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CHAPTER I 

BACKGROUND AND THEORY 

Stannic Oxide is a rutile-structure (1,2) broad-band semiconductor. 

(3 ,4). A band gap around 4 ev has been indicated. by optical work (5 ,6, 7). 

This value agrees with work by Rutledge (8) which established that con

ductivity above T = l000°K is controlled by an intrinsic mechanism. In 

the course of studying conductivity below that temperature a two-order

of-magnitude peak was observed at 103/T = 1.62, which, as of now, appears 

to be due to water irreversibly bound to the surface (i.e., bound such 

that decreasing pH O did not desorb it). 
2 

A model.to account for this behavior and guide further experimenta--

tion is to be constructed; incorporating ideas from a var:l,ety of sources. 

The first section of this·chapter deals with references.to water adsorb-

ed on other materials as well as several different views on how adions 

could influence sample conductivity. These are combined with previous 

local'work on o2 adsorbed on.Sno2 to give a form for sample conductivity 

as a function of adion concentration. 

Using the results of Section A as a basis, Sections B, C, and D de~ 

rive equations with which to analyze data obtained in three different 

situations. Each type.of experiment is set up to emphasize and examine 

the adion-sol:i.d system from a different viewpoint. 

The lack of a final, definitive theory will be evident in the fail-

ure of the tree postulated pictures to exactly coincide. 
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Section Buses published·ic;leas on equilibrit,llllprocesses and tn,e Law· 

of Mass Action to derive an expression giving the·difference between the 

desorption and· adsorption activation energies in .. terms of e:J.ectrical 

conductivity measured_ under·equilibrium c6nc;litions. Section C shows how 

conductivity data taken as a function of· time after· a .sudclen, exposure .. of 

the adsorbent · to .. the adsorbate,. emphasizes · the adsorption rate, artd may 

be expres•sed in, terms of "Elovich" ·kinetics. In Section D the des.orp~ 

tion process is·brought into prominence·ii;i terms of data taken during a. 

rapid rise in temperature and a way td analyze.such data·for·activation 

energy is developed. 

A, Conductivity as a Function of Adion Conc,entration 

The sorption of an adion will affect the conductivity of a.solid to· 

the extent it alters the electronic distribution in the solid. Whether 

the ·adsorption involves a single step or a. comple:x: of chemic.a~.· anc:1 

electronic steps, the sorbate will be herein designated a 'donor gas' if 

the end result is a majority carrier added to some state in the solid, 

and as an 'acceptor' gas if.the majority cqarge ends up on the adion. 

Thetendency to become a positive or negative adion can be-pictured in. 

terms of energies of the various ionization states relative to'the fermi 

level, That is, if the energy of an elect;ron on a neutral "member -.of the 

sorbate species is much above the fermi level (as level 1 or 2 in Fig. 

1) the sorbate will be found as a positive adion,. whereas if the level 

for an electron occupying the negative ion of that·spec:i,es is much below 

the fermi level (as level 4 or 5 in Fig, 1) the sorbate will show up as 

a negative adion. 

Hauffe (9) treats the effect of o2 on n-type oxides, which is an 
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acceptor gas as the term is defined above. He calculates the.thickness 

of a.layer that would be.totally depleted of majority carriers by the 

adsorption if the rest of the crossectional area of the sample retained 

the original carrier density. 

Morrison (pg. 289 of (10)) analyses the work of others.on o2 ad

sorbed on ZnO, by "assuming that desorption alone ac<;:.ounts•for the con-

4 

ductivity rise." This would seelJ!.e,q_ual to an assumption that in the bulk. 

ZnO samples, there is no donor level with an energy comparabl~ to the 

activation energy governing desorption. The temperature de~endence of 

the conductivity would again be dominated by adion number i~ the case of 

a donor gas whose level is far enough from the fermi level to be fully 

ionized (e.g., level a-],. .in Fig. 1). 

Matthews (11) treated the case of o2 on Sno2• He assumed the elec

tron redistribution represented the effect of adding the adion number to 

an already sizable number of bulk acceptor centers. In this picture the 

conductivity before, during and after adsorption is controlled by the 

same mechanism, with the adion number entering only the·pre-exponential 

coefficient of the electron density expression .derived from the partial~ 

ly-compensated semiconductor model (12) in which 

is assumed, with the result that 

n << N 
a 

(1) 

(2) 

where n is·the density of conduction e:J_ectrons, Nc is the·conduction 

density of states, Nd is density of donor states at an energy EE below 

the conduct:i,on band, and N is the ,density of acceptors, given as.the sum 
a 
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N = N * ± s N 
a. a 

(3) 

with the. + for an acceptor gas, the - for a donor. gas, . Na* the density 

of all acceptors nqt affected by the surface reacti9n, ands the geo~ 

metrical factor relating the active surface.population, N, to an effec-

tive bulk density, 

Substituting Eq~ (3) into Eq, · (2) using the minus sign for a donor 

adion leaves 

n = 
* Nd - N + s 

N [ a 
c * N - s N 

N 
J exp · ( --EikT) (4) 

a 

:t1atthews [11] pointed out approximations with which Eq, (4) may be 

simplified, The basis of these in the relation 

(5) 

which is the condition for remaining within the limits·of the partially 

compensated model. The model is exceeded to one.extreme if (before the 

* adsorbate.is present, when N = 0) Na were to o~tweigh Nd and bring about' 

total compensation, On th.e other hand, if ·(say, during adsorption) sN 

* passes N then all compensators are satiated and the model must be 
a· 

changed, 

Within. the :Limits set ,by Eq, (5) there is much la.titude, If one 

assumes that N * is small, then, from N = 0 on up one can say 
a 

which changes Eq. (4) into 

(SA) 
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(4A) 

* On the other hand, if N is·assumed to be·near its other limit-and· a 

* is of comparable size to Nd' then the difference Nd - Na is small. The-

simultaneous assumption that·. the· adsorbate· population is ;very -small coin-. 

pared to N * allows one to ignore the variable·in the denominatc;,r of Eq. 
a 

(4) in favor of its influence on the smaller ,numerator; Assuming 

and 

N - N * < N * (SB) d a a 

N*».sN 
a (SB) 

one may approximate Eq, (4) as 

(4B) 

Some.references (9, 10, 13) to water adsorption on other materials 

indicitte that;: H2o+ is the adion to expect~ Sine~ Sno2 is n-type this 

will be a donor gas, and the sign in Eq. (3) is. a minus sign.· 

Unless samples are·specially treated, adsorpti6n wil1 occur On-a 

surface.already containing o;·ions. + The.electrons donated by the H2o 

adions could simply go.to replace electrons used to .fill acceptor states 

- * with the number of o2 being contained in Na~ Alternately there is the 

idea of Bliel and Albers (13) in which the H2o adsorbed bonds to an o2 

by some. 'hydroge~ bonding' releasing an electron. But this is mathe.,,. 

matically equivalent to the first idea since Na*' containing the number 

of o; along with the bulk acceptor n~ber, is again reduced by the num.,-
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ber of new adions, 

+ A single-species adsorption of H2o·, on a surface from which o2 had 

been desorbed by special treatment, .could also -fit Eqs, (2) and (3), so 

long as the number of.bulk acceptors minus'the number of adions was 

large enough to satisfy Eq, (1), 

That such a condition is satisfied may be more .than a circumstance. 

It _is possible-that the number of adions the surface can hold is con

trolled in some way by the number-of bulk acceptors, N *, For instarice, 
a 

if the adion level were near b-2 in Fig. 1, then conduction electrons 

could desorb those ions without having to cross a potential barrier, 

But that desorption rate might remain small enough to be balanced by 

adsorption if the number of conduction electrons·remains small. But if 

a point were reached where condition (1) were no longer fulfilled, then 

each election.donated by an adion would remain in the.conduction band 

(inste~d of one out of a hundred or·less as.when Eq, (1) still holds), 

Thus, the critical value of N for (1) may also be the critical value 

for the adsorption process, 

The above is offered not as a definitive or even.analytic theory, 

but only as one more physical possibility which the equations may repre-

sent, 

B. Equilibrium Adsorption 

Taking data at constant pressure-temperature points emphasizes the 

equilibrium of two processes, adsorption and desorption, Each process 

may be compounded of several steps (14), in each of which a separate 

potential barrier is crossed, The observable rate.of a multistep process 

is controlled by the rate of the slowest step, Throughout the_following 
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treatment expressions will be written as.if only·single steps were in-

valved, but each rate equation may as well represent the limiting step 

of a·series. The equilibrium of two simpie·rates maybe'viewed in terms 

of a potential diagram lik.e "Fig, 2. The rate of leaving a state, say 

state 2, is proportional to the concentration(s) of the component (s1) 

times. the Boltzmann exponential, For a simple .process expressed as 

where E1 and E2 are energies as in Fig~ 2, the rates of adsorption, 

and desorption, rd, are given as 

and 

(6) 

r ' a 

(7) 

(8) 

where ca and cd are proportionately constants, NH2o+ is the.cortcentra~ 

tion of water adions, pH O is the partial pressure of water and n is the 
2 

concentration of conduction electrons~ This assumes the rate limiting 

step for adsorption is the one from adion plus associated electron 

(Making a neutral molecule) to adion held at the surface.plus electron 

in the conduction band, When Eq. (1) holds the fermi level is controlled 

by Na and so most of the electrons replace ones taken from Nd by acceptor 

states, but they will do so by subsequent steps assumed much faster than 

(6). 

Equating ra and rd and defining 
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l:lE - El - E2'. (9) 

yields 

n NH o+IPH O .. C exp (~E/kT), (10) 
2 2 

where. the cqnstants have beentcombined. into C, · This is. the same mass 

' action ~quation which Kroger and Vink (15) derive<:! from a chemical po-

t.ential view of equilibrium, ~E is positive since the equilibrium is 

observed to shift to the gas phase as T goes up. 

The final expression predicting the data is obtained by solving 

(10) for NH o+ and using it for the Nin Eq, (5), That is 
2 

n • 

which may be solved for n.as 

n = 

(11) 

(12) 

This predicts two zones: one at high temperature where the sample ig-

nores any moisture and the second at lower temperature where the current 

will decrease with increasing temperature, with a semi-log slope.given 

by ~E. 

Morrison (10) in his work on ZnO, describes a third region where kT 

is sq low that.one or both rates are too slow to give a measurable effect 

during an experiment. If such a region is found for H2o on Sno2, n and 

conductiv:i.ty would·depend·on.past history as well as the variables of 
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Eq. (11). 

C. Adsorption Kinetic~ 

The, two rates• r ~ anal· rd, may. be ,' experimentally separated by ex'-m- . 

ining nonequilibriwn, -time-varying situations, One: experimental way to 

- {o, t < o 
p', t 2:, 0 

(13) 

where.p' is a constant·which may be varied from run to run. This s~dden 

incr.ease.:l,n sorbate·pressure·allows 

for a I measurable. time. 

Low (16) revi,ews a.variety of experiments in which cq.ethisorption. 

occurs~ ~ongthemhefinds one form of adsorption rate'so consistent· 

that•he uses.it·as.an·org~nizing .basis for. his r~view~ This is mathe-

matically described by the Elovich equation. 

dN/ d t = · a exp (.a.N) (14) 

which integrate~ to 

N(t) ~ ln (t + k), (15) 

After briefly reviewing a bewildering array of models he says (see pg. 

307 of (16)) "the more ge~eral. models,., ··~ suffer because· their. flexibility. 

seems .. to· preclude· quantitativity ! Conversely, the. more quantitative 
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approaches seem at present to be imbued with too much rigor, and cannot 

account for the complex behavior found experimentally." 
• 

One of the latter i1;1 the band ... bending model (10. 17). Fo·r,.thl) case· 

defined in,Section I as an acceptor ,gas (e.g~, oxygen on an n-,.type solid) 

this .model equates :the cqncentration""'.dependent activat.ien energy of the 

Elovich equation with the enei:,gy barrier caused by the space.charge 

layer. Tqis assumed picture would be like Fig, lA for an n-type sample 

with electrons crossing the bari;ier out of the conductic;,n band·as the 

rate limiting step for adsorption,· One of ,the probleJns of this model ·is. 

that·1 it p:1-aces. n, the conduction CEj.rrier density., in the pre-expone:ntial · 

coefficient of (14)· or (7) making its integration .more . .difficult, Medved. 

(17)., claims that· this will sti.11 give a. good fit up to 10% change. in n, . 

Data.taken fo;r o2 on Sno2 (~1, 18-21) fit.(15) for ~uch l1;:1rger changes in· 

n. But n.t1eed not be in the coefficient at all if ,one postulates some 

step to replace el~ctron transfer as the rate limiti.t1g step, As yet., 

however, no other explanation for the coverage-dependent .energy has 

offered such a clear, visually analytic picture as has the ,band-bending 

concept, 

The observation .of Elovich adsorpt:f,on kinetics for ·a donor.gas on 

an n:"type material would provide a·further indicat:!.on that the source of 

such behavior should be so~ght in other directions., Although it, has 

been suggested .. that adsorption of a donor gas co~ld still be controlled 

by band-bending if it were dependeI).t ·on the capture of a minority carrier, 

sucq. a·. dependence. would imply an .. adion energy level. far below the fermi. 

level (as .b-4 in Fig, 1), A positive ion .so far below the fermi level 

would not be stable,. 

Assuming there is some, as yet; UI).Specified rate'limiting step, 
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whose mechanism does incl:ude a coverage ... dependent energy, Eq, (15) may 

be substituted into Eq. (5) to yield 

(16A) 

with c1 , thru c3 constants dependent on parameter~ of the material anq. 

initial conditions~ But substituting Eq. (15) into Eq. (4B) gives 

i = C · + C ln (t ·+ K) 
4 · 5 (16B) 

D, Desorption Kinetics 

To bring the desorption proc~ss into fqcus, conditions must be such 

that ra is relatively small _and rd is large, Reference to Eqs, (7) at1d 

(8) shows·the parameters involved, ra may be made small by keeping pHz° 

small.· In the case of equilibrium between ra and rd, a small pH O will 
2 

give only a small NH o+• But if T0 , the starting point of a tempet:ature 
2 

rise, can,be experimentally made low enough that 

(17) 

then.pH O can be lowered without emptying NH o+· Then rd may be.made 
2 · 2 

measurable by subjecting the sample to a rapid heating program. 

Such experiments have been done by Redhead (22) and by Carter (23, 

24) on systems such as H2 on W, These papers provide formulae to obtain 

the.instantaneous desorption rate from the various vacuum system para-

meters measured. during a linear or inverse temperature incr.ease of :from 

1°K/sec 'to 1000°K/sec, In each paper the rate equa,tion is assumed, 

without·· physical argument to .be 
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dN/dt 
R, 

=. v N exp (-Ed/kT) (18) 

where N is the surface population, R, is the order of kinetics, Ed is the. 

desorption activation energy and vis a constant. 

Equatd.on,(18) may be separated .and integrated to 

t 
-v. ! ~ exp (-E/kT) dt, · (19) 

A nwnber of solutions for the integral.on the right .side are offered in. 

the literature (25 thru 31) referl'.:ed to as nGlow Curve Analysis" because 

it a:i::ose in.Thermally Stimul,ated Luminescence and other simtlar expert-

men ts. In tp.ese, papers a linear heating rate. is assumed,, The· resulting 

integral can be approximated in ten:or twenty terms of·the semi-conver-· 

gent asymptotic, series, as developed by Chen (28). Paterson (30): 

criticizes this on· th~ basis that; although the erlior 1$ sma11 ·· it 

varies wildly, thu~ distorting any· analysis based on curve·. shape. 

Shenker and Chen (31) describe the iterative proc~ss and arbitra.ry 

choice of starting Ed value used to evaluate .the activation energy. 

This author has developed a more general solution. This solution 

allows use of a.less restrictive heating curve and transfers the burden. 

of truncation from an•abstractly math~matical manipulation to an evalu-

ation of the data's limit of precision. The solution defines 

x 1/T. 

Then repeated integration by .parts gives 

t ! exp (-E/kT) dt 
0 

= [B(x,E) exp (-x E/k) 1: = 1/T 
l/T0 

(20) 

(21) 
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wli.ere 

B0c,E) - (22) 

Here the.data.is treated in terms of·time as a function of x. 

3 Taking.data at equal intervals of 10 /T facilitates making a.difference 

table anci finµing (32) the constan~s for 

(2'3) 

to represent the heating curve. The. J vahie is that order of difference 

at which the noise swamps'the ideal value and.randomness appears (33). 

Thus B(x,E) is a J;>Olynomial. 

The left hand side of (19) becomes. 

(24) 

Now the function of data to go on.an Arrhenius plot may be.found. 

To eliminate the donor. lli.epth, divide expressions .of the form of (5) for 
• 

two currents, leaving 

i /i = (N * - s N)/N * 
c A a · a 

(25) 

when iA is the current during the desorbing rise in temperature, and ic 

is the. current during a subsequent identical heating program with a 

fully desorbed starting condition (to be indicated by the reproducibility 

of ,.i0 in the absence of adsorbate). Now solving Eq. (25) for N(i/iA) 

and using Eqs. (19), (21). and (24) yields th'?.f,ollowing set of equa~:t.ons, 
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v B(x,E) exp (-1!1/kT) • f(data;R.) (26) 

with 

f(data;R. • o) .. c [i /iA. - o] ··(21) 
O C 

f(data;R. • 1) = ln(l ~ ic/iA) - ln(l - o) (28) 

f(data;I = 2) = c2 

where 

Ci/ij._ - o) 

l - i/iA .. 

is to be.measured at'the initial temperature T, 
0 

Using Eq. (4B) instead of Eq •. (25) to find i/iA gives 

f (data·,&= 2) • 
B * N - N 

d a 

(29) · 

(30) 

(29B) 



CHAPTER II 

EXPERIMENTAL 

A. Equipment 

Several different sets of equipment were used. Herein each will be 

explained separately and throughout the thesis each will be referred to 

by a single letter and the word "Probec" 

1. R-Probe 

The designation "R-Probe" refers to a device (8) capable of measur-

ing the temperature and conductivity of a sample in a dark, controlled 

0 
ambient, in the temperature range from room temperature to 1200 C. 

The sample is held by spring pressure between two platinum contacts, 

each of which is joined to one platinum wire and to one platinum -10% 

rhodium wire, These wires are held separate by two hole, alumina 

capillaries, which are in turn supported and aligned by a larger alumina 

tube as shown in Fig, 3, The spring loading of the upper capillary and 

this support for the other ceramic components is shown in Fig. 4. Where 

necessary the brass is glued to the ceramic with Torr Seal epoxy. The 

vacuum seal is accomplished by gluing the ceramic capillary into the 

stainless steel flange, The lead wires are sealed to the capillary with 

Torr Seal with the epoxy not touching that which seals to the capillary 

the flange, thus insuring that the only electrical leakage path is 

through alumina, 
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Figure 3. R-Probe Sample Holder (~~ter Rutledge) 
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The sample current flows through the platinum leads to a floating 

ground battery (usually around one aIJ.d a half volts), and then through a 

Keithley 602 Electrometer, whose· reading is recorded on one Sarg·ent 

model SR strip chart recorder (see Fig, 5), 

The thermocouple'voltage from the Pt..:.Pt 10% Rh junction of either 

end of the sample can be read, in reference to an ice-water temperature 

junction, on the second SR recorder. When sample resistance is low, the, 

current can become so large that the IR drop in the shared platinum lead 

is comparable to the thermocouple voltage, Then the sample current must 

be interrupted to allow a true temperature reading, 

Figure 6 shows the ambient control system and the external movable 

heater. For high temperature an alumina tube was used for the part 

that projects into the heater. 0 At lower temperatures (below 1000 K) a 

stainless steel tube was used sinc.e it served at the same time as vacuum 

chamber and guard against spurious electrical influences. 

-4 Pressure readings from 10 torr to 760 torr were obtained with the 

Alphatron vacuum gage. Lower pressures could be read on the indicator 

of the Vacion pump. All seals are Con-Flat 23/4" O.D, flanges, expect 

for ceramic-to-metal seals, which are Torr Seal epoxy. The epoxy must 

0 be kept below 100 C. 

Other options beside vacuum or room air, were obtained by modifica-

tions beyond "Gas Inlet" in Fig, 6. Among these were flowing room air 

through a desiccator, using bottled dry N2 , and using N2 bubbled through 

2. F-Probe 

The designation F-Probe refers to a device capable of measuring the 
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temperature a1'd conductivity of a·sample'.from 100°c down to liqui4, N2 

temper~tures, with; a ccirtt:rciLl,.ed · an;i.bient ~ and· with the. option o~ il+umii;i-

ating the santplewith ultravfolet·lighto 

The· sample is heldt, as _shown in F:i,g, 7 between a .fixed platinum 

contact .ai;id a._spring l,;;aded copper ·cont.fo~, which. is joi~ed to a ·copper•·· 

leac;l and to a Consta~tan ._lead. This· same_ figure shows .tlle heater ar- . 

ranged wi;h the;-mai con~act , to the c<!ipper tube su:r,ounding the samp:t.e, 

Figure. 8 shows' the sample current circui~. and .the heater. circ.uit. 
1.. • , ' . 

'I'he·the;mocouple~voltage is measured on a.Sargent- moc:lel,:S,Ro recordero 

The,c.urrent goes- ~hrough a one and a ·half ·volt'float'ing ground-battery 

at!,d'a K~-ithley 602 Electrqmet~:r; which records on a·secortd model SR re-

corc;lero 

In Fig. 9 can be seen sample c4rrent lead~ The· return .. path .for 

this circuit is,. through ~h,e · outside of the ·coax lea,ds an:cl th'I'.ough the'. 

walls of the •cryostat. Resistance from the _outside of ~he,BNC cCi.lpnector, 

shown in F:i,g o 9 to ·the copper a-qn of ,-:the thermocouple was measured at.• 

less than;one·ohm~ 

Figure 9 also shows·the ·cooling reservoir, the vacuti.m.chambet and 

the qua+U v:i,ew port. All joints of the cha.mberwere soldered, and the 

quartz'winclow W,liS sealed in the·part'with Apiezon W vacuum,wax. 

The gas -po1:.t · 1eads · to a th1;ee way valve, _which can . connect the · 

ch~ber. to a ,fore ,pump, or- al.low the inlet of ·some specffi.ed· gas ·-(e.g. 

d,esiccated air 1 ~ry.N2 or N2 .bubbled through H20). Gas pressure was 

measured on th~.· thermocouple .gage, as well al:! ori. a, mercury manometer 

place,d at; the gas inl.et beyond the through way valve o 

Whenultravi<;>let was·usecl, it was produced by a Hg-light source, 

which shone direc~ly. into the quartz port.o No leri.ses ·or filt~r were 
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used, 

B, Experiments. 

In each of· .the foregoing setups there are a number. of parameters·. 

unded: the ·cont:tol of the experimenter. Consideration· of the various 

ways a slngle parameter may be changed s,hows that ·the combit;lations which. 

each a.mount ·to a different 'type of expe.riment ·are num.erous, In the 

following subsectiqns th;ree of these patterns of parameter handling will 

be desc-ribedo These th.ree ha,re been chosen for tlieir significance in 

terms of the three methods· of analysis developed in Chapter Io Other · 

patterns have be~m ·tried, and some c«i>Inment 'will be .includ,ed in Chapter 

III, for those showing a clear'significanceo 

In each of the three the ·parameter measured was simple current, due 

tb a known, c.onstant: .voltage, The at.her parameters are temperature, and 

its rate of c.hange, and the type and pressure a.nd rate of .pressute. change· 

of the amb:ient ·gas. · 

L Equ:Uibrium 

To fi.t t.he ·a.ssumptfons of Section I-B, the rate. of change of the 

te.mper:ature as well as of the pressure must be negligible. 

Analysis of the Data is straight forward using Eqo (1.2); with cur-

rent assumed N'Oportional to n, yield'S the prediction that 

i a pH 0 , T constant 
2 

log(i) a E/kT, pH 0 , constant, 
2 

(31) 

(32) 
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Thus a graph of log(i) versus 103/T should give 'a value for' lie. 

Experirp.entaLDiffioultie.s with this type of experiment seem largely. 

conc~rned with tim~~ If too long a time is allowed for terp.perature to 

equilibriate, .minor fluctuatio'{ls in pressure or coinposit.ion of ambient 

will build up. The various cc:>mpromi$es made rat various points will be 

indicated in discussing the data·in Chapter III. 

2~ Adsorption Kinetics 

To fit the a!;!sumptions of I-C, temperature should be held constant· 

while .the adsorbate.is'admitted·suddenly. When the sorbate·is admitted 

to an evacuated sarp.ple chamber~ the temperature often changes because 

the sorbate will conduct heat·between the sample ·and cliamber walls. The 

chamber may be initially filled with some.neutra1 gas (e.g., N2), but 

then this must be. flushed out by the sorbate. 

Analysis of the Data amounts to plotting the current or its inverse. 

as a function of log time. The evaluation of the t' constant as well as 

of slope~ and the dependence of each on temperature and pressure has not 

been here in approached for lack of.a model yielding adequately clear 

predictions. 

3. Flash Desorption 

Samples for flash desorption must be brought below a T fulfilling 
0 

Eq. (17), 

After adsorption, the sample temperature is lowered untU Eq. (17) 

is true, and the ac;lsorbat~ is replaced by a neutral gas or vacuum. The 

heating program used· consist.ed of a single. heater ·power setting. After 
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the desired maximum temperature.was reached, the heater was shut off 

and the ,sample allowed. to cool., Current·and.temperature were monito+ed 

continu~mslyo A .. secot1.c,i,'and occasionally a third, cycle of temperature 

were used to provide the "ic" of Eq, (25). The third cycle provides· 

the proof that·the sample was in a fully desorbed state at the start of 

th.e second cycle, for only if such were true could the second and third 

cycles have identical Arrhenius plots. 

Data Analysis here.consists of two parts. First the f·(data;R.), 

for a presumed. value of R., from Eq~ (27 through 29) is. plotted on a· 

Arrhen;J..us plot •. Thet1 it'is modified by·B(x,E). 

Once the b j . an~ J of ,Eq. (23) ar.e · found numerically (see ref, 32 

and 33), one needs B(x;E). Taking derivatives of Eq •. (23); gives 

n n J 3j j-n 
dt /dx. = j~n bj 10 x · j~/(j-n)! (33) 

whi~h goes in.to Eq, (22) to give 

B(x,E) = 
J n J 103j · J·-n 
E (k/E) E b x j!/(j-n)! - n:;::l · j=n j 

(34) 

Pie.tu.re the elements' to be summed as spread .out in an arra'.y .with 'j 

the,column and n·the row. The elements along each diagonal have·the 

same powet- of x. Let that be a.new dummy.index, 

(35) 

Summing over el,ements of equal 51, first and then over the values.of 51, 

yields: 

/ 



or 

with 

B(x,E) = 
J 

- Jfl E 9., b 103j (J''./n'.)(k/E)j-9.. 
9..=o j=9..+l x j /<, 

B(x, E.) 
l. 

The first (103k/E) is lost in the pre-exponential constant. 

be taken as very large, so 

30 

(36A) 

(36B) 

(37) 

E may 
0 

(38) 

can be used in a B(x,E ). For a first approximation this is divided in
o 

to f(data). These divisions can.be done graphically, if B(x,Ei) are 

graphed on a semilog of the same scale as f(data). The resulting plot 

will yield a value of E .• Further such iterations of evaluating B(x,E.) 
l. . l. 

and re-evaluating E. should proceed until changes in E. are small com-
1. l. 

pared to other limits of precision. (A few iterations have suffered 

throughout this work.) 

c. Samples 

The ceramic samples used in this study are identified by the letter 

"S" followed by a number. The data in Chapter III is labeled in this 

way and the specifics for each sample are to be found under that number 

in Table I. 
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Fabrication of each sample followed.the same general 'pattern, 

Powdered Sno2 along with the dopant, if any; were mixed in an.acetone 

slurry, allowed to dry overnight at;td then pressed at 10,000 psi. They 

were again allowed,to dry before firing, Firing times indicated in. 

Tabl~ I are the time spent at the indicated teniperature, 

As fired the samples were disks one inch in.·diameter and about 'one 

eighth. inch·thick, The·samples were cut.to the size shown.in.Table I 

by a carborundum saw, • (See· ref, 11 for further details,) 

Before mounting,samples were washed by the following procedure: 

a) 3 washes·in acetone in ultrasonic cleaner 

b) 2 washes in methanol in ultrasonic cleaner· 

c) 2 washes in distilled water in ultrasonic cleaner 

d) Boiling for 15 minutes in aqua regia 

e) 1 rinse in.distilled water 

f) Boiling for 15 minutes in hydrochloric acid 

g) 4 rinses in.distilled water in ultrasonic cleaner 

h) 2 rinses ·in mithanol in ultrasonic cleaner 
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TABLE I. 

TABLE OF SAMPLES 

II Dopap.t• Edges (nun.) 
· Firing. 

Time Temp. 

7 .7% wt. ZnO 5.9.9 4 hr. 1315°C · 

2.27 

1. 73 

16 5,34 16 hr. 1245°C 

2.51 

1.97 

22 .7% wt. ZnO 4.98 4 hr, 1460°c 

2.81 

1.22 



CHAPTER III 

RESULTS AND CONCLUSIONS 
• 

The adsorption of water on Sno2 is obse.rved to comprise at least' 

two distinct ranges or processes. The two are. herein labeled "Lo'w. tem-

perature" and "High temperature." The low temperature adsorption is. 

observed.as·an equilibrium process from room temperature to less than 

400°K. The high \terp.perature process appears as water bound irreversibly 

at room temperature.and begins to become reversible after 103/T =,1.7 or 

1,8 (i.e., about 600°K) ~ The data a~d results for each are· given below 

as separate sectionso 

A. High Temperature Water Adsorption . 

The high temper,ature adsorption was first observed on conductivity 

data ta\<en at.finite ratesof temperature change. · In the following 

examples, to facilitate comparisont the data given.in the next twelve 

figures are from the same sample, S-7 (see Table I). Fig. (10) shows·a 

3 
series of curves of log conductivity vs. 10 /T. On the first branch tl:ie 

arrows indicate heating or cooling. Prior to branch R-29, the·sample. 

received no heat treat~ent since fabrication. The maximumon,the heat-

ing ·bra:i;i.ch of R-29 failed to reproduce on cqoling. It appeared much. 

sm,;1+ler the next time (R-30) heated and was smaller still the third time 

(R-31). Between R-31 and R-32.the sample was.expc;,sed to laboratory air 

in,.the light.tight R-Probe, for six days. Note.that the maximum con-

..,.., 
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ductivity of R-32 is comparable to that of R~30. 

From the above·· it was conclµded that· the process :responsible fo·r 

the maximum occ!Jrs in the dark at room temperature·to some.extent~ The 

possibility of some gas.adsorbing on Sno2 was-then investigated. 

Fig. (11) shows'the next series of data~ Between R~32 and R-33, 

S-7 was exposed to the air and light of .the laboratory for fifteen days, 

However, from. the beginning of R,-33, the sample,was kept in desiccat.ed 

a:i,.r. Note on the. graph the renewed definiteness of tne ma:dmum in R-33. 

Also note that'curves.R-34 andR-35·are·indistiµguishal;>le, showing that 

duriilg the nine days.· sep~rating them no readsorption had occtirt'.ed. 

The·implication of.the tiata. t't!,us·far is tha.t·the h~ating branch 

maxima seen in;R-29·and R-33 represent'the flash desorption of water 

since.it regenerated in·uamp air but.not in desiccated air. Some data 

-- designed.to fit the flash desorption analysis of Chapter I, as well .as 

adsorption kinetics .data, were obtained. 

After a certain date no sizeable room temperature irreversible ad

sorption was observed on any of the several samples that had originally 

exhibited it, This change could be due to one·of the following: (1) 

some factor (e.g., number of bulk defects) involved in the adsorption 

may have been gradually "used up" or destroyed by the cycling; (2) some 

new trace pollutan;t: (either ·in. the air or. on the sample surface) may be .. 

blocking .the adsorption;· (3) some poll,utant·had been assisting the ad

sorption previously, but after the change, the pollutant was .. absent; 

The first possibility is ruled out by the simultaneous change in the 

several samples with differing bistories. The second one suggests ex

periments in carefully controlled ambient, which are·· reported in. Section 

B. The third possibility suggests experiments in which the chemical 

-,. 
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pot~ntb.l barrier tha1;: · had been• circumvented · catalytically might · in~ 

ste.a.d be surmounted ·thermally. 
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Some.success in taking such high·temperature·adsotption data can 

be reported. Flash·desorpt±on•and ... adsorption kinetics taken after the 

cha:1;1.ge are ·reported ~elow · in their· respecd\!'e .··subsections. As will _be 

poit1.ted out, however, the_observed•strength of·the regenerated effect' 

is only. abou; ~:me. percent of its· former 'val,ue, and qualitative changes 

have also ocq1rred. 

l~ Adsorption Kinetics 

The.adsorption kinetics data·taken before the _change in adsorption 

charactrer is plotted in Fig, (12). In this figure both current and in-

verse current are· plotted as functions· of log time, with t = 0 the point ·· 

at which moist air was <;>pened to·the system. The·temperatur~ was.~bput' 

300°c (103/T = 1. 75). Note .. that it ·is the inverse current which is. 

linear. 

Figure (13) is a similar plot of data taken after the ·change. in·. 

adsorption character for the same sample, S-7. · Here only current as a 

function ,of log time is plotted since it is clearly linear. 

The·conc+usion to be drawn here can be.put in tern;is of .the predic

tions of Chapter I, Section C~ There it'is shown that assuming that; Na* 

fits either Eq. (5a) or Eq. (5b) predic1;:s'respectively, inverse current 

or current'will be a linear function of log time. Comparison of Fig, 

(12) and .Fig. (13) shows that basic Elc;,vicb adsorption mechanism per- .. 

sists, but the change in character of the-adsorption is accomplished by 

a change in the.appropriateness of the choice of approximatipn, Since 

the value of N·in each case starts from zero, the change in·approximation 
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* choice should be due to some change in N • But a comparison of current 
a 

at various.temperatures from the first heating (R-29) to the last run 

(R-49) fails to show any large change in the magnitude of the current 

with the sample in the desorbed state. Thus, no evidence of a change in 

* N is seen. a 

2, Fla.sh Desorption 

Flash desorption data taken to fit the analysis of Chapter I will 

con1i1t of at least three heating and cooling cycles, Hera such a set 

will be designated by an R-number. The various heating branches will be 

labeled A, C, E and the cooling branches B, D, F. 

The f:l.rat eat ii graphed in Figs. (14) and (lS). In these two 

graph,, log conductivity has been plotted aaainat 103/T. · Branch C wa1 

beaun immediately at the conclu1ion of branch B, Branch E ,tarted about 

1i1ht hour, aft•r th• end of branch D, The identity of branch C to E 

and D tor :l.1 r1pr111ntad by on• set of point, in Fiat (lS). 

Noto that tho conductivity on branch A at 103/T • 1.7, which 11 · 

ju1t boforo tho 1lopo ehan111, :l.1 three ordara of ma1nituda l1r11r than 

on branch D, Not@ 1110 that br1ncho1 C and E 1how an anomalo not ap• 

p@artn; upon coolin1. but c and I •r• idontieal to oach oth@r, fhat 

r@produe!biltty ti U,k@n 11 proof that 1 (1) full d@1oi-ptton occurr@d 

durtn1 br&nch A. (2) r@•ad1orptten i1 n11lt1tbl@ or 1b1@nta and (3) th&t 

tho 1nom1l@ tn br&nch@i C ind E t1 not cann@ct@d with th@ d@i@tptton @f 

H2e+ &nd thui m&y h@r@tn b@ t1norod, 

Fiaure (16) 1how1 103/'I' v1. time for the heating branch••· In 

order to evaluate J and tha bj for use in Eq. (37), the data. plotted in' 

that,figure is tabulated in Table II, vs, the time at equal intervals 
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.· :~,:rY . ·. ·- > 3 
(0.02) of 10 /T. Values out to the·fifth difference have been tabulated 

to show the growing ef feet of ·noise in the.· .original data. According to 

reference (32) ancl (33), the randomness· seen in. the J' == 3 column is· suffi-

cient to. warrant truncation at that·point. · Thus, J .is·taken as two, 

Values of tlie ~' s to compute .1;:.he b j coul.d be '.taken from Table II, but .. 

problems with rounding off errdr become·larger, the further from a 

referenc«; point a value is computed. So, Table III was made taking the 

three reference. points · equally spa~ed ovet the whole ·range. of interes.t: 

Using Table III and·the Equation 

f(x) = 

with h 0,24, k = J·= 2 and the x's the 3 the b. =·- as 10 /T values, were 
J 

found by expanding the above polynomial and collecting coefficient of 

the powers of x~ 

Figure (17) !:lhows :S(x,E0 ) ·· and B{x,E1). In both cases 'these are 

plotted on semilog scales vs. 103/T. The E1 value and how it was ob

tained will be given below •. Beyond that all that is needed.·to obtain 

B(x) and B(x,E1 ) are Eq. (38) and Eq. (37) respectively, and the bj as 

already explained. 

The next three graphs, ·Figs. (18), (19), and (20) show the data of 

R-38 analyzed by Eqs, (i7), (i8), and.· (29) respectively, ln each graph 

the log of f(data;t)' vs. 103/T is. plotted as the top curve; The next· 

curve in eacll graph is 106f(data;t)/B(x), and the third curve is 106f 

(data;fl)/B(x,E1). Here the valu~ of E1 = 1.17 ev was taken from the 

dominant slope of the f(data; i = 0)/B(~). The resultant, slope differed 

less than the limits of precision, thus the iteration process was termi-· 
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103/T 

1.20 
2 
4 
6 
8 

1.30. 
2 
4 
6 
8 

L40 
2 
4 
6 
8 

L50 
2 
4 
6 
8 

1.60 
2. 
4 
6 
8 

1.70 

t (sec) 

2120 
2050 
1980 
1910 
1860 
1830 
1770 
1730 
16.80 
1640 
1600 
1570 
1540 
1500 
1482 
1452 
1428 
1414 
1384 
1364 
1345 
1325 
1302 
1278 
1258 
1236 

103/T 

1.20 
1.44 
1.68 

TABLE II 

DIFFERENCE TABLE 

1::,.1 1::..2 6.3 

... 70 

... 70 0 

... 70 0 0 

... 70 0 0 

... 30 40 40 

-60 -30 -70 

-40 20 50 

-50 -10 -30 

-40 10 20 

-40 0 -10 

-30 10 10 

-30 0 -10 

-40 -10 -10 

-18 22 32 

-30 -12 -34 

-14 16 28 

-24 -10 -26 

-30 - 6 4 

-20 10 16 

..,19 1 - 9 

-14 5 
4 

-19 - 5 
-10 

-24 
- 5,,:, 0 

-20 4 9 

-22 - 2 - 6 

TABL.E III 

SHORT DIFFERENCE TABLE 

t(sec) 

2120 
1540 
1258 

-580 
-282 

4.9 

6.4 /:).5 

00 
40 40 

-110 -150 

120 230 

- 80 -200 

50 130 

- 30 - 80 

20 50 

- 20 - 40 

0 20 

22 22 

- 66 - 88 

62 128 

- 54 -116 

30 
84 · 

12 - 18 

- 25 - 37 

13 38 

- 14 - 27 

10 24 

9 - 1 

- 15 - 24 

298 
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nated, 

Comparing the shapes of these curves, note 'that·although the value 

of E changes insignificantly, the curve itself is noticeably changed 

from iteration to.iteration. The R.·= 1 plot has a visible roundness, 

but.lies very close in value to the two othe:i; curves, The!= 2 is less 

curved, but definitely not linear in the upper portion.· The lower por

tion of R. = 2 is an exact fit to!= 0, The!= 0 curve itself displays 

two quite ·linear portions with slopes giving E = ,1,2 ev and 0,6 ev for 

the uppe:i; and lower portions,respectively. 

The conclu~ion the above prompts is that the process has two acti

vation energies, and its "order of kinetics" is zero, The concept of .. 

zero order kinetics would at first seem to imply an escape rate inde~ 

pendent of the size of the bound population, It is this author's belief 

that this.appearance of having zeroth order kinetic~ will eventually be 

traced to complexities in the model and · not to. such independence, But 

there is no convincing argull).ent to that·effect yet, 

Figure (21) contains data·taken after the change in adsorption 

character. Here log f(data;.R.) is plotted using Eq, · (27) through (29), 

with o = 0.1. The use of a finite o is of course dictated by the data 

(recall from Chapter Io is the inverse of the strength of the effect), 

and the apparent weakness of the adsorption, The use of a ·finite o 

magnifies the scatter in the data, ' 

Note in these curves that there is a·new sensitivity to .R., with 

the .Q.. = 2 curve the most nearly linear, 

Figur~ (22) shows the same data analyzed by Eq, (29B) as of sub-

section one, above, 

Note here that little difference is seen between this graph and the 
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last one, Fig. (21). Although little can be concluded about the.appro ... 

priateness of approximation, the general: trend of the slope is· not ·. in 

contradiction with the slope from which the E1 value above was found. 

B. Low Temperature Adsorption 

In Section A, above, tnree possible explanations for the adsorption 

character change · are . set .forth. Two· of them were discussed in that 

sectiono · The remaining one involves or suggests work with the adsorp-

tion which occurs reversibl,y at .room temperature, and that is the sub-

ject ~f this section. 

Specifically; the possibility to be herein co.nfirmed or·not·is that 

the adsorption change is due to a new pollutant in the ambient, which in 

some way, blocks the process of.room temperature irreversible adsorption, 

This would have been confirmed if irreversible·adsorption had been ol;>-

served.in the presence of only bottled o2 and N2 and U. V. None.was so 

observed, Sizable adsorptions were observed, but in each case·they 

proved completely reversible, ·fully desorbing when the sample was ex-

posed to dry nitroge~, 

0 The tests were run in the F-Probe·at temperatures from 20 to 100 C. 

Ambients consisting of N2 bubbled through distilled water both with and 

without the addition of bottled oxygen were tried both in the presence 

and absence of U. V. radiation (see Chapter II for source details). 

These various combinations were tried at many temperatures in the range, 

as well as with.temperature increasing or decreasing. 

Although no end within the scope of this present work would be· 

served.by cataloging all the runs each giving negative results, the 

following is.parenthetically offered as an.example for definiteness, 
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-12 The sample, mounted·in F-Probe, ·showed a.change·from i =10 amp to 

-10 3 x.10 amp.on admission of N2 bubbled·through distilled H2o. The· 
0 . 

temperature was maintained at· 25 · C. U, V •. at this point raised i ·by 

30%. After 7 ksec:u. V. was shut off,·and i fell 30%. The·rurt was con,-· 

eluded by flushing the system with·dry N2 , at which point the.current 

fell to its original value showing that'irreversibleadsorption had not 

occurred in observ-ably large·· amounts. · After each· such trial, the con-

duatiyity returned to.its original value when the sample was flushed 

with dry nitrogen, showing no irrevei;sible adsorption. 

Efforts have been made to perfonn flash desorption experiments with 

water reversibly adsorbed at. room temperature, The difficulty here is 

finding a T at which the adsorption is no longer reversible, in order 
0 

to be able to flash desorb into a dry ambient. Fig. (23) shows.the re,.. 

0 sults of a ·run begun ,at. 250 K •. Even at _this· low temperature flushing 

with dry N2 desorbed the water, so the data of Fig. (23) was taken with 

water present as the temperature increased. At the highest temperature, 

the wet N2 was replaced by dry N2, with no visible change, showing that 

all the moisture had been thermally desorbed. 

3 Note.the rising slope from 10 /T = 4 to 3.5, This is taken as an. 

indication that the partial pressure of water is here rising, probably 

due·to revaporization of water,condensed on the walls of the sample 

holder~ An analysis of the type applied above in Section A,..2 is in-

appropriate here'since the ·assumption of negligible.re-adsorption is not· 

here fulfilled. It is concluded that flash desorption for the low tern-

perature range adsorption is not·feasible with the.equipment presently 
. ( 

Ii 

available. 

Another type of data taken was adsorption at equilibrium. Designed 
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to fit the analysis laid out in Section B of Chapter I, Ec:i,. (12) such 

data could yield the quantity .t:.E • Ed - ·Ea, the dif f erenae between de.

sorption and adsorptioil energies. 
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Figure (24) shows current taken at'various equilibrium temperatures 

in an.ambient of N2 which had been·bubbled through H2o before'the run. 

Temperatures remained constant·at·these points for times from one hour 

to twelve hours. The.open circles represent points taken at equilibrium 

upon i-p.creasing the temperature, · and ·the• filled.-in cir.oles· are. points 

taken on the way down. Suggestions fo.r improving the pressure stability 

and other problems encountered'are described·in:Section C, below. 

Figure (24), as seen in the light of Eq. (12), consists of lower 

temperature portions reflecting the various·amounts of adsorbed water; 

and high temperature portions due ·to bulk effects, The lower tempera

ture portions of the two curves are essentially parallel and their slopep 

indicate a value for 6E of the order of one and a half electron volt. 

1, Adsorption Kinetics 

Sini;::e ·(as the above subsection showed) no irreversible adsorption 

occurred in.wet nitrogen, the adsorption kinetics of the reversible 

process could be studied, A series of data taken on.sample S-22 (see 

Table I} is reported in Fig. (25) through Fig. (30), In each case the 

sample remained at·room temperature, and t = 0 is·taken at the instant 

the previously evacuated system is opened to ambient.· For Fig. (29) the 

ambient is water vapor.alone, For the.others, ambient was N2 bubbled 

through H2o. Fig. (25) and (26) show inverse current'as well.as current, 

In both figures it is seen that it is the current plot which has por.

tions that are linear in log time.thus following Eq, ·(16B) instead of 
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(16A) and·favoring the corresponding choice .of assumptions.· In subse..., 

que.nt plots inverse current 'is not shown. 

Although the current curves do show linear regions, they·are not 

neatly reproducible. This series is given in the. order taken, and random 

fluctuations can be seen by.comparing currents at a single time (say 

fifty seconds). Such fluctuations are taken as a·result of the diffi-

culty in controlling the water content of bubbled N2 • 

Further note the plateau that occurs in Figs. ·c2s), (26), and.(28) 

in the range.around 200 sec. This appears to be associated with a 

transition to a slower process, but a definite conclusion must await 

further.work. 

Comparison of Fig. (29) with the others shows again.the initial 

linear behavior, but the final.current is far below: the others. That is 

taken as indicating that a smaller pH O is achieved by opening the system 
2 

to water than by bubbling N2 through H2o •.. 

C, Suggestions for Further Study 

In this section a number of ideas will be proposed for further 

work. Problems that.have been overcome, as well as tho~e·remaining, 

will be noted. 

As stated in Section :S, <;mly an approximate .value has. been obtained 

for AE for room temperature reversibly adsorbed water. This author 

suggests·that such measurement be further refined, and has made pre ... 

liminary attempts to do so. One possibility is the purchase'of an ex-:-

pensive hygrometer. The other approach, tried here, was to work with 

water vapor alone, 

Instead of bubbling N2 through water, the sample chamber was.evacu-
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ated (to 50µ or lower) and then opened to. a ·vessel containing outgassed, 

distilled H2o. When the vacuum pump was closed off, the pressure could 

be allowed to rise to various values before shutting off access to the 

water. Then the measured total pressure would be the pressure of water 

vapor present. 

The first problem was to read pressures in the range from zero to 

eighteen m.m. (the handbook value of water's vapor pressure at room tem

perature). Oµ a mercury manometer it would be difficult to read a 10% 

change here. A Macleod gage compresses the gas, and since this is a 

vapor, it ·would condense. The final decision was to use an oil mano

meter, magnifying the reading by about a factor of thirteen. 

The system with an oil manometer was not adequate to cope with ex

cessive vapor condensation on the system walls, subsequent freezing, and 

the consequent slowing of evacuation due to slow subliming of the ice. 

This might be overcome by thermostating the system, 

A crucial factor in design of a future system is to provide for low 

pressures held stable for long times by either a very tight vacuum sys

tem, or a rearrangement such that dynamic pumping would be•possible. 

An obvious extension from the present work, which might yield in

teresting results upon further study, is the adsorbate used, This study 

confined itself to H2o, but many others could be tried, Some work has 

been done here on the kinetics of o2 adsorbed on Sno2 , but none on its 

flash desorption, One difficulty will be picking a maximum temperature 

high enough so desorption is essentially complete but low enough so that 

bulk changes have not begun, 

Another point of departure offered is the anomaly seen in Fig, (17). 

Although not of direct importance to the present work, this behavior may 



be interesting on its own. Perhaps a theoretical approach along the, 

lines of Section I-D could show the anomale to be.due to the heating 

itself. Failing that, it is possible that it could be tackled experi

mentally. 

There. is much room left for work concerning the flash desorption 

modelo Eq. (18) should be replaced by a model built·up from chemical 

kinetics expressions like Eq. (8). 

D. Conclusions 

This section is a summary of the conclusions to be drawn from the 

above work. 
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The first conclusion .is that water ionically adsorbs onto Sno2 in 

two temperature ranges. Desorption in the low range is completed by 

400°K and desorption in the high range begins around 600°K. The ad

sorption processes in the two different ranges are probably different in 

character, but the evidence thus far does not ~arrant this as an absolute 

conclusion. 

The second conclusion is that at room temperature water can with 

the aid of a as yet unknown trace·element be adsorbed irreversibly; that 

is, adsorbed in such a way that it desorbs only in the high temperature 

rangeo The crucial ambient component is identified as a catalyst (or an 

aid in some less direct way, ·eog. inhibiting .a competing process) that· 

disappeared rather than a direct inhibitor that appeared on· the': strength 

of the work reported in Section B, The possibility of some non-ambient 

surface pollutant is ruled out by the same results that served to. identi-. 

fy the irreversibly adsorbed water with the high temperature reversibly 

adsorbed water: . the close comparison of, ranges of desorption and de-
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sorption energies between Fig. (18) and Fig, (21). 

The third conclusion is that in both temperature·ranges the adsorp

tion kinetics follow the Elovich equations, This is seen.in Figs, (12), 

(13), and (25) through (30). · 

The fourth conclusion is that in the low temperature·range the ad

sorption h~s a ~E of about one and a half electron volts, as discussed 

in connection .with Fig, (24). 

The fifth conclusion is that in the high temperature range the de

sorption appears of zeroth order and shows that the two energies seen in. 

Fig, (18) are Ed= 1,17 ev and 0.62 ev. 
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