapter 1s to determlne flrst

the capaclty of the service faclllty in the 11ght of the

relevant Qosts and the characterlstlcs of the arrlval pat~

e, o S e s

s e S s

tern so that the sum of all costs assoclated w1th the

s - S A AT

waltlng llne system Wlll be mlnlmlzed Second to draw the

1nS1gn1f1cant limits for the optlmlzed situatlono The

. All models developed here are based on . the assumptlon that

R i o i R T ST

the arr1va1 and service mechanlsms are determlnlstlco

i AT et

That is, the future demand for service and the service

duration considered are known with certainty. The model
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under consideration with these arrival and service mecha-

nisms in this restricted sense is only an approximation of

reality.
The Decision Model

The primary objective of waiting line system is to
meet the demand for service at minimum cost. This re-
guires the estéblishment of an appropriate level of serv-
ice capacity by constructing and manipulating a

mathematical model in the form

E =f<X13 yj)

where:
E = the measure of effectiveness sought
(minimize total system cost)
X, = the policy variable concerning the
level of service capacity to provide
y; = the environmental parameters of the

arrival pattern, the waiting cost, and_
the service facility cost.
The following sections are devoted to developing
deterministic decision models with the complete sensitiv-

ity analysis. The following symbolism will be used:

TC = total system cost per period
A = number of periods between arrivals
S = number of periods to complete one service
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cost ot total waiting in the system per

=,
i

unit per period

il

cost of providing service facility of
unit rate capacity.
Additional notation will be adopted and defined as

required for deriving specific decision models.
Models for No Initial Waiting Line

In this section, assume that a queuing situation be-
gins with no units in the system and that arrivals occur
at regular intervals of length A period. The first ar-
'rival occurs at the beginning of the process. Service
time is constant and equal to S periods. Since each unit
serviced will require S periods, it is essential that S be
less than or equal to A periods if a single phase-single
channel is employed. I1f single phase-multiple channels
"M" are to be used, it is required that S be less than or
equal to MA periods. If these restrictions are violated,

a waiting line will form which will grow beyond bound.

A Single Channel-Single Phase Model

This case is presented as single phase, single chan-
nel, single queue, infinite population in the general
classification in Chapter II. This is shown in Figure 5
as Case I. Due to the general and the specific classifi-

cations combined, it is as follows.
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MODEL CLASSIFICATIONS

Source General Classification Specific Classification

Input Infinite i. Constant arrivall

Source time distribution
ii. Patient customers

Queue Single Infinite

Service i. ©Single channel i. Constant service

Facility ii. ©Single phase time distribution

ii.

First come, first
served

The system may be represented schematically as shown

in Figure 6. The heavy dot represents

five periods.

operation requiring three periods.

A, no waiting line will ever form.

an arrival every

The slénting path represents a service

Since S is less than

E ’ ; |
| A - ‘ ' ’ |
ﬁ 9 ¢ T & Arrival
S
S ~ ~ '\\ Service
P ; ~——
| » Discharge

Figure 6. Single Channel System
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The total system cost per period will be the sum of
the waiting cost for the period and the service facility
cost for the periods; that is,

o b A

TC = WC + FC.

The waiting cost per period will be the product of
the cost of total waiting in the system per unit per pericd

and the number of units waiting each period, or
S
WC = Cw(K) °
The service facility cost for the period will be the

product of the number of units served during the period

and the cost of serving one unit, or

1
FC = Cf(§>o

The total system cost per period will be the sum of
the waiting cost per period and the facility cost per

period, or

¢ = 0y () + Cp(F). (3-1)

ferentiatiggnwith ;g§pgpt to S, setting the result equal

to zero, and solving for S as follows:

are _Sw_%r
ds = A T 8§ ©
CA
£
2 L e
St =7
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o -~ » S <A (3-2)

The total system cost per period at S (TCO), can be

calculated as follows:

C; /C A C
W f 1 W
TC = -1 + C
¢ K ‘Cw ) f CfK
T R,
= | = e
- yC,,C
W' f .
TCO= 2{“—?‘0 (3-3)

As an application of the foregoing model, consider

the following example. A unit will arrive every flve

perlods. The cost of waltlng 1s 55 per un1t per. perlod

One unit can be served at a cost of 39 Waiting cost per

. e il B =
e bt O ey S S e S T [ R

period, faclllty cost per perlod, and total cost per

NN} B

perlod may be tabulated as a functlon of S to 1llustrate

the nature of the cost componentso The results shown in

S — SR

) Table{;I;/were developed from Equation (3-1). Inspection

.. of the tabulated values indicates that waiting cost per

period is dlrectly proportlonal and that fa0111ty cost perv

period is 1nversely proportlonal to S The minimum cecst
serv1ce”;nterval is three perlods and may be provided at a
facility cost of $3 per period.

The minimum cost service interval may be found di-

rectly by substituting into Equation (3-3%) as follows:
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SO = YQQ?Z = 3 periods.

TABLE IV
COST COMPONENTS FOR A SINGLE CHANNEL MODEL

S WwC ¥C TC

0 $0.00 $oo oo

1 1.00 9.00 10.00

2 2.00 4.50 ©.50

3 3.00 2,00 6.00

4 4.00 2.25 6.25
-5 5.00 1.80 6.80

Under the conditions assumed, the decision maker

would provide a single service channel capable of serving

one unit every three periods as shown in Figure 6. The

total system cost, TCO9 at SO would be

¢, = ngggz = %g per period.

The graphical solution of the case is shown in Figure
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/Te_curve

|
54 | WC-Curve
N -
. I
3} s TCo >
FC-Curve
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|
P |
| P ! : ;' ' [ L —

Figure 7. Cost Components for a Single
Channel Model

Sensitivity Analysis

The minimum cost service interval and the minimum
total cost have been found in the last section. Should
the decision maker change the real situation under consid-
»ération to the minimum total cost situation calculated?

To answer this question, it is necessary to know about the
sensitivity of the system as the optimum policy for mini-

mizing the total system cost is known. Two kinds of
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sensitivity are considered in this chapter:
1. Sensitivity in tefms of the behavior of
the total system cost if the service
- interval deviates from the optimum policy.
2. Sensitivity of the optimum policy to
changes”in various system parameters, Cf
and Cy. |
Consider the first type of sénsitivity.‘ Let

TCS = Total system cost at S periods of service
TCO = Minimum total system cost at So periods
of service
ATC = TCS - TCO
and X = %%Q =vES§Té—ESQ.
o 0

By substituting the values for TCq and TC_, the last

equation would be:

CfC

Sy 4 .1 W
X - [CW(K) * Cf(§>] ot
T
£l
2l —g—
K = —L1 [Cw(%) " cf(%)] -1
[C-C, |
2-—.—.—
i
.'4 C . CA .
o‘ov’ 2(K+1)=;EITWA—S+J—'C'%J—(%>¢

Let Joox = 2



Substituting for Z2 in the last equation, it would be

2(K + 1) = 28 + §§.'

Multiply both sides by S,

2(K + 1)8 = ZS® + %.

. o Z82 - (2K + 2)S + = 0.

s

The previous equation is quadratic, solve for S, or

g o (2K + 2) TVA(X + 1) - &
= 27

s . BL(K + 1) & V{7 D = 1]
= 5 7

g . K+1) 2V(E+ 1P -1
= Z

S = %[(K s D) EVETIODE I T

S=%m+1)iﬁﬁﬁjﬂo

As shown from the previous equation, there are two

values of S for each value of K. Let the positive sign

40

indicate the higher value of S, Sh’ and the negative sign

indicates the lower value of S, SLG That is,



41

S = %[(K-ﬁl) t VE(E ¥ 2)]

Sp = %[(K + 1) - VEE + T - (3-4)
By, = %[(K‘+ 1) + VE(K + 2)]

But as previously indicated, the value of Z is

C
- W
A (3-5)
C K
7 = —2
{CfA
Cy
C.A
Since S_ = —%——
°© W
‘ 1
e o & = g (3~-6)
(o]

Equation (3-6) shows the relationship between Z and
SO° Substituting from (3-5) in the set of equations (3-4),

it would be,

Cek
S = |F— [(K + 1) £ VE(K + 2)]
W

C.A
S, = ?_5%. [(K + 1) - VE(K + 2)] (3-7)

T K
8y, = ’T%' [(K + 1) + VE(E ¥ 201
“w
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In the set of Equations (3-7), the service time per
unit, S5, is a function of K, the ratio of the incremental
cost, AT, and minimum total system cost at certain values
of the parameters. So,SL and Sh indicate the insignificant
higher and lower limits of the service time per unit at a
certain per cent of increméntél’cost to minimum system
total cost. That is, if the decision maker sets a certain
value of K, which gives no significance in cost difference,
he can get the insignificance limits of S. Beyond these
limits he will approve the change of the real situation to
the optimum éase. Within these limits he will keep the
situation as it is since the benefit he will get is less
than outlay for the change. In other words, the benefit
he will get by the change to the optimum case has no value
to him with respect to the money he will spend on the
change.

As an application of the foregoing, consider the
pfevious example which has Cy; = 5 #/unit/period,

Ce =9 $/unit, and A = 5 periods. By substituting for
the parameters' values in Equafions (3=-7), the upper and

lower insignificant limits as a function of K would be

S = ,2—-—:55} [(K + 1) * VE(X * 2)1.
.8, = 30(K + 1) + VE(E ¥ 2)]
S;, = 3[(K + 1) - VK(X + 2)1. //

Table V shows the upper and lower insignificant
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limit wvalues, Su and SL, at different values of K. The
graphical solution is given in Figure 8.

It is eas1ly seen from the graph that the ratio of

e,

B

change of S is greater than the rate of change of S

B g SRR v e S

R

the values of K 1ncreases._ ThlS was the sens1t1v1t§-anal~

ys1s in terms of the behavior of the total system cost 1f

the\serv1ce 1nterval dev1ates from the optlmum pollcy.

The second type of sens1t1v1ty, the sens1t1v1ty of

the optimum policy to changes in system parameter, is
illustrated as follows:
Cw/C

Define the parameter R as the ratio Table VI

£e
and Figure 9 give three curves of Equation (3-7) at dif-
ferent values of the parameter‘R, R = %KB,R = 1, and
R =(%5. It is easily to see that as the value of the .
parameter R increases the optimum interval So increases
and the range of the insignificant limits, Sh - SL, in-
creases. This is also shown in Figures 10 and 11 which
their values are calculated at different values of A,
Figure 12 shows the locus of So’ and the surface of
insignificant limits at constant value of the parameter R,
due to the change of A value in 3-dimensional analysis.
Therefore; as A increases the value of So increases at
certain parameter, R = 1., Also, if other surfaces are
drawn at different values of R, R = 75 and R = /9, it
can be seen that the locus of'So shifts to the right,

increases in value, as the parameter R decreases. This



TABLE V

TABULATION OF INSIGNIFICANT LIMITS
WITH RESPECT TO K

B S

K =SO[(K+1>3VH‘KI§71 ) =SO[(K+1>EVR‘Z‘KI§)‘T
0 | 5 3
0.1 4,674 1.926
0.2 ~ 5.589 1.611
0.3 6.393 1.407
0.4 7.14 1.260
0.5 7.954 1.146
0.6 8.547 1.053
0.7 9.225 0.975
0.8 9.837 0.909
0.9 10.548 0.852

1.0 11.196 0.804
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INSIGNIFICANT LIMITS AT A =5 PERIODS AND DIFFERENT VALUES OF THE PARAMETER R

TABLE VI

R = 79 R 75
K Sy 5, s 5, Sy s,
0 3 3 2.2%6 2.236 1.667 1.667
0.1  1:926 4674 1.436 3,484 1.070 2.600
0.2 1.611 5.589 1,2Oi 4,166 0.895 3.106
0.3 1.407 6.393 1.049 4,765  0.782 3.552
0.4 1.260 7.14 0.939 5.322 0.700 3,967
0.5 1.146 7,954 0.854 5.854  0.637 4,364
0.6 1.053 8,547 0.78% 6.373 0.583  4.751
0.7 ~ 0.975  9.225 0.727 6.878 0.542 5.126
0.8 0.909 9.837 0.678 7.372 0.505 5.496
0.9 0.852  10.548 0.635 7.862 0.473 5.861
1.0  0.804  11.196 0.600 8. 345 0.447 6.221

ot
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INSIGNIFICANT LIMITS AT A =4 AND DIFFERENT VALUES OF PARAMETER R

TABLE VII

0.299

R = 7/9 R =1 R = 75

K S s, S S, S 5,
0 2.683 2.683 2.00 2.00 1.491 1.491
0.1 1.722 4,180 1,284 3.116 0.957 2.323%
0.2 -1.441 4,998 1.074 3.726 0.801 2.778
0.3 1.258 5.717 0.938 4.262 0.699 5}177
0.4 1.127 6.386 0.840 4,76 0.626 3.548
0.5 1.024 7.024 0.746 5.236 0.569 3.903
0.6 0.939 7.646 0.70 5.70 0.522 4. 249
0.7  0.872 8.250 0.650 6.190 0.485 4,589
0.8 0.813 8.846 0.606 6.594 0.452 4,916
0.9 1 0.762 9.433% 0.568 7.0%2 0.423 5.242
1.0 0.719 10.013 0.536 7. 464 5.564

8%
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INSIGNIFICANT LIMITS AT A =

TABLE VIII

2 PERIODS AND DIFFERENT VALUES OF THE PARAMETER R

R = 79 R =1 R = 75

K Sp 5, SL s, S s,

0 2.323 2,323 1932 1.732  1.288 1.288
0.1 1.491 3,619 1.112 2.698 0.827 2.006
0.2 1.247 4,328 0.93 3,227 0.692 2.400
0.3  1.089 - 4.950  0.812  3.691  0.604  2.745
0.4  0.976 - 5.529 0.727 4,122 0.541 3,065
0.5 0.887 6.082 0.662 4,534 0.492 3,372
0.6  0.813 6.621 0.606 4,936 0.451 3.671
0.7 0.755 7,143 0.563 5.326 0.419 3.961
0.8 0.704  7.659 0.525 5.710 0.390 4. 246
0.9 0.660 8.168 0.492 6.090 0.366  4.529
1.0 0.623 8.669 0. 464 6. 460 0.%45 4,807

oS
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can bershown from the values calculated in the previous

tables.

Indifferent Range

The indifferent range, r, is calculated as the dif-
ference between the higher and the lower insignificant

limits Sh and SL’ respectively; i.e.,

Substitute in the previous equation for Sh and SL from

Equation (3-7) and the result would be

C-A C
,g;r;(ml) + VE(E+2)] - ?-@% [(K+1) - VE(K+ 2)]

Ir =
CfA
r= g [2\/KZK+25]
W
70fAK(K+_25
r = 2 C e
W

C
By putting R = T
f

T = 27%% (K +2). (3-8)

The indifferent range, r, is a function of K, A, and
R, Table X and Figure 13 give the interpretation of the
previous equation by the aid of numerical values of K, A,

and R. As the value of R increases at constant K, the



INSIGNIFICANT LIMITS OF R = 1 AND DIFFERENT VALUES OF A

TABLE IX

3 A=-4 5
K S, Sy, S, S, S, S,
0 1.732 1.732 2.00 2,00 2.236 2.236
0.1 1.112 2.698 1.284 3.116 1.436 3,484
0.2 0.930 3,227 1.074 3.726 1.201 4,166
0.3 0.812 3.691 0.938 4,262 1.049 4. 765
0.4  0.727 4,122 0.840  4.76 0.939  5.322
0.5  0.662  4.5% 0.764 5,236 0.854 5.854
0.6 0.606 4,936 0.700 5.70 0.783 6.%7%
0.7 0.563 5.326 0.650 6.190 0.727 6.878
0.8  0.525 5.710 0.606 6. 594 0.678 7.372
0.9 0.492 6.090 0.568 7.0%2 0.635 7.862
1.0 0.464 6.464 0.536 7464 0.600 8.345

¢S



The locus of S0 at R =1

A
Figure 12. The Locus of S, at R = 1
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TABLE X

THE RANGE OF INSIGNIFICANT LIMITS TABLE

Range ""r"
K A=5 A=k A=3 |
R=79  R=1 R=¥5 R=79 Rl R=Y5 R=%9 R=1 R=J5
o o0 0 0 o 0 0 0 o 0

0.1 2.748 2,048 1.530 2.458 1.832 1.366 2,128 1.586  1.179
0.2 3.978 2.965 2.211 3.557 2.652 1.977 3.081 2.297  1.708
0.3 4.986  3.671 2.77  4.459  3.324  2.418  3.861 2.879  2.141
0.4° 5.88  4.383  3.267 5.259 3.920 2.922 4.553 3,395 2.524
0.5 6.808 5.000 3.727 6.00  4.472 3.33% 5.195 3.872  2.880
0.6 7.494  5.590 4.168 6.707 5.00  3.727 5.808 4.33  3.22
0.7 8.250 6.191 4.584 7.370 5.50  4.100 6.388 4.763 3,542
0.8 8.92  6.694 4,991 8.0%3 5.988 4.464 6.955 5.185  3.856
0.9 9.694 7.227 5.388 8.671 6.464 4.819 7.508 5.598 4.163
1.0 10.392  7.745  5.774  9.29%4  6.928 5.165 8.046 6.00  4.462

49
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-4

3
,, At R="/9
» — — At R=1

AtR:g/S

Figure 1%, Indifferent Range Surface
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indifferent range decreases. Also as K or A increases,

the range increases when R is equal to constant value.

A Multiple Channel,'Single Phase Model

This iSjthe Case III shown in Figure 5. Its general
classification is as follows: Infinite population, single
queue, multiple channel, and single phase case.

The generai‘and the specific classification combined

€

is shown in the following table. -

| ~ TABLE XI
GENERAL AND SPECIFIC CLASSIFICATION OF THE CASE

Source General Classification  Specific Classification

Input Infinite 1. Constant arrival

Source time distribution
2., Patient customers

Queue Single o Infinite

Service 1. Single Phase 1. Constant service

Facility 2. Multiple Channel time distribution

: 2. First in, first
served '

A two channel waiting line system may be represented
schematically as shown in Figure 14. The heavy dot repre-

sents an arrival and the slanting path répresents a
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service operation. Thé second arrival finds the.first
service channel busy and goes immediately into the second.
The third arrival finds the second channel busy and goes
immediately int§ the first. Since S is less than MA, no

waiting line will ever form.

H——S_)..-,

N | , o
Arrival € ™
JAE, ‘ .
Service T — ,-."'L‘ﬁTb» T — —~—
Service T . Lk ' I\
Discharg® e * — —

Figure 14. A Multiple Channel, Single Phase System

The total system cost for the period will be the sum
of the waiting cost for the period and the facility cost

for the period; that is,

-

TC = WC + FCo

The waiting cost per period will be the product of
the cost of total waiting in the system per unit per

period and the number of units waiting per period, or



>9

We %‘Cw<%>°

The facility cost for the period will be the product of
the number of units served during the period, the cost of

serving one unit, and the number of channels in operation,

or
1
FC = Co(gM.

The total system cost per period will be the sum of
the waiting cost per period and the facility cost per

period, or
' S 1
TC = CW(K) +_Cf(§)M.

A minimum cost service 1nterva1 may be found by differen-
tlatlng with respect to S, setting the result equal to

zero, and solving for S as follows:

C.M

arc _ v _ %M
ds - K T 8 ~©
- C MA
o~ Ty
. CfMA
o o SO = "‘"C";J_ K S s MAa : . » . (3““’10)

Equation (3-10) reduces to Equation (3-3) for the
single channel-single phase casey; M = 1. |
The minimum total system cost can be obtained by

substituting for S in Equation - (5 9) from Equatlon (3-10),



60

or

1]

Cw C MA

chmcw chmow
r T )\

NCTC
1, - 2} LA, (%-11)

To illustrate the application of the foregoing model,

[

TC
0

consider the following example. A unit will arrive every
four periods. The cost of waiting is $2 per unit per

period. A unit can be served for a cost of $#9. Two
channels are to be used. The minimum cost service inter—
val may be found by substituting into Equation (3-10) as

| follows: o

= y-m = 6 periOdS

and the minimum total system cost may be found by substi-

tuting in Equation (3-11), or

¢, = .!%Fg;-: 6 $/period.

The minimum total system cost can be written as a
function of 8 by substituting from Equation (3-~10) into
Equation (3-11) as follows:

CfMCw ACW

TC = 2Y °
o) A ACw




ol

g : 2

) Q‘CfMA Ty
= e
R

28 ¢C : |

c, - oY - (3-12)

From the previous example, it is known that.

SO = 6 periods
Cy = 2 $/period/unit
A.="4 periods

.' TCo = 2&%22-= 6 $/period

which is the same result obtained from Equation (3-11).

Once

SO is known, use Equation (3-12) to facilitate the

calculation.

Under the conditions assumed, the decision maker

would prévide two service channels, each with the capacity

of serving one unit every six periods. Figure 15 shows

the TC surface in xyz-Space. It also shows the locus of

SO at different values of A on TC-surface and lbcus of So

on S-A plane.

Sensitivity Analysis

Now+to define K as before
TC_ - TC
778 0

TC °
0

K =

Substitute for TCé and TC, in the previous equation,

it would be
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TCA -

l
l
| 0
l

Locus of SO on - Surface
the surface at dif- [S
ferent values of A T

S

Figure 15. The Locus of So



-

w
I

e
S 1 ff W
c,(3) + ch(-S-)] - 2 25
CIC
10y
2|—x

- %f% [0, (® +_ch<%—)] -1

| Co oc, .
7 W, r £, 1
(2K+ 2) = CfMA‘ S + C"J Sn
VA

But 8 = |~
, -0 ] Oy

,b. (2K +

Multiply both side

Equation (3-13) is
S would be

[ 0]
i

[6p]
[

2) =g~ -8 +58_ .2

0
s by S, or

I ey
(2K + 2)87,- 5. 82+ 8
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52 = (2K +2)S + SO = O, (3-13)

a second degree iﬁ S. Solving for S,

_(2K+2) t V(PR 2R - &

2(g-)
"

_2L(K+1) # V{EFIE =13

2(g)
o}

5 [(K+1) & VEFI-DE+I+ D]

So[(K-fl) £ VKX + 2)].



Substituting for So would be:

- YO & . |
:\S = —C;—[(K*-l) £ VK(K + 2)]

SL = YW[(K.‘— 1) - \I-KZK+ 25] . ‘ (3-—14)

M "
shzyfg—ux+1)+Vfﬁﬁbh
W .

Figure 16 shows,the shape of Sh—curve and SL—curve.
They have exactly the same shape as in single channel-
single phase curves of Equation (3-7). Equation.(3-14)
can be reduced to Equation (3-7) by putting M=1. By
comparison of the Equations (3-7) and (3-14), it cah be
said that by multiplying the insignificant limits in
Equation (3~-7) by VI would be the insignificaht limits
for multiple channel~single phése case. So the multiple
channel-single phase has the same analysis as thé single

channel-single phase case with scale 1 = VM.
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S ‘ Lar:

o

Figure 16. SL and Sh-curves for Multiple
Channel-Single Phase Case

Indifferent Range

The indifferent range can be calculated as follows:

T = Sh—SL.

By substitution for Sh and SL in the previous equation

from Equation (3-14), it would be

G MA |
r= '—g;— [((K+1) + VKR T 2)3- {(K+ 1) - VE(E+ 2}

C.MA

r = |5— - 2EE+D)
W
CHEK '
r = 21—0—- (K+2). (3-15)
” |
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Put R .

it
m 1<

B (x4 2). (3-16)

H
|

Substituting for M = 1 in the last equation, it would be

r = 2}‘-%— (K + 2)

which is the single channel case as shown in Equation
(3-8). Therefore, the multiple channel indifferent range

is the single channel indifferent range multiplied by V.



CHAPTER IV
PROBABILISTIC WAITING LINE MODELS

In this chapter, the deterministic restriction on
arrival time and service time does not apply. Ordinarily,
both the arrival rate and the service rate are expected
values frbm specified probability distributions. A prob-
abilistic waifing line system will resulty however, if
either the arrival and/or the service time is a random
variable. The arrival time and the service time can fol-
low any distribution, empirical or analytical. It depends
on the case under consideration for study. The models and
their sensitivity analysis considered here have the char-
acteristic that the arrival rate is assumed to be an ex-
pected value from a Poisson distribution. This assumption
is mathematically convenient and has a sound practical
basis in many situations. Also, the service rate is an
expecfed value from Poisson distribution. The models are
based on the assumption of an infinite population,in that
the size of the population is large relative to the
arrival rate.

In this case, individuals leaving the population do
not significantly affect the arrival potential of the

remaining units.

67



68
Poisson Arrivals With Exponential Service

Assume that both the arrival rate and the service
rate are expected values from independent Poisson distri-
butions. This assumption holds when the rates are inde-
pendent of time, queue length, or any other property of
waiting line‘system. The expected number of érrivals per
peridd may be expressed as:yAm or A. The expected number
of service completions per period may be expressed as:%Sm
or p. Where Am and Sm afe the mean time between arrivals
and the mean serﬁice time in periods, for the assumed dis-
tributions, respectively. If the number of arrivals per
"period or the number of services per period have a Poisson
distribution, then the time between arrivals Ax’ or the
service duration, Sx’ will have an exponential distribu-
tion,l (It is assumed that B is greater than A, and that

the arrival population is infinite.)

The Probability of n Units in the System

Under the foregoing assumptions, the probability that

an arrival occurs between time t and time t + At is>\At°2

lFor a mathematical proof, see C. W. Churchman,
R. L. Ackoff, and E. L. Arnoff, Introduction to Operations
Research (New York: John Wiley and Somns, Inc.), 1957,
pp ° 598"‘400 L]

2See W. Feller, An Introduction to Probability Theory
and Its Applications, 2nd ed. (New York: John Wiley and
Sons, Inc.), 1957, p. 400.
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Likéwise,‘the probability that a service is completed in
the time interval from t to t+At, given that a unit is

being served at time t (conditional probability) isilAt.
Let

n

P, (%)

number of units in the system at time ¢

[

‘probability of n units in the system at

time t.
If it is assumed that the probabilities of more than
one unit arriving or being served during the small time
interval At are negligiblé, and if n > 1, the probability
that there will be n units in the system at time t + At may
be expressed as the sum of three independent compound
probabilities as follows:
(1) The product of the probabilities that
there are n units in the system at
time t, no arrivals occur during time
At, and no services are completed dur-
ing time At, which is
[P, (t)I[1 - A(At)I[L - p(at)].

(2) The product of the probabilities that
there.arev(nnrl) units in the system at
time t, there is one unit serviced during
time At,'and there are no arrivals during
time At, which is [P, (t)Iw (At)I[1-A(At)].

(3) The product of the probabilities that there

are n-1 units in the system at time t, |

there is one arrival during time At, and



there are no units serviced during At,
which is: |
[(Poo1 (B)IIN(AE)I[L - p(AB)].

A1l other possibilities that might be enumerated will
yield terms in At of higher order. These are assumed to
be negligible.

The probability of n units in the system, for n > 1,
at time (t + At) is obtained by adding the preceding
probabilities.,

P,(t+At) = [P,(t)I[1-ACAE)I[L ~p(At)] +
[P, .1 (610w (A6)1LL =2 (AB)] +
[(P,_1 (£)IIA(AE)ILL -p (AE)].

Since the time interval At is small, the probabili-
ties at time t + At are equivalent to those at time t. By
substituting P,(t) for P, (t +At), expanding, and dropping
terms in At of higher order, the foregoing expression

becomes

P,(t) = Po(t)[1=A(At) =p(At)] +Poyy (B)[n(AT)] +
Po.1 (8)A(A%)]
Porr (8D (AE)] = P, (%) - P (£)[1-A(At) -p(AE)] -
P,,,"l(t)D\(At)_]
P, ., (t) = P_(t) L;—E"- - P, _,(t) %}Q (4-1)

The probability of no units in the system, n=0, at
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time t + At, is the sum of two independent probabilities
as follows: o
(1) The product of the probability that there
are no units in the system at time t, and
the probability that there are no arrivals
during time At, which is P, (t)[1-A(At)].

(2) The product of the probabilities that there

is one uvnit in the line at time t, then one
unit is served during time At, and there
are no arrivals during At, which is

Py () (A)101 -A(A6)].

Al]l other possibilities that might be enumerated will
yield terms in At of higher order. As before, these are
assumed to be negligible.

The probability of no units in the system at time
t + At is obtained by adding the foregoing probabilities.

Po(t +At) = Po(t)[1=-A(AL)] + Pl(t)tu(At)][l-h(At)].
Since the time interval At is small, the probabilities at
time t + At are equivalentbto those of time t. By substi-
tuting P,(t) for P_(t+At), expanding and dropping terms

of At in higher order, the foregoing expression becomes

P, (£)

fl

Po(t) =Py ()N (AT)] + Py (£) [k (AB)]

L]

P, () = Po(t) A, | (4-2)

Equations (4-1) and (4-2) may be solved by successive
substitution for P, in terms of Pyy Py sy Poy eees Ppo

Assuming that P, (t) is independent of t,.and equal to P,
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results in:

P, =’P°(%) from Equation (4-2)

P, = Po(-ﬁ-)2 letting n = 1 in Equation (4-1) and

substituting for P

P, = Po(%)3 letting n = 2 in Equation (4-1) and

substituting for P,

o L] * o o

P, =.Pb(%)n letting n = n~1 in Equation (4-~1) and

substituting for P,_, .

Summing the left and the right sides of the preceding

series results in the equality

N

n=0 n

o

Aya
p

But it is obvious that

o0

> p
n=0

And from the sum of an infinite geometric series

o Nl 1
zz BT A

n::
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Therefore,

Substituting this expression for P, into the previous

relationship for P, gives
] = __L >."_n i
P, = (12 (4-3)

The Mean Number of Units in the System

The mean number of units in the system, n ., may be

expressed as

n P

[»]
i
]
B 8
1[V]
o

[

< N

E;n(l —‘E)(E)

n=0 ’

-1 -3 )y
n=0

AFA A A
=(1 - if)['rf + 2057 + 37+ ] (4=tt)
Let:
A A A '
g = my + 2(‘5)2 + 5(H)3 + 2oce o
And let

e - B2 v 23+ L



4
Subtracting the second series from the first gives
Q-3 +1-1+2 0 Ay o Ay 4L,
g(1 - & _ > By e B

The right hand side is now an infinite geometric series;

therefore,

1

e(1 =AY v 1 - —1
® b (1 =)

XAL .
[1 - Mu)ie

Substituting for g in Equation (4-4) givés

w3 ]

(4-5)

B
B

it
©
;I’

The Mean Waiting Time

The expected time an arrival spends in the system,

wm, can be shown to be:
m
Wmf—-*;\—o

Substituting Equation (4-5) for n_ gives

1
Vo o= o _‘ (4-6)

- The Expected Total System Cost

The expected total system cost per period is the sum
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of the expected waiting cost per period and the expected

facility cost per periody that is,

TC_ = WC_ + FC_.
m m m

The expected waiting cost per period is the product of the
cost of wailting per unit per period and the mean number bf

units in the system during the period, or

WCm Cw(nm)

The expected service cost per period is the product of the
cost of providing service facility of unit rate capacity

and the service rate in units per period, or

FCm = Cfp.

The expected total cost per period is the sum of these

components and may be expressed as

Cw A
TCm = m + Cf Mo (4"'7)

Therefore, the expected total cost is a function of
the two variables, service rate, p, and arrival rate, A,
" The graphical representation for TCm is shown in Figure 17.
At the plane A =A,, which is parallel to TC, - ¥
plane, the minimum expected total cost, TCm19 is occurred

at B = By. At the plane A = A, , the minimum expected
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[

e Q
=2

Expected total
System Cost
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TC surface
m

~7
\\\Eml - I
~ T, # |

locus of mini=-

mum expected total
system costs at dif-

ferent wvalues of A

locus the minimum
cost service rate

Figure 17. Expected Total System Cost Surface
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total cost, TCma, is occurred atvp =LL2; The minimum cost
service rate, B, at certain arrival rate can be calculated
by differentiating partially the expected total system
cost equation, TC_, with respect to B and equating the

result to zero, or

e CER R o

....Cf = wa(p'_ A)-2 |

Cf(u - A>2~;.cwx{
. CA
(p-2A) = —C-w;
| -

B T%j |
o= Xt? 2¥E. (4-8)

Equation (4-8) is the locus of the minimum cost serv-
ice rate for different values of A, Cys and C.. The locus
of the minimum expected total system cbst at different
values of A can be found by substituting from Equation

(4-8) in Equation (4-7). This is shown in Equation (4-9).
.th

Let: TC_ = the minimum expected total cost at the i
th

'
arrival rate, A,, and at the i

service
rate, p,.

Ci, A ‘ S :
TC = . ‘ + Cf[A{_+

=
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Ciy A, . Gy A
Bt + Cf Ay, + Cf ‘% :
Yc"w' X, } £
Cf .
- Cp S
m, = u M Cy Ay + 0p Ay + VO, CpA,

VC,Cohy + Cehy + VO CpA,

I

TC

TC
m,

Co A, + AT CA, (4=9)

Equation (4-9) is shown graphically in Figure 17 as
the curve drawn on the TCm-surface. The allocation of the
minimum of the minimum expected total system costs, TCm )

(]

can be found by differentiating partially Equation (4-9)

with respect to A, and equating to zero or

oTC .

G s AT L . 0
oA - Uf W'f =
t EVK,

St L g
Ay - bl
Square both sides it would bé
O | ¢
A, °f
- gl
1 cf

Let TCmO occur at A% =N

c o Ny = (4-10)
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The minimum of the minimum expected total costs can

be calculated bu substituting from (4-10) in Equation
(4-9).
C
_ - W ’ of Y
TCmo = Cf Cf + 2 Cwa Cf

TC, = 3Cye (4-11)

i
Q

... TCH;o is a function of CW’ the waiting cost/unit/
period. It is equal to the trible value of Cw and it
~occurs at arrival rate A, = gg, and service rate §, where
M, can be calculated from Equation (4-8) as follows:

Ao Cy
By = Ay + C;E
| Gy’
bo =g~ + | (5
° G Ce
W ~2<EE> (4-12)
) Ce /"
To sum up,
TC = 3C B
(] 5 W
Cw \
occurs at Ao =5 ? (4-13%)
f :
Coipe
Mo =.2<'C-}> .,'

L

This is shown in Figure 18.



—_———— _‘/(p'O’}"O)

Figure 18. Description of Optimal Case

Sensitivity Analysis

For the calculation of the insignificant limits,

consider the same definition of K as previously stated

where

C, - T At

TC = TC

~
=
Q

g
=
i

= ATC

~
N
Q
=
~
™
}

C.. A
- [y + M) - 2y

80
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ka

5(K + l)Cw = m + Cfp.
'Multiplying both sides by (u - A), it would be

Z(K + 1)Cwu - BCW(K + 1N = CW + Cfp2 - CfNL

CH? = [3C,(1 + K) +AC R+ [3C,(1 + K) + CyIA = 0
(4-14)

The previous equation is quadratics; its solution would be:

" - 020, (1 +K) +AC,] £YTAC, T+ K +AC T =BT AT TT + K) + O]

2C £

. 130, (1 +K) +A C4) tyecwz (K7 +MCF 70 CATT+ K - 1XAC I+ K) = 4C T X
- 2C
£

] [BCW(1+K) +?\Cf] ’-ty'9Cw‘(1+K)2 +)\sz2 -GC}CW(I +K) - 40O N

[VRE
2Cf

o = E%; [30,(1 +K) +AC,] i%f\{gcwz (T+K) “h7CF = (6+ 6K + 5)C AT,

po= X}l-; [BCW(1+K) +ACf] .1:_2_%}. }[9CWZ(1+K)2 Th sz - (10+6K)Ci}‘cw

p= [gg—‘; (1+K)+%}\]¢X2 (%)2 (1+K) +2 - % (10 + 6K) (2—”;)\

Since the previous equation is to calculate the in-
significant limits of the service rate at the plane A = A ;

therefore, the value of A can be substituted in the last
c
equation by the value of A,, which is equal to Cﬂ By
f
substituting for A it gives,



a2

b= [2 g%,(lfx) +3 g‘-ﬂtk (%)’(ux)z »+% (%’)’ - (10 + 6K) (%’-)z

. g%[%%p%]z] (_%)2 (2 +}-Fao+ e0)]

v o T e -]

b= %[(2+%K)1W]

b o= % g%[(m BK)im]

by = %g‘t—f[(u +3K) +VR(OK+12) | ' (4-15)
by = %g‘z’[(m 3K) - VR(9K + 12) |

Figure 19 shows the upper and lower limits of the
service rate W. They are calculated at A=A, plane.
That 1s the minimum expected total system cost at that
plane is the lowest cost on the surface., The insignifi-
cant limits for this case would be for the minimum service
rate d,. These limits shown in the figure are the graph-

ical presentation for Equation (4-15).

Indifferent Range

The indifferent range can be calculated for the pre-

vious case by subtracting the higher limit from the lower
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$ TC 4
m

Figure 19. The Insignificant Limits From the Lowest
Expected Total System Cost on the
~ Surface at A -plane .
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limit, or

T o= By =By
C .
- %— 6‘-5[(4 + %K) + VR(OK + 12) - (4 + 3K) + VE(OK 5 12)]
1 Sy
- 3 o 2K 12) |
Cu
T = -C;V'K_T_9K_—_7+ 127, (4-16)

As an illustration, consider the case where the cost
of waiting per unit period, C;;, is #4.00 and the service
facility cost for serving one unit, C., is $2.00. For
this situation, the best arrival rate and service rate to
meet the lowest expected total system cost applying Equa-
tion (4-1%) is as follows:

Ry = 2 (g—‘f) = 2 (%) = 4 units/period.

By this policy the lowest expected total cost per périod

is:

TCmq = BCW = 3(4) = $12,

The insignificant limits for the service rate at K = 0.04

is:
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=
i

1 %)[(Mﬁc) + YRR T ]

by = 5 (3) [(a+0.12) + Vo.o4(;56 I | ~ 5

i

oy % (%) [(4;12) - V0.04(12;567] ~ 3

and the indifferent range, r, is
T =y =Wy o= 2

or this result can be gbtained by following Equation
(4-16).

The insignificant limits and indifferent range, shown
in Equation (4~15) and (4-16), respectively, are calcu-
lated at the plane A = A, passing through the lowest cost
Tomog

In the following section, consideration is given for
the case where the plane A is not passing through the
lowest cost TCmO, This is the general case. The calcula-
tion for the insignificant limits and indifferent range
will be related also to the lowest cost, TCm s Which is

(o]
easy to calculate.

General Case

The general case is shown in Figure 20. This is
the case where it 1s required to calculate the insignifi-
cant limits and/or the indifferent range for any arrival

rate A. In other words, the insignificant limits and
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$TCJ.

TC -surface
m

c
s’:fe”c’em
\A{EC Lot =g b
eﬁ?ec Je a
> min. v
0 p'L p'h F"o N

) A ) J/ / Plin e‘ .

expecte T Vi :

ltotal sy s-, TC TC

l‘cem cost/at / — =] = 7

plane J2, /

o -plane | /

Figure 20. The Insignificant Limits From the Minimum
Expected Total System Cost at A-plane
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range are to be calculated at the plane A, ILet plane A be

at a certain arrival rate A, or
A= KA,

where A, = the arrival rate at which the lowest expected

total cost, TC_ , occurs
Mg

K, = constant value
C
since A, = 5E
£
C
* W
s o }\- = K2 o
Cr
Ce '
K2 s }\. ’ ’ (4-17)
W

The numerical value of K, may be less or greater than
one and it is always positive or zero. It depends on the
values of C., Cy, and A,

The minimum expected total system cost value at the
plane A, TCm s can be calculated by following Equation

min.
(4-9>9 or

TCmin. = 2VCwax + Cf,k.

Let the lowest expected total system cost, TCm )
o]

occur on the curve of intersection between plane B and

TCm surface, ©Since TCm is the lowest point on the sur-

(s}

face, therefore TC is always greater than TCm . Let
min. (¢
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Ky = the ratio of TCm and TCm
min. o
TCm
min
1nen KI - .a
TCmO
Substitute for TC and TCm values from Equations
min, o

(4-9) and (4-11) in the previous equation, it would be

-
B = 55 (200 + o] (4-18)

where K; > 1.
In the case where K=1 and K, =1, plane A coincides

on plane B and TC '~ is equal to and coincides on TC_ .
Dpin, Mo

Following the same procedure as in the last section,

™ -~ TC
K - . Tmin,
] 8 = TC .
Mymin,
Since T%ﬂ =Kﬂﬁm
min. 0
. TC_ - K TC
¢ K, TC
My
KKy TC = TC - K;TC_ .
m, n m,
But TCmo = 3C
th
and TCm = E?X- + C f}i
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. Ci N

W
. . BKKICW = Il-:-5\+ Cfp. - Bchw
CyN
Bchw(K'l- 1) =,a‘:—x + Cf K.

Multiply both sides by (b -2A)

5, (K + 1) (=2) = Gy + o =A)

3K, Cyy(K + 1) = 3K; C (K + 1A = CuA + G2 = Coph .
This equation 1éads to the fgllowing:

Cfpz - [Bchw(K+l)+Cf7\]p + [5K1CW(K+ 1)+Cw]>\.=0..

The preceding equatioﬁ is second degree equation in UK, By‘

solving the quadratic equation, g would be

) [3k; 0y (K + 1) NFNE: 7[5x,cw(x+ 1) +cr>\]z - e 3K O K+ 1) + cy]
s 207

Bo= -2%;[31(, Cu(K+1) +CpA] 2 %f VORC TR+ 1)F ¥ TN + 6K, (K + 10T X = TAAC K, (K = 100y, = BAC, 1

1 1 VOK ?C. Z(E+ 1)2 + C2AZ —GAC K, G (K+ 1) = &xC,.C,
“2‘6;[5“w(x*1>*cr)‘]*§c_f O F K+ 107 7 C7NT = BRC K, Oy (K = 1) < TAC 0y

= E%;[BK‘CW(K+ 1) +Cf>\] E4 7% K,? <g_‘;."> (K+1)2 +>_‘I:_ - %)\ K, (;%)(K'* 1) - x(g_:)

Substitute for A from Equation (4f17) in the previous

equation, or

C C : C : C
o - Dm D n GEIED] [ G a0 B @) ek G a0 -nGED

. .
B %(c%)[gx,(xu)m, + VKT I 77 —6K K, (K v 1) = 0K; |
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- %(%)[ax,(ml)m, ¢ VORI I - 6K (Kr D K (K =) |

fromwhichv
uh=%(G¥>[3K,(K+l)+l(,+V9K1‘(K+177-6K1K2(K+1)+K,(K2 -] (4-19)
1 CW -
b = B[ 64 1, T DTSR O TR ]
where:

K — ﬂg—

= TCm -

mino

: 1 NCTx
Kl = —5—%{ Cwa + Cf)\]
C

£
K = g2 ).
Cu

Indifferent Range

Since r = ph = Ppe

Substitute in the preceding equation from (4-19), r would
be

c |
T = 5% VIK,Z(K + 1) - 6L K (K + 1) + 5 (& = ).

(4-20)

By putting Ky = 1, and K, = 1, Equation (4-19) reduces to
Equation (4-15) and Equation (4-20) redﬁces to Equation
(4-16), which is the special case er the calculation of.
insignificant limits and range at the plane A =M\ .

In the last illustration, the insignificant limits
and the indifferent range are calculated when the situa-

tion is working at arrival rate A,. Consider the same
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situation but working at different arrival rate, A = 8.
Therefore, the optimum service rate here, at which the
minimum expected total system cost occurs, can be calcu-
lated by following Equation (4-8), or

fwx

A+ | =
| Cf

-
i

8+’4;8=8+4:l2o

At this service rate, the minimum expected total cost can

be calculated by following Equation (4-9), or

i

TC

C. A+ C..C\
Bin. £ EY W't

2(8) + 2/4(2)8

H

il

16 + 2(8) = $32 per period.

Now, to calculate the insignificant limits and the indif-

ferent range, K; and K, should be calculated as follows:

K, = 22 = 2.67

i
I~

(8)

ISTN

K =g A=

Apply Equation (4-19), by and p can be calculated by

assuming K = 0.04 as follows:

pp = 3(3) 3 (F)aom v v s

Yo (227 (roour - 6 (25))(1.04) + 0]
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]

8.%22 + 4 + V69.248 - 66,560

12,32 + V2.688 = 12,32 + 1,68 ~ 14

i

Fr, 12.32 - 1.68 ~ 11.

And the indifferent range = 14 - 11 = 3.

In other words, if the service rate for the consid-
ered case other than the optimum one, 12 units/period, and
the decision maker does not care about 4% of the optimum
total cost, as difference in costs between the working
situation and the optimum one, he should decide to change
to the 12 units as service rate if p is beyond the insig-
nificant limits 11 - 14 and leave the situation as it is

if 4 within the limits,



CHAPTER V

POISSON ARRIVALS WITH CONSTANT SERVICE TIME

When service is provided automatically by mechanical
means, or when the service operation is mechanically
paced, the service duration might be a constant. Under
these conditions, the service time distribution has a
variance of zero. The mean number of units in the system

is given by

A

2
M) A
Ny = T - )T T <iI>' - (5-1)

And the mean waiting time is

A
/i 1
vy < T G7nT i (5-2)

The Expected Total System Cost

The expected total system cost per period is the sum
of the expected waiting cost per period and the expected

facility cost per periods; that is,

TC. = WC_ + FC_.
m- m m

The expected waiting cost per period is the product

93
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of the cost of waiting per unit per period and the mean

number of units in the system during the period, or

WCm = Cwnm

Qa2 A
CW{2[1-.(X/p)] * 5t (5-3)

The expected facility cost per period is the product
of the cost of providing service facility of unit capacity

and the service rate in units per period.
FC, = Cp(p). (5-4)

The expected total system cost per period is the sum

of these cost components and may be expressed as

M)z A
0 - cw{2[1 sy + E} + Cob. (5-5)

Define x as the locad factor, which is the ratio of
the arrival rate, A, to the potential service rate, p.

Substitute for A/p in Equation (5-5), it would be

ka

x¢
TC, = CW{ETTTTET + x} + = (5-6)
The Minimum Expected Total System Cost.

To find out the minimum expected total system cost
‘load factor, differentiate the expected total system cost
Equation (5-6) with respect to x and equate to zero,

Equation (5-6) would be:



C.A
m 2(1 - x) - 2x + 2x* £
= - tulTEa SRR f1] -5 =0

Cw[4x—4x2 + 232 +4(1 - x)? ]x? ~4CA(1- %2 = 0
Oyltx- 42 + 2 +4(1-2x+2 )] —4CA(L-x2 = O
cw[4x-4x2 + 2% — 8% + 4x? +4]xz ~40 AL+ 32 - 2x) = O

cwx2(2x2 ~4x +4) -4Cf7\(l+)8 -2x) = 0.

Divide by C,

2 Aa Xt el = X3+ 4 =~ x - 4N - 4@ + 8\x =0

2Rx* - 4 Rx® + 4 R - 4\ - WA + 8Ax = O

divide by 2R

let:

95

x* - 2% + 2(1—%)}("’ + %X-% = 0 (5=7)
p = -2
q=2(l-—%)
4N
V:-'—R—
g2
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Substitute these values in Equation (5-7), it would be
x* + px? + gx® + Vx + W = 0. (5-8)

By solving Equation (5-8), the'Xmin can be found. To

solve for X, first determine a, b, and ¢ such that
x* + px3 +gx® +VX+W+ (ax+Db)?2 = (x +¥2x+c¢)2. (5-9)

The determination of a, b, and ¢ is accomplished by
equating the coefficient of like powers of x in the first

and second numbers of Equation (5-9)

a? + q = 2C + pSUF (5-10)
2ab + V = Cp (5-11)
P2+ W = C%, (5-12)

Hence from the Equations (5-10), (5-11), and (5-12) it

would be

(Cp = v)2 = 4 a?b? = 4(2C + p74 - q)(C? ~W)

or
c* - Y2ct + % (pV-4W)C + £ (4qW - PPW-T?) = O.
(5=13)
Let:
R RS
F=-3=%35-1
Y = & (pV - 4w)
4 .
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- @ -+ @] -0
E = %(Luiw - ;W - )

- s - B - 4P -

1 16N . 16\2 . 8A A2 A
= g[—R + Rz + ‘P“ - 16§r = - §o E

Substitute in Equation (5-13), it would be
C3 + FC2 + YC + E = O.
Since Y = O, the last equation is
C3? + FC® + E = 0. | (5-14)

C can be found by solving Equation (5-14) and then obtain
a and b by substitution in Equations (5-10) and (5-11).

A method of solving Equation (5-14) will now be
explained. Equation (5-14) caﬁ first be transformed so as

to remove the second degree term. Let
F
C = Z - gu (5—15)
Substitute in Equation (5-14) from (5-15) it would be

(z - Z)s +F(Z—%)2 +E =0

F
3
(Z - -Fg)(zz _%FZ+E§-)+ P(Z2 _% FZ+%—) +E=0
73 -%FZ@ +%§_%z2 +-§-Fzz _%37+F22 -%—F2Z+%3—+E=O

zs_ig—?-z_ﬂ Lk 0
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23—%F22+(§2-F772—+E)=O
23 + ZHZ + G = O (5-16)
_F2 1A
where H==3 =-35(- 17 (5-17)
end | G- E_E%QZE. - -227 (-1 -4 (5-18)

It is customary to refer to (5-16) as the reduced cubic
equation.

| The roots of the given Equation (5-14) can be found
- from (5-15) when the roots of (5-16) are known.
Equation (5-16) can be solved for Z by Cardan's

formulas as follows:

-G+V@ftﬁﬁﬁ'95 o - T T3
Z:[ 5 - ] .+[, 5" ] . (*)

To get the solution for ¢ substitute Z in Equation (5-15),

it would be

1, B
c . [-G4—V§rTﬂﬁT]/5+ [—G-ffgrffﬁﬁT]/5_§a
| | | (5-19)

Substitute from Equations (5-17) and (5-18) in Equation

(5-19), it would be

(*) Introduction to the Theory of Equations by
Conkwright, Ginn and Company, 1941, pp. 70-71.
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o+ L-Hgh - -3 A T LT T,

H34 - -8 -  BA D W T3 oT) dd-»
' : (5-20)

Consider the radical in (5—20) to reduce it

RV R o e i = B ST S S = Bty

ST T

.Y 1
o - [ld-1r + 3 HH BBG ) [ Hd- 3 - YT - HHa)”

F - D.

o

Let: |
a=2Fd -1+ 33 | o (5-21)
0= Y -5 BHE-»  (5-22)
1 1, o
. - 7/3 /3 ‘
e c = (o + B) + (q — B? .- %(% - 1) | - (5-23)

Having found ¢ from Equation (5-23), then obtain a.and b
by substitution in (5-10) and (5-11). Note that it is not
necessary to find all the roots_of-values of c,>sinCe éhy.
one will be suffice.

~ Now. upon adding (ax + b)? to both members of Equation
(5-8), an equation is obtained in which both members are

perfect squares. It is,-iﬁ fact,
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(2 _+‘}22x+ c)? = (ax + b)?.

Therefore, X2 4+ X+ C=8x+b

or X2 4+ X 4 ¢ = —~ax - b,

ks, ks

Substitute for the value of p in the last two equations

x?‘- X+ C=2ax + b
or
X -X+c=-ax ~b
i.e.,
® - (1+a)x+ (c-b)=0 (5-24)
or o
' - (1 -a)x+(c+D)=0. . (5-25)

Therefore, the four_roots of Equations (5-7) can be
found by solving the Quadraticquuations.(5—24)'and (5425)°

Then, the Toots are:

H

(1 +a) 2 V(T Y E(e = b)
1+ g . + a c (5-26)

X142

I+

(1= a)
Xzeu = 7

T = ey —EE T ’
e a =L (5-27)

- To sum up, the preceding is the method of finding the

minimum expeCted'total_system cost load factor, Xiin.

also the summary of the.proceduré of finding out xminf'is

as follows.
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Procedure

Suppose thatvit is given A, C.;, and C, and required

the minimum expected total cost service rate, ;.

Step 1:

Step 2:

Step_ 3:

Step 4:

Calculate
R “u
£

p=~2
a=201-%

_ AN
V=7

__ LA 3 1A
«=-2(F-17 +35§

i}

-3 - HHE -,

Calculate ¢ from Equation (5-23) or

g v ]
c = (o + B)/5 + (o0 - B)/B +_% q.-

Using Equations (5-10) and (5-11) calculate a and

b, or
a=V2c - q + T
b = -(2¢ + V.

2a
‘o o'two'setsfare considered in.solutiohg either
(-a, + b) or (a, - b), which both of them give

the same solution.

Calculate the minimum-expected total cost load

factor, which is the positive, less than one,
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value out of the four following values:

(1 +a) 2V{T + a) ZE(c - b)
X1,2 = 2 v _ 7
e o (L -2a) 2V - a)® - A(c + b)
394 = 2 v .
Step 5: Find B, as
- x .
¥o = *min, T B,
vo--l P'o =’X A . - . (5—28)
“min. :

Step 6: Calculate TC,, minimum expected total system cost
by using‘EQuatioh (5-6), and minimum load factor
| o x,? C.A
(o] , ‘ £
_ TC°,= CW{2(1-X35 * X°}'+ Xg

or using Equation (5-5) and Ho. Both of them

lead to the same value of TC,.

»Sensitivity Analysis
'Having followed the previous procedure to get TChsin
at Xo, define K as previous chapters, such ass |

TC - TC
R m

in.
T™C . .
min.

K -
i.e.,

AC
K - {QW[ETT%;§7TQ X] + _Ei} - TCpin,

min.
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(5-29)

As known from quéuing'theory, the loadvfactor, X,
does not exceed unity, otherwise the system will builduto
“an infinite quéue. That is;,it’will be explosive case.
This is Why on thé values of x less than one are consid-—
'ered in Step 4 of the previous procedure of finding mini-
mum expected total system cost. |

By finding the set of values of K for the range of
load factor (O, ..., 1), these values shown in Table XII.
Figure 21 shows the shape of the K-x relation. After
finding out the values of Xh and x; from Table XII or
Figure 21. uL’and bys the insignificant limits of expected

total system cost can be found.

~ TABLE XII
TABULATION OF EQUATION (5-29) VALUES

C C C
W x2 ' W £ 1
X X mp— -1 K
. 2rC .~ (1-x) Tcmin: t T 0%
(1) (2) . (3 (4) (5) (&) =
' 2+3+4+5
) -1 )

0] -—— ———
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Figure 21. Graph of Equation (5-29)

ok
X4 |
Lo : (5-320)
B, = =—
h | Xy,

As an illustration, consider the case where

Cy = 0.10 $/unit/period
'Cf = 0.165 $/unit/period
A= 0,125 units/period.

Following the procedure given previously.



Step 1: .

- Step 2:

i

i}

i

)

i}

=100 _ 4 506

165
-2
20 - §:322)
2(1 - 0.206)
2(0.794) = 1.588

4(0.206) = 0.824

- (0.206 ~ 1)} + %£(0.206)
27 L] 2 L]

(0.2646)3 + 0.103

0.0185 + 0.103 = 0.1215

%w(o,206)2 + 4(0.206)(0.0185)

0.5V0 003 + (8247 (0.0185)

0.5V0.0424 + 0.01524

YO°04 & _ Y0.0IHAT - 0.12.

1 1
(0.2415)73 + (0.0015)> + L:288

00623 + OnlO6 + 00265 = 1.094 Y

1.1

105
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Step 3:
a =V2.2-1.588 + 1
=V3.2 - 1.6 = V1.6 = 1.265
b = —(2.5.;58.824) - - gf%%% = - L.195.
Step 4:

2,265 % V(2.265)2 - 4(2.295)
2

Xy,2 =

X1, has imaginary radical which violates the

assumption

-.265 * V(.265)¢2 - 4(=0.095)
2

X3,4 =
= -0.1%25 £ 0.50.0722 +.O.5800
o135 & [ |
- -0.1325 10.11%05
- -001525 £ 0.3605
.. =0.208 i.e.y X, = 0.23

min.

- o Xl o A
hin, = w{'eTI—_F—xo T £ X

0.10(32257) + 0.023 + 0.165(0.54)

H

#
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= 0.0030 + 0.023 + 0.0800

- 0.106
. 0.1 2 0.1
s K=ty (T - t 5.108 ¥
. o.165(.'125)% .

0.106

K O.l X2 1. 66

= AT (Tow t0-933 x + =% F-1

K = 0.472 X m P!
= 0o, [G%7)) + 0.943% x + 0.19 - 1 |
| (5-31)

Table XIIT shows values of K at different values of x
within the range from zero toone. And Figure 22 shows the
‘ gréphical presentation of Equation (5-31). Using this
graph the lower limit of the load factor, xp» and the
higher lihit of the loadbfactbr,'xh;'can be bbtained,at
certain value of K. For example, at K = 0.4, xp, = 0.14,
and Xy = 0.62. From X7 and Xy #L and b, can be calcu-
lated using Equation.(B-BO) or,

Yy = 0.1%

Indifferent Range

The indifferent range is the higher limit minus the

lower limit or,



TABLE XIII

TABULATION OF EQUATION (5-31)

108

X 0.472rEgy  0.943x  0.194% Total K
(1) (2) (3) (&) (5) = (6) =
(2)+(z)+(4#)  (5) -1
0 0 0 o0 = =
0.1  0.00524  0.0943  1.940  2.03924  1.03924
0.2 0.0236 0.1886  0.970  1.1822 0.1822
0.3  0.0472 0.2829  0.681  1.0111 0.011
0.4  0.1460 0.3772  0.485  1.0082 0.0082
0.5  0.236 0.4715  0.388  1.0955 0.0955
0.6  0.425 0.5658  0.323  1.3138 0.3138
0.7  0.7694 0.6601  0.277  1.7065 0.7065
0.8  1.5104 0.7544  0.243  2.5078 1.5078
0.9  3.8232 0.8487  0.215  4.8869 3.8869
1.0 w 0.943  0.19% m m
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Figure 22. Graphical Presentation of Equation (5-31)
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AMx, - %)
h L
r = X %, . (5-32)

For the above'example, the indifferent range is

r=0.89 - 0.2 = 0,79



CHAPTER VI

POISSON ARRIVALS WITH ANY SERVICE
TINE DISTRIBUTION

For further generality, it is desirable to have ex-
pressions for pertinent system characteristics regardless
of the form of the service time distribution. If ¢* is the
variance of the service time distribution, the mean number

of units in the system is given by:

(ﬁ)'z + Aeg2 \ (%)

mTp o (2y]

(6-1)

Consider; like the previous chapter, that X = %I’
where X is called the load factora The load factor is
defined as the ratio of arrival rate to potential service
rate. Taking this load factor into consideration Equation

(6-1) would be:
T * X (6-2)

and the mean waiting time as is given

(*)por proof, see Appendix A.

111
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("‘Ez) A2 (%)
Wm = iy + =
2[1 - '(n)] H
Gy wrer
= - - e
o[1 - (ﬁ)] A
&) +r ()
= +
or1 - )1 2
Lt o ,
W= =—x]*% (6-3)

The Expected Total System Cost

The expected total system cost per period is the sum of
the expected waiting cost per period and the expected

facility cost per period; that is,

TC, = WC, + FC_

The expected waiting cost per period in the product
of the cost of waiting per unit per period and the mean
number of units in the system during the pericd. The
expected faciiity cost per period may be taken as the
product of the cost of providing service facility of unit
rate capacity and the service rate in units per period.

Therefore, the expected total system cost per period is

(*)For proof, see Appendix A.
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X2 + Ag?

TCm = CW [m + X]'+ Cfu

-and since

Xx=2
T
R A
o Hz 'X
CeA
. _ X2 + Ao? £
Se IC, = Cy [ERTM—'X3, + X] + =3 (6-4)

As shown in Equation (6~4) the expected total system
cost is a function of load factor, expected arrival rate,
and variance of the service distribution. To calculate
minimum expected total system cost at constant i, differenti-

ate with respect to X and equate to zero.

dTC ' — ° - 2 e — C A
o e Bin Cw[z(l X) - 2X (X2 +Ag?)(=2) | 1] - __% -
41 - X) X

o, [ = X) + (X2 + A?) + 2(1 - X)2]_Cf’~ 0

2(1 - X)2 X2

il

cwxetzx(l - X))+ (B +ra2) + 21 - X)2]

- 2(1 - X)2 Cer =0

C

Let R = , and divide the previous equation by Cf,

Sl
|

oRX® - 2RX* + RX* + Rac®X? + 2RX? - 4RX? + 2RX*
~ 2N 4+ 4XX - 2)X%=0
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RX% - 2RX3 4+ (Rac? = 27+ 2R)X? + 42X - 2A =0
divide by R:

X"’—ZX’+(A02—%+2)X2+4%X-%=0 (6~5)

Equation (6-5) can be simplified by defining the

following:

P>=—2
- . A
g =[Ac? + 2(1 - ﬁ)]
- 4r

V=3
- - 2\

W=--=3

Put P, q, V, and W in Equation (6-5),

4 2

'+ PX3 +0X" + VX 4+ W=0 (6-6)

X, the minimum expected total system cost load factor,

can be calculated by solving Equation (6-6).

Solution of the Equationv(6-6)

We first determine a, b, and C such that

X% + PX3 4+ qX2 + VX + W+ (aX + b)2 =(X2 + %)X + C)2,

The determination of a, b, and C is accomplished by
equating the coefficient of the powers of X in the first and

second members of the last equation

a? + g = 2C + 243 (6=7)
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2ab + V = CP ' (6-8)
b? 4 W = C2 | (6-9)

Hence from the Equations (6-7), (6~8), and (6-9),

it would Dbe
(CP ~ V)2 = 4a?b2 4(2C + g} - q)(C% - W)
or
¢ -2 4+ % (BV - 4W)C + % (4gW = P2W - V2 ) =0. (6-10)
2 Z B
Let | _
-hc2 A
F=-3="%+(%-1)
2
I -
Y =7 (BV - 4W)
_L T oAy Lo =2a _
=3 [-2@)-4(2))] -
Y =20
and

-

= g (4qW - P*wW - V?)

%‘[4(——)(102 £ 2-F)- 4(""“) €l

1[-8@g2 16M . 16  Bx _ 16)2
8[ E ~ R "7 R"_Rz_]

li

fi

-\ _
5 (Ao +.1)
Eo-2 (ot +1)
R & 1]
Substitute in Equation (6-10)

C3 + FC2 + YC + E =0 (6~11)
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C can be found by solving Equation (6-11) and then
obtain a and b by substitution in Equation (6-7) and
Equation (6-8).

A method of solving Eguation (6-11) will now be ex-
plained. Equation (6-11) will be first transformed so as

to remove the second degree term. ILet
c=12-% | (6-12)

Substitute from (6-12), Equation (6-11) would be

Z} + 3HZ + G =0 (*) (6-13)
wheres
() P2 1l / 2o 2R
ie Bt - gl (-0 - A (6-14)
and
(%) ops _ oFy 4 27E
= 27
¢ =R -1)-28] -2 (o2 + 1) (6-15)

The roots of the given Eguation (6-11) can be found from
Bquation (6-12) when the roots of Equation (6-13) are known.
Equation (6-13) can be solved for Z by following Cardan's

fofmulas as follows:

1/3 | 1/3
_Zz[-e+_2vm] +[5G»\£'GTTZET]

(*)For proof see Introduction to the Theory of
Equations, by Conkwright, Ginn and Company, 1941, pp. 76=77.
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To get the seolution for C substitufe Z in Equation

(6—12)7

¢4 V577?TE¥'1/3 -G - W§77F7ﬁ¥*1/3' F v
¢ = —A ] 4 z ] -39

Substitute for the values G, H, and F and get value of
C. Having foﬁnd C froﬁ the ?regedihg equation,,then obtain
a and b from Equations (6-7) and (6-8) by substitution for
the value C. Note that it is.not necessary to find all the
roots of values of C, since any one will suffice.

Now upon adding (aX + b)-2 to both members of Equation
(6=5), an equation is obtained in which both members are

perfect squares. It is, in fact,
(X2 +2 X+ CP = (aX + b)2 .

Therefore,

X2+ 5 X+ C=aX+b
or
XZ P p— .
+35X+C=-aX-Db (6-17)

Substitute for P values in Equation (6~17)

X2-X+C=2aX+ b . (6-18)

or

Il

X2-X+C=-aX-b (6-19)

From Equation (6-18), the first two roots of Equation (6-5)
can be obtained. They would be:
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XZ—X+C—aX—b=O

X2 - (a + l)X.+ (C=-%b) =0 (6=20)

+ - =
Xl,z _ (a+1) g(a-fl) 4(C ?) (6-21)

The other two roots of Equation (6-5) can be found from

Equation (6-19)
X2 -X+C+ a8X+b=0

X2 - (L-a)X+ (b+C)=0 (6—22)

- * - =
X},é - (1 -2a) Vél a)e -4{b + C) (6—23)

Only positive‘values, equal or less than oné, of these
four roots are considered:in the solution. The imaginary
values. -and fhe negati&e 6nes do not make sense for the
queuing situation. The positive values of these rbots,
which are greater than one, are also neglected because they
are Violating the assumptiéns. That is, évload_factor, |
which is greater than unity, means the arrival ratq‘is
greater than the service réte.v This is not the case
considered here.- | “

As a summary, the procedure to find the minimum ex-

pected total system cost, TC y 1s as follows:

min.
The given data for the pfoblem CW, Crs A
and. variance of the service”disfribution,

0.
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Procedure to Find the linimum Expected

Total System Cost

Step 1: Calculate the following:

P = -2
‘q=[M2+2C1‘%ﬂ

B N

F=-% (O +1)

2o 30~ 4T

o+ £[G-D- 2T -3acan

Step 2: Calculate C using the following equation

o[ yEEEr ], e yomm g

Step 3: Calculate a and b from Equations (6-7) and (6-8) or

a = YZC + g; -q

_CP -V
o = 2a

Calculate the load factor values using Equations

Step 4
(6-21) and (6-23)

1 _(a+1) ¥ V({a+ 1)? — 4(C = D)
2

I+

_ {1 -2a)

(I =aJz = 4(C 15
5
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Step 5: Between the values of X, in Step 4, the one which
5izls less than or equal to unlty will be the minimum
total system cost load factor,,Xmin.._ If there are
more than one having positive vaiues less or equal
to unity, the one which gives the minimum value in
Equation (6-4) should be chosen as Xiin.®

Step 6: Calculate TCphiyp, DY substituting Xmln in Equation

(6-4).

‘If 2 is set to zero in the above'steps of the pro-
cedure,. the steps reduce to the steps of the procedure in

Chapter V, constant service rate case.
Sensitivity Analysis

For the calculation of the insignificant limits, con-
sider the same definition of K as previously stated where

TC - Tcmin
TC

K =
’ min

Substitute for TC from Equation (6-4), the above equation

would be
AC
X2 + )xc;? : il
K = {CW[ +_X :] t X } = TChin
: Cmin
or
2TC ., T3 2TC T3 TChin  TCpin X
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Bquation (6-24) shows that for every value of K there
are two values of X, Xy and XL“ Once the decision maker
sets avalue for K, the higher and the lower values of the
load factor, X, can be calculated from Equation (6~24).

Then the higher and the lower limits of the service rate,

My, and My can be calculated from the following relations,

- A
Mg, = X,
My = —X-}; (6-25)

As an illustration; consider the case where the number of
arrivals per hour has a Poisson distribution with a mean of
0.2 units. The cost of waiting per unit per hour is $2.10
and the cost of serving one unit is $4.05. The purpose is
to find the minimum expected total system cost service rate

with a service time variance of 3(hours)?. i.e., given:

Cy = $2.00 per unit per period
A = 0,2 units per period
0?2 = 3(hours)?

Cp = $4.00 per unit per period
Reguired: The minimum total system cost, udg. By
following the procedure given in this chapter, the calcu~
lation of p, would be,

Step 1: P = -2, 3:%: 0.50

[(0.2)(3) % 2(1 = 0.4)]
0.6 + 1.2 = 1.8

i

q
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W:M:I—OB

005 '

F:-%—:-%[O.2(3)+l]

= «0.24 - 0.4 = =0.64

__1[re.2 0.2(3)7?
H-—-g[('c'r.'s'fl)‘ 2 ]

= - 5 [-0.6 - 0.3% = - 5 X 0.8L = =0.09

2 [/0.2 - 0.2(3) 0.2 (0.2 X 3 + 1)

G=§'7'[6:3‘1> “'Ti'l] - 0.5 |
g% (=0.9)3 - 0.4(1.6)

= —-0.,054 - 0.64 = ~0.694

Step 2: _[0.694 +V(.624)2 + 4(0.09)3]

1/3
+[Oo694 _V (a694)2 + 4(_0009)3] ] 0064
B - 2 '

__1/3
[?0694 +V'O,282 = 0.003]

. 1/3
+[ 0.694 -V 0.482 = o.oo;,] + 0,213

2

[0,694¥ZV5717§j]l/3+ [0.694é—VGTZ7§]l/3 + 0.213

0.694 + 0.69 /3 0.694 = 0.6917°
[t ] o[22 ] s

1l

= (0.692)Y3 4 (0.002)Y/3 4 0.23
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0.885 + 0.126 + 0.230

Step 3: & =VO(I.241) ¥ T = 1.8

=V 3.482 = 1.800

17882 = 1.30

b oo 1.241(-2) -~ 1.6 _ =2.482 - 1.6 _ _ 4.082
= =5(1.30) = 56 . =" "5.%
Step 4: X, = 2:30 % V(2,300 - 4(2.811)
: w2 T i P i

The radical for Xj,, is imaginary, then Xj;,, is

considered,

X ~0.30 £ V{0.30)2 + 4(0.33) _ =0.30 *V1.410
3,4 2 ==

2
_ =0.30 %°1.187
= 2
_0.887 _
XO ~— - 2 - 00443
6 o - o - _A_ = 002
S Xy =0.443 = T

Yo M = goiz3 = 0445 units/period.

Step 6:

: "X 2 g2 . C X
TC1, = Cy Lﬁ%ffé—igy * Xo] + Y%‘



124

2.0 [(0'443)2 + 0.2(3) + 0.443] 4(0.2)

Tcmin = 2(1 ~0.443) + 0.443
_0.196 + 0.6 0.8
= T =T+ 0.886 + 5
= 1.429 + 0.886 + 1.806
= $4.121 w~ 4.12
Substitute in Equation (6-24)
2 0.2 ogx) .0(0.2) 1
=57, 127 (1 ‘7 5(4.12) (T = e 4 oo 1

K = 0.242 7pgy +0.15 TT{§XT-+0.485 X + 0.194 % -
(6-27)
TableXIV shows tabulation values for Equation (6-27).
Pigure 23 shows the graphical presentation of Equation (6-27).
Both the table and the figure show as X increases from zero
to one, K value decreases'to zero and increases again
towards its infinity at X = 1. K reaches its zero value at
= Xmin.;_the minimum expected tptal system cost load
factor. This is shown in the above calculation at X = 0,
Xmin = 0.443. Moreover, consider the decision maker sets
the value of K = 0.6‘at which %he difference in the expected
total system costs to the minimum is insignificant. From
Figure 23, at K = 0.6 the values of the load fapﬁor are
X

L
limits, My, and ,, can be calculated as follows:

= 0.150 and X, = 0.725. The insignificant service rate



125

TABLE XIV
NUMERICAL VALUES OF EQUATION (6-27)

X ?i2f3x§2 ?ilé 0 0.485 X Qo4 -1 K

0 0 0.1500  0.485 - -1 ®
0.1 0.0027 0.1667 0.0485  1.9400 -1 1.1579
0.2 0.0122  0.1875 0.0970 0.9700 -1  0.2667
0.3 0.0312 0.2143 0.1455 0.6467 -1 0.0377
0.4 0.0648 0.2500 0.1940 0.4850 -1 0.0062
0.5 0.1215  0.30000 0.2425 0.3880 -1 0.0528
0.6 0.2187 0.3750 . 0.2910  0.3233 -1~ 0.2080
0.7 0.3967 0.5000  0.3395 0.2771 -1 0.5133
0.8  0.7776  0.7500 0.3880 0.2425 -1  1.1581
0.9 1.9683  1.5000 0.4365  0.2156 -1 3.1204

1.00 © w 0,485 0.194 | -1 ©
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Figure 23.

o',9 1.0~

Graphical Presentation of Equation (6-27)
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A 0.2
Mp, = "X—- =--6-—.7-2—5 = 0.28 unl‘bs/perlod
A 0.2 Q .
My -X—L- = m = 1933 units/period

Indifferent Range

The indifferent range, r, is the difference between the
higher 1limit service rate, My, 9 and the lower;limif service

rate, My,
Soors Mp = Mg = 1.33 = 0.28 = 1.05

The Effect of Variance

Consider the above illustration again and calculate the
minimum expected total system cost service rate,vpo, the
insignificant‘limits, wy, and uy, and the indifferent range,
~r, at service time variance equal to one instead of three |
keeping the same values for the other variables. The

calculations are as followé:

Step 1: P = =2 R:—'z:-‘?

5

v:—é—Q—S—z—)- 1. |
w:-%gﬁl:-oa

F= - gt [0.2(1) + 1] = -0.48
H:-%[(——--l} 9:2T - ~o.054
G=-2—27-[ (6 - 0.13% = 3:2 (1.2) = -0.6



Step 2:

Step 33

Step 4:

Step 6:

L)
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0.6 + {036 ="0.0005 /3

'Y + . - -

C= [ 5 ]

0.6 — V036 =0.0005 /3 |

P[RR ] e 0
3

C= V0.6 + 0.16 = 1.00

8 =V2 + 1 <1.4 = 1.265

_(1)(=2) = 1.6 _

b = 2=515.68) = -1.84

o _ (2.265) * V.13 = 4(3.84)

12 7 2

The radical is imaginary. Consequently Xy and Xo

are imaginary values

%, . = =0:265 £VO.07 ¥ 3.36
3.4 7 2

from which

X = =0.265 E 1.82 _ negative value
X, = 20:265 + 1.85 _ ¢ 5,
X, = 0.29
and
A 0.2 _
Mo = X = 0.29 ~ 0.69
L 1(0.29)2 4 0.2(1) 4(0.2)
iy = 2 SRt + 0.29] + —éfﬁgl..$3.73
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By substituting in Equation (6-24) it would be

1l 2X_  4(.02) 1

2 X2 2(0.2)(1 1
K=a3om) TT-%) ?‘Ll_lz 3.7"35: T3 x- 1

X 0.054 0.215
K.—3°73 T +-(—i—_—,ﬂ-+o.536x + == -1 | (6-28)

The numerical and graphical presentation of Equation
(6-28) are shown in Table XV and Figure 24, respectively.
Consider the case where the decision maker sets up the value

of K = 0.6 at which the difference in the expected total
system qosts to the minimum is.insignificant. The insignifi-
cant service rate limits cah.be calculated using Figure 24.

At K = 0.6, X; and X, are 0.225 and 0.299, respectively.

Wy and p, can be calculated from Equation (6-25)
0.2 _
. My = O.50g = 0.67
0.2
p,h = 00225 = 00890

~Indifferent range = py, = Mg |
r = 0.89 - 0.67 = 0.22

The effect of variance on the insignificant limits can
be shown by comparing'the results 6f the abo#e illustration.
By decreasing the variance from three to one, the‘minimum
expected total system cost service.fate, T decreases from
0.69 units/period to 0.29 units/period. This results from
the decrease of the minimum load factor, X, The lower

insignificant limit increases from 0.28 to 0.67 and the

upper insignificant limit decreases from 1.33 to 0.89
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TABLE XV
NUMERICAL VALUES OF EQUATION (6-28)

s

* 3.73%5-z5 ?iéfx) ;~O'536 *ga X
0 o 0.54 0 e A o
0.1 0.00298  0.600  0.0536 2.15 -1 1.8036
0.2 0.0134  -0.675  0.1072 1.075 -1  0.8706
0.3 0.0345 0.7714 0.1608 0.717 -1  0.6837
0.4 0.1074  0.900  0.2144 0.5375 -1  0.7593
0.5 0.1344 1.08 0.268  0.430 -1 0.9124
0.6 0.2416 1.35 0.3216‘ 0.3583 -1 1.2715
0.7  0.4379 1.80 _0.3752  0.3071 -1 1.9202.
0.8 0.8579 2.70  0.4288  0.2688 -1 3.2555
0.9 2.1716 5.4 0.4824  0.2389 -1 7.2929

loOO © @ 00536 00215 “‘l } ©
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units/period. The range decreases from 1.05 to 0.22.
Figure 25 shows the effect of the variance graphically.
In general, as the variance increasesvthe K - X curve moves
to the right and becomes wider. .In other words, as the
variance increases, keeping the other variables constaﬁt,

the minimum expected total system cost service rate, MQ

decreases and the indifferent range increases.

TABLE XVI
THE EFFECT OF VARIANCE

o=l o?=3

o o | ®
0.1 ©1.1579 1.8036
0.2 0.2667 0.8706
0.3 0.0377 0.6837
0.4 0.0062 | 0.7593
0.5 0.0528 -  0.9124
0.6 0.2080 1.2715
0.7 ~ 0.5133 1.9202
0.8 1.1581 3.2555
0.9 3.1204

lao «© ©
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CHAPTER VII
SUMMARY AND CONCLUSIONS

The purpose of this concluding chapter is to summa-"
rize the research effort, draw conclusions based on
results, and make proposals for future study. Hence, this
chapter is concerned with three topics: the first will
summarize the information presented by reviewing the con-
tributions of each chapter; the second will draw conclu-
sions relative to the results; and the third topic will

present proposals for future action and study.

Sﬁmmary

Chapter I served to introduce the queuing problem,

It also involved discussion about framing, defining alter-
native solutions, and the solution to a gueuing problem,
In addition, specific definitions are given for some terms
used in this treatise. ILiterature review was citéd to
indicate the state of development td date.

Chapter II reported the general and spécific classi-
fications of queuing theory. it also described the basic
structure of the queuing problem;_ This chapter involves
the philosophy of queuing theory in terms of the compo-

nents of the queuing system and its characteristics

134
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drawing upon examples from everyday life. A general dis-
cussion of approaches to the classification of queuing
situation is also preseﬁted. |

Chapter III served to introduce the solution of
queuing problem and the decision model. In addition, this
chapter is to optimize and to give the sensitivity analy-
sis of deterministic queuing models. Single channel-
single phase and multiple channel-single phase of
deterministic queuing models are presented in this chapter.
The insignificant levels‘and the indifferent range of the
service timé are presented under sensitivity analysis of
the mentioned models. The effect of the time between ar-
rivals and the costs ratio "R" on the insignificant limits
and the indifferent range of the service time are
presented.

Chapter IV presented the.optimization and sensitivity
analysis of the probabilistic queuing models. Ordinarily,
both the arrival rate and the service rate are expected
values from a specified distribution. The considered dis-
tributions of the arrival rate and the service rate in
this chapter were random variables from Poisson's distri-
butions. The models are‘bésed on the assumption of an
infinite population. A review of the expected total sys-
tem cost derivation is given first. Analytical optimiza-
tion and sensitivity analysis of the expected total system
cost are derived in this chapter., The sensitivity analy-

sis is derived at the lbwest point of the expected total
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system cost surface. This case is named as a special
case. In addition, the sensitivity analysis is considered
at any arrival rate, not at the lowest point on the ex-
pected total system cost, and‘general case name is assigned
to it. |

Chapter V involved the optimization and the sensitiv-
ity analysis of the expected total system cost model when
service is provided automatically by mechanical means, or
when the service operation is mechanically paced. The
service duration might be a constant.. A procedure in six
steps is given in this chapter to calculate the minimum
expected total system cost service rate. Models of the
insignificant limits and indifferent range are developed
for the mddel under cohsideration: Poisson's arrivals
with constant service time expected total cost model.

Chapter VI considered the optimization and the sensi-
tivity analysis of the general model: DPolsson arrivals
with any service time distribution model. In this chapter,
the expected total system cost model is related to the
variance and the expected value of the service time dis-
tribution and the expected value of the arrival distribu-
tion. The insignificant limits rand the indifferent range
of the service rate are drawn. In addition, the effect of
the service distribution variance on the iﬁSignificant
limits and indifferent range is shown in this chapter.

Appendix A presents a complete derivation of the mean

number of units and the mean waiting time in the system



137
models presented in Chapter V and Chapter VI.
Conclusion

A general and specific classification of queuing
theory has been developed in this treatise. The general
classification of queuing theory depends on the population
of individuals requiring service, number of queues in the
system, and service facility. The specific classification
of the theory depends on the assumption of the previous
three properties in queuing system.

Too, the insignificant limits and the indifferent
range of service time for deterministic queuing models
have also been developed. These limits and indifferent
range are developed as functions of R, A, and XK. In addi-
tion, the effects of changiﬁg the values of R, A, and K on
the insignificant limits and indifferent range are given.

Thirdly, the insignificant limits and the indifferent
range of service rate of the probabilisitic queuing models
have been developed. These are given as functions of R,
Ay, and K. These limits and range are derived for special
and general cases. In addition, the effect of variance on
the insignificant limits and indifferent range of service
rate was shown in Chapter VI.

The analytical method was employed to optimize the
queuing models under study. The majority of the models
originafed in this treatise.are optimized.

The primary pﬁrpose of this treatise is to furnish
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the decision maker with the optimum servige rate, and its
insignificant 1imits models as a function of cost parame-
ters. Also, it furnishes him with the effect of change of
parameters on the total system cost. Through the provi-
sion of .powerful quantitative tools, this will qualify the
decision maker to answer questions which arise in the in-
dustrial environment. By calculating the insignificant
limits of the service rate, the decision maker can direct-
ly decide whether it is worthwhile to change the situation
to the optimal one. Additionally, he is qualified to an-
swer questions about the effect of changing parameters

under study.
Proposals for Future Study

This section involves the area of future research.
It is recommended that further research be devoted to the
sensitivity of queuing models. ©Specific topics that could
be investigated are:
1. DSpecific measures of sensitivity which
possibly could be developed and evalu-
ated for other models in queuing theory
not considered in this treatise.
2. DSpecific measures of sensitivity which
possibly could be develobed and evalu=-
ated for the effect of "wrong' values
of decision parameters.

2. Investigation could be pursued in



developing a measure of sensitivityvof the
effect of "wrong' probabilistic arrival
distribution.

A measure of sensitivity of the '"wrong"
model could be investigated.

A measure of sensitivity of the finite

queuing model could be inveStigated.
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APPENDIX A
PROBABILISTIC WAITING LINE MODELS
Arbitfar&&ﬁ??ivals With Arbitrary Service

Assume:
(1) Single-channel waiting line or queue.
(2) N
(3 ®

Expected humber of arrivals per period

H

Expected number of service completions
per period

(4) p>A 3— < 1. ;
It follows that %.= probability that channel is busy.
Consider the instant when 'a unit C, is just leéving the -
channel. The queue length after its departure is n,.

If n, = O, the next unit to arrive, C,, wiil be

| serviced immediately.
If n, # O, the next unif, Cl; is Jjust begiﬁning
its service timé,:Atl. |

In either case, a number of units will arrive dﬁfing Aty
and this number is T . B

When C, leaves, the new queue length is nl.'

- and
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Since this is at the instant of departure, which is of
infinitesimal length, the probability of another arrival

being generated simultaneously is zero. These two cases

are expressed by:

0. =.n° try =1+ 8 o (a-1)
in which
6, =1 if n, = 0
and
&, =0 if ~ n, # 0. |

The quantity 50 is a number that takes on only the wvalues
O and 1 and has an expected value lying between these two.

Note that

and

The waiting line is assumed stable. Stationarity exists

when:
ap(n)) _ 4
dt e
ooo E(no) = E(nl)"
The expected value of Equation (A-1) relative to r, is

E(6,)

]

1 - E(ry)

i

1l - }\-"vAtlt;
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since the expected number of arrivals while C, is in the
channel is the expected number of arrivals per period
multiplied by the service time.

The expected value of 8, relative to At, is

E(.bo‘) =1 = A+ E(AL,)
Ly _ A
-1 =1,
since E(At) ='% by definition.

Squaring Equation (4-1), one obtains

n? =n2 +(n -1)2 + 5,2 + 2n, (v, = 1) +20,(ry = 1) + 2n, B, .

The last term is equal to zero. By substituting 8,2 =0

and taking expected values, one has

E(n,? )=E(n,2 )+E[(r, =1)21+E(8, )+2E[n, (ry -1)1+2E[ &, (1, -1)]

Again, because of stationarity, E(ny?) = E(n,2). Further-
more, the expected value operators are passed through the
two prdduct terms, and since r, , the number arriving, is
assumed independent of n,, the number on line, it must

also be independent of &, which depends only on n, .
0 = E[(1-1F]+ E(8,) + 2E(n, )E(Ty = 1) + 2E(84 )E(r, - 1).

Taking expected value relative to both r, and At, , and

and E(r) = A

. substituting E(8) = 1 = > T

v

0-E) -2 e1s (1-0) s 2B@G-1) + 20 -} G- 1)
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2B(n)(1-3) =B(x2) -2y 2.2+ ’2(%)2

#

AN A

E(I‘2 ) - 2(E)a +»E

E(x2) - 2(8) +
2(1 - i—;)

‘ A
E(ﬁ?)fﬂ‘4_%_

E(n)

E(n) V(A—E)

H
n
~
[
l
1>
-~

E(n) = Expected number of units in the line

- Mean number of units in the 1line

B
]

S E(n) = n,

E(r?)-3
oo (4-3)
m 2(1=-=)
_ B
This equation holds for arbitrary arrivals and arbitrary

serviceg provided only that these distributions are inde-

pendent of n and t and that A < 1 for single~channel serv-

B

K
ice. It may be noted that, although E(r) = %ﬁ E(r?) is,
in general, not equal to é, and so Equation (A-3) says

A
that as E - 1, noo-

If something is known about the distribution of the
arrival-time intervals, then the E(r? ) can be found, and,

therefore, n_ can be evaluated.

Poisson Arrivals With Arbitrary

Service Time Distribution

Poisson probability distribution



Where

p(k)
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~pt .ut .
P(k) = g kg )

Probability of exactly k occurrences in a time

interval t.

A
A

Expected number of occurrences per unit time.

The mean and the variance of the distribution.

Using this general equation in terms of the assumptions of

~the completely arbitrary model, one has

where
; 7, = The
A*At, = The
| its

From the general

Hence,

I
N

p(ry ) =

number of units arriving during At,
constant mean of the distribution and
variance.

laws of probability

On ¢ = E(r12) - [E(I‘1 )12, |
1 - .

"E(r,?) = qua + [E(rl)jz = A?Ati-+(h~Ati)i. f

Now, take the expected value of r; over all Ati'sfand

obtainv

E(I‘Iz ) =‘ }\E(At]_ ) + }\.ZE(Atl.z ) | i (A—LI-)

Again, from the general laws of probability



E(At,2) = OAt12 R [E(At, )}? = cAtIZ + ﬁr. (A-5)
Hence, from Equation (A-4) and Equation (A-5):
E(rlé) =:—I— + M["Atlz + gle-]
E(rlz.) - ’E‘ +AE oy 3—2— © (4-6)

Substituting Equation (A-6) into Equatien (A-3)

A 2 A2 A
n_ = _[_}lr+ N .OAt12 " F B, A
m 2(1 - &) b
m
2
(L) + N o,,2
nm = —H N At + L’. (A—?)
2(1 - =) g

Equation (A-?) is Equation (6-1) in Chapter VI. Since

n

m

W= R

N A2 o2
oo W = %[(p) * X 0 + 2\"] )
n 2(1 - D) M
K
(D) + Ao '
W = u2 + ‘]ri'. (A—8)

A
m 2(1 - H)

Equation (A-8) is Equation (6-2) in Chapter VI. By
putting o2 = O in Equation (A-7) and (4-8), they would be

Equations (5-1) and (5-2) in Chapter V, resPectiveiy.
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