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CHAPTER I 

IN'.I;'RODUCTION 

The phenomenon of shrinking and swelling which takes place in most 

soils as the water-content increases or decreases, has attracted con

siderable attention over the past two decades. This change in apparent 

specific volume which accompanies wetting and drying is an important 

property of soils. It is by this process, primarily, that soils, 

particularly clay soils, are physically reconditioned. The effects 

may extend far beyond the range of purely agricultural interest, as 

for example, the shifting of structural foundations due to the shrink- · 

swell behavior of subsoils. The character of shrinkage as it occurs 

progressively throughout the moisture range may or may not be irmnedi

ately applicable. As it further characterizes the properties of the 

so;i.l, the shrinkage behavior may furnish a basis for differentiating 

soils, with greater percision. It may also offer a partial explanation 

for the different. behavior of soils comprising differences in texture, 

m;i.neralogy and sorbed ions. 

In general, the great interest which at tac.hes to the subj ec.t lies 

in the fact that the constant fluctuations in moisture to which most 

arable soils are subjected, constitute a leading factor in the loosen

ip.g of the structure of the soil and the formation of a good tilth. 

The non-expanding lattice of kaolin and the expanding type lattice 

of montmorillonite may offer a better explanation than the colloidal 



coating theory for the differences in shrinkage characteristics of 

soils and clays studied by several investigators. 

2 

The total surface area of soils is a characteristic property and 

has been used as a measure of identifying certain silicate minerals. 

The methods adapted vary, but have been based on the principle that 

solid materials will adsorb a monomolecular layer of a gas or vaporized 

substance at ·~ontrolled pressures. 

The following are the major objectives of this study~ 

(1) To establish a relationship between the swelling of soils 

and mixed salt solutions, including varying OH/Al ratios. 

(2) To relate experimental swelling values to soil-clay 

mineralogy. 

(3) To correlate observed macroscoJ?iC swel.ling values with in

ternal surface of soil clays. 



CHAPTER II 

LITERATURE REVIEW 

The shrink-swell of clay soils was recognized by Haines (1923) to 

have practical implications~ He defined two stages in the shrinkage 

process: . 

(1) Residual shrinkage, that stage at which volume change of 

the soil is less than the volume of water withdrawn. 

(2) Normal shrinkage, a volume change of the soil equal to the 

water content change. 

Stirk (1954), Chang and Warkentin (1968), refer to f9ur stages 

in shrinkage; 

(1) Structural shrinkage 

(2) Normal shrinkage 

(3) Residual shrinkage 

(4) No shrinkage 

Upon close observation, it may be seen that these four divisions 

are sub-divisions of the two previously outlined by Haines (1923). 

The process of swelling and shrinkage which accompanies wetting 

and drying is an important property of some soils. It largely con

tributes to structural formation in clay soils, and also appears to be 

associated with the genesis of gilgai formation, Stirk ( 1954). The 

cracking which results from shrinkage, makes soils more permeable to 

water, and also assists in the aeration of the deeper horizons of the 



profile. 

The extent of interlayer swelling of a clay is related to its 

mineralogical characteristics ( F:j.nk and Thomas, 1964). Present 

knowledge indicates that for any clay to expand, it must possess an 

interlayer charge resulting from an imbalance of lattice chargesp 

H such an interlayer charge exists, the amount of swelling will be 

greatly influenced by the nature of the saturating cation, which at 

high concentrations will reduc~ th~ amount of water held by the clay 

minerals (falconer and Mattson, 1933), The present knowledge of the 

effect of interlayer cations on clay swelling has been the result of 

contributions from several investigators. The initial hydration is 

a stepwise process, regardless of the saturating cation and exchange 

sites (~endricks, Nelson and Alexander 1940). Swelling, or increase 

of volume upon wetting, results from forces of hydration (Grim 1968). 

For the first increments of water taken up, the forces are associated 

with hydration of exchangeable ions and the clay mineral surface. 

Large volume increases are believed by Bolt (1956) to be due to os

motic forces associated with the exchangeable ions. Marshall (1936) 

has ascribed certain swelling differences to the location of the 

4 

charge in montmorillonite. The degree of cation dissociation was 

greater for a montmorillonite (octahedral charge) than for a beidellite 

(tetrahedral charge). Harward and Brindley (1966). found that syn ... 

thetic montmorillonites having octahedral substitutions tend to swell 

more than synthetic beidellites having tetrahedral substitutions. It 

may, therefc;ire, be assumed that the location of the site of charge does 

have an effect. Presumably, isomorphic substitutions in tetrahedral 

coordination permits less cation dissociation than substitution in 
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octahedral coordination. This results in fewer osmotically active 

cations to produce swelling (Low 1968). Foster (1955) also reported 

a,n inverse relationship between swelling and the polarizability of the 

latt;i.ce cations. Norrish (1954) reported that montmorillon;i.te in 

various concentrations of salt solutions exhibited an initial swelling 

that is crystalline and dependent upon the hydration energy of the 

interlayer cation. The evidence supports the view that the charge im-

balance in the crystal lattice, hence the mineralogical composition, 

af;fects shrink-swell profoundly (Fink and Thomas, 1964). Barshad 

(1950), Brindley and MacEwan (1953), White (1958'), found that the 

ability of a clay to swell, is determined by the degree of charge-im-

balance which is due to the surface-charge density. As the surface-

charge density decreases, the .ability to swell increases (Brindley 

and MacEwan 1953). At relatively high surface-charge densities, the 

att;racti ve energy due to interaction between the negative surfaces and 

interlamellar cations exceed& the repulsive energy due to the short~ 

range hydration (Low, 1968). On the basis of the theories of Quirk 

and Aylmore (1960), and Quirk (1963) one would expect the swelling of 

montmorillonite to depend on the cation exchange capacity due to the 

constant planar surface area of montmorillonite. Foster (1955) be-

lieved there is no relationship between the swelling of different 

Na.-montmorillonites and their cation exchange capacitieso Instead, 

;it has been pointed out that swelling depends more on octahedral sub-

stitution, thus it may be dependent upon the mineralogical cornposit;ion 

bvt not as prescribed by the double-layer theory. As furt:her evidence 

. . +3 +2 
o;f this, Foster ( 1953) found that swelling decreased as Fe or Mg 

replaced Al+3 in octahedral positions without otherwise changing the 
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composition. 

Studies on montmorillonite saturated with sodium ions showed that 

tqe swelling curves may be predicted from the diffuse double layer 

theory (Warkentin, BC>lt and MiUer, 1957). Conversely, the GC>uy theory 

could not account for all the forces involved in a calcium saturated 

system (Aylmore and Quirk, 1959; Blackmore an.d Miller, 1.961). It has 

been postulated that a calcium-montmorillonite system consists of 

packets of particles, or tactoids within which~ severgl [4-9] clay 

platelets are in parallel array, with interplatdet distance of 9A0 • 

The swelling of sodium-montmorillonite may be predicted from the Gouy 

theory whereas that of calcium-clay may be predicted only by assuming 

the tactoid model and diffuse ion layers on the external surfaces of 

the packets (Shainberg, Bresler and Klausner, 1971). 

Haines (1923) investigated the shrinkage and swelling process 

from the point of view of comparing the progressive volume changes of 

the soil with the volume of water involved in the change. If the 

volume of water entering the soil is r¥esented by />w and the ..... ..,. 

corresponding volume--change of the soil is/) v, then 

w :::::; t:;. v., • • 0Ct000D 0 ' 0 0 ( 1) 

In any soil to which an increment of water of Aw "inches per unit 

volume" is added or removed (evaporation) the normal volume change is 

in three dimensional process (Aitchison and H9lmes, 1953) and may be 

represented as~ -

where L is the original unit dimension, and A L the change of each 

unit dimension. 
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Since /l L/L i.s small, then 

w=3AL. c,•c,o•oooct•••ooo,011,oe (2) 

The evidence of three dimensional volume-change in clay soils is sup-

ported by the data of Ward (1948). If the volume is one dimensional 

2 . 3 2 
then [ D. w = L (L + A 11)-L ]/L where I>, 11 is the change in vertical 

dimension only. 

Therefore~ w = ~ 1 1 •••••••••• 0 ~ ••••••••• (3) 

In an initially saturated clay-soil subjected to drying, the 

process of shrinking will commence as normal ( .0 v/ Ci w = 1), and 

change to residual ( /::,. v/ Ll w <.l) and finally change to ( A v/ A w = 

o) at some low water content. 

Ferguson and Hosking (1954) have suggested that given the same 

clay mineralogy, there is a general parallelism l:>etween particle size 

distribution and shrinkage rate. During the "constant .. rate period" of 

drying, the rate of water loss depends only slightly on the clay con-

tent and the mineralogy of the clay. The differences in the amount and 

type of clay minerals begin to affect water loss only in the "declining-

rate period". J;t is in this period that air-fille.d as well as water-

filled capillaries, and the size of these capillaries, is affected 

considerably by the clay content and its mineralogy. However, 

shrinkage was found to be highest in the mixed-layer mineral cJ;ays 

(Ferguson, 1954), although those with nonplasti.c ingredients had re-

duced shrinkage, 

The swelling observed when an electrolyte is introduced into a 

soil, may be controlled or influenced by the type and amount of clay 

present, the exchangeable cations on the clay, as well as the free 

salts which may be present in the soi.l. The concentration and compo-
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sition of the electrolyte as well as the presence of other materials 

in association with the clay should also be considered. These may 

include the oxides of iron and aluminum in addition to organic matter. 

In this respect, Rowell (1963) debated whether or not there are two 

ranges ,of electrolyte concentrations, the higher range causing swelling 

only, and the lower range causing both swelling and dispersion. 

Anions and Swelling 

The retentive capacity of sulfate in the subsoil has been found 

to be generally highel'.' than in the surface layers (Buckman and Brady, 

1969). This is probably due to the high sulfate retentive capacity of 

certain compounds which tend to accumulate in the lower soil horizons 0 

Buckman and Brady (1969), believe these include the hydrous oxides of 

iron and aluminum as well as the silicate clays. The mechanism of 

absorbing sulfate is thought to involve OH- groups in the hydrous 

oxides and silicate clays where hydroxyl groups held by aluminum ions 

are replaced by sulfate ions. A generalized equation illustrates how 

this may occur; 

OH 

L..- -Al/ ~Al-+H O 
7 ""/ 2 so 4 

' K 

The addition of OH'" ions (increasing pH) wi 11 tend to drive the 

reaction above to the left, releasing the sorbed sulfate. 

There is little experimental evidence fol;' stoichiometric anion 

exchange in soils, although anion exchange probably does take place to 

some degree. In soils, the material most reactive with anions are 
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amorphous aluminum and iron in the hydrous oxide or hydroxide form 

(Rich, 1968). As discussed by Jackson (1960, 1963), the terminal edges 

consist of formerly shared OH- groups, now OH2 groups due to protona

tion, as for example, the following: 

-Al-OH-Al-
k ------i. .. Al-OH 2 

k + +i 
-Al-OH'" 2 + H ---=>;;, -Al-OH2 2 

Small polymers or colloidal particles containing these positively 

charged edge groups can react directly with anions (Rich, 1968). Some 

- -2 evidence for direct OH, so 4 exchange has been presented by Mehlich 

(1964), and Chao, Harward and Fang (1965). As discussed, the posi-

tively charged groups may be attached to negatively charged surfaces. 

These surfaces may include external surfaces of layer silicate (de 

Villiers and Jackson, 1967), as well as the internal surfaces of ex~ 

pansible layer silicates. In a proposed behavior in soils, Chang and 

Thomas (1963) have suggested that basically, the mechanism combines the 

theory thqt OH- ions are replaced by other anions in the light of an 

increased hydrolysis of Al+3 in salt solutions. 

Aluminum Compounds and Swelling 

Sawhney (1958) has pointed out that aluminum may exist in different 

forms when naturally fixed or under laboratory conditions. In soil 

clays, aluminum interlayers resist the expansion of montmorillonite 

spacings beyonq 14A0 , whereas greater expansion has been observed under 

experimental conditions. Tamura (1957), has suggested that the presence 

of Al(OH) 2+ ions and polymerized basic alumina in the interlayer spaces 

may be responsible for the non-collapse of the soil clay minerals which 

have undergone varying degrees of chloritization. At very low pH 



values, Al+3 or Al (OH)+2 ions may be fixed on either side of the 

Montmorillonite layer. The formation of aluminum polymers, e.g. 

[Al6 (0H) 12 (oH2) 12 ]6+ may preferably occur (Jackson, 1963) giving rise 

to the formation of neutral crystalline "gibbsi,te ... l:(.ke11 un;i.ts on the 
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negatively charged· clay surfaces. The occurrence of such reactions may 

result in the reduction of the overall net negative charge of the layer. 

The consequent increase in negative charge results in an increased 

lattice expansion. 

Laboratory synthesis of aluminum interlayers in different mont ... 

morillonites showed that the stability and composition of interlayers 

are controlled by both the OH/Al ratio and the mineral structure 

(Sawhney, 1963). Montmorillonites did not fix aluminum ions, but fixed 

appreciable amounts of hydroxy ... aluminum ions (Kidder and Reed, 1969). 

The forces responsible for retention of water and for swelling in clay 

soils are considered to be particle repulsive due to the interaction 

of diffuse layers of cations (Bolt and Miller, 1955; Childs, 1957). 

These forces may be due to bound water held by the attraction and by 

the orientating influence of the clay surface (Low, 1958). Experi-

mental results have been interpreted both ways, and both forces 

probably are involved (Warkentin, 1962). The measured swelling 

pressure in a soil system is greater for parallel orientation than for 

random orientation (Warkentin, 1962). It may therefore be concluded 

that the measured swelling pressure on a soil or clay system is also 

dependent upon the drying history of the sample. The opposite effect 

has been reported by Seed and Chan (1959), Warkentin and Bozozuk (1961) 

for low swell;i.ng clays. 

From an energy perspective in tensile strength determination, 
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Dowdy and Larson (1971) show that more energy is required ~o rupture 

monovalent specimen than divalent counterparts, while Al-clays exhibit 

intermediate energy demands. The data shows that saturating cations 

played a dominant role in the strength-energy characteristics of mono 

and div~_lent cation saturated montmorilloni;e clay. For the first 

increment$ of water taken up, the forces are associated with hydration 

of exchangeable ions as well as the surfaces of the clay minerals. 

Large volume increases are primarily due to osmotic forces associated 

with the exchangeable ions (Bolt, 1956). As a result of their t.nvesti-

gations, Warkentin and Bozozuk (1961) have shown that there is a direct 

relationship between increased swelling and increased surface area of 

clay. Similarly, swelling increases as the salt concentration in the 

pore water decreases and is further increased if accompanied by in-

creasing valence of the exchangeable cation. Horizontal and vertical 

shrinkage for samples of soils have been measured by Sen and W9oltorton 

(1942). Swelling and shrinkage of naturally oriented soils and that of 

laboratory samples are given for several Australian soils by Aitchison 

and Holmes (1953). Results by Warkentin and Bozozuk (1961) show that 

the shrinkage limit decreased from 27% for the undisturbed clay to 20% 

for a remolded sample. This indicates a probable breakdown of the 

edge-to-face particle arrangement over small distances, resulting in 

closer packing of the particles. Oyen dry densities determined on 

representative samples corroborated this closer packing. 

Specific Surface A:rea 

Clay mineral complexes with polyhydiic alcohols have been shown 

to be of great value in determining the 'c'-axis spacing in the mont-



morillonite group (Marshall, 1936)0 Ethlene glycol and glycerol have 

been shown to be held in two layers on the basal plane of montmoril

lonites (Mac~an, 1948), resulting in a 'c'-spacing of 17~1A0 to 
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17. 7A°. respectively. Vermiculite, on the other hand, adsorbs only one 

layer of these pol.al;' molecules giving ct· 14A0 spacing. The fact that 

ethylene glycol will form a monolayer on clay surfaces has been uti

lized in a method for the estimation of specific surface area (Dyal 

and Hendricks, 1950). The measurement of this property provides an 

estim.ite of the proportion of expandable layer silicates in soi ls. This 

method: (Dyal and H~ndricks, 1950), has been modified and adapted by 

Bower and Gschwend (1952). A further modification. by Ma'.rtin (1955), 

includes a source of free ethylene glycol in an evacutited dessicator 

to control the vapor pr.essure of ethylene glycol at the surfaces of 

the silicate minerals. An equilibrium method incorporating this 

improved method, has been developed by Bower and Goel;'tzen (1959), and 

has been wi,dely adopted. Sor and Kemper (1959) introduced a similar 

but somewhat more complex method. Other methods include the applica

tion of the B,E.T. theory (1938), using ethylene di.bromide as well 

as the adsorption of organic molecules from solutions (Bower, 1963; 

Bradley, 1945; Hoffman and Brindley, 1961; McKenzie, 1948; Tettenhorst, 

B~ck and Bruton, 1962; and Lawrie, 1961). 

More recently, Carter, Heilman and Gonzalez (1965) introduced a 

mol;'e rapid method for the determination of surface area in layer sili

cates, in which the adsorbed phase is ethylene glycol monoethyl ether 

(E.G,M.E.). The results obtained from such determinations have been 

in full agreement with those obtained with ethylene glycol as the 

adsorbed phase. 
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Subsequently, Heilman, Carter and Gonzalez (1965), adapted the 

E.G.M.E. method to soils, and obtained similar specific surface area 

as was determined with ethylene glycol. 

Comparison studies of several surface area measurements carried 

out by Puri and Murari (1963) have produced values which are in good 

agreement in all categories of soils and clays~ 

(1) glycol retention 

(?) mechanical analysis 

(3) water adsorption isotherms using Harvey's calculations (1943) 

Charge Variations 

X-ray diffraction, petrographic microscope counts, infrared absorp-

tion and alpha-beta thermal inversion of quartz have been used by Kiely 

and Jackson (1965) to determine quantitatively, the occurrence of 

Quartz, Mica and Feldspar minerals. Identifying the silicate minerals 

present in a given soil may be a very logical step towards understand-

ing the soil's physical and chemical behavioro Differences in inter-

layer charge m;i.y cause the same type of silicate mineral to behave 

differently under certain conditions. Rich (1960), showed that in-

creasing amounts of interlayer aluminum caused vermiculite to collapse 

at higher temperatures and to greater (001) spacings. 

Tamura (1958) and Kidder (1969*) showed that a vermiculite-like 

mineral could be made to expand by removing aluminum from interlayer 

positions. However, with clays from the sassafras soil, Douglas (1965), 

showed that interlayered extracted vermi.culite would not expand when 

*Gerald Kidder Ph.D. Thesis 1969, Oklahoma State University~ Agronpmy 
Dept. 
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treated with ethylene glycol. The variations between these minerals 

may be explained by layer charge and interlayer aluminum. The minerals 

with the largest interlayered-aluminum possess a layer charge great 

enough to prevent expansion after the interlayer-alumim.im has been 

removed (Douglas, 1965). 

Aluminum interlayering may be detected by sodium citrate extrac~ 

tion Frink (1965). The conditions favoring the formation of Aluminum 

minerals or compounds seem to promote accumulation of other aluminum..., 

minerals or compounds which are similarly citrate-soluble (Frink, 1965). 

Numerous investigators have been successful in synthesizing inter

grade minerals in the laboratory, Sawhney (1960), Rich (1960), Slaughter 

and Milne (1960); Shen and Rich (1962). The varying stability of the 

14A O spacing in soil clays is an indication of;" the different degrees 

of chloritization (Sawhney 1960). 

Wurman (1960) noted that the extent of interstratification in the 

clays of certain Wisconsin soils increases as the surface is approached 

and as the diffraction peaks become broader and less sharp. This could 

have been the result of smaller particle size as well as a loss of 

potassium. 

The clay mineral montmorillonite has attracted wide interest be

cause of its swelling properties in water. Hendricks, Nelson and 

Alexander (1940) and Mooney, Kenan and Wood (1952) have noted that 

swelling occurred along the c-axis of the unit crystal. Norrish and 

Quirk (1954) and Norrish (1954) studied these changes i~ basal spacing 

using homoionic montmorillonite immersed in electrolyte solutions over 

a range of water activities. Norrish and Quirk (1954) made a distinc

tion between the initial stepwise swelling (crystalline) and th.e macro-
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scopic swelling. This occurs at higher water activities, demonstrated 

by a type of swelling which can be controlled by a choice of salt con-

centrations. The crystalline swelling was further studied for the 

alkaU. and alkali-earth saturated clays and was related to size and 

hydration energy of the cation. 

The low-angle diffraction studies of Nor:r;ish (1954), Foster, Savins 

and Waite (1955) have demonstrated that Na-montmorillonite swells to 

form a gel. It does so by water entering between the individual sili-

cate sheets. These authors have measured the silicate layer separa-

tions as a function of H20 content and salt concentration. Electro

lytes restrict the swelling in such a way that the interlayer 

separation is proportional to C-\ (for C < 0.3N), C being the concen-

tration of the solution. At concentrations greater than 0.3N, the 

basal spacing is small resulting in reduced swelling. 

There has been some evidence from measurements of swelling pres-

sure (B9lt, 1956; Warkentin and Schofield, 1960; Aylmore and Quirk, 

1962), to indicate that where the clay behaves. as a gel (interlayer 

separations greater than 30A 0 ), there are repulsive forces between 

opposing silicate sheets. Sµch repulsion is due to the development 

of electrical diffuse Gouy layersq Norrish (1954), compared this re-

pulsive force with the attraction to be expected from Van der Waal's 

forces. The agreement was poor, the repulsive force being many times 

greater than the attractive force. 



CHAPTER III 

EXPERIMENTAL PROCEDURES AND MA,TERIALS 

Soils Studied 

Three sites selected in different parts of the State of Oklahoma 

were designated as suitable for soil sample collection. These soils 

differed sufficiently in morphological characteristics that their 

mineralogical compositions would provide great contrasts. 

Dwight Series; Typic Natrustalls, fine, montmorillonitic, mesic. 

Samples were taken approximately 100 feet south and 2035 feet west of 

the N.E. \ Gorner of section 31, TllN; R18E, Mcintosh County. The 

samples collected as blocks, were from the following depths; 0-7.6; 

7.6-16.5; 16.5-22.9; 2209..,3506; 35.6-49.5; 49.5-63.5; 63.5-73.7 Cm9 

The series consists of deep, nearly level soils. These soils 

formed under grass in material weathered from shale, were under small 

grain at the time of sample collection. 

Brewer Silty Clay Loam: 0-1 per cent slopes. Pachic Argiusta,lls, fine, 

mixed, thermic. Soil samples were collected on the Fort Reno Livestock 

Research Station (Agronomic Research Area), El Reno. Samples were 

taken approximately 200 feet south, 50 feet E. of the Agronomic Field 

Headquarters (in a turf grass plot) 100 feet N0 of the Experiment 

Station water well. This was in the S. w. \ section 26; Tl3N; R8W. 

used for grass seed nursery. 

1,::: 
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These soils were developed in Pliestocene Mantles bordering the 

flood-plain of the North Canadian river. On the extensive low terraces 

bordering the floodJ;>lain are soils such as Brewer. Samples were 

collected from the following depths; 20.3-30.5; 30.5-40.6; 40.6-58.4; 

58.4-89.0; 91.4-121.9; 121.9-152.4 cm. 

San Saba: Udic Pellusterts, fine, montmorillonitic, thermic. Samples 

were taken approximately 1056 feet east and 980 feet north of the s. w. 

corner of the S, W. \ of section 7, T6S; R5E, Marshall County. 

The San Saba series consists of soils. that ;::ire deep, nearly 

black, and fine textured. In most places the surface layer is very 

dark, gray to black clay. It is very firm ¥hen moist and very hard 

when dry. In about 70 per cent of the acre~ge, the surface layer is 

calcareous. In some places where cracks occur, the surface layer is 

3 to 4 feet deep, but in other places where the underlying material 

has been pushed up, it is only about 8 inches thick. 

Preparation for X-ray St\.lqies 

The whole soil was air-dried, passed throu~h a 1 m.m. sieve and 

stored unti 1 used. Soi 1 preparation for x-ray q,:Lffracti.on was carried 

out by the method of Hope and Kittrick (1963). 

Pilot experiments were run with a few samples to study the effect 

of the presence of organic matter and free iron oxides on the x-ray 

diffraction properties of the crystalline clay fraction. It was ob

served that the removal of organic matter and free iron oxides reduced 

the background scatter and resulted in better orientation of the clay 

platelets t0 give enhanced diffraction intensities~ Iron oxides and 

organic matter were therefore removed from all. sa'!ll:ples as a routine 
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procedure. X-ray diffraction patterns were obtained of the clay 

samples oriented by deposition on porous ceramic slides and removal 

of the excess moisture by vacuum. A General Elec,tric X-ray diffracto

meter with a Cu target was used for analysis of all samples. Diffrac

tion patterns were obtained on the samples after the following consecu-

ti ve treatments: 

(a) Mg-saturated and air-dried. 

(b) Ethylene glycol solvation. 

(c) K-saturated and air-dried. 

(d) Heating at 200° for 4 hours. 

( e) Heating at soo0 for 4 hours. 

~reparation for Swelling Studies 

Selected natural aggregates of soils were trimmed from large 

blocks, retaining th~ vertical and horizontal orientation which existed 

naturally. These blocks were brought to equilibrium in an evacuated 

dessicator over saturated NaCl solution. Volume changes were measured 

in three directions. The undisturbed equilibrated samples were trimmed 

to form cylindrical-like blocks so that two, or multiples of two, 1 cm3 

blocks were obtained from each cylinder. The dimensions of the cubes 

were measured with a pair of precision calipers. 

To determine swelling, cube number 1 is placed on the pedestal, 

beneath which is a strip of filter paper leading down into a small 

beaker. For convenience, this first orientation of the cube is such 

that lateral swellings are obtained on both axes. When saturation has 

been attained, cube number 1 is removed and placed in the dessicator 

for shrinkage. Cube number 2 is then placed on the pedestal in the 
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same manner as cube Number 1, the device is zeroed, the solution is 

added to the beaker by pipette, the chamber lid i$ put in place, then 

the recorders turned on. Cube number 2 is so placed that the vertical 

swelling is obtained along with one of the previously obtained lateral 

measurements. 

Description of the Apparatus 

For saturation a pedestal was made to support the cube above the 

solution level. A filter paper (Whatman #3) wick was placed between 

the sample and the platform of the pedestal down into a small beaker 

containing the solution. 

An expansion chamber made of quarter-inch plexiglass was con

structed to encase the pedestal which arose from the center of the 

chamber. A removable lid allowed access to the pedestal and setting

up of samples. The purpose of the enclosed chamber was to reduce 

moisture evaporation, exclude possible air currents and reduce any 

significant temperature variations. The complete shrink-swell in

vestigations were conducted in a room of 22°c constant temperature. 

Holes in the sides of the chamber allowed the transducer rods 

(Hewlett-Packard model 7DCDT-500) to enter for sample contact; 

Figure 2. A brass plate was screwed on to the threaded transducer 

rod, to give larger surface contact between rod and sampleo The 

transducer was supported on a block rising from the base erected 

three inches in, from chamber walls. For a complete illustration, 

see Figure 2. 
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Measuring 

The change in cube size due to inhibition of the saturating solu

tion created an increase in the voltage passing through the trans

ducers. The voltage was amplified in a specially designed amplifica

tion system. There were two series of resistors and the swelling 

pressures were recorded on Rustrak recorders; Figure 2 and Appendix 

Figure 27. 

Adjustment of the resistors was needed from time to time depending 

on the amount of swelling obtained in different i,amples 0 The greater 

the degree of swelling the greater the resistance employed. This was 

importaht since the recordings had to be confined to a chart of a 

range 0-LOO m.v. calibration: A very satisfactory, accurate and 

repeatable calibration method was devised using a #24 screw. A hole, 

slightly smaller than the screw was tapped into a 3/411 plexiglass up

right figure. Following this, the screw was slowly turned into 

this hole until it fit "snugly" having no play. Directly opposite 

the tip of the screw on another plexiglass upright, a large enough 

hole was made to acconnnodate the transducer. The probe of the trans

ducer and the screw were so adjusted until the needle on the Rustrak 

chart read zero. By gradually applying varying pressures through 

several turns of the screw or fractions thereof, the deflection of the 

Rustrak's needle was varied through 100 m.v. from zero. 

Since each turn of the screw is the equivalent of 1/24 inch= 

1.058 m.m. any degree of swelling obtained, can be accurately inter

polated. 
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Specific Chemical and Analytical Analyses 

Interlayer Aluminum Compounds 

Interlayer material was extracted with 100 ml portions of lM 

sodium citrate from approximately 10 grams soil samples heated in a 

0 
water bath at 80-90 c. The solution was renewed after every two hours 

being preceeded by cooling, centrifugation and decantation. At the 

end of the extraction period, there were six separate extractants. The 

presence of aluminum in each periodic extract was determined col.ori-

metrically on a Bausch and Lamb Spectronic 20 by the Aluminon method 

(McLean 1965). 

Total Cation: . +2 +2 + + +3 The total cations (Ca , Mg , K , Na , Al ) present 

were determined on a Perkin Elmer Atomic Absorption 303 machine after 

digestion with Perchloric and Hydrofluoric acids (Pratt, 1965). 

Surface Area 

Surface area determinations of whole-soil samples were carried 

out after the E.G.M.E.* method of Heilman, Carter and Gonzalez (1965). 

Organic Matter and pH 

Organic matter was determined~by the mod:i,fied Walkley and Black 

procedure, Chapman and Pratt (1961) 0 pH determinations were by (1) 

IN KCl-Soil 1:1 ratio (2) Soil-water 1:1 ratio Peech (1965). 

*Ethylene glycol monoethyl ether. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The results suggest that the structure of the soi. l aggregates had 

some effect upon both swelling. and shrinkage. The relations obtained, 

indicate that bett~r structure is associated with particular shrinkage 

conditions. These have the effect of reducing shrinkage for the soil. 

Evidence for this behavior is presented in Table X where less shrink

age has been obtained in the Brewer than in the San Saba, which ex

hibited greater shrinkage than the Dwight. The influence of the inter

layered materials which occur naturally, is seen to be important in 

the degree of shrinkage. Although the San Saba, with a higher per 

cent clay, exhibited greater swelling than the Brewer, the amount of 

citrate-extractable Al-compounds was greater for the Brewer series. 

The question therefore arises as to what was the more important in the 

swelling of the San Saba, the high clay (montmorillonite) content or 

the lack of significant amounts of interlayered Al-compounds. 

Dwight 

X-ray diffraction analysis indicated poor crystallinity of all 

the minerals in both the coarse (0.2-2.0 M) and" fine ( 4 0.2).U) frac

tions. The expansion of the glycol-saturated samples to 22-23.8A0 

bears this out. The presence of a 14-15A0 Mg-saturated diffraction 

peak occurred only in the fine clay fractions. The pre~ence of 



TABLE I 

CHEMICAL PROPERTIES 

PH CEC Whole Soil 
Soil Soil OM meq/100 gms Total (ppm) 

Depth (cm) H20 Kcl % With Without 
1:1 1:1 OM OM Ca Mg K Na 

DWIGHT 
o.o - 7.6 6.5 6.1 2.08 6 .. 19 2.87 693.75 2.95 33.00 55.00 
7.6 - 16. 5 6.8 6.3 2 .. 03 7.63 2.90 690 .65 6.95 34.05 49.00 

16. 5 - 22.9 6.9 6.2 1.61 6.86 3.21 784.25 11.55 34.30 59.50 
22.9 - 35.6 6.8 6.1 1.65 12. 56 5.98 943. 7 5 11.55 34.80 57 .so 
35.6 - 49. 5 6.6 6.0 1.58 13. 7 5 6 .. 48 943. 7 5 13.50 36 .so 60.75 
49 .5 - 63.5 6.8 6.2 1.69 13. 7 5 6 .43 1037.25 14.95 37.00 43 .. 50 
63 .5 - 73.7 6.9 6.2 1.36 6.90 3.34 1009 .40 15.00 37.80 41.00 

BREWER 
20.3 - 30.5 7.7 7.1 3 .11 27.80 23.80 so.oo 24.60 138.00 54.00 
30.5 - 40.6 7.7 7.0 2.99 28.60 22 .40 75.00 33.60 148.00 46 .oo 
4006 - 58. 4 7.8 7.0 2.80 30.20 22.60 43.00 37.50 165.00 79.00 
48 .3 - 58.4 7.8 7.0 2.51 29.20 23.20 46 .oo 49. so 173.00 103 .oo 
58 .4 - 89.0 7.6 7.1 2 .34 17 .20 15.40 35.00 54.60 162.00 104.00 
91.4 - 121.9 8.0 7.3 o.ss 14.00 10.60 102.00 25.20 171.00 121.00 

12L9 - 152.4 8.1 7.4 0.47 12 .80 10.00 99.00 23.70 165.00 128.00 

SAN SABA 
o.o - 15.2 7.7 6.9 4.09 42 .10 38.60 734.51 23.10 44.12 58.00 

25. 4 - 35.6 7.9 7.0 3.20 44.90 40.10 774.36 34.20 39.12 62.00 
50,,8 - 61.0 8.1 7.2 2.83 39.30 38.20 942 .81 35. 71 40. 12 62.00 
63.5 - 76_,,2 7.7 7.1 2.03 33.70 32.80 901. 7 4 47 .84 37.38 64.00 

N 
\J1 



TABLE II 

PHYSICAL ANALYSIS 

DEPTH (CM) % Clay SILT SAND FREE TITANIUM TOTAL Al 

2.0-0.2 ti 0.2 u % %. Fe203% %_ % 

DWIGHT 
0 - 7.6 29 3 37 31 0~03 0.01 3.42 
7.6 - 16.5 33 4 32 31 0.03 0.02 3 .42 

16 .5 - 22.9 37 4 31 28 O .. Q3_ 0.02 4.04 
22.9 - 35.6 36 18 21 25 0.03 0.05 5.24 
35.6 - 49.5 31 26 22 21 O.D3 0.02 5. 74 
49.5 - 63.5 24 26 29 21 0.03 0.01 5.78 
63.5 - 73.7 32 29 11 28 0.04 0 .. 01 6.00 

BREWER 
20.3 - 30.5 4. 7 57 .4 33.0 4.8 0.03 0.01 4.66 
30.5 - 40.6 33.4 21.8 36.6 8.0 0.03 0.01 5.46 
40 .6 - 58.4 54.0 14.8 26.1 4.2 0.04 0.08 6.04 
48 .3 - 58.4 36.5 21.0 34.0 8.5 0.03 0.01 6 .. 58 
58 .. 4 - 89.0 43 .2 17.6 30.8 8.4 0.02 0.01 5.32 
91.4 - 121.9 46 .7 8.2 27.5 17 .5 0.03 0.05 6.68 

121.9 - 152.4 32.6 11.9 35.0 20.4 0.02 0.07 5.78 

SAN SABA 
a.a - 15.2 17 43 13 27 0.09 0.01 7.58 

25. 4 - 35.6 19 44 13 24 0.10 0.01 8.00 
50.8 - 61.0 30 29 8 33 0.10 0.01 8.08 
63.5 - 76.2 25 34 8 33 0.10 0.01 7 .96 

N 

°' 
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TABLE III 

EGME RETENTION AND SURFACE AREA OF SOILS 

EGME Retained Surface Area 
Depth (cm) mg/g m2/g 

DWIGHT 

o.o - 7~6 14.30 45.18 
7.6 - 16. 5 18.70 59.20 

16. 5 - 22.9 22 .42 71.51 
22.9 - 35.6 28.69 89.41 
35.6 - 49,5 41.34 131.54 
49.5 - 63.5 37.87 119. 59 
63.5 - 73,7 15.21 47.33 

BREWER 

20.3 - 30.5 41.30 131.67 
30,5 - 40.6 52.80 168. 49 
40.6 - 58 .4 46.60 148.35 
48 .3 - 58.4 86,80 283. 42 
58 .4 - 89.0 60.00 194.05 
91.4 - 121.9 35,00 lll.02 

121.9. 152 ,4 23.73 7 5.04 

SAN SABA 

o.o - 15.2 88.75 291.71 
25.4 - 35.6 95.04 317.71 
50.8 - 61.0 87.62 287 0 48 
63.5 - 76.2 76.91 252 .19 



Depth (cm) 

o.o - 7.6 

7.6 - 16. 5 

16.5 - 22.9 

22.9 .. 35.6 

35 .6 - 49. 5 

49.5 - 63.5 

63.5 - 73.7 

TABLE IV 

X-RAY DIFFRACTION cl-SPACINGS IN A0 

(001) DWIGHT (0.2-2.0) 

Mg-Sat. Glycol Solv. K Sat. 
25°c 25°c 25°c 

7 .248 7 .248 
3 .348 3 .361 3 .161 

7 .248 7 .189 3 .6 LO 
3 .348 3 .348 3.150 

7 .248 7 .248 
3.572 3.572 

3.848 3.398 
3.348 3 .161 

14.717 Shoulder 
10 .155 10. 517 

7 .189 7 .189 7 .248 
5.034 
3.587 3.572 3. 587 
3.348 3.335 3.398 

3.161 

14.717 Shoulder 
7 .189 7 .189 
3.587 3. 587 
3 .348 3 .348 3.139 

15.225 
7.190 7 .189 
4.260 
3.587 3. 587 
3.348 3 .348 3 .150 

14.248 19 .190 
10.273 10.273 

7 .189 7 .248 
3.373 3.360 

3 .161 
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Heat 
500°c 

3.398 
3 .172 

3.139 

3.1.50 



Depth (cm) 

o.o - 7.6 

7 .6 - 16. 5 

16, 5 .. 22. 9 

22.9 - 35.6 

35.6 - 49. 5 

49.5 - 63.5 

63.5 .. 73.7 

TABLE V 

X-RAY DIFFRACTION d-SJ;>ACINGS W A0 

(001) DWIGHT ( 0.2 u) . 

Mg-Sat. ciycol Solv. K Sat. 
25°C 25°C 25°C 

15.491 22.071 
3.558 3 .558 
3.480 

3, 150 

15.768 22.071 
3 .558 3.557 
3.348 3.150 3.150 

16 .660 23 .859 Shoulder 
3.348 3.348 3 .361 

3 .161 

15.768 22 .071 Shoulder 
3.373 3.373 3.361 

3.139 

16 .054 Shoulder 
7.368 10.273 
3 .558 3 •. 530 
3.348 3.360 3 .160 

16 .054 
7.180 7 .189 
3.587 3.587 
3.348 3.348 3.160 

15.225 Shoulder 
7.360 7 .189 
3 .558 
3.360 3.335 3.150 
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Heat 
500°c 

10.390 
3 ,361 

10.155 

3.373 
3.150 

3.150 

30139 
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kaolinite was evidenced by the 3.55-3.58A0 diffraction peaks. Quartz 

and Gypsum was evidenced by the 3.35 and 3.15-3.16A0 in every section 

of the profile. The presence of first order kaolinite was observed, 

but the 7 .18-7 .24 peaks which occurred were completely collapsed as a 

result of either glycol or K-saturation. 

The silt fraction is composed largely of quartz and gypsum with 

occasional evidence of the presence of feldspar. 

An increase in expanding minerals was directly related to an in

crease in E.G.M.E. retention as evidenced by an increase in specific 

surface area determined. 

Brewer 

The x-ray diffraction data indicates that even the clay from the 

lower horizons may have been weathered to some degree or have new 

materials deposited. This is shown by the presence of some expanded 

0 
layers that upon dehydration ;i.ncrease to the intensity of the lOA 
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maxima. Some amount of interstratification is evident in some portions 

of the profile, This is suggested by the peaks being rather broad 

and tapering to the lower angle, and the increased intensity in some 

instances of the lOA0 spacing upon heating. 

The data on E.G.M.E. retention, clearly shows some increase in 

specific surface area in lower depths, reaching a maximum in the zone 

of highest clay accumulation. 

X-ray diffraction studies show that the silt fraction is composed 

largely of quartz. Feldspars are present throughout all depths. No 

montmorillonite illite or kaolinite was found in the silt fraction. 

The results show that the clay fraction is composed primarily of 
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TABLE VI 

X-RAY DIFF~CTION cl-SPACINGS IN A0 (001) BREWER (0~2-2.0 A.1) 

Mg-Sat. Glycol Solv. K Sat. Heat 
Depth (cm) 25°C 25°C 25°C 500°c 

20.3 - 30.5 10.040 10 .040 
7 .1897 7 .2484 
3. 5728 3.5728 
3 .3482 3 .3482 3.3482 3.3731 

30.5 - 40.6 14. 717 18 .394 
10.273 10 .040 

7 .2484 7 .1897 
3.5728 3. 5728 
3.3482 3 .3482 3.3482 3.3482 

3.1399 3 .1399 

40.6 - 58 .4 15. 491 18. 785 
10.040 10.155 

7 .1897 7 .1897 
5.0065 3. 5728 
3. 587 3.3482 3 .3482 3. 3482 
3.3482 3 .1617 3 .1727 

48 .3 - 58 .4 14.717 18. 785 10.155 
10.155 10 .040 10 .040 

7 .2484 7 .132 7.1897 
3. 5870 3. 5587 3. 5728 
3.3606 3 .3482 3 .3482 3.3359 

3.1508 

58.4 - 89.0 15.225 
10.155 

7 .2484 
5 .0348 
3.5728 
3.3482 3 .3482 3 .3482 3.3482 

3.1508 3~1508 

91.4 - 121.9 17 .659 18.394 
10 .040 10.155 
7.1897 7 .2484 
3,5870 3.5587 
3.3482 3 .3482 3.3482 3 .3482 

3.1508 3.1399 

121.9 - 152.4 14. 7117 18 .394 
10.273 10 .040 
7. 2484 7 .1897 
3. 5728 3.5728 
3 .3482 3 .3482 3 .3482 3 .3482 

3 .1399 3.1399 
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TABLE VII 

X-RAY DIF}IItACTION d-SPACINGS IN A0 (001) BREWER (~0.2.~) 

l 

Mg-Sat. Glycol Solv. K Sat. Heat 
Pepth (cm) 25°C 25°C 25°C 500°c 

20.3 .. 30.5 14.967 19.193 
4.9511 10 .040 10 .040 10.273 
3.3236 3 .348 

30.5 - 40.6 13.798 19.193 
9 .8168 

4.9787 
3.3482 3.3482 

3.1508 3.1508 

40.6 - 58 .4 14.967 20.065 
5.0633 9.8168 
3. 3482 3.3731 

3.1508 3.1508 

'48.3 - 58.4 14. 717 ~8. 780 
4. 9511 10.273 10. 5L7 
3.3482 3.3482 3 .3482 3 .3482 

3.1508 

58 .4 - 89.0 15.225 15.225 
5.0065 
3.3482 3.3731 3.3236 3.3606 

3 .1399 

91.4 ..., 121.9 15.768 18.394 
9 .8168 

4.9511 
3.3482 3.1508 3 .1399 

121.9 - 152. 4 15.491 19.619 
10 .394 10 .394 10 .394 

4.9787 
3 .3482 3.3482 3 .3482 3.3606 

3.1508 3.1508 
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rnontmorillonite which gave a 17-18A0 reflection upon ethylene glycol 

solvation. What has been interpreted as a first order kaolinitic 

0 
peak occurred throughout most depths at 7.19-7.24A but collapsed corn-

pletely upon glycol salvation. This behavior occurred only in the 

coarse fractions (0.2-2.0 u). Lesser amounts of kaolinite (3.57-3.59 

0 
A) and quartz was detected, the quartz in both cLay fractions and the 

kaolinite only in the coarse fractions. Illite was detected in both 

clay fractions, but there was evidence of better crystallinity in the 

0.2-2.0 u fraction. 

Diffraction determinations of the silt fraction indicated maxima 

at t;h.e 3.21-3.25A0 interpreted as feldspatic components. Quartz 

0 maxima at 3.35-3.67A were the most pronounced. Both coarse and fine 

silt fractions were quite similar throughout the profile, 

San Saba 

The particle size data Table II shows an approximately equal 

distribution of silt and clay throughout the profile. The results 

of the chemical analyses are reported in Table I. The p.H. ranges 

from 7.7 in the 0-6 11 depth to a maximum of 8.1 in the 51.0-61~0 cm 

depth. In general, the pH tends to increase with depth. The organic 

matter content tends to decrease with depth reaching a minimum in the 

63-76 cm depth. 

The high cation exchange capacities of the San Saba corroborate 

tqe results of x-ray diffracti9n and specific surface area studies, 

indicating a high montmorillonite content. 

X-ray diffraction studies show that the silt fraction is composed 

largely of quartz. Feldspars are present throughout all depths. No 
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TABLE VIII 

X~RAY DIFFRACTION d-SPACINGS lN A0 (001) SAN SABA (0,2-2.0A.1) 

Mg-Sat. Glycol Solv. KSat. aegt 
Depth (cm) 25°c 25°C 25°c 500 C 

o.o - 15,2 14.717 19.619 
7 .189 7 .130 
3 .580 3.550 
3.340 3,340 3.150 

25.4 - 35.6 14.717 19.610 
7.130 7 .240 
5.060 3.600 3.360 3.360 
3.610 
3.370 

50.8 - 61.0 14.717 19.190 7 .24 10.210 
7 .240 7 .180 3.580 
3 ,580 3.550 3.340 3.340 
3.340 3.360 3 .150 

63.5 .. 76.2 14. 96 7 18.780 
7 .189 10 ,510 
3. 550 3.340 3.340 3, 160 
3.340 

TABLE IX 

X-RAY DIFFRACTION d-SfACINGS IN A0 (001) SAN SABA (<.0,2 .b) 

Mg-Sat. Glycol Solv. K §at. Heat 
Depth (cm) 25-0 c 25-°C 25 C 500°c 

o.o - 15.2 14.717 18. 780 
7.360 7.300 
3.550 3.510 3. i6o 3.140 

25.4 .. 35.6 15.220 19.190 
7.300 7 .240 
5.000 3.510 
3.570 3 .160 3.150 

50.8 .. 61.0 14.717 18.390 15.760 
3.550 3.550 3 .150 

63.5 - 76.2 16.350 18.390 
7.300 
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mont.morillonite, illite or kaolinite was found in the silt fractions 

as is seen in Figure 25. Diffraction studies of the 2.0 .. 0.2,AU and 

0.2 Al fractions :indicated, (Figure 9) tha,t it is composed primarily 

of montmorilloriite (17-18A0 ) with lesser amounts of; kaolinite (3.57-

0 0 
3.59 and 7,15-7.20A) qua~tz 3.35A. Illite wa,s not detectable in the 

2.0.0.2 ~ fr~ction; its presence was nevertheless verified by x-ray 

diffraction analyses of the.( 0.2 JJ. The quartz content tends to be 

relatively uniform throughout the profile whereas kaolinite tends to 

increase with depth. 

Most of the montmorillonite was concentrated in the ~0~2 u frac~ 

ti.on (Figure 6). Kaolinite and quartz are the dominant minerals in 

the 2.0-0.2,.ti fraction with lesser amounts of montmorillonite. The 

most noticeable feature is the lack of any large differences from one 

layer to another within the profile. Generally, there seems to be a 

gradual increase in total carbonates with depth. 

The Brewer and San Saba showed evidence of aluminum compounds 

being the principal component of the interlayer tn;iterial. No evidence 

was found for naturally occurring interlayers being composed of 

hydroxy .. Fe groups. 

The data obtained for citrate extractable interlayered Al-compounds 

from the three soils are sununarized in Figures 7, 8 and 9. Highest 

Al-compounds were obtained for the Brewer. Lowest extractable Al-

co:iq:>ounds in the study was from the Dwight soil. Table I gives the 

pH measurements for each soil and depth. It appeared that pH did 

not influenc~ the amount of extractable Al-compounds as did the type 

of clay present. Selected x .. ray diffractograms from various depths 

indicate a direct relationship between the presence of montmorillonite 



Figure 7. Na-Citrate Extractable Al-compounds(%) 
San Saba. A total of six extractions 
carried out on all three soils; figures 
3, 4, 5. Each extraction period being 
2 hours. Aluminum extraction in ppm, 
in Appendix. 
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Dwight. 
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TABLE X 

IDISTURE RELATIONSHIP AND SHRINKAGE BEHAVIOR 

Average Moisture Content at Linear Shrinkage% 
Saturation* (% Dry Weight 

of Soil Solution) Ave. of four readings 
Horizontal Vertical 

Dee th (cm) OH/Al NaCl OH/Al NaCl OH/Al. NaCl 
D 

o.o - 7.6 7.0 5.1 0.5 0.5 0.5 0.5 
7.6 - 16. 5 7.5 5.8 0.5 0.5 0.5 0.5 

16. 5 - 22.9 8.1 6.2 0.5 0.5 1.0 0.5 
22.9 .. 35.6 10.3 8.0 0.5 1.5 1.5 0.5 
35.6 - 49 .5 15.6 9.7 1.0 1.5 2.0 1.0 
49.5 - 63.5 13 .2 10 .1 1.5 1.1 2.0 0.5 
63.5 - 73.7 12.3 7.3 0.5 0.5 1.5 0.5 

B 
20.3 - 30.5 16 .9 12.6 1.5 0.5 1.0 0.5 
30.5 - 40.6 17.8 14.8 2.0 1.0 1.5 0.5 
40.6 - 58 .4 19.2 17 .1 2,0 1.5 2.5 1.0 
48 .3 - 58 .4 19.9 17 .5 1.5 1.5 2.5 1.0 
58.4 - 89.0 24, l 21.1 2.5 0.5 3.0 1.5 
91.4 - 121.9 18. 7 12.8 1.5 0.5 1.5 0.5 

121.9 - 152. 4 9.4 6,3 0.5 0.5 0.5 0.5 

SS 
o.o - 15.2 18.6 10,7 L.5 2.0 2.5 1,5 

25,4 - 35.6 23.5 19.3 2.5 1.5 2.5 2.0 
50.8 - 61.0 28.1 18 .9 3.5 1.0 3.5 2.5 
63.5 - 76.2 14. 7 12 .4 2,5 1.1 2.5 1.5 

* Point at which detectable swelling ceases. 
D Dwight 
B Brewer 
SS San Saba 



and extractable Al-compounds. 

The observation was made with respect to some samples on their 

x-ray difrraction, notably the Dwight and San Saba, Figure 24, that 

0 
a peak produced at 7 .18-7 .24A when Mg-sa_turated, was completely col-

lapsed upon K-saturation. Such a behavior seemed to suggest a 2:1 

type clay mineral. However, no expansion was observed upon ethylene 

glycol s-0lvation. This ruled out the initial suggestion of a second 

order montmorillonite. 

In an effort to identify this mineral,samples were boiled for 2~ 

minutes in O.lN NaOH, centrifuged and saturated with MgC1 2 • Upon 
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proceeding with successive treatments of Mg-saturation, ethylene glycol 

salvation and heating to 300°c and 500°c the mineral was identified 

as kaolinite. The assumption is that due to the presence of some 

amorphous material, there was a kind of masking effect prior to treat-

ment with NaOH. Obviously the amorphous material was destroyed by 

the NaOH treatment. 

The results of the titanium and iron determinations in the soils 

are recorded in Table II. The results show no relationship between 

titanium content and cation exchange capacity of the soils. The 

titanium content remains practically unchanged with depth, The present 

study shows that iron and titanium content is very low in all three 

soils and shows no noticeable mobility. 

Hydroxy/cation Ratio 

The OH/cation ratio of interlayer material is a question that is 

largely unresolved. Attempts have been made in the past to relate the 

change in C.E.c. with the amount of Al+3 added or removed from the 
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interlayer space. A major problem is whether all the added material 

enters the interlayer space or whether all the extracted material comes 

from the interlayers. 

All expansible layers in a mineral particle may not react in the 

same manner to hydroxy-Al (Barnhisel and Rich, 1966). To explain the 

larger extractable Al-compounds, and larger degree of swelling in 

montmorillonite, it may be postulated that the expanded interlayer 

space in montmorillonite provides a favorable locale for the organi

zation of hydroxy-Al ions. The absence of montmorillonite, or the 

presence of small quantities of montmorillonite in some samples is 

associated with reduced swelling and lower extractable Al-compounds. 

This type of swelling behavior can be observed from Figures 14-23. 

Much reduced swelling pressures have been produced near to the surface. 

X-ray diffractograms did not indicate the presence of Montmorillonite 

above 9 inches in the Dwight soil. Similarly, the least amount of 

swelling and citrate-extractable Al-compounds was obtained above the 

9 inch depth for this soil. 

It has been discussed (Colombera, 1971) that the amount of 

aluminum which can be adsorbed increases with increasing OH/Al ratio 

of the solution. The results obtained in these experiments show 

some agreement in regions of high clay content (montmorillonite). 

There were significant deviations from this behavior in samples low 

in swelling type clays. 

Sulfate Ions in Swelling 

The magnitude of sulfate adsorption by soils may follow the 

order of chemical valency of the saturating cations. Chao, et al. 
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(1963) found that saturation with divalent or trivalent cations 

resulted in greater sulfate adsorption than with monovalent cations. 

Sulfate adsorption by soi 1 may be governed by more than one mechanism. 

One might be based on differences in chemical valency of the cations 

involved. Divalent or trivalent exchangeable cations may act as a 

bridge between the sulfate ions and the soil complex. This type of 

soil~cation-anion linkage has been suggested by Ravikovitch 1934, and 

Birch 1951 to explain the adsorption of phosphate ions through ex

changeable calcium. Wild (1953) explained the effect of exchangeable 

cations on the retention of phosphate by clays on the basis of rela

tionships of different cations to the Zeta potential. 

From a purely chemical viewpoint, one may predict that in the 

presence of strongly co-ordinating anions (those which have a decided 

tendency to fo!m complex ions with aluminum), less hydroxyl ions would 

be required to precipitate the aluminum. Such would be the reaction, 

since these strongly coordinating ~nions have already neutralized a 

part of the charge on the aluminum ion. 

Sulfate is a moderately strong co-ordinator with aluminum, and 

as the sulfate ion concentration in the solution is increased, the 

amount of added hydroxyl ion needed for precipitation decreases. The 

suggestion here is that much of this reaction takes place at the time 

of solution preparation. However, the introduction of this solution 

into the soil provides the needed surface for deposition of the 

precipitate. The assumption is that this precipitate is primarily 

Al (OH) 3 • 

TQ further understand the reactions that might have taken place 

in the saturated samples, Camargo Bentonite was aged in 1:5 OH/Al ratio 
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solutions from August 5, 1971 to May 22, 1972. Results of x-ray 

diffractions are presented in Figure 26. When the aged samples were 

washed three times with distilled water the montmorillonitic peak was 

0 
produced at 15,768A. Upon being solvated with ethylene glycol, there 

was an expansion to ~8.785A0 • 

When this sample was Mg-saturated, a diffraction spacing of 

14.717A0 was obtained. Upon being solvated with ethylene glycol there 

was an expansion to 16.66A0 The difference between the l4a717A0 

and 15.768A0 outlined above, and the expansion of the 14a717A0 to 

16.66A0 seem to indicate a removal of some excess At-interlayered 

material. This material contains some sulfate ions some of which 

should be in the easily exchangeable form. This is supported by the 

reduced d-spacing upon Mg-saturation. Solvation with ethylene glycol 

resulted in expansion to 16.66A0 suggesting the presence of some inter-

layered material which resisted further expansion. This induced inter-

layered material must have been the hydroxy-Aluminum or hydroxy-Alumi-

num-sulfate complex formed as a result of aging. The above 

monitored interlayered formation indicates to some extent the expan-

sion effects of the hydroxy-aluminum solutions upon the samp l es during 

the process of swelling. When the ethylene glycol solvated samples 

were K-saturated, the result was a collapse and broadening of the 18A0 

peak. Such a response has been regarded as a definite indica tion of 

interlayering. 
0 

Heating of the K-saturated sample to 500C resulted 

in a collapse and total disappearance of the broadened K-saturated, 

air-dried sample. The implication is that the high temperature 
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destroyed the induced interlayering material. 

It is believed that upon Mg-saturation the excess hydroxy-Aluminum 

complex is removed from the interlayered region. The effect of such a 

removal woulq be to increase the intensity reflections. The satura

tion with magnesium may also have resulted in loosening of exchange

able aluminum-hydroxy complexes from the interlayer spaces. 

The above discussion may explain the improved peak intensity when 

magnesium saturated, over the sample saturated with the OH/Al solution. 

The presence of sodium in the complex from the sodium hydroxide, most 

likeiy will result in the neutralizing of most of the negative charges 

while the hydroxy-aluminum polymers would be positively charged. 

Some Mechanics of Shrinking and Swelling 

There are several aspects of the process of volume change in the 

soil as a result of water content change. First, the soil volume may 

change by uniform swelling or shrinking in three dimensions. Such a 

process (three-dimensional volume change) results in cracking during 

drying and a closing of the cracks during wetting. Such behavior is 

most obvious in the San Saba clay. Alternatively, the soil volume 

may change in the vertical dimension only. This is a process (one 

dimensional volume change) in which plastic flow of the soil and 

greater rearrangement of the particle configuration is involved. With

in the soil profile this type of volume change is likely to occur more 

at depths within the soil when water contents are high and weight of 

overburden is considerable. 

The data of figures 14 to 23 support the interpretation that 

the process of shrinking and swelling in the clay horizons of the 



selected soil profiles approximates quite closely the condition of 

three dimensional normal volume change. 
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The dominant soil characteristics which might logically be ex

pected to affect swelling and shrinkage are texture, structure and 

type of clay mineral. The marked influence of texture has been demon

strated in the different behavior and characteristics of the clay 

(montmorillonite) and non-clay horizons. The true effect of structure 

has not been fully assessed, but the hypothesis is advanced, based 

on qualitative evidence, that soils composed of small structural units 

or aggregates exhibit a greater range of shrinkage and swelling than 

coarsely structured or massive soils. 

Because of the possible complex inter-relationship of the clay 

mineral component of these soils it is difficult to relate differ

ences of soil swelling behavior to differences of clay type alone. 

The further interaction of saturating solution has to be considered. 

Some of the measured swelling might in fact be due to readjustments 

of the crystal lattice as well as the process of normal volume change. 

Observations made on the changes in the form of the soil cubes 

during swelling have been made. When Sodium Chloride was the satur

ating solution, the cubes were swollen to a smooth homogeneous appear

ance. Samples saturated with the OH/Al solutions of the higher ratios, 

1:2 and 1:3 OH/Al saturated, underwent cracking before attaining satur

ation. These large cracks undoubtedly contributed to the total 

measured swelling. How much of this total swelling was due to these 

cracks is unknown. It may be argued, however, that these cracks were 

a part of the total swelling. This hypothesis may be supported by 

the fact that upon shrinking, these cracks did not close. Such re-



sponses were more pronounced in the samples of high montmorillonite 

clay content (San Saba and Brewer), and agrees with the shrink-swell 

behavior of these soils, particularly the San Saba, under natural 

conditions. 

The large degree of swelling obtained with the OH/Al solutions 

over that of the sodium chloride solutions may be ascribed to the 

introduction of interlayered material into the interl.ayered regions 

of the montmorillonitic clays present. The occurrence of significant 

degrees of swelling only in samples in which montmorillonite was 

determined by x-ray diffractions to be high seems to suggest this 

point. A significant observation made, was that in samples high in 

montmorillonite, the OH/Al ratios of 1:2 and 1:3 invariably resulted 

in the greatest degree of swelling. However, in samples low in mont

morillonite, the OH/Al ratios which induced the greatest degree of 

swelling were the i:s and J:4 respectively. The interpretation of 

this may be that at high clay (montmorillonite) content, ratios 1~2 

and 1:3 resulted in the greatest degree of interlayering. On the 

,other hand at lower clay content, it required ratios of lg5 and lg4 

to deposit a certain amount of crystalline material for large 

swelling. The effect of the sulphate ions in these reactions so far 

as is known may be significant. 

The higher degree of interlayering in samples high in montmoril

lonite, San Saba and Brewer, may be attributed to the differences in 

the amount and location of charge between the minerals. 

The likelihood of cation demixing Fink et al. (1971), being 

responsible for a major portion of the swelling cannot be overlooked. 

In the past, it was largely assumed that all exchangeable cations 
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would be homogeneous in their distribution on the clay mineral surfaces. 

Experimental evidences continue to accumulate which seem to suggest 

that some exchangeable cations do indeed demix on some clay minerals. 

This is particularly so for montmorillonite. Such demixing could in

fluence water movement, swelling and dispersion of soil materials. 

The significant differences obtained at different depths and 

between different soils, was directly related to the clay (montmoril

lonite) content. For this reason, curves showing degree swelling in 

millivolts against time are shown from selected depths. Further 

information on this relationship may be observed from the data in the 

Appendix. 

Samples which attain saturation at a rapid rate are usually those 

in which montmorillonitic clay is almost absent. It may be argued 

that in such cases, it is the pore spaces primarily in which the 

solution: enters that is responsible for much of the recorded expansion. 

Once the pore spaces are saturated, no more solution can be taken up, 

the curves straighten out and become horizontal. From this point on, 

no more expansion of the sample takes place. 

Contrary to absorption where only physical forces are operating, 

adsorption is due to physico-chemical energies whereby a certain amount 

of the solution is taken up and fixed in the molecular structures of 

the clay minerals. Thus, deposits from the various solutions may be 

fixed at the broken bands and eventually the surface of the clay miner

al particles. Some of the materials may enter the lattice itself as 

some form of hydroxy-Al compound causing expansion of the c-axis. This 

type of expansion to a lesser extent may also take place in the case 

of sodium saturating systems. No expansion will take place in quartz, 
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very little or none may be observed in Kaolinite and Halloysite but 

an appreciable amount of adsorption will be noticed in Montmorillonite. 

An expansion of the soil that contains montmorillonite clay is to be 

expected. As is shown in the x-ray diffraction curves, Figures 6 to 9 

and recorded data, Tables IV to IX, expansion will be directly related 

to the amount of montmorillonite present in the soil. It will be 

noticed also, that whatever the adsorption, definite and character

istic swelling curves are obtained for each sample as well as for the 

different solutions. 

As. a rule, soils are not pure mixtures of clay minerals. They 

contain impurities of many kinds and these impurities exert a more or 

less appreciable influence on the sorption characteristics of the soil. 

The important point however, is not the exact identification of the clay 

mineral of the soil, but the behavior of the soil when in contact with 

water or any given solution. 

The concept of edge-to-face bands resisting swelling may be a 

successful explanation of most of the observed features of the swelling 

of clays. Figure 13 shows the probable structure of a swollen ori

ented clay sample, with edge-to-face contacts between the elementary 

sheets in the positions marked 'A'. As swelling takes place, sheets 

will move in relation to one another, and new ones will be formedo 

With this concept in mind, the mote random the orientation then the 

greater the extent to which the structure will oppose change, either 

swelling or shrinking. This may adequately explain the higher degrees 

of swelling obtained in samples high in clay (montmorillonite) a The 

edge .. to .. face bands have the same effect as an applied loado With no 

external load, swelling is opposed only by these frictional forces, 
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Figure 13. Schematic diagram of a swollen 
oriented aggregate of Na-montmoril
lonite A, edge-to-face bands. 

55 



56 

and it is easy to see that an asymetrical distribution of interlayer 

distances may result. 

In view of the excellent agreement between theory and experimental 

results with N;;/ anq. cC ions, the large differences when the saturat

ing solutions comprise~ Na+, Al+3, so42, OH- raises interesting ques

tions. As regards the behavior of soils when sodium and chloride 

are the predominating ions present, no mechanism operative under such 

circumstances has been adequately expli:l:i.ned. Van der Waals forces have 

been frequently mentioned in this connection, but the magnitude of 

such forces acting between relatively large particles at relatively 

great distances has not been well understood, it seems. Since these 

forces seem to be negligible in Na-Montmori llonite systems, the 

assumption might be that their presence in an environment of Al(OH) 3 

is absent. 

The data show that when NaCl is the saturating solution, the 

samples have a smaller water holding capacity than when varying OH/Al 

ratio concentrations are the saturating solutions •. Results show that 

the water holding capability of a soil due to swelling pressure forces 

depend on it~mineralogical composition, the amount of salt present 

as well as the saturating ionic species. A close examination of the 

degree of swelling exhibited by the Dwight as compared to the Brewe.r 

or San Saba will bear this out. The data reported for mixed-ion mont

morillonite, suggest that the degree to which water-holding capability 

changes is dependent upon the relative proportions of the cations 

occupying the exchange sites. A linear dependence is assumed. 

Probably certain physical properties of a clay or soil-water system 

change gradually in a manner proportional to the predominant electro-



lyte present. Some amount of linearity can be observed i.n certain 

regions of soil swelling, Figures 10 to 12. 

An important feature of the illustrations as typified in Figures 

20 to 22 has been the general close relationship and appearance of the 

curves representing lateral swelling. There are a few exceptions as 

are illustrated in total swellings, Figures 14 to 23. Initially, 

the rate of swelling is fairly uniform, then at a ertain point, 

probably determined by salt accumulation, the rate of lateral swelling 

increases rapidly. This behavior seems to support the hypothesis that 

swelling controlled the changes in permeability over a range of elec

trolyte accumulation. Beyond a certain saturation level, the soil 

particles undergo some amount of dispersion activity and movement. 
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Solutions of electrolytes induce the formation of spontaneous 

structures under the influence of molecular forces which tend to lead 

to the formation of an ion envelope. This is especially true when the 

particles have a lamella shape, as in the case of clay. Salt solutions 

exert an influence only on irregularly unstably grouped particleso 

This concept agrees well with earlier experiments with soil swelling 

in electrolyte solutions. 

Solution absorption and swelling of soil, are determined by the 

structure of the particle orientationo Particular importance is 

attached to the compactness of the particles at the interface of 

solid-phase-air. 

To really understand the type· of swelling obtainedll one needs to 

understand that 

(1) The process of swelling is in its essence characterized by the 

change in properties inside the micelle which accompanies the 
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volume increase (intramicellary swelling),~ Utilizing this 

notion, the following types of swelling can be distinguished. 

(a) The swollen micelle retains its molecular bond intact. This 

type of swelling ts explained by the osmotic action of the 

solution within the micelle. 
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(b) The sweUing is characterized by a complete reconstruction of 

the inner structure of the micelle. This exerts a complicated 

influence on swelling. 

(2) The differences in structure of the soils have proven to be quite 

important in the swelling of argillaceous minerals. An example of 

this is to recognize that the crystalline network of kaolinite is 

less sensitive to the action of water than that of montmorillonite, 

Proceeding from this, it is easily understood that the destruction 

or unsettling of the natural aggregates or disposition of the 

soil will influence swelling to a high degree. 

Comparison of Results with Previous Investigations 

Many investigations have conducted swelling pressure and/or swell

ing potential tests on compacted soils. In other cases, confined and 

unconfined swelling pressures have been investigated on extracted 

soil clays and pure bentonite. Over the last decade no one has looked 

at the swelling of soils in their natural orientations in multiple 

directions. These swelling investigations have been conducted on 

preferentially oriented clays, therefore very little information is 

available for samples investigated in random orientation. 

Because of the marked effects of interlayers on swelli.ng and 

shrinking of clays, many attempts have been made to determine the 
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nature of interlayers and the processes by which they are formed. 

These studies have involved studies of soil profiles and laboratory 

synthesis of interlayers in smectites. Work in this area has progressed 

to the point of removal and analysis of naturally occurring interlayers. 

Some methods employed for removal of Al-interlayers have been 

based on the complexing ability of citrate for Aluminum. Other pro

posed methods have been based on the selective destruction of hydroxy

groups upon heating at different temperatures. This has been the 

method adopted in this investigation. However, it should be appreci

ated that there is the possibility that in the process of dissolving 

the interlayers, a portion of the silicate structure may also be 

attacked. Nevertheless, such techniques have proven useful in deter

mining, within limits, the composition and nature of the interlayer 

material. 

Certain generalizations can be made from these studies. 

(a) In soil clays, the degree of filling of the interlayer region 

is generally small. 

(b) Artificially produced hydroxy-Al interlayers are more easily 

removed than those naturally occurring. 

(c) No single method of extraction is suitable for all types of 

interlayers. The severity of the extraction treatment depends on the 

degree of development (artificial or natural), and composition of the 

,interlayer material. 

Much evidence has indicated that the occurrence of Al-interlayers 

in smectite is very common in soils. Viewed at with respect to soil 

clay mineralogy, it seems informative to investigate the properties 

of these minerals as they are in soils and also to disclose the struc-
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ture of their original minerals. 

The results obtained indicate that the interlayer Aluminum com-

pounds did not have a uniform extractability, some of it being diffi-

cultly extracted with N sodium citrate. The mechanisms by which such a 

phenomena operate may include 

(1) A portion of the aluminum compounds occur in the insoluble 

form and is therefore difficultly exchanged with sodium citrate. 

(2) Some of the interlayered compounds occur as polymers and 

are held tightly by the clay. 

(3) The exchange sites of the montmorillonitic clay are not 

homogeneous in their strength in holding the interlayer aluminum. 

The first two mechanisms are obvious from the results presented, 

but are not adequate to interpret all the results. As a result, the 

importance of the third mechanism listed above, i,s being emphasized. 

A most important factor i,n studying clay, hydroxy-aluminum inter-

actions is the species composition of hydroxy-aluminum solutions. 

The composition of these solutions used in this investigation i& known 

but it may be assumed that a range of polynuclear hydrolysis products 

is present. Thus, the expansion characteristic, of the soil will be 

determined by both the OH/Al ratio concentration as well as the degree 

of hydrolysis which is unknown. At the aluminum ratio concentrations 

used in this study the OH/Al rat.i,os is considered to be the more im-

portant factor in the shrink-swell characteristics exh~bited by the 

various samples. 

Sc;>me of the observed swelling may actually be that of repulsive 

reactions between negatively charged clay surfaces and negatively 

charged sulfate ions. The, extent of this repulsion may be due to the 
1 
\ 



type of clay which predominates. Such an assumption may help to 

explain the larger swelling obtained in samples high in smectite at 

high OH/Al ratio concentrations a$ against lower swelling in samples 

of low clay content. 

The decrease ih lateral dimensions may probably be due to the 

breaking up of face to face bonds. An example of this may be in the 

case of coplanar platelets which do not touch each other but are held 

together by another parallel platelet overlapping the others. 

The smaller swellings of the samples when sodium chloride is 

the saturating solution may be partially explained by the state of 

aggregation of sodium-montmorillonite in aqueous solution. From the 

results obtained and the results of other investigators of swelling 

behavior it has been revaled that the following factors influence be

havior of soils above all others. 

(I) Type and amount of clay 

(II) Stress history 

(III) Temperature of experimental conditions 

(IV) Volume cha,nge permitted during swelling, that is, whether 

the nature of the swelling is confined or unconfined. 

(V) Shape and size of the sample 

(VI) '.L'ype of, and concentration of saturating solution 
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If the experimental method is standardized, the type and amount 

of clay along with the type of the saturating solution and its concen

tration lll&Y be the basic parameters influencing swelling behavior of 

soils. 
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CHAPTER V 

SUl1MARY ANO CONCLUSION 

The most significant contr;ibution of thi,!;> investigation is be-

lieved to be the possibility which the dat~ suggests for a quantitative 

measurement of the shrink~swell status of Soils~ The size distribution 

of the pore space in soil, aggregate analysis, and total porosity de-

terminations have all been used as an index of soil structure. None 

of these, however, measures the structural level in terms of the degree 

to whi9h structural development has progressed or deteriorated. 

, The results of these investigations, provide information concerning 
: 

the type of clay mineral present in certain soils. It constitutes a 

measurement of the expansion that may take place under certain condi-

tions and will allow, in some cases, a better interpretation of other 

soil properties determined by routine tests. 

The experiments on swelling in solutions of electrolyte were de-

signed to look at the possihility of regulating the process of swelling 

in soils by means of adding salt. It was also desired to observe the 

swelling response of natural aggregates to hydroxy-aluminum compounds. 

The. study of the phenomena of the swelling of soil that retains its 

natural structural conditions allows investigations of soil structure 

from a new point of view • 

. · The preparat;i.on of hydroxy-alumi,num solutions of differing OH/Al 

ratio concentrations have usually been accomplished by adding NaOH to 
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AlC13 ;in solution. The use of Aluminum Sulfate [Al2(so4) 3J has substi

tuted AlCL3 in this investigation primarily be~ause SO 4- 2 ions are 

more common than Cl - ions in the soi 1. 
,f 

The identified clay minerals by x-ray d;i.ffraction, type of swel-

ling, particle size distribution and interlayer extractable aluminum 

compounds were all in agreement. The primary clay mineral in both 

the Brewer and San Saba was montmorillonite. Some amount of mica 

(illite) was evidenced in the Brewer. Except for a few sample depths 

the Dwight was void of any montmorillonite. Quartz and a second order 

kaolinite along with feldspar, were the chief identifiable clay 

minerals for the Dwight. 

In these experiments, varying amounts of interlayer material were 

probably present in different samples of the same so;i.l prior to treat-

ments. This may complicate the interpretation with respect to degree 

of swell;i.ng. It has been assumed, therefore, that the degree of 

swelling obtained, is to some extent related the amount or nature of 

interlayer material present, In predicting interlayer swelling of 

soil clays in response to mixed-salt solutions (Al-sulfate-NaOH) it 

has been assumed that each species of exchangeable cation ;is distribu-

ted over all the mineral surfaces in proportion ~o the exchangeable-

cation percentage. 
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Profile Description of the Dwight Series 

The Dwight series consists of deep, nearly level soils. These 

soils have been formed under grass, in material weathered from shale. 

The A horizon ranges from 3 to 8 inches in thickness and from grayish 

brown to light gray in color. In places it is massive and strongly 

vesicular when dry. In bare or disturbed areas, a hard crust 1/2 - 1 

inch thick forms as the surface dries. 

A -0-6" 1 

B22t-25-39" 

grayish brown (10YR5/2) silt loam; dark brown 
(10YR4/2) when moist; weak, fine, granular 
structure; friable when moist and hard when dry; 
pH 6.0, abrupt, wavy boundary. 

dark grayish-brown (lOYR 4/2) clay; very dark 
grayish brown (lOYR 3/2) when moist; few to 
common, medium, yellowish-brown mottles that 
are distrinct when moist but faint when dry; 
strong coarse, blocky structure; very firm 
when moist and extremely hard when dry; thin, 
faint clay films are more common on horizontal 
faces than on vertical faces; many faces of 
vertical cracks have coatings of pale-brown very 
fine sandy loam; on horizontal faces these coatings 
of pale-brown very fine sandy loam; on horizontal 
faces these coatings are thinner and less common; 
pH 7.0; graduate boundary. 

variegated grayish brown (lOYR 5/2) and yellowish
brown (lOYR 5/8) clay; coarse blocky structure; 
very firm when moist and extremely hard when dry; 
light-gray, very fine sandy loam coatings on 
faces of some peds, more common on vertical faces 
than on horizontal ones; small nests and fine 
seams of salt crystals are common, gradual 
boundary, pH 8.0. 

yellowish-brown (lOYR 5/4) clay, faint yellowish 
brown (lOYR 4/4) when moist; few, faint, medium 
mottles of light grayish brown; massive; extremely 
firm when moist and extremely hard wh~n dry; a 
few nests or clumps of salt crystals that are 
coarser than the crystals in horizon B22t; few 
medium and small concretions; pH 8.5. 
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Al 0-8 11 

B2 8-2211 

Profile Description of Brewer Silty Clay Loam 

Dark grayish-brown (lOYR 4/1.5; 3/1 when moist*) 
silty clay loam massive to weak coarse blocky 
very firm; very hard when dry; slowly permeable; 
pH 7.0, has a weak tendency to coarse platiness 
and shears readily in the horizontal plane, then 
breaks further into medium subangular blocks; 
common pores; roots most abundant in the hori
zontal cleavage planes; lower portion less com
pact and somewhat more crumbly; grades shortly 
to the layer below. 

Dark grayish brown (lOYR 4/1.5; 3/1 when mo~st) 
clay, moderate fine subangular blocky; very firm; 
crumbly when moist; hard when dry; slowly permeable; 
pH 7.0; sides of peds have very dark gray, somewhat 
shiny coatings; many pores; common worm casts; 
occasional old root channels filled with clay 
loam material from above; occasional brown streaks; 
grades through a four-inch transition which is 
more reddish than the main horizon to the layer 
below. 

Sample 54-0K-9-20-3 

Cl 22 ... n" Dark brown (7.5 YR 4/2; 3/2, when moist) clay 
streaked with light reddish-brown (5YR1 6/3) 
clay loam or light clay; strong medium and fine 
subangular blocky; crumbly when moist; very hard 
when dry; slowly permeable; pH 7 .5; sides of peds 
weak shiny when moist; occasional pores and 
very find concretions of Caco3; grades through 
a two to four inch transition to the layer below. 

Sample 54~0K-9-20-4 

C2 32-52 11+ Brown (7,5YR 4/2; 3/2, when moist) crumbly clay 
much like the layer above but contains a few fine 
concretions and many threads of Caco3 disseminated 
in the mass; pH 8.0; calcareous in seams; there 
are only occasional concretions in die materia 1 
below about 42 inches. 

Not Sampled. 

52-7011+ Brown (7 .5YR 4/3; 3/3 when moist) crumbly clay which 
is like the layer above and has few to occasional 
Caco3 concretions, 

Variations: Surface soils vary in color from dark grayish-brown 
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to very dark gray and in texture from clay loam to heavy silty clay 

loam. Thickness of surface clay loam varies from six to eighteen inches 

in the grass nursery (due to leveling) and from six to twelve inches 

elsewhere. Subsurface horizons vary in color from dark grayish brown 

to black and in structure from subangular blocky to weak blocky. Most 

layers are of crumbly clays with a weak shine on the peds. Cl layers 

range from brown to reddish brown, while the substrata range from 

brown through strong brown to reddish brown in color and from clay to 

clay loam in texture. Subsoils have prismatic breakage in dry cuts 

and sides of prisms have weak dusty coverings which are probably of 

Profile Description of the San Saba Series 

The San Saba series consists of soils that are deep, nearly 

black, and fine textured, In most places the surface layer is very 

dark, gray to black clay. It is very firm when moist and very hard 

when dry. In about 70 per cent of the acreage, the surface layer is 

3 to 4 feet deep, but in other places where the underlying material 

has been pushed up, it is only about 8 inches thick. 

0-1811 

18-4011 

40- 5411 

5411+ 

Very dark gray (2-SY 3/1; black 2-SY 2/1, moist) 
clay; strong medium granular; crumbly and friable; 
very sticky and very plastic; calcareous, grades 
into horizon below. 

Very dark gray clay; weak ~oarse blocky or compound 
coarse granular, very firm; very ticky and stiff; 
strongly calcareous; contains small subrounded parti
cles of hard caco3 ; grades into horizon below. 

Olive gray (SY 4/2; olive 4/3, moist) clay; of same 
structure and consistence as layer above; contains 
small hard particles of Caco3 • 

Hard limestone or partly weathered limestone inter
bedded with thin seams of marl. 



Verticd 

TABLE XI 

THREE DIMENSIONAL SWELLING RELATIONSHIPS (DATA) 
SAN SABA SOIL, 10~ 1411 DEP'J;'H, NaCl SOLUTIONS 

Lateral 1 Lateral 2 
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mv Time (mins.) mv Time (mins.) mv Time (mins.) 

NaCl (lN) 

4 60 2 60 3 60 
9 120 7 120 9 120 

14 180 11 180 15 180 
22 240 12 240 21 240 
23 300 15 300 27 300 
24 360 16 360 29 360 

17 420 

NaCl (O.lN) 

3 60 2 60 5 60 
9 120 6 120 8 120 

13 180 11 180 14 180 
27 240 17 240 19 240 
31 300 26 300 20 300 
32 360 29 360 21 360 

30 420 

NaCl (O .OlN) 

5 60 4 60 3 60 
8 120 7 120 7 120 

15 180 11 180 11 180 
19 240 17 240 14 240 
23 300 19 300 15 300 
26 360 21 360 17 360 
29 420 25 420 

28 480 

NaCl (O.OOlN) 

3 60 3 60 6 60 
9 120 11 120 13 120 

13 180 16 180 19 180 
19 240 21 240 24 240 
21 300 24 300 30 300 
24 360 26 360 31 360 



Vertical 

TABLE XII 

THREE DIMENSIONAL SWELLING RELATIONSHIPS (DATA) 
SAN SABA SOIL, 10-1411 DEPTH, OH/Al SOLUTIONS 

Lateral 1 Lateral 2 
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mv Time (mins.) mv Time (mins.) mv ,r±me ,-( ni.{ris' .) 

OH/Al ( 1: 2) 

6 45 2 15 5 60 
9 60 6 30 12; 120 

15 120 9 45 18 180 
38 180 12 60 27 240 
46 240 31 120 37 300 
57 300 39 180 49 360 
65 360 - 47 240 57 420 
69 420 56 300 61 480 
76 480 67 360 63 540 
77 540 70 420 

OH/Al (1.: 3) 

5 45 4 60 3 60 
8 60 12 120 9 120 

15 120 19 180 17 180 
34 180 39 240 30 240 
48 240 47 300 52 300 
57 300 56 360 59 360 
69 360 63 420 63 420 
72 420 65 480 
73 480 

OH/Al ( 1: 4) 

6 30 5 30 2 60 
11 60 11 60 11 120 
26 120 21 120 22 180 
38 180 41 180 37 240 
47 240 53 240 43 300 
56 300 61 300 51 360 
67 360 71 360 60 420 
74 420 72 420 69 480 
77 480 71 540 

OH/Al (1: 5) 

6 60 3 45 4 60 
9 120 7 60 8 120 

17 180 16 120 13 180 
25 240 21 180 19 240 
33 300 29 240 22 300 
36 360 30 300 24 360 

~ I·( 



Vertical 

TABLE XIII 

THREE DIMENSIONAL SWELLING RELATIONSHIPS (DAT~) 
DWIGH'l' SOIL, 3~6\11 DEPTH, NaCl SOLUTJ:ONS 

Lateral 1 Lateral 2 
mv Time (mins.) mv Time (mins.) mv Time 

NaCl (lN) 

4 60 1 15 3 
12 120 11 30 9 
21 180 15 45 12 
27 240 19 60 18 
34 300 28 120 26 
42 360. 32 180 29 
50 420 32 240 30 
50 480 34 300 31 

34 360 

NaCl (O. lN) 

0 60 2 60 6 
12 120 8 120 15 
27 180 11 180 19 
34 240 24 240 22 
38 300 38 300 29 
43 360 39 360 32 
44 420 40 420 34 

NaCl (O.OlN) 

5 60 2 60 0 
8 120 9 120 5 

18 180 11 180 13 
23 240 19 240 14 
31 300 24 300 15 
32 360 26 360 16 
33 420 26 420 

NaCl (O .OOlN) 

0 15 4 60 6 
6 30 13 120 8 

18 60 21 180 19 
27 120 24 240 21 
36 180 27 300 21 
49 240 28 360 23 
56 300 
63 360 
64 420 
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(mins.) 

60 
120 
180 
240 
300 
360 
420 
480 

60 
120 
180 
240 
300 
360 
420 

60 
120 
180 
240 
300 
360 

60 
120 
180 
240 
240 
300 



Vertical 

TABLE XIV 

THREE DIMENSIONAL SWELLING RELATIONSHIPS (DATA) 
DWIGHT SOIL, 3-6\11 DEPTH, OH/Al SOLUTIONS 

Lateral 1 Lateral 2 
mv Time (mins.) mv Time (mins.) mv Time (mins.) 

OH/Al (1 :2) 

2 30 4 45 2 30 
8 60 10 60 16 45 

16 120 15 120 20 60 
20 180 17 180 27 120 
27 240 19 240 30 180 
32 300 19 300 31 240 
39 360 31 300 
40 420 32 360 

OH/Al (1:3) 

8 30 5 30 2 15 
20 45 11 45 12 30 
27 60 16 60 17 45 
39 120 28 120 21 60 
41 180 29 180 25 120 
43 240 29 240 26 180 
44 300 29 300 27 240 

28 300 
29 360 
29 420 

OH/Al ( 1: 4) 

5 30 0 15 0 60 
15 45 0 30 1 75 
20 60 2 45 3 90 
31 120 9 60 6 105 
36 180 18 75 9 120 
40 240 24 90 12 180 
43 300 24 120 13 240 
43 360 26 180 14 300 
45 420 28 240 

OH/Al (1: 5) 

4 45 1 60 0 60 
12 60 3 120 5 120 
20 120 14 U5 12 180 
43 180 20 150 17 240 
52 240 24 165 21 300 
64 300 28 180 28 360 
68 360 34 240 29 420 
70 420 39 300 
72 480 41 360 



TABLE XIV (C~nti~ued) 

Vertical 
mv Time (mins.) 

Lateral 1 
mv Time (mins.) 

43 
44 

420 
480 
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·Lateral 2 
mv ·· -'Ilime (mins .) 



mv 

0 
4 
7 
9 

11 
13 

2 
5 
8 
9 

11 
14 

4 
7 

11 
17 
21 
23 
24 

2 
3 
5 
7 
9 

11 

Vertical 

TABLE XV 

THREE DIMENSIONAL SWELLING RELATIONSHIPS (DATA) 
DWIGHT SOIL, 9-.1411 DEPTH, NaCl SOLUTIONS 

Lateral 1 Lateral 2 
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Time (mins.) mv Time (mins.) mv ':j:ime (mins.) 

NaCl (lN) 

60 0 60 1 60 
120 3 120 3 120 
180 8 180 5 180 
240 10 240 7 240 
300 13 300 9 300 
360 

NaCl (O.lN) 

60 2 60 1 60 
120 4 120 4 120 
180 8 180 7 180 
240 10 240 9 240 
300 11 300 
360 12 360 

NaCl (O.OlN) 

60 3 60 2 60 
120 7 120 6 .120 
180 12 180 9 180 
240 15 240 11 240 
300 17 300 12 300 
360 18 360 
420 

NaCl (O.OOlN) 

60 2 60 1 60 
120 2 120 1 120 
180 5 180 2 180 
240 6 240 2 240 
300 6 300 
360 7 360 



µtV 

5 
8 

11 
20 
27 
35 
44 
48 
49 

3 
5 

11 
31 
39 
45 
47 

5 
10 
15 
27 
39 
46 
48 
48 
50 

2 
11 
19 
26 
31 
31 
33 

Vertical 

TABLE XVI 

THREE DIMENSIONAL SWELLING RELATIONSHIPS (DATA) 
BREWER SOIL, 12-1611 DEPTH, OH/Al SOLU'l'IONS 

Lateral 1 Lateral 2 
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Tim,e (mins.) mv Time (mins.) mv Time (mi ns.) 

OH/Al (1:2) 

60 3 60 1 60 
120 6 120 3 120 
180 9 180 8 180 
240 13 240 17 240 
300 22 300 17 300 
360 27 360 · 18 360 
420 28 420 
480 29 480 
540 

OH/Al (1: 3) 

30 5 30 6 30 
60 9 60 11 60 

120 16 120 19 120 
180 28 180 24 180 
240 39 240 35 240 
300 46 300 39 300 
360 48 360 39 300 

49 420 41 360 
50 480 42 420 

OH/Al o~ 4) 

30 4 30 5 60 
60 7 120 11 120 

120 21 180 19 180 
180 37 240 27 240 
240 44 300 32 300 
300 45 360 35 360 
360 49 420 36 420 
360 so 480 37 480 
420 

OH/Al (1: 5) 

60 4 60 1 60 
120 9 120 7 120 
180 16 180 11 180 
240 21 240 ···~ -240 
300 23 300 lfi 300 
360 23 360 i6 360 
420 25 420 
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R2. 

IN R.1A 
i'J o-'l)"•'-0. 

0(.).T 

l 
Rl is adjusted to give desirable swing of 100 mv on Rustrak meter. 
RlA is then adjusted to give variations to original settings; i.e. 
original reading can be divided to allow for extensive swelling of 
material under test • 

. Figure 27. Electronic Soil Expansion Measuring Device 

01.A.,... 
0 
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'l'ABI.iE XVII 

Na-CITRATE EXTRACTABLE Al-CO~OUNDS (ppm) 6 EXTRAC'l'IONS 

Depths (cm) 1 2 3 
, c 

4 5 6 

DWIGHT 
o.o - 7.6 460 300 300 300 
7.6 - 16.5 500 340 320 330 320 300 

16. 5 - 22.9 390 
22.9 - 35.6 420 40Q 320 
35.6 - 49.5 440 430 300 300 320 -... -
49,5 - 63.5 570 380 340 370 
63.5 - 73.7 430 350 300 380 320 

MILLER 

20.3 - 30.5 920 860 740 720 660 420 
30.5 - 40.6 880 740 765 660 740 525 
40.6 .. 58 .4 880 765 765 765 720 720 
48.3 - 58 .4 860 860 740 765 685 820 
58 ,4 - 89.0 880 820 920 765 685 660 
91.4 - 121.9 740 820 660 720 685 740 

121. 9 - 152 .4 800 720 720 740 740 685 

SAN SABA 
o.,o - 15.2 550 460 525 420 350 340 

25.4 - 35 •. 6 525 300 340 445 370 300 
50.8 .. 61.0 445 390 440 320 320 
63.5 ... 76.2 510 380 460 400 340 330 
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