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CHAPTER·! 

INTRODUCTIO~ 

General. 

Structur~l damage .resulting from swelling pressures developed in 

compacted clay soils ·has been studied and documented by numerous authors, 

(Means, 1959; Kassiff and Zeitlen, 1961; Parcher and Means, 1968; and 

man,y others). l,Jntil the early 1960's the standard one-dimensional 

(vertical) swell test.was used to preq.ict the amount of swell that was 

likely to occur. During this perioq these authors began to publish 

material which indicated the lateral component (perpendicular to direc

tion ,of compaction) was .a primary cause of much of the .damage to founda

tion walls and buried conduits. Late.ral sub grade expansion has been 

reported (Hal:i,.burtcm, 1970) to produce tensile stresses in a pavement 

system of sufficient magnitude .to res.ult.in longitudinal cracking of the 

pavement components. Inmost.cases where this t:Y,pe of damage was initi

ally ,0bserved the riding quality of the highway.was not seriousl.y af

fected. However, the longitµdinal cracks opened the way for infiltration/ 

evaporation through the pavement surface and permitted variations in the 

subgrade moisture conditions to occur. Any change of moisture cqnditions 

in the expans;i.ve subgrade would then be reflected as further damage to 

the pavement system. As a result, several ,investigations were in:i,.t;:iat;ed 

to measure and correlate the lateral swell and swelling pressure charac: 

teristics 'of compacted clay soils with 'respect. to physical properties. 

1 



2 

;J:nitially, research at Oklahqma State Universit:y inyolved the 

measurement of free swell in the lateral and vertical directio.ns (Liu, . ' . 

1964; Ozkol, 1965; Srinivasan, 1970). These types.of dat;a are valuable 

in determining the general .behavior of expans:j.ve soils, however, the 

situation irt the ,field is somewhat different. Generally, the structure 

in question appli.es a certain degree of confinement to the expansive . 

soil, which l~ads to. the development of swelling pressures that result in 

damage .to the structur.e, The more confinement applied, the ,greater the 

swelling pressure developed fc;,r a given set of initial condt.tions ~ Thus 

the need for a devic~ to measure both later~! and vertical swelling 

pressure became more eviden,t, Measurement o-f: maximum swelling pressure 

requires that displacement resulting .from particle re-orientation ,during. 

the swelling process be minimized,. 

In.addition .to amount of confinement, the swelling pressure behavior 

of compact:ed clay .soils is influenced by the amount-and type of clay 

mineral .present, initial moisture cqntent, dry density, soil·structure, 

availability .and prope:i;-ties of water, curing period, till].e allowed for . 

swelling, and temperature. The aIJ1ount and type of cl.~.y mineral present 

determines whether the soil possesses a potential for volume,change, 

The remaining fact9rs determ:j.ne the extent to which the swelling poten-

tial is realized, i.e. , the amount of swell or swelling pressure. If 

the .soil, has a volume cbange potentia~, compacted soil structure· .. as· 

determined by· initial moisture content, dry density, and compaction mode 

and energy are all major iri.terre],ated factors which influence the final 

magnitt;tde of swell and, swelling pressure. For a given soil, a working 

knowledge of the ·influences,of initial moisture content, dry,density, 
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and compaction mode and energy is more significant to the soils engineer 

than any other combination of factors. 

Purpose and Scope of Study 

The purpose of this investigation was twofold: 1) develop a device 

for the measurement of lateral swelling pressure of compacted clay soils, 

and 2) measure the relative magnitudes of lateral swelling pressure for 

two Oklahoma soils as influenced by initial moisture content, dry density, 

compaction mode and energy, and lateral swell. In addition, vertical 

swelling pressure data were collected and correlated with lateral swel

ling pressure data. 



CHAPTER II 

FACTORS AFFECTING THE SWELLING AND SWELLING 

PRESSURE CHARACTERIST.ICS OF 

COMPACTED CLAY SOILS 

A considerable amount of knowledge has been accumulated concerning 

the characteristics and behavior of expansive clay soils. A substantial 

portion o;f this k;nowledge describes the factors a;ffecting the swelling 

and swelling pressure characteris.t;ics of compacted clay soils. To 

thoroughly understand swelling and swelling pressure phenomena in com

pacted clay soils one must study compact;i.on and structure of clay 

minerals, physico-chemical aspects of soil behavior, .current theories of 

swelling, and mechanical (or physical) factors affecting the swelling 

phenomena, 

Composition and Structure of ~lay Minerals 

Natural soils nearly always occur as some combination of sand, silt, 

and clay. The sand and silt fractions cont:r:ibute essentially nothing to 

the expansive characteristics of the soil, Almost all of the problems 

encountered with expansive soils are caused by the clay fraction, from 

both the physico-chemical and mechanical standpoint. 

'l'he major elements which. make up clay minerals are silicon, aluminum, 

a:i;id oxyg~n. · Frequently iron,. alkali metals' (Li, Na, K), and alkaline 

earth metals (Mg, Ca) are present, 

4 
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All clay minerals are built from two fundamental .building blocks. 

One is the silica tet1;ahedron (Figure 2.la) in which four oxygens or 

hydrqxy],s having the configuration of a tetrahedron, enclos.e a silicon 

atom. The tetrahedra are comb:1-ned in a sheet structure so that; the oxy-. 

gens of the bases of all the ,tetrahedra are in a common plane, and each 

oxygen ii;! shared by two tetrahedra (Figure 2.J,b). The silica sheet may 

be viewed as a layer-of silicon atoms.between a layer of oxygens and a· 

layer of hydroxyls . (tips of the tetrahedra). 

The second building block is the alumina octah~dron (Figure . 2. 2a) 

in which an aluminum; iron, or magnesium atom is usually .enclosed.equi-

distantly by six oxygens or hydroxyls having the configuration of an 

octahedron. The octahedral units compose a sheet; structure (Figure 2.2b) 

which may be viewed as two layers of oxygens or hydroxyls .with the cation 

between the sheets in octahedral coordination. 

Grim (1953) des.cribes nine major groups of. clay .minerals. that are 

present in .most natural soils,. Of these nine, the three most commonly 

occurring clay mineral groups are kaolinite, montmorillonite, and illite. 

The kaolinite :unit cell conaists .of one layer .of s:Uic.a tetrahedra 

and one layer of alumina octabedra attached in such a way.that the tips 

of the .silica sheet and one of the layers of the octahedral sheet form a 

common surfac;e (figure 2.3a). The unit cell is denoted as haying a "one. 
0 

to one"·layer configuration, The unit.cell is approximately 7.1 A 'thick 

and extends indefinitely tn the other two _directions. The kaolinite 

mineral is :a stacking of the unit .cells with a.structure similar to that 
0 

of .a b,ook witb each leaf 7 .1 A thick. The successive unit cells are held 

together by.hydroxyl type hydrogen bonds, which are much weaker than 

ionic or covalent bonds. As a result of the· weak hydrogen boncl.s, the• 



(Cl) 

Oanc1Q= OxYQens 

(b) 

oande= Silicons 

Figure 2. L Diagrammatic Sketch Showing (a) a 
Single Silica Tetrahedron and 
(b) the Sheet Structure of the 
Silica Tetrahedrons (after Grim, 
1968). 

(Cl) {b) 
0 ,,, 

and ,_) = Hydroxyls •Aluminums, mo9nesiums,etc. 

Figure 2.2. Diagrammatic Sketch Showing (a) a 
Single Aluminum Octahedron and 
(b) the Sheet Structure of the 
Aluminum Octahedrons (after Grim, 
1968). 
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(a) 

Figure 2.3. 

e Aluminums 
• o Silicons 

Exchangeable cation 
nH20 

OOxygens @) Hydroxyls e Aluminum, iron, magnesium 

o and• Silicon,occasionally aluminum 

( b) 

Ooxygens, @)Hydroxyls, •Aluminum QPotassium, 
o andeSilicons (one fourth replaced by aluminums) 

(c) 

Structure of the Maj or Clay Miner:al Groups: (a) 
Kaolinite; (b) Montmorillonite; and (c) Illite 
(a{ter Grim, 1968). 

7 



8 

kaol;i.nite mineral can .. be split into ve,ry thin sheets. Isomorphic 

substitut.ion .of cations, into the kaolinite unit cell is essentially nil, 

anq any.net negative charge on tl}.e clay particl,e is a result of broken 

bonds along the .edges. 

The. montmorillonite unit cell consists of repeating layers of an 

alumina octahedral sheet sandwiched between two silica tetrahedral sheets, 

wit~ the tips of each tetrahedral sheet and the hydroxyl layer of the 

octahedral sheet forming a coilllllon surface (Figure 2.3b). The unit cell 

is denoted af? having a "two to onel' layer configuration. The ,unit cell 
0 

is approximately 9,5 A thick and extends indefinitely in the ;othet; two 
0 

directions. The 9.5 A thickness occurs when no polar molecules are pre-;-

sent between the individual unit layers. Polar molecules consist of 

dipole molecules in which constituent atoms.are unsynnn.etrically arranged 

so that centers of positive and negative electrical charges are not 

located at the same point in the molecule. Such molecules act as.if they 

carried both centers of positive charges and centers of negative charges, 

• 
Water is .a polar molecule and clay minerals assume polar charc;1cteristics 

when in contact with polar substances such as water, The normal thick-
0 

ness of the unit cell is. approximately 14. 0 A due to the presence of 

polar moleyules. If pola:t; molecules are in excessive abundance, the 

unit eel+ thickness may increase to near.separation of the individual 

units, The montmorillonite mineral is a stacking of the .9.5 A .unit cells 

like the pages of a book, held·together by secondary valence bonds and 

exchangeable ion linkage. The resulting bonding force is very weak and 

water may.enter between.the unit CE\lls and cause :the mineral to expand. 

Isomorphic substitution of magnesium or iron for aluminum in th,e alumina 

sheet is a frequent occurrence., Also, substitution of aluminum for 
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silicon in the silica sheet may.occur. As .a result of these substitu-

tions nearly all montmorillonite .minerals possess some net negative 

charge which can.be neutra.l,ized by adsorbed cations~ These adsorbed 

cations are readily exchangeable. 

The. illite unit cell is very similar to montmorillonite excf;!pt that 

some o:f; the silicons are a],ways replaced by aluminum atoms (approximately 

20% ±). Consequently, a net negative charge e:dsts on the indiv:i.d.ual 

units which is balanced by potassium ions (Figure 2.3c). The potassium 

ions.are the bonding force between unit layers and are usually not 

exchangeable. The.potassium bonding force is weaker than the hydrogen. 

bond. of kaolini,te, but is stronger than the bonds existing in montmoril-:-

lonite. Consequently, there is normally no efpanding lattice structure 

in illite as is preseI).t in montmorillonite. The thickness of the illite 
0. 

unit ce.11 is c1pproximately 10. 0 A, with the .other two dirilensioI).s extend-

ing indefinitely. As previously noted, isomorphic substit4tion of 

aluminum for silicon in the silica sheet does occur. In additioI)., 

substitution of magnesium or iron for aluminum in the alumina sheet 

often occurs and results ,in a net negative charge on the illite particle. 

In summary, kaolinite minerals, which have fixed crystal lattices., 

have very small hydration .and cation adsorptive capacities. In .these 

minerals cation aq.sorption or.base exchange is not pronounced. However, 

in the case of montmorilloni,te minerals the ·situation is completely 

different. Montmorillonites have expanding crystal lattices, which are 

the main cause of consider:able hydration anq cation aq.sorption. · Dipolar 

water molecules and available cations are adsorbed both on t}:ie exterior 

and interior surfaces of tl:ie montmorillonite unit cell. The watE;!r 

adsorbed on the interior surfaces introduces relatively high volume 



10 

changes. Illite minerals lie somewhere between kaolinite and montmoril-

lonite in their behavior. 

Physico-Chemical.Aspects 

As previously mentioned, most clay minerals possess a net negative 

charge which makes them capable of adsorbing cations. Since the ions 

present in natur~ have different chemic~l properties which can.affect 

the sweJ,.ling and swelling pressure characteristics of clay. soils, it is 

necessary to understand some of these chemical properties before a 

suitab],,e investigation may be carr:i,.ed out. 

An important in:f;luence of ions on swell characteristics is the 

amount and, rat~ of hydration of the ions. Baver (1956) reported that 

the.lithium ion has the greatest amount of hydration, with sodium 

hydrating to nearly the same amount. His work led him to conclude that 

ions with smaller; ionic radii have greater amounts of hydration. 

The valence of fre~ cations.has an important in:f;luence on the 

cation exchange capacity, which directly affects the S\oi'elliµ,g c}la;racter-

is tics of expansive clays. The. higher the valemce of a cation the 

greater is its replacing power and generally the harder it is to replace, 

Baver (1956) reported that swelling decreases with an increase in the. 

valence of exchangeable cations. Grim (1968) stated. that for ;ions of 

the same valence, replacing power tends to increase·as,the size of the 

ion increases, i.e., tq,e smaller ions are less tightly held th'9.n the 

larger,. ones. Another factor in:f;luencing the replacing power of ions h 

their geometric fit in the clay mineral structure, In general .the 

replacing power of cations is in the following sequence: 

+ + + + + ++ ++ ++ Li < Na < H < K < NH4 << Mg < Ca << Al 



11 

~or example, potassium will more easily replace sodium and calcium will 

more easily replace potassium, etc. 

The cation exchange capacity (C.E.C.} b a measure of the adsorptioPI. 

characteristics of clay minerals and is an indicator of the influence 

of the type and amount of free cations, that are adsorbed, on the swel~ 

ling behavior of expansive clays. The C.E.C. is usually defined as the 

total amount of exchangeable cations a soil is c.9:pable of adsorbing, 

expressed in milliequivalents per 100 grams of soil; Researchers have 

found that all clay soils possess a C.E.C. value. Grim (1968) summarizes 

several factors which result in variations of C.E.O. of a given soil: 

particle size, temperature, availability and concentration of ions in 

solution, clay mine.ral structure, and, isomorphic substitution. He 

suggests that there are three causes for cation exchange of clay miner

als: 1) broken bonds around the edges of the clay mineral, 2) substitu

tion within the lattice structure of the clay mineral, and 3) replace

ment of the hydrogen of exposed hydroxyls by cations which may be 

exchangeable. Some.representative values of C.E.C. for various clay 

minerals are presented in Table 1. In general, the expansive properties 

of clay minerals increase with increasing C.E.C. 

Theories of Swelling and Swelling Pressure Development 

As a result of extensive research into the behavior of expansive 

clay soils, three major theories of soil swelling have been developed: 

1) the double-layer theory, 2) the suction-potential theory, and 3) the 

elastic theory. 

The double-layer theory attributes swelling of clay soils to 

osmotic pressure differentials between the middle plane of adjoining 



TABLE I 

CATION EXCHANGE CAPACITY OF CLAY MINERALS, 
IN MILLJ;EQUIVALENTS PER 100 GM. (AFTER GRIM, 1968) 

Clay Mineral 

Kaolinite 
Halloys,ite 2H O 
Montmorillon:i, te 
Illite 
Verl\liculi te 
Chlorite . 

C.E,C. 

3 - 15 
5 - 10 

80 - 150 
10 - 40 

100 - 150 
10 - 40 

12 

clay particles and the external pore water solution, The electric field 

of clay particles hinders ion movement and causes the .ions to accumulate 

in the interpar:ticle spaces, so that their concentration in the dc;mble-

layer exceeds that irt the external pore water solution. This concentra-

tion differential causes diffusion of the water in the same direction, 

forcing clay particl,es apart .. and thus inducing swell. According to. this 

theory a suitable increase in electrolyte concentration of the external 

solution should result in .zero.osmotic pressure, thus eliminating 

swelling altogether. Gupta, Gupta, and· Shukla (1967) have shown that 

swelling is actually suppressed as electrolyte concentrat:i,.on increas,es, 

but.complete elimination is not.achieved. 

The suction-potential theory.is based on the hypothesis that soil 

at a certain moisture.content has a high capillary potential and loses 

its potential energy as more v?ater is adsorbed. Many authors assq<;:iate 

soil suction with unbalanced forces which result in moistur~ uptake by 

the soil causing it to sweU, According to this theory swelling sho.uld . 
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cease when the soil suction (pF) ,reaches zero, However, Gupta, Gup~a, 

and Shukla (1967) have shown.that residual.swell exists even at zero 

s.oil suction since moiijtur~ uptake continues· bey<;>1::\d · tha~ po~nt, . as 1~:>ng 

as hydra~ion of ions and· soil particles is inc.omplete, and until soil 

particl~s hav.e·been reoriented .relative to confining pressures :and 

attractive forces present in.the syste111, 

Theela~;ic .theo:i;-y; according to Terzaghi (19.31), attribµtes swel

ling of clay soils to the elastic expansion.resulting from a lowering 

of capiUai:y pressure.. It _was his beli,ef that , the purely physical 

properties such as porc;>sity, elastid,ty, capillar,Y force, permeability, 

and hydrostatic pressure had thE\ great,est;: influence on soil swell~ He 

concluded that; physico-chemical aspect~ , influ.ence the sW"elling process 

by altering the elas~ic prope:i;ties of the sot!. 

It is ev.ident from the previous discussi.on that the t~ree conven

tional theories advanced for the swelling process are ·not; adequate when. 

used alone. This is evident from ~he .existence of residual swell at 

high electrolyte concentration; from the existence o:f; continued hydra

tioi;i iof · ions 'with s~;i.1 · sucti,;m reduced. to zero, and· from the impossibil- : 

ity of expelling int.erparticle and interlayer. water by external,. force 

only, In additio~, ·the double-layer and suct~on-potential the,qries. do 

not cqnsider the elasticity effect iri. re],ation to external load.· To 

explain the swelling phenomena more fully, a combination of tQe three 

theories 't\fOUld be·more nf;!arly;satii;;factory~ 

Mechanical or Physic:al Fact.ors . 

To cot!).plete the discussipn of sw!;!ll;ing and swelling ptesE;ure. 

phenomen~ of compac;:ted clay soils, it .is necessary . to consider the 
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mechanical or physical factors affecting the soil~water system. As a 

result of considerable research on the subject, several factors influ-

encing soil swell have been identified: 

1) Amount and type of clay ,mineral, 

2) Soil'structure, as determined by initial moisture content and 
dry density, 

3) Availability and properties of water, 

4) Confinement during swell, 

5) Curing period, 

6) Time allowed for swelling, and 

7) Temperature of soil-water system. 

Amount and Type of Clay Mineral 

As previously me.ntioned, natural soils consist of some combination 

of sand, silt, and clay particles,, with the clay fract;ion being the 

contributing factor to soil swelling. l'he composition and·structt+re of 

the various clay minerals have been dis.cussed by numerous authors, for 

example Grim,(1968), A brief summary of the composition .and struct;ure 

of kaolini.te, illite, and montmorill.onit~ was presented earlier, as 

they are the major groups of clay minerals in most natural soils. 

Seed, Woodward, and Lundgren (1962) indicated that the .type ,and 

amount of clay minerals present det;ermines the swelling potent;ial of the 

soil, i.e., these factors deterll).ine whether the soil would have t4e 

capacity to swell under any conditions. They contend that the remaining 

factors affecting swell determine the .extent to .which the swelling 

potential is realized, . i.e., the amount o:f ,swell. Their research on 

artificial soils, consisting of commercial grad~ clay mineral~, substan-



tiates the fact that soil swell incr~ases with increasing amount of 

e:i.cpansive clay ,minerals present (Figure 2.4). 
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Srinivasan (1970) stated that differeI).ces in crystal lattice, 

hydration, and ion exchange characteristics of the clay minerals result 

in variations of the swelling behavior of soils containing these miI).er-· 

a+s. In ,general, soils containing sodium montmorillonite .exhibit high 

volume change •. 

Gupta, Gupta, .and Shukla (196)) reported that swelling increases 

with increasing montmorillonite content, base excha.nge capacity, and. 

specific surface area (Figure 2.5). 

Soil Structure 

Compacted soil structure, as .determined by initial moisture content, 

qry density, and compaction mode, plays a very important role in swelling 

and swelling pressure.phenomena. So:i,.l swelling and swelling pressure 

will vary with moisture content for a constant dry density and with dry 

density for a constant moisture content. In addition, varying the ,soil 

structure due to different modes of compaction will influence soil swel

ling. 

The effects of initial moisture content on dry density and parttcle. 

orientation for impact compaction of .Boston Blue Clay were reported by. 

Lambe (1958) as indicated in Figure 2. 6. 1 At .low initial moisture con

tents a random or flocculent partic~e orientation exists, .but with 

increasing moisture cont.ent the soil particles move. into a more parallel 

or dispersed.orientation. 

Seed and Chan (1961) indicated similar findings from their invest

igation of compacted kaolinite (Figure 2.7). They ~eported that 
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increased swel,ling and swelling pressure at lower initial moisture con

tents could be interpreted as a manifestation of the greater swelling 

tendency of flocculent soil structures. 

Holtz. and Gibbs. (1956) investigated the effects of placeillent 

conditions·on.swell and swelling pressure development for several natural 

soils (Figure 2.8). 

Ladd' s study (1959) of the. mecl:ianisms of swell of compacted clay 

revealed that the.thickness of the double-layer water i1;1 roughly propor

tional to the initial,. moil;ltur1:1 content. Henc,.e; tl).e lower the initial, 

moil;lture content.(other factors being equal) the greater is .the water. 

uptal<e required to satisfy the double layer deficiency, thus increasing 

the swelling tendency. He also indicated that, for a constant initial 

moisture content, an .increase in dry density would lead to an increase 

in the amount of swelling. Ladd's conclusions.generally sunnnarized the 

influence of initial moisture content on swelling and swelling pressure 

behavior: 

a) For samples compacted wet of optimum water content, swell can 

be explained by osmotic repulsive pressures arising from the difference 

in ion concentration in the double-layer water between interacting clay 

particles and that in the free ~ore water. 

b) For samples compacted dry of optimu'1} water content, swelling 

is influenced by factor1;1 in addition to osmotic.pressure. 1he other 

factors Illay include the effect of negative electric and van der Waals 

force fields on water, cat;~on hydration and the attraction of the parti

cle surface for water, elastic.rebound of pa:t;"ticles, a.flocculated par

ticle orientation, and the presence of air. 
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Availability and Properties .of·Water 

The electrical charge characteristics of clay minerals result in a 

layer of water adsorbed around the particle. The attractive forces 

holding the water .decrease with .distance from the particle,. At degrees 

of saturation less than 100% the diffuse double lay~r of.water is not 

completely.developed. If .water is made available to clay minerals, they 

will adsorb the water into the diffuse double. layer as a result of the 

polar behavior of soil and water in contact. As a result, osmotic repul,

sive forces will develop and swelling will occur. Therefore, a reaqily 

available s,ource of water is necessary for swell or swelling pressure , 

development. 

The attractive force resulting from the electrical charge properties 

of clay minerals is influenced by the nature of exchangeable cations 

initially present and by the kinds of ions dissolved in the added water. 

Ladd (1959) reported that soaking of compacted samples in .salt 

solutions produced a marked decrease in the amount of fluid pickup and 

heaving. As a result he concluded that the replacement of low valence 

exchangeable cations by higher valence cations, e.g.,, calcium for sodium, 

can reduce swelling since the number of exchangeable cations in the 

double-layer is reduced. In addition, the mixing of salt with a compact~ 

ed clay can reduce swelling, since the ion .concentration in the pore 

water is increasedc Indications of the influence of calcium salt on 

heave and water uptake according to Ladd are evident in Figure .2. 9. 

Seed, Mitchell, and Chan (1961) reported similar results using 

calcium acetate solution for soaking their samples. They suggested that 

the .electrolyte-sensitive factors influencing swell are relatively 

insensitive to structure (Figure 2.10). 
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Gupta, Gupta, and Shukla (1967) reported that swelling is actually 

suppressied as the electrolyte concentration increases. (Figure 2 .11). 

Confine,ment During .Swelling 

Maximum swelling pressµre will develop only when maximum confine

ment.occurs. An,y volume change resulting from free svrell.has the ten

dancy to reduce the swelling pressure. Several authors have investigated 

the.influence of confinement on.swell pressure (Bai:ber (1956), Dawson 

(1956), DuBose {195,6), Seeq, Mitchell and Chan (1961) , and.· many. others.) 

Seed, Mitchell, and, Chan (1961) reported that.volume expansions as 

small as 0.10 percent during swelling pressure measuremen~ may.cause an 

error of large magnitude. in the observed, values. Some of· their results. 

are presented in.Figure 2.12. 

Ho (1967) concluded that.the effect of volume change on vertica~ 

swelling pressure was .. related to the initial moisture content of soil. 

samples and the surcharge pressure exerted on them. Similar results 

were obtained by.DeGraft-Johnson, Bhatia, and Gidigasu (1967). 

Curing Period 

The curing period is defined as the time inter~al between coi;npaction. 

of the sample and measurement of swell .or swelling pressu:i;e data. Ac

cording to Barb.er (1Q56), the ,magnitude of the swelling pressure (and, 

presumably, the amount of free swell) of compacted sample$ decreases. 

with increasing curing period, He noted a sub~tant;ial difference in 

S"tvelling pressiure when.the curing period was·inc;reased f:r;om 5 minutes to 

24 hours, 
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Kassif and Baker (1971) investigated the.aging effects.on the 

swelling potential of compacted clays and concluded: 

26 

1) The swelling pressure of a compacted clay, particularly at high 

initial densiti~s, . tends. to increase with aging and then. gradually 

de~rease·to.approximately the.final val4e after about 20 ·days. This 

behavior is attributed to the ,oppof'iite effects of suet.ion .and bonding 

on.swelling potential (Figure 2.13a). 

2) The aµiount of swell under relatively light lo.ads is n<J1;: markedly 

affected by aging, altl).ough there ig a slight tendency for swell to 

behave similarly to the swelling pressure. This phenomenon.is explained 

by changes .occuring in the structure of the clay following volu~e change 

(Figure 2.13b). 

3) The peak values of swelling pressure and·percent swell of an 

aged compacted clay may amount to .two of thr~e times the initial val4e 

and depend on initial conditions•of moisture.and density. 

Srinivasan and Parcher (1971), in a discussion of Kassif and Baker's 

work, believe that the curing period significantly affects.unit.swelling 

values parallel and perpendicular to the direction of compaction. 

Time Allowed for Swelling 

Since soil will continue to swell .until some equilibrium is reached 

between internal and external forces, the amount of sivelling at any 

instant depends on the quantity of water .entering the soil. The rate 

w:i,th which water enters the s9::U is a function of its permeability. In 

addition, the. hydraulic gradient of .the pore water affects the rate 

of water entry. 
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It is a generally accepted fact that clays.compacted te the same 

density on the dry side of optimum moisture content have. higher,permeab-

ilities than those samples compacted on the wet side of ,optimum. This 

is beca\l,se compac;tiot1- on the dry side results .in a more random or 

flocculent structure. 

Lambe·(1960) studied the time period required for swelling and 

found that' the minimum perme~bility exist~ at.approximately optimum. 

moisture content (Figure 2.14). 

Temperature 

The effect.of te~perature on swell and swelling pressure is obvious 

when its influence on the thickness of the double-layer water is consid-

ered. IncreaEjeS in teillperature tend.to depress the.double-layer, while 

temperature decreases result in double".".layer expansion and soil swelling. 

Previous Research on Lateral Swell and.Swelling Pressure 

Until the early 1960's the -primary concern.of researchers in the 

area of compacted expansive clays was measurement of vertical swell and 

swelling pressure, The vertical direction usually represented a.direc-

tien parallel to compaction. Realizing the anistropic characteristicE! 

of expansive ,soils and noting damage to bu~ied conduits, highway.pave-

ments, and foundation walls, researchers began to in.vestigat,e lateral 
I 

swell and swelling pressure behavior of compacted soil. In this con-

text, lateral indicates a direction perpendicular to compaction .. 

One 0f the major proqlems hindering research in.the area o( 

lateral.swell and swelling pressure.has been the development of instru-

mentation to measure these values while ,allowing measurement of vertical 
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swelling data. Initially., apparatus for measuring vertical swelling 

data were used with horizontally oriented samples tr!mmed from larger 

mas.sea. (i.e. ,· Standard Proctor sample) • · Thi.a proced1,1re gave relatively 

coni;dstent results, but was time consuming. 

As a res.ult. c:,f ·th~ need for .more, rapid measuring prqcedtJ.res and a. 

means t;o measure both lateral and vert~cal.swelling data.simultaneoul\!lY, 

variotJ.s devices were developed. Komo:rnik and·Zeitlen (196.5) developed. , \ . . 

a spec;:ial device which allowed the concurrent.measurement of late,ral and 

vertical swel~ing pressure. , The apparatus consi'~ted of a stainless steel 

ring, -with its central portion .turned down to a wall thick,ness of 0.3 mm 

over a height slightly less tha:q. that of tJ;le specimen under- te.st, . so 

that the wall action was· that of a thin membrane •. Three ,thin.electrical 

wire conductors, (of the type used in elect.rical ... :resistance wire strain 

gages) were stretched arqund the outside of the membrane at;. its center 

and quar;er-:height levels (Figure. 2 .15). The. ring was. calibrated by. 

means of a,pi$ton applying pressure tr;,.a heavy·oil within the ring. 

During testing the ring was placed in a fixed type.consolidometer, ~hich. 

allo~ed the ·measu:rement of vertical swell.and swelling pressl,lre data, 

Komornik. and Zeitlen (1970) useq. the ,previously described apparat;us. 

to investigate the . influence of various.· factors on lateral ·and vertical 

swelling preasures. Th~ testing program utilized stat:i;.cally compacted 

samples of an expansive clay typical of .rs.raeL Three .initial moisture 

c~:p.tent;s lv:lth t11,ree.dry densities at each moisture content. were used for 

initial placell).ent conditions. In addition, the effects ,of till).e allowed 

for S'tvell, curing period, .and varying vertic~l con:l;inement and load were 

investiga,ted. 



31 

13.78 

13.18 

11.25 
0.5 

LOADING PLATE 

. UPPER POROUS STONE 
'. ·. . . . . . . ( 11.15 cm. dia) 
,'II I I I I I I : ,'I/ I I / / I /I/,' I I LEADS FROM 
//// SOIL SPECIMEN //, ELECTRICAL STRAIN 
I I I I I GAGE WI RE 

1 11.25 cm.di a. x 2.54 cm. he i ht ) 'm-,..,....._ 
u-+--· ....... ..,,.// ...... : tov·i'ER. 'p'o'Fidu's .. STONE.-.:-:·.·:·: 

: · ·. . . 11.15 cm. dia.) . · · .· ·>: · 3 STIFFENING 
SEGMENTS AROUND 
PERIMETER d 

FIXED TYPE CONSOLIDOMETER BASE 

1. 11.15 
.. 1 

13.78 

14.94 

Figure 2.15. Swelling Pressure Ring for Lateral Swelling Pressure 
Measurements (after, Komorhik and Zeitlen, 1970). 



32 

The effects of time allowed for swelling a:i;,.d curing period are 

presented in Figure 2 .16a. Komornik and Zeitlen ._believe that the varia

tions are the result of the .specimen being in a state of prestress, 

resulting from compaction. Their.normal procedure was to.allow these· 

stress.es to dissipate prior to testing. Figure 2.16b shows the time 

allowed for swelling using the_ir. normc;1.l testing proqedure; 

The influence 9f irtitial moisture content, dry density, and 

vertical swell on lateral swelling pressure.is presented in Figures 

2~17 and 2.18. The relationship between lateral and vertical swelling 

pressure for the various moisture contents and dry densities is s~9wn. 

in Figure.2.19. 

Komorni~ and .. Zeitlen' s statements concerning the overall swelling 

characteristics of their particular soil and testing procedure were: 

1) For .the same density; the amount of vertical swell was larger. 

for those.specimens which were compacted at a lower moisture 

content, 

2) For the same moisture content, the amount of vertical swell was 

larger for those specimens which were·compacted to a higher 

density. 

3) The swelling pressures associated with no vertical movement'did 

not show large differences with changes in moisture content for 

specimens compacted to the same density .. 

4) The higher the density, the higher were the vertical swelling 

pressures, .regardless of the moisture cqntent of ,the sample, 

5) The higher the density, the lower.the compressibility. 

Statements. 1, 2, and 5 are generally accepted trellds in the area 

of expansive soils ,and substc::mtiate the work of many previous researchers. 
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:aowever, statements 3 and 4 tend to contradict the generally accepted 

behavior. One possible explanation for the data which lead to these 

statements.lies in the fact that static compaction nearly always results 

in a flocculent structure, and increasing the dry density would result 

in a similar structure, only more,dense. · Thus, the variation of struc

ture with moisture content which is evident from compaction theory and 

the influence of this variation on swelling behavior is minimized. 

Concerning lateral swelling pressure the authors stated: 

1) The higher the density, the higher the lateral swelling 

pressure. 

2) Although, for the same dry densities, the effects of molding 

moisture content on lateral swelling pressure is small, lateral 

swelling pressure tends to be higher at lower moisture contents. 

3) When the influence of molding moisture content is examined for 

specimens showing equal percentages of swell, it may be seen 

that the lateral pressure developed is not particularly depen~ 

dent on the moisture content, but mainly on the densities. 

4) The larger the.vertical load, the ,higher th~ lateral swelling 

pressure. 

Fost (1962) describes an apparatus developed under the supervision 

of Dr. J. V. Parcher at Oklahoma State University, which allows the 

concurrent measureme~t of lateral and vertical swell of compacted soils, 

The apparatus (Figure 2.20) con~ists of a plexiglass cell in which a 

sample enclosed by a r1,1bber membrane is placed. The cell is then filled 

with water and the average lateral swell is determined by measuring the 

amount of water displaced by the.swelling soili The vertical swell 

was measured by means of a dial gage. 
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Liu (1964) utilized the previously described apparatus t<:> investi..,.. 

gate the swelling behavior of the Permian Red Clays of West Central 

Oklahoma.· As .well as substantiat;ing the generally accepted trenqs · 

concerning the influ~nce of initial, moisture content, dry densi~y, ,and 

time, his data.indicate some.interest:ing facts.about different co~pac~ion 

modes and energies and their.effects on lateral.and vertioal swell. He 

concluq.ed that for samples having the sc:1,me·init:ia], mobture content and 

dry denaity, those prepared using static ,cempactiqn swell more tqan 

those molded by kneading compaction or impact·compaction. '!'he.amount of 

swelling of statically compacte4 samples .is larger,comp<;tred to that of· 

samples compa<;!ted by kneading; but there is little difference irt the 

volume of swelling of ·stat~cally and dynamically compacted samples 

(figure 2.21). 

It may·al~o be noted. from Figure 2.21,that the horizontal swell 

exceeds ;he.vertical.swell in most cases. 

In other inveE;1tiga"1:ions on.the Permian Clays by Ozkol (1965) and 

Srin:i,vasan (1970) .similar results were. <;>btained. 
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CHAPTER III · 

MATERIAL~, LABOMTORY EQUIPMENT, AWD PROCEDURES· 

Introduction 

This Chapter .describes the soils, equipment, .and procedures used to 

c~rry out the research on lateral swelling pressure. The physical and 

geological propert:i,es of the two soils are presented. The, section on. 

equ:i.pmet1.t describes th.e modificatic;m · of a previously developed. apparatus 

so that lateral swellipg pressure could be measured.· In addi;ian, a· 

brief description of.other apparatus that were tried and found unsuitable 

for lateral swelling pressure measurement is included. Sample.prepara

tion and testing procedures are also described,. 

Materials 

The.entire :research program was.carried out on two native Oklahoma 

soi:J,s, with diffei;ent index properties and geologic histories. 

One soil ha low to medium plasticity red clay, abundant ;in the 

central port;ion of.Oklahoma~ This area of Oklahoma h characterized by 

sedimentary deposits which were laid down dur:i.ng the Permian Period,. 

Later deposits during the Mesozoic Era covered ,the Permian Red Beds to a 

depth of 400 to .600 feet. As ·a result of upl:Lf t.s in late:i,- geologi~ 

history.the ~eneral slope of the.area was altered and erosion .of the 

M~sozqic deposits began. Through the ages nearly all of thEt Mesozoic 

material has. been removed. The resulting exposed Permian deposits cir,e · 
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heavily overconsolidated with preconsolidation pressures in the range of 

20 to 30 tsf. In aqdition, the Sl,lrface clays have been subjected to mar:iy 

cycles .of saturation ,and drying, resulting in apparent preconsolidation 

or swelling press¥res .from desi,ccation in the range of 3 to 5 tsf. The 

inherent red color of the Permian Red Clay (PRG) is indicative of.the 

presence of iron oxide, PRC possesses a moderately high tettdency to. 

shrink and swell with changes in moist4re c9ntent. The PRC used to c~rry. 

out th.e research program was-obtained from the excavatiol} for ;a new.fine. 

arts bui.lding being constructed on·the campus of the Oklahoma.State 

University at Stillwater. The clay was obtained from a depth of approx

imately.ten feet below .the existing surface in the southeast corner of. 

the excavation. · 

The secqnd soil is a high plasticity ,gray clay from Roger Mills 

County in western Oklahoma. In this area the deposit is. approximately 

60 feet. thick and underlain by the Permian Red Beds. The mater.ial is 

thought. to be the .result of outwash plains extending from the Rocky 

Mountain uplift. It is somewhat less overconsoli9ated than the .Permian 

deposits, The gray color indicates an al;>senc;e·of high percentages o;f; 

iron oxides. The Roger Mills. Gray Clay (RMGC) used throughout the .study 

was.obtained from a depth of approximately three feet below th.e surface 

on private land seven miles .west.of Roll~ Oklahoma (Section 11, R25W, 

TWP15N). 

Index properties of ,PRC and RMGC are-presented ;tn Table II. As 

indicated, the two soil$ have different physical.properties. Grain.size 

distribution .curves for both PRC and RMGC are presented iri Figure 3.L 

l'he PRC contains lower percentages of the c;oi;irse;clay fraction, while the 

RMGC cont;:ains lower pe:t;'centages of the fine ctc1.y fractions., The_ compac-
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tion characte,rist:i,cs fqr PRC and RMGC are shown,i,n Figure 3.2. Compac""' 

tion tests ~ere carried out using Stanqard Proctpr procedures (3 layers, 

25 blows per layer) with the Harvard Miniature mold and O.S.U. impact 

hammar. As .indicated, the particular PRC tested has an optimum moisture·. 

content of 19. 4% ·and 102 •. 1 pcf maximum dry density. The opt:i..mum moisture 

content and maximum dry density.,for RMGC arb·22.}% and 92.r8 pcf, respec-;-

tively. 

Properties 

Specifi~ Gravity 

Liquid.Limit 

flastic,Limit 

Plasticity Index, 

Fl,.ow .Index 

Toughnes.s In4ex 

Ac;.tivity ~umber. 

Linear Shrin~age· * 

Free Swell.** 

* THD Bar Method 

** ·· Lambe (1960) 

TABLE Il 

PHYSICAL PROPERTIES OF FRC AND RMGC 

PRC 

2.79 

47.4 

20.4 

27.0 

6.7 

4.0 

0.59 · 

16.7% 

22.0% 

RMGC 

2.72 

61.6 

25.5 

36.1 

14.9 .. 

2.4 

1.,03 

16.7% 

26.0% 
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Equipment 

As. ,previously 'discussed in Cha:pter II, ~me' of the major .problems 

hindering rese.arcl:l iri tqe area o~ late.ra~ , swell and swell:f,ng pressure·· .. 

was t~e ·development of instrµmentati<m- .which would allow concurrent 

measurement of;lateral and·vertical swelling data. A portion o~ this 

research prog;-am.was to develop a dev:lce whichw.(!)uld allow simultaneous· 

measurement of lateral and vertical swelling data. Several devices were 

tried and evaluated. Before describing the actual apparatus used for 

data collection, a brief discussion will be presented concerning the 

problems encountet:-e.~ with device~ v1hich did not.work. 

The.first apparatus invesUgated conS!isted o{ a stainless steel 

ring (1.000 in,. high, 2.500 in, ,ID, al'ld 0.050 in; walt thickne~s), 

instrumen.ted with two semiconductor strain gages, placed at center height 

and on opposite sides of the.ring. A soil·sample.was t9 be placed iri. the 

ring and allowed.free ,access to water., The; ring st:i;:-e.ss would reflect tbe 

lateral component of soil , sweLl,.ing pressure, while the. vertical, component · 

would be measured by a 0.50 in. stainless steel, rod.instrumented with .the 

same type o~ strain gages. The major problem with this qevice was semi

condµotor .stra:i,n gage output ,variation resµlting from mifilute -.cb,anges in 

temperature,and humidity, The magnitude,of the expectecl s.train-s .was in 

the range of five to ten micrqincq.es, therefot:-e, ver,y sl:i,ght.variations' 

in.temperature and humidity caused considerable,disc:i;:epancie~ in tqe out

put, · Pr<:>blems also developed in calibration, since it was virtually 

impossible to.apply a unifol'.m calibration pressure to tb,e interior sui;- · 

face of the ring •. All c:1.ttempts to calibrate. the ring res4lted, in differ

.ant nonlinear curves relat~ng press'-1-re tQ strain indicator read:f,ng. , It · 
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could also be argued that measuring strain at two points o~ the circum

ference of the ring does not consider the possibility of strain variation 

over the height of the ring. The stainless steel rod proved to be much 

eas;i.e:t;" to calibrate, but was still sensitive to changes in,ambient 

environmental conditions. 

A second device consisted of a piezoelectric ceramic ring (1.00 in, 

high, 2.50 in. ID, and 0.25 in. wall thickness), instrumented with a 

thin coating of silver on the inside and outside diameters which acted 

as electrodes. Piezoelectricity is the generation of electrical charge. 

in a material by a mechanical stress that changes its shape or a propor

tional change in the shape of a material when voltage.is applied. In 

other words, it is a means of converting mechanical energy into electri

cal energy and vice versa. A sample of compacted clay placed in the ring 

and allow~d to imbibe water would swell and cause the mechanical deforma

tion needed to produce a change in voltage across the interior and 

exterior surfaces. On~ problem with the piezoelectric ring involved 

insulating the interior and exterior surfaces.so the system would not 

ground itse1£ when placed in water. A light spray coating of Teflon 

seemed to alleviate this problem. The major problem involved the time

dependent charge "drain-off", which is an inherent characteristic.of· 

piezoelectric materials. A major use of these materials is in the area 

of electroacoustics, where measurements are mad.e instanteously. Swelling 

pressure does not develop immediately, therefore the device .was very 

susceptib],e to charge reduction with time, causing serious discrepancies 

in the collected data. 

A third device consisted 0£ two concentric rings, a thin inner ring 

(1.000 in. high, 2.500 in. ID, and 0.025 in. wall thickness) and a heavy 
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exterior ring (2.000 in. high, 2.650. in. ID, and 0.250 in. wall thick-

ness). With .the interior ring in place·an annular distance of 0.050 in. 

existed between the two rings. The basis of measurement for this device. 

relied on the change of capacitance across the annular distance. As the 

soil expanded in the interior ring~ causing it to deform and result in .a 

decre1:).se of the annular distance, the. change in capacitq.nce. could be 

llleasured, Calibration o:1; the ring with respect to applied pressure .. and 

capacitance change was accomplished easily, however, the sensitivity was 

restricted by available output, instr. umentat:l,on .. The dielectric material 
' ' ' 

used (in .the annular space) for this device was. air, which caused prob-

lems with output variation, restdting from changes in air temperature and 

humidity between the rings .. This problem evolved as a result of poor or 

incomplete sealing of the annular space. The vertical stress, in this 

case~ was to.be measured by.a 1000 lb BLH strain gage load cell, 

Comparing the. relative merits o~ the previously described devices, 

the capacitance ring would probably be best suited to meet the require-

ments for measuring lateral swelling pressure, However, the.device needs 

some refinements, such as: precise machining of rings to provide a 

completel.y smooth and uniform annular spac:l,ng; a special ,holding plate 

to maintain un:l,form annular spacing; and possibly some type of soft, 

deformable, dielectric material in the annular space to requce tempera-

ture and humidity e~fects. 

As a result of the problems encountered in trying to de~elop a 

device which woul.d allow concurrent measurement of lateral. and vertical 

swelling pressures, an ,apparatus which measur~d only the lateral swelling 

prese;ure .was us.ed. The vertical swelling pressure was then measured by 
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a load cell-type device, utilizing salllples compacted by.the same mode of 

compaction and to the same moisture content and dry.density as the 

lateral swelling pressure samples. 

The lateral swelling pressure was measured using a modified version 

of a device described, by Fost (1962). Theapparat4s, shown.in Figure 

3. 3, is made· entirely of plexiglas .. Modification~ made to Fost' s veri;iion 

were: a top plate to inhibit vertical movement, a pr9cedure by which 

water could be applied to both ends of the sample under back pressure, 

and the use of a pressure transducer and, strip chart recorder to measure 

and record the 1 lateral swelling pressure. 

A compacted sample surrounded by filter paper and a rubber membrane 

was plac~d in the cell and the cell filled with de-aired distilled water. 

Water from the reservoir was introduced to the sample under back pressure, 

causing the swelling pressure to develop. Since the system was sealed, 

the water surrounding the sample would maintain (for al~ practical pu~- · 

poses) zero deformation and transmit the developed swelling pressure to 

the pressure transducer, which translated the mechanical force to an 

electric signal for the.strip chart recorder. 

The pressure transducers used in.· the research progrc;1.m were manu
• 

factured by Consolidated Engineer!ng Corporation and had a range of O 

to 100 psia. Each transducer was placed in a specially machine plexi-

glas .container equipped, with a reservoir, toggle valve and two quick-

connect fittings (Figure 3.4). On~ fitting allowed connection to the 

swelling pressure cell and the other allowedremoval of small amounts of 

water from the system so that the effect of lateral swell on .lateral 

swelling pressure could be investigated. 
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Figure 3.3. Diagram of Lateral Swelling Pressure Cell. 
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@- HOLDING PLATE 

(8)-PRESSURE TRANSDUCER 

Figure 3.4. Diagram of Pressure Transducer Assembly. 



During early stages of testing, a major problem developed which 

seemed to affect final swell pressure data considerably. The lateral 
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swelling pressure would develop and then drop off to approximately zero 

in a relatively short time (approximately 2 to 3 hours). It was thought 

the problem evolved from back pressure application of water to both ends 

of the sample and the use of small strips of filter paper along the sides 

of the sample. As a result, the water did not penetrate the sample 

uniformly and the end portions would swell and consolidate the drier 

center portion. Enough particle reorientation appeared to occur such 

that the sample was useless for any further data collect.ion. To allevi-

ate the problem, a 1/8 in. hole was drilled through the long axis of the 
' . 

sample while it was still in the mold and a 0.125 in. OD by 0.031 in. 

wall thickness nylon tube (same length as the sample) with numerous small 

slits cut along its length was placed in the hole~ The nylon tube had 

enough stiffness that negligible distortion of the hole could occur from 

swelling. This tube allowed water to reach the interior portion of the 

sample more rapidly. In addition, the. sample was completely surrounded 

by a single piece of filter paper equal in size to the circumferential 

area of the sample. Use of the nylon tube and a solid sheet of filter 

paper allowed water to enter the sample more uniformly and let the swel-

ling pressure reach its maximum value. 

A typical set-up, showing swellin,g pressure cell, pressure trans-

ducer device, and recorder is pictured in Figure 3.5. 

Ve~tical swelling pressure was measured using the apparatus pictured 

in Figure 3.6, consisting of a small fixed frame which held the BLH-Ul 

1000 lb, strain gage load cell and a plexiglas bowl into which the sample 

was placed for immersion. The influence of vertical swell on vertical 



Fi gure 3 . 5 . Tes t Assembly for Lateral Swelling Pressure Me asurement . \J1 
w 



Figure 3 . 6 0 Test Assembly for Ver tical Swelli ng Pressure Measurement c \Jl 
.i:-



,, .. 4 ~J. 
" 

Figure 3o7. Compaction Equipment for Lateral Swelling Pr essur e Samples . \.I) 

Vl 



Figur e 3.8. Compaction Equipment for Vertical Swelling Pressure Samples. Ul 

°' 



57 

swelling prei;;sure was.investigated by rotating the platen on the load 

cell (1/8 revolution equals 0.00625 in, de~ormation) after constant 

swelling pressure conditions. were est~blished. 
l 

Procedu~es 

The discussion .of procedures .used during the research program will 

be broken into two major catagories; sample prep.aration .and testing 

procedure. 

Sample Preparation / 

· For the lat~ral swelling.pressure meast;trements, all samples were 

compacted in Harvard Miniature molds using the 0,S.U. impact hammer 

(Figure 3.7a). · Pr:i,or to compacti?n, large amo~nts of PRC and RMGC, 

which had bee)J. ground to minus U. $. No •. 40 sieve size,: were oven-drieq. 

and ston~d in .desic.cators until .needed~ Enough dry .soil for one ·sa~ple. 

and a,mois;ure.content test was weighed out and water added until the 

desfgn moisture cqntent wa~ reached. The soil.and water were allowed to 
,' ' 

/' 

sit.for appro~imately.24 hours, then mixeq and compacted. As previously 
/ 

me11-tioned, a 1/8 in. hqle W8iS ·dr:Uled through the sampJ:~ and a slotteq 
' / 

plastic, tube placed in the ho.le wh.ile .the sample was. still, in the mold~ 

The sample,was extruded and·placed.in·a sealed plastic 1bag for approx~-

mately 24 hours pl('ior .to testing.· As .. a check on, the influence of struc-

ture (as determineq by compaction met~od) on latera+ swelling pressure, 

several samples were compacted statically in Harvard Mini,;1tur~ mol4s 

us:i,ng a hydraulic, testing machine and· st~tic , compact;i,on .foot (F-igu1;·e 3. Zb}. 

Vertical swelling pressure samples were.compacted by impact and· 

stat:i,c -methods. Th~ prc;:,cedu:i;-e for sample preparatie>n prior to actual 



compaction was the same as that used for lateral pressure samples,, 

Equipment used for the compaction of these.samples is shown in Figure 
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3, 8. The procedure com~isted of mixing the samples uniformly and .placing 

1/3 of the required amount of soil for the design dry density in the· 

stainless steel ring (1.250 in. high by 2.500 !n, ID) and applying an 

impact forc,e to. the compa~tion .block with a wooden mallet, .. A small rib 

on the compact.ion .block; restricted penetration into· the ring beyond a. 

pre-measured distance, so tqat the final compaC?ted sample was 1.00 in. 

high .and consisted of three uniform layers.. Stai;:ically compacted samples 

were prepared in the same mam:1.er, except· that hydraulic testing machine 

was.used.to apply the force at a relatively low loading rate, After 

compac,tion the samples were.extruded from the ring and allowed to sit 

for approximately 24 hours in sealed plastic.bag~ prior to testing, 

Testing Proced~res 

Lateral swelling pressure samples were placed·in,the swelling cell 

by the procedure ~sed in triaxial testing, and the cell completely filled 

with de-aired distilled water and sealed, Back pressure was applied to 

the reservoir and r~c;order"' pen set to zero. positive, The toggle valves 

below the.reservoir and between the cell and transducer were opened 

simultaneously, so that the back pressure.could be checked by.the re

corder. Samples were allowed to take in water .and develop swelling 

pressure until the latter stabilized at its maximum value., At that time, 

both toggle.valves were closed.and a burette placed in the qutckconnect 

above the transducer. Usi~g the same amount of bac~ pres.sure applied 

through the bul'.'ette as to the sample, the lower toggle valve wai;; opened 

and enough water removed to allow the swelling pressure to.decrease.to 
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zero, with resulting lateral expansion of the sample, : The burette was 

removed and the swelling pressm;e allowed to develop again. This process 

was repeated until the incremental lateral swell was so small that essen

tially no water could be removed; then a final swelling pressure was 

developed and recorded. Followirig the test, the sample was removed and 

it~ moisture content determined,. 

Vertical swelling pressure samples we:i;'e placed in a stainless steel 

ring (1.000 in. high, 2.500 in, ID) and then positioned under the platen 

of the load cell. The platen was lowered until cqntact was made with the 

porous stqne covering the sa~ple and the recorder pen was sli~htly 

deflected. The. bowl holding the sample was filled with water and the 

sample allowed to develop its maximum swelling pressure. For samples 

on which the influence of vertical swell on swelling pressure was to 

be investigated, the platen was.rotated (causing upward advance) until 

the swelling pressure decreased to zero. One revolution corresponded 

to 0,05 in. vertical deformation. Vertical swelling pressure was again 

allowed to develop .. This process was repeated until sufficient data to 

establish the relationship were collected. 



CHAPTER IY 

PRESENTATION AND DISCUSSION OF RESULTS 

Using the testing proce4ures outlined in the previous Chapter, the 

influences of initial moisture cpntent, dry density, compactio~ mode and. 

energy, and lateral swell on lateral.swelling pressure.were investigated. 

Several interesting trends were established, as well as the.substantia

tion of some exist~~g relatio~ships. Although an apparatus for the 

concurrent measurement of lateral and vertical swelling data was not 

successfully developed, the lateral swelling pressure cell described in 

Chapter II performed very well and yielded resulti;; which were eadly 

correlated to vertical swelling pressure data. 

Effect of Compaction Variables on Lateral Swelling Pressure 

Initial moisture content directly influences the,dry density, double 

layer water thickness, and particle orientation of compacted soils. All 

of these factors combine with the other fact9rs described in Chapter II 

and determine the expansive behavior of compacted clay soils. To under

stanq the swell and swelling pressure characteristics .of compacted clays; 

these individual.factors and their interrelationships must be carefully 

considered. The effect.of initial moisture content.on dry density for 

any given s<?il is easily establishe.d thrpugh the .use of compaction tests. 

and.needs little discussion, Its effect on the.thickness of the double 

layer is less evident at first notice, but is quite i~portant when 

60 
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considering the swelling phenomena,, The importance lies in the fact. 

that a large portion of the swell and swelling pressure developed in a 

compacted soil is the .result of osmotic repulsive forces between. parti

cles, which are developed in and transmitted through the double layer. 

Ladd (1959) indicated that the thickness of the double layer is roughly 

proportional to in!tial moisture content. In most compacted soils, the 

thickness of the double, layer is ,less than the individual particles 

would like it to be, if given free access to water, Therefore, the lower 

the initial moisture content the greater the water upta~e required to 

satisfy this double layer deficiency. For~ constant initial moisture 

content, an increase in the dry density results in increased osmotic 

repulsive forces and thus increased swell or swelling pressure. The 

effect of initial moisture.content on particle orientation was previously 

discussed and may be summartzed: compaction on the dry side of optimum 

results in a more nearly random or flocculent structure and compaction 

on the wet side of optimum results in a more.nearly parallel or dispersed 

structure, with varied amounts of orientation achieved at moisture con

tents between these two e:,;ctremes. It is a generally accepted fact that 

cohesive soils with flocc~lent structures tend to swell more and develop 

larger swelling pressures than those with dispersed structures, if both 

are compacted at the same initial moisture content and dry density. 

The fact·that lower initial moisture contents require a greater 

water uptake for l~teral swelling pressure samples to establish equilib

rium status is shown in Figure 4,1, Both soils tested reflect the same 

type of relationship, however, RMG~ requires a greater volume of water 

at any given moisture content as COI!,l.pared to PRC. This is probably the 

result pf different mineralogical composition of the two soils. It is 
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also evident from Figure 4.1 that, fqr both.soils, an increase·in. 

compactive energy has little effect on the water uptake--moi~ture con-

tent relat:ltonship. An alternate procedure for presenting the ,data.is 

shown in Figure 4.2. This type of presentati~n is more practical in 

view of,the parameter~ presented, that h, ratio of £inal to init;al 

moisture cqntet;tt versus.init;al moisture content. ]i'qr both PRC and·RMGC 

at,low initial moisture content, the final,moisture content is approxi.:. 

mately two ,times the init;al value. At the highe:r initial moisture 

co.ntents tested the ;final, to initial ratio appears to be·levelit,1.g off 

at approxiiila tely 1. 2 o Prest.J.,mably, there is · son;i.e · higher initial moisture 
I . , 

cqntent;·at ,which. no swelling presst,1re (or swell) will .occur because.the 

so:+1-water, system is in cqmplete equilibrium, thus the final to initial 

ratio sho~ld actually stabilize .at a value equal to 1.0. This much 

higher mobture content is ·definitely out of the range of normal com-

pac~ion procedures. For al],. PRC !3amples tested the resulting final 

moisture cqntents were in the range of 26.0% .to 29% and for RMGC samples 

the final moisture content; range,was from 32.0% ·to 36.0%. Both PRC and 

RMGG, over the range of it;1it.ia,l moisture contents tested, exhibited 

ratios ,of final moisture content to plastic limit 1 in the range·of 1.30 

to 1. 45., 

The influence of initial .moisture ,content on lateral swell,ing 

pressure.for :PRC and RMGC is shown 1 in,Figures 4.3 and 4.4; respe~t;ivelyo 

This .data substantiates the, generally accepted trend that swelling 

pressu1;e decreases with incr,asing initial moisture content. 

The iriflu~nce; of· dry density on lateral swe+ling pres.sure fo:r PRC 

a'I\d · RMGC is. shown. iri figures 4. 5 and 4. 6. Comparing Figures 4. 5 aIJ.d • 

4,6 with the Standard Proct;or compaction curves i~ Figur~ 3.2, it may 
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be noted that the general shape of all curves is quite similar. PRC 

has a uniformly peaked curve, indicating a relative],y sensitive varia, 

tion of dry deI).sity with mo:i.i;;ture content at both compac;:t:i.ve energies .• 

The shaJ:?.e of the latera1 ,swelling pressure versus dry density curve for 

PRC is of similar configuration, On the other hand, RMGC has relatively 

flat compaction curves, showing it to be s9mewhat insensitive to changes 

in dry density with respect to changes in moisture content. Here again 

the general shape of the compaction curve is.reflected in the lateral 

swelling pressure versus dry density curve, a+though the relative rates 

of change of the various parameters are different, as a result of the 

orientation of the two curves with respect to the abscissa or dry· 

de:nsity axis. 

For PRC samples compacted in three layers at 25 blows per layer, 

the lateral swelling pressure slowly decreases,with increasing moisture. 

content and dry density ,until the maximum dry density is approximately 

reached, then rapidly drops,off. Slightly above opt;i..mul,ll moisture content 

and maximum dry density, the lateral pressure begins decreasing slowly. 

At 30 blows per laye,r, PRC exhibits the same general trend; however, the 

lat~ral,swelling pressure,for samples compacted at dry densities below 

the. maximumvalue for this compactive effort is relatively.insensitive tq 

increasing density. Above.optimum moisture cqntent and maximum dry 

density. 

RMGC samples, compacted in three.layers, at both 25 and 30 blows 

per layer, exhibit a relatively constant lateral swelling pressure 

behavi0r below optimum moisture content and maximum dry density. 

However, above optimum moisture content and maximum dry density, the 
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lateral ,pressure. decreases rapidly, with only slight· decreases, in dry 

density. 

An 9verall·comparison.of Figures 4.3 through 4.6 indicates that, 

at initial moisture.contents.below optimum, lateral swelling .pressure, 

is relatively insensitive to changes.in m9isture content. In this 

range ~he.tendency for decre~sing swelling pressure wit~ increasing 

initial moisture content is offset; by increasing dry.density with 

increasing moi~ture content, whie,h has an overall tenden.cy tq increase 

the swelling pres1:1ure. Also, in.this range the.particle orientat:i,on 

res.ulting from, impact compaction ,is nearly always· flocculent. At initbl 

moisture contents·near optimum, the dry density is not changing rapi~ly 

anq.·the effects of moistur.e·content; and.particle orientat:lon determine 

the swelling behavior. This is evident in Figures 4,3 and 4.4, where 

the slope·of the curves begin to increase due to the.soil.particles 

imbibing water to . satis.fy their double layer deficiency, Also, sc;,il 

particles :in the compacted struct1,1re are more·nearly parallel in this 

range. Figures 4.5 and 4.6 show a rapid decrease in.the lateral sw:eJling 

pressul;'e with ·little change in dry density, for samples compacted 

slightly below and above optimum~ At initial .moisture contents above 

optimum the compa~tedsoil structure is of a more nearlydispersed 

nature, and .the double layer deficiency.is gradually becom!ng satis~ied, 

sin~e·the tendency for soil particles to take on water decreases with 

incre1;1.sing moisture content. In tb,is range, dry density appears to have. 

the greatest influence.on lateral,. swelling pressure. As.the dry density 

decreas.es; so does the lateral swelling presst,tre. 

Further indication of tl:ie influence of compacted soil str,ucture 

on lateral .swelling pressure is shown in Figures 4.7 and 4.8. The dat;a 
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shown in each Figure are for: samples compacted on both sides of optimum 

moi$ture content by two different compaction .modes (impact and static). 

PRC samples compacted by impact and static methocis show very slight 

differences in the magnitude of lateral swelling pressure below optimum, 

while above optimum.considerable difference in lateral pressure exists 

for the two me~hods. Si~ilar behavior is exhibited by RMGC, as indicated 

in Figure 4.8, except that.the relative magnitudes of the differences 

in later~l swe,lling pressm:::e are slightly larger. This substantiates 

the inference that flocculent soil structures swell more and develop 

larger swelling pressures than dispersed soil structures for similar 

placement conditions, 

Effects of Lateral Swell on Later~l Swelling Pressure 

The procedure used for investigating the effect of lateral swell 

on lateral swelling pressure was de1;1cribed in detc;1.il iµ the preyious 

Chapter. Briefly, the ,procedure consisted of allowing the swelling 

pressure to develop, removing a measured amount of water from the 

swelling cell, and allowing the swelling pressure to develop once again, 

The data c~llected for PRC and RMGC are shown in Figures 4.9 and 

4.10. For both soils, the lateral swelling pressure decreases with 

increasing lateral swelL The lateral swelling pressure relationship 

for PRC is cu,rvilinear in that the lateral swelling pressure decreases 

gradually at low percentages of la~eral swell, then decreases rapidly 
. ~· /];, ·j .. 

with further increa$es in lat~ral swelL EJF_t,apolat:ed portions of the 

relationships .indicate that the latera.l swell;ing pressure for samples 

compacted at optimum moisture content or below would decrease·to zero 

at lateral swell values between L 2% and 1. 4%. The lateral swelling 
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pressure for samples compac;:ted at mo:i.sture content.s ,above optimum would 

decrec1-se to zero at a lateral swell value of approximately 0.8%. 

The lateral swel~-swelling pressu:r;e relationship for RMGC is 

nearly a linear function ,for a.U initial moisture contents. As .a result, 

distinct.values of lateral swell which would result.in zero lateral 

swelling pressure exist for each irtit;ial placement condition. The range 

of values include 0,4% ·to 2,0% .lateral swell for initial moisture con

tents·from 26% to 16%, respectively. 

Using the data of Figures 4,~ and 4010, Figures 4oll .and 4.12 were 

drawn, showing the change in lateral swelling pressure with respect to 

increasing initial moisture content.for equal percentages of lateral. 

swelL Also shown are the particular dry densities for the samples 

used to obtain these data, It _shou],.d be noted that late,ral swelling 

pressure is a cQntinually decreasing function with respect to increasing 

initial moisture content:, for all percentages of late.ral swell and for 

both PRC and RMGCo 

PRC exhibits a relatively high .rate of decrease, while RMGC exhibits 

a somewhat slower rateo Figure 4,11 indicates that, for PRC, the lateral 

swelling pressure is more sensitive to lateral swell at lower initial 

moisture contents at or above optimum, as evidenced by the relative 

spacing between lateral swell contc;mr lines. The lateral swelling 

pressure for RMGC appears to be less sensitive at lower initial .moisture, 

contents, than at moisture cqntents in the optimum range, 

Relationships Between Lateral and Vertical Swelling Pressures 

Comparing the lateral and vertical swelling pressures for the two 

soils and testing procequres used, the vertical component was greater 
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for nearly every initial pla,cement condition used. Figures 4.13 and 

4.14 show the lateral and. vertical swe],ling pressure versus initial 

moisture content relationship for PRC and RMGC, respectively. The 

lateral swelling pressure curve represents data from all dyna~ically 

compa~ted samples tested, Le,, both 25 and 30 blows per layer compactive 

energy, . The general trends.exhibited, by boj:h soils are simil.;i.r. The 

low vertical swelling pressures at low initial moisture content;s are 

probably the result of testing procequre, because allowing water entry 

from the ends .of the sample only resulted in immediate swelling in these 

regions, which allowed some consoli.dation of the center portion of the 

sample, Si11ce the sample .was relatively thin (1.00 in; high) and pos-. 

sessed large .end areas, this phenomenon was only evident at lower initi.d 

moisture contents, where the .rate of swelling pressure development was 

grea~est. The possibil!ty of drilling a small hole through the sample, 

as. used in the lateral swelling pressure samples, was not practical 

because of sample geometry and/the fact that it occurred at only very 

low initial .moisture contents. 

A more practical representation of the relatiotl.ship between late.ral 

and vertical swelling pressures is shown in Figure 4.15, where the ratio 

of later~l to v~rtical swelling pressure (swelling ratio) is plotted a~ 

a funct:i,.on of initial ;moisture conte.nt. Both soils exhibit similar 

swelling ratio~moistur~ content relationships. PRC has a maximum swel

ling ratio of 0,98, occurring at an initial moisture content; of 14%. 

Above 14% the swelling ratio decreases with increasing moisture content 

to a value of approximately 0.5, which occl,lrs at optimum moisture con

tent. Above optimum the swelling ratio is essentially constant, ID1GC 

has a maximum swelling ratio of 1,05 and a minimum of 0,66, occurring at 
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optimum moisture content, Above optimum there is a slight increas.e in 

the swelling ratio, but a relatively constant trend is still present, 

The practical signi,fic&nce of this reLationship is.evident when compacted 

clays are. used to build or support engineering structures. Mos.t field 

cqmpaction is carried O\lt at moisture cqntents below opti111um, depending 

on the type of compaction equipment used. If moisture is .made avail,able 

and the compacted soils swells, the lateral swell;lng pressure could be 

approximately: equal tq or greater than the vertical swelling pressure. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Cone!l.us:i,ons, 

The influences of initial moisture,cor,i.tent, drY, density, compaction 

mode and energy,. and _lateral swell on later a+ swel~ing pressure were 
. . 

investigated for two cohesive Oklahoma soilei, The major portion of the 

res~arch was carried out using a .. modified version of the triaxial swel-

ling cell described by Fost (1962), Vertical swelling pressure data 

were EJ.lso collected :for i;o_rrel,atiqn with 11:!-teral swelling, pressu+~ data. 

Based on the experimental.data and discussions presented in previous 

chapterei, it may be concluded that: 

1) For both PRC and ID,tGC, the vertical swelling pressure exceeded 

the latera,1 swelling pressure fat;' nearly all· initial conditions .. Data 

confirmed the well-known fact that sample~ compacted by the same com-

pactton mode and energy develop greater swelling pressures when compacted. 

at low init;ial moistllre contt;!nts than.when compactecl at higher initial 

moisture .cont~nts. 

2) The influences ,of initial. mois:ture content, dry density, and 

compacted .soil strue:ture on latera,l swelling pressure are highly inter"".' 

related for samples compact;_ed wit~ a given compactive effort. However, 

some general observations m~y be made: 

a) At initial mois.ture contents below optimum, the resulting 

soil struct~re is presumably of a more nearly flocculent 
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natui-e, The trend toward decreasing lateral swelling 

pressure with increasing initial moisture content in this 

lower range is offs~t by.the tendency towards increased 

lateral pr~ssure with increas:ing dry density. The result 

is a relatiyely constant magnitud,e of.lateral swelling 

presstire. 

b) At initial moisture cqntents sJ,ightly below and above 

optimum the d~:-y density ,is not changing rapidly, so tqe 

effects of moisture content and compacted soil structure 

determine the swelling behavior, In this range of initial 

moisture.cont~nts the doubl~ laye;r de~iCi€;ncy is more nearly. 

satisfied than before, and the tenclency for soil particles 

to imbibe water is reduced. 

c:) At initia,l moisture contents above optimum the compacted 

soil structure is pre~umably of a more nearly dispersed 

nature and·the further influence of increasing moisture 

content and decreasing dry density combine to reduce the 

lateral swelling pressurea 

d) The ratio of final to initial moisture content versus 

init:1,al .moisture .content relationship indicates that the 

final moisture content fo:i;' both PRC and RMGC is a function 

of initial moisture content and, is r€;latiyely insemsitive 

to dry density. For PRC and RMGG this ratio was approxim

ately.2.0 for low initial moisture contents, decreased with 

increa~ing init:ial moisture content and stabilized at a 

value of approximately 1,2 for the higher initial .moisture 

contents .tested, 
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3) The range of lateral swelling pressures measured for PRC varied 

from a.maximum o~ approximately 6.5 psi at an .initial moisture content 

of ,14% to a minimum of approximately.LS psi at 24%, For RMGC the range 

varied from approximately 6,5 psi'at 16% to approximately 2,5 psi at 26%. 

Increased compactive energy (30 blows per layer) resulted in slightly 

greater magnitudes of lateral swelling pressiure in the higher initi~l 

moisture content range, Le., for PRC the lateral presl:lure was approx

imately 2.0 psi at 24% and for RMGC it was.approximately 4.5 psi at 26%. 

4) Impact or dynamic compaction is a better compaction mode than 

static compaction for the study of lateral swelling pressure with respect 

to .the influence of compacted soil structure. It results in a w:i.der 

variety of particle orientation; flocculent, semi-oriented, and dis

persed, For the .two soils tested, static compaction nearly always 

appeared to produce.the behavior connnonly ascribed to a flocculent 

structur~, regardless of the initial moisture content or dry density. 

Statically compacted samples developed higher lateral swelling pressiures 

as compared to dynamic.ally compacted samples for both PRC and RMGC when 

tested at the .same initial moisture content and dry density, both above. 

and below optimum. 

5) The obvious,effect of .lateral swell on lateral swelling pres

sure, is the reduction of lateral pressure with increased lateral swell, 

In this study, lateral expansion of LO% or less resulted in a 50.0% or 

greater reduction of lateral swelling pressure, with zero lateral swel

ling press,ure obt.;1ined at a maximum of 1. 4% lateral ,swell for .PRC samples 

compac~ed at moisture contents above optimum the .amount of ~ateral .swell 

required to reduce the lateral pressure to zero was approximately 0.8%. 

RMGC samples ,required lateral swell values between 0.;4% and 2.0% to 
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recjuc.e the lateral pressure-to.zero for initial moisture contents between 

24% and 16%, respectively" Similar effects of.vertical swell on vertical 

swelling presr;rnre were observed with the relative magnitudes being 

approximately the same. 

6). Samples on the,dry side of opt:f.mum.moisture.content e~hibited 

high~r swelling rat~os, (lateraJ, swelling pressure/vertical swelling 

pressure) approximately . equal to 1 "· 0 for both PRC, and RMGC. For both 

sqi!s, the swelling ration decreased with increas.ing iriit:'i.al moisture. 

content to a -minimum value oc:curri~ at or n~ar optimum moisture c~mtent. 

Above optimum the swelling ratio is .. essentially ,constant at 0.50 and 

0.65 for PRC and RMGC, respectively. 

7) The. modified triaxial swellinf?j apparatus performed e:,cceedingly 

well for the-study of late:r;al swelling pressure of.compacted clay soils. 

The appara~us b dependable and relatively simple to use for quB;ntitive. 

measurements. 

Recommendations 

In order to develop a better understanding of lateraJ, and vertical 

swel:ling pressures and the influences of physical and physcio-chemicq1.l 

propert,ies ,an the swelling pro~ess, the.following recqmmen!iations for 

further research may prove useful: 

1) Continue the development of an apparatus for the concurrent 

measurement of lateral and vertical swelling pressure data. A suggested 

device, shown in Figure 5.-1, uses a strain gage load cell to measure the 

vertical component and a pressure transducer to measure · th.e la_teral com

ponent, A small semi-circular _cell filled with de-aired distilled water, 

surrounds the sample and allows the lateral swelling pressure to be 
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tram;mitted to the pressure transducer .• · This device would also. allow 

study of the rate·of swelling pressure-development, as it.could be used 

without back pressure saturation. 

2) Use the ,procedures outline in. Chapter Ill to det~rmine the 

inf~uences o:f; irtitial .moisture content, .dry dens:f,ty, compa¢tion mode 

and energy, .and laterc1,l swell on lateral swelling pressure.for other 

natural soils \and combinations c;,f pure clay mineral~. 

3) Determine the, type .. of clay minerals· present i_n the natural 

soils an4 som~ of the physciq-chemical ·properties 1of the soils (i.e •. , 

cation-exchange capacity-and exchangeable cations) so that th:I,s know-. 

ledge is available.to aid in e:x;pla:i,.ning the.swelling pressure phenomena. 

4) Use the-device ;in Fi$ure 5.1 to investigate the effects of 

curing per:l,.od and ·time allowed for swelling .on lateral and vertical_ 

swelling pressures for natural soils, as well as the effects of control

led wetting of·· swelling pressure sal!lples. In ,other words, apply .water. 

to the sa~ple in stages, to s:l,.mulate the gradual accumulation o:f; moisture 

under st~uctures. 

5) Investigate· the influence ·.of .different ions in th,e solution 

used to saturate .the soil sample. This could be helpful in the area of 

CQ.emical st?-bil.ization of soils. 
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