A DETAILED ANALYSIS OF THE CHEMICAL ABUNDANCES

FOR THE STAR THETA URSAE MAJORIS

By
MALCOLM LEE BRUCE WEEMS
Bachelor of Science
Kansas State Teachers College
Emporia, Kansas
1967
Master of Science
Kansas State Teachers College Emporia, Kansas
1969

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
    in partial fulfillment of the requirements
    for the Degree of
    DOCTOR OF PHILOSOPHY
    May, 1972
```

2 hesis
19720
W397d

$$
\operatorname{cop} 2
$$

OKLAHOMA
STATE UNIVERSITY
LIBRARY

A DETAILED ANALYSIS OF THE CHEMICAL ABUNDANCES FOR THE STAR THETA URSAE MAJORIS

Thesis Approved:

The author would like to acknowledge Dr. Leon W. Schroeder, my thesis adviser, for suggesting the topic, supplying the tracing used in this study, and providing invaluable guidance throughout the preparation of this dissertation.

I also wish to extend a special thanks to Dr. J. C. Evans of the Department of Physics, Kansas State. University, for use of his unpub1ished computer programs used in this study and for his exceeding1y helpful suggestions and comments.

In addition, the author acknowledges Dr. K. O. Wright for the spectrograms used in this study; Dr. H. O. Peebles and Dr. E. C. Mangold for their permission to use certain data from their theses; the contributions made by the other members of my graduate committee, Dr: D. L. Rutledge, Dr. E. E. Kohnke, and Dr. K. E. Wiggins for their counseling during the formulation of this study; and Oklahoma State University Research Foundation for financial support for the use of the computer.

Finally, I would like to express appreciation to my wife, Cheryl, for her understanding and assistance during the preparation of this investigation and to my parents for their interest, encouragement and assistance at all times during my educational career

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
Introduction to the Topic 1
Purpose of the Study 2
Previous Investigations of Theta Ursae Majoris 3
II. MODEL ATMOSPHERES 7
The Description of a Stellar Atmosphere 7
The Temperature Distribution 10
III. THE THEORY OF LINE FORMATION 15
Line Depth in Flux 15
Line Broadening Mechanisms 16
Calculation of Theoretical Line Intensity and Flux 18
The Metal Absorption Coefficient 26
The Theoretical Curve of Growth 28
The Metal Line Program: 29
Chemical Abundances and the Empirical Curve of Growth 30
The Abundance Program 31
IV. THE OBSERVATIONAL DATA. 32
Spectrograms and Tracings 32
The Instrumental Profil 32
Equivalent Widths 35
Line Profiles. 40
Assessment of Errors 46
The Physical Constants 46
Wavelengths and Excitation Potentials 47
V. ANALYSIS OF THE OBSERVATIONS 48
The Microturbulence Analysis 49
The Macroturbulence Analysis 53
The Analysis of the Line Profiles 57
The Abundance Analysis 103
Results for the Individual Elements 107
VI。 CONCLUSIONS 117
The Model Atmosphere 117

TABLE OF CONTENTS (Continued)

Chapter Page
The Turbulence Model 117
The Analysis of the Line Profiles 118
The Abundances 119
SELECTED BIBLIOGRAPHY. 123
APPENDIX A. THE MODEL ATMOSPHERE: THEORY AND COMPUTATIONAL PRO- CEDURE 127
APPENDIX B. THE COMPUTER PROGRAMS USED IN THE ANALYSIS. 136
APPENDIX C. THE CORRECTION FOR INSTRUMENTAL BROADENING IN A SPECTRAL LINE USING THE METHOD OF VOIGHT FUNCTIONS 149
Table Page
I. The Physical Parameters for Theta Úrsae Majoris Deter- mined From Curve of Growth Analyses 4
II. The Representative Model Atmosphere for Theta Ursae Majoris 12
III. The Voight Parameters for the Apparatus Profile Used for Theta Ursae Majoris 34
IV. Line Intensities for Neutral and Singly Ionized Iron in Theta Ursae Majoris 37
V. Observed Line Profile Data for $F e I$ and $F e$ II in Theta Ursae Majoris 41
VI. Instrumental Broadening Data for Observed Lines of Fe I and Fe II 43
VII. Corrected Halfwidth and Equivalent Widths for Observed Lines of Fe I and Fe II 54
VIII. Abundance Results for Ca.I 66
IX. Abundance Results for Co I 67
X. Abundance Results for Cr I 68
XI. Abundance Results for Cr II 71
XII. Abundance Results for Fe I 72
XIII. Abundance Results for Fe II 76
XIV。 Abundance Results for Mg I. 77
XV. Abundance Results for Mn I. 78
XVI: Abundance Results for Na I. 79
XVII, Abundance Results for Ni I 80
XVIII. Abundance Results for Sc II 82

```
LIST OF TABLES (Continued)
```

Table Page
XIX. Abundance Results for Si I. 83
XX. Abundance Results for Ti I 84
XXI. Abundance Results for Ti II 86
XXII, Abundance Results for V I 87
XXIII. Abundance Results for V II. 88
XXIV。 A Comparison of Abundance Results 120
XXV. The Voight Parameters as Functions of the Form Parameter. 151
XXVI. Instrumental Broadening Correction Program. 155
XXVII. Instrumental Profile Analysis 157

LIST OF FIGURES

Figure Page

1. : Instrument Profile for Littrow GIII BL84 Spectrograph. 35
2. The Observed and Theoretical Center-of-the-Disk Curves of Growth for Lines in the Wavelength Region $\lambda 4200$ for Fe I 513. The Observed and Theoretical Center-of-the-Disk Curve ofGrowth for Lines in the Wavelength Region $\lambda 5900$ for Fe I51
3. The Observed and Theoretical Center-of-the-Disk Curves of Growth for Fe II 52
4. The Observed and Theoretical Correlation Between the Half- Widths and the Equivalent Widths for Fe I and Fe II. 56
5. Observed and Calculated Line Profiles for Fe I $\lambda 4199.10$. 59
6. Observed and Calculated Line Profiles for Fe I $\lambda 4202.03$. 59
7. Observed and Calculated Line Profiles for Fe I $\lambda 4206.70$. 60
8. Observed and Calculated Line Profiles for Fe I $\lambda 4219.36$. 60
9. Observed and Calculated Line Profiles for Fe I $\lambda 4736.78$. 61
10. Observed and Calculated Line Profiles for Fe I $\lambda 4890.76$. 61
11. Observed and Calculated Line Profiles for Fe I $\lambda 5434.53$. 62
12. Observed and Calculated Line Profiles for Fe I $\lambda 5586.76$. 62
13. Observed and Calculated Line Profiles for Fe II $\lambda 4122.64$. 63
14. Observed and Calculated Line Profiles for Fe II $\lambda 4178.86$. 63
15. Observed and Calculated Line Profiles for Fe II: $\lambda 4731.44$. 64
16. Observed and Calculated Line Profiles for Fe II $\lambda 5414.09$ 64
17. Observed and Calculated Line Profiles for Fe II $\lambda 5425.27$. 65
18. Theoretical Curve of Growth for Ca I. 89
19. Empirical Curve of Growth for Ca I 89

LIST OF FIGURES (Continued)

Figure Page
21. Theoretical Curve of Growth for Co I 90
22. Empirical Curve of Growth for Co I 90
23. Theoretical Curve of Growth for Cr I 91
24. Empirical Curve of Growth for Cr I 91.
25. Theoretical Curve of Growth for Cr II. 92
26. Empirical Curve of Growth for Cr II. 92
27. Theoretical Curve of Growth for Mg I 93
28. Empirical Curve of Growth for Mg I 93
29. Theoretical Curve of Growth for Mn I 94
30. Empirical Curve of Growth for Mn I 94
31. Theoretical Curve of Growth for Na I 95
32. Empirical Curve of Growth for Na I 95
33. Theoretical Curve of Growth for Ni I 96
34. Empirical Curve of Growth for Ni I 96
35. Theoretical Curve of Growth for Sc II 97
36. Empirical Curve of Growth for Sc II. 97
37. Theoretical Curve of Growth for Si I 98
38. Empirical Curve of Growth for Si I 98
39. Theoretical Curve of Growth for Ti I 99
40. Empirical Curve of Growth for Ti I 99
41. Theoretical Curve of Growth for Ti II 100
42. Empirical Curve of Growth for Ti II. 100
43. Theoretical Curve of Growth for V I 101
44. Empirical Curve of Growth for V I 101
45. Theoretical Curve of Growth for V II 102

LIST OF FIGURES (Continued)

Figure Page
46. Empirical Curve of Growth for V II 102
47. The Abundance of Fe I as a Function of the Excitation Po-tential of the Upper Level 106

CHAPTER I

INTRODUCTION

Introduction to the Topic

Abundance determinations from stellar spectra have long preoccupied investigators in the field of astrophysics. The value of abundance determinations lies in the clues which they give to the history of stellar matter. For a fixed set of abundances it is possible to make a one-toone mapping between the net emergent flux and the surface gravity and the coordinates of the Hertzsprung Russell diagram-a diagram representIng the evolutionary path of a stellar object. Generally, the characterization of the net emergent flux and the surface gravity is accomplished through a model atmosphere approach.

The analysis of stellar spectra has developed from the rudimentary curve of growth analysis, the relationship between the width of a line and the number of effective absorbing atoms, first introduced by Minnaert and Slob (1931). Essentially, this technique represents a method for the deduction of various atmospheric parameters such as the temperature, pressure and chemical composition, based on the approximation that spectral line formation can be treated as originating in an atmosphere of some fixed temperature and density.

An improvement upon the treatment of spectral analysis began with the model atmosphere technique of Stromgen (1940) and has since been significantly improved upon by more recent investigations.

Aller (1949) was the first to apply the model atmosphere method to stars other than the sun where he investigated the B2V star, γ Pegasi, Wallerstein (1966), Greenstein (1948), and R. Cayrel and A. Cayrel de Strobel (1966) have catalogued a number of stars, upon which these techniques have been applied. Of significance is the fact that very little is known about stars falling near the spectral range of the sun--such as Theta Ursae Majoris.

The determination of the chemical abundance of a stellar atmosphere using the fine analysis approach is based upon a generalized procedure of successive approximation. First, a curve of growth analysis supplies rough estimates of the abundance of existing elements, the surface gravity, and the effective temperature of the star. Next, a grid of stellar atmospheres can be computed on the basis of this knowledge. Selection of the appropriate model for the stellar atmosphere finally rests upon a comparison between experimental and theoretical values of the energy distribution in the continuous spectrum, the color temperature of the star and the hydrogen line profiles. In addition, any correct stellar model should effectively reproduce the discontinuity in the energy distribution at the Balmer limit. From the model atmosphere, the stratification of the temperature, pressure, and opacity can be used in conjunction with an assumed mechanism for the formation of a spectral line to theoretically predict the line profile and its equivalent width. Once agreement between the observed and calculated profiles has been achieved, abundance may be determined.

Purpose of the Study

The purpose of this investigation is to determine the chemical com-
position of the stellar atmosphere of the star Theta Ursae Maforis. The abundances of the elements employ a detailed description of the structuring of the atmosphere. Theoretical curves of growth; metal line profiles, and equivalent widths are utilized to assess the effects of the various line broadening agents which are present in the atmosphere.

Previous Investigation of Theta Ursae Majoris

Theta Ursae Majoris $\left(\alpha(1900)=9^{\mathrm{h}} 26^{\mathrm{m}}, \delta(1900)=52^{\circ} 8^{\prime}\right.$, Keenan and Morgan, 1951) is 1isted in the catalogue of Johnson and Morgan (1953) as a subgiant star of spectral type F6, luminosity class IV, and visual magnitude of 3.3. Like most stars of its type, it exhibits a low rotational velocity and shows no evidence of the presence of a stellar magnetic field. These latter qualities make Theta Ursae Majoris well-suited for analysis since the treatment of these two mechanisms is a difficult problem to introduce in the formation of a spectral line.

In the case of Theta Ursae Majoris, the coarse analysis necessary for the model atmosphere techniques were performed by Greenstein (1948), Boyarchuk (1960), Peebles (1964), and Mangold (1968). Both Greenstein and Mangold utilized a differential curve of growth technique while Peebles considered an absolute curve of growth method. Boyarchuk compared observed curves of growth with the theoretical curves computed by Wrubel for the Milne-Eddington model. A summary of the pertinent physical parameters obtained by these investigators is shown in Table I.

Some of the peculiar features of this star can be found in the hydrogen line contours and the metallic line profiles. Both of these show an abnormal reduction in line intensity when compared to similar stars. A portion of this effect (Greenstein, 1948) can be attributed to an

TABLE I

THE PHYSICAL PARAMETERS OF θ URSAE MAJORIS DETERMINED
FROM CURVE OF GROWTH ANALYSES

Parameter	Greenstein	Peebles	Mangold
$\theta_{\mathrm{exc}}^{\circ}$	1.04	none	0.98
$\theta_{\text {exc }}^{*}$	0.98	numerous values	0.88
$\theta_{\text {ion }}^{*}$	0.87	$0.81{ }^{1}$	0.81^{1}
$\log \mathrm{c} / \mathrm{v}^{*}$	5.44	5.04 ($\mathrm{Fe} \mathrm{I-NBS)}$	none
$\log \mathrm{P}_{\mathrm{e}}^{*}$	1.20^{2}	1.31 (Ti I-NBS)	1.07
$\log \mathrm{k}_{\lambda}^{*}$	-1.00	none	-0.70
$\log a^{*}$	-2.3	-1.8 Both scattering models -1,3 Both absorption models	none
${ }^{1}$ Derived from the effective temperature			
${ }^{2}$ Derived for $\theta_{\text {ion }}=0.80$.			
$\begin{aligned} & 0= \\ & *= \end{aligned}$			

unusually high value of the continuous optical absorption coefficient. This reduces the intensity of the observed lines, and gives the effect of a higher-than-normal surface gravity. However, some atmospheric structuring is still necessary to explain this anomaly, A comparison of the abundance analyses of Mangold and Greenstein shows evidence of some variation, but on the whole, indicates that the photosphere of Theta Ursae Majoris has a chemical composition not too unlike the solar atmosphere. Mangold did find trends which suggested the metal content of this star was somewhat deficient relative to the solar values.

A fine analysis of the atmosphere of Theta Ursae Majoris was performed by Evans and Schroeder (1969) and Bulman (1971) using a pressure-opacity-flux model for a given temperature distribution. A grid of sixteen'representative model atmospheres were computed using a scaled version of Elste's solar temperature distribution. Effective temperatures and logarithms of the surface gravities were taken to fall within the range $6200{ }^{\circ} \mathrm{K}$ to $6650{ }^{\circ} \mathrm{K}$ and from 3.8 to 4.4 , respectively. Among the results reported was the fact that the computed UBV colors, corrected for line blanketing (Myrick, 1970), were not in agreement with the observed ones for the band-width difference $U-B$. An analysis of the hydrogen line profiles resulted in a choice of the representative model atmosphere for Theta Ursae Majoris having an effective temperature of $6500{ }^{\circ} \mathrm{K}$ and a surface gravity of $\log \mathrm{g}=4.2$.

In a further investigation, Evans, Schroeder, and Weems (1971) suggest that a revision of this atmospheric model is necessary when the multicolor photometry of Mitchell and Johnson (1969) is included with the previous information. A model atmosphere with an effective temperature of $6350^{\circ} \mathrm{K}$ and logarithm of the surface gravity of 4.0 seems to be
more indicative of the conditions with the atmosphere of this star. For the purposes of this investigation this model of the atmosphere of Theta Ursae Majoris will be utilized for all computational procedures.

CHAPTER II

MODEL ATMOSPHERES

The Description of a Stellar Atmosphere

For the purposes of this study, a stellar atmosphere is described by that portion of a star capable of being observed. In a general way this would refer to the regions of a star from which its components of the electromagnettic spectrum arise; and characteristically this implies the layers of a star from which the continuous and absorption-line spectrum are formed. The present interpretation of a stellar atmosphere implies a depth ranging from a few hundred to a few thousand kilometers; the solar atmosphere, for example, can be described as having a geometrical depth of approximately 330 kilometers (Aller, 1963). Of course it is because the actual processes occurring within the atmosphere determine the nature of the radiant energy emitted that one may deduce the physical properties of the stellar atmosphere from observations of the continuum and the strength and shape of the spectral absorption lines.

The representation of a stellar atmosphere in terms of a model proceeds from a postulation of the dependence of the physical quantities -temperature, pressure, and opacity--upon a specified depth-dependent variable to the computation of the net flux emerging from the star and the shape of the spectral absorption lines. A comparison of the computed data with stellar observations is made and the model altered to yield a best fit thereby defining the model atmosphere only to the extent of the
agreement.
To relieve the complexity--and somewhat out of necessity--the situation of describing accurately a stellar atmosphere must be accompanied by certain symplifying assumptions governing the physical processes which are occurring. It is argued that the amount of imperfection introduced will only evidence itself in secondary roles.

For the detailed analysis of Theta Ursae Majoris, the star was assumed to be spherically symmetric, non-rotating, and the range of depth of the atmosphere negligible compared to the radius of the star. Further, the atmosphere is assumed to be partitioned in homogeneous, steady-state, plane-parallel layers of which the outer boundary is defined by the condition that no significant quantity of radiation flows inward across this boundary. The atmosphere is also constrained to provide no significant sources or sinks of energy, A state of hydrostatic equilibrium exists at all times and at all points in the atmosphere under the influence of a uniform gravitational field. No provision is made for radiation, magnetic, or other mechanical forces. This ensures that the total pressure at each layer is equivalent to the gas pressure of the layer.

Additional assumptions are placed upon the mechanism of the interaction of the radiation and gravitational field. The gases present in the atmosphere are assumed to be in local thermodynamic equilibrium. This implies that for the continuous spectrum a simple replacement of the source function by the Planck function of the local electron temperature may be made since then the ratio of the probability of the emission to absorption of a photon in a specified frequency interval would be unity. Pure absorption is then the only mechanism for the for-
mation of the radiation field. In general this ratio is close to unity except for lines that are formed in high regions of the atmosphere so that this assumption is not. altogether unrealistic for the problem (Böhm 1960; Aller 1963; Motz 1970). Finally the assertion is made that the formation of the line and continuous spectrum may be treated as separate entities.

While magnetic forces are formally neglected, they are incorporated in an approximate manner through the use of an effective surface gravity rather than of the dynamical quantity. Magnetic effects produce a distention in the atmosphere at its outermost layers and reduce the dynamical surface gravity in the process (A11er, 1953).

The method of computation of the corresponding pressure-opacityflux model follows the computational procedure developed by Weidman (1955) and later refined by Elste and Evans (1966). For a given chemical composition, effective surface gravity and temperature distribution, the model atmosphere program will generate the electron and gas pressures as functions of a conveniently defined depth variable. Rather than the actual physical depth in the atmosphere, the logarithmic optical depth scale is used (E1ste 1955; Weidmann 1955). The logarithmic optical depth scale is approximately linearly proportional to the physical depth of a layer in an atmosphere. Following common practice for the independent variable of depth, the logarithm of, the optical depth at $5000 \AA^{\circ}$ is used. It can be related to the physical variable by the expression

$$
\begin{equation*}
x \equiv \log t_{0}=\log \left[\rho_{0}^{t} \frac{K_{0}(t)}{m_{0} \sum_{i}^{K} \varepsilon_{i} \mu_{i}} \rho(t) d t\right], \tag{2-1}
\end{equation*}
$$

where

```
\(t\) = the physical depth in the atmosphere, \(K_{0}(t)=\) the continuous absorption coefficient per hydrogen particle at \(5000{ }^{\circ}\),
\(\mathrm{m}_{\mathrm{o}}=\) the gram mass of a unit atomic weight,
\(\mu_{i}=\) the atomic weight of species i,
\(\varepsilon_{i}=\) the number abundance of species i relative to hydrogen,
\(\rho(t)=\) the density of stellar material.
```

The atmosphere was stratified into twenty-seven layers each specified by a value of the logarithm :of the optical depth ranging from $-4.00 \leq x$ $\leq+1.20$. Evans $(1966,1969)$ and Bulman (1971) have discussed extensively the theory developed for computing the pressure-opacity-flux model used in this study and the necessary details are given in Appendix A.

The Temperațure Distribution

The temperature is related to the depth through some arbitrarily adopted temperature law obeying the constraint that it resemble as closely as possible the real star. This law is commonly established by requiring that the spectrum meet the condition of radiative equilibrium at each layer; that is, the total flux must be constant with depth. Of course, one could bypass thís requirement by adopting an empirical tèmperature relation which is based upon solar limb-darkening measurements. The latter procedure is convenient for stars whose sources of continuous absorption coefficients and ionization equilibrium are not far removed from those of the sun.

For the purposes of this study an empirical solar temperature distribution by Elste (1955) was utilized. This distribution has been shown to fit solar observations of limb-darkening (Elste 1964), sodium

D lines (Mattig and Schröter, 1961; Mugglestone, 1964) and the Balmer lines (David, 1961). The extension to the desired stellar temperature distribution is accomplished by multiplying the empirical solar temperature by the ratio of the stellar to solar effective temperature for each layer of the atmosphere. The resulting effective temperature does not yield total integrated flux since it has been empirically derived; however, this approximation will be assigned as the model temperature.

It is well known that the best criterion for the specification of temperature in F, G, and K stars is through the Balmer-line profiles. Bulman (1971) computes a grid of sixteen representative model atmospheres for the star Theta Ursae Majoris, having effective temperatures between $6200{ }^{\circ} \mathrm{K}$ and $6650^{\circ} \mathrm{K}$ and surface gravities between $\log \mathrm{g}=3.8$ and 4.4. His analysis of the hydrogen line profiles predicts a model with an effective temperature of $6500{ }^{\circ} \mathrm{K}$ and logarithm of the surface gravity of 4.2. However, when this model was compared to that predicted by the UBV colors which incorporated the line blanketing measurements of Myrick (1970), no single definitive model for Theta Ursae Majoris could be ascertained. Evans, Schroeder, and Weems (1970) have reported that using the multi-color photometry of Mitchell and Johnson (1969), the UBV colors, and the hydrogen line profiles, a revised model with an effective temperature of $6350{ }^{\circ} \mathrm{K}$ and $\log \mathrm{g}$ of 4.0 best represents the atmosphere of Theta Ursae Majoris. The detailed model atmosphere is shown in Table II, It represents the model atmosphere chosen for the computational analysis of Theta Ursae Majoris. Following the data table, the effective temperature, the surface gravity, the helium to hydrogen number density, B, and the logarithm of the number of hydrogen atoms to those of the metals; $A=\log N_{H} / \Sigma N$ metals are listed, respectively. In the

TABLE II
THE REPRESENTATIVE MODEL ATMOSPHERE FOR THETA URSAE MAJORIS

$\begin{gathered} \text { Log Tau } \\ (5000) \end{gathered}$	Theta Model	Temp. (K)	Log PE	Log PG	$\begin{gathered} \log K / P E \\ (5000) \end{gathered}$	Mean Mo1. Wt.	Log Density	Geometrical Depth (KM)
-4.00	1.0404	4844	-1.1407	2.8125	-24.9813	1.3597	-8.6592	0.0
-3.80	1.0399	4847	-1.0947	2.8768	-24.9893	1.3597	-8.5950	0.0
-3.60	1.0389	4851	-1.0026	3.0057	-25.0036	1.3597	-8.4665	0.0
-3.40	1.0374	4858	-0.9079	3.1324	-25.0169	1.3597	-8.3405	0.0
-3.20	1.0357	4866	-0.8122	3.2567	-25.0289	1.3597	-8.2168	0.0
-3.00	1.0331	4879	-0.7133	3.3787	-25.0412	1.3598	-8.0959	0.0
-2.80	1.0294	4896	-0.6113	3.4983	-25.0541	1.3598	-7.9779	0.0
-2.60	1.0240	4922	-0.5049	3.6155	-25.0691	1.3598	-7.8630	0.0
-2.40	1.0176	4953	-0.3965	3.7306	-25.0848	1.3598	-7.7506	0.0
-2. 20	1.0076	5002	-0. 2776	3.8433	-25.1063	1.3598	-7.6422	0.0
-2.00	0.9948	5066	-0.1503	3.9533	-25.1320	1.3598	-7.5378	0.0
-1.80	0.9794	5146	-0.0133	4.0601	-25.1618	1.3597	-7.4377	0.0
-1.60	0.9612	5243	0.1364	4.1631	-25.1963	1.3597	-7.3429	0.0
-1.40	0.9411	5355	0.2974	4.2615	-25.2339	1.3597	-7.2537	0.0
-1. 20	0.9184	5488	0.4754	4.3543	-25.2762	1.3597	-7.1715	0.0
-1.00	0.8938	5639	0.6688	4.4407	-25.3222	1.3596	-7.0969	0.0
-0.80	0.8665	5817	0.8834	4.5200	-25.3736	1.3595	-7.0311	0.0
-0.60	0.8356	6032	1.1259	4.5909	-25.4324	1.3594	-6.9760	0.0
-0.40	0.8001	6299	1.4039	4.6523	-25.5008	1.3591	-6.9336	0.0
-0.20	0.7591	6639	1.7240	4.7033	-25.5800	1.3584	-6.9057	0.0
0.0	0.7136	7063	2.0786	4.7437	-25.6656	1.3569	-6.8925	0.0
0.20	0.6644	7586	2.4612	4.7745	-25.7497	1.3533	-6.8940	0.0
0.40	0.6144	8203	2.8489	4.7968	-25.8140	1.3445	-6.9084	0.0

TABLE II (Concluded)

$\begin{array}{r} \text { Log Tau } \\ (5000) \end{array}$	Theta Model	Temp. (K)	Log PE	Log PG	$\underset{(5000)}{\log \mathrm{K} / \mathrm{PE}}$	Mean Mol: Wt.	$\begin{gathered} \text { Log } \\ \text { Density } \end{gathered}$	Geometrical Depth (KM)
0.60	0.5762	8747	3.1456	4.8136	-25.8379	1.3307	-6.9240	0.0
0.80	0.5489	9182	3.3581	4.8283	-25.8369	1.3138	-6.9360	0.0
\cdots								
1.00	0.5316	9481	3.4947	4.8431	-25.8286	1.2989	-6.9400	0.0
1.20	0.5206	9681	3.5815	4.8526	-25.8201	1.2872	-6.9435	0.0

$T\left(\right.$ eff) $=6350{ }^{\circ} \mathrm{K} \quad$ Log $g=4.00 \quad B=0.1250 \quad A=3.2306$
succeeding columns, the logarithms of the electron pressure, gas pressure and the ratio of the absorption coefficient to the electron pressure are given as functions of the optical depth at $5000 \AA$ and the temperature, either as $\theta=5040 / T\left({ }^{\circ} \mathrm{K}\right)$ or $T\left({ }^{\circ} \mathrm{K}\right)$. The values located under the column for the geometrical depth have been initialized to zero since the geometrical depth was not used for calculation purposes. Also tabulated are mean molecular weights and logarithmic densities.

CHAPTER III

THE THEORY OF LINE FQRMATION

In order to extract the most information possible about the atmosphere of a star there are two aspects of an absorption line which must be considered, the intensity of the line, generally expressed in terms of an equivalent width, and its shape or profile. The former is just the total amount of energy extracted by the absorption line itself while the latter feature depends principally upon the residual energy distribution in the line as a function of the frequency.

Line Depth in F1ux

If local thermodynamic equilibrium is assumed for line formation, then scattering processes may be neglected as compared to pure absorption processes so the net flux in the continuum is represented by Equation (A-13). The line depth in flux (Gussman, 1963) is defined as

$$
\begin{equation*}
R(\Delta \lambda)=1-\frac{F_{T}^{\ell}(0, \Delta \lambda)}{F_{T}^{c}\left(0, \lambda_{m}\right)}=\frac{F_{T}^{c}\left(0, \lambda_{m}\right)-F_{T}^{\ell}(0, \Delta \lambda)}{F_{T}^{c}\left(0, \lambda_{m}\right)}, \tag{3-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\lambda_{\mathrm{m}}= & \text { the wavelength which defines, a } 150 \AA \text { wide region of the } \\
& \text { spectrum containing } \lambda,
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{T}}^{\mathrm{c}}\left(0, \lambda_{\mathrm{m}}\right)= & \text { the total continuum flux emerging from the atmosphere, } \\
\mathrm{F}_{\mathrm{T}}^{\ell}(0, \Delta \lambda)= & \text { the emergent flux in the line at a distance } \Delta \lambda \text { from } \\
& \text { the line center, }
\end{aligned}
$$

Both $F\left(0, \lambda_{m}\right)$ and $\tau_{\lambda_{m}}(x)$ have been specified as details of the calculations of the model atmosphere. If the mechanisms for line formation are independent of those for the formation of the continuum, then the flux in the line is

$$
\begin{equation*}
F_{T}^{\ell}(0, \Delta \lambda)=2 \int_{0}^{\infty} B_{\lambda \mathrm{m}}\left(\tau^{c}+\tau^{l}\right) E_{2}\left(\tau^{c}+\tau^{l}\right) d\left(\tau^{c}+\tau^{l}\right), \tag{3-2}
\end{equation*}
$$

since the optical depth τ, is just the addition of the optical depth in the continuum, τ^{c}, and the optical depth in the line.

The optical depth in the line is given by

$$
\begin{equation*}
\tau^{\ell}(x, \Delta \lambda)=\int_{-\infty}^{x} \frac{K^{\ell}}{K_{0}} \frac{\tau_{0}}{\operatorname{Mod}}\left(1-10^{-x_{\lambda m}^{\theta}}\right) d x \tag{3-3}
\end{equation*}
$$

where $K^{\ell}(x, \Delta \lambda)=$ the line absorption coefficient per hydrogen particle,

$$
x_{\lambda_{\mathrm{m}}}=12397.67 / \lambda_{\mathrm{m}},
$$

$1-10^{-\chi_{\lambda m}{ }^{\theta}}=$ the factor needed to account for stimulated emission.
$K_{0}(x), \tau_{0}(x)$ and $\theta(x)$ are the parameters specified by the model atmosphere calculations.

Line Broadening Mechanisms

The absorption lines in stellar spectra are broadened through several different mechanisms in addition to instrumental imperfections.

The major causes of intrinsically broadened lines are (Aller, 1963; van Regemorten, 1965): (a) a Doppler broadening due to random thermal motions of the gas atoms as well as a possible small scale mass motion, turbulence, in the atmosphere; (b) radiation or natural broadening, due to the existence of small but finite lifetimes of excited states of a gas atom; (c) Stark broadening, from the interaction of absorbing atoms with surrounding ions or electrons; (d) Van der Waals broadening, from the interaction of absorbing atom with neutral atoms of a different type;
(e) Zeeman broadening, due to line-splitting in a magnetic field; (f) resonance broadening, due to interactions of the absorbing atom with atoms of the same type; (g) isotopic broadening, a type of pseudobroadening occurring because of isotopic variations between atoms. The more important extrinsic causes for line broadening in stellar spectra are rotational broadening due to contributions to the line from different portions of a rotating stellar surface and large scale turbulent effects in the atmosphere.

The turbulence broadening effects are commonly distinguished as being of two types, macroturbulence or microturbulence. Macroturbulence is defined as mass motions whose linear extent is large compared with the mean free path of a photon. On the other hand, for microturbulence the mass eddies have a linear extent small as compared with the mean free path of a photon. Turbulence affects both the equivalent width and the line profiles, but in a different manner depending upon whether or not the diameter of the atmosphere is greater or smaller than the thickness of the line=forming region. Microturbulence elements moving with different velocities absorb radiation from the continous spectrum at different distances from the line center resulting in a broadening of
the line profile and an increased equivalent width. The delaying of optical saturation then raises the flat portion of the curve of growth. Macroturbulence does not affect the equivalent width, since by definition it occurs after the line has been formed, and simply rounds out the line profile.

Calculation of Theoretical Line Intensity and F1ux

Consider an atmosphere which contains mass motions, arising from cells whose thickness is greater than that of the region in which the line is formed, whose velocity along the line of sight has the radial and tangential components

$$
\begin{equation*}
\varepsilon_{i}=\varepsilon_{i}^{r} \cos \theta+\varepsilon_{i}^{t} \sin \theta, \tag{3-4}
\end{equation*}
$$

where $\quad \theta=$ angle between the observer and the velocity component of the ith ce11.

If the continuum intensity of the ith cell is I_{i}^{c}, and the line intensity of the ith cell is I_{i}^{ℓ}, then the total continuum intensity arising from n distinct cells occupying an area A at a 1 mb distance $\mu=\cos \theta$ is

$$
\begin{equation*}
I_{T}^{c}=\sum_{i=1}^{n} a_{i} I_{i}^{c}, \tag{3-5}
\end{equation*}
$$

while the total line intensity is given by

$$
\begin{equation*}
I_{T}^{\ell}=\sum_{i=1}^{n} a_{i} I_{i}^{\ell}, \tag{3-6}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{i}= & \text { the fraction of area A occupied by cells with a velocity } \\
& \text { of } \varepsilon_{i} .
\end{aligned}
$$

The line depth expression for the emergent radiation from the region of interest is from Equations (3-5) and (3-6)

$$
\begin{equation*}
r_{\lambda}(\mu)=\frac{I_{T}^{c}-I_{T}^{\ell}}{I_{T}^{c}}=\sum_{i=1}^{n} a_{i}\left[\frac{I_{i}^{c}-I_{i}^{l}}{I_{t}^{c}}\right] \tag{3-7}
\end{equation*}
$$

Now if the continuum is formed according to the mechanism of pure absorption, and local thermodynamic equilibriums assumed, the equation for the specific Intensity of a ray which emerges from the surface of the ith cell at angle θ with the normal is

$$
\begin{equation*}
I_{i}^{c}(0, \mu)=\int_{0}^{\infty} s_{i}^{c} e^{-\tau_{i}^{c} / \mu} \frac{d \tau^{c}}{\mu}=\int_{-\infty}^{\infty} s_{i}^{c} e^{-\tau_{i}^{c} / \mu} \frac{K_{i}^{c}}{K_{0}^{c}} \frac{10^{x}}{\operatorname{Mod}} \frac{d x}{\mu}, \tag{3-8}
\end{equation*}
$$

where $\tau_{i}^{c}(x)=$ the continuum optical depth,

$$
=\int_{-\infty}^{x} \frac{K_{i}^{c}}{K_{o}^{c}} \frac{10^{x}}{\operatorname{Mod}} d x
$$

$x=$ logarithm of the optical depth at $\lambda=5000 \AA$, for a non-moving ambient photosphere,
$S_{i}^{c}=$ the source function in the continuum of the ith cell, which in this case is the Planck function.

Likewise the specific line intensity of the emergent ray is

$$
\begin{align*}
I_{i}^{\ell}(0, \mu) & =\int_{0}^{\infty} S_{i} e^{-\tau_{i} / \mu} \frac{d \tau_{i}}{\mu} \tag{3-9}\\
& =\int_{-\infty}^{\infty} S_{i} e^{-\tau_{i} / \mu \frac{K_{i}}{K_{0}^{c}}\left(\frac{10}{M o d}\right)} \frac{d x}{\mu},
\end{align*}
$$

where

$$
S_{1}=\text { the source function of the ith cell at a point in the }
$$

line.
$\tau_{i}=$ the optical depth for a point in the line

$$
=\tau_{i}^{c}+\tau_{i}^{\ell}=\int_{-\infty}^{x} \frac{K_{i}^{\ell}+K_{i}^{c}}{K_{o}^{c}} \cdot \frac{10^{x}}{M o d} d x .
$$

In Equation (3-9) the mechanism for line formation has been assumed to be independent of that which produces the continuum (Motz, 1970), so that the source function S_{i} becomes

$$
\begin{equation*}
s_{i}=\frac{s_{i}^{c}+\rho_{i}}{1+\rho_{i}} s_{i}^{l}=s_{i}^{c}\left(\frac{1+\rho_{i} \beta_{i}}{1+\rho_{i}}\right), \tag{3-10}
\end{equation*}
$$

where

$$
\rho_{i}=k_{i}^{\ell} / k_{i}^{c}, \quad \beta_{i}=s_{i}^{\ell} / s_{i}^{c},
$$

and

$$
k_{i}=k_{i}^{\ell}+k_{i}^{c}=K_{i}^{c}\left(1+\rho_{i}\right) .
$$

Making use of Equations (3-8), (3-9), and (3-10), the line depth in intensity, from Equation (3-7), is

$$
\begin{aligned}
r_{\lambda}(\mu)= & \sum_{i=1}^{n}\left\{\frac{\sum_{i}}{I_{T}^{c}} \delta_{-\infty}^{+\infty} s_{i}^{c} e^{\left.-\tau_{i}^{c} / \mu \cdot \frac{K_{i}^{c}}{K_{o}^{c}} \frac{10^{x}}{M o d} \frac{d x}{\mu}\right\}}\right. \\
& -{ }_{i=1}^{\sum_{i}} \frac{a_{i}}{I_{T}^{c}} \int_{-\infty}^{\infty} S_{i}^{c} e^{-\tau_{i}^{c} / \mu} e^{-\tau_{i}^{\ell} / \mu} \frac{\left(1+\rho_{i} \beta_{i}\right)}{\left(1+\rho_{i}\right)}\left(1+p_{i}\right) \\
& \cdot \frac{K_{i}^{c}}{K_{o}^{c}} \frac{10^{x}}{M o d} \cdot \frac{d x}{\mu},
\end{aligned}
$$

or

$$
\begin{align*}
& r_{\lambda}(\mu)=\int_{-\infty}^{\infty}\left[\sum_{i=1}^{n} \frac{a_{i} s_{i}^{c}}{I_{T}^{c}} e^{-\tau_{i}^{c} / \mu}\left(1-\left[1+\rho_{i} \beta_{i}\right] e^{-\tau_{i}^{\ell} / \mu}\right)\right. \\
&\left.\cdot \frac{K_{i}^{c}}{K_{i}^{o}}\right] \frac{10^{x}}{\operatorname{Mod}} \frac{d x}{\mu} \tag{3-11}
\end{align*}
$$

It is now of benefit to make simplifying assumptions concerning some of the quantities in Equation (3-11). The best observational evidence for the existence of macroturbulence appears in the granular structure of the atmosphere of the sun. There the continuous radiation from the bright granules is not altogether different in intensity from that produced by the inter-granular region surrounding the cells (Evans, 1971). Therefore, it will be assumed that the intensity of the cells $I_{i}^{c}=I^{C}$ for all i. This implies that the total continuum intensity, summed over all cells, is just the total intensity I_{T}^{C}. Throughout the part of the line that makes the major contribution to the equivalent width, the source function in the line is not very different from that in the continuum and if local thermodynamic equilibrium is invoked, they are identical. Further, Jugaku (1957) has shown that it is thebretically sound to assume the source function to be Planckian for main-sequence B stars. The last restriction is, placed on the macroturbulent distribution itself. It will be assumed that all cells have the same temperature stratification and differ only in their velocity fields. This latter assumption constrains the Planck function and the optical depth in the continuum to be identical for all cells. With these conditions, Equation (3-11) for the line depth becomes

$$
\begin{align*}
r_{\lambda}(\mu)= & \int_{-\infty}^{\infty}\left[\frac{B e^{-\tau^{c} / \mu}}{I^{e}} \sum_{i=1}^{n} a_{i}\left(1-\left(1+p_{i}\right) e^{-\tau_{i}^{\ell} / \mu}\right)\right. \\
& \left.\cdot \frac{K^{c}}{K_{0}^{c}}\right] \frac{10^{x}}{M o d} \frac{d x}{\mu} \tag{3-12}
\end{align*}
$$

where $B=B_{\lambda}=$ the Planck function,

$$
\begin{aligned}
\mathrm{K}^{c}= & \mathrm{K}_{\lambda}^{c}=\text { the continuous absorption coefficient, } \\
\mathrm{K}_{0}^{c}= & \text { the continuous absorption coefficient for } \lambda=5000 \mathrm{~A}, \\
\tau_{i}^{\ell}= & \text { the optical depth of a line occurring in the ith cell } \\
& \text { of the atmosphere. }
\end{aligned}
$$

Using the identity

$$
\sum_{i=1}^{n} a_{i}\left(1-\psi_{i}\right)=1-\sum_{i=1}^{n} a_{i} \psi_{i},
$$

Equation (3-12) may be written in the form

$$
\begin{equation*}
r_{\lambda}(\mu)=\int_{-\infty}^{+\infty} \frac{B e^{-\tau^{c} / \mu}}{I^{c}}\left[1-\sum_{i=1}^{n} a_{i}\left(1+\rho_{i}\right) e^{-\tau_{i}^{\ell} / \mu}\right] \frac{K^{c}}{K_{0}^{c}} \frac{10^{x}}{\operatorname{Mod}} d x \tag{3-13}
\end{equation*}
$$

Except for the sun, it is impossible to observe separate portions of a stellar surface. The energy that is received from a stellar object is then proportional to the total amount of energy emitted from each small segment of area. This energy or the flux is then obtained by integration of the specific intensity, Equations (3-5) and (3-6) over all possible solid angles. Hence, from Equations (3-8) and (3-9), the total flux in the continuum is

$$
\mathrm{F}_{\mathrm{T}}^{\mathrm{c}}\left(0, \lambda_{\mathrm{m}}\right)=\frac{1}{\pi} \quad \begin{array}{cc}
\phi=2 \pi & \theta=\pi / 2 \\
\phi=0
\end{array} \quad \theta \underline{\underline{\bar{S}}}_{0}^{\mathrm{c}} \mathrm{I}_{\mathrm{T}}^{\mathrm{c}}(0, \mu) \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi
$$

or

$$
\begin{equation*}
F_{T}^{c}\left(0, \lambda_{m}\right)=2 \sum_{i=1}^{n} a_{i}\left\{f_{0}^{\infty} S_{i}^{c}\left[\int_{y=1}^{y=\infty} e^{-\tau_{i}^{c} y} \frac{d y}{y^{2}}\right] d \tau_{i}^{c}\right\} \tag{3-14}
\end{equation*}
$$

where $\mathrm{y}=1 / \mu$. Likewise, the flux in the line becomes,

$$
\begin{equation*}
F_{T}^{\ell}(0, \Delta \lambda)=2{ }_{i=1}^{n} \sum_{i}\left\{\int_{0}^{\infty} S_{i}\left[\int_{y=1}^{y=\infty} e^{-\tau}{ }_{i}^{y} \frac{d y}{y^{2}}\right] d \tau_{i}\right\} \tag{3-15}
\end{equation*}
$$

The quantity in brackets is just the second exponential integral (see Equation (A-13). So Equations (3-14) and (3-15) may be written as

$$
\begin{equation*}
F_{\lambda}^{c}\left(0, \lambda_{m}\right)=\sum_{i=1}^{n} 2 a_{i} \int_{-\infty}^{\infty} S_{i}^{c} E_{2}\left(\tau_{i}^{c}\right) \frac{k_{i}^{c}}{K_{0}^{c}} \frac{10^{x}}{M o d} d x \tag{3-16}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{T}^{\ell}(0, \Delta \lambda)=\sum_{i=1}^{n} 2 a_{i} \cdot \int_{-\infty}^{\infty} S_{i} E_{2}\left(\tau_{i}^{c}+\tau_{i}^{\ell}\right) \frac{K_{i}}{K_{0}^{c}} \frac{10^{x}}{M o d} d x \tag{3-17}
\end{equation*}
$$

The line depth in flux wigethen

$$
\begin{aligned}
R_{\lambda}(\mu) & =\frac{F_{T}^{c}\left(0, \lambda_{m}\right)-F_{T}^{\ell}(0, \Delta \lambda)}{F_{T}^{c}\left(0, \Delta \lambda_{m}\right)}, \\
& ={ }_{i=1}^{\sum_{i=1}^{n}} \frac{2 a_{i}}{F_{T}^{c}\left(0, \Delta \lambda_{m}\right)} \int_{-\infty}^{\infty}\left[s_{i}^{c} E_{2}\left(\tau_{i}^{c}\right) \frac{K_{i}^{c}}{K_{0}^{c}}-S_{i}\right.
\end{aligned}
$$

$$
\cdot E_{2}\left(\tau_{i}^{c}+\tau_{i}^{\ell}\right) \frac{K_{i}^{c}}{K_{o}^{c}} \frac{10^{x}}{M o d} d x
$$

Using Equation (3-10) this becomes

$$
\begin{aligned}
R_{\lambda}(\mu)= & { }_{i=1}^{n} \frac{2 a_{i}}{F_{T}^{c}\left(0, \Delta \lambda_{m}\right)} \int_{-\infty}^{\infty}\left[s_{i}^{c} E_{2}\left(\tau_{i}^{c}\right) \frac{K_{i}^{c}}{K_{0}^{c}}-s_{i}^{c} \frac{\left(1+\rho_{i} \beta_{i}\right)}{\left(1+\rho_{i}\right)} E_{2}\left(\tau_{i}^{c}+\tau_{i}^{l}\right)\right. \\
& \left.\cdot \frac{K_{i}^{c}}{K_{0}^{c}}\left(1+\rho_{i}\right)\right] \frac{10^{x}}{M o d} d x .
\end{aligned}
$$

Which, for convenience may be expressed as

$$
\begin{align*}
& R_{\lambda}(\mu)=\int_{-\infty}^{\infty}\left\{\sum_{i=1}^{n} \frac{2 a_{1} s_{i}^{c} E_{2}\left(\tau_{i}^{c}\right)}{F_{T}^{c}}\left[1-\frac{\left(1+\rho_{i} \beta_{i}\right) E_{2}\left(\tau_{i}^{c}+\tau_{i}^{l}\right)}{E_{2}\left(\tau_{i}^{c}\right)}\right]\right. \\
&\left.\cdot \frac{K_{i}^{c}}{K_{o}^{c}}\right\} \frac{10^{x}}{M o d} d x . \tag{3-18}
\end{align*}
$$

The solution of the line depth Equation (3-18) is based upon the method of the Planckian gradient of Mugglestone (1958) and later modified by Evans $(1969,1971)$. The method utilizes an integration by parts of the flux Equations (3-14) and (3-15), for the line and continuum. The general form of these equations is

$$
\psi=2 \int_{0}^{\infty} S(\tau) E_{2}(\tau) d \tau_{0}
$$

Letting $u=S(\tau), d v=E_{2}(\tau), v=-E_{3}(\tau)$ and

$$
d u=\frac{d S(\tau)}{d \tau} d \tau \frac{d S(\tau)}{d \log \tau} \frac{d \log \tau}{d \tau} d \tau=\frac{d S(\tau)}{d x} d x,
$$

the above integral then becomes

$$
\begin{equation*}
\psi=S(0)+2 \rho_{-\infty}^{\infty} \frac{d S}{d x} \cdot E_{3}(\tau) d x . \tag{3-19}
\end{equation*}
$$

From the results of Equation (3-19), the Planckian gradient form of the Iine depth becomes

$$
\begin{align*}
R_{\lambda}(\mu) & =\sum_{i=1}^{N} \frac{a_{i}}{F_{T}^{c}\left(0, \lambda, m_{m}\right)}\left\{\left(S_{i}^{c}(0)-S_{i}^{\ell}(0)\right)\right. \tag{3-20}\\
& \left.+2 S_{-\infty}^{\infty} \frac{d S_{i}^{c}}{d x} E_{3}\left(\tau_{i}^{c}\right)\left[1-\Phi_{i} \frac{E_{3}\left(\tau_{i}^{c}+\tau_{i}^{l}\right)}{E_{3}\left(\tau_{i}^{c}\right)}\right] d x\right\},
\end{align*}
$$

where $\Phi_{i}=\frac{d S_{i}^{\ell}}{d x} / \frac{d S_{i}^{c}}{d x}$. Under the same restrictions used to calculate the intensity form of the line depth, the following conditions will be assumed: (a) the source function in the line and continuum is the Planck function; (b) the optical depth in the continuum is the same for all cells. Thus, the Planckian gradient form of the line depth, Equation (3-20) may be expressed as

$$
R_{\lambda}(\mu)=\int_{-\infty}^{+\infty}\left\{\sum_{i=1}^{N} \frac{2 a_{i}}{F_{T}^{c}\left(0, \lambda_{m}\right)} \frac{d B}{d x} E_{3}\left(\tau^{c}\right)\left[1-\frac{E_{3}\left(\tau^{c}+\tau_{i}^{\ell}\right)}{E_{3}\left(\tau^{c}\right)}\right]\right\} d x,
$$

or

$$
R_{\lambda}(\mu)=\frac{2}{F_{T}^{c}\left(0, \lambda_{m}\right)} \int_{-\infty}^{+\infty} \frac{d B}{d x} E_{3}\left(\tau^{c}\right)\left[1-\sum_{i=1}^{N} \frac{a_{i} E_{3}\left(\tau^{c}+\tau_{i}^{\ell}\right.}{E_{3}\left(\tau^{c}\right)}\right] d x .
$$

If the macroturbulent cells are assumed to produce a velocity dispersion function, the expression in the bracket may be replaced by a weighted mean for the line optical depth (Evans, 1971), so that the expression for the line depth becomes
$R_{\lambda}(\mu)=\frac{2}{F_{T}^{c}\left(0, \lambda_{m}\right)} \int_{-\infty}^{+\infty} \frac{d B}{d x} E_{3}\left(\tau^{c}\right)\left[1-\frac{E_{3}\left(\tau^{c}+\sum_{i=1}^{N} a_{i} \tau_{i}^{l}\right.}{E_{3}\left(\tau^{c}\right)}\right] d x$.

The Metal Absorption Coefficient

For the computation of the metal lines, only broadening mechanisms giving rise to Gaussian profiles or Lorentz profiles are included. In addition to the thermal Doppler broadening the absorption coefficient includes natural, Stark, van der Waals, and microturbulence broadening. Magnetic interactions have been neglected as well as rotational broadening although macroturbulence broadening could be made to simulate the latter effect. The profile of a line that results from a thermal Doppler effect is a Gaussian profile while that from natural or pressure broadening is a dispersion profile. Combination of these two mechanisms results from the convolution of the two profiles. Considering only Doppler broadening, the random thermal agitation in a stellar atmosphere is increased by any microturbulence, and the most probable velocity of the atoms is given by

$$
\begin{equation*}
v_{\mathrm{mp}}=\sqrt{\varepsilon_{\text {th }}^{2}+\varepsilon_{\text {turb }}^{2}}, \tag{3-22}
\end{equation*}
$$

where

$$
\begin{aligned}
\varepsilon_{\text {th }} & =\text { the most probably thermal velocity }, \\
& =\sqrt{2 \mathrm{KT} / \mathrm{m}}=\sqrt{2 \mathrm{RT} / \mu_{i}}=\sqrt{83.83 /\left(\mu_{i} \theta\right)} .
\end{aligned}
$$

```
Eturb. = the most probable velocity of the micro- turbulence.
```

The $1 / \mathrm{e}$ width of the resulting Gaussian profile is given by the Doppler width

$$
\begin{equation*}
\Delta \lambda_{\mathrm{D}}=\frac{\lambda}{\mathrm{c}} v_{\mathrm{mp}}=\frac{\lambda}{c} \sqrt{\left(\frac{2 K T}{m}\right)+\varepsilon_{\text {turb }}^{2}} \tag{3-23}
\end{equation*}
$$

Since the convolution of two Lorentz profiles again yields a Lorentz proflle whose width is equal to the sum of the widths of the convoluted functions, the half-width of the dispersion profile for the other broadening mechanism is just the sum of the half-widths due to natural, Stark and van der Waals broadening,

$$
\begin{equation*}
\Gamma_{(x)}=\Gamma_{\text {rad. }}+\Gamma_{\text {Stark }}+\Gamma_{\text {van der Waals }} \tag{3-24}
\end{equation*}
$$

The radiation damping constant is obtained through classical means while the Stark broadening due to hydrogen and helium as well as van der Waals broadening by ions and electrons are approximated using the Lindholm theory as a basis (Evans, 1966). The line absorption coefficient per hydrogen particle is computed from the absorption coefficient per absorbing particle,

$$
\begin{equation*}
K^{\ell}=\left(\frac{n_{n, m}}{N_{H}}\right) K_{\text {atomic }} \tag{3-25}
\end{equation*}
$$

where the quantity in parenthesis represents the number of absorbing particles per hydrogen particle. For the case of doublets, the blending is calculated by adding the absorption coefficients for each line. More
of the details of the calculations of the metal line absorption coefficient can be found in Appendix B.

The Theoretical Curve of Growth

The curve of growth method is a concept representing the behavior of the equivalent width of a stellar spectral line as the number of effective absorbers in the atmosphere changes. However, for computational ease, the theoretical curve of growth will be defined as a plot of the saturated equivalent width as a function of the unsaturated equivalent width (Aller, E1ste, and Jugaku, 1957; Aller 1960; Aller 1963). The unsaturated equivalent width is defined as

$$
\begin{equation*}
\left(\frac{\mathrm{W}}{\lambda}\right)^{*}=\int_{-\infty}^{+\infty} \frac{\mathrm{K}^{\ell c}}{K_{0}}\left(\frac{\tau_{0}}{\operatorname{Mod}}\right)\left(1-10^{-\chi_{\lambda m}^{\theta}}\right) G_{\lambda \mathrm{m}} \mathrm{dx}, \tag{3-26}
\end{equation*}
$$

where $K^{\ell c}=$ the absorption coefficient at the IIne center, $G_{\lambda m}=$ the flux weight function (see Appendix B).

The flux weight function has the advantage that it depends only upon the model atmosphere chosen and so can be computed once and for all for the various wavelength regions covering the observed spectrum. For weak lines the logarithm of the saturated equivalent width is proportional to the logarithm of the unsaturated width so that it is more convenient to plot these quantities for the theoretical curve of growth. The relative abundance can be removed from Equation (3-26) to get

$$
\begin{equation*}
\log (w / \lambda)^{*}=\log \varepsilon+\log C_{\lambda} \tag{3-27}
\end{equation*}
$$

where

$$
\log c_{\lambda}=\log \left[\int_{-\infty}^{\infty} \frac{K^{\ell c}}{K_{0}^{c}} \cdot \frac{{ }_{0}}{\operatorname{Mod}} \frac{1}{\varepsilon}\left(1-10^{-x_{\lambda m}}{ }^{\theta}\right) G_{\lambda m} d x\right],(3-28)
$$

and $\quad \varepsilon_{i}=$ the abundance of the element relative to hydrogen $=$ $\mathrm{N} / \mathrm{N}(\mathrm{H})$.

The saturated equivalent width describes the total absorption of a spectral line and is represented by the area of a strip which removes the same amount of energy from the continuum as the spectral line. In logarithmic form this can be expressed in terms of the line depth as,

$$
\begin{equation*}
\log \left(w_{\|} \lambda\right)=\log \left[\frac{1}{\lambda} \int_{0}^{+\infty} R_{\lambda}(\mu) d \lambda,\right. \tag{3-29}
\end{equation*}
$$

where $R_{\lambda}(\mu)$ is defined in Equation (3-21).

The Metal Line Program

For the analysis of the absorption lines, both the line profile and the curve of growth are calculated with the aid of a computer program devised by Evans $(1966,1971)$. Details of the computations can be found in Appendix B. For each observed line, the program calculates from three to nine points on the curve of growth. The abundance for the observed equivalent width is then estimated from this curve of growth and the result is used to calculate the line depth and the median point of the line depth integrand for a range of different values of $\Delta \lambda$. In addition to this it also supplies the optical depth in the line, the damping parameters, the Doppler width at the median point, the halfwidth of the line profile, a plot of the theoretical line profile, and the model atmosphere and turbulence model chosen for the analysis. For
a model atmosphere consisting of from one to ten elements, the program can compute, element by element, equivalent width and line profiles for as many lines as are needed for the analysis.

Chemical Abundances and the
 Empirical Curve of Growth

Provided with an equivalent width, a set of oscillator strengths and an atmospheric model, the stellar abundance of an element can be obtained. The process is basically an interpolation between the observed equivalent width and the theoretically calculated value. From Equation (3-26), it is readily apparent that it is advantageous to define an empirical curve of growth as a plot of the logarithm of the saturated equivalent width as the ordinate and the quantity

$$
\begin{equation*}
\log c_{\lambda}=\log g_{r, s} f_{r, s} \lambda+\log L_{\lambda}^{*}\left(\chi_{r, s}\right) \tag{3-30}
\end{equation*}
$$

as the abscissa. Equation (3-30) is obtained directly from Equation (B-22) utilizing the fact that $\mathrm{L}_{\mathrm{r}, \mathrm{s}}(x, \lambda)$ is independent of the variable of integration and the definition of $\log L_{\lambda}^{*}$,
$\log L_{\lambda}^{*}\left(X_{r, s}\right) \equiv \log \sqrt{\frac{\pi}{c}} \int_{-\infty}^{\infty}\left(\frac{\Delta \lambda_{D}}{\lambda}\right) M(x) N_{i}(x)\left(1-10^{-x_{\lambda m}}\right) d x+\Delta x \theta$.

The empirical curve of growth can be fitted to the theoretical curve of growth by a horizontal translation. The amount of displacement then yields the relative abundance, $\log \varepsilon=\log \mathrm{N} / \mathrm{N}(\mathrm{H})$. Each point on the theoretical curve of growth represents an observed spectral line; and each line has its own theoretical curve of growth; consequently, its own abundance. Because in practice the curves of growth for many lines
in certain spectral regions have the same shape, it is of use to define a mean abundance, derived from a mean curve of growth. The mean curve of growth is obtained by fitting the empirical curve of growth for all the observed lines falling with a wavelength region to the theoretical curve of growth for a representative line of the group. For a solartype star, this procedure can be applied over wavelength regions of hundreds of angstroms. To aid the investigation, the abundance determination for an element was automatically produced by a computer program (Evans, 1971).

The Abundance Program

Basically an adaptation of the metal line program, the abundance program will compute, for a single theoretical curve of growth, the abundance of from one to fifty individual lines. A turbulence model incorporating both line broadening effects due to macroturbulent and microturbulent motions can be varied at will to alter the abundance results. The program supplies the abscissa for the empirical curve of growth from which the empirical curve of growth can be constructed for the evaluation of the mean abundance. In addition a statistical weighting factor may be utilized for the computation of a mean weighted abundance for an element. The details of the calculation may be found in Appendix B.

THE OBSERVATIONAL DATA

Spectrograms and Tracings

The spectrograms used for the detailed analysis of Theta Ursae Majoris were obtained by Dr, K. O. Wright by exposing photographic plates at the cassegrain focus of the seventy-two inch telescope at Dominion Astrophysical Observatory, Victoria, Canada. A compromise focus was used, since the field of the grating was not flat over the entire plate, (K. O. Wright 1971) which produced well-focused lines at approximately $\lambda 5900 \AA^{\circ}$.

For the Littrow spectrograph with Wood grating, second order spectra in the range $\lambda \lambda 4800-6750$ were produced with a dispersion of approximately $7.5 \AA / \mathrm{mm}$ and in the third order spectra, between $\lambda \lambda 3750$ 4500, a dispersion of $4.5 \AA / \mathrm{mm}$ was obtained. A Baush and Lomb grating No. 496 was used to gather spectra with a dispersion of $3.2 \stackrel{\circ}{\mathrm{~A}} / \mathrm{mm}$. Finally, a three-prism spectrograph yielded a dispersion of from 5 \AA / mm to $15 \AA / \mathrm{mm}$ over the observed spectral region.

Microphotometer and intensitometer tracings were obtained through Dr。 Leon W. Schroeder, Department of Physics, Oklahoma State University. The magnification used for all the tracings was 200.

The Instrumental Profile

An assessment of the effect which the instrumental profile had upon
the equivalent widths and line profiles for the various spectrographs utilized for this study is based upon data published by Anne B. Underhill (1954) in her analysis of 31 Cygani. The instrumental profile of the spectrograph (see Figure 1) was estimated through analysis of the mean profile of a number of iron lines in an iron arc comparison spectrum.

The Litt GIII BL84 spectrograph is quite similar to that of the Wood grating and consequently was assigned to be the instrumental profile for the spectrograph used in this study. Both of the Bausch and Lomb gratings have 1ower glost intensities (Wright, 1971) than the BL 84 grating and would show a narrower instrumental profile.

Instrumental broadening can be described by a convolution of the true profile with the profile of the apparatus to yield the observed profile. If Voight functions are used to approximate the intensity distributions of all profiles, then the true profile may be extracted. The details of the computation are found in Appendix C. A computer program, Table XXVI , Appendix C, was developed to perform all the necessary calculations for the computation of the equivalent widths and halfwidths for as many spectral lines as are necessary. The Voight parameters for the apparatus were obtained from Figure 1 and are 1 isted in Table III. Columns 1, 2, and 3 lists the width in milliangstoms of the profile at half the central-intensity, one-tenth the central-intensity and the ratio of these two values, respectively. The last 6 columns given the Voight parameters obtained from Table XXVI, Appendix C.

For data taken with the Bausch and Lomb Gratings No. 496 and 169, a narrower profile was assumed, and the corresponding reduced apparatus function was derived from the Litt GIII BL84 spectrograph by a simple

TABLE III

THE VOIGHT PARAMETERS FOR THE APPARATUS PROFILE USED FOR θ U Ma

Spectrograph	Voight Parametèrs								
	h	- ${ }^{0.1}$	$\mathrm{b}_{0.1} / \mathrm{h}$	β_{1} / h	$\beta_{2}{ }^{2} / h^{2}$	α	P	β_{1}	$\beta_{2}{ }^{2}$
Prism	164	381	2.32	0.235	0.190	0.505	1.295	38.6	5110
Wood Grating - 2nd Order	164	381	2.32	0.235	0.190	0.505	1.295	38.6	5110
Wood Grating - 3rd Order	100	232	2.32	0.235	0.190	0.505	1.295	23.5	1900
Bausch and Lomb - 2nd Order	100	232	2.32	0.235	0.190	0.505	1.295	23.5	1900

Figure 1. The Instrumental Profile for the Littrow GIII BL84 Spectrograph
scaling procedure. Since the Wood grating in the third order produces spectra having a dispersion of $4.5 \AA / \mathrm{mm}$, it was also assigned Voight parameters of the reduced apparatus function.

Equivalent Widths

Equivalent widths of spectral lines covering the region $\lambda \lambda 3900-$ $6700 \AA$ were taken from the curve of growth analyses of Mangold (1968) and Peebles (1964). The equivalent widths reported were not corrected
for instrumental effects. The selection of the lines was based upon the effects of blending, the availability of absolute f-values, and the number of lines available for a particular element. This restricted the observed equivalent widths primarily to lines of moderate strength. For the detailed analysis of the atmosphere of Theta Ursae Majoris, a number of weak lines are required to properly assess the effects of turbulent motion. So the turbulence analysis was supplemented by the determination of approximately one hundred iron lines in both the neutral and the first stage of ionization.

In measuring the equivalent width for each line, a profile was drawn directly upon the spectrogram tracing. Effects due to blending and the development of wings was introduced when necessary. The area enclosed by the profile was obtained using a planimeter and converted to square inches by multiplication with the planimeter conversion factor. When this result was multiplied by the dispersion of the spectrum and divided by the height of the continuum at the line center, the equivalent width of the observed line was obtained in milli-Angstrom units. Table IV shows the results of the measurement of the equivalent widths for the weak lines of neutral and singly ionized iron.

Column 1 lists the wavelength in Angstrom units taken from the Revised Multiplet Table (RMT) of Moore (1959).

Column 2 indicates the RMT multiplet number.
Column 3 gives the excitation potential in electron volts of the lower level of the transition.

Column 4 lists the number of profiles observed for the line.
Column 5 lists the logarithm of the ratio of equivalent width divided by the wavelength.

TABLE IV
LINE INTENSITIES FOR NEUTRAL AND SINGLY
IONIZED IRON IN THETA URSAE MAJORIS

Element	λ	RMT	χ_{ℓ}	No. of Meas.	Log w/ λ	$\operatorname{Logh} h$
Fe I	4005.24	43	1.55	3	-4.14	-4.04
Fe I	4009.72	72	2.21	3	-4.59	-4.25
	4045.82	43	1.48	4	-3.80	-3.76
	4062.45	359	2.83	3	-4.62	-4.21
Fe I	4063.60	43	1.55	4	-4.02	-4.00
Fe I	4071.74	43	1.60	4	-4.10	-4.00
Fe I	4107.49	276	2.82	2	-4.68	-4.14
Fe I	4132.68	357	2.82	1	-4.53	-4.20
Fe I	4143.87	43	1.55	2	-4.22	-3.98
Fe I	4147.67	42	1.48	1	-4.60	-4.19
Fe I	4154.50	355	2.82	1	-4.53	-4.17
Fe I	4168.95	694	3.40	3	-5.07	-4.40
Fe I	4175.64	354	2.83	3	-4.61	-4.14
Fe I	4181.76	354	2.82	3	-4.43	-4.12
Fe I	4187.04	152	2.44	3	-4.51	-4.18
Fe I	4191.44	152	2.46	2	-4.45	-4.17
Fe I	4199.10	522	3.03	3	-4.50	-4.11
Fe I	4199.94	3	0.09	2	-4.89	-4.44
Fe I	4202.03	42	1.48	3	-4.26	-4.23
Fe I	4206.70	3	0.05	3	-4.56	-4.08
Fe I	4216.19	3	0.00	3	-4.49	-4.11
Fe I	4219.36	800	3.56	3	-4.48	-4.16
Fe I	4222.22	152	2.44	3	-4.55	-4.17
Fe I	4227.43	693	3.32	3	-4.32	-4.18
Fe I	4233.61	152	2.48	3	-4.43	-4.14
Fe I	4238.82	693	3.38	3	-4.48	-4.14
Fe I	4247.43	693	3.37	3	-4.44	-4.13
Fe I	4240.23	2	3.06	3	-4.66	-4.20
Fe I	4258.62	351	2.82	3	-5.05	-4.53
Fe I	4260.48	152	2.40	2	-4.22	-4.14
Fe I	4264.74	993	3.94	2	-5.11	-4.46
Fe I	4265.26	993	3.91	2	-5.12	-4.57
Fe I	4271.77	42	2.44	3	-4.18	-4.11
Fe I	4282.41	71	2.17	4	-4.47	-4.11
Fe I	4291.47	3	0.05	4	-4.68	-4.16
Fe I	4325.77	942	1.60	4	-4.04	-4.02
Fe I	4327.92	597	3.03	3	-4.99	-4.46
Fe I	4369.77	518	3.03	5	-4.52	-4.12
Fe I	4375.93	2	0.0	4	-4.50	-4.15
Fe I	4383.55	41	1.48	4	-4.07	-4.02
Fe I	4389.24	2	0.05	4	-5.00	-4.26
Fe I	4404.75	41	1.55	4	-4.11	-4.03
Fe I	4915.13	41	1.60	4	-4.21	-4.10
Fe I	4430.62	68	2.21	4	-4.57	-4.15
Fe I	4442.34	43	2.19	3	-4.51	-4.14

TABLE IV (Continued)

Element	λ	RMT	χ_{ℓ}	No. of Meas,	Log w/ λ	Log h / λ
Fe I	4443.20	350	2.85	3	-4.57	-4.13
Fe I	4447.72	68	2.21	3	-4.52	-4.18
Fe I	4454.38	350	2.82	3	-4.61	-4.19
Fe I	4489.74	2	0.12	3	-4.60	-4.14
Fe I	4531.15	39	1.48	1	-4.14	-3.86
Fe I	4602.94	39	1.48	2	-4.59	-4.12
Fe I	4871.32	318	2.85	4	-4.40	-3.95
Fe I	5006.13	318	2.83	1	-4.54	-4.15
Fe I	5051.64	16	0.91	2	-4:51	-4.02
Fe I	5068,77	383	2.93	2	-4.64	-4.06
Fe I	5083.34	16	0.95	2	-4.63	-4.03
Fe I	5110.41	1	0.0	2	-4.50	-4.00
Fe I	5133.69	1092	4.16	3	-4.56	-4.05
Fe I	5192.35	383	2.99	4	-4.55	-4.08
Fe I	5194.94	36	1.55	4	-4.69	-4.08
Fe I	5216.28	36	1.60	4	-4.63	-4.05
Fe I	5225.53	1	0.11	1	-4.95	-4.00
Fe I	5266.56	383	2.99	4	-4.57	-4.09
Fe I	5281.80	383.	3.03	4	-4.70	-4.11
Fe I	5283.63	553	3.24	3	-4.52	-4.20
Fe I	5307.37	36	1.60	4	-4.85	-4.10
Fe I	5339.94	553	3.26	4	-4.72	-4.05
Fe I	5364.87	1146	4.44	3	-4.77	-4.18
Fe I	5367.47	1146	4.41	3	-4.75	-4.12
Fe I	5369.97	1146	4.35	3	-4.66	-4.23
Fe I	5383.37	1146	4.29	3	-4.60	-3.99
Fe I	5393.17	553	3.23	3	-4.69	-4.05
Fe I	5397.13	15	0.91	3	-4.50	-3.97
Fe I	5405.78	15	0.99	3	-4.51	-4.37
Fe I	5410.91	1165	4.4 .5	3	-4.70	-4.04
Fe I	5424.07	1146	4.32	3	-4.54	-3.95
Fe I	5429.70	15	0.95	3	-4.49	-4.25
Fe I	5434.53	15	1.01	3	-4.53.	-3.93
Fe I	5445.05	1156	4,37	3	-4.72	-4.00
Fe I	5497.52	15	1.01	2	-4.50	-3.86
Fe I	5501.47	15	0.95	2	-4.58	-3.89
Fe I	5506.78	15	0.99	1	-4.55	-3.92
Fe I	5569.63	686	3.42	1	-4.65	-3.92.
Fe I	5572.85	686	3.40	1	-4.58	-3.86
Fe I	5576.10	686	3.43	1	-4.81	-4.06
Fe I	5562.99	1107	4.19	1	-4.71	-4.12
$\mathrm{Fe} \cdot \mathrm{I}$	5976:80	959	3.93	1	-5.00	-4.30
Fe I	6003.08	959	3.86	1	-4.97	-4.33
Fe I	6024.07	1178	4.53	1	-4.90	-4.24
Fe I	6065.53	207	2.60	1	-4.74	-4.16
Fe I	6055.99	1259	4.71	1	-5.08	-4.32
Fe I	6137.70	207	2.58	1	-4.73	-4.18
Fe I	6213:40	62	2.21	1	-4.95	-4.37

TABLE IV (Concluded)

Element	λ	RMT	χ_{ℓ}	No. of Meas.	Log w/ λ	Log h / λ
Fe I	6230.73	207	2.25	2	-4.67	-4.10
Fe I	6246.33	816	3.59	2	-4.91	-4.23
Fe I	6252.56	169	2.39	2	-4.76	-4.12
Fe I	6265.14	62	2.17	2	-4.99	-4.22
Fe I	6301.54	816	3.64	2	-4.79	-4.19
Fe I	6318.02	168	2.44	2	-4.90	-4.21
Fe I	6393.61	168	2.42	1	-4.74	-4.09
Fe I	6411.66	816	3.64	1	-4.71	-4.04
Fe I	6421.36	111	2.27	1	-4.84	-4.17
Fe I	6494.99	168	2.39	1	-4.70	-4.14
Fe I	6430.85	62	2.17	1	-4.84	-4.19
Fe II	4128.74	27	2.58	2	-4.92	-4.39
Fe II	4178.86	28	2.57	2	-4.76	-4.16
Fe II.	4273.32	27	2.69	3	-4.65	-4.15
Fe II	4303.17	27	2.70	3	-4.64	-4.23
Fe II	4369.40	28	2.77	2	-4.95	-4.29
Fe II	4576.33	38	2.85	3	-4.61	-4.06
Fe II	4620.51	38	2.82	1	-4.86	-4.01
Fe II	5197.57	49	3.22	4	-4.57	-4.13
Fe II	5234.62	49	3.21	3	-4.64	-4.17
Fe II	5264.80	48	3.22	2	-4.94	-4.29
Fe II	5284.09	41	2.88	2	-4.88	-4.19
Fe II	5325.56	49	3.21	3	-4.95	-4.24
Fe II	5362.86	48	3.19	4	-4.73	-4.03
Fe II	5414.09	48	3.21	1	-5.29	-4.23
Fe II	5425.27	49	3.19	1	-4.98	-4.01
Fe II	6247.56	74	3.87	2	-4.94	-4.24
Fe II	6432.65	40	2.88	1	-5.00	-4.20
Fe II	6456.38	74	3.89	1	-4.65	-4.05

Column 6 gives the logarithm of the ratio of the halfwidth to the wavelength of the transition.

The equivalent widths measured in this study were eventually corrected for instrumental effects using the method of Voight functions. However, the nature of the correction produces only secondary changes in the equivalent widths while major changes occurs in the halfwidth of the profile. Therefore, it was not found advantageous to correct the equivalent width data of Mangold and Peebles for this broadening phenomena.

Line Profiles

Line profiles of neutral and singly ionized iron were obtained from the profiles constructed for the measurement of the equivalent widths. The line depth was measured at representative distances from the line center for those profiles which were later to be fitted with a theoretical profile, calculated on the basis of a postulated model of the atmosphere. Table V indicates the data from these measurements. In addition, the requirements of the instrumental broadening program made it necessary to measure the width of the profile at certain depths. In Table VI are reproduced the data used for the assessment of the true profile from the observed one. Table VI also gives the halfwidths of the iron lines utilized for the macroturbulence analysis.

Column 1 lists the wavelength given by Moore's (1959) Revised Multiplet Table (RMT).

Column 2 gives the central depth of the line in centimeters.
Column 3 lists the halfwidth of the line in centimeters.
Column 4 gives the breadth in centimeters of the observed line at one tenth of the maximum intensity.

TABLE V
OBSERVED LINE PROFILES DATA FOR Fe I AND Fe II IN THETA URSAE MAJORIS

$\begin{gathered} \mathrm{Fe} \mathrm{I} \\ \lambda 4199.10 \end{gathered}$		$\begin{gathered} \mathrm{Fe} \mathrm{I} \\ \lambda 4202.03 \end{gathered}$		$\begin{gathered} \mathrm{Fe} \mathrm{I} \\ \lambda 4206.70 \end{gathered}$		$\begin{gathered} \text { Fe I } \\ \lambda 4219.36 \end{gathered}$		$\begin{gathered} \text { Fe I } \\ \lambda 4736.78 \end{gathered}$	
- ふ		否		○		恳		－感	
0	0.468	0	0.477	0	0.339	0	0.424	0	0.338
0.045	0.431	0.059	0.426	0.044	0.320	0.044	0.408	0.046	0.297
0.067	0.381	0.118	0.352	0.089	0.260	0.067	0.371	0.092	0.259
0.089	0.320	0.148	0.307	0.133	0.185	0.089	0.304	0.137	0.218
0.111	0.266	0.177	0.255	0.178	0.115	0.111	0.251	0.183	0.171
0.133	0.202	0.207	0.198	0.267	0.032	0.133	0.173	$0.274=$	0.087
0.156	0.140	0.236	0.156	0.356	0.009	0.177	0.058	0.366	0.028
0.178	0.085	0.296	0.100	0.462	0	0.310	0.013		
0.200	0.048	0.355	0.068			0.421	0		
0.267	0.020	0.502	0.033						
0.334	0.009	0.709	0	\cdots					
0.423	0								

TABLE V（Concluded）

$\begin{gathered} \mathrm{Fe} \mathrm{I} \\ \lambda 4890.76 \end{gathered}$		$\begin{gathered} \mathrm{Fe} \mathrm{I} \\ \lambda 5434.53 \end{gathered}$		$\begin{gathered} \mathrm{Fe} \mathrm{I} \\ \lambda 5586.76 \end{gathered}$		$\begin{gathered} \text { Fe II } \\ \lambda 4122.64 \end{gathered}$		$\begin{gathered} \text { Fe II } \\ \lambda 4178.86 \end{gathered}$		$\begin{gathered} \text { Fe II } \\ \lambda 4731.44 \end{gathered}$		$\begin{gathered} \text { Fe II } \\ \lambda 5414.09 \end{gathered}$		$\begin{gathered} \text { Fe II } \\ \lambda 5425.27 \end{gathered}$	
$\stackrel{\text { - }}{\substack{\mathrm{S}}}$	号茄莒	- ơ-		ơ্ট		-岀		- - 杂		-ভ্ভ		o			号薄
0	0.359	0	0.258	0	0.220	0	0.347	0	0.323	0	0.292	0	0.092	0	0.140
0.091	0.330	0.091	0.237	0.243	0.180	0.059	0.316	0.022	0.307	0.046	0.268	0.091	0.082	0.045	0.124
0.136	0.276	0.136	0.202	0.364	0.138	0.119	0.261	0.044	0.288	0.092	0.234	0.136	0.069	0.091	0.108
0.227	0.204	0.182	0.176	0.486	0.089	0.179	0.200	0.066	0.266	0.183	0.185	0.182	0.032	0.136	0.094
0.272	0.134	0.272	0.122	0.607	0.043	0.239	0.117	0.089	0.228	0.274	0.124	0.227	0.016	0.182	0.080
0.317	0.097	0.363	0.061	0.728	0.016	0.298	0.053	0.133	0.146	0.320	0.075	0.345	0	0.227	0.061
0.408	0.049	0.454	0.029	0.850	0	0.388	0	0.156	0.083	0.366	0.045			0.272	0.043
0.544	0.022	0.635	0.007					0.201	0.025	0.457	0			0.318	0.023
0.862	0	0.771	0					0.290	0					0.454	0

TABLE VI

INSTRUMENTAL BROADENING DATA FOR OBSERVED LINES OF Fe I AND Fe II

Element	λ	Co	Ho	B	He	Disp.
Fe I	4005.25	4.40	2.20	4.30	7.00	0.4616
Fe I	4009.71	8.57	1.35	3.10	17.31	0.4576
	4009.71	3.13	1.32	2.62	7.08	0.4590
	4009.71	4.00	0.85	1.90	12.40	0.6042
Fe I	4045.82	6.60	2.45	5.65	8.10	0.4038
Fe I	4045.82	8.50	3.15	6.65	12.40	0.6017
Fe I	4062.45	7.45	1.48	3.02	16.60	0.4548
Fe I	4062.45	3.75	1.28	2.80	8.68	0.4610
Fe I	4062.45	3.14	1.08	2.32	12.24	0.6005
Fe I	4063.60	6.40	2.30	5.60	8.72	0.4062
Fe I	4063.60	7.00	2.40	5.00	12.30	0.6004
Fe I	4071.74	6.42	2.40	5.20	9.20	0.4067
Fe I	4071.74	6.70	2.20	5.00	12.30	0.5998
Fe I	4107.49	2.30	1.38	2.46	10.10	0.5974
Fe I	4143.87	5.80	2.00	3.75	12.05	0.5948
Fe I	4168.95	3.90	1.20	2.45	23.00	0.4470
Fe I	4175.64	3.10	1.42	3.00	11.33	0.5974
Fe I	4175.64	7.70	1.58	3.88	22.60	0.4465
Fe I	4181.76	4.60	1.38	3.15	11.23	0.5922
Fe I	4181.76	11.20	1.60	3.35	22.15	0.4461
Fe I	4187.04	3.90	1.02	2.20	11.18	0.5918
Fe I	4187.04	10.20	1.44	2.95	21.70	0.4457
Fe I	4199.10	3.70	1.70	3.34	11.15	0.5910
Fe I	4199.10	9.70	1.42	3.43	20.60	0.4448
Fe I	4199.94	4.40	1.12	2.22	20.60	0.4448
Fe I	4202.03	11.50	1.70	4.00	20.40	0.4446
Fe I	4206.70	3.48	1.48	3.02	11.18	0.5906
Fe I	4206.70	6.80	1.68	3.50	20.00	0.4443
	4216.19	7.40	1.50	3.02	19.48	0.4436
Fe I	4216.19	5.20	1.72	3.58	14.19	0.4451
Fe I	4227.43	7.90	2.05	3.55	14.30	0.4441
Fe I	4227.43	11.20	1.80	3.45	19.50	0.4428
Fe I	4258.63	3.12	1.18	2.25	19.40	0.4406
Fe I	4258.63	2.50	1.00	2.05	14.21	0.4411
Fe I	4260.48	8.45	2.30	3.70	14.25	0.4409
Fe I	4260.48	12.00	2.00	4.00	19.45	0.4405
Fe I	4264.73	2.62	1.30	3.50	19.40	0.4402
Fe I	4264.73	1.80	1.64	3.05	14.20	0.4405
Fe I	4265.27	3.70	0.96	2.20	19.40	0.4401
Fe I	4265.27	2.52	1.02	2.15	14.20	0.4404
Fe I	4271.76	13.15	2.10	4.00	19.30	0.4396
Fe I	4271.76	9.50	2.20	3.95	14.20	0.4398
Fe I	4276.69	2.30	0.52	1.22	14.15	0.4393
Fe I	4276.69	1.40	0.52	1.12	9.10	0.5808
Fe I	4325.77	5.45	2.20	4.88	7.80	0.5780

TABLE VI (Continued)

Element	λ	Co	Ho	B	He	Disp.
Fe I	4325.77	8.40	2.40	4.85	12.10	0.4347
Fe I	4327.90	2.41	1.13	2.25	12.02	0.4344
Fe I	4327.90	2.08	0.85	1.65	7.78	0.5779
	4369.40	2.91	1.08	2.14	7.00	0.5755
Fe I	4383.57	4.85	2.00	3.84	6.65	0.5748
Fe I	4404.75	15.00	1.50	3.30	25.90	0.9314
Fe I	4404.75	4.20	1.65	3.45	6.20	0.5736
Fe I	4415.13	9.40	2.30	4.80	16.20	0.4269
Fe I	4415.65	3.45	1.70	3.45	5.95	0.5729
Fe I	4531.15	11.70	1.80	3.40	26.20	0.9283
	4871.32	9.00	1.30	2.60	23.60	0.9080
Fe I	5250.65	2.00	0.75	1.43	9.60	0.8998
Fe I	5307.37	1.80	0.64	1.45	9.50	0.8980
Fe I	5364.87	2.28	0.79	1.76	9.10	0.8961
Fe I	5367.47	2.32	0.50	1.24	9.07	0.8960
Fe I	5369.97	1.89	1.20	2.17	9.10	0.8960
Fe I	5393.17	2.08	0.84	1.80	9.07	0.8952
Fe I	5397.31	2.74	1.54	3.48	9.02	0.8951
Fe I	5405.78	3.34	0.83	2.30	8.95	0.8948
Fe I	5410.91	2.12	0.82	1.58	8.88	0.8946
Fe I	5429.70	3.20	1.00	2.30	8.80	0.8940
Fe I	5445.05	1.70	1.30	2.50	8.75	0.8936
Fe I	5976.72	2.02	1.00	2.22	15.20	0.8750
Fe I	6003.08	2.15	0.95	2.18	15.00	0.8750
Fe I	6024.11	2.90	0.98	2.10	14.60	0.8750
Fe I	6056.10	1.70	0.95	2.00	13.60	0.8750
Fe I	6065.53	2.95	1.20	2.55	13.70	0.8750
Fe I	6137.81	3.50	1.10	2.52	13.70	0.8750
Fe I	6213.40	2.00	0.90	2.02	11.70	0.8750
Fe I	6301.54	2.60	1.22	2.76	9.95	0.8750
Fe I	6393.61	2.20	1.50	2.90	10.16	0.8742
	6400.03	2.70	1.60	2.80	10.08	0.8740
Fe I	6430.84	2.10	1.10	2.22	9.86	0.8734
Fe I	6432.58	1.50	1.13	2.30	9.86	0.8732
Fe I	6421.41	2.00	1.25	2.60	9.90	0.8736
Fe I	6495.08	2.52	1.30	2.80	9.72	0.8720
Fe II	4128.74	3.00	0.84	1.95	12.04	0.5959
Fe II	4178.86	3.80	1.10	2.90	11.30	0.5924
Fe II	4178.86	8.05	1.40	3.42	22.30	0.4463
Fe II	4273.32	6.30	1.54	3.15	19.25	0.4396
Fe II	4273.32	2.90	1.30	2.68	9.22	0.5810
Fe II	4303.17	7.40	1.62	3.55	18.26	0.4375
Fe II	4303.17	5.34	1.60	3.54	13.24	0.4368
Fe II	4303.17	3.30	0.90	1.85	8.20	0.5793
Fe II	4369.40	2.04	0.70	1.55	7.00	0.5755
Fe II	4576.33	6.05	0.75	1.56	23.25	1.2495
Fe II	4576.33	6.88	1.15	2.58	26.10	0.9227
Fe II	4576.33	7.45	0.90	2.00	26.22	0.9253

TABLE VI (Concluded)

Element	λ	Co	Ho	B	Hc	Disp.
Fe II	4620.51	4.42	0.82	1.90	26.15	0.9206
Fe II	4620.51	5.92	1.20	2.40	26.28	0.9221
Fe II	5132.67	2.10	0.60	1.50	16.35	0.9000
Fe II	5197.57	2.50	1.20	2.44	9.70	0.9015
Fe II	5734.62	2.20	0.75	1.52	7.62	0.9000
Fe II	5234.62	4.80	0.98	2.00	17.90	0.9212
Fe II	5264.81	1.64	0.50	1.10	9.48	0.8993
Fe II	5284.09	1.48	0.70	1.50	7.20	0.8905
Fe II	5325.56	2.52	0.80	1.70	17.80	0.9150
Fe II	5362.86	1.70	0.70	1.68	9.50	2.0710
Fe II	5362.86	3.95	1.50	2.95	17.76	0.9124
Fe II	5414.09	1.60	0.90	1.85	17.60	0.989
Fe II	5425.27	2.30	1.18	2.58	17.58	0.9081
Fe II	5425.27	1.60	0.42	1.30	8.80	0.8962
Fe II	6247.56	2.30	1.05	2.13	11.00	0.8585
Fe II	6432.65	1.50	1.13	2.30	9.86	0.8732
Fe II	6456.38	2.35	1.70	3.58	10.10	0.8730

Column 5 reproduces the height of the continuum at the line center in centimeters.

Column 6 gives the dispersion in \AA° per inch of the tracing for the transition under consideration.

Assessment of Errors

The sources of error which arise from the spectrophotometric techniques are discussed in some detail by Wright' (1948). Errors due to improper focus, ghosts; calibration of the photographic plate, finite slit width of the microphotometer and the development process can all be important but probably not as much as errors introduced during the reduction of the tracings themselves. The location of the continuum and the treatment of blending effects are probably the most significant factors affecting uncertainty in the equivalent width data. Typically, the uncertainty in the equivalent widths of weak lines (on the order of 20 $\mathrm{mA})$ can be as great as twenty per cent; for moderately strong lines, the error may drop to about ten per cent.

The Physical Constants

Abundances derived from the model atmosphere technique can be no better than the reliability of the system of physical constants used for the analysis. At the present time knowledge of the damping constants and oscillator strengths is still very uncertain. In the last few years the number and reliability of oscillator strength measurements have increased dramatically relieving some of the difficulty in the computation of stellar abundances.

The necessary atomic data, the partition functions, atomic weights,
ionization potentials, etc., were obtained from the results published by Evans (1966) and the damping constants used for this analysis have been discussed elsewhere in this study (see Appendix B).

A number of authors have published results of both theoretically or experimentally determined oscillator strengths and extensive lists have been prepared in biographical form by Glennon and Wiese (1962) and more recently by Miles and Wise (1970). For this study, oscillator strengths were used extensively from the work of Corliss and Tech (1968), Corliss and Bozman (1962), Warner (1967), Warner (1968) and Wiese, Smith, and Miles (1969).

The results of recent investigations have given evidence for an excitation potential dependence in the log gf values reported by Corliss and Bozman (Takens, 1970) and by Corliss and Tech (Wares, Wolnik, and Berthel, 1970; Evans, Weems, and Schroeder, 1970). As a result, correction factors were employed to remove any traces of a systematic error due to the excitation level of the transition.

Wavelengths and Excitation Potentials

The wavelengths for the observed lines in the Spectrum in. Theta Ursae Majoris were identified from Charlotte Moore's tabulation A Multiplet Table of Astrophysical Interest, Revised Edition (1959). In addition, the excitation potential of the lower level of the transition was also obtained from this source.

CHAPTER V

ANALYSIS OF THE OBSERVATIONS

The shape and breadth of the Fraunhofer lines in the spectrum of Theta Ursae Majoris are affected by the various line broadening agents mentioned in Chapter II, For Theta Ursae Majoris, the most important sources arise from non-thermal phenomena such as atmospheric turbulence. The existence of microturbulence can best be determined from the curve of growth. Microturbulence produce an effective Doppler broadening which tends to delay the onset of optical saturation and effects the transition region of curve of growth. Haung and Struve (1960) discuss this effect in some detail in their reviews on atmospheric turbulence. On the other hand, if the scale of the turbulence is large the effect upon the equivalent width is negligible but the line profile will be altered as in stellar rotation.

From the analysis of the profile of a line, Huang and Struve (1954) first developed a method for the separation of these two broadening mechanisms. Through a curve of half-width correlation, a plot of the functional dependence of the half-width of a spectral line upon its equivalent width, they developed a procedure whereby the shift in the vertical and horizontal axis necessary to fit the empirical to the theoretical curve could be combined to derive a value for both large and small scale turbulent effects. Van den Heuvel (1963) and Elste (1967) have employed a similar curve to distinguish between macroturbulence and
microturbulence. However, their approach is to calculate the theoretical relation using a model atmosphere, and so gives a more exact relationship between $\log h / \lambda$ and $\log w / \lambda$ than did Struve and Huang.

The Microturbulence Analysis

Line intensities of approximately one hundred and twenty-five neutral and singly ionized lines of iron were used for the curve of growth analysis. The results have been incorporated into Tables XII and XIII for convenience.

The f-values for neutral iron were taken from the compilation of Corliss and Tech (1968). Since the f-values of Corliss and Tech have been shown to contain a systematic dependence upon the excitation potential (Wares, Wolnik, and Berthe1, 1970; Evans, Weems, and Schroeder, 1970) an attempt was introduced to correct for this uncertainty using the results of Evans, Weems, and Schroeder. For multiplets of Fe I falling within the wavelength region of $\lambda 4200$, the f-values were lowered by 0.5 dex* for those multiplets with X_{ℓ} greater than 2.2 electron volts. Multiplets with X_{ℓ} less than 1.5 electron volts were left unchanged. In the spectral region $\lambda 5800$, multiplets of $F e$ I with X_{ℓ} less than 1.0 electron volts were assigned the Corliss and Tech f-value, while for X_{ℓ} approximately equal to 1.5 ev , the values were reduced by 0.3 dex. For multiplets with excitation potentials exceeding 2.2 electron volts, the f-values have been altered by -0.5 dex. The correction factor for all cases was determined by increasing or decreasing the f-values of all multiplets until the data defined a single curve of growth. The oscil-
*
The notation 0.5 dex corresponds to the quantity $\log x=0.5$.
lator strengths for the Fe II lines were obtained from the results published by Warner (1967, 1968).

The curves of growth for iron are shown in Figure 2, Figure 3, and Figure 4. All curves of growth have been computed for the center of the star's disk. The Fe I lines have been separated into two distinct wavelength regions, $\lambda 5800$ and $\lambda 4200$. The larger symbols indicate equivalent widths determined by Mangold (1968) and the smaller, values obtained in this study. No systematic trend could be established in the equivalent widths corrected for instrumental effects in this study and those established earlier by Mangold as far as the curve of growth is concerned.

In Figure 2, the lower curve represents the curve of growth for $\lambda 4200$ broadened only by the random thermal motion of atoms in the stellar atmosphere. The fact that almost all the data lie above this line indicates an apparent macroturbulent velocity field for Theta Ursae Majoris. The upper curve represents the upper extent of the magnitude of the microturbulent velocity in this star; the curve of growth with a three kilometer per second microturbulent velocity seems to represent the average value over this wavelettgth range. Figure 3 represents the state of affairs around the spectral region $\lambda 5800$. Theoretical curves of growth for $\lambda 5800$. have been calculated for a thermally-broadened line (lower dashed line) and a line incorporating a four kilometer per second microturbulent velocity (upper dashed curve). Again the data suggest that a value closer to three kilometers per second (solid curve) represents the best estimate for all lines in this region of the effect due to small scale eddies. The microturbulent velocity fields used for the computation of the theoretical curves of growth were based upon a thermally homogeneous model independent of the optical depth in the atmos-

Figure 2. The Observed and Theoretical Center-of-the-Disk Curves of Growth for Fines in the Wavelength Region $\lambda 4200$ for Fe I

Figure 3. The Observed and Theoretical Center-of-the-Disk Curves of Growth for Lines in the Wavelength Region $\lambda 5400$ for Fe I

Figure 4. The Observed and Theoretical Center-of-the Disk Curves of Growth for Fe II.
phere. This eliminates any assessment of a possible microturbulent veIocity stratification in the atmosphere and so the microturbulent velocity, as determined from the curve of growth, represents a value averaged over all layers of the atmosphere.

Figure 4 shows all the observed lines of Fe II regardless of the wavelength. A representative line ($\lambda 5414.09$) was chosen for the group and the curve of growth calculated incorporating the results of the Fe I lines. The three observational points, indicated by the symbol x , yielded erroneous values of the abundance and so were weighted independently from the rest of the data. Again, the best fit to the empirical curve was obtained for a three kilometer per second microturbulent velocity.

The Macroturbulence Analysis

In order to assess the contribution of any macroturbulent velocity field, only weak lines of relatively high excitation potential were selected. These lines are relatively insensitive to the temperature and electron pressure and, more important, yield halfwidths extremely sensitive to any line broadening agent present. Moderately strong lines show very little such dependence and are broadened principally by the amount of damping in the wings of the line. All equivalent widths and halfwidths have been corrected prior to the analysis using the method of Voight functions. The data derived from the observations listed in Table VII are plotted in Figure 5. As can be seen, there is relatively 1ittle change in the halfwidth for observed lines with $\log w / \lambda<-4.8$. For the stronger lines the halfwidth increases rapidly with increasing equivalent width. An estimation of the uncertainty involved in the observations of the weakest line is shown by the error bar on the weakest

TABLE VII
CORRECTED HALFWIDTHS AND EQUIVALENT WIDTHS
FOR OBSERVED LINES OF Fe I AND Fe II

Element	λ	RMT	χ_{ℓ}	Log w/ λ	Log h / λ	Log gf
Fe I	4005.25	43	1.55	-4.14	-4.04	-0.09
Fe I	4009.71	72	2.21	-4.52	-4.35	-0.93
Fe I	4045.82	43	1.48	-3.80	-3.76	0.66
Fe I	4062.45	359	2.83	-4.55	-4.34	-0.45
Fe I	4063.60	43	1.55	-4.02	-3.99	+0.44
Fe I	4071.74	43	1.60	-4.10	-3.99	0.37
Fe I	4143.87	43	1.55	-4.22	-3.98	-0.42
Fe I	4168.95	694	3.40	-4.98	-4.40	-1.23
Fe I	4175.64	354.	2.83	-4.53	-4.21	-0.41
Fe I	4181.76	354	2.82	-4.37	-4.21	-0.05
Fe I	4187.04	152	2.44	-4.46	-4.30	-0.33
Fe I	4199.10	522	3.03	-4.42	-4.20	0.34
Fe I	4199.94	3	0.09	-4.93	-4.44	-4.21
Fe I	4202.03	42	1.48	-4.26	-4.23	-0.25
Fe I	4206.70	3	0.05	-4.52	-4.18	-3.42
Fe I	4216.19	3	0.00	-4.52	-4.24	-2.98
Fe I	4227.43	693	3.32	-4.32	-4.18	0.51
Fe I	4258.63	351	2.82	-5.06	-4.53	-1.76
Fe I	4260.48	152	2.39	-4.22	-4.14	0.13
Fe I	4264.73	993	3.94	-4.97	-4.46	-1.06
Fe I	4265.27	993	3.94	-5.02	-4.57	-0.80
Fe I	4271.76	42	2.44	-4.18	-4.11	-0.25
Fe I	4276.69	976	2.69	-4.59	-4.25	-0.88
	4325.77	942	1.60	-4.04	-4.02	0.36
Fe I	4327.90	597	3.27	-4.97	-4.46	-0.48
Fe I	4383.57	41	1.48	-4.07	-4.02	0.51
Fe I	4404.75	41	1.55	-4.11	-4.03	0.25
Fe I	4415.13	41	1.60	-4.20	-4.10	-0.13
Fe I	4415.65	41	1.60	-4.22	-4.11	-0.13
Fe I	4531.15	39	1.48	-4.14	-3.86	-1.57
Fe I	4871.32	318	2.85	-4.36	-4.05	-0.39
Fe I	5307.37	36	1.60	-4.96	-4.48	-2.76
	5364.87	1146	4.43	-4.76	-4.36	0.41
Fe I	5367.47	1146	4.40	-4.92	-4.70	0.49
Fe I	5393.17	553	3.23	-4.80	-4.33	-0.60
Fe I	5397.31	15	0.91	-5.39	-4.57	-1.88
Fe I	5405.78	15	0.99	-4.51	-4.37	-1.75
	5410.91	1165	4.45	-4.84	-4.33	0.54
Fe I	5429.70	15	0.95	-4.49	-4.25	-1.78
Fe I	5445.05	1163	4.37	-4.73	-4.11	0.17
Fe I	5976.72	959	3.93	-5.00	-4.30	-1.03
Fe I	6003.08	959	3.86	-4.97	-4.33	-0.91
Fe I	6024.11	1178	4.53	-4.86	-4.31	0.22
Fe I	6056.10	1259	4.71	-5.08	-4.32	-0.12

TABLE VII (Concluded)

Element	λ	RMT	χ_{ℓ}	Log w / λ	Log h / λ	Log gf
Fe I	6065.53	207	2.60	-4.74	-4. 21	-1.33
Fe I	6137.81	207	2.58	-4.67	-4.26	-1.26
Fe I	6213.40	62	2.21	-4.95	-4.37	-2.45
Fe I	6301.54	816	3.64	-4.63	-4.22	-0.72
Fe I	6393.61	168	2.42	-4.70	-4.12	-1. 60
Fe I	6400.03	207	2.27	-4.78	-4.21	-0.41
Fe I	6430.84	62	2.17	-4.82	-4.27	-1.87
Fe I	6494.99	168	2.39	-4.65	-4.20	-1.16
Fe II	4128.74	27	2.57	-4.79	-4.47	-2.76
Fe II	4178.86	28	2.57	-4.51	-4.34	-2.00
Fe II	4273.32	27	2.69	-4.59	-4.25	-3.51
Fe II	4303.17	27	2.69	-4.48	-4.26	-2.00
Fe II	4369.40	28	2.77	-4.86	-4.64	-2.87
Fe II	4576.33	38	2.83	-4.55	-4.16	-2.22
Fe II	4620.51	38	2.82	-4.71	-4.16	-2.63
Fe II	5197.57	49	3.22	-4.59	-4.12	-2. 23
Fe II	5234.62	49	3.21	-4.71	-4.36	-2.03
Fe II	5264.81	48	3.22	-5.14	-4.62	-2.23
Fe II	5284.09	41	2.88	-4.93	-4.53	-2.42
Fe II	5325.56	49	3.21	-5.02	-4.41	-2.72
Fe II	5362.86	48	3.19	-4.58	-4.04	-1.95
Fe II	5414.09	48	3.29	-5.18	-4.34	-2.75
Fe II	5425.27	49	3.19	-4.90	-4.19	-2.75
Fe II	6247.56	74	3.87	-4.84	-4.34	-1.55
Fe II	6432.65	40	2.88	-4.95	-4.26	-2.73
Fe II	6456.38	74	3.89	-4.58	-4.09	-1.44

Figure 5. The Observed and Theoretical Correlation Between the Halfwidths and the Equivalent Widths for Fe I and Fe II
observational point which represents a 5% error in the measurement of the halfwidth.

The dashed curve on the lower portion of the diagram in Figure 5 shows the theoretically expected relation between the halfwidth and the equivalent width for a line in Theta Ursae Majoris broadened by thermal motions only. Even with the addition of $3 \mathrm{~km} / \mathrm{s}$ microturbulence (middle curve), the halfwidth increases with an increase in the equivalent width for the weak lines. The upper curve (solid line) represents a line which has been broadened by a $3 \mathrm{~km} / \mathrm{s}$ microturbulent velocity coupled with $3.5 \mathrm{~km} / \mathrm{s}$ macroturbulent velocity. This velocity distribution for the macroturbulence was computed assuming the cells creating the disturbance to have a dispersion relationship for the velocity components (see Chapter II). No stratification effects were assumed. The data could have been fit by increasing the amount of microturbulence in the atmosphere; however, this would not be consistent with the results from the curve of growth analysis. The solid curve represents the best fit to the observations from a set of theoretical curves drawn by allowing the macroturbulence to be varied as a free parameter. The larger value of macroturbulence than microturbulence is also consistent with the results for the solar case reported by Elste (1967).

The Analysis of the Line Profiles

The effect of microturbulence upon the shape of a stellar line would be to increase its Doppler core. Moving outward from the core, the presence of macroturbulence would most likely be seen as an increase in the halfwidth of the line. As a check on the derived values for the atmospheric turbulence of Theta Ursae Majoris, several profiles of Fe I
and Fe II were theoretically calculated and compared with the observed quantities. Figures 6 through 18 show the results of this procedure. Since most of the observed stellar lines of Theta Ursae Majoris show an unusual wing developement-most of the lines are triangular in shape-the damping constants were treated as more or less free parameters to achieve a fit. This procedure is justified because of the rudimentary state of the theory used to treat line broadening from collisions with neutral atoms and Stark broadening of metallic lines. Cowley (1970) even suggests that empirical values determined from stellar sources might be better than the theoretical predictions at this time.

Using the derived atmospheric turbulence model, almost all observed profiles could be matched for distances of about 0.3 to 0.4 Angstroms from the line center: Striking differences between the computed and the observed line cores existed; many times they differed by a factor of about two. It is well known that the central depth (core) is extremely sensitive to the temperature and this could be the effect seen in the line profiles. The observed profiles indicate that the solar-type temperature distribution is not a complete description of the temperature stratification in Theta Ursae Majoris at least near the boundary of the atmosphere. Also, some of the discrepancy might rest in the initial assumption of local thermodynamic equilibrium for the line formation and the abnormally weak line intensities observed in the star. The important point is that even $1 f$ the theoretical profiles were adjusted by changing the solar temperature distribution near the boundary of the atmosphere, turbulence would still be needed to fit the theoretical profiles with the observed ones.

No fit could be achieved for the line profiles in Figures 13 and

Figufe 6. Observéd and Calculated Line Profiles for Fe I $\lambda 4199.10$

Figure 7. Observed and Calculated Line Profiles for Fe I. $\lambda 4202.03$

Figure 8. Observed and Calculated Line Profiles for Fe I $\lambda 4206.70$

Figure 9. Observed and Calculated Line Profiles for Fe I $\lambda 4219.36$

Figure 10. Observed and Calculated Line Profiles for Fe I $\lambda 4736.78$

Figure 11. Observed and Calculated Line Profiles for Fe I• $\lambda 4890.76$

Figure 12. Observed and Calculated Line Profiles for Fe I $\lambda 5434.53$

Figure 13. Observed and Calculated Line Profiles for Fe I $\lambda 5586.76$

Figure 14. Observed and Calculated Line Profiles for Fe II $\lambda 4122.64$

Figure 15. Observed and Calculated Line Profiles for Fe II $\lambda 4178.86$

Figure 16. Observed and Calculated Line Profiles for Fe II $\lambda 4731.44$.

Pigure 17. Observed and Calculated Line Profiles for Fe II $\lambda 5414.09$

Figure 18. Observed and Calculated Line Profiles for Fe II $\lambda 5425.27$

TABLE VIII
ABUNDANCE RESULTS FOR Ca I

E1ement	RMT	λ	$\mathrm{X}(\mathrm{R}, \mathrm{S})$	Log GF	2/3 $\operatorname{Log~C~}_{4}$	Log (H / L)	Log C	Log (W/L)	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Ca I	2	4226.73	0.0	0.24	-8.79	0.0	4.5125	-4.0200	2	-7.0446
Ca I	5	4283.01	1.88	-0.22	-8.79	0.0	2.3541	-4.5600	2	-6.2999
Ca I	5	4289.36	1.87	-0.30	-8.79	0.0	2.2846	-4.5800	2	-6.2861
Ca I	5	4298.99	1.88	-0.41	-8.79	0.0	2.1677	-4.5000	2	-5.9419
Ca I	4	4425.44	1.88	-0.38	-8.79	0.0	2.2073	-4.5200	2	-6.0390
Ca I	4	4434.96	1.89	-0.03	-8.79	0.0	2.5553	-4.4200	2	-6.1144
Ca I	4	4435.69	1.89	-0.50	-8.79	0.0	2.0844	-4.5200	2	-5.9161
Ca I	36	4526.94	2.70	-0.43	-8.53	0.0	1.4495	-4.7800	1	-5.8849
Ca I	23	4578.56	2.51	-0.56	-8.53	0.0	1.4904	-4.7600	1	-5.8887
Ca I	22	5262.24	2.52	-0.60	-8.53	0.0	1.5021	-4.6400	1	-5.6515
Ca I	48	5512.98	2.93	-0.29	-7.52	0.0	1.4741	-4.7100	1	-5.7747
Ca I	21	5581.97	2.52	-0.71	-8.53	0.0	1.4177	-4.8500	1	-5.9752
Ca I	21	5588.76	2.52	0.21	-8.53	0.0	2.3382	-4.5000	1	-6.1124
Ca I	21	5590.12	2.52	-0.71	-8.53	0.0	1.4183	-4.9300	1	-6.1059
Ca I	21	5601.29	2.52	-0.69	-8.53	0.0	1.4392	-4.6600	1	-5.6338
Ca I	23	6102.72	1.87	-0.89	-8.79	0.0	1.8508	-4.7000	1	-6.1309
Ca I	23	6122.22	1.88	-0.41	-8.79	0.0	2.3243	-4.5500	1	-6.2418
Ca I	20	6166.44	2.51	-0.90	-8.53	0.0	1.2797	-5.2300	1	-6.3909
Ca I	23	6162.17	1.89	-0.22	-8.79	0.0	2.5092	-4.5300	1	-6.3696
Ca I	18	6439.07	2.51	0.47	-8.53	0.0	2.6685	-4.5500	1	-6.5860
Ca I	18	6493.78	2.51	0.14	-8.53	0.0	2.3422	-4.7300	1	-6.6827

TABLE IX
ABUNDANCE RESULTS FOR Co I

Element	RMT	λ	$\mathrm{X}(\mathrm{R}, \mathrm{S})$	Log GF	$2 / 3 \log \mathrm{C}_{4}$	$\log (\mathrm{H} / \mathrm{L})$	$\log \mathrm{C}$	$\log (\mathrm{W} / \mathrm{L})$	Wt.	Log N/N(H)
Co I	16	4020.90	0.43	-2.16	-8.87	0.0	2.2304	-5.1400	3	-7.2402
Co I	29	4092.39	0.92	-1.36	-8.87	0.0	2.5850	-4.5600	2	-6.4006
Co I	29	4110.53	1.04	-1.42	-8.87	0.0	2.4164	-5.0400	2	-7.2940
Co I	28	4121.32	0.92	-0.65	-8.87	0.0	3.2981	-4.6600	3	-7.4577
Co I	150	4517.09	3.11	-0.90	-8.67	0.0	1.1069	-5.2900	1	-6.3037
Co I	156	4693.19	3.22	-0.51	-8.67	0.0	1.4162	-5.4800	1	-6.8329
Co I	15	4727.94	0.43	-3.70	-8.87	0.0	0.7608	-5.5400	1	-6.2443
Co I	180	5156.37	4.04	-0.13	-8.57	0.0	1.1173	-5.0100	2	-5.9529
Co I	170	5212.70	3.50	-0.12	-8.67	0.0	1.6043	-5.5400	1	-7.0877
Co I	190	5342.70	4.00	0.33	-8.57	0.0	1.6274	-5.7700	1	-7.3599
Co I	190	5343.38	4.01	0.03	-8.57	0.0	1.3188	-5.3400	1	-6.5747
Co I	39	5369.59	1.73	-1.87	-8.72	0.0	1.4517	-5.5100	1	-6.9020

TABLE X
ABUNDANCE RESULTS FOR Cr I

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \log C_{4}$	Log (H/L)	Log C	Log (W/L)	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Cr I	22	4373.25	0.98	-1.99	-8.77	0.0	1.5521	-5.6600	1	-7.1707
Cr I	64	4381.11	2.70	-0.56	-8.57	0.0	1.4480	-5.9300	1	-7.3514
Cr I	22	4384.98	1.03	-1.08	-8.77	0.0	2.4180	-4.9800	4	-7.2242
Cr I	103	4387.50	2.99	-0.22	-8.57	0.0	1.5343	-5.0800	3	-6.4761
Cr I	129	4410.30	3.00	-0.60	-8.57	0.0	1.1478	-5.7900	1	-6.9047
Cr I	22	4412.25	1.03	-2.26	-8.77	0.0	1.2406	-5.5700	1	-6.7618
Cr I	127	4458.54	3.00	0.04	-8.57	0.0	1.7925	-5.1000	3	-6.7602
Cr I	150	4511.90	3.07	0.04	-8.57	0.0	1.7369	-5.0900	3	-6.6916
Cr I	33	4535.15	2.53	-0.64	-8.67	0.0	1.5321	-5.5000	1	-6.9763
Cr I	10	4545.96	0.94	-1.15	-8.77	0.0	2.4453	-4.7300	4	-6.8131
Cr I	21	4591.39	0.96	-1.36	-8.77	0.0	2.2214	-4.9000	4	-6.9059
Cr I	21	4600.75	1.00	-1.20	-8.77	0.0	2.3459	-4.7300	4	-6.7137
Cr I	21	. 4616.14	0.98	-1.13	-8.77	0.0	2.4355	-4.8200	4	-6.9868
Cr I	21	. 4626.19	0.96	-1.18	-8.77	0.0	2.4047	-4.8500	4	-7.0081
Cr I	186	4639.54	3.10	-0.27	-8.57	0.0	1.4130	-5.1200	1	-6.4068
Cr I	21	4646.17	1.03	-0.67	-8.77	0.0	2.8531	-4.5500	3	-6.6586
Cr I	32	4649.46	2.53	-0.90	-8.67	0.0	1.2829	-5.4900	1	-6.7160
Cr I	21	4651. 29	0.98	-1.15	-8.77	0.0	2.4188	-4.8800	4	-7.0710
Cr I	21	4652.16	1.00	-0.97	-8.77	0.0	2.5807	-4.7900	4	-7.0758
Cr I	186	4708.04	3.15	0.37	-8.57	0.0	2.0160	-5.0800	3	-6.9578
Cr I	186	4718.43	3.18	0.49	-8.57	0.0	2.1109	-4.9300	4	-6.8427
Cr I	145	4724.42	3.07	-0.28	-8.57	0.0	1.4369	-5.5800	1	-6.9689
	145	4730.71	3.07	0.09	-8.57	0.0	1.8075	-5.2100	2	-6.9150
Cr I	61	4745.31	2.70	-1.07	-8.57	0.0	0.9727	-5.6600	1	-6.5913
Cr I	145	4756.11	3.09	0.54	-8.57	0.0	2.2424	-4.9400	4	-6.9896
Cr I	231	4764.29	3.54	0.05	-8.52	0.0	1.3630	-5.3000	1	-6.5786
Cr I	144	4836.86	3.09	-0.83	-8.57	0.0	0.8798	-5.5600	1	-6.3900
Cr I	143	4922.27	3.09	0.41	-8.57	0.0	2.1274	-4.5000	2	-5.7018

TABLE X (Continued)

Element	RMT	λ	$X(R, S)$	Log GF	2/3 Log C_{4}	Log (H/L)	Log C	Log (W/L)	Wt.	Log $\mathrm{N} / \mathrm{N}(\mathrm{H})$
Cr I	166	4936.33	3.10	0.03	-8.57	0.0	1.7399	-5.0800	2	-6.6817
Cr I	166	4954.81	3.11	0.03	-8.57	0.0	1.7329	-4.9200	3	-6.4492
Cr I	9	4964.93	0.94	-2.48	-8.77	0.0	1.1536	-5.2200	1	-6.2734
Cr I	60	5110.75	2.70	-0.93	-8.57	0.0	1.1449	-5.6600	1	-6.7635
Cr I	7	5206.04	0.94	-0.17	-8.77	0.0	3.4842	-4.5000	3	-7.0586
Cr I	59	5238.97	2.70	-1.05	-8.57	0.0	1.0357	-5.4300	1	-6.4014
Cr I	201	5243.40	3.38	-0.31	-8.52	0.0	1.1831	-5.2800	3	-6.3751
Cr I	18	5247.56	0.96	-1.62	-8.77	0.0	2.0194	-4.9800	4	-6.8257
Cr I	18	5296.69	0.98	-1. 54	-8.77	0.0	2.0853	-4.8400	4	-6.6717
Cr I	94	5297.36	2.89	-0.40	-8.57	0.0	1.5238	-4.8100	4	-6.0569
Cr I	18	5298.27	0.98	-1. 25	-8.77	0.0	2.3754	-4.5600	3	-6. 2223
Cr I	94	5329.12	2.90	-0.39	-8.57	0.0	1.5277	-4.9700	4	-6.3194
Cr I	18	5345.81	1.00	-1.16	-8.77	0.0	2.4511	--4.8000	4	-6.9654
Cr I	18	5348.32	1.00	-1.47	-8.77	0.0	2.1413	-4.9900	4	-6.9618
Cr I	191	5390.39	3.35	-0.86	-8.52	0.0	0.6711	-5.3100	3	-5.8985
Cr I	18	5409.79	1.03	-0.88	-8.77	0.0	2.7092	-4.6600	4	-6.8996
Cr I	119	5712.78	3.00	-0.87	-8.57	0.0	0.9902	-5.7900	1	-6.7471
Cr I	268	4001.44	3.87	1.07	-8.47	0.0	2.0239	-5.0400	2	-6.9132
Cr I	268	4022.26	3.87	0.81	-8.47	0.0	1.7661	-5.4200	1	-7.1205
Cr I	251	4039.10	3.83	1.15	-8.47	0.0	2.1423	-5.1500	2	-7.1747
Cr I	279	4065.72	4.09	-0.34	-8.47	0.0	0.4328	-5.8500	1	-6.2527
Cr I	65	4120.61	2.70	0.09	-8.57	0.0	2.0714	-5.4000	1	-7.4030
Cr I	35	4126.52	2.53	-0.16	-8.67	0.0	1.9711	-5.4300	1	-7.3368
Cr I	249	4197.23	3.83	0.27	-8.47	0.0	1.2790	-5.5800	1	-6.8110
Cr I	249	4208.36	3.83	0.21	-8.47	0.0	1.2201	-6.0300	1	-7.2272
Cr I	248	4209.37	3.83	0.68	-8.47	0.0	1.6902	-5.4500	1	-7.0785
Cr I	137	4211.35	3.00	-0.31	-8.57	0.0	1.4177	-5.6000	1	-6.9715
	1	4254.35	0.0	-0.45	-8.87	0.0	3.9755	-4.3700	3	-6.8228
Cr I	96	4272.91	2.89	-0.42	-8.57	0.0	1.4105	-5.4200	1	-6.7649
Cr I	1	4274.80	0.0	-0.57	-8.87	0.0	3.8576	-4.4000	3	-6.8991

TABLE X (Concluded)

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \log \mathrm{C}_{4}$	$\log (\mathrm{H} / \mathrm{L})$	Log C	Log (W/L)	Wt.	$\log N / N(H)$
Cr I	1	4289.72	0.0	-0.76	-8.87	0.0	3.6691	-4.2900	3	-6.1032
Cr I	22	4337.57	0.96	-0.96	-8.77	0.0	2.5967	-4.6700	4	-6.8151
Cr I	22	4339.45	0.98	-0.78	-8.77	0.0	2.7587	-4.9000	4	-7.4432
Cr I	22	4339.72	0.96	-1.27	-8.77	0.0	2.2869	-5.2300	3	-7.4189
Cr I	22	4344.51	1.00	-0.53	-8.77	0.0	2.9910	-4.6500	3	-7.1525
Cr I	104	4346.83	2.97	-0.13	-8.57	0.0	1.6378	-5.1800	3	-6.7081
Cr I	22	4351.05	0.96	-1.27	-8.77	0.0	2.2881	-4.9600	3	-7.0652

TABLE XI

abundance results for Cr il

Element	RMT	λ	$\mathrm{X}(\mathrm{R}, \mathrm{S})$	Log GF	$2 / 3 \log \mathrm{C}_{4}$	Log (H/L)	Log C	Log (W/L)	Wt.	Log N/N(H)
Cr II	31	4242.38	3.85	-1.02	-8.52	0.0	2.4891	-4.5500	3	-6.2613
Cr II	31	4252.62	3.84	-1.85	-8.52	0.0	1.6687	-5.0000	3	-6.4836
Cr II	31	4261.92	3.85	-1.21	-8.52	0.0	2.3011	-4.7600	3	-6.6679
Cr II	31	4275.57	3.84	-1.33	-8.52	0.0	2.1911	-4.6400	3	-6.2575
Cr II	44	4555.02	4.05	-1.44	-8.47	0.0	1.9288	-4.6700	3	-6.0759
Cr II	44	4558.66	4.06	-0.31	-8.47	0.0	3.0506	-4.5000	3	-6.6246
Cr II	44	4588.22	4.05	-0.65	-8.47	0.0	2.7219	-4.6100	4	-6.7006
Cr II	44	4592.09	4.06	-1.37	-8.47	0.0	1.9938	-4.8800	3	-6.6066
Cr II	44	4616.64	4.05	-1.51	-8.47	0.0	1.8646	-4.9800	3	-6.6493
Cr II	44	4634.11	4.05	-1.19	-8.47	0.0	2.1862	-4.7500	3	-6.5304
Cr II	30	4812.35	3.85	-1.99	-8.52	0.0	1.5738	-4.9600	4	-6.3266
Cr II	30	4848.24	3.85	-1.13	-8.52	0.0	2.4371	-4.6700	4	-6.5842
Cr II	30	4876.41	3.85	-1.56	-8.52	0.0	2.0096	-4.6000	4	-5.9572

TABLE XII
ABUNDANCE RESULTS FOR Fe I

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \log C_{4}$	$\log (\mathrm{H} / \mathrm{L})$	$\operatorname{Log~C}$	$\log (\mathrm{W} / \mathrm{L})$	Wt.	$\log N / N(H)$
Fe I	43	4005.24	1.55	-0.09	-8.72	-4.0400	3.1717	-4.1400	3	-5.0724
Fe I	72	4009.72	2.21	-0.93	-8.78	-4.3500	1.7377	-4.5200	3	-5.4726
Fe I	276	4040.09	2.72	-2.11	-8.67	0.0	0.1065	-5.0000	3	-4.9537
Fe I	43	4045.82	1.48	0.66	-8.72	-3.7600	0.0	-3.8000	0	0.0
	359	4062.45	2.83	-0.45	-8.67	-4.3400	1.6714	-4.5500	3	-5.5382
Fe I	43	4063.60	1.55	0.44	-8.72	-4.0000	3.7080	-4.0200	3	-5.2748
Fe I	43	4071.74	1.60	0.37	-8.72	-4.0000	3.5937	-4.1000	3	-5.3769
Fe I	558	4080.22	3.27	-0.81	-8.67	0.0	0.9259	-4.8200	3	-5.5024
Fe I	276	4107.49	2.82	-0.32	-8.67	-4.1400	1.8151	-4.6800	2	-6.1049
Fe I	357	4134.68	2.82	-0.32	-8.78	-4.2000	1.8180	-4.5300	2	-5.5982
Fe I	43	4143.87	1.55	-0.42	-8.72	-3.9800	2.8565	-4.2200	2	-5.0382
Fe I	42	4147.67	1.48	-1. 50	-8.72	-4.1900	1.8402	-4.6000	2	-5.8952
Fe I	355	4154.50	2.82	-0.36	-8.62	-4.1700	1.7800	-4.5300	2	-5.5602
Fe I	694	4168.95	3.40	-1.23	-8.67	-4.4000	0.4012	-4.9800	3	-5. 2204
Fe I	354	4175.64	2.83	-0.41	-8.67	-4.2100	1.7234	-4.5300	3	-5.5036
Fe I	354	4181.76	2.82	-0.05	-8.67	-4.2100	2.0929	-4.3700	3	-5.0572
Fe I	152	4187.04	2.44	-0.33	-8.67	-4.3000	2.1507	-4.4600	3	-5.5846
Fe I	152	4191.44	2.46	-0.44	-8.67	-4.1700	2.0232	-4.4500	2	-5.4039
Fe I	522	4199.10	3.03	0.34	-8.67	-4.2000	2.2989	-4.4200	3	-5.5263
Fe I	3	4199.94	0.09	-4.21	-8.87	-4.4400	0.4120	-4.9300	2	-5.1620
Fe I	42	4202.03	1.48	-0.25	-8.72	-4.2300	3.0959	-4.2600	3	-5.4512
Fe I	3	4206.70	0.05	-3.42	-8.87	-4.1800	1.2397	-4.5200	3	-4.9746
Fe I	3	4216.19	0.0	-2.98	-8.87	-4.2400	1.7270	-4.5200	3	-5.4619
	800	4219.36	3.56	0.51	-8.67	-4.1600	2.0067	-4.4800	3	-5.5460
Fe I	152	4222.22	2.44	-0.85	-8.67	-4.1700	1.6343	-4.5500	3	-5.5011
Fe I	693	4227.43	3.32	0.51	-8.67	-4.1800	2.2175	-4.3200	3	-4.8771
Fe I	152	4233.61	2.48	-0.41	-8.67	-4.1400	2.0397	-4.4300	3	-5.3163
Fe I	693	4238.82	3.38	0.10	-8.67	-4.1400	1.7560	-4.4800	3	-5.2953

TABLE XII (Continued)

Element	RMT	λ	$X(R, S)$	Log GF	2/3 Log C_{4}	$\log (\mathrm{H} / \mathrm{L})$	$\log C$	$\log (\mathrm{W} / \mathrm{L})$	Wt.	Log $\mathrm{N} / \mathrm{N}(\mathrm{H})$
Fe I	693	4247.43	3.37	0.07	-8.67	-4.1300	1.7357	-4.4400	3	-5.0630
Fe I	2	4240.23	3.06	-1.01	-8.67	-4.2000	0.9276	-4.6600	3	-5.1650
Fe I	351	4258.62	2.82	-1.76	-8.67	-4.5300	0.3908	-5.0600	3	-5.3188
Fe I	152	4260.48	2.40	0.13	-8.67	-4.1400	2.6540	-4.2200	2	-4.8358
Fe I	993	4264.74	3.94	-1.06	-8.57	-4.4600	0.1118	-4.9700	2	-4.9172
Fe I	993	4265.26	3.91	-0.80	-8.57	-4.5700	0.3978	-5.0200	2	-5.2725
Fe I	42	4271.77	2.44	-0.25	-8.67	-4.1100	2.2394	-4.1800	3	-4.2705
Fe I	976	4276.69	3.86	-0.88	-8.57	0.0	0.3624	-5.3700	2	-5.6647
Fe I	71	4282.41	2.17	-0.66	-8.67	-4.1100	2.0721	-4.4700	3	-5.5590
Fe I	3	4291.47	0.05	-1.99	-8.87	-4.1600	2.6784	-4.6800	3	-6.9682
Fe I	942	4325.77	I. 60	0.36	-8.67	-4.0200	3.6099	-4.0400	3	-5.2276
Fe -	597	4327.92	3.03	-0.48	-8.67	-4.4600	1.4920	-4.9700	2	-6.2974
Fe I	518	4369.77	3.03	-0.65	-8.67	-4.1200	1.3262	-4.5200	3	-5.0611
Fe I	2	4375.93	0.0	-2.59	-8.87	-4.1500	2.1331	-4.5000	3	-5.7736
Fe I	41	4383.55	1.48	0.51	-8.72	-4.0200	3.8743	-4.0700	3	-5.5723
Fe I	2	4389.24	0.05	-3.90	-8.87	-4.2600	0.7782	-5.0000	3	-5.6253
Fe I	41	4404.75	1.55	0.25	-8.72	-4.0300	3.5530	-4.1100	3	-5.3653
Fe I	41	4415.13	1.60	-0.13	-8.72	-4.1000	3.1288	-4.2100	3	-5.2706
Fe I	68	4430.62	2.21	-1.70	-8.78	-4.1500	1.0111	-4.5700	3	-4.9579
Fe I	43	4420.34	2.19	-1.00	-8.78	-4.1400	1.7301	-4.5100	3	-5.4184
Fe I	350	4443.20	2.85	-0.72	-8.78	-4.1300	1.4226	-4.5700	3	-5.3695
Fe I	68	4447.72	2.21	-1.08	-8.78	-4.1800	1.6328	-4.5200	3	-5.3677
Fe I	350	4454.38	2.82	-1.01	-8.78	-4.1900	1.1603	-4.6100	3	-5. 2486
Fe I	2	4489.74	0.12	-3.40	-8.87	-4.1400	1.2232	-4.6.000	3	-5.2781
Fe I	39	4531.15	1.48	-1.57	-8.67	-3.8600	1.8086	-4.1400	0	-3.7058
Fe I	39	4602.94	1.48	-1.46	-8.72	-4.1200	1.9255	-4.5900	2	-5.9458
Fe I	318	4871.32	2.85	-0.39	-8.67	-4.0500	1.7926	-4.3600	3	-4.6952
Fe I	318	5006.13	2.83	-0.83	-8.67	-4.0500	1.2448	-4.6400	2	-5.2138
Fe I	16	5051.64	0.91	-2.71	-8.77	-4.0200	1.1224	-4.5100	2	-4.5933
Fe I	383	5068.77	2.93	-1.09	-8.67	-4.0600	0.9002	-4.6400	2	-4.8692

TABLE XII (Continued)

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \operatorname{Log~C~}_{4}$	$\log (H / L)$	Log C	Log (W/L)	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Fe I	16	5083.34	0.95	-2.74	-8.77	-4.0300	1.0580	-4.6300	2	-4.9913
Fe I	1	5110.41	0.0	-3.34	-8.87	-4.0000	1.3458	-4.5000	2	-4.7767
Fe I	1092	5133.69	4.16	0.39	-8.57	-4.0500	1.2943	-4.5600	3	-4.9618
Fe I	383	5192.35	2.99	-0.32	-8.67	-4.0800	1.6266	-4.5500	3	-5.2552
Fe I	36	5194.94	1.55	-1.93	-8.72	-4.0800	1.3241	-4.6900	3	-5.4527
Fe I	36	5216.28	1.60	-1.95	-8.72	-4.0500	1.2601	-4.6300	3	-5.1934
Fe I	1	5225.53	0.11	-4.26	-8.87	-4.0000	0.3326	-4,9500	2	-5.0411
	383	5266.56	2.99	-0.41	-8.67	-4.0900	1.5428	-4.5700	3	-5.2492
Fe I	383	5281.80	3.03	-0.75	-8.67	-4.1100	1.1682	-4.7000	3	-5.3261
Fe I	553	5283.63	3.24	-0.30	-8.27	-4.1000	1.4310	-4.8500	3	-5.9522
Fe I	36	5307.37	1.60	-2.76	-8.72	-4.4800	0.4576	-4.9700	3	-5.1999
Fe I	553	5339.94	3.26	-0.61	-8.67	-4.0500	1.1077	-4.7200	3	-5.3220
Fe I	1146	5364.87	4.44	0.41	-8.62	-4.3600	1.0883	-4.7700	4	-5.4318
Fe I	1146	5367.47	4.41	0.49	-8.62	-4.7100	1.1948	-4.9200	3	-5.8501
Fe I	1146	5369.97	4.35	0.57	-8.62	-4.2300	1.3275	-4.6600	3	-5.3633
Fe I	1146	5383.37	4.29	0.67	-8.62	-3.9900	1.4811	-4.6000	3	-5.3033
Fe I	553	5393.17	3.23	-0.60	-8.67	4.3300	0.0	4.8000	0	0.0
Fe I	15	5397.13	0.91	-1.88	-8.67	-4.0300	1.9812	-4.3900	3	-4.9725
Fe I	15	5405.78	0.99	-1.75	-8.77	-4.3700	2.0376	-4.5100	3	-5.5084
Fe I	1165	5410.91	4.45	0.54	-8.62	-4.3300	1.2133	-4.8400	4	-5.7140
Fe I	1146	5424.07	4.32	0.68	-8.62	-3.9500	1.4681	-4.5400	3	-5.0577
Fe I	15	5429.70	0.95	-1.78	-8.77	-4.2500	2.0466	-4.4900	3	-5.4374
Fe I	15	5434.53	1.01	-2.27	-8.67	-3.9300	1.5013	-4.5300		-5.0516
Fe I	1163	5445.05	4.37	0.17	-8.62	-4.1100	0.9160	-4.7300	3	-5.1574
Fe I	15	5497.52	1.01	-2.79	-8.77	-3.8600	0.9864	-4.5000	2	-4.4173
Fe I	15	5501.47	0.95	-2.66	-8.77	-3.8900	1.1723	-4.5800	2	-4.9178
Fe I	15	5506.78	0.99	-2.44	-8.77	-3.9200	1.3556	-4.5500	2	-4.9842
Fe I	686	5569.63	3.42	-0.43	-8.67	-3.9200	1.1632	-4.6500	2	-5.1664
Fe I	686	5572.85	3.40	-0.22	-8.67	-3.8600	1.3913	-4.5800	2	-5.1368
Fe I	686	5576.10	3.43	-0.81	-8.67	-4.0600	0.7748	-4.8100	2	-5.2113

TABLE XII (Concluded)

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \log C_{4}$	$\log (H / L)$	$\log C$	$\log (W / L)$	Wt.	$\log N / N(H)$
Fe I	1107	5762.99	4.19	-0.10	-8.57	-4.1200	0.8282	-4.7100	2	-5.0147
Fe I	959	5976.80	3.93	-1.03	-8.57	-4.3000	0.1423	-5.0000	2	-4.9334
Fe I	959	6003.08	3.86	-0.91	-8.57	-4.3300	0.3261	-4.9700	2	-5.0684
Fe I	1178	6024.07	4.53	0.22	-8.49	-4.3100	0.8701	-4.8600	2	-5.4114
Fe I	207	6065.53	2.60	-1.33	-8.67	-4.2100	1.0353	-4.7400	2	-5.3031
Fe I	1259	6055.99	4.71	-0.12	-8.49	-4.3200	0.3764	-5.0800	2	-5.2868
Fe I	207	6137.70	2.58	-1.26	-8.67	-4.2600	1. 1284	-4.6700	2	-5.1960
Fe I	62	6213.40	2.21	-2.45	-8.78	-4.3700	0.2792	-4.9500	2	-4.9876
Fe I	207	6230.73	2.55	2.36	-8.67	-4.1000	4.7820	-4.6700	2	-8.8496
Fe I	816	6246.33	3.59	-0.81	-8.67	-4.2300	0.6821	-4.9100	3	-5.3191
Fe I	169	6252.56	2.39	-1.79	-8.67	-4.1200	0.7784	-4.7600	3	-5.0973
Fe I	62	6265.14	2.17	-2.50	-8.78	-4.2200	0.2691	-4.9900	2	-5.0442
Fe I	816	6301.54	3.64	-0.72	-8.67	-4. 2200	0.7317	-4.6300	2	-4.6650
Fe I	168	6318.02	2.44	-2.06	-8.67	-4.2100	0.4675	-4.9000	2	-5.0859
Fe I	168	6393.61	2.42	-1.60	-8.67	-4.1200	0.9509	-4.7000	2	-5.1088
Fe I	816	6411.66	3.64	-0.51	-8.67	-4.0400	0.9492	-4.7100	2	-5.1356
Fe I	111	6421.36	2.27	-1.84	-8.67	-4.2100	0.8490	-4.7800	2	-5.2165
Fe I	168	6494.99	2.39	-1.16	-8.67	-4.2100	1.4249	-4.6500	2	-5.428I
Fe I	62	6430.85	2.17	-1.87	-8.78	-4.2700	0.9104	-4.8200	2	-5.3688

TABLE XIII

ABUNDANCE RESULTS FOR Fe II

Element:	RMT	λ	$X(R, S)$	$\log G F$	$2 / 3 \log C_{4}$	$\log (\mathrm{H} / \mathrm{L})$	Log C	$\log (W / L)$	Wt .	$\log N / N(H)$
Fe II	27	4128.74	2.58	-2.76	-8.67	-4.4700	0.9815	-4.7900	3	-5.3665
Fe II	28	4178.86	2.57	-2.00	-8.67	-4.3400	1.7556	-4.5200	2	-5. 2292
Fe II	27	4273.32	2.69	-3.51	-8.60	-4.2500	0.1491	-4.5900	0	-3.9375
Fe II	27	4303.17	2.70	-2.00	-8.67	-4.3200	1.6533	-4.5300	3	-5.1749
Fe II	28	4369.40	2.77	-2.87	-8.67	-4.6400	0.7280	-4.8600	2	-5.2699
Fe II	38	4576.33	2.85	-2.22	-8.67	-4.1600	1.3273	-4.5500	3	-4.9430
Fe II	38	4620.51	2.82	-2.63	-8.67	-4.1700	0.9480	-4.7100	2	-5.1235
Fe II	49	5197.57	3.22	-2.23	-8.57	-4.1300	1.0472	-4.5900	3	-4.8356
Fe II	49.	5234.62	3.21	-2.03	-8.57	-4.3600	1.2590	-4.7100	3	-5.4345
Fe II	48	5264.80	3.22	-2.23	-8.57	-4.6200	1.0528	-5.1300	2	-6.0378
Fe II	41	5284.09	2.88	-2.42	-8.67	-4.5300	1.1632	-4.9300	2	-5.8412
Fe II	49	5325.56	3.21	-2.72	-8.57	-4.4100	0.5765	-5.0200	3	-5.4049
Fe II	48	5362.86	3.19	-1.95	-8.57	-4.0400	1.3671	-4.5800	3	-5.1162
Fe II	48	5414.09	3.21	-2.75	-8.57	-4.3400	0.5537	-5.1800	2	-5.6040
Fe II	49	5425.27	3.19	-2.75	-8.57	-4.1900	0.5721	-4.9000	2	-5.1940
Fe II	74	6247.56	3.87	-1.55	-8.50	-4.3400	1.2418	-4.8400	2	-5.7412
Fe II	40	6432.65	2.88	-2.73	-8.67	-4.2600	0.9386	-4.9500	2	-5.6522
Fe II	74	6456.38	3.89	-1.44	-8.50	-4.0900	1.3488	-4.5800	2	-5.07980

TABLE XIV
ABUNDANCE RESULTS FOR Mg I

Element	RMT	λ	$\mathrm{X}(\mathrm{R}, \mathrm{S})$	Log GF	$2 / 3 \log C_{4}$	Log (H/L)	Log C	$\log (\mathrm{W} / \mathrm{L})$	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Mg I	15	4167.27	4.33	0.0	-8.10	0.0	1.8664	-4.550	2	-5.6459
Mg I	11	4702.99	4.34	-0.58	-8.10	0.0	1.3303	-4.3100	1	-3.7866
Mg I	10	4730.03	4.34	-1.88	-8.57	0.0	0.0327	-5.0400	3	-4.9114
Mg I	2	5172.68	2.71	-0.38	-9.38	0.0	3.0013	-4.0600	3	-4.6101
Mg I	2	5183.60	2.72	-0.16	-9.38	0.0	0.0	-3.9600	0	0.0
Mg I	9	5528.40	4.34	-0.48	-8.49	0.0	1.5005	-4.4500	1	-4.7928
Mg I	8	5711.08	4.34	-1.34	-8.57	0.0	0.6546	-5.1440	2	-5.6719

TABLE XV
ABUNDANCE RESULTS FOR Mn I

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \log C_{4}$	Log (H/L)	Log C	$\log (W / L)$	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Mn I	5	4018.10	2.11	-0.14	-8.67	0.0	2.9284	-4.4500	3	-6.9747
Mn I	2	4030.76	0.0	-0.84	-8.87	0.0	4.1540	-4.1500	3	-7.0204
Mn I	2	4033.07	0.0	-1.00	-8.87	0.0	3.9942	-4.2500	3	-7.3618
Mn I	2	4034.49	0.0	-1.24	-8.87	0.0	3.7544	-4.3500	3	-7.5185
Mn I	5	4055.54	2.13	-0.02	-8.67	0.0	3.0346	-4.5600	3	-7.3124
Mn I	29	4059.39	3.06	-0.37	-8.57	0.0	1.8593	-5.1200	2	-6.9047
Mn I	5	4070.28	2.18	-0.79	-8.67	0.0	2.2215	-5.0900	3	-7.2319
Mn I	5	4079.42	2.18	-0.39	-8.67	0.0	2.6224	-4.6700	3	-7.0848
Mn I	5	4082.94	2.17	-0.24	-8.67	0.0	2.7817	-4.8700	4	-7.5230
Mn I	23	4257.66	2.94	-0.20	-8.57	0.0	2.1557	-5.4600	1	-7.5764
Mn I	23	4265.92	2.93	-0.22	-8.57	0.0	2.1454	-5.2700	1	-7.3600
Mn I	22	4453.00	2.93	-0.48	-8.57	0.0	1.9040	-5.3900	1	-7.2497
Mn I	28	4457.05	3.06	-0.89	-8.57	0.0	1.3799	-5.5900	1	-6.9379
Mn I	22	4470.14	2.93	-0.39	-8.57	0.0	1.9957	-5.2900	1	-7.2323
Mn I	22	4502.22	2.91	-0.36	-8.57	0.0	2.0465	-5.2100	3	-7.1944
Mn I	21	4709.72	2.88	-0.59	-8.57	0.0	1.8626	-5.1900	3	-6.9880
Mn I	21	4739.11	2.93	-0.66	-8.57	0.0	1.7511	-5.2800	1	-6.9767
Mn I	16	4754.04	2.27	-0.36	-8.67	0.0	2.6385	-4.5700	3	-6.9343
Mn I	21	4765.86	2.93	-0.29	-8.57	0.0	2.1235	-4.8500	4	-6.8385
Mn I	21	4766.43	2.91	-0.09	-8.57	0.0	2.3413	-4.7500	4	-6.9214
Mn I	16	4783.42	2.29	-0.38	-8.67	0.0	2.6033	-4.4800	3	-6.7196
Mn I	16	4823.52	2.31	-0.34	-8.67	0.0	2.6290	-4.4300	3	-6.6268

TABLE XVI
ABUNDANCE RESULTS FOR Na I

Element	RMT	λ	X (R,S)	Log GF	$2 / 3 \log C_{4}$	$\log (H / L)$	Log C	Log (W/L)	Wt.	Log N/N(H)
Na I	6	5682.63	2.10	-0.67	-7.65	0.0	1.3091	-4.8300	3	-5.8154
Na I	6	5688.21	2.10	-0.42	-7.65	0.0	1.5595	-4.6800	2	-5.6988
Na I	1	5889.95	0.0	0.12	-9.80	0.0	3.9683	-4.1900	2	-5.7823
Na I	1	5895.92	0.0	-0.18	-9.80	0.0	3.6678	-4.3000	2	-5.9082

TABLE XVII

ABUNDANCE RESULTS FOR Ni.I

Element	RMT	λ	$X(R, S)$	Log GF	$2 / 3 \operatorname{Log~C~}_{4}$	Log (H/L)	Log C	Log (W/L)	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Ni I	86	4462.46	3.45	-0.95	-8.67	0.0	0.9336	-4.8900	4	-5.5570
Ni I	86	4470.48	3.38	-0.51	-8.67	0.0	1.4364	-4.8200	4	-5.9228
Ni I	98	4604.99	3.47	-0.41	-8.67	0.0	1.4695	-4.8100	3	-5.9355
Ni I	100	4606.23	3.58	-0.88	-8.67	0.0	0.9028	-5.3100	1	-6.1124
Ni I	98	4648.66	3.40	-0.40	-8.67	0.0	1.5456	-4.7900	4	-5.9696
Ni I	98	4686.22	3.58	-0.79	-8.67	0.0	1.0003	-5.1300	3	-5.9927
Ni I	98	4714.42	3.37	-0.34	-8.67	0.0	1.6383	-4.5400	3	-5.3024
Ni I	98	4715.78	3.53	-0.92	-8.67	0.0	0.9169	-4.9500	4	-5.6474
Ni I	98	4756.52	3.47	-0.79	-8.67	0.0	1.1036	-4.8500	4	-5.6495
Ni I	163	4806.99	3.66	-0.84	-8.67	0.0	0.8911	-5.1400	3 .	-5.8961
Ni I	131	4829.03	3.53	-0.93	-8.67	0.0	0.9172	-4.6900	4	-5.0919
Ni I	111	4866.27	3.52	-0.76	-8.67	0.0	1.0993	-4.8700	4	-5.6846
Ni I	111	4873.44	3.68	-0.93	-8.67	0.0	0.7895	-4.9700	4	-5.5534
Ni I	129	4904.41	3.53	-0.70	-8.67	0.0	1.1539	-4.9300	4	-5.8499
Ni I	177	4918.36	3.82	-0.65	-8.57	0.0	0.9506	-4.9800	3	-5.7308
Ni I	177	4935.83	3.92	-0.82	-8.57	0.0	0.6944	-5.2700	3	-5.8553
Ni I	112	4980.16	3.59	-0.66	-8.67	0.0	1.1479	-4.7100	3	-5.3795
Ni I	143	4984.13	3.78	-0.54	-8.67	0.0	1.1015	-4.7400	3	-5.4103
	145	5000.34	3.62	-1.11	-8.67	0.0	0.6733	-4.8100	3	-5.1394

TABLE XVII (Concluded)

| Element | RMT | λ | $X(R, S)$ | Log GF | $2.3 \log _{4}$ | Log (H/L) | Log C | Log (W/L) | Wt. | Log N/N(H) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ni I | 111 | 5012.46 | 3.68 | -1.00 | -8.67 | 0.0 | 0.7317 | -4.9600 | 3 | -5.4790 |
| Ni I | 111 | 5017.59 | 3.52 | -0.65 | -8.67 | 0.0 | 1.2226 | -4.7100 | 3 | -5.4542 |
| Ni I | 143 | 5035.37 | 3.62 | -0.28 | -8.67 | 0.0 | 1.5064 | -4.7700 | 3 | -5.8861 |
| Ni I | 143 | 5080.52 | 3.64 | -0.27 | -8.67 | 0.0 | 1.5027 | -4.7000 | 3 | -5.7063 |
| Ni I | 194 | 5081.11 | 3.83 | -0.36 | -8.57 | 0.0 | 1.2460 | -4.8800 | 3 | -5.8505 |
| Ni I | 162 | 5084.08 | 3.66 | -0.86 | -8.67 | 0.0 | 0.8955 | -4.8500 | 3 | -5.4414 |
| Ni I | 161 | 5099.95 | 3.66 | -0.86 | -8.67 | 0.0 | 0.8968 | -4.8200 | 3 | -5.3832 |
| Ni I | 177 | 5115.40 | 3.82 | -0.86 | -8.57 | 0.0 | 0.7577 | -4.9000 | 3 | -5.3997 |
| Ni I | 162 | 5146.48 | 3.69 | -0.67 | -8.67 | 0.0 | 1.0644 | -4.7100 | 4 | -5.2960 |
| Ni I | 210 | 5155.76 | 3.88 | -0.55 | -8.57 | 0.0 | 1.0184 | -4.9000 | 4 | -5.6605 |
| Ni I | 209 | 5176.57 | 3.88 | -1.03 | -8.57 | 0.0 | 0.5402 | -5.1900 | 3 | -5.6060 |
| Ni I | 47 | 5578.73 | 1.67 | -3.20 | -8.72 | 0.0 | 0.3787 | -5.3200 | 2 | -5.6003 |
| Ni I | 69 | 5592.28 | 1.94 | -2.63 | -8.78 | 0.0 | 0.7039 | -5.4100 | 1 | -6.0325 |

TABLE XVIII
ABUNDANCE RESULTS FOR Sc II

| Element | RMT | λ | $\mathrm{X}(\mathrm{R}, \mathrm{S})$ | $\log \mathrm{GF}$ | $2 / 3 \log \mathrm{C}_{4}$ | $\log (\mathrm{H} / \mathrm{L})$ | $\log \mathrm{C}$ | $\log (\mathrm{W} / \mathrm{L})$ | Wt. | $\log \mathrm{N} / \mathrm{N}(\mathrm{H})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sc II | 7 | 4246.83 | 0.31 | 0.28 | -8.87 | 0.0 | 6.2570 | -4.4200 | 3 | -9.2474 |
| Sc II | 15 | 4294.77 | 0.60 | -1.28 | -8.87 | 0.0 | 4.4328 | -4.6400 | 3 | -8.5174 |
| Sc II | I5 | 4314.08 | 0.62 | -0.10 | -8.87 | 0.0 | 5.5962 | -4.3600 | 3 | -8.2096 |
| Sc II | I5 | 4320.75 | 0.60 | -0.22 | -8.87 | 0.0 | 5.4954 | -4.6200 | 2 | -9.5135 |
| Sc II | I4 | 4354.61 | 0.60 | -1.50 | -8.87 | 0.0 | 0.0 | -4.7000 | 0 | 0.0 |
| Sc II | 14 | 4415.56 | 0.59 | -0.84 | -8.87 | 0.0 | 4.8940 | -4.4800 | 3 | -8.2781 |
| Sc II | 26 | 5239.82 | 1.45 | 0.56 | -8.77 | 0.0 | 0.0 | -4.9400 | 0 | 0.0 |
| Sc II | 31 | 5526.81 | 1.76 | -0.03 | -8.77 | 0.0 | 4.7295 | -4.6200 | 2 | -8.7477 |
| Sc II | 29 | 5667.16 | 1.49 | -1.35 | -8.77 | 0.0 | 0.0 | -5.1600 | 0 | 0.0 |
| Sc II | 29 | 5669.03 | 1.49 | -1.23 | -8.77 | 0.0 | 0.0 | -5.2200 | 0 | 0.0 |
| Sc II | 28 | 6245.63 | 1.50 | -1.05 | -8.77 | 0.0 | 0.0 | -5.2400 | 0 | 0.0 |

TABLE XIX
ABUNDANCE RESULTS FOR Si I

Element	RMT	λ	X (R, S)	Log GF	2/3 $\operatorname{Log~C~}_{4}$	Log (H/L)	Log C	Log (W/L)	Wt.	$\log \mathrm{N} / \mathrm{N}(\mathrm{H})$
Si I	10	5708.48	4.93	-1.15	-8.42	0.0	0.1807	-5.0200	1	-4.9932
Si I	17	5772.26	5.06	-1.38	-8.20	0.0	-0.1572	-5.1800	1	-4.8857
Si I	16	5948.58	5.06	-1. 24	-8.20	0.0	-0.0041	-5.0000	1	-4.7762

TABLE XX
ABUNDANCE RESULTS FOR Ti I

Element	RMT	λ	X (R, S)	Log GF	$2 / 3 \log C_{4}$	Log (H/L)	Log C	Log (W/L)	Wt.	Log N/N(H)
Ti I	187	4008.05	2.11	0.04	-8.67	0.0	1.7109	-5.0300	3	-6.6576
Ti I	12	4008.93	0.02	-0.83	-8.87	0.0	2.7279	-4.5700	3	-7.0467
Ti I	186	4016.20	2.13	-0.25	-8.67	0.0	1.4041	-5.7700	1	-7.1431
Ti I	80	4060.26	1.05	-0.22	-8.77	0.0	2.4048	-5.4400	2	-7.8083
Ti I	163	4166.31	1.87	-0.49	-8.77	0.0	1.4108	-5.7000	1	-7.0869
Ti I	163	4169.33	1.88	-0.19	-8.77	0.0	1.7022	-5.8200	1	-7.4832
Ti I	129	4186.12	1.50	0.10	-8.77	0.0	2.3329	-5.3000	1	-7.5850
Ti I	162	4265.72	1.87	-0.60	-8.77	0.0	1.3110	-6.0300	1	-7.2432
Ti I	44	4281.37	0.81	-1.11	-8.77	0.0	1.7554	-5.7900	1	-7.5115
Ti I	44	4286.01	0.82	-0.18	-8.77	0.0	2.6768	-4.7300	4	-7.2420
Ti I	44	4287.41	0.84	-0.20	-8.77	0.0	2.6387	-5.0600	3	-7.6207
Ti I	44	4305.91	0.84	0.66	-8.77	0.0	3.5006	-4.3300	3	-7.2316
Ti I	235	4321.66	2.23	0.43	-8.67	0.0	2.0276	-5.1900	3	-7.1579
Ti I	43	4326.36	0.82	-0.95	-8.77	0.0	1.9108	-5.4500	1	-7.3253
Ti I	161	4417.27	1.88	0.17	-8.77	0.0	2.0873	-5.5100	1	-7.5672
Ti I	128	4427.10	1.50	0.43	-8.77	0.0	2.6872	-5.4900	1	-8.1454
Ti I	160	4453.71	1:87	0.27	-8.77	0.0	2.1998	-5.3800	1	-7.5385
Ti I	146	4465.81	1.73	0.14	-8.77	0.0	2.1958	-5.4100	1	-7.5667
Ti I	42	4518.02	0.82	-0.20	-8.77	0.0	2.6797	-4.8800	4	-7.4431
Ti I	42	4533.24	0.84	0.58	-8.77	0.0	3.4430	-4.4800	3	-7.5872
Ti I	42	4534.78	0.83	0.35	-8.77	0.0	3.2222	-4.6200	3	-7.6240
Ti I	42	4548.76	0.82	-0.24	-8.77	0.0	2.6426	-5.0300	2	-7.5893
Ti I	42	4555.49	0.84	-0.34	-8.77	0.0	2.5251	-4.8400	4	-7.2382
Ti I	145	4617.27	1.74	0.62	-8.77	0.0	2.6814	-5.0200	3	-7.6163
Ti I	145	4623.10	1.73	0.40	-8.77	0.0	2.4709	-5.3300	1	-7.7556
Ti I	145	4639.37	1.73	0.0	-8.77	0.0	2.0724	-5.3900	1	-7.4218
Ti I	145	4639.67	1.74	-0.03	-8.77	0.0	2.0335	-5.6500	1	-7.6601
Ti I	145	4645.19	1.73	-0.22	-8.77	0.0	1.8529	-5.5100	1	-7.3328

TABLE XX (Concluded)

Element	RMT	λ	$X(R, S)$	Log GF	2/3 Log C ${ }_{4}$	$\log (\mathrm{H} / 1)$	$\log \mathrm{C}$	Log (W/L)	Wt.	Log $\mathrm{N} / \mathrm{N}(\mathrm{H})$
Ti I	6	4656.47	0.0	-1.21	-8.87	0.0	2.4312	-5.0800	3	-7.4364
Ti I	6	4681.91	0.05	-1.05	-8.87	0.0	2.5478	-4.7100	4	-7.0843
Ti I	157	4913.62	1.87	0.24	-8.77	0.0	2.2124	-5.4500	1	-7.6269
Ti I	200	4919.87	2.15	0.12	-8.67	0.0	1.8445	-5.6400	1.	-7.4611
Ti I	38	4981.73	0.84	0.51	-8.77	0.0	3.4139	-4.6100	2	-7.7998
Ti I	38	5016.16	0.84	-0.50	-8.77	0.0	2.4069	-4.9700	3	-7.2818
Ti I	38	5024.84	0.81	-0.53	-8.77	0.0	2.4049	-4.8300	3	-7.1052
Ti I	173	5025.57	2.03	0.35	-8.67	0.0	2.1898	-5.0900	2	-7.2065
Ti I	5	5039.96	0.02	-1.02	-8.87	0.0	2.6373	-4.8800	3	-7.4007
Ti I	38	5043.58	0.83	-1.36	-8.77	0.0	1.5584	-5.5500	1	-7.0812
Ti I	4	5152.19	0.02	-1.79	-8.87	0.0	1.8769 .	-5.6700	1	-7.5235
Ti I	4	5173.74	0.0	-1.12	-8.87	0.0	2.5670	-4.8400	4	-7.2801
Ti I	183	5194.04	2.09	-0.17	-8.67	0.0	1.6311	-5.8600	1	-7.4440
Ti I	183	5201.10	2.08	-0.31	-8.67	0.0	1.5005	-5.8300	1	-7.2896
Ti I	4	5210.39	0.05	-0.96	-8.87	0.0	2.6843	-4.9300	4	-7.5100
Ti I	183	5224.30	2.13	0.33	-8.67	0.0	2.0983	-5.4600	1	-7.5237
Ti I	249	5689.47	2.29	-0.01	-8.67	0.0	1.6540	-5.6800	1.	-7.3105
Ti I	249	5713.90	2.28	-0.38	-8.67	0.0	1.2947	-5.6500	1	-6.9213
Ti I	309	5766.33	3.28	0.63	-8.57	0.0	1.4350	-5.6000	1	-7.0105
Ti I	72	5866.45	1.06	-0.59	-8.77	0.0	2.1856	-5.6200	1	-7.7817
Ti I	71	5918.55	1.06	-1.13	-8.77	0.0	1.6494	-5.6100	1	-7.2352

TABLE XXI
ABUNDANCE RESULTS FOR Ti II

| Element | RMT | λ | $\mathrm{X}(\mathrm{R}, \mathrm{S})$ | Log GF | $2 / 3 \log C_{4}$ | Log (H/L) | Log C | Log (W/L) | Wt. | Log N/N(H) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ti II | 41 | 4300.05 | 1.18 | -0.46 | -8.77 | 0.0 | 4.5412 | -4.3000 | 3 | -8.1687 |
| Ti II | 41 | 4301.93 | 1.16 | -1.11 | -8.77 | 0.0 | 3.9095 | -4.4500 | 3 | -7.9919 |
| Ti II | 41 | 4312.86 | 1.18 | -1.06 | -8.77 | 0.0 | 3.9425 | -4.3900 | 3 | -7.8716 |
| Ti II | 94 | 4316.81 | 2.04 | -1.07 | -8.67 | 0.0 | 3.1608 | -4.9000 | 4 | -7.9519 |
| Ti II | 20 | 4337.92 | 1.08 | -0.90 | -8.77 | 0.0 | 4.1954 | -4.4400 | 3 | -8.2544 |
| Ti II | 20 | 4344.29 | 1.08 | -1.67 | -8.77 | 0.0 | 3.4261 | -4.6200 | 3 | -7.8307 |
| Ti II | 51 | 4394.06 | 1.22 | -1.47 | -8.77 | 0.0 | 3.5045 | -4.6000 | 3 | -7.8771 |
| Ti II | 19 | 4395.03 | 1.08 | -0.50 | -8.77 | 0.0 | 4.6011 | -4.2900 | 3 | -8.1886 |
| Ti II | 61 | 4395.85 | 1.24 | -1.53 | -8.77 | 0.0 | 3.4266 | -4.7100 | 4 | -7.9661 |
| Ti II | 61 | 4409.52 | 1.23 | -2.07 | -8.77 | 0.0 | 2.8969 | -5.0800 | 2 | -7.9047 |
| Ti II | 40 | 4417.72 | 1.16 | -1.18 | -8.77 | 0.0 | 3.8510 | -4.5300 | 3 | -8.1002 |
| Ti II | 93 | 4421.95 | 2.05 | -1.14 | -8.67 | 0.0 | 3.0924 | -4.8500 | 4 | -7.8209 |
| Ti II | 19 | 4443.80 | 1.08 | -0.74 | -8.77 | 0.0 | 4.3659 | -4.4100 | 3 | -8.3497 |
| Ti II | 19 | 4450.49 | 1.08 | -1.41 | -8.77 | 0.0 | 3.6966 | -4.5100 | 3 | -7.9065 |
| Ti II | 31 | 4468.49 | 1.13 | -0.65 | -8.77 | 0.0 | 4.4131 | -4.3700 | 3 | -8.2834 |
| Ti II | 50 | 4533.97 | 1.23 | -0.64 | -8.77 | 0.0 | 4.3390 | -4.2500 | 3 | -7.7524 |
| Ti II | 50 | 4563.76 | 1.22 | -0.86 | -8.77 | 0.0 | 4.1309 | -4.3700 | 3 | -8.0012 |
| Ti II | 60 | 4568.31 | 1.22 | -1.93 | -8.77 | 0.0 | 3.0613 | -5.0000 | 2 | -7.9751 |
| Ti II | 82 | 4571.97 | 1.56 | -0.34 | -8.77 | 0.0 | 4.3449 | -4.2700 | 3 | -7.8484 |
| Ti II | 92 | 4805.11 | 2.05 | -0.76 | -8.67 | 0.0 | 3.5085 | -4.4900 | 2 | -7.6773 |
| Ti II | 86 | 5129.14 | 1.88 | -0.93 | -8.77 | 0.0 | 3.5185 | -4.5700 | 2 | -7.8406 |
| Ti II | 69 | 5336.81 | 1.57 | -1.35 | -8.77 | 0.0 | 3.3931 | -4.8000 | 4 | -8.0570 |

TABLE XXII
Abundance results for v I

| Element | RMT | λ | $\mathrm{X}(\mathrm{R}, \mathrm{S})$ | Log GF | $2 / 3 \operatorname{Log~C}_{4}$ | $\log (\mathrm{H} / \mathrm{L})$ | $\log \mathrm{C}$ | Log (W/L) | Wt. | Log N/N(H) |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| V I | 41 | 4095.49 | 1.06 | 0.08 | -8.77 | 0.0 | 2.7661 | -5.3300 | 1. | -8.0186 |
| V I | 27 | 4111.79 | 0.30 | 0.33 | -8.87 | 0.0 | 3.7057 | -5.9500 | 2 | -9.6295 |
| V I | 52 | 4113.52 | 1.21 | -0.37 | -8.77 | 0.0 | 2.1837 | -5.4400 | 1 | -7.5616 |
| V I | 27 | 4115.19 | 0.29 | 0.0 | -8.87 | 0.0 | 3.3851 | -5.2400 | 1 | -8.5311 |
| V I | 103 | 4342.83 | 1.86 | 0.18 | -8.77 | 0.0 | 2.1784 | -5.3400 | 1 | -7.4425 |
| V I | 22 | 4379.24 | 0.30 | 0.37 | -8.87 | 0.0 | 3.7730 | -4.8000 | 4 | -8.3012 |
| V I | 22 | 4389.97 | 0.27 | -0.06 | -8.87 | 0.0 | 3.3714 | -4.9100 | 4 | -8.0833 |
| V I | 22 | 4406.64 | 0.30 | -0.36 | -8.87 | 0.0 | 3.0457 | -5.2600 | 3 | -8.2157 |
| V I | 22 | 4408.20 | 0.27 | -0.20 | -8.87 | 0.0 | 3.2332 | -5.2400 | 1 | -8.3792 |
| V I | 21 | 4437.84 | 0.29 | -0.94 | -8.87 | 0.0 | 2.4779 | -5.6600 | 1 | -8.0966 |
| V I | 21 | 4444.21 | 0.27 | -0.96 | -8.87 | 0.0 | 2.4768 | -5.3100 | 1 | -7.7059 |
| V I | 87 | 4452.01 | 1.86 | 0.56 | -8.77 | 0.0 | 2.5692 | -5.3600 | 1 | -7.8564 |
| V I | 87 | 4469.71 | 1.85 | 0.33 | -8.77 | 0.0 | 2.3498 | -5.6500 | 1 | -7.9578 |
| V I | 133 | 4553.06 | 2.35 | 0.13 | -8.67 | 0.0 | 1.7177 | -5.2400 | 2 | -6.8637 |
| V I | 109 | 4560.71 | 1.94 | 0.26 | -8.67 | 0.0 | 2.2088 | -5.4500 | 1 | -7.5978 |
| V I | 4 | 4577.17 | 0.0 | -1.38 | -8.87 | 0.0 | 2.3157 | -5.0500 | 2 | -7.2235 |
| V I | 93 | 4686.93 | 1.86 | -0.88 | -8.77 | 0.0 | 1.1516 | -5.7700 | 1 | -6.8869 |
| V I | 131 | 5234.09 | 2.35 | -0.02 | -8.67 | 0.0 | 1.6283 | -5.4900 | 1 | -7.0617 |

TABLE XXIII
ABUNDANCE RESULTS FOR V II,

Element	RMT	λ	$\mathrm{X}(\mathrm{R}, \mathrm{S})$	\log GF	$2 / 3 \log C_{4}$	$\log (\mathrm{H} / \mathrm{L})$	$\log \mathrm{C}$	$\log (\mathrm{W} / \mathrm{L})$	Wt.	Log N/N(H)
V II	9	4002.94	1.42	-1.28	-8.77	0.0	3.6283	-4.7100	3	-8.0033
V II	32	4005.71	1.81	-0.22	-8.77	0.0	4.3414	-4.5500	3	-8.2398
V II	32	4023.39	1.80	-0.35	-8.77	0.0	4.2222	-4.8100	4	-8.7892
V II	9	4036.78	1.47	-1.42	-8.77	0.0	3.4471	-4.9300	3	-8.2042
V II	32	4039.57	1.81	-1.60	-8.77	0.0	2.9651	-5.3000	1	-8.1901
V II	37	4225.23	2.02	-1.07	-8.67	0.0	3.3283	-5.1500	1	-8.3748
V II	225	4232.07	3.96	-0.23	-8.47	0.0	2.4976	-5.2600	1	-7.6757
V II	24	4234.25	1.68	-2.11	-8.77	0.0	2.5910	-5.3900	1	-7.9192

Figure 19. Theoretical Curve of Growth for Ca I

Figure 20. Empirical Curve of Growth for Ca I

Figure 21. Theoretical Curve of Growth for Co I

Figure 22. Empirical Curve of Growth for Co I

Figure 23. Theoretical Curve of Growth for Cr I

Figure 24. Enpirical Curve of Growth for Cr I

Figure 25. Theoretical Curve of Growth for Cr II

Figure 26. Empirical Curve of Growth for Cr II

Figure 27. Theoretical Curve of Growth for Mg I

Figure 28. Empirical Curve of Growth for Mg I

Figure 29. Theoretical Curve of Growth for Mn I

Figure 30. Empirical Curve of Growth for Mn I

Figure 31. Theoretical Curve of Growth for Na I

Figure 32. Empirical Curve of Growth for Na I

Figure 33. Theoretical Curve of Growth for Ni I

Figure 34. Empirical Curve of Growth for Ni I

Figure 35. Theoretical Curve of Growth for Sc II

Figure 36. Empirical Curve of Growth for Sc II

Figure 37. Theoretical Curve of Growth for Si I

Figure 38. Empirical Curve of Growth for Si I

Figure 39. Theoretical Curve of Growth for Ti I

Figure 40. Empirical Curve of Growth for Ti I

Figure 41. Theoretical Curve of Growth for Ti II

Figure 42. Empirical Curve of Growth for Ti II

Figure 43. Theoretical Curve of Growth for V I

Figure 44. Empirical Curve of Growth for V I

Figure 45. Theoretical Curve of Growth for V II

Figure 46. Empirical Curve of Growth for V II
14. The observed profile of the Fe II line indicates that it could be suffering from a serious blending effect or from a misplaced continuum. There is apparently no explanation for the discrepancy between theory and observation for the Fe I line unless this line is being formed in a region of the atmosphere not in local thermodynamic equilibrium.

The Abundance Analysis

The ratio of the abundance of an element to hydrogen was computed for each individual observation according to the procedures outlined in Chapter III. The solar-type model atmosphere (see Chapter II) with an effective temperature of $6350^{\circ} \mathrm{K}$ and $\log \mathrm{g}=4.0$, was used for the analysis employing a turbulence model having a depth independent microturbulent velocity of $3.0 \mathrm{~km} / \mathrm{s}$. The observational data are listed in Tables VIII through Table XXIII. In order, the labels list the element, the multiplet number, the wavelength, the excitation potential of the lower leve1, the logarithm of the product of the statistical weight and the oscillator strength, the damping constant for the quadratic Stark effect, the abscissa for the empirical curve of growth, the logarithm of the equivalent width divided by the wavelength, the statistical weight, and finally the logarithm of the abundance of the element relative to hydrogen. The application of a weighting procedure allows for the computation of a weighted mean abundance for all the lines of an element. Accompanying each table (Figures 19 through 46) are the theoretical curve of growth used for the determination of a mean abundance and the empirical curve of growth for the element under investigation.

The statistical weight of a line was based upon the following procedure. If the equivalent width of a line was measured three or more
times, a statistical weight of two was assigned. Further, if the deviation in the measurements of the equivalent width departed significantly from the average a statistical weight of zero was given to the line. Since the uncertainty in the measurement of the equivalent width increases for the weak lines, lines with an equivalent width of approximately 20 mA were given a total statistical weight of one. An additional statistical weight was assigned to a line depending upon its position on the curve of growth. Small equivalent widths, falling on the linear portion of the curve of growth show more scatter than the stronger lines and so may be suffering from large systematic errors: AIso even though moderately strong lines have equivalent widths more accurately determined they fall upon the flat portion of the curve of growth where a significant error in the abscissa can be produced by a small error in the equivalent width. Strong lines have equivalent widths very sensitive to the mechanisms for damping which occur during line formation and so are unreliable for the analysis: The most accurate results are produced from lines which fall upon the transition region of the curve of growth. These lines are assigned a statistical weight of two; all other lines carry a statistical weight of one due to their position. The total statistical weight of a line is then found by summing the statistical weights from its position and the number of measurements. The errors involved in the determination of the abundances are very difficult to assess. The error involved in the ordinate of the curve of growth has already been discussed elsewhere in this study and attention must be turned to the abscissa of the empirical curve of growth. The most significant source of error for abundances lies in the values of $\log g f$ used for computing the empirical curve of growth. In many in-
stances systematic errors are included in the published results in an unknown manner. Whenever possible all wavelength or excitation potential dependence was eliminated to some degree. In addition to this, little is known about the line broadening mechanism for the wings of spectral lines. This amount of uncertainty in the system of physical constants is entirely open to question. The values used for this analysis could be in error by a factor of two or more. Qualitatively, the random error reported in the measurements of the oscillator strengths gives a lower limit to the uncertainty (~ 0.3 dex) while the upper limit may be as great as 1.0 dex.

Further, limitations upon the fine-analysis procedure limit the reliability of the results. The temperature distribution was based upon a solar model which may not competely describe the state of affairs at all points in the atmosphere or account for the influence of the chromosphere. The manner in which turbulence is theoretically incorporated into the calculations may not adequately describe the physical situation. Finally, there is also the possibility of deviations from thermodynamic equilibrium to be considered, especially for the strong lines.

As a routine check upon the abundance results, a correlation of abundance with the excitation potential and wavelength was investigated for the Fe I lines observed in this study. The results of both these investigations is incorporated into Figure 47. The derived abundances should not depend upon the excitation potential of the lines used for the investigation. Any correlation here indicates that the temperature is incorrect for the region of line formation. Figure 47 shows no evidence of any such dependence of the abundance upon excitation potential. If a systematic error with a functional dependence upon the wave-

Figure 47. The Abundance of Fe I as a Function of the Excitation Potential of the Upper Level
length exists, the abundances will have an additional uncertainty. The earlier results of Evans, Weems and Schroeder (1970) indicated that some dependence might be expected; however, the results of Figure 47 show no overall correlation with the possible exception of the lines of high excitation potential falling between $\lambda \lambda 4000-5000$. In addition to this, the abundances derived for iron in both stages of ionization were the same. This lends further evidence to support the results of this study.

Results for the Individual Elements

Calcium

The results for neutral calcium are displayed in Table VIII and Figures 19 and 20. The f-values used for the analysis come from a tabulation by Wiese, Smith, and Miles (1969). For a large majority of the lines an accuracy of no greater than 10% and as much as 50% can be expected. Twenty-one calcium lines measured by Peebles (1964) were investigated yielding a mean abundance of

$$
\log \frac{N_{\mathrm{Ca}}}{\mathrm{~N}_{\mathrm{H}}}=-6.08(-6.06)
$$

The weighted mean abundances is indicated above by the value in parenthesis. In some of the lines, the inaccuracy in the f-values was reflected in the statistical weight used for the analysis. However, the scatter in the data points is quite low and is reflected in the similar abundance results from both techniques. All lines were grouped together and the mean abundance determined from the $\lambda 5512.98$ line.

Cobalt

The equivalent widths of twelve lines of neutral cobalt used for the abundance determination are listed in Table IX. The source of the oscillator strengths was the compilation of Corliss and Bozman (1962). These f-values were known to contain a systematic excitation potential dependence. An attempt was made to remove this dependence by using a correction factor obtained from the publication by Takens (1970). Figure 21 and Figure 22 indicates the result of this procedure. The scatter in the data is quite large which is primarily the result of the presence of a large number of weak lines in the analysis. The possibility of large systematic errors in the data resulted in a low statistical weight which probably accounts for the difference in the reported abundances. The abundance of Co I in Theta Ursae Majoris was found to be

$$
\log \frac{\mathrm{N}_{\mathrm{Co}}}{\mathrm{~N}_{\mathrm{H}}}=-6.88(-6.57) .
$$

Chromium

The analysis of this element was carried out upon both the neutral and the first stage of ionization. The observation data for the 65 lines of Cr I are reproduced in Table X shown by Figures 23 and 24. The data extend over a wide range of excitation potential and the equivalent widths are generally very dependable (Mangold, 1968). The f-values are those of Corliss and Bozman and have been altered to account for their excitation potential dependence using the Takens (1970) correction factor. The mean abundance of the group was determined to be $-6.80(-6.59)$. For the Cr II lines indicated in Table XI, Corliss and Bozmann f-
values were not available and those of Warner (1967, 1968) were utilized instead. Some of the Warner f-values are empirically derived from stellar sources and so will tend to produce less scatter in the data as indicated by Figures 25 and 26. This does not necessarily imply a better abundance result. The abundance results from the Cr II lines was -6.44 (-6.36) which was somewhat different than obtained for Cr I. The difference in reported abundances from the two stages of ionization is not significant and is probably due to the different scales used for the fvalues. When both stages of ionization are considered, the abundance of chromium was determined to be

$$
\log \frac{\mathrm{N}_{\mathrm{Cr}}}{\mathrm{~N}_{\mathrm{H}}}=-6.62(-6.53)
$$

Iron

Table XII contains a listing of the one hundred and seven lines of Fe I used for the analysis. An additional eighteen Fe II lines, shown in Table XIII, were incorporated for the evaluation of the abundance of iron. f-values from Corliss and Tech (1968) were involved in the computations. Since these values are known to have a systematic excitation potential dependence, a correction factor based upon the amount of shift needed to define a single empirical curve of growth was utilized. The actual factor used has been discussed earlier in this study (Chapter IV).

Theoretical and empirical curves of growth were constructed and the Fe I lines (see Figures 2 and 3) separated into two distinct wavelength. regions, $\lambda 4200$ and $\lambda 5400$. The lines within each region have essentially the same curve of growth. A derived abundance was then obtained from Figures 3 and 4 of -5.20 dex, while a weighted abundance of -5.16 in the
logarithm was determined from Table XII.
The Fe II lines underwent a similar investigation. The theoretical curve of growth for $\lambda 5414.09$ in Figure 4 was computed and used to derive a mean abundance of $\mathbf{- 5 . 2 0}$. From Table XIII a value of -5.23 was computed for the weighted abundance for Fe.II.

The results from both stages of ionization were combined statistically to yield a mean abundance for iron of

$$
\log \frac{N_{\mathrm{Fe}}}{\mathrm{~N}_{\mathrm{H}}}=-5.20(-5.17)
$$

As usual, the weighted average abundance is shown in parenthesis.

Magnesium

Only the neutral atom was investigated for this element since few lines of this element were identified in the atmosphere of Theta Ursae Majoris. The f-values are from Wiese, Smith, and Miles (1969). Again the reported values range in accuracy from 10% to 50%; so in addition to the small number of observational data available, the uncertainty in the abscissa is large. For some unknown reason, the computation of log C_{λ} for the $\lambda 5183.60$ line could not be performed which explains the abundance result appearing in Table XIV for this line. From Figures 27. and 28 a mean abundance of

$$
\log \frac{\mathrm{N}_{\mathrm{Mg}}}{\mathrm{~N}_{\mathrm{H}}}=-4.90(-4.60)
$$

was obtained. The weighted mean value is also shown in parenthesis and both results are questionable as to their accuracy.

Manganese

Corliss and Bozman f-value were used for the analysis of the 22 lines of neutral manganese listed in Table XV. Since most of the data fall on the transition portion of the curve of growth and has been evaluated from a large number of individual measurements, the data should be quite reliable. Figures 29 and 30 show the theoretical and empirical curve of growth constructed for this element. Initially, the theoretical curve was calculated with the normal turbulence model; however, the data points fell far above this curve, suggesting a larger value of the turbulent velocity. A best fit was achieved for a microturbulent velocity of $6 \mathrm{~km} / \mathrm{s}$. This scatter in the data as well as the reliability of the f-values and the equivalent width, support the evidence of unusual microturbulence for the region of line formation of Mn I. A similar phenomenon was observed by Aller (1942) in this investigation of α Cyg where curves of growth for Cr II and Ti II differed substantially from that of Fe II; however, Greenstein (1948) makes no mention of any pecularities in Mn.I in his analysis of several F-type stars, including Theta Ursae Majoris. The probable physical causes for such a phenomenon cannot really be justified by a higher-than-normal microturbulent motion since the lines seem to be formed in about the same depth as for $\mathrm{Fe} I$ and Fe II. Also an excitation potential dependence could be overruled since the Fe I and II lines used for the turbulence analysis were within the range of those of. Mn I. More probably the difficulty lies in the elementary nature of the curve of growth theory.

Using the derived microturbulent velocity of $6 \mathrm{~km} / \mathrm{s}$, the abundance determination yielded the values,

$$
\log \frac{\mathrm{N}_{\mathrm{Mn}}}{\mathrm{~N}_{\mathrm{H}}}=-7.22(-7.02) .
$$

Sodium

The four Na I lines used in the analysis are given in Table XVI, and the curves of growth are displayed as Figures 31 and 32. The theoretical curve is for $\lambda 5889.95$ and $\chi(r, s)=0$ e.v. A11 the observed data fall on the mean curve of growth yielding a derived abundance of

$$
\log \frac{\mathrm{N}_{\mathrm{Na}}}{\mathrm{~N}_{\mathrm{H}}}=-5.72(-5.80) .
$$

The absolute scale for the f-values is from the tabulation by Wiese, Smith and Miles (1969). The accuracy in the f-values of the sodium Dlines is three per cent and for the higher excitation potential ones, twenty-five per cent. This tends to re-enforce the reliability of the abundance result even though the number of observations is low.

Nicke

The observation data used for the analysis of this element are listed in Table XVII while the curve of growths employed for the study are shown by Figures 33 and 34 . Most of the data are quite reliable, falling on the transition region of the curve of growth, and the scatter is low. The mean abundance determined for Ni I from Figures 34 is

$$
\log \frac{\mathrm{N}_{\mathrm{Ni}}}{\mathrm{~N}_{\mathrm{H}}}=-5.64(-5.55) \text {. }
$$

Differences between the results from the two abundance techniques are not significant.

The oscillator strengths come from the work of Corliss and Bozman (1962). Any dependence of the results upon the excitation potential of the line was at least partially removed by using a correction factor published by Takens (1970).

Scandium

The analysis of Sc II was performed using the corrected (Takens, 1970) f-values of Corliss and Bozman (1962); therefore, the observational data should be relatively free from any excitation potential dependence. The six lines employed in the analysis are listed in Table XVIII and the abundance determined using Figures 35 and 36 . If for no other reason the luck of observations introduces some doubts about the reliability of the results. However, the scatter is low indicating the absence of any systematic errors. The mean abundance derived from the curve of growth and by the weighting method is

$$
\log \frac{\mathrm{N}_{\mathrm{Sc}}}{\mathrm{~N}_{\mathrm{H}}}=-8.76(-8.51)
$$

Silicon

The observational data used for the analysis of this neutral element are given by Table XIX and the curve of growths employed by Figures 37 and 38. The available data are disappointing and the reliability of the f-values no better than 50%. The low scatter in the data points out the false sense of security induced by the appropriate choice of the scale of the f-values. The relative abundance of Silicon was found to be

$$
\log \frac{N_{S i}}{N_{H}}=-4.88(-4.88)
$$

Titanium

Fourty-nine lines of Ti I and twenty-two lines of Ti II listed in Tables XX and XXI were used for the analysis of Titanium. The results for Ti I employed the use of f-values of Corliss and Bozman. A correction factor (Takens, 1970) was utilized to remove the excitation potential dependence of the absolute scale used by these investigators. For Ti II, f-values compiled by Warner $(1967,1968)$ were employed. No systematic dependence upon excitation potential is known for these fvalues.

Theoretical curves of growth, Figures 39 through 42, were calculated using the turbulence model suggested by the analysis of the iron lines. This yielded a curve of growth falling well below the observation points on the empirical curve of growth. The microturbulence velocity was then increased until a best fit was achieved for both Ti I and Ti II for a depth independent model with a microturbulent velocity of 6 km / s. This phenomenon was also observed for Mn I and similar effects have been observed in other stars (Aller, 1942; Greenstein, 1948). It is significant that this phenomenon is common to both stages of ionization, not just an effect due to an abnormal population difference for the two stages of ionization. That is, the ionization equilibrium is correct. Stream motions could be the physical cause or perhaps some factor unaccounted for by the theory used to compute the curve of growth.

The abundance results ușing a $6 \mathrm{~km} / \mathrm{s}$ microturbulence velocity were determined for Ti I to be $-7.20(-7.28)$ and $-7.56(-7.96)$. The
difference between the results for the two stages of ionization are probably due to differences between the absolute scales of the f-values used for the analyses. For both stages of ionization, the mean abundance is

$$
\log \frac{\mathrm{N}_{\mathrm{TI}}}{\mathrm{~N}_{\mathrm{H}}}=-7.38(-7.46)
$$

The accuracy of the result is high since a large number of observational data was available covering a large range of excitation potentials. The statistical weight assigned to most of the lines was large which indicates that the measured equivalent widths used in the analysis were very reliable.

Vanadium

Eighteen lines of V I are listed in Table XXII and the curves of growths in Figure 43 and 44. The theoretical curve is for $\lambda 4342.83$ and $\chi_{\ell}=1.86 \mathrm{ev} . \quad$ The f-values are those of Corliss and Bozman (1962) and the systematic errors removed using the appropriate correction factor (Takens, 1970) for the excitation potential of the upper level of the transition. The scatter and quality of the data is such that the abundance results probably show a substantial error. For the V I Iines a derived abundance of -8.26 was obtained from Figure 44 while a weighted mean abundance of -7.54 was found.

The V II results were based upon eight observation points which are listed in Table XXIII. Because of the incompleteness of the Corliss and Bozman list of f-values, Warner's $(1967,1968)$ compilation was utilized. The tendency of the Warner scale is to produce less scattering; however,
the accuracy is not necessarily increased.
Figures 45 and 46 yielded V II abundances with a mean value of -8.77 (-8.17).

When the results from both stages of ionization were incorporated, an abundance of

$$
\log \frac{N_{V}}{N_{H}}=-8.24(-7.68)
$$

was determined. Of the two techniques the weighted mean abundance, enclosed in parenthesis above, is more reliable.

CONCLUSIONS

The Model Atmosphere

The spectral analysis of the star Theta Ursae Majoris was performed using a pressure-opacity flux model with a scaled solar temperature distribution. From a grid of models, selection of the representation model was based upon an analysis of the hydrogen line profiles as well as U-B-V and multi-color photometry. A representative model atmosphere with an effective temperature of $6350^{\circ} \mathrm{K}$ and logarithm of the surface gravity of 4.0 was employed for the analysis.

Observed profiles of the iron-peak elements were measured and compared to those calculated on the basis of the assumed model. Near the cores of the lines, the temperature distribution predicted stronger intensities than were observed. This suggests that the empirical solar temperature distribution fails to adequately represent the temperature stratification of Theta Ursae Majoris near the boundary of the atmosphere.

The Turbulence Model

The presence of large and small scale mass motions in the atmosphere of Theta Ursae Majoris was investigated from an analysis of the iron lines. All theoretical calculations assume local thermodynamic equilibrium and employ the Planckian gradient technique.

Both theoretical and empirical curves of growth were computed for the model atmosphere selected for Theta Ursae Majoris. In order to achieve a.fit between the empirical and calculated curve, it was necessary to include a small microturbulent velocity of $3 \mathrm{~km} / \mathrm{s}$. This value is somewhat smaller than was reported in an earlier analysis (Evans, Weems and Schroeder, 1970). The value of the microturbulent velocity was derived from the curve of growth using a homogeneous; depth-independent model.

From the correlation existing between the halfwidth of a line and its equivalent width, an assessment of the amount of macroturbulent motion in the stellar atmosphere was derived. In order to achieve the results indicated by the empirical curve of Fe I , an apparent $3.5 \mathrm{~km} / \mathrm{s}$ macroturbulent velocity was found to be necessary. The difference which exist between this result and the value reported earlier (Evans, Weems, and Schroeder, 1970) are due to a correction for instrument broadening of the lines introduced by the spectrographs at Dominion Observatory.

The macroturbulence calculations were performed assuming cells with velocity components satisfying a dispersion relation. The result obtained from the iron lines was evaluated using a macroturbulence model of the atmosphere having homogeneous, depth-independent components.

The Analysis of the Line Profile

Using the model atmosphere selected for this star, line profiles were computed for a few selected lines of Fe I and Fe II. In a comparison with the observed profiles, it was necessary to include the turbulence model and increase the damping in the wings of the lines to achieve a fit. The observed profiles of Theta Ursae Majoris show abnormally weak
metal Iines compared to other stars in the same spectral class. This was demonstrated in the difference between central intensities predicted by the model and the observed quantity. A portion of this effect was also thought to be due to an incomplete temperature distribution near the outer boundary of the atmosphere.

The Abundances

The abundances of twelve elements found to exist in Theta Ursae Majoris were determined. Selection was based upon the availability and the quality of observational data for this star. The abundance of each individual line was computed using a theoretical curve of growth based upon the analysis of the Fe I lines.

The evaluation of the titanium and manganese lines produce an interesting anomaly in the size of the predicted microturbulent velocity. The analysis of all elements, some in two stages of ionization confirm the conclusion derived from the Fe I and Fe II lines that the microturbulence in the atmosphere is very close to $3 \mathrm{~km} / \mathrm{s}$; however, the empirical curves of growth for $\mathrm{Ti} \mathrm{I}, \mathrm{Ti}$ II, and Mn I could only be described by the addition of a velocity distribution twice as large. Curiously enough, this effect may not be physical in nature since the abundances reported by Mangold and Weems do not differ by a significant amount.

For the sake of completeness, the abundance results from this study are compared to those obtained in a coarse analysis of Theta Ursae Majoris by Mangold (1968) and to the solar abundances derived by Goldberg, Muller, and Aller (1960). The abundances 1isted in Table XXIV are determined relative to the hydrogen abundance in the stellar atmosphere. The first column lists the element for which an abundance was derived.

TABLE XXIV

A COMPARISON OF ABUNDANCE RESULTS

Element	GMA Solar Abundances	$\begin{aligned} & \text { Mangold } \\ & \Theta \mathrm{U} \text { Ma } \end{aligned}$	Weems OU Ma		$\triangle \log N / N_{H}$	
			Derived	Weighted	Derived	Weighted
Ca	-6.12	-6.26	-6.08	-6.06	+0.18	+0.20
Co	-7.36	-7.87	-6.88	-6.57	+0.99	+1.30
Cr	-6.64	-6.93	-6.62	-6.53	+0.31	+0.40
Fe	-5.43	-5.69	-5.20	-5.17	+0.49	+0.53
Mg	-4.60	-5.54	-4.90	-4.60	+0.64	+0.94
Mn**	-7.10	-7.51	-7.22	-7.02	+0.29	+0.49
Na	-5.70	-5.96	-5.72	-5.80	+0.34	+0.16
Ni	-6.09	-6.48	-5.64	-5.55	+0.84	+0.93
Si	-4.50	-5.20	-4.88	-4.88	+0.32	+0.32
Sc**	-9.18	-8.79	-8.76	-8.51	+0.03	+0.28
Ti**	-7.32	-7.49	-7.38	-7.46	+0.11	+0.03
V	-8.30	-8.60	-8.24	-7.68	+0.36	+0.92

* The results from Mangold were calculated on the basis of the Sc II lines.
**
The result reported by Weems was calculated using a $6 \mathrm{~km} / \mathrm{s}$ microturbulent velocity.

Column two gives the solar abundances of Goldberg, Muller and Aller for the element in its first stage of ionization. The third column contains the abundances derived by Mangold for the first stage of ionization except for Scandium. Because of insufficient data; the results for Scandium are based upon the Sc II lines. The abundances listed by Mangold were determined relative to their respective values in the sun and so had to be converted to the form used in this analysis by the expression

$$
\log \left(\frac{N}{N_{H}}\right)=\log \left(\frac{N}{N_{H}}\right)+\log \left(\frac{N_{\text {stan }}}{N_{\text {sun }}}\right) .
$$

Solar values for the abundances of the elements with respect to hydrogen were obtained from the tabulation of Goldberg, Muller and Aller (1960). The column heading, Weems, lists the derived abundances relative to hydrogen as determined from the mean curve of growth and also the statistically weighted value. The final column,

$$
\Delta \log N / N_{H} \equiv \log \left(N / N_{H}\right)_{\text {Weems }}-\log \left(N / N_{H}\right)_{\text {Mangold }}
$$

The abundances determined for Theta Ursae Majoris are very much like those in the sun. This result has been confirmed by other investigations of stars in the same spectral category. A slight tendency towards over abundance exists for the observed elements except for sodium, silicon, and titanium; however, direct comparison of the Goldberg, Muller and Aller solar abundances is inconclusive because of a difference in the choice of f-values used for the studies. Table XXIV also indicates that the abundances obtained by using the differential curve of growth techniques of Mangold were consistently smaller than their corresponding values as determined from the detailed analysis technique utilized in
this study. This effect is probably the result of an inclusion of a microturbulent velocity as an integral part of the calculations as well as an elimination of most of the systematic errors in the oscillator strengths.

In summary, this investigation produced evidence to suggest that the atmosphere of Theta Ursae Majoris contains several important sources of line broadening. Both turbulent effects, microturbulence and macroturbulence, play important roles during line formation in this stellar object and are present in this star in about equal amounts.

An analysis of the line profiles indicates that in the line wings damping from other line broadening mechanisms plays just as dominant a role as does turbulence in the reproduction of the observed triangular profiles of Theta Ursae Majoris. Further, the profiles suggests that the scaled-solar temperature distribution does not adequately fit that of Theta Ursae Majoris near the outer boundary of the atmosphere.

Intensity anomilies were confirmed for Titanium and Manganese. Both of these elements show curves of growth which indicate microturbulent velocities twice as large as the value predicted by the iron lines.

Finally, this study confirms earlier reports of no large abundance differences between the sun and stars in the spectral class F; and the results are somewhat larger than those predicted by the curve of growth analysis of Mangold.

Allen, C. W. and Asaad, A. S. 1957, M. N. 117, 36.
Aller, L. H. 1942, Ap. J. 95, 73.

- 1949, Ap. J. 109, 244.
. 1960, Stellar Atmospheres, ed. J. L. Greenstein (Chicago: University of Chicago Press), p. 156.
. 1963, Astrophysics (2nd. ed.; New York: The Ronald Press Company).
- 1966, I.A.U. Symposium No. 26, Abundance Determinations in Stellar Spectra, ed. H. Hubenet (New York: Academic. Press).

Aller, L. H., Elste, G. and Jugaku, J. 1957, Ap. J. Supp1. 3, 1.
Aller, M., Elste, Go and Williams, J. 1970, The University of Michigan Abundance Catalogue, (Ann Arbor: Astronomy Department, The University of Michigan).

Ambartsumyan, V. A. 1958, Theoretica1 Astrophysics, (London: Pergamon Press).

Babcock, H. W. 1960, Stellar Atmospheres, ed. J. L. Greenstein (Chicago: University of Chicago Press), p. 282.

Böhm, K. 1960, Stellar Atmospheres, ed. J. L. Greenstein (Chicago: University of Chicago Press), p. 88.

Boyarchuck, M. E. 1960, Isv. Crim. Astrophysics Obs., 24, 115.
Boyarchuck, M. E. 1961, Isv. Crim. Astrophysics Obs., 26, 287.
Bulman, J. A. 1971, Ph.D. Thesis, Oklahoma State University, unpublished.

Chandrasekhar, S. 1950, Radiative Transfer, (New York: Dover Publications, Inc。).

Chiu, H.-Y., Warasila, R. L., and Remo, J. L. 1969, Stellar Astronomy, Vol. 1 and 2.

Corliss, C. H. and Bozman, W. R. 1962, NBS Monograph No. 53 (Washington,
D.C.: Department of Commerce).

Corliss, C. H. and Tech, J. L. 1968, NBS Monograph No. 108, (Washington, D.C.: Department of Commerce).

Cowley, C. R, 1970, The Theory of Stellar Spectra (New York: Gordon and Breach).

David, K. 1961, Z. fo Ap. 53, 37.
Elste, G. 1953, Z. f. Ap. 33, 39.
——. 1955, Z. f. Ap. 37, 184.
\longrightarrow 1967, Ap. J. 148, 857.
Evans, J. C. 1966, Ph.D. Thesis, University of Michigan, unpublished.
. 1970, 1971, private communication.
Evans, J. C. and Schroeder, L. W. 1969, Bull. Am. Astron. Soc. VoI. 1, No. 1, p. 341.

Evans, J. C., Weems, M. L. B., and Schroeder, L. W. 1970, Bull. Am. Astron. Soc: Vol. 3, No. 1, pt. 1, p. 10.

Gingerich, 0. 1964, First Harvard-Smithsonian Conference on Stellar Atmospheres (Smithsonian Special Report No. 767), p. 17.

- 1969, Theory and Observation of Normal Stellar Atmospheres
(Cambridge: The M.I.T. Press).
Glennon, B. M. and Wiese, W. L. 1962, NBS Monograph No. 50 (Washington, D.C.: Department of Commerce).

Goldberg, L., Kopp, R. A. and Dupres, AA. K. 1964, Ap. J. 140, 707.
Goldberg, L., Muller, E.A. and Aller, L. W. 1960, Ap. J. Suppl. 5, 1.
Griem, H. R. 1964, Plasma Spectroscopy (New York: McGraw-Hill Book. Company).

Greenstein, J. L. 1948, Ap. J. 107, 151.
Gussman, E.A. 1963, Naturwissenschaften 50, 495.
Heuvel, E. P. J. van den. 1963, B. A. N. 17, 148.
Huang, S. S. and Struve, 0. 1952, Ap. J. 116, 410.
Huang, S. S. and Struve, O. 1960, Stellar Atmospheres, ed. J. L. Greenstein (Chicago: University of Chicago Press) p. 321.

Hulst, H. C. van de and Reesinck, J. J. M. 1947, Ap. J. 106, 121.

Jeffries，J．T．1968，Spectral Line Formation，（Waltham，Massachusetts： Blaisdell Publishing Company）．

Jeffries，J．T．and White，0．R．1967，Ap．J．150，1051．
Johnson，H．L．and Morgan，W．W．1953，Ap．J．114， 522.
Jugaku，J。 1957，Ph．D．Thesis，University of Michigan，unpublished．
Keenan，P．C．and Morgan，W．W．1951，Astrophysics，ed．J．A．Hynek （New York：McGraw－Hill Book Co．），pp．12， 27.

Kourganoff，V．1952，Basic Methods in Transfer Problems，（Oxford：Ox－ ford University Press）．

Mangold，E．C．1968，Ph．D．Thesis，Oklahoma State University，unpub－ lished．

Mangold，E．C．，Peebles，H．O．and Schroeder，L．W．1968，Astron．J． 73，S190。

Mattig，W．and Schröter，E．H．1961，Z．f．Ap．52， 195.
Matsushima，S．1964，Proc．Harvard－Smithsonian Conf．Stellar Atmos－ pheres，1st（Cambridge：The M．I．T．Press），P．5。

Mihavas，P．1970，Stellar Atmospheres，（San Francisco：W．H．Freeman and Company）．

Miles，B．M．and Wiese，W．L．1970，NBS Special Publication No． 320 （Washington，D．C．：Department of Commerce）．

Minnaert，M．S．and Slob，C．1931，Proc．Amsterdam Acad．3A，pt．1， 542 。

Mitchell，R．I．and Johnson，H．L．1962，Comm．of the Lunar and Plane－ tary Lab．1， 73.

Moore，C．E．1959，Revised Multiplet Table（NBS Tech Note 36 ［Washing－ ton：Government Printing Office］）．

Mo1tz，L．1970，Astrophýsics and Stellar Structure（Waltham，Massachu－ setts：Ginn and Company）．

Mugglestone，D．1958，Mon．Not．R。Astr．Soc．118， 432.
＿－＿1965，Second Harvard－Smithsonian Conference on Stellar Structures（Smithsonian Special Report No．174）．

Muller，E．A．and Mutschlecner，J．P．1964，Ap．J．Suppl．9，1．
Myrick，E．G．1970，Master＇s Thesis，Oklahoma State University，unpub－ lished．

Parsons，S．B．1967，Ap．J．150，263．
Pecker，J．C．1965，Annual Review of Astronomy and Astrophysics（Palo Alto：Annual Reviews，Inc．），Vol．3，p． 135.

Peebles，H．O．1964，Ph．D．Thesis，Oklahoma State University，unpub－ lished．

Rogerson，J．B．1969，Ap．J．158， 797.
Regemorten，H。van。 1965，Annual Review of Astronomy and Astrophysics （Palo AIto：Annual Reviews，Inc．），Vol．3，p． 71.

Strobel，R．Cayrel and G．Cayre1 de．1966，Annual Review of Astronomy and Astrophysics（Palo Alto：Annual Review，Inc．），Vol．4，p． 1.

Stromgren，B．1940，Pub．Copenhagen Obs．，Vol．1，127．
Takens，R．J．1970，Astron．and Astrophys．5， 244.
Underhill，A．B．1954，Mon．Not．R．Astr．Soc：114， 558.


``` Stellar Spectra，ed．H．Hubenet；（New York：Academic Press），p． 118 ．
Unsold，A．1955，Physik der Sternatmospharen（Berlin：Springer－Verlag）．
Wallerstein，G．1966，I．A．U．Symposium No．26，Abundance Determinations in Stellar Spectra，ed．H．Hubenet（New York：Academic．Press），p． 238.
```

Wares，G。W．，Wolnick，S．S．and Berthel，R．O．1970，Ap．J．162， 1037.
Warner，B．1967，Mem．R．Astr．Soc．70， 165.
—＿1968，Mon．Nat．R．Astr．Soc．138， 229.
Weidmann，V。 $1955, \mathrm{Z}$ 。f。Ap。36，101。
Wiese，W．L．，Smith，M．W．and Miles，B．M．1969，NSRDS－Nat1。Bur．Stds． No． 22 （Washington，D．C．：U．S．Government Printing Office），Vol．2， p． 1 ．

Withbroe，G．L．1969，Solar Physics 9， 19.
Wright，K．O．1948，Pub。 Dom．Ap．Obs．Victoria，VII，No． 1. －1962，Astronomical Techniques，ed．W．A．Hiltner（Chicago： The University of Chicago Press），p．83．
－ 1966 ，I．A．U．Symposium No． 26 ，Abundance Determinations in Stellar Spectra（New York：Academic Press），pp．15－35． ．1971，private communication．

APPENDIX A

THE MODEL ATMOSPHERE: THEORY AND COMPUTATIONAL PROCEDURE

This appendix covers the details of the theory used for a fine analysis of a stellar atmosphere. The model atmospheric program is based upon a computer program developed by Elste and Evans (1966, 1969). All the programs used for the analysis may be obtained through Dr. J. C. Evans, Kansas State University.

Excitation and Ionization of Atoms
in Stellar Atmospheres

In a gaseous atmosphere in which a condition of local thermodynamic equilibrium exists at each layer, the atoms, ions, and electrons all interact to bring about a distribution among the various levels to which the atoms may be excited. Considering only the neutral and singly ionized particles, the Saha equation, the Boltzmann equation, and the perfect gas law specify the contribution to the total gas pressure and the electron gas pressure of the various species occurring in the atmosphere. Through the Saha equation, Aller (1963) expresses the number of ionized atoms in the rth excited state for a given temperature and electron pressure as

$$
\begin{gather*}
\frac{\mathrm{n}_{1}}{\mathrm{n}_{\mathrm{o}}}=10^{\log \left(\mathrm{u}_{1} / \mathrm{u}_{\mathrm{o}}\right)+\left(9.0801-2.5 \log \theta-\log \mathrm{P}_{\mathrm{e}}\right)} \tag{A-1}\\
-x_{0} \theta \equiv \frac{\Phi_{i}}{\mathrm{P}_{\mathrm{e}}}
\end{gather*}
$$

Here $\mathrm{n}_{1}=$ the number of singly ionized atoms of species i per unit volume,

$$
\begin{aligned}
\mathrm{n}_{0} & =\text { the number of neutral atoms of species } i \text { per unit volume, } \\
u_{1}(\theta) & =\text { the partition function for singly ionized atoms, } \\
\mathbf{u}_{0}(\theta) & =\text { the partition function for neutral atoms, } \\
\theta & =5040 / T\left({ }^{\circ} \mathrm{k}\right), \\
\mathrm{P}_{\mathrm{e}} & =\mathrm{N}_{\mathrm{e}} \mathrm{kT}=\text { the electron pressure in the atmosphere. }
\end{aligned}
$$

Now defining the degree of ionization to be the ratio of the number of ionized atoms to the total number of atoms irrespective of their state of ionization gives,

$$
\begin{equation*}
X_{i} \equiv \frac{n_{1}}{n_{0}+n_{1}}=\frac{n_{1} / n_{o}}{1+n_{1} / n_{0}}=\frac{\Phi_{i} / P_{e}}{1+\Phi_{i} / P_{e}} \tag{A-2}
\end{equation*}
$$

and for the ratio of all atoms, ions, and electrons to electrons,
$\frac{N}{N_{e}}=n_{H e}+\frac{\sum_{i}\left(n_{0}+n_{1}+n_{e}\right) i}{\sum_{i}\left(n_{e}\right) i}=n_{H e}+\frac{\sum\left(1+X_{i}\right)\left(n_{o}+n_{1}\right) i}{\sum X_{i}\left(n_{o}+n_{1}\right) i}$,
where $n_{H e}$ is the number of helium atoms. If there is but one stage of ionization, $n_{e}=n_{1}$ and using the ideal gas relation, Equation ($A-3$) becomes

$$
\begin{equation*}
\frac{N}{N_{e}}=\frac{P_{g}}{P_{e}}=\frac{\sum_{i}\left(1+X_{i}\right) \varepsilon_{i}}{\sum X_{i} \varepsilon_{i}} \tag{A-4}
\end{equation*}
$$

where $\varepsilon_{i} \equiv \frac{N_{i}}{N_{H}}=\frac{\left(n_{o}+n_{i}\right) i}{n_{H}}$ represents the number abundance of species $i_{0} X_{\mathrm{He}} \equiv 0$ because of the assumption of no helium ionization, and the
summation is over all elements. For computational purposes Weidmann (1955) has shown that the ratio P_{g} / P_{e}^{2} is more important so

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{g}}}{\mathrm{P}_{\mathrm{e}}^{2}}=\frac{\sum\left(1+\mathrm{X}_{i}\right) \varepsilon_{i}}{\sum \mathrm{X}_{i} \varepsilon_{i} P_{e}} \tag{A-5}
\end{equation*}
$$

The Continuous Absorption Coefficient

To calculate a model atmosphere, it is sufficient, once the effective temperature and surface gravity are defined, to know the opacity as functions of the physical parameters. The calculation of the continuous absorption coefficient for the continuum proceeds under the following assumptions: (1) all molecular absorption is negligible with the exception of H_{2}^{+}; (2) all negative ion absorption is neglected except H^{-}; and (3) the absorption by metals can be treated in the same manner as hydrogen. The principal source of absorption in the continuum is due to bound-free (bf) and free-free (ff) absorption due to $\mathrm{H}^{-}, \mathrm{H}, \mathrm{H}_{2}^{+}$. In addition to these, the metals may become appreciable absorbers and there may be Thompson scattering by electrons and Rayleigh scattering by hydrogen. Gingerich (1969) gives the following expression for the Rayleigh scattering coefficient per hydrogen atom: $\sigma_{R}=5.799 \times 10^{-3} \lambda^{-4}+1.422$. $10^{-6} \lambda^{-6}+2.784 \lambda^{-8}$. The Thompson scattering coefficient per electron is (Unsold 1955): $\sigma_{T}=\frac{8 \pi e^{4}}{3 m^{2} \lambda^{4}}=0.66515 \times 10^{-24}$. While the relative importance of the positive hydrogen molecule as a function of the temperature and is never very great (Matsushima, 1964) its contribution is included in the total absorption coefficient. Evans (1966) has tabulated the continuous absorption coefficient data for hydrogen for various wavelength intervals ranging from $\lambda 2000$ to $\lambda 21000$. The total absorption
coefficient per hydrogen particle per unit electron pressure may then be expressed as (Evans 1966):

$$
\begin{equation*}
\frac{K_{\lambda}}{\mathrm{P}_{\mathrm{e}}}=\left[\frac{{ }_{\lambda}{ }_{\lambda} \text { (Hydrogen) }}{\mathrm{P}_{\mathrm{e}}}+\frac{\mathrm{K}_{\lambda} \text { (Metals) }}{\mathrm{P}_{\mathrm{e}}}\right]\left(1-10^{-\chi_{\lambda}{ }^{\theta}}\right)+\frac{\sigma}{\mathrm{P}_{\mathrm{e}}}, \tag{A-6}
\end{equation*}
$$

where the term in parenthesis represents the stimulated emission factor which must be incorporated into all absorption processes.

Hydrostatic Equilibrium

The expression invoking hydrostatic equilibrium, may be stated in terms of the variable of depth, the logarithm of the continuum optical depth at $5000 \AA$, as

$$
\begin{equation*}
\mathrm{dP}_{\mathrm{g}}(\mathrm{x})=\frac{\mathrm{g} \mathrm{~m}_{\mathrm{o}}}{\mathrm{~K}_{\mathrm{o}}} \Sigma \varepsilon_{i} \mu_{i}\left(\frac{\tau_{0}}{\log _{10^{e}}}\right) \mathrm{dx} \tag{A-7}
\end{equation*}
$$

This expression is most easily integrated, from the top of the atmosphere ($\mathrm{P}_{\mathrm{g}} \equiv 0$) to the depth x , to obtain the gas pressure by first multiplying by $\mathrm{P}_{\mathrm{g}}{ }^{2}$ (Evans, 1966).

The integrand on the right hand side of the above expression has been rearranged so as to employ the known function $\mathrm{P}_{\mathrm{g}} / \mathrm{P}_{\mathrm{e}}{ }^{2}$. Integration of the left hand side yields
or in the more convenient form

$$
\begin{align*}
& \cdot \log P_{g}=\frac{2}{3} \log \left\{\frac{3}{2} \frac{\mathrm{gm}_{o} \sum \varepsilon_{i} \mu_{i}}{\log \mathrm{e}}\right\} \\
& \left.+2 / 3 \log \left\{\int_{-\infty 0}^{\mathrm{X}}{\underset{\mathrm{P}}{\mathrm{e}}}_{\mathrm{P}_{\mathrm{g}}^{2}}\right)^{\frac{1}{2}} \frac{\tau_{0}}{\mathrm{~K}_{\mathrm{o}} / \mathrm{P}_{\mathrm{e}}} \mathrm{dx}\right\} . \tag{A-10}
\end{align*}
$$

Writing the electron pressure as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{e}}=\left[\mathrm{P}_{\mathrm{g}}\left(\mathrm{P}_{\mathrm{e}}^{2} / \mathrm{P}_{\mathrm{g}}\right)\right]_{\mathrm{l}}^{\frac{1}{2}} \tag{A-11}
\end{equation*}
$$

and taking the logarithm of the expression gives the electron pressure in terms of the gas pressure and the function $\mathrm{P}_{\mathrm{g}} / \mathrm{P}_{\mathrm{e}}{ }^{2}$,

$$
\begin{equation*}
\log \mathrm{P}_{\mathrm{e}}=\frac{1}{2}\left[\log \mathrm{P}_{\mathrm{g}}-\log \mathrm{P}_{\mathrm{g}} / \mathrm{P}_{\mathrm{e}}^{2}\right] \tag{A-12}
\end{equation*}
$$

Surface Flux

The equation of transfer of radiation through a stellar atmosphere has been solved by Kourganoff (1952) to yield an integral equation for the radiative flux

$$
\begin{equation*}
F_{\lambda}(0)=2 \int_{0}^{\infty} S_{\lambda}\left(\tau_{\lambda}^{\prime}\right) E_{2}\left(\tau_{\lambda}^{\prime}\right) d \tau_{\lambda}^{\prime} . \tag{A-13}
\end{equation*}
$$

The quantity S_{λ} appearing in the integrand is the source function which under the assumption of LTE is none other than the Planck function. $E_{2}\left(\tau_{\lambda}\right)$ represents the exponential-integral function,

$$
E_{n}(x)=\int_{1}^{\infty} e^{-x \omega} \frac{d \omega}{\omega^{n}}
$$

while the optical depth is defined as

$$
\begin{equation*}
\tau_{\lambda}^{\prime}=\int_{-\infty 0}^{x} \frac{K_{\lambda}}{K_{0}}\left(\frac{\tau_{0}}{\operatorname{Mod}}\right) d x \tag{A-14}
\end{equation*}
$$

Mod is defined so as to represent the logarithm to base ten of e and is 0.43429 .

Assuming that $B_{\lambda}\left(\tau_{\lambda}\right)$ remains constant over the range $0 \leq \tau_{\lambda} \leq \varepsilon$, Equation (A-13) becomes,

$$
\begin{equation*}
\mathrm{F}_{\underline{\lambda}}(0)=2 \mathrm{~B}_{\lambda}(\varepsilon) \int_{\tau_{\lambda}=0}^{\tau_{\lambda}=\varepsilon} \mathrm{E}_{2}\left(\tau_{\lambda}\right) \mathrm{d} \tau_{\lambda}+\int_{\tau_{\lambda}=\varepsilon}^{\tau_{\lambda}=\infty} 2 \mathrm{~B}_{\lambda}\left(\tau_{\lambda}\right) \mathrm{E}_{2}\left(\tau_{\lambda}\right) \mathrm{d} \tau_{\lambda} . \tag{A-15}
\end{equation*}
$$

From the definition of the exponential-integral function, the first integral on the right hand side of Equation (A-15) is

$$
\int_{\tau_{\lambda}=0}^{\tau_{\lambda}=\varepsilon} E_{2}\left(\tau_{\lambda}\right) d \tau_{\lambda}=-E_{3}\left(\tau_{\lambda}\right)+\frac{1}{2}
$$

while the second integral, when evaluated by integration by parts, is found to be

$$
\int_{\tau_{\lambda=\varepsilon}}^{\tau_{\lambda}=\infty} 2 B_{\lambda}\left(\tau_{\lambda}\right) E_{2}\left(\tau_{\lambda}\right) d \tau_{\lambda}=\int_{\log \tau_{0}(\varepsilon)}^{\infty} 2 E_{3}\left(\tau_{\lambda}\right) \frac{d B_{\lambda}\left(\tau_{\lambda}\right)}{d\left(\log \tau_{\lambda}\right)} \frac{\operatorname{Mod}}{\tau_{\lambda}} d \tau_{\lambda} .
$$

When these two results are combined, they yield the expression for the f1ux,

$$
\begin{equation*}
F_{\lambda}(0)=B_{\lambda}(\varepsilon)+\int_{\log \tau_{0}(\varepsilon)}^{\infty} 2 E_{3}\left(\tau_{\lambda}\right) \frac{d B_{\lambda}\left(\tau_{\lambda}\right)}{d\left(\log \tau_{\lambda}\right)}\left(\frac{\mathcal{M o d}_{\lambda}}{\tau_{\lambda}} d \tau_{\lambda} .\right. \tag{A-16}
\end{equation*}
$$

Equation (A-16) has been derived under the assumption that $B_{\lambda}\left(\tau_{\lambda}\right)$ in-
creases less than exponentially over the range $\varepsilon \leq \tau_{\lambda} \leq \infty$. For small enough intervals in $x=\log \tau_{0}$, the gradient of the source function can be assumed to be independent of τ_{λ} (Evans, 1966) so the integration can be replaced.by summations of the type

$$
\begin{equation*}
F_{\lambda}(0)=B_{\lambda}(\varepsilon)+\operatorname{Mod} \cdot \sum_{x}^{\infty} \frac{d B_{\lambda}}{d\left(\log \tau_{\lambda}\right)} \Delta(x), \tag{A-17}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta(x) & =\int_{{ }_{\lambda}{ }_{\lambda}\left(x_{1}\right)}^{\tau_{\lambda}\left(x_{2}\right)} 2 E_{3}\left(\tau_{\lambda}\right) \frac{d \tau_{\lambda}}{\tau_{\lambda}}, \\
& =\int_{{ }_{\lambda}{ }_{\lambda}\left(x_{1}\right)}^{\tau_{\lambda}\left(x_{2}\right)} 2\left[\int_{1}^{\infty} e^{-\tau_{\lambda}} \frac{d \omega}{\omega}\right] \frac{d \tau_{\lambda}}{\tau_{\lambda}}, \\
& =\frac{1}{2}\left[E_{1}\left(\tau_{\lambda}\right)\left(2-\tau_{\lambda}{ }^{2}\right)-e^{-\tau_{\lambda}}\left(1-\tau_{\lambda}\right)\right]_{\tau_{\lambda}}^{\tau_{\lambda}}\left(x_{2}\right)
\end{aligned} .
$$

As the optical depth increases, Δ decreases rapidly (Evans, 1966) so that the summation in Equation (A-17) need only cover the contributions from the deepest contributing layers, $-4.0 \leq x \leq+1.2$. The gradient of the Planck function is evaluated from Sterlings interpolation formula

$$
\begin{equation*}
\left.\frac{\mathrm{dB}}{\lambda} \mathrm{~d} \log \tau_{\lambda}\right|_{\tau_{\lambda(x)}}=\frac{1}{2}\left[\frac{{ }_{\lambda}\left[\tau_{\lambda}(x+\Delta x)\right]-B_{\lambda}\left[\tau_{\lambda}(x-\Delta x)\right]}{\Delta\left(\log \tau_{\lambda}\right)}\right] \tag{A-18}
\end{equation*}
$$

The Computational Procedure

For a given chemical composition, effective surface gravity, and temperature distribution a model atmosphere is calculated using an iterative procedure based upon an initial estimate of the electron pressure.

The first two input parameters as well as the electron pressure were obtained from a coarse analysis performed upon Theta Ursae Majoris by Peebles (1964) while the temperature distribution was a scale model of Elste's solar model. The computer program was developed by Elste and modified by Evans (1969).

The iterative scheme begins with a computation of the ionization equilibrium, P_{g} / P_{e}^{2}, for the initial estimate of the electron pressure, using Equation (A-5). The effective temperature and electron pressure are then used to calculate the absorption coefficeint at $\lambda 5000$, i.e., the quantity $\mathrm{K}_{\mathrm{o}} / \mathrm{P}_{\mathrm{e}}$ from Equation (A-6). Once these quantities have been determined an initial estimate of the total gas pressure P_{g} may be determined through Equation ($\mathrm{A}-10$). From the total gas pressure and the function P_{g} / P_{e}^{2}, another estimate of the electron pressure is made. A second iteration on the gas pressure is then accomplished through recycling of the entire process. The computations will continue until convergence of the electron pressure is reached. Commonly this requires but a few iterations because the behavior of the significant functions, $P_{\dot{g}} / P_{e}{ }^{2}$ and K_{o} / P_{e}, fluctuate more rapidly for variations in temperature than in pressure (Bulman, 1971).

The computation of the opacity uses an identical iterative scheme except that before the calculation of the optical depth at various wavelengths from Equation (A-14) the absorption coefficient must be determined. The absorption coefficient for wavelength λ is computed from Equation (A-6), placed in Equation (A-14) and integrated to find $\tau_{\lambda}(x)$. Through Equation (A-17), the flux model is calculated at wavelength, intervals of $150 \AA$ for the interval $\lambda \lambda 2,000-10,000$ and one each for $\lambda 15,000$
and $\lambda 21,000$. The results, the variation of the parameters specifying the model atmosphere with depth, then form the basis for the input data which will enable the calculation of line profiles and chemical abundances to be made.

APPENDIX B

THE COMPUTER PROGRAMS USED IN THE ANALYSIS

The Metal Line Program

The expression for the absorption coefficient per absorbing particle for simultaneous damping and Doppler broadening as convolution of the two effects acting separately is (Aller 1963; Cowley, 1970)

$$
\begin{equation*}
K_{\text {atomic }}(x, \Delta \lambda)=\frac{\sqrt{\pi e^{2}}}{m c^{2}} \frac{\lambda^{2}}{\lambda_{D}} f_{r, s} H(a, v), \tag{B-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{r, s}=\text { the oscillator strength, for the transition, from level } \\
& \text { s, for the rth stage of ionization, } \\
& \Delta \lambda_{\mathrm{D}}=\text { the Doppler width (Equation (3-22)), } \\
& a(x)=\frac{\Gamma_{T}}{4 \pi} \frac{\lambda}{\sqrt{\frac{83.83}{\mu_{i}{ }^{\theta}}-\varepsilon_{\text {turb }}^{2}}}, \\
& \Gamma_{\mathrm{T}}(\mathrm{x})=\Gamma_{\text {rad. }}+\Gamma_{\text {Stark }}+\Gamma_{\text {van der Waals }} ; \\
& v(x)=\Delta \lambda / \Delta \lambda_{D}, \\
& \text { and } H(a, v)=\text { the Voight function } \\
& \equiv \frac{a}{\pi} \int_{-\infty}^{+\infty} \frac{e^{-y^{2}}}{(v-y)^{2}+a^{2}} d y .
\end{aligned}
$$

The line absorption coefficient per hydrogen particle is then, from Equation (3-25),

$$
\begin{equation*}
K^{\ell}=\frac{n_{r},}{N_{H}} K_{\text {atomic }}=\left(\frac{n_{r, s}}{n_{r}}\right)\left(\frac{n_{r}}{\sum_{n_{r}}}\right)\left(\frac{N_{i}}{N_{H}}\right) K_{\text {atomic }} \text {, } \tag{B-2}
\end{equation*}
$$

where the summation is carried out over all stages of ionization and excitation for the atoms of a given element and is just equal to N_{i}. The factor $n_{r, s} / \Sigma n_{r}$ is quite sensitive to the depth of the atmosphere and it varies from one level to the next (Aller, 1960). For a given model atmosphere the depth dependence is calculated with the help of the Saha and Boltzmann equations.

For most stellar applications, there are only three important stages of ionization of an element, say $r-1, r, r+1$. If s represents the lower level of the transition being considered and u_{r} the partition function for the $r^{\text {th }}$ stage of ionization, then the first two terms of Equation (B-2) may be expressed as

$$
\left.\begin{array}{rl}
\frac{n_{r, s}}{n_{r}} \cdot \frac{n_{r}}{\sum n_{r}} & =\frac{n_{r, s}}{n_{r}}\left(\frac{n_{r}}{n_{r-1}}+n_{r}+n_{r+1}\right.
\end{array}\right),
$$

Defining

$$
\begin{equation*}
U_{r} \equiv u_{r} \frac{n_{r-1}}{n_{r}}+u_{r}+u_{r} \frac{n_{r+1}}{n_{r}}, \tag{B-4}
\end{equation*}
$$

allows Equation ($B-3$) to be written as

$$
\begin{equation*}
\frac{n_{r, s}}{n_{r}} \frac{n_{r}}{\sum n_{r}}=\left(\frac{n_{r, s} u_{r}}{n_{r}}\right) \frac{1}{U_{r}} \tag{B-5}
\end{equation*}
$$

The Saha ionization equation,

$$
\log \frac{n_{r+1}}{n_{r}} P_{e}=-\frac{5040}{T} \chi_{r}+\frac{5}{2} \log T-0.48+1 \log \frac{2 \mu_{r+1}}{\mu_{r}}
$$

can be written as

$$
\begin{equation*}
\log u_{r} \frac{n_{r+1}}{n_{r}}=\log u_{r+1}-x_{r} \theta+\left(9.080-\frac{5}{2} \log \theta-\log P_{e}\right), \tag{B-6}
\end{equation*}
$$

and

$$
\begin{equation*}
\log u_{r} \frac{n_{r-1}}{n_{r}}=\log u_{r-1}+x_{r-1} \theta-\left(9.080-\frac{5}{2} \log \theta-\log P_{e}\right) \tag{B-7}
\end{equation*}
$$

Substitution of Equations (B-6) and (B-7) into (B-4) gives

$$
\begin{align*}
U_{r} & =10 \log { }^{u_{r-1}}+x_{r-1} \theta-\left(9.080-5 / 2 \log \theta-\log P_{e}\right) \\
& +10 \log { }^{u_{r}} \\
& +10 \log u_{r+1}-x_{r} \theta+\left(9.080-5 / 21 \log \theta-10 g P_{e}\right) \tag{B-8}
\end{align*}
$$

The term in parenthesis in Equation (B-5) depends upon the stage of ionization and using the combined Boltzmann and Saha equations can be written as (Evans, 1966)

$$
\begin{equation*}
\log \left(\frac{n_{r^{\prime}, s}}{n_{r}} u_{r}\right)=\log g_{r^{\prime}, s}+\Delta x \theta+h\left(9.0801-\frac{5}{2} \log \theta-\log P_{e}\right) \tag{B-9}
\end{equation*}
$$

where

$$
h=\left\{\begin{array}{rll}
-1 & \text { if } & r^{\prime}=r-1 \\
0 & \text { if } & r^{\prime}=r \\
+1 & \text { if } & r^{\prime}=r+1
\end{array}\right.
$$

and

$$
\Delta x= \begin{cases}x_{r-1}-x_{r-1, s}, & \text { for }(r-1, s) \\ -\chi_{r, s}, & \text { for }(r, s) \\ x_{r+1, s}-x_{r}, & \text { for }(r+1, s)\end{cases}
$$

From Equations ($B-1$), ($B-2$), ($B-5$), ($B-8$) and ($B-9$) the line absorption coefficient per hydrogen particle becomes,
$K^{\ell}(x, \Delta \lambda)=\frac{\sqrt{\pi} e^{2}}{m c}{ }^{2} \frac{\lambda}{}^{2}{ }_{D}(g f)_{r, s} \frac{H(a, v)}{U} \cdot \frac{N_{1}}{N_{H}}\left[10^{\Delta x \theta+h\left(9.0801-\frac{5}{2} \log \theta-\log P_{\dot{e}}\right.}\right]$.

Using Equation ($B-10$), the optical depth in the line is computed as a function of x and $\Delta \lambda$. It is common practive to facilitate discussion (Aller, 1963) by writing the integrand of Equation (3-3) as a product of four functions,

$$
\begin{equation*}
\frac{\mathrm{K}^{\ell}}{\mathrm{K}_{0}}\left(\frac{{ }_{\mathrm{O}}^{\mathrm{O}}}{}\right)\left(1-10^{-x_{\lambda_{m}} \theta}\right)=\varepsilon_{i} Z_{i}(x, \lambda) H(a, v), \tag{B-11}
\end{equation*}
$$

where $Z_{i}(x, \lambda)=M(x) N_{i}(x) L_{r, s}(x, \lambda)\left(1-10^{-\lambda_{\lambda_{m}} \theta}\right)$. The advantage of this is that it allows for a more rapid and complete computational scheme when applied to an electronic computer. The first of the terms in $Z_{i}(x, \lambda)$ is defined as

$$
\begin{equation*}
M(x)=\frac{\sqrt{\pi e^{2}}}{m c} \frac{P_{e}}{K_{o}}\left(\frac{1}{\mathrm{P}_{\mathrm{e}}}\right) \frac{\tau_{0}}{\operatorname{Mod}}, \tag{B-12}
\end{equation*}
$$

and is constant for all elements and wavelength regions, $\lambda_{m}, N_{i}(x)$ is given by,

$$
\begin{equation*}
N_{1}(x)=\frac{1}{U_{i}} \frac{10^{h\left(9.0801-2.5 \log \theta-\log P_{e}\right)}}{\sqrt{\frac{83.83}{\mu_{i}^{\theta}}-\varepsilon_{\text {turb }}^{2}}} \tag{B-13}
\end{equation*}
$$

and is also free of any wavelength dependence. Finally, $L_{r, s}$ contains the dependence of the line optical depth upon the explicit transition under consideration and is defined as

$$
\begin{equation*}
L_{r, s}(x, \lambda)=10^{\log (g f \lambda)_{r, s}+\Delta x \Theta} \tag{B-14}
\end{equation*}
$$

For lines forming doublets, the computational scheme relies on the assumption that the broadening of the separate components are independent of each other (Evans, 1966). Then Equation (B-11) can be written as

$$
\begin{align*}
\left(\frac{K_{1}}{K_{0}}+\frac{K^{\ell}}{K_{0}}\right)\left(\frac{\tau_{0}}{\operatorname{Mod}}\right)\left(1-10^{-\chi_{\lambda_{m}}^{\theta}}\right)= & \varepsilon_{1}\left[z_{i}\left(x, \lambda_{1}\right) H\left(a_{1}, v_{1}\right)\right. \\
& \left.+\left(x, \lambda_{2}\right) H\left(a_{2}, v_{2}\right)\right] . \tag{B-15}
\end{align*}
$$

However, the two functions, $Z_{1}\left(x, \lambda_{1}\right)$ and $Z_{2}\left(x, \lambda_{2}\right)$ are not linearly independent if the wavelengths are assigned an identical value and the damping constant is the same for both. The two functions are then connected through

$$
z_{2}(x, \lambda)=\frac{(g f) r_{2} s_{2}}{(g f)_{r_{1} s_{1}}} z_{1}(x, \lambda)
$$

and Equation ($B-15$) becomes
$\left(\frac{K_{1}^{\ell}}{K_{0}}+\frac{K^{\ell}}{K_{0}}\right)\left(1-10^{-\chi_{\lambda_{2}}}{ }^{\ominus}\right)=\varepsilon_{i}\left[Z_{1}(x, \lambda)\right]\left[H\left(a, v_{1}\right)+\frac{(g f)_{r_{2}}, s_{2}}{(g f)_{r_{1}}, s_{1}} H\left(a, v_{2}\right)\right],(B-16)$
where $\mathrm{v}_{2}=\frac{\Delta \lambda-\mathrm{d}}{\Delta \lambda_{\mathrm{D}}}$,
$d=$ the separation of the centers of the individual components of the doublet,
$=\lambda_{2}-\lambda_{1}$.

The Damping Parameters

Aller (1963) has discussed the importance of radiation damping. For most stellar application, he indicates that the contribution to the total damping constant (Equation (3-24)) due to this mechanism is of least importance and can be represented by the classical formula,

$$
\begin{equation*}
\Gamma_{\mathrm{rad}}=\frac{8 \pi^{2} \cdot \mathrm{e}^{2}}{3 \mathrm{mc}}\left(\frac{1}{\lambda^{2}}\right)=\frac{0.22234 \times 10^{16}}{\lambda^{2}} \tag{B-17}
\end{equation*}
$$

where λ is expressed in Angstrom units.
The Lindholn theory is utilized to establish an order of magnitude effect for collisional broadening due to electrons and ions and is given by (Aller, 1963)

$$
\begin{equation*}
\Gamma_{\text {Stark }}=\Gamma_{\text {electrons }}+\Gamma_{\text {ions }}=38.8 \mathrm{c}_{4}^{2 / 3}\left(\mathrm{v}_{\mathrm{e}}^{1 / 3} \mathrm{Ne}+\bar{y}_{\text {ions }}^{1 / 3} \mathrm{~N}_{\text {ions }}\right) \tag{B-18}
\end{equation*}
$$

where v_{e} and $v_{i o n s}$ represents the velocity of the perturbing particles and the constant is given, by

$$
\begin{equation*}
C_{4}=6.21 \times 10^{-10}\left(\Delta \tilde{v} / F^{2}\right) \tag{B-19}
\end{equation*}
$$

$\Delta \tilde{v}=$ the shift of the energy levels expressed in wavenumbers,
$F=$ the electric field strength in kvolts/cm.
Evans (1966) has calculated the numerical value of this constant for a few lines of $\mathrm{C}, \mathrm{Na}, \mathrm{Mg}$, and Si . Since the experimental and theoretical data are inadequate for almost all of the observed lines in Theta Ursae Majoris, the range of the values of the constant was extended to include all of the observed lines for all the elements utilized in this study.

The damping constant for van der Waals interactions (Aller, 1963) is given by the Lindholm theory as,

$$
\begin{equation*}
\Gamma_{\text {van der Waals }}=17.0 \mathrm{C}_{6}^{2 / 5} \mathrm{v}_{\text {atoms }}^{3 / 5} \mathrm{~N}_{\text {atoms }} \tag{B-20}
\end{equation*}
$$

where the constant, C_{6}, is the van der Waals interaction constant. The numerical value of C_{6} can be approximated (Aller, 1963), assuming a hydrogen-1ike particle, as

$$
\begin{equation*}
c_{6}=1.61 \times 10^{-23}\left[\left(\frac{13.5 z}{x_{r}-x_{r, s}}\right)^{2}-\left(\frac{13.5 z}{x_{r}-x_{r, s}}\right)^{2}\right. \tag{B-21}
\end{equation*}
$$

where

$$
\begin{aligned}
z & =\text { the effective nuclear charge } \\
x_{r} & =\text { the ionization potential of the atom } \\
x_{r, s} & =\text { excitation potential of the lower level, } \\
x_{r, s^{\prime}} & =\text { the excitation potential of the upper level }
\end{aligned}
$$

The Theoretical Curve of Growth

In the expression for $10 \mathrm{~g} C$ from Equation (3-28), the absorption
coefficient at the line center is taken from a publication by Aller, Elste, and Jugaku (1957); so that

$$
\frac{K^{\ell c}}{K_{0}}\left(\frac{\tau}{\operatorname{Mod}}\right)\left(1-10^{-\chi_{\lambda_{m}} \theta}\right)=\varepsilon_{i} \sqrt{\pi}\left(\frac{\Delta \lambda_{D}}{\lambda}\right) \mathrm{Z}
$$

and the quantity $\log \mathrm{C}$ becomes

$$
\begin{equation*}
\log C=\log \left[\sqrt{\pi} \int_{-\infty}^{\infty}\left(\frac{\Delta \lambda_{D}}{\lambda}\right) Z_{\lambda_{m}} d x\right] . \tag{B-22}
\end{equation*}
$$

The flux weight function is given by the expression (Aller, 1960)

$$
\begin{equation*}
G_{\lambda_{m}}\left(\tau_{\dot{\lambda}}\right)=\frac{2}{F_{T}^{c}(0)} \int_{x}^{\infty} \frac{{ }_{x} \lambda_{m}}{d x} E_{2}\left(\tau_{\lambda_{m}}\right) d x \tag{B-23}
\end{equation*}
$$

The integration is carried out over a finite range, $-4.0 \leq x \leq+1.2$, since the behavior of the exponential integral is to decrease rapidly with increasing optical depth. The saturated equivalent width is calculated from the line depth, Equation (3-29). Since the line depth for large values of $\Delta \lambda$ is negligible for weak and medium strong lines, integration of Equation (3-29) may be truncated after relatively few calculations.

The Metal Line Program

The computer program used for the analysis of the metal lines in stellar atmospheres was origionally developed by Evans (1966). The program is designed to compute a single line profile and curve of growth for a given model atmosphere; however, it will calculate this for a variety of parameters.

The program initially begins by evaluating all quantities which are dependent only upon the model atmosphere, microturbulence model, and macroturbulence model. With the gas pressure, the electron pressure, the temperature, and the continuous absorption coefficient given as functions of the optical depth at $5000 \AA$, the optical depth in the continuum for other necessary wavelengths is computed. The integration is performed over the range in depth of $-4.0 \leq x \leq+1.2$ in steps of 0.2 , The stimulated emission factor and the weighting function can also be determined at this time for the range of wavelengths covering the observed spectral region. The gradient of the source function is obtained through Stirlings interpolation formula expressed as

$$
\left(\frac{d B}{d x}\right)_{x}=\frac{B_{\lambda}(x+\Delta x)-B_{\lambda}(x-\Delta x)}{2 \Delta x}
$$

The line absorption coefficient is then evaluated as a function of x and $\Delta \lambda$ from Equation ($B-10$) in order that the optical depth in the line may be computed from Equation (3-3). The retain the necessary accuracy, the third exponential integral is approximated by a Taylor series expansion to yield

$$
E_{3}\left(\tau^{c}\right)-E_{3}\left(\tau^{c}+\tau^{\ell}\right)=\tau^{\ell} E_{2}\left(\tau^{c}\right) \text { if } \tau^{\ell} \ll \tau^{c} \text {, }
$$

and by

$$
E_{3}\left(\tau^{c}\right)-E_{3}\left(\tau^{c}+\tau^{\ell}\right)=E_{3}\left(\tau^{c}\right) \text { if } \tau^{\ell} \gg \tau^{c} \text {. }
$$

If τ^{c} is on the order of τ^{ℓ}, the straight difference in the functions,

$$
E_{3}\left(\tau^{c}\right)-E_{3}\left(\tau^{c}+\tau^{l}\right),
$$

is evaluated. Then for the element of interest U_{r} may be determined from Equation (B-8) for the energy levels of interest. For this step appropriate tables of the partition functions for the elements have been tabulated by Evans (1966). This completes the calculation of all quantities which are independent of the individual transition under investigation.

At this point, computations are made for all terms which depend only upon the depth in the atmosphere and the individual line under investigation. This includes the Doppler width $\Delta \lambda_{D}$ from Equation (3-23), the damping constant $\Gamma_{T}(x)$ and the damping parameter $a(x)$ from Equation ($B-1$), the abscissa for the empirical curve of growth, $\log C_{\lambda}$, from Equation ($B-22$) and, finally, $\log Z(x, \lambda)$ from Equations ($B-11)$, ($B-12$), ($B-13$), and ($B-14$).

At this point a cycling procedure is initialized for the computation of the theoretical curve of growth. An initial abundance estimate is utilized to compute the optical depth in the line from Equations (3-3) and ($B-11$) as a function of $\Delta \lambda$. The values of $\Delta \lambda$ are arbitrarily selected up to a maximum of 20 equal increments across the line, A variety of possible scaled values can be chosen by the user. The integration of the line optical depth is accomplished in the same manner as for the continuum. Both employ a Gauss-Encke formula with a starting integration formula of Elste (Evans, 1966). The ordinate for the theoretical curve of growth, $\log (w / \lambda)$, is then computed using the line depth expression (Equation (3-21)) in conjunctions with Equation (3-29). The macroturbulent calculations are carried out over forty-one different macroturbulence cells assuming a dispersion function for the individual velocity components. The calculation is carried out to plus and minus
four times the observed halfwidth for the line. This procedure is then repeated for twice and half the initial abundance. If the observed value of the equivalent width for the line fails to lie within this range, additional multiples of the initial abundance estimate are used to compute additional points so that the observed value falls on the curve of growth.

The output of the metal line program has a number of options available. Upon command, the line profiles for the estimated abundance may be graphed and the mean value of the integrand of the line depth, sometimes referred to as the contribution function for the line, may be obtained. The recycling of the entire program is accomplished by first reading in all the lines and ordering them in their respective wavelength regions. After the lines in one wavelength have been exhausted, the computer progresses to the next region. This process is repeated up to a maximum of ten wavelength regions. The metal line program in its entirity can be obtained through communication with Dr. John C. Evans, Department of Physics, Kansas State University or Dr. Leon W. Schroeder, Department of Physics, Oklahoma State University.

The Abundance Program

For a given model atmosphere, the empirical curve of growth consists of a plot of the saturated equivalent width against $\log C_{\lambda}$ where

$$
\log c_{\lambda}=\log g_{r, s} f_{r, s} \lambda+\log L_{\lambda}^{*}\left(x_{r, s}\right)
$$

With the aid of Equation (3-27), the abundance of an element may be determined from the horizontal displacement of the axis with no vertical translation. If $\Delta_{\mathbf{x}}$ represents the linear transformation necessary to
bring the empirical curve of growth into coincidence with the theoretical curve of growth, then

$$
\Delta_{x}=\log (w / \lambda)^{*}-\log c_{\lambda}=\log \varepsilon .
$$

This procedure has been systemized with the development of a computer program (Evans, 1970), capable of determining the abundance for from one to fifty lines, of a single element based upon a theoretical curve of growth for a line representative of the range of wavelengths of interest.

For the selected model, the computation begins with the computation of the theoretical curve of growth to be used for mean abundance calculations. For this step, the optical depth is computed and the weighting functions are evaluated for the range of wavelengths of interest. For the desired element U_{r} and $\log Z$ are computed for the energy levels of interest. The details of the calculation are identical with those outlined previously for the metal line program. The abscissa for the theoretical curve of growth is computed from Equation (3-26) while the ordinate is evaluated utilizing Equation (3-21). With the aid of Equation (3-31) $\log L_{\lambda}\left(X_{r, s}\right)$ is computed for each level $X_{r, s}$ of interest and for the range of wavelengths covering the observed lines. Then for each individual line, or $\log g_{r, s} f_{r, s} \lambda, \log C_{\lambda}$ is determined from Equation (3-30). The observed value of $\log (w / \lambda)$ is read into the computer and the shift in the abscissa necessary to place the point on the mean theoretical curve of growth is determined. The abundance for the line thus evaluated, the program recycles until all observed lines have been read into the computer and each individual abundance calculated. At this point, the weighted mean abundance is calculated in the standard
manner and the program terminated. The printed output consists of the model atmosphere, the turbulence model, the flux curve of growth, the abscissia for the empirical curve of growth, and the results of the abundance analysis.

APPENDIX C

THE CORRECTION FOR INSTRUMENTAL BROADENING

IN A SPECTRAL LINE USING THE

METHOD OF VOIGHT FUNCTIONS

From the observation of stellar spectra, it is well known that the intensity distribution of a spectral line broadened by two separate mechanisms can be expressed as the convolution

$$
\begin{equation*}
f(x)=\int_{-\infty}^{+\infty} f^{\prime}(x-y) f^{\prime \prime}(y) d y \tag{C-1}
\end{equation*}
$$

of the profiles, $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, that the line would describe if only one of the effects were present. If $f(x)$ represents the observed line profile and $f^{\prime}(x)$ the profile of the spectrograph, the true profile $f^{\prime \prime}(x)$ can be obtained from Equation ($C-1$).

One method of solving this equation is to approximate all profiles with an analytic function, the Voight function. Voight functions result from a convolution of a dispersion profile

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \frac{\beta_{1}}{\beta_{1}^{2}+x^{2}} \tag{C-2}
\end{equation*}
$$

with halfwidth β_{1}, and a Gaussian profile

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{\pi} \beta_{2}} e^{-\left(x / \beta_{2}\right)^{2}} \tag{C-3}
\end{equation*}
$$

with a $1 / e-w i d t h$ of β_{2}. The function described by Equations (C-2) has
the property that the convolution of two such profiles, f^{\prime} and $\mathrm{f}^{\prime \prime}$, results in a third function of the same type with the halfwidth equal to the sum of the halfwidths.

$$
\begin{equation*}
\beta_{1}=\dot{B}_{1}^{\prime}+\beta_{1}^{\prime \prime} . \tag{C-4}
\end{equation*}
$$

If the functions f^{\prime} and $f^{\prime \prime}$ in Equation ($(-1$) are Gaussian, the profile $f(x)$ is Gaussian and the $1 /$ e-widths are related by the well known relation

$$
\begin{equation*}
\beta_{2}^{2}=\beta_{2}{ }^{2 \prime}+\beta_{2}{ }^{2 \prime \prime} . \tag{C-5}
\end{equation*}
$$

Voight functions, which are a more general type of function and include as extreme cases both types of profiles, follow similar processes under convolution and their parameters satisfy the relations given by Equation (C-4) and (C-5) (Van de Hulst and Reesinck, 1947). The area is denoted by

$$
\begin{equation*}
A=\int_{-\infty}^{+\infty} f(x) d x \equiv \text { phc, } \tag{C-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& h=\text { the halfwidth of the profile }, \\
& c=\text { central depth of the profile }, \\
& p=\text { area parameter } .
\end{aligned}
$$

A Voight function is completely determined by the parameters, A, β_{1}, and β_{2}. It is sometimes more convenient to represent a standard set of Voight functions in terms of the form parameter $b_{1}=\beta_{1} / h$ where h represents the halfwidth of the profile. Then the quantities, $b_{2} \equiv \beta_{2} / h$, $\alpha \equiv \beta_{1} / \beta_{2}$, and p are unique functions of the form parameter b_{1} and have been produced in tabular form (E1ste, 1953) in Table XXV. The first five

TABLE XXV
THE VOIGHT PARAMETERS AS FUNCTIONS OF THE FORM PARAMETER

b_{1}	b_{2}	$\mathrm{b}_{2}{ }^{2}$	α	P	$\mathrm{b}_{0.1} / \mathrm{h}$
0.00	0.6006	0.3607	0.0000	1.0645	1.820
0.01	0.5941	0.3529	0.0168	1.0732	1.825
0.02	0.5876	0.3452	0.0340	1.0819	1.835
0.03	0.5810	0.3375	0.0516	1.0907	1.850
0.04	0.5744	0.3299	0.0696	1.0996	1.860
0.05	0.5677	0.3223	0.0881	1.1085	1.870
0.06	0.5609	0.3147	0.1070	1.1175	1.880
0.07	0.5541	0.3071	0.1263	1.1265	1.895
0.08	0.5473	0.2995	0.1462	1.1356	1.920
0.09	0.5404	0.2920	0.1666	1.1448	1.925
0.10	0.5334	0.2845	0.1875	1.1540	1.940
0.11	0.5263	0.2770	0.2090	1.1633	1.950
0.12	0.5192	0.2695	0.2311	1.1727	1.970
0.13	0.5120	0.2621	0.2539	1.1822	1.980
0.14	0.5047	0.2547	0.2774	1.1918	1.995
0.15	0.4973	0.2473	0.3017	1.2015	2.020
0.16	0.4898	0.2399	0.3267	1.2112	2.040
0.17	0.4822	0.2325	0.3526	1.2210	2.050
0.18	0.4745	0.2251	0.3793	1.2309	2.070
0.19	0.4667	0.2178	0.4071	1.2409	2.080
0.20	0.4588	0.2105	0.4359	1.2509	2.100
0.21	0.4508	0.2032	0.4658	1.2610	2.130
0.22	0.4426	0.1959	0.4970	1.2711	2.140
0.23	0.4343	0.1887	0.5295	1.2813	2.150
0.24	0.4259	0.1814	0.5635	1.2915	2.175
0.25	0.4174	0.1742	0.5990	1.3018	2.190
0.26	0.4087	0.1670	0.6363	1.3122	2.220
0.27	0.3998	0.1598	0.6754	1.3226	2.245
0.28	0.3907	0.1526	0.7168	1.3331	2.250
0.29	0.3814	0.1454	0.7604	1.3436	2.275
0.30	0.3719	0.1383	0.8067	1.3541	2.285
0.31	0.3622	0.1312	0.8559	1.3647	2.310
0.32	0.3522	0.1241	0.9084	1.3754	2.335
0.33	0.3420	0.1170	0.9648	1.3861	2.350
0.34	0.3315	0.1099	1.0255	1.3968	2.375
0.35	0.3208	0.1029	1.0913	1.4 .076	2.400
0.36	0.3097	0.0959	1.1629	1.4185	2.425
0.37	0.2982	0.0889	1.2414	1.4294	2.450
0.38 0.39	0.2863 0.2739	0.0820	1.3270	1:4403	2.475

TABLE XXV (Concluded)

b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{2}{ }^{2}$	α	p	$\mathrm{b}_{0.1} / \mathrm{h}$
0.40	0.2609	0.0681	1.533	1.4623	2.540
0.41	0.2473	0.0612	1.658	1.4733	2.575
0.42	0.2330	0.0543	1.803	1.4843	2.620
0.43	0.2177	0.0474	1.975	1.4952	2.650
0.44	0.2014	0.0405	2.185	1.5062	2.700
0.45	0.1836				
0.46	0.1641	0.0337	2.451	1.5171	2.740
0.47	0.1419	0.0269	2.804	1.5280	2.795
0.48	0.1158	0.0134	3.312	1.5388	2.840
0.49	0.0817	0.0067	5.147	1.5495	2.875
0.50	0.000	0.000	0.000	1.594	

columns are self explanatory while the sixth contains the breath of the line profile at one-tenth the central intensity divided by the halfwidth.

To find the parameters for a given profile, the central ordinate C, the halfwidth h, and the breadth of the profile at one-tenth of the central ordinate are obtained. The ratio $b_{0.1} / h$ is calculated and the corresponding values of $b_{1}=\beta_{1} / h, b_{2}=\beta_{2}^{2} / h$ and p are obtained from Table XXV, Appendix C. In addition, the area of the profile can be computed from Equation (C-6). If this is done for both the apparatus profile $f^{\prime}(x)$ and the observed profile $f^{\prime \prime}(x)$ then the integral Equation (C-1), can be solved for the values of the true profile

$$
\begin{equation*}
\beta_{1}=\beta_{1}^{\prime \prime}-\beta_{1}^{\prime}, \tag{C-7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2}^{2}=\beta_{2}^{\prime \prime}-\beta_{2}^{\prime}, \tag{C-8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=\frac{\beta_{1}}{\beta_{2}} . \tag{C-9}
\end{equation*}
$$

Using Table XXV, Appendix C, the appropriate values b_{1}, b_{2}, and p for the true profile can be obtained. The halfwidth of the true profile can be calculated using

$$
\begin{equation*}
h=\beta_{1} / b_{1}=\beta_{2} / b_{2} \tag{C-10}
\end{equation*}
$$

Once the central depth is obtained from

$$
\begin{equation*}
c=\frac{p " h " c "}{p h}, \tag{C-11}
\end{equation*}
$$

then the area of the true profile can be found from Equation (C-6). If
the height of the continuum at the line center is known then the equivalent width for the true line profile can be computed using the relation

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{AD}}{\mathrm{HC}}, \tag{C-12}
\end{equation*}
$$

where $H C$ represents the height of the continuum and D the dispersion of the spectrum for the wavelength considered.

The Instrumental Broadening Program

The calculations outlined above become extremely tredious if a large quantity of data is being analyzed. This task was improved by the development of a computer program, shown in Tables XXVI and XXVII, capable of evaluating the true halfwidth and equivalent width, given the Voight parameters of the instrument and the observed profile, for an undetermined number of observed lines.

The program begins by first reading into core storage the appropriate Voight parameters of the instrument profile and the standard set of parameters as functions of the form parameter b_{1} from Table XXV, Appendix C. Two sets of Voight parameters (see Table III, Chapter IV) of the instrumental profile were utilized for this study corresponding to the quality of the intensitometer tracing. Next the central line depth, the halfwidth, the breadth at one tenth the central intensity, and the height of the continuum of the observed profile are entered and the ratio $\mathrm{b}_{0.1} / \mathrm{h}$ is computed. A linear interpolation of the values in Table XXV, Appendix C is performed and the values of $\beta_{1}^{\prime \prime} / h^{\prime}, \beta_{2}^{\prime \prime 2} / h^{\prime \prime}$, and $p^{\prime \prime}$ for the observed profile are obtained from which $\beta_{1}^{\prime \prime}$ and $\beta_{2}^{\prime \prime}$ are computed. Using Equations (C-7), (C-8) and (C-9), the values for the true profile are calculated and a linear interpolation of the quantities in Table XXV,

INSTRUMENTAL BROADENING CORRECTION PROGRAM

```
0 0 0 1
0002
0 0 0 3
0CO4
0005
0006
0007
0008
0 0 0 9
0010
0C11
OC12
0013
0014
0015
0016
0017
0018
0019
0020
0021
0 0 2 2
0023
0024
0025
0026
OC27
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
045
0046
0047
0048
0049
0050 INTEGER FLAG
DIMENSION TBI(50), TBIISO(50), TALPHA(50), TP(50), TBOI(50)
C READ TABLE LOOK UP INFORMATION
NTABLE \(=50\)
REAU(5,101)(TBI(I),I=1,NTABLE)
REAC(5,101)(TBIISO(I),I*1,NTABLE)
READ (5,101)(TALPHA(1),I \#1,NTABLE)
\(\operatorname{READ}(5,101)(T P(I), I=1, N T A B L E)\)
\(\operatorname{READ}(5,101)(T B O I(I), I=1, N T A B L E)\)
WRITE(6, 30)
C READ IN VALUES FOR EACH LINE
READ (5,102)NDATA
DO \(50 \mathrm{~K}=1\), NDATA
READ(5,1 ICO,HO,B,HC,WVLG,TRACNO,DISP, EL
\(C\) SET VALUES FOR APPARATUS PROFILE
\(A I=0.100\)
AII \(=0.232\)
AIII \(=2.32\)
AIV \(=0.235\)
\(A V=0.190\)
\(A V I=0.505\)
AVII \(=1.295\)
A vilit \(=0.0235\)
AIX=1.9E-3
C CONVERT DATA FROM CM TO ANGSTROMS
CO=CU*DISP/2.54
\(H O=H O * D I S P / 2.54\)
\(\mathrm{B}=8\) * 0 I SP/2.54
HC=HC *D I SP/2.54
C CALCULATION OF VOIGHT PARAMETERS FDR THE OBSERVED LINE BOI =B/HO
BIO=TLU(NTABLE, TBI, TBOI, BOI,FLAG)
BIISQ=TLU(NTABLE, TBIISQ, TBOI, BOI, FLAG)
\(P O B=T L U(N T A B L E ; T P, T B O I ; B O I, F L A G)\)
OBI=B10*HO
OBIISQ=BIISQ*(HD**2)
\(C\) CALCULATION OF VOIGHT PARAMETERS FOR THE TRUE LINE
TRBI=OBI-AVIII
TRBIIS=OBIISQ-AIX
IFITRBIIS .LE. O.I GO TO 50
TRBII = SQRT (TRBIIS)
ALTR=TRBI/TRBII
BITR = TLU(NTABLE, TBI, TALPHA,ALTR,FLAG)
PTR=TLU(NTABLE, TP, TALPHA, ALTR; FLAG)
BIITRS干TLU(NTABLE,TBIISO,TALPHA,ALTR;FLAGI
IFIBIITRS.LE. O.JGO TO 50
BIITR=SORT (BIITRS)
HTR = TRBII/BIITR
GAMMA=POB*HO/(PTR*HTR)
\(C T R=G A M M A * C O\)
C CALCULATION UF EQUIVALENT WIDTH AND LOG(W/L) AND LOG(H/L)
\(E Q W=P T R * H T R * C T R / H C\)
\(X=A L O G I O\) (EQW/WVLG)
\(Y=A L O G 10(H T R / W V L G)\)
WRITE( 6,10 ) EL, WVLG, \(X, Y\)
50 CONTINUE
1 FORMAT(F8.2,F8.2,F8.2,F8.2,F10.3,710,F10.3,A6)
```

C INSTRUMENTAL BROADENING CORRECTION PROGRAM

TABLE XXVI (Concluded)


```
0001
    ONE-DIMENSIONAL TABIE XOOKGUP PROGRA
    ONE-DIMENSIJNAL TABLE LOOK-UP PROGRAM. CORRESPONDING VALUES
    C OF X (ALWAYS INCREASINGI ANO }2\mathrm{ ARE STORED IN THE ARRAYS
    C X(1)\ldots..X(NTABLE) AND Z(1)\ldotsZ(NTABLE)... USING LINEAR INTER-
        POLATION, THIS FUNCTION WILL GENERATE A VALUE OF Z CORRESPON-
        DING TO A SPECIFIED VALUE OF XIXSTAR
        INTEGER FLAG
        OIMENSICN X(50), 2(50)
    C .....CHECK TO SEE ID XSTAR LIES WITHIN THE SCOPE OF THE TABULATED
        VALUES X(1)...X(NTABLE).......
        FLAG:0
        IF(XSTAR .LT. X(1))GC TO 2
        IFIXSTAR &E. X(NTABLE)) GO TO 3
    2 FLAG = 1
        TLU=0.0
        RETURN
    C .....SEARCH TO FIND TWO SUCCESSIVE ENTRIES, X(I-I) ANO XII).
    C B BET
    4 IFIX(I) .GT. XSTARIGO TO 7
        IF(I .GE. NTABLE) GO TO 7
        I=I+1
        GO 10 4
    C .....LINEARLY INTERPPGLATE TO FINO CORRESPONDING VALUE OF Z......
```



```
        RETURN
        END
```


TABLE XXVII

instrumental profile analysis

ELEMENT ** FE I	havelength =	4045.815	LOS (m/L)	-3.971	LOG	(H/L)	-4.069
Element ** fe 1	wavelength =	4063.597	LOG (w/L) =	-4.024	LOG	(H/L)	-4.106
SLEment ** FE I	havelength =	$4 \mathrm{C71.740}$	LOG (w/L)	-4.085	606.	(H / L)	-4.071
ELEMENT ** fEi	WAVELENGTH =	4325.752	LOE (m/L)	-3.974	106	(H / L)	-3.972
ELEMENT ** FE I	havelength =	4383.547	$\operatorname{LOG}(\mathrm{W} / \mathrm{L})=$	-4.068	Lag	(H/L)	-4.019
Slement **fe I	WAVELENGTH $=$	4404.750	$\log (W / L)=$	-4.148	Log	(H/L)	-4.120
ELEMENT ** FE 1	WavelengTh =	4415.648	LOG (W/L) =	-4.217	LOG	(H/L)	-4.105
ELEMENT ** FE I	W \triangle VELENGTH $=$	4871.320	LJG (w/L)	-4.362	Log	(H/L)	-4.054
ELEMENT ** FE 1	WAVELENGTH $=$	5429.695	LOG (w/L)	-4.494	LOG	(H/L)	-4.249
ELEMENT ** fe l	havelength =	4531.148	LOG (w/L)	-4.138	Log	(H / L)	-3.859
ELEMENT ** FE 1	havelength =	4415.125	LOG (w/L)	-4.200	LOG	(H/L)	-4.103
ELEMENT ** FE I	navELENGTH =	4271.762	LOG (W/L) =	-4.184	LOG	(H / L)	-4.113
ELEMENT ** FE !	HAvELENGTH =	4260.477	LOG (W/L)	-4.222	LOG	(H/L)	-4.136
ELEMENT ** FE I	havelength x	4227.434	LOG $(\mathrm{W} / \mathrm{L})=$	-4.315	Log	(H/L)	-4.181
ELEMENT ** FE 1	havelength =	4202.027	$\log (\mathrm{W} / \mathrm{L})=$	-4.257	LOG	(H/L)	-4.229

Appendix C is again made to produce b_{1}, b_{2}, and p for the true profile. The halfwidth of the true profile is calculated from Equation ($C-10$) and reproduced as output in the more useful form, $\log \mathrm{h} / \lambda$. With the aid of Equations ($C-11$) and ($C-12$), the equivalent width corrected for the apparatus function is evaluated. This quantity is then converted to the form $\log (w / \lambda)$ and listed in the output along with the element, wavelength, and $\log \mathrm{h} / \lambda$ for the individual line considered. At this point, the program progresses to the next line and repeats the computations until the entire set of observational data has been exhausted.

Ma1colm Lee Bruce Weems
Candidate for the Degree of
Doctor of Philosophy

Thesis: A DETAILED ANALYSIS OF THE CHEMICAL ABUNDANCES FOR THE STAR THETA URSAE MAJORIS

Major Field: Physics
Biographical:
Personal Data: Born in Nashville, Kansas, the son of Bryan W. and Katherine M. Weems.

Education: Attended grade school in Sawyer, Collyer and Mahaska, Kansas; graduated from Mahaska High School in May, 1963; awarded the Bachelor of Science degree from Kansas State Teachers College, Emporia, Kansas, in May, 1967 with a major in Physical Science and Mathematics; received the Master of Science degree from Kansas State Teachers College in May, 1969 with an emphasis in physics; completed requirements for the Doctor of Philosophy degree in May, 1972.

Professional Experience: Graduate Teaching Assistant, Kansas State Teachers College, Department of Physical. Science, 1963-65; Lecturer, Department of Physical Science, Kansas State Teachers College, 1966-67; Graduate Teaching Assistant; Department of Physics, Oklahoma State University, 1969-1972.

