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CHAPTER I 

INTRODUCTION 

The evolution of the theory of dynamical systems had its origins 

in the study of systems of ordinary differential equations. While no 

one individual can be credited as the founder of this theory, it is 

generally agreed that G.D. Birkhoff, in [15], provided the impetus 

that .established a. systematic approach to the theory. Prior to 

Birkhoff's work in the 1920's, the investigation of the functional and 

topological properties of solutions of systems of ordinary differential 

equations had. been initi.ated by the French ~athematician Henri Poincare 

and the American mathematiciaI). E. H. Moore. In the early 1930's, 

A. A. Markov and H. Whitney independently gave the first ab.stract 

definitions of a dynamical system. Nemytskti and Stepanov' s book,. 

"Qualitative Theory of Differential Equations," published in 194 7, 

renewed interest in dynamical systems and provided a basis for the 

mo.dern development. of the theory. 

In the early 1890 's, Liapunov set for ti:). a precise definition of 

stability, a concept that had been investigated by Lagrange and 

Dirichlet. During th.e first half of. this century. attention centered on 

developing Liapunov's methods for stability as related to systems of 

differential equations. Researchers then started to examine stability, 

in fact all of dynamical systems, in more general terms. This led to 
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abstracting to more general topological spaces and finally to what many. 

feel is a separate field of mathematical study. 

In the. 1940' s, Bebutov introduced several new types of stability, _ 

the most notable one being uniform stability. In the late· 1950's, 

Zubov, Bass, and Lefschetz all contributed to the systematic development 

of stability theory. It was Zubov, in (32], who gave the first co_mplete 

development.of the theory. During this game period, Ura introduced. 

prolongations and characterized stability of compact sets in terms of 

prolongations, 

Since the 1950's, stability theory has been incorporated into most 

of the developments in dynamical systems. These developments are 

surveyed in (13], (14], and (19], In (14], Bhatia_and Szego present an 

extensive survey of results in stability theory. Their work, as well as 

the. work of many others, is restricted to metric spaces. A more 

general setting is used by Bhati_a and Hajek, in (11], but the scope of 

their work.is restricted _to several particular types of dynamical 

systems. 

The purpose of this dissertation is to investigate the concepts. of 

stability and para-stability, - Chapter II presents the basic concepts 

of dynamical systems theory that are necessary for studying stability 

theory. It is hoped that Chapter II will not only lay the groundwork 

for the rest of the dissertation, but will invite the reader to 

investigate other areas of dynamical systems theory~ 

In Chapter III, stability, in the sense of Liapunov, is presented. 

Characterizations of stability are given, including Ura' s Theorem which_ 

is prove11 by using *-stability. Chapter III concludes with Zubov's · 

stability criterion and relative stability. 



In Chapter IV, the relationship between stability and 

para-stability is examined. The concept of para-stability was 

introduced by Hajek in 1972, see (22]. The relationship of Liapunov 

and para-Liapunov functions to stability and para-stability is also 

presented. 
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CHAPTER II 

PRELIMINARY CONCEPTS 

Dynamical Systems 

- . 

Throughout.this paper, R, and R will denote the real 

numbers, nonnegative real numbers, and nonpositive real numbers, 

respectively. The topological properties that are necessary for this 

chapter are elementary, and the reader is referred to [18], [24], and 

(25] , 

Definition 2.1: The pair (X,rr), where X is a topological space and 

TI is a mapping from Xx R into X, is a dynamical system if and only 

if the following conditions hold: 

(i) Identity axiom:. 1r(xiO) = x, for all x EX; 

(ii) Homomorphism axiom: 1r(1r(x,t) ,s) = 1r(x,t+s), for all 

x EX and t,s ER; and 

(iii) Continuity axiom: the mapping TI is continuous.on Xx R. 

The topological space X is called the phase space, and TI is 

called the phase mapping. A dynamical system (X,1r) is often referred 

to as a continuous flow or simply as a flow. Unless stated otherwise, 

it 'Will always be assumed that the phase space X is a Hausdorff space. 

All sets and points shall be assumed to be subsets and elements of X, 

I, 
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respectively. Unless st.ated otherwise, all sets will be assumed to be 

nonempty. For notational convenience, 1r(x,t) will be .denoted by xt. 

Thus, axiom (ii) of Definition 2.1 would be written as (xt)s = x(t + s), 

for all x EX and t,s ER. For Tc R and all x EX, 1r(x,T) will 

be denoted by xT. In particular, for Mc X and TC R, 1r(M,T) will 

be denoted by U xT. 
XEM 

Definition 2. 2: For each x, E X, the sets C (x) = xR {xt: t E R}, 

+ + + -
C (x) = xR = {xt: . t E R } , . and C (x) = xR - = { xt: t E R } are called, 

respectively, the traject.ory. of. x, the positive trajectory of x,. and 

the negative trajectory of x. The trajectory C(x) · is also called the 

orbit of x and C+(x) and C-(x) are called the semi-trajectories or 

semi..;.orbits of x. 

1f MC X, · then · C(M) = U 
XEM 

C-(M) = U C-(x). 
XEM 

C ( x) , · C + (M) = U 
xd:1 

+ C (x), and 

The·following two ,properties of. C(x) are inunediate from 

Definition 2. 2. 

Propositiion 2,3: For x E X, C(x) = C+(x) U C-(x). 

Proposition 2.4: F0r x ·e X and any t e R,. C(x) = C(xt;). 

It can be easily verified that Proposition 2.4 does not hold for 

C+(x) and C-(x), see Example 2.1. 

Definition 2. 5: If C(x) = {x}, then x . is a cr.itical or rest point. 

If C(x) =I- {x} but there exists a t. E R+ such that xt = x . , then x 

is a periodic point, 



Example 2.1: Let the dynamical system 2 (R ,1r) be defined by the 

following system of differential. equations (R.2 denotes the Euclidean 

plane,with the usual topology): 

x = -x 

y = y 

(The phase space is shown in Figure 1) .. 

Figure 1. The Phase Space of 
Example 2.1. 

The point (O,O) is the. only critical point. For any point 

P = (x,O), with x 1 0 

6 



{(x',O): 

{(x',O): 

0 < x' ..::_ x}, 

x < x' < O}, 

if 

if 

x > 0 

x < o. 

A similar statement holds for Q =.(O,y), y 'F O. For any point 

S = (x,y), with x 'F O, y 'F O, 

7 

Remark 2.6: In Example 2.1, the positive trajectories were the only· 

ones given; and in Figure 1, the.arrows indicate the positive direction 

of the trajectories •. This procedure will be used throughout the paper 

in regard to examples. Definitions will contain both the. positive and 

negative versions, and in most cases, the bilateral version will be 

given. All theorems and propositions that are true for the positive 

version are also true for the negative version. Since the negative· 

version is the dual of the positive version, only the positive version 

will be proven. The bilateral version will generally be given for 

theor.ems and propositions, but will not be proven. 

Invariance 

Definition 2. 7: A subset · M of X is invariant if and only if 

C(M) = M, If Mc: X, then M is positive (negative) invariant if and 

only if C + (M) = M · (C-(M) = M), 

Proposition 2.8: If M is a subset of X, then the following are 

equivalent: 

(a) M is invariant; 

(b) C(M) C: M; 



(c) C(x) C:: M, for all x e: M; and 

(d) M = U C(x). 
xe:M 

Proof: (a) implies (b) : FollQWS from Definitio~ 2.7. 

8 

(b) implies (c) : Since . C(M) = u C(x) and C(M) c M, C(x) CM for 
xe:M 

all x .e: M. (c) implies (d) : If C(x) c M for all x e: M, then 

u C(x) c M, Let x .e: M, · Then, x e: C(x) and MC u C(x), 
xe:M xe:M 
Therefore, M = u C(x). ~d) implies ~a) : . Since M = u C(x) and 

xe:M xe:M 
C(M) = U C(x), M = C(M). This implies that· M is invariant. This 

xe:M 
completes the proof. 

Using a similar proof,. Proposition 2 ~ 8 is true for positive 

(negative) invariance, where C(M) is replaced by C+(M) (C-(M)). 

Examples of invariant sets w.ill be presented in Examples 2, 5, 2, 6, 

2.7, and 2;8, These examples not only discuss.invariance, but relate 

the concept of invariance to the concepts of k-invariance and 

cl-invariance. 

Proposition 2. 9: . For each x e: X, C(x), + C (x), and are. 

invariant., positive invariant, and negative invariant, respectively. 

Proof: . Follows from D~finition 2. 7. 

Proposition 2.10: A subset M of X is positive (bilaterally) 

invariant if and only if X - M is negative (bilateraI:iy) invariant. 

Proof: First, assume that M is positive inva];"iant and let 

ye: C-(X - M). Then, y = xt for some x e: X - M and t e: R, 

Suppose xt is not an element of X - M, Thus, xt e: M and the 



positive invariance of M implies that (xt)(-t) e: M. But 

(xt) (-t) = x(t + t) = x. Thus, · x e: M, and this contradicts 

x e: X - M. . Therefore, y -= xt e: X - M and C- (X - M) C::: (X - M) , 

Proposition 2,8 implie.s tha,t · X - .M is negative invariant .. 

Conversely, .let X ~ M be negative invariant. For any 

for some· x e: M and + t e: R , If xt ~ M, then 

xt e: X - M. This implies that (xt)(-t) • x·e: X - M as X - M is 

negative invariant, This .contradicts x e: M. Thus, y = xt e: M and 

C+(M) c M. Therefore, Proposition 2,8 implies that M is positive 

invariant, and the proof is complete. 

Proposition, 2 .11: If (Mi) is a family of positive (bilaterally) 

invariant sets, . then U Mi 
i 

invariant. 

and n Mi are also positive (bilaterally) 
i 

Proof: Let x e: 

t e: R +. . Thus, 

+ C ( U Mi) , Then , 
i 

x = mt for some me: UM. 
i 1 

+ and me: Mi for some i and x = mt e: C (Mi). The 

positive invariance of 

x e: Mi. Thus, x e: ~ Mi 

then implies that U Mi 
i 

+ implies that C (Mi)= Mi' Therefore, 

+. and C ( U Mi) c::: UM .. Proposition 2.8 
i i 1 

is positive invariant, 

To prove n Mi is positive invariant, consider 
i 

X - n Mi • U (X - Mi). Since Mi . is positive invariant, 
i i 

9 

Proposition 2 .10 implies that X - M. 
1 

is negative invariant;. Thus;· by 

the first part of this proof,. U (X - Mi)= X - n Mi is negative 
i i 

inv~riant. Proposition 2.10 implies that. n Mi is positive invaria~t. 
i 

This completes the proof. 

The boundary, interior, and closure of '.M will be denoted by 

clM, Mo 
' and M, respectively. The derived set of M will be denoted 
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by M' , · For the definition and basic properties of a net, the . reader 

is referred to [25, pp. 65-66]. Nets and sequences will be denoted by 

(xi) , The context in which (xi) appears will clarify if . (xi) is 

being used to denote. a net or a sequence. A subnet. (subsequence) of 

(xi) will be written as (xi ), ,n 

Proposition 2.12: If a subset M o~ X is positive (bilaterally) 

invariant, then M . and M0 are positive . (bilaterally) invariant. 

Proof: Suppose C+(M) is not a subset of M. Then,. there exists 

m e: M and t e: R+ such that mt ~ M, Since M = MU M', m e: M'; 

for if m is in M, then · mt e: Mc M · as M is positive invariant. 

Since me: M', there exists a net (m.) 
]. 

in. M such that (m.) 
]. . 

converges to m, Thus, (m.t) converges to mt, Since M is positive 
]. 

invariant, each m. t 
]. 

is in M, and this .implies that mt e: M, This 

contradicts mt not being an element of . M. Thus, . C + (M) is a subset 

of M, and Proposition 2.8 implies that M is positive invariant. 

To show the interior of M is positive invariant, consider 

M0 = X - (X - M), Since M is positive invariant, Proposition 2,10 

implies that X - M is negative invariant, Thus, by .the first part of 

this proposition, X - M is negative invariant. Proposition 2.10 then 

implies that X - (X - M) is positive invariant. This .completes the. 

proof. · 

Proposition 2.13: If M is pesitive · (bilaterally) invariant, then the 

boundary of M is positive (bilaterally) invariant. 
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Proof:, By definition, oM = Mn (X - M). The. positive invar:i,ance 

of M implies that M and X - M are positive invariant, see 

Proposition 2 .12. Then Proposition 2 .11 implies that Mn (X - M) = oM 

is positive invariant. This completes the proof. 

The converse of Proposition 2.13 is not true as shall be shown in 

Example 2. 2. Proposition 2; 17 shows that if M is either open or 

closed, then the converse. of Proposition 2 .13 is true .if oM is 

invariant. Examples 2. 2 and 2. 3 also show the necessity of M being 

either·open or.closed. 

Definition 2.14: For each x e: X, the x-motion, 1T ' x 
is the mapping 

1T : R + X defined by 1T (t) = xt, for all t e: R. x x 

Proposition 2~15: For any x e: X, the x-motion, 1T ' x 
is continuous. 

Proof: Immediate from Definition 2 .15 and axiom (iii) of , 

Definition 2 .1. 

Propositio~ 2~16: For each x e: X, C(x) 
+ -

(C (x),C (x)) is connected. 

Proof: Since 1T : R + X = {xt; t e: R} = C(x) 
x 

and 1T is 
x 

continuous; C(x) is the continuous image of the connected set. R. 

Thus, C(x) is connected as claimed. 

Proposition 2,17: If M is open orclosed and oM is invariant, then· 

M is invariant. 

Proof: Assume that M is open, and oM is imtariant. Suppose 

M is not invariant. · Then, there exists m e: M and tl e: R such that 

mt1 ~ M. Without loss of generality let tl be in R+. Then 
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C + (m) n clM = (iL For if not, then there exists . t in R + such that 

mt is an element of clM. This implies that C(mt) is a subset of clM 

since clM is invariant. Thus, (mt)(-t} = m(t + t) = m is an element 

of. clM. This conttadicts m being in M and M being open. Thus, 

C +(m) n clM = (iL Further, C + (m) n (X - M) = ~. For suppose that. there 

exists a t in R+ such that mt is an elemen.t of X - M. . Since· 

C+ (m) is connected and C+ (m) n · clM = f/J, C can be written as the 

union of the tw.o sets A { mt ' : mt ' e: M and t ' e: [ 0 , t]} and 

B = {mt': mt' e: X- M and t' e: fO,t]}. Clearly, An B = (i1 an.d 

An B = (IL Thus, C can be written as the union of two separated 

sets, and this contradicts C being connected. Thus, no point of 

C+(m) can lie on clM or in X - M. Therefore, C+(M) is contained in 

M, and Proposition 2.8 implies that M is invariant. 

Assume that M is closed and clM is invariant. Since the 

interior of M is open, the proof of the first part of the proposition 

implies that the interior of M is invariant. · Proposition 2.12 then 

implies that the cl.osure of the interior of M, which is M,. is also 

invariant •. This .completes the proof. 

Example 2, 2: Consider the flow defined by the sy~tem of differential 

equations 

x = y 

y = -x 

(see Figure 2). In Figure 2 ~· let x £ y and let M be the union of 

{x} and the interio.r of the di.sk bounded by. y, The boundary of M is 

y which is positive .invariant. By the definition of M, M is neither 

open nor closed. Since C+(x) = y ~ M, M is not positive invariant 



y 

Figure 2 •. The Phase Space of 
Example 2.2. 

and, ~ence, cannot be invariant. Thus, the condition that M is 

either open or closed cannot be omitted from Proposition 2,17, 

,13 

Figure 3 is a portion of Figure 1 with M being the shaded region. 

The set M is closed, but aM is not invariant. For any x EM such 

that x is not on the x-axis, C+(x) q: M, and M is not invariant. 

By considering the ~nterior of M, M0 is a noninvariant open set with 

noninvariant boundary. Thus, the invariance of the boundary of M 

cannot be omitted from Proposition 2.17. 

Proposition 2.18: If M is positive invariant, then each of its 

components is positive invariant. 

Proof: Let A be a component of M. For X E A, c+ (x) is 

connected, see Proposition 2.16, and is a subset of M as M is 

. positive invariant. Then, A U C+ (x) is connected since + · A n C (x) 'F 0. 



~ , 

y 

' I, 

Figure 3. The Set M of 
Example 2.2. 
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x 

Since A is a component of M, it follows that + C (x) c A. Therefore, 

U C + (x) c A, and this implies that C + (A) c A. Thus, 
xe::A. 
Proposition 2.8 implies that A is positive invariant, and the proof 

is complete. 

Proposition 2.19: If M is ppsitive invariant, M = ~ U M2 , and 

-~ n M2 = ~ = M1 Ii M2 , then M1 and M2 are each positive invariant. 

Proof: By definition 

+ C (x). 

Proposition 2.16 implies that C+(x) is connected. Therefore, for 

+ C (x) c Ml, and M1 is positive invariant by Proposition 2.8. 



An analogous proof shows that M2 is positive invar:i,.ant. This 

completes the proof. 
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Definition 2. 20: A subset M of X is relatively compact if .and only 

if M is ·contained in a compact set; 

Proposition 2.21: The phase space X contains a compact invariant set 

if and only·if .it contains a relatively compact semi-trajectory. 

Proof: Assume that x contains a·compact invariant set M. For 

any element x of M,. the invariance of M implies c+ (x) is 

+ 
contained in M. Since M is compact and C (x) is a subset of 

M = M, + C (x) is compact, Thus, c+ (x) is tha desired relatively 

compact semi-traject,ory, 

Now let C+(x) be .a relatively compact semi-trajectory of X. 

Thus, there exists a compact set A containing + C (x). The compactness 

of A and 
+ -

C (x) c A= A implies that c+ (x) is compact. Consider 

the sequence (xn) , · n = 1, 2, 3, , ... , in + C (x) .. · Since C+(x) is 

compact, there exists a subsequence (xnk) of (JFI1.) such that (xnk) 

converges to a point y in C+(x). The. positive invariance of C+(x) 

+ + + implies that C (y) c C (x).. Let t e: R ; Then · -t. e: R • Thus, 

there exists an integer N such that for all i ~ N, n. . > -t, 
K,J. - . 

consider the sequence (x(nk,i + t)), where 

(x(nk· . + t).) = ( (xnk . ) t) is a sequence in 
,1 · ,i 

(nk,i + t) ..:. O. Thus, 

C+(x) that converges to 

yt~ Since C+(x) is compact, yt is an element of 
+ ... 

C (x). Thus, 

is a subset of + C (x), Also, C+(·y) . b f C+(.x) is a su set .o . 

= C+(y) U C-(y) is contained in since y is in + C (x). Thus, C(y) 

+ C (x). This implies that C(y) + is a subset of. C (x), and C(y) is 
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+ c~mpact·as: C (x). is compact. Since C(y) is invariant, 

Propos i 1;:ion 2 .12 i~plies that C (y) is invariant~ Thus , C (y-) is the 

desired compact invariant subset ·of: X. This completes t}:le ·proof. , 

Actually, more has been proven. It, has ;been shown: that any 

relatively ·compact_ semi-trajectpry ,contains a compact invariant set~ 

Limit-Sets 

Definition 2. 22: For .each .· x e: X, K(x) · = C(x), + + K (x) = C (x), and 

Definition 2.23: For each x e: X, th.e positive (negative) limit set 

of x, L + (x). (L- (x)), is given by 

The limit set of x is L(x)_= L+(x) U L-(x), 

Propositions 2.24 through 2.27 show the relationships between 

C+(x), K+(x), and· L+(x), 

Proposition 2.24: For any x e: X,. 
+ + 

C (x) U L (x) 

Proof:· To show that; C+(x).LJ L+(x) c: K+(x), first note_ that 

+ = .C (x):-• + ' ) If y e: L (x , · then. there exists a net 

converging t;:o +w such that . (xti) converges to y. ·· For each i, 

+ xti _e: C (x) • The· positive invariance of + C (x) implies that 



(xt.) c:: C+(x), Thus, y s C+(x) = K+(x) and 
1 

C+ (x) U L + (x) C:: K + (x), 

To show that 
+ + + ' 

K (x) c C (x) U L (x) , let 

+ + 
L (x) c K (x). Hence, 

y E 

+ y ,s C (x),, then the result follows. Suppose that 

K+(x). If 

y ~ C+(x). Then, 

y cannot be written as xt' for 

that ,there exists a,net (xi) in 

each i, , xi = xt 
i 

for some ti E 

+ t I E R • 

C+(x) that 

R+_ If the 

implies 

converges to y. For 

ne,t, (t.) does not 
1 
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converge to +oo, then y is expressible as y = xt for some t E R+. 
But this co,ntradicts 

+oo and, hence, y s 

result follows. 

y ~ C+(x). Thus, the net. (t.) does converge to 
1 

+ + + + 
L (x) • Thus,, K (x) c:: C (x) U L (x) , and the 

Proposition 2.25: For any x s X, K(x) = C(x) U L+(x) U 1-(x). 

Proof:, Since C(x) = C+(x) U C-(x), Proposition 2.24 implies that 

it will suffice,to show K(x) = K+(x) U K-(x). This equality follows 

from K(x) = C(x) = C+(x) U C-(x) = C+(x) U C-(x) = K+(x)U K-(x), This 

completes the proof. 

Exc;imple 2. 3: Consider the dynamical system given in Example 2 .1. Let 

P and S be as in Example 2 .1. Then, 

L+(P) = {(O,O)}, 

K+(P) 
{ {(x',O): 0 < x' ..'.:. x}' if x > 0 

{(x' ,O): x ,< x' ..::_, 0}' if x < 0, 
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and 

Proposition 2.26: If x EX, then L+(x) + L (xt) for all t ER. 

Proof: Let + y EL (x). Then, there exists a net converging 

to +,,o such that (xt.) converges to y. F.or each t. there exists.a 
l. l. 

t, such that t. = t + t. and the net (t.) converges to +,,o. Thus, 
J l. J J 

(xti) = (x(t + t,)) = ( (xt) t.) and ((xt)t.) converges to y. Thus, J ' J ' ' J 
+ and + + y 8 L (xt) L (x) c L (xt) . 

To show L + (xt) c L + (x) , let + y EL (xt). Then, there exists a 

converging to -too such that ((xt)t;) converges to y. 
l. 

But, (xt)ti = x(t + t.) ' and the net (t+t.) converges to +oo, 
l.. l. 

This implies that + 
y EL (x). Therefore, + L (xt) + 

C L (x) .. Hence, 

L+ (x) + 
= L (xt), and the proof is complete. 

Proposition 2.27: + + 
= .n + K (xt) = n K (xt). 

Proof: 

+ y E L (xt) 

all + t E R • 

tER tER 

If + y EL (x), then Proposition 2.26 implies that 

for all + 
t E R • Since + + L (xt) C K (xt) , + y EK (xt) for 

+ This. implies that . y E n {K (xt) : + t E R }. Thus, L+(x) 

is contained in + n + K (xt). 
tER 

+ If y E n + K (xt) , 
+ . + tER + 

K (xt) = C (xt) U L (xt) 

If + y EL (x), then n + 
tER 

+ + then y EK (xt) for all t ER. Since 

+ + + + ' + and L (xt) = L (x), K (xt) = C (xt) UL (x). 

K+(xt) C L+(x). If y E C+(xt) fqr all 

+ 
t E R , then there exists a net (t.) converging to -too such that 

+ y EC (xt.) 
l. 

for each t .. 
l. 

l. 

For each i, y = (xt.) t. 
l. J 

for some 



t. > 0. 
J-

Thus, y = xt'. where 
l. 

to -f<X> and (xt'.) converges to 
l. 

+ + n + K (xt) c L (x). Therefore, 
tER 

Now let + y E: n + K (xt). 
+tER + 

= C (xt) U L (xt) , Since K+(xt) 

t~ = t. + t .. Since (t~) 
l. l. J l. 

y, y E L+(x). Thus, 

+ . + n + K (xt) = L (x) . 
tER 

Then, y E K+(xt) for all 

then + y E C (xt) or 

converges 

+ t E R , 

+ C(xt) + C(x) = C (xt) y E C (xt), then· y E for all t E R , Since 

C(xt) + 
all t E R, y E for all t E R. If y .E L (xt) for every 
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If. 

for 

+ + 2.26. t E R ' · then ·y E L (xt) for all t E R, see Proposition Thus, 

+ y EK (xt) for all t ER and 

+ + n K (xt) C: n + K (xt) . Thus, 
tER tER 
completes the proof. 

+ n + K (xt) C 
tER + 

n K (xt) = 
tER 

n K+ (xt). 
tER + 
n + K (xt). 

tER 

Clearly, 

This 

Proposition 2.28: For x in X, K+(x) is a closed positive invariant· 

+ set, and L (x) is closed and invariant. 

Proof: 
+ + + 

Since · K (x) = . C (x),, K (x) is closed. 

positive invariant, Proposition 2.12 ·implies that C+(x) is posHive 

invariant. Thus, K+(x) is closed and positive invariant. 

+ + + 
That L (x) is closed follows from L (x) = . n + K (xt) and each 

+ K (xt) being closed. To show that 
+ tER 

L (x) is invariant, let . 

z E C(L+(x)). Thus, z = yt where + y EL (x) and t ER. Since 

there exists a net (t.) 
l. 

converging to -f<X> such that , 

(xti) converges to y. Thus, (x(ti + t)) = ((xti)t) converges to 

yt. Since 

+ yt E L .(x), 

( t.) converges to -f<X>, ( t. + t) converges to · -f<X>. . Thus, 
l. l. 

Therefore; C(L+(x)) c: L+(x), and Proposition 2.8 implies 

that L+(x) is ·invariant. This completes the proof. 
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Prolongation 

Definition 2. 29: For each x e: X,: the .Positive .. (negative) 

1 i f X'. D+(x) pro.ongat on o (D-(x)), is given by 

The prolongation of x is D (x) = D + (x) U D - (x) , 

Definition 2. 30: Fo.r each · x e: X, the positive (negative) 

prolongational limit set of· x, is given by 

J +(x· ) -- { . y e: X: 

(J-:-(x) = {y e: X: 

The prolongational limit set ·of x is J(x)· = J+(x)U J-(x), 

Example 2, 4: Consider the flow defined in Example 2 .1. Let P and S 

be a~ in that example • Th.en , 

+ . { {(x',b): 
D (P) = 

{(x',O): 

and. 

J+(P) = {(O,y): ye: R}, 

0 < x' ~x} U {(O,y): y .e: R}, 

x < x! < O} U {{O,y): ye: R}, 

if x > 0 

if x < o, 
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Propositions 2.31 through 2,37 describe some of the properties of 

+ + and J (x) · as well as showing the relationships bet\\Teen . C (x)., 

+ +· + + K (x) , L (x)., · D (x) , and J (x) , 

Proposition 2,31: For x,y in X, + y ED (x) if and only if 

Proof: + Let . y E D (x) • Then, . there exists a ,net (x.) 
1 

converging 

to x. and numbers ti .:. 0 such tha_t (x .. ti) 
:t 

converges to y. 

-t < 0 i- converges to X,· Thus, 

Similarly, if x E D-(y), · then y E D+(x). Thus,·the proof.is 

complete, 

Proposition 2,32: For x,y in X, + y E J (x) if and only if . 

Proof: + Let· y E J (x). Then,· there exist nets 

converges to x, (t ) 
i 

converges .to y •. Thus, (-ti) converges to - 00 • Consider 

and 

Thus, 

(t ) 
i 

( (xiti) (-ti)), This net _converges to x which implies that , x E J- (y). 

A.similar argument shotvs that if x E J-(y), then y E J+(x), This 

completes the proof. 

Proposition 2,33: F M b t f X K+(M). C: D+(.M) or a su se o , and 

Proaf: Let x E K+(M), Then,. 
+ XE K (m) + =.C (m) U L+(m) for same 

+ m·e M,. If X E C (m), then x = mt for some t > o. Define the nets 

(mi) and (t) by m. = m and t . = ·t for each i. Thus,· (mi) i 1 i 

co_nver_ges to m and (mi t 1) converges to mt = · x, This implies that 
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+ + + 
(ti) x E D (m) c D (M) , If x E L (m) ,' then there exists a ne.t 

converging to . +oo such that (mti) converges to X, Since (t.) 
1 

converges to +oo' there exists ·an integer n such that for all i > n, 

ti~ o. Define the net (m.) by m. = m for each i. Thus, for all 
1 1 

i > n, (m. t.) converges to x, This implies that 
1 1 

x E D + (m) c D + (M) , Hence, K + (M) C D + (M) , 

If + y EL (M), then there exists a net converging to 

such that (xti) converges to y for some x EM, Define the net 

(xi) by xi= x for each i. Thus, (x.) converges to x, 
1 

converges to +oo, and converges to y. Thus, + ye: J (M) 

L+(M) c J+(M). This completes the proof, 

and 

Proof: If y E D+(x), then there exists a net (xi) converging 

to x and numbers t. > 0 such that (x. t.) converges to y. If 
1 - 1 1 

+ + + + + y EC (x)., then D (x) c C (x) U J (x). If y 4 C (x), then there 

does.not exist a t > 0 such that y = xt. If tb,e numbers t. > 0 do 
1-

not converge to +oo, then y can be written as xt' for some t' > 0, 

This contradiction shows that the numbers ti do converge to +oo. 

Thus, (x.) converges to x, 
1 

converges to y. This implies that + 
. y E J (x), 

+ + + + + 
y E C (x) U J (x) and D (x) c C (x) U J (x), 

Hence, 

c+ (x) + + Now let y E U J (x) .. If y EC (x), then y = xt for 

some t > o. Define the net (xi) by x. = x for each i. For each 
1. 

i, let t. = t. Hence, t. > 0 for each i. Thus, (xiti) = (xt) 
1 1-

+ + then there exist converges to xt = y and y e: D (x). If y e: J (x), 
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nets· (xi) and (ti) such that (x.) converges to x, (ti) 
1. 

converges to -t«> , and (xiti) ci;mverges to Y• Since (ti) converges 

to +oo' there exists an int~ger. n such that for all i > n, ti ..:.. o. 
+ + + Thus, . y £ D (x) and J · (x) C: D (x). Therefore, 

+ . + + 
C (x) U J (x) C: D (x), · and the proof is complete. 

Proposition 2.35: For each x in X, D+(x) =n{UR+: U e: N(x)}, 

where N(x) is the neighborhood system of x. 

Proof: To show that let + y £ D (x). Then, there 

exists a net (x.) converging to x and numbers ti..:.. 0 such that 
1.. 

(xiti) converges to y. Let U be any neighborhood of x. Since 

(x.) converges to x, there exists an integer. n such that for all 
1. 

i u. Thus, for i + Therefore, ..:.. n, x. £ ..:.. n' xiti £ Ut. C: UR • 
1. 1. 

+ + 
(x. t.) C: UR C: UR for all i > n. Since. (xi ti) converges to y 

1. 1. 

and UR+ is closed,. y £ UR+. Since U was arbitrary, + y £ nuR and, 

thus, + + D (x) C: n UR . 

+ + To show that nuR c: D (x), let + y e: nuR • Order the collection 

N(x) x N(y) by set inclusion •. Hence, (Ui , V_. ) > (Uj , V • ) if and only 
l. - J . 

if ui c: uj and V. c vj' where u1 ,uj £ N(x) and vi ,vj £ N(y). 
1. 

Thus, N(x) x N(y) is a directed set. Let A denote the ordered 

collection N(x) N(y) .. each (U, V) in A, + 
implies x For · y £ .UR 

that v contains a point of UR+_ Thus, for each (U,V) £ A choose 

u £ U and t > 0 such that u t £ V. Lt is now claimed that (u) v v- vv v 

is a net that converges to x. · Let U' be any neighborhood of x and 

V' a neighborhood of y. Then, for all ( tJ 'v) ..:.. (U I 'v I ) ' 

Thus, (u ) 
v 

is eventually in U'. This implies that (u) 
v 

u £ UC: U'. 
v 

converges 

to x. Similarly, the net (u t) converges to y. Therefore, v v 



24. 

y e: D + (x) and n UR+ c D + (x) . Thus, the desired equality has been' 

shown. 

Proposition 2.36: For each x in X, + 
= n + D (xt), 

te:R 

+ (x) Proof: Let . y e: J (x). Thus, there exist nets converging i 

to x and (t) 
i converging to +ex, such that (xiti) converges to 

y. Let t + 
e: R ' Since (ti) converges to +ex, ' there exists an 

integer n such that for all i .:. n' t > t • i- Thus, 

s = t -i i t > 0 for all i > n. Also, for i .:_n, the net (si) 

converges to +ex,. The net (xit) converges to xt and the net 

(xit(si)) = (xiti) converges to Y• Thus, + Since this . y e: D (xt), is 

for all + 
n + 

+ true t e: R ' y e: D (xt), 
+ te:R 

R+ Now let y e: n + D (xt). Suppose that there exists a t e: 
te:R 

such that for some net (wi)' the net (w. t.) converges to y, where 

the ne.t 

Then the 

]. ]. 

(w.) converges to xt and the net 
]. 

net (w. (-t)) converges to xt (-t) 
]. 

= (w (-t) (t i i + t)) (wi ti) converges to Y• 

+ to +ex, ' y is in J (x)' Suppose .such a t 

(ti) converges to +ex,, 

= X, Thus, 

Since (t. + t) converges 
]. . 

does not exist. Since 

ye: D+(xt) fqr all t e: R+, there exists a riet (wi) converging to 

xt and numbers ti .:. 0, (ti) not converging to -t<X>, such that 

(wi ti) converges to y. Hence, there exists a subnet (ti,j) of (ti) 

such. that (ti,j) converges to mt < -t<X>. Thus, (wi,j) converges to 

xt and (wi,jti,j) converges to y. But, (wi . t. j) converges to 
,J ]. ' 

(xt)n\ = x(t + mt), Thus, y = x(t + m ), 
t 

Define the set (xt) by 

xt = x for each t. Thu.s, (xt) converges to X, Also, (t + mt) 

converges to +ex,,. Thus, the net (x/t + mt)) converges to y. This 

implies that + y e: J (x:) • This completes the proof of the proposition. 
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Proposition 2.3.7: For x in X, D+(x) is closed and positive 

· · d J+(x) invariant, an is closed and invariant, 

P f S. D+(x) + roo : . ince = n UR , and each UR+ is closed, 

closed. To show .that D+(x) is positive invariant, let ye; 

D+(x) is 

C+(D+(x)), 

Then, y = zt where z · is in D+(x) and + t e: R , Thus; there exists 

a net converging to x and numbers t. > 0 such that 
J. -

(x.t.) 
J. .J. 

converges to Z, Hence, (x. (t. + t)) = ((x.t.)t) converges to 
J. J. J. J. 

zt = y. Since (t. + t) > 0 
J. 

for all i, ye: D+(x), This implies 

C+(D+(x)) C: D+(x). Th b P ' ' 2 8 us, y. roposition . , is positive 

invariant. 

Since J+(x) + 
= nn (xt) and each + D (xt) is .closed, J+(x) is 

J+ (x) + closed. To show is invariant, let y e: C (J (x)). This implies 

that y = zt where z e; J+ (x) and t e: R, Thus, there exists a net 

(x.) converging to x, and a net (t.) converging to +xi such that 
J. J. 

(xi ti) converges to z. Since (ti) converges to +xi there exists 

an integer n such that.for each j ~ n, (t. + t) > O. Also, 
J . -

(x.(t.+t)) 
i J 

=. ((xi t 1) t) converges to zt = y, Since (tj + t) 

converges to +xi, 
+ y e: J (x) , Thus, + + C(J (x)) C: J (x). 

Proposition 2.8 implies that. J+(x) is invariant, This completes the 

proof. 

Definition 2.38: A subset M of X is positive (negative) k-invariant 

if and only if K + (M) = M (K- (M) = M) . The set M iEI k-invariant if 

and only if K(M) = M. 

If Mc: X, then M is positive (negative) cl-invariant if and only 

if D + (M) = M (D- (M) = M). The set M is d-invariant if and only if 

D(M) = M, 
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Example 2.5: In the flow 2 
(R ,TI) defined by the system of differential 

equations 

x = y 

(see Figure 4), each yn is given by 

n 
n = 1o2,3, , , , } , 

1 
= -

Let G be the disk bounded by y. Each G0 is invariant bu~ not n n n 

positive k-invariant, 

positive cl-invariant. 

Each G is invariant and k-invariant, but not 
n 

That G is not positive cl-invariant follows 
n 

from + 
J (x) C: Y n-1 for any xe:yc:G. 

n n 
However, the closure of the 

complement of G1 is invariant, !{.-invariant and positive cl-invariant. 

Example 2.6: In Example 2.2 each disk is invariant, k-invariant, and 

cl-invariant. 

Example 2.7: In the dynamical system 2 
(R , TI) defined by the system of 

differen~ial equations 

r = r(l - r) 
. 
e = 1 

O is the only critical point, and the unit circle y is a periodic 

trajectory (see Figure 5). 

The unit disk M is invariant, k-invariant, and positive 

cl-invariant. For any x in M, M - {x} is not positive invari.ant. 



y 

Figure 4. The Phase Space of Example 2.5. 

Figure 5. The Phase Space of 
Example 2 • 7 • 

27 
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Example 2.8: for the flow 2 
(R '1r) defined by the system of 

differential equations 

~-1 
if 2 2 > 1. and 0 x, x y y > 

2 3 2 
if 

2 2 
< 1 and > 0 x y - x, x y y 

-x, if y~O 

=i 
-y, if y > 0 

y 
o, if y ~.O 

(see Figure 6), the set of .critical points is 

For x4y2 <.1- and y > O, all sets M, as indicated .in Figure 6; are 

invariant, k-,.invariant, but not positiv~ d-invariant. 

Proposition 2. 39: If M . is closed and positive (bilaterally) 

invariant, then M is positive (bilaterally) k-inval;'iant. 

Proof:. Sine~ M is closed and positive inv~riant, 

K+(M) = C+(M) = M'. = M. This implies that M is positive k-,.inva:riant, 

and the proof is complete. 

Proposition 2. 40: Pos:t.tive (bilateral) d-invariance implies positive 

(bilat;eral) k-invariance which implies positive (bilateral) invariance. 

Proof: If . M is positive d-,.inva,riant, then + D (M) = M. 

Propositfon 2.33 implies that, + K (ij) c:: M. 
. + 

Since Mc:: K (M), 

Thus, M is positive k-invariant •. For M positive k-invariant, 
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Figure 6. The Phase Space of Example 2.8. 

implies that M is positive invariant, and the proof is complete. 

Proposition 2.41: If .(Mi) is a family of positive k-invariant sets 

(negative k-invariant sets), then U Mi 
i . 

and n Mi 
. i 

are also positive 

k-invariant (negative k-invariant). A similar statement holds if the 

Mi are positive cl-invariant or negative cl-invariant. 

Proof: To show that 

+ ; . 
to show K ( U Mi) c: U Mi. 

+ i + i 
x e C ( U Mi) UL ( U Mi), 

i i 

U Mi 
i 
Let 

is positive k~invariant, it suffices 

+ x e K ( U Mi). Then, . 
i 

see Proposition 2.24. Since each Mi is 

positive k-invariant, Proposition 2.40 implies that each Mi is 

positive invariant. 

invariant. Hence, 

Proposition 2.11 implies that. U Mi is positive 
i + 

Thus, if x e C (UM.), then 
i l. 



x e: U M., 
i 1 

This implies that If + xe:L(UM.), 
1 

30 

then 

there exists a net .. (ti) converging to +ex, such that (mti) converges 

+ to x for some me: UM .• Thus, x e: L (rn) 
i 1 

+ for some Mi. This implies that x e: K (Mi) 

Since Mi is positive k-invariant, . K + (Mi) = Mi. Thus, 

+ L ( U M.) c: U M.. Therefore, 
i 1 i 1 

x . e: Mi c: ~ Mi . Therefore, 
+ 1 

K ( U Mi) c: U 
i . i 

M.' 1 
and U M, 

i 1 
is positive k-invar~ant. 

then 

Now let 

x e: n M. 
i 1 

K+( n M.) = .C+( n Mi) u L+( n Mi). 
i 1 i i 

x e; 

as Proposition 2.1 implies that the 

If x e: C+( ~ Mi), 
1 

intersection of 

+ If x e: L ( n M.), 
i 1 

positive invariant sets i$ positive invariant, 

converges to x fqr some me: n M. 
1 

+ i+ 
Thus, x e: L (m) c L (Mi) 

and some net (ti) 

converging to for all Mi .. Since 

· then 

L+ (M.) + + n and c: K (M.), x e: K (M.) = Mi for all Mi, Thus, x e; M. 
1 1 1 i 1 

K+( n M.) c: n M .. Therefore, n M. is positive k-invariant. 
. 1 . 1 i 1 

1 1 

If (M.) is a family of p0sitive cl-invariant sets, .then the proof. 
1 

that U Mi 
i 

noting that 

are positive cl-invariant follows as above by 

C+(M.) U J+(M'..) and each M. is positive 
1 1 1 

invariant. This complete,s the proof. 

Proposition 2.42: A set M is positive cl-invariant if and only if 

X - M is negative cl-invariant. 

Proof: Assume that M is positive cl-invariant and let ye: M 

and x e: X - M, Then xi M = D+(M) implies that xi D+(y) for all 

y e: M. Proposition 2, 31 implies ,that for each y e: M; y i D- (x), 

Therefore, for each y e: M, y i D- (X - M) . This implies that 

D- (X - M) c: X - M. Hence, X - M is negative d"".invariant, 
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Now assume that X - M is negative cl-invariant. Let ye: M and 

x e: X - M. Hence, y $.X - M = D-(X - M), . Since y $ D-(x), 

Proposition 2.31 implies that x $ D+(y). This implies that for each 

x e: X - M, . x $ D+(M), Therefore, D+(M) c M, and M is positive 

cl-invariant. This completes the proof. 

· Proposition 2.43: A set. M is positive (negative) cl-invariant if and 

only if J + (M) c M ([ (M) c M), and M is positive (negative) 

invariant. 

Proof: First, assume that M is positive cl-invariant •. 

Proposition .2.40 implies that M is positive invariant. 

Proposition 2, 34 implies that · D + (M) = C + (M) U J + (M), Thus, · 

J+(M) c D+(M) = M. 

Conversely, let M be positive invariant and J+(M) c M. Since 

M is positive invariant, C+(M) = M. Thus, J+(M) c:: C+(M). 

Proposition 2.34 implies that D+(M) = C+(M) U J+(M). Thus, 

D+(M) = C+(M) = M, and M is positive cl-invariant. Th,is completes 

the proof. 

Proposit;ion 2.44: If M is positive (bilaterally) invariant, then M 

is positive (bilaterally) k-,invariant. 

Proof: Since M is positive invariant, M is positive invariant. 

Thus, - +­M = C (M). This implies that +- +­M = M = C (M) = K (M). 

is positive k-invariant, and the proof is complete. 

Thus, M 

In light of the above proposition, it would be natural to ask if M 

is positive cl-invariant whenever M is positive k~invariant, This is 

not truE:1 in gener~l as the following example shows. 
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Example 2.9: In Example 2.5, see Figure 4, let M be the disk G2 . 

Since J+(M) = y1 , D+(M) ,J:. M, Hence, M is not positive cl-invariant, 

but M is positive k-invariant. 

Attraction 

Definition 2.45: Let M be a subset of X and x an element of· X. 

The point x is positively weakly attracted to M if and only if the 

net. (xt) , is frequently in every neighborhood of M. 

The point x is positively attracted to M if arid only if the 

net (xt), R+ 
t ,e; ' is ultimately in every neighborhood of M. 

The point x i~ positively strongly attracted to M it and only 

if for any neighborhood U of M there exists a neighborhood V of 

x such that Vt, + t e: R is ultimately in U. 

The negative versions are formed by requiring t to be in R • 

The bilat~ral cases are defined by taking the conjunction of the 

positive and negative cases. 

Positive weak attraction will be denoted by weak attraction. 

Similarly for attraction and strong attraction. Negative and bilateral 

will never be omitted. 

Definition 2.46: Let Mc:: X. Then, 

and 

A+(M) = {x: x is weakly attracted to M}, 
w 

A+ ('.M) = {x: x is attracted to M}, 

A+ (M) = {x: x is strongly attracted to M}. ' 
s 
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The· sets are called the.region of~ 

attraction, the region of attraction, and.the region of strong 

attraction,. respectively. 

Regions, of negative at~raction _are defined similarly. The· 

bilateral versions are the interse.ction ·of. the regions of positive and 

negative attraction. 

Definition 2.47: A subset .. M of X .. is a weak attractor _if and only if 

A+(M) is a _neighborhood of M. Similarly, M is an attraqtor _if and w ' 

only if A+(M) is a neighborhood of M, and a strong attractor if and 

only if. A+(M) is a neighborhood of M. Ne~ative and bilateral s. 

versions ·are defined similarly. 

Proposition 2.48: If. x is strongly attraqted .to M,. then x is 

attraqted;to M •. If· x is attracted to M, then x is weakly 

attracted .to M. 

Proof: Let MC X and let x · be strongly attracted to M. Then, 

for any neighborhood. U of M there exists a.neighborhood v x of 

and a t < 0 x,...... such tha.i: v t c: u 
x for all t > t • 

x 
Thus,: for all 

x· 

xt e: U. This implies that the net .. (xt) is ultimately in-any 

neighborhood of M. This. impl.ies x is attraqted to M. 

If · (xt) is :u1timately in every neighborhood of M, then (xt) 

is frequently in that same neighborhq,od aI).d; thus, x is weakly 

attracted to M. This completes the proof •. 

Proposition 2,49: Let MC: X. 



Proof: Let x e: Then x is strongly attracted to 

Proposition 2.48, x is attracted to M and, hence, + x e: A (M). 

Since any x that is attracted to M is weakly attracted to M, 

A+ (M) c: A: (M) • This completes the proof. 
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M. By 

Proposition 2.50: Let Mc: X. A point x is weakly attracted to M 

if and only if either the net (xt) is frequently in M or 

L+ (x) n M :/: 0. 

Proof: Assume that x is weakly attracted to M. This implies 

that the net (xt) is frequently in every neighborhood of M. Now 

suppose that the net (xt) is not frequently in M. Thus, (xt) is 

ultimately in X - M. This ;implies that.there exiS!tS a. tk such that 

+ xt e: X - M for all t..::. tk. Suppose L (x) n M = ¢. Since 

+ + + + 
L (x) = L (xtk), L (xtk) c:: X - M. Also, C (xtk) c: X - M. 

K+(xtk) = L+(xtk) U C+(xtk) is a subset of X - M. Since 

+ closed, X - K (xtk) is a neighborhood of M and the net 

Thus, 

+ K (xtk) is 

(xt), 

t..::. tk' is not frequently in 

weakly .attr~cted to M. Thus, 

+ X - K (xtk). This contradicts x being 

L+ (x) n M :/: 0. 

Conversely, let the net (xt) be frequently in M or 

L+(x) n M :/: 0. If (xt) is frequently in M, then (xt) is 

frequently in every neighborhood of M and is thus weakly attracted to 

M. If L + (x) n M :/: 0, then let y e: L + (x) n M. This implies that there 

exists a net 

Y• Since ye: M, 

converging to +c.o such that (xt.) 
J. 

converges to 

the net (xt.) 
J. 

is ultimately and, therefore, 

frequently in every neighborhood of M. Therefore, x is weakly 

attr~cted to M, This completes the proof. 
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The followiqg three examples illustrate the regions of attraction 

that have been presented. They will also be used to illustrate the 

conditions of Theorem 3.18. Theorem 3.18 characterizes stability in 

ter~s of,the regions of attraction. 

Example 2.10: In Example 2.1, let M = {(O,O)}. Then, 

A+(M) = A+ (M) = {(x,y): y = O} and A+(M) = ~. 
w s 

If M = { (x,y): y = 0}' then A+(M) = a). If w 

M = { (x,y): x '= o, y > O}, then 

= A+(M) = {(x y)· s . ' . y > O}. 

Example 2.11: Let. M be any disk in Example 2.2. Then, 

A+(M) = A-(M) = M, s s . 

Example 2.12: As in Example 2.7, let M be the unit disk, Then, 

A-(M0 ) = M0 and A+(M0 ) = X, 
s s 

The concepts of this chapter, in particular the concepts of 

invariance and prolongation, will be used in Chapter III to 

investigate Liapunov stability, *-stability, and relative stability. 

For further results related to the topics presented in this chapter, 

as well as additional topics in the basic theory of dynamical systems, 

the reader is referred to [12], [13], [14], and (19], 



CHAJ::'TER·III 

LIAPUNOV STABILITY 

In contrast to.the analytical development.of stability as given by 

Liapunov, in this chapte.r stability will be examined from a topological 

viewpoint. After .giving a number of basic .results, .. several important . 

chara.cterizations. of stability will be prQ:ven, including Ura' s 

character:i,zation o~ stability of compact sets using prolongal;:ions. The 

chapter .. concludes. by examining Zubov' s st.ability.criterion and some , 

results· on relative stability.-

Stability. 

Definition 3.1: A set Mc: X is positively (negatively) stable if and 

only if every neighborhood of M contains a positive (negative) 

invariant neighborhood of M.. A set M c: X is bilaterally stable if . 

and only if every neighborhood of M contains an invariant neighborhood 

of· M. 

The usual convention of denoting_"positive stability" by 

"stability" will be used throughout. the remainder of the diss.ertation. 

Negative and bilateral will never be omitted .when -.referring to these. 

types of stability. 

Definition 3. 2: A set Mc: X is positively (negatively) k,-stable if 

and only· if every neighb·orhoo4 of M conta:i.ns a positive (negative) 



k-invariant neighborhood of M. A se·t M is bilaterally k.,..stab],.e if 

and only if every neighborhood of M contains a k-invariant 

neighborhood of M. 

Positive (negative) and bilateral cl-stability of M are defined 

similarly.by requiring each neighborhood of M to contain a positive 

(negative) cl-invariant neighborhood of M or a cl-invariant 

neighborhood of M, respectively. 

Positive k-stability and positive cl-stability are denoted by 

k-stability and cl-stability. The adjec,tives negative and bilateral 

will never be suppressed. 

Proposition 3.3: If M is an open, positive (bilaterally) invariant 

set, then M is (bilaterally) stable. 
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Proof: Let U be any neighborhood of M. Since M is open, M 

is a neighborhood of itself. Thus, U contains a positive inva,riant 

neighborhood of M. This implies that M is stable, and thE!. proof is 

complete. 

Proposition 3.3 remains true if M is an open, positive 

(bilaterally) k-dnvariant (d-invariant) set. The proof of this 

statement is analogous to the proof of Proposition 3.3. 

Example 3.1: In Example 2.1, the set {O} is invariant, but not 

stable. Thus, invariance does not imply stability. 

Example 3.2: In Example 2.2, see Figure 2, each disk is positive 

cl-stable and, hence, is stable. In fact, each disk is bilaterally· 

stable. 
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Example 3,3: Example 2.5 shows .that .positive invariance does not imply 

stability, Consider the disk bounded by y 1 • This disk is positive ·. 

inva~iant, but not stable. 

The set. {O} is stable and positive k-stable, but not ;positive. 

d-stable since the. tra.ject,ories spiral outward .. 

Example 3.4: In Example 2. 7, the unit disk is st.able. The set {O} 

is negatively stab.le. The open unit disk is stable as it is ope"Q.. and 

positive invariant, see. Proposition 3. 3. The open unit disk is not· 

positive k-stable as it is a neighborhood of itself and does not 

contain .a positiv~ k-invariant neighborhood.of itself, 

Example 3.5:. The set {(x,y): x = O, ye: R }, in Example 2.8, is 

stable as it is the union of the stable sets { (O ,y): y e: R-}, see 

Proposition 3,4, · 

Propositioll 3. 4: The union of stable (k-stab],e; d-stable) sets is · 

stable. (k-stable., d-stable). 

Proof: · Let M1 and M2 be stable sets and U an arbitrary 

neighborhood of M1 U M2• The stability of. M1 implies. that there 

exists a positiv~ invariant neighborhood V of M· 
1 

such that vc::u. 

Similarly, there exis.ts a positive '.invariant neighborpood W · of· M2 

such that W c:: U. Thus, · M1 U M2 c:: V U W c:: U, and, by Proposition 2 .11, 

VU W is posit.ive invariant. Thus, M1 U M2 is stal>le. Thus, for 

i = 1,2, · the union ef the members of the family g = {Mi: Mi is stable} 
k 

Proceeding by induction, assume that ., U Mi is stable, 
k+l i=l 

is stable. 

where each 

stable. · Clearly, 

stable. 
k+l 
U M = 

ii=;! i 

Consider U Mi, where. each Mi is 
k i=l, 

( U M.) U M.+l' By .the in9,uction 
i=l J. ]; 



k 
hypothesis . u Mi is stab.le, and 

k i=l 
( U Mi) U ~+l is stable. Thus, 
i=l . 

by the first part of 
k+l 
U. Mi is stable. 

i=l 

the proof, 

Therefore, 

the arbitrary union of stable sets is stable. This completes the 

proof. 

The intersection of positive invariant sets was 'shown to be 

positive invariant in Proposition 2.11. This property does not apply 

to stable sets as the following example shows. 

Example 3.6: Consider the flow 2 
(R '1T) defined by the system of 

differential equati~ns 

x = 1 

y = 0 

(see Figure 7) • 

y 

.... ... , -
.... ... , -
... x ,. 

0 
,. 

.... ... 
,- , 
..... .... 
,- -

Figure 7. The Phase Space of Example 3.6. 
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Let· M1 = {(x,y): x:.::._ 1, y = O} U {(x,y): x .::_ 1, y.,; 0} and 

let M2 = {(x,y): x .::._ 2, y = 0} u {(x,y): x.:.. 2, y.,; O}. Thus, 
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Mi, i = 1,2, is the union. of the x-axis with the half-plane x > i 

minus all points on the x-axis of the form (x,O), see Figure 8. That 

~ and M2 are stable sets follows from the definition of stability. 

The intersection of . M1 and M2 is 

{(x,y): x·.::.. 1, y = O} U {(x,y): x.:.. 2, y.,; O}. 

To show that is not stable, let 

U = ( 00 , ! ) U {(x;y): X > f }, 

Thus,. U is a neighborhood of M1 n M2 • For ·any point (x,y), where 

x.::.. 1, y = O, C+(x,y) ~ U and, hence, U cannot contain a positive 

invariant neighborhood of M1 n M2 • This implies that M1 n M2 is 

no.t stable, 

By co,nsidering the definition of M.' 
l. 

for i = 1,2,3, .. -~ , a 

countable collection of stab.le sets Cc:!,n be constructed such that their 

inter.section is not. stable. 

Proposition 3.5: If M is stable (k-stable, d-stable), then · M is 

positive invariant (positive k-,-invariant, positive cl-invariant). 

Proof: Let M be stable and. suppose. that .M is not positive 

invariant. Then, there exists x e; C+(M) - M. Since x e; C+(M), 

x = mt where m e: M and t + 
e; R , Since x ¢ M and x is Hausdorff, 

there exists a neighborhood u of M such that x ¢ u. But M stable 



y 

................. ++-toot ........... i-+i ... .....iM--- X 

Figure 8. The Set Mi of 

Example 3.6. 
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implies there is a positive invariant neighborhood V of M contained 

in U. Thus, x EV c U, This contradicts x ~ U. Hence, M is 

positive invariant, and the proof is complete. 

The negative and bilateral versions of Proposition 3.5 are also 

true. 

Theorem 3,6: If X is regular, M closed and stable, then M is 

positive d-.invariant. 

Proof: Suppose that M is not positive cl-invariant. Then, there 

exists x € D+(M) - M, Since x is regular and M is closed, there 

exist disjoint neighborhoods U and V of M and x, respectively. 

But U is a neighborhood of M, and M stable _implies that there 

exists a positive invariant neighborhood W of M such that W c U. 
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Since + x ED (M), there exists m c: M such that + x ED (m), Thus, 

there is a net converging to m and numbers t. > 0 such that 
l. -

(mi ti) converges to X, Hence, there exists an integer n such that 

for all i .:. n, m. E u. Thus, miti E u for all i > n. But this 
l. 

implies that (miti) does not converge to X, This contradiction 

implies that M is positive cl-invariant, This completes the proof. 

Proposition 3, 7: If M is d-stable, then M is k-stable. If M is 

k-stable, then M is stable. 

Proof: Let M bed-stable and U an arbitrary neighborhoo4 of 

M. Then, there exists a positive d-invarian~ neighborhood V of M 

such that V C: U. Since V is positive cl-invariant, Proposition 2.40 

implies that· V is positive k-invariant, Thus, for any neighborhood 

U of M there exists a positive k-invariant neighborhood of M that· 

is contained in U. Thus, M is k-stable. 

Let M be k-stable and U an arbitrary neighborhood of M. Then, 

there exists a positive k-invariant neighborhood V of M such that 

V c U. The positive k-invariance of V implies, see Proposition 2.40, 

that V is positive invariant, Hence, M is stable, and the proof 

is complete. 

Theorem 3.8: If X is regular and M is closed with compact 

boundary, then M (negative) stable implies that M is (negative) 

k-stable. 

Proof; Let U be a neighborhood of M. Since X is regular, 

there exists a neighborhood. V of M such that V C U. Since M is 

stable, there exists a positive invariant neighborhood W of M such 
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that W c V, Thus, W c V c U, Proposition 2, 44 implies that · W is 

positive k-invariant. Thus, for any p.eighborhood U of M there 

exists a positive k-invariant neighborhood W of M such. that W c U. 

Therefore, M is k-stable, and the proof is complete. 

Proposition 3.9: In a regular space X, if M is bilaterally stable 

and compact, then· M is bilaterally k-stable. 

Proof: Since M is bilaterally stable _and compact, M is 

positive k-stable, see The.orem 3. 8. By the same theorem, M is 

negative k-stable and, hence, M is bilaterally k-stable. This 

completes the proof, 

Proposii;ion 3,10: Let X be a regular space and M a closed and 

bilaterally stable set. Then, X - M is positive and negative 

cl-invariant. 

Proof: . Theorem 3. 6 implies that M is positive and negative 

d-,,invariant, By Proposition 2.42, X - M is then positive and 

negative cl-invariant, This completes the proof, 

Theorem 3 .11: If M is bilaterally stable., then K(x) n M = (11 for 

all x q: M. Thus, if X is regular and M is closed with compact 

boundary, then every neighborhood U of M contains some x q: M with 

K(x) c U - M if M is not open, 

Proof: Suppose. that . K(x) n M -:/: ~ for some x q: M. Then,. there 

exists a y such that y e: K(x) and y e: M, By Proposition 2, 24, 

K(x) = C(x) U L(x), Since M is bilatera],.ly stable, M is invariant. 

Thus, X - M is invariant and this implies that y q: C(x), Thus, 
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Theorem 3.:1..3. If M is compact and stable, then for all x E: M, · 

+ D (x} is a compact. and. connected subaet of M. Thus, +· D (M) = M. 

Proof: + To 9how .that . D (x) c: M, suppose that there exists 

y -E: D + (x) - M. Then, there exists a net· (x1) cot1,verging to x and · 

numbers ti ~ 0 such. that (xi ~i) converges to y ~ M. Since M is 

compact, there exist· disjoint neighb_orhqods U and W of M and y, 

respectively. Since M is stable, ther:e exists a positive invariant 

ne:i,.ghborhood V of M sueµ that V c U. Since (xi) converges to 

x E: M,. there. exists an integer n such that for i > n, (xi ti) c V. 

But, 

w. 

(xi t_i) converging to y implies that; (xi ti) is_ ultimately in 

+ This contradiction shows that y E: M. ·. Thus,. D (x) is a closed 

subset of M .. and, hence, is _compact. 

S·u· ppose th.at D+.(x) · t. t d Th t.h i t di j i t 1s no · connec e • _en, . · ere ex s s _ s o n 

compact sets - A and B such that AU B = D+(x). Let x E: A and 

y E: B. Since An B =.(/), there exist disjoint neighborhoods U and 

V of A and B, respectively. 
+ • 

Since. y E: D (x), there exists a net· 

(xi) converging to x and numbers ti .::,.0 such. that (xiti) 

cc,nverges .to y. Thus,1 there exists _an -integer n · such that ·for all 

i > n, 

suppose that 

c+ (x ·) 
i 

C+(xi) 

+ c (:xi)_ 

Thus,-

n 

n 

n 

u 'f (/). 

(X - U) 

au= (/). 

For 

x.t. E: V. 
1 1 

i > n, 

'f (/) •' Thus., 

For each For 

Since 

+· 
c. (xi) 

+ 
C (xi) 

(x.) converges to x E: Ac: U, 
1· 

n v 'f (/) an.d this implies that 

This contradicts 

meets. U - and X - U but 

+ C (xi) being a connected set. 

for i > n. This implies that for each i > n 

there. exists a number s > 0 i- Thus, there 

exists .a net (x1si) c:au. Also, (xisi)C:M, as M.is stable.and, 
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therefore, ·positive invariant. Thus, there e:d-sts a subnet (xi ,ksi;k) 

(x. ks .. k) 
1,. 1,. 

ca:nverges .to a point z in M. 

au closed implies that z e: au. Thus, z e: au and z e: D + (x) 

implies that D+(x) n au#,_.{/).·. Thus,. z e: AU B and z e: au. If 

z e: A n ~U, · then, sinc.e · · U is a neighborhood of . A, there exist~ an 

open set · S in U suc;h that A C S. Thus, no element of A· is an· 

element. of au. Also, if z e: B n au, the·n since V is a neighborp.ood 

of B ,. there exists an open set; T in· V such. that B ·c T, Thus, no 

element of B is an element of av. But, V disjoint from U and 

z e: V implies that no element of B · is an element of au. Thes.e · 

results contradict + 
D .(x) n au #: 0. Thus, + D (x) is connected. 

Since M is always contained in D + (M) , and it has been proven 

that 
+ + 

D (M) c M, · D (M) = M, and the proof is complete. 

Characterizations of Stability 

In this section several import~t ch_aracterizations .of stability 

will be establis_hed. These results not. ()nly give a greater insight into 

the meaning of stability, but serve as useful tools for proving further 

results.· In the first characterization, the phase space is a locally 

compact metric space. The remaining results are proven in more general 

spaces •. In ·Theoreiµ 3.18, StB;bility is characterized in terms. of the· 

regions of strong attraction. Theol!'em 3.19 gives a characterizatiot1, in 

terms of nets. 

Theorem 3.14 :· Le.t · M be a closed subset of a locally compact metric 

phase ·space X. Then, M is stable if and only _if + D (M) = M and 

every x e: aM has a neighborhood U such that + C (U) - M has compact 

closure. 
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Proof: It will be assumed that the phase space X is a-compact. 

This is possible since [13, XI, 7.3] implies that X is the direct sum 

of a-compact spaces Xi which. are locally compact and metric. Thus, 

there exists a sequence of compact subsets Qm such that X = UQm. It 

is now possible to show that if P is a subset of X that does not 

have compact closure, then there exists a sequence (pn) in p sucl:i. 

that for each m and sufficiently large n, pn ~ Qm. For suppose 

that ·no such sequence exists. Then, for all sequences (pn) in p 

there exists an m such that pn e: Qm for all n. Since p is the 

union of all sequences in P, we have p c: Q . Thus, since· Qm is m 

compact and, therefore, closed, pc: Q . This implies that p is m 

compact. This contradiction proves that such a sequence (pn) does 

exist. 

Assume that M is stable. Theorem 3. 6 implies that D + (M) = M. 

Now assume that for some x e: aM and every neighborhood U of x, 

C+(U) - M does not have compact closure. Order the neighborhoods 

of x by set inclusion where u 
n 

Using the result above, if m = n 
' 

is a neighborhood of radius 

then for each C+(U) - M 
n 

element can be selected such that For each k, 

1 
n 

an 

= x t. 
n n 

where x 
n 

e: u 
n 

and. t > o. n- Since the neighborhoods 

of x are ordered by set inclusion, a sequence (x ) has been 
n 

u 
n 

u 
n 

constructed such that (x) 
n 

converges to x. For each n, x t 1 Q n n tr n 

and x t · 1 M, that is x t 1 MU Q. Therefore, the set n n tr n n tr n 

F = {x t : n = 1,2,3, ... } is closec;l, and F n M = QI. Thus, 
n n 

G = X - F is an open neighborhood of M. Since M is stable, there 

exists a positive invariant neighborhood V of M such that V c: G. 

Since V is a neighborhood of M and x e: aM, x e: V0 • Since (x ) 
n 
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converges to, x, (x) 
n 

is ultimately in V. Thus, · there exists an 

integer k sue~ that x t E Vt for all n > k. n n n Since· V is 

positive invariant, Vt · C: V • n Hence, V C: G and x t E F imply that nn 

x t .EU. Since G is disjo,int from F, this gives the needed 
n n 

contradiction and, hence, the ·result. 

To show sufficiency; let M b~ closed and let + D (M) = M. 

Further, assume that for every x E clM there exists a neighborhood u· 

of_ x such that C+(U) - M has compact·closure. Suppose that M is 

not stable. This implies that there exists .a lleighborhood G of M 

such that G contains no positive invariant neighborhoods of. M. Thus,-

for all neighborhoods· U of x, there exists a point x in M with 

C+(U) ~ G. Fo.r suppose not •. Then for all x·E M there exists .a 

. +. 
neigh_ borhood U of x · such that·· C (U ) C: G, x . x 

U is a neighborhood.of M such that C+(U) c: G. 

Let U = U 
xe:M 

But C+(U) 

u. 
x 

is· 

Then 

positive invariant and is a neighborho.od of M. This implies that· G 

conta;tns a positive invariant, neighborhood of M. This contradicts the 

selection of G. 

The positive d-:-inva_riance of M implies that M · is : positive . 

invariant. This 1mplies that, x E clM •. For if not,. then x E M0 • This 

impli~s that .• there exists a neighborhood U' of x such that U' c: M. 

The positive .invariance of M implies that• C+(U') c:: Mc:: G •. But .this 

contradicts the fact that for all neighborQoods U of x, C+(U) ~ G. 

Hence, x .. E clM; that is, x · E X - M. Thus, there exists a sequetic~ 

(x) 
n 

in X - M such that· (x·) 
n 

converges to x. For each X E (x ), 
n n 

x · E U and there_ exists a t > 0 with x t 1 G. The selection of. n n n - n·n ~ 

such a sequence is possible since .for all U E N(x)·, C+(U) { G and for 

each. x E aM, U must l:!ont~in points of X - M. Since MC G, 
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x t ¢ M, for each n. By _assumption, there exists a neighborhood U n n 

of x such that C+(U) - M has compact closure.• The sequence (x) 
n· 

is ultimately in U and, therefore, the sequence (x t) 
n n 

is 

ultimately in C+(U). For each n, x t ¢ M. . This implies that 
n n 

(xntn) is ultimately in C+(U) - M. Thus, there exists a convergent 

subsequence (x ·kt k) n, n, 
that converges to a point y in C+(U) - M~ 

Since (x k) n, converges to x and· t n, k ..:::.. 0 , 
+ + 

y e: D (x) c D (M) = M. 

But (x t ) ,.j. G implies that y ¢ G0 ::::, M. This contradiction shows 
n n 't 

that M is stable, This completes the proof of the theorem. 

Proposition 3,15: Let X be a locally compact Hausdorff space, M a 

closed invariant subset of X,. x e: aM, and U a neighborhood of x; 

Then, 
+ . + +---c (U) - M = K (U - M) = K (U - M). 

Proof: To show the equalities, it will suffice to show tl;l-e 

following: (a) C+(U) - Mc K+(U - M); (b) K+(U - M) C K+(U - M); 

and (c) K+(U - M) c C+(U) - M. To show (a), it suffices to show 

C+(U) - Mc K+(U - M) since K+(U - M) is closeq. Let 

x e: C+(U) - M. Then, x = ut where ut ¢ M, u e: U, and t > 0. 

The positive invariance of M and ut ¢ M implies that u ¢ M. Thus, 

u e: U - M. Therefore, x = ut e: K+(U - M) artd C+(u') - Mc K+(U - M). 

Statement (b) follows from the. fact that U - .M c U - M. Thus, 

K+(U - M) c K+(U - M). 

To show (c), it will first be shown that C+(U) - M and, hence, 

C+(U) - M is positive invariant. Let x e: C+(C+(U) M). Then, 

x = yt where 
. + 
y e: C . (U) - M and t > o. Since y ¢ M, yt ¢ M. For 

if yt e: M, then the invariance of M would imply (yt)(-t) =ye: M. 

This contradicts y ¢ M and, thus, yt ¢ M. Since + y . e: C (U) and 
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C+(U) is posi1;:ive invariant, · x = yt € C+(U) •. Hence., x € C+(U) - M. 

This implies that C + (C + (U) - M) c: C + (U) - M. Thus, · C + (U) - M is 

positive invariant. Since · U C: C + (U) , U - M -c: C + (U) - M. This implies 

+ . 
that U ,... M c: C (U) - M. Sine~ C + (U) - M is positive invar_iant, 

C+(U - M) C: C+(U) - M. + -+ + Thus , . K (U - M) C: C (U) - M as C (U) - M is 

closed.. This completes the proof. 

The following corollaries state sufficient·con,ditions for a poin1;: 

x to be positively Lagrange stable. A point; x · is posi1;:_ively Lagrange 

stable if and only if K + (x) is compact. 

Corollary 3.16: Let X be a lo.cally compact. Haus.dorff space and M a 

closed invariant set tn. X. If M is stable, then each x € aM is 

positively Lagrange stable. 

Proof: Let M be stable and 

there exists .a neighborhood U of 

x € aM. Theorem 3.14 ·implies that 

+ x such; that C (U) - M has 

compact closure.. If x € aM, then x € U - M •. Thus, 

C + (x) C: C + (U - M) and this implies that K + (x) C: it (U - M) • From the 

preceeding proposition; K +(U - M) U C + (U) - M. Thus , K + (x) is a 

closed subset of . the c9mpact set C + (U) - M and, henc.e, is compact. 

This implies that . x is positively Lagrange stable. · This :completes 

the.proof. 

Corollary 3.17: · Let the phase SRace .. X be Hausdorff and M an· 

invari~t subset of X. If x ~ M and x is attracted to M, then 

x is positively Lagrange stable. 

Proof: + If . K (x) is not compact, then there exists a net (xt11) 

in + C (x). with no co_nvergent subnets. Then, the set .. 
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A= {xt: xt e: (xt )} is closed. Since x 4 M and M is invariant, n n n 

no element of. A is in M. Thus, X - A is a neighborhood of M. 

Since x is attracted to M, there exists a number t > 0 such that 

+ C (xt) c: X - .A. If t = O, then. (xt)t = xt e: A and this · n n 

contradicts xt e: x A. If' t > o, then since the numbers t n n 

converge to ' -f-o:, ' there exists a number m such that t > t and m 

xt e: A. Thus, t' = t - t is greater than zero. Thus, m m 

(xt)t' = x(t + t') = x(t + t - t) = xt e: A, 
m. · m 

This again contradicts 

+ (xt)t' e: C (~t) C X - A. These contradictions complete the proof. 

Theorem 3.18: A set M is stable if and only if it is positive 

+ invariant and M c: A (M) , A set M is bilaterally stable if and only s 

if A+(M) = M = A-(M). 
s ' s 

Proof: Assume that M is stable. Proposition 3.5 implies that 

M is positive invariant. Let x e: M and let U be a neighborhood of 

M. The stability of M implies the existence of a positive invariant 

neighborhood V of M such that 

x e: Thus, + Mc: A (M). 
' s 

v c: u. Since +· Vt c: C (V) = V C: U, 

Conversely, let M be positive invariant and + Mc As (:M). Let 

+ 
be a neighborhood of M. Since Mc A (M), for each x e: M there s 

exists a neighborhood v of x and a number t > 0 such that x· x-

v t c: u for all t > t . Now consider all numbers t such that 
x x 

0 < t < t , The continuity axiom implies that x[O, tx] is compact. 
- x 

The positive invariance of M implies that x [ 0 , t ] c: M and , hence , 
x 

u 

x[O,t]c:U. 
x 

Sihce U is a neighborhood of x[O,t ], 
x 

there exists for 

each xt e: x[O,t ] 
x 

open neighborhoods U of 
x 

of t such 



that, by the continuity axiom, . UxAt c U, For each xt E x[O,t .]~ 
x 

UxAt is an open neighborhood of xt. Thus, the collection 
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is an open cover. of x[O,t .]. 
x 

By the compactness 

of x[O,t ], x there is a finite collection {U iAt· . } that c0vers x, . ,1. 

x[O,t ]. 
x 

Thus, W = n U . is a neighborhood of x and W t c:: U x x,1. x for 

0 < t < t • Let · B = V n W . - x x. x x Therefore, B is a neighborhood of 
x· 

x and C + (B ) c:: U. Sip.ce each 
x 

C+(B) is positive invariant and 
x· 

contained in. U, B = UB is a positive invariant subset of U. 
x 

This 

implies that M . is stable. 

To prove the second assertion, assume that M is bilaterally 

stable. This implies that M is stable and negative stable. Thus, 

M is positive invariant and negative invariant, Thus, M is invariant. 

+ Also by the above proof,. Mc A (M), .An analogous proof .shows that 
s 

Mc:: A- (M). Since the proofs for A+ (M) = M and A - (M) = M are 
s s s 

similar, only. A+(M) = M will be shown. 
s Suppose that 

Then there exists an X E Since A+(M) C:: A+(M), 
s w 

+ x EA (M). w· 

Proposition 2.50 implies that.either · L + (x) n M ::f, (ll or that c+ (x) 

is frequently in M. Since. M is invariant and x 4 M, C+(x) is.not 

frequently in M. Hence, there exists a + y EL (x) n M, Since 

y E L+(x), there exists a net (ti) converging to +oo such that the 

net· (xt.) converges to y. ' Since x is ·Hausdorff and x ~ M, there 
l. 

exists a neighborhood u of· M such that x 4 u. · Let v be any y 

neighborhood. of y and· t < 0. Since (xt.) converges to y, there 
l. 

exists an integer n such that for all i ..:_ n, Xt, EV, 
l. y 

Let 

t E R 
k such that k > n and tk < t. Then, Vytk contains the point 

x. This implies that Vytk Cf U. Thus, 

contradiction. Therefore, A:(M) = M. 

y 4 A-(M), and this-is a 
s 
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+ - + To show .the conver.se, let· A (M) = ·M = A (M) •· Thus, Mc: A (M) s . s s' 

and - + + Mc: A8 (M) • Since As (M) = M and As (M) is invariant, . M is· 

invariant. Thus, by the first statement of the theore111, M is positive 

and negative ,stable, that is, M is stable. This completes the.proof. 

The followi~g examples show that it is ·not possible to weaken. the 

conditio"Q.s of .Theorem 3.18. 

Example 3.7: As in Example 2.10, let M = {(0,0)}. Then, M~ A:(M). 

Since. (O,O) is a critical.point, · M is positive invariant. But M 

is not stable as Theorem 3.18 indicates. 

In Example 3.11, see Eigure 10, let M be an €-disk centered at 

p2 '. Then,· Mc A:(M) = X. But M is not positive invariant and not 

stable. 

Example 3.8: In Example 2.11, for any disk M,. A:(M) = A~(M) = M. 

Thus, M is bilaterally stable. 

In Example 2. 7, . M0 denotes the open unit disk. Since· 

+ and A (M0 ) = X, Theorem 3.18, implies that M0 · cannot .be 
s 

bilaterally stable. However, M0 is stable. 

Theor.em. 3.19: A .set M is stable if and only if for all nets 

and + y. e: C (x.), 
l. l. . 

the net is ultimately in every 

(x) 
i 

neighborhood of M whenever the net. (x.) 
l. 

is ultimately in.every 

neighborhood of M. Similar statements also hold.for k.,-stability and 

d-stability. 

Proof: Assume. M· is stable. Let (xi) be any net that is 

ultimately in every neighborhood of M. Let (yi) be a net·such that 



for each + i, · yi EC (x.), 
i 

If U is any neighborhood of M, then 

there exists a positive invariant neighborhood V of M. such that 

V c U. Thus, (x.) is ultimately in V, This implies that there 
i 

54 

exists an integer n such that .for all i ~ n, xi E V, The positive 

invariance of V implies for i > n. Thus, for i ~ n, 

is in V. This .implies is ultimately in V and, thus, 

ultimately in U as V C U. 

Conversely, suppose M is not stable. Then there exists a 

neighborhood U of M such that U does not .contain any positive 

invariant neighborhoods of M. Let (Ui) be the collection of.all 

neighborhoods of M that are contained in U. Partially order the 

Ui' s by set inclusion and let x E M. Then fo.r each Ui there exists 

a yi = xti such that yi ~ Ui and ti ER+. Thus, yi E Uj for 

some u. ::::> u .• Since uj is not positive invariant, there exists a 
J i 

number tj ER+ such that yj = y.t. = (xti) tj = xt! ~ u. where 
J. J J J 

t! . xt ! , + 
= t. + t .• Since yj = yj E C (x). Continuing in this same 

J J. J J 

manner, a net (yk) is constructed such that (y) 
k 

is not ultimately 

in u .• But, the net (~)' defined by ~ = x for ali k, converges 
J. 

and is ultimately in + to x u .. By the hypothesis, since yk E C (xk) 
J. 

for each k, the net (yk) is ultimately in u .. This gives the 
J.: 

desired contradiction; and thus M is stable. This completes the 

proof. 

Theorem 3.20: If each component of a set M is stable, then M is 

stable. If M is compact and stable, then so is each c0mponent of M. 

Proof: The first statement follows from M equaling the union of 

its components and the union of stable sets being stable. Now let M 
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be compact and stable and let C be a component of M. Since C is a 

cloeed subset of the compact set M, C is compact. For each x e: C, 

This is true since x is in + D (x), and Theorem 3, 13 · 

implies that D+(x) i t d b t f M N th C s ·a connec e su se _o • ow sqppose at -

is not stable. Then there exists a neighborhood U of C that contains 

no positive invariant neighborhoods of C. Thus, there exists x e: C 

and_- t .> 0 such that xt · ~ U. It follows 'that there exists a ·net x.... x 

(xi) that converges to x and numbers ti ..::_·O such that xiti ~ U. 

Suppose. not, _then .for all net;s (x1) converging to x and all numbers 

ti ..::_ 0, xit i e: U. In particular, let· xi = x for each xi in (xf) • 

Then xt e: U. This contradicts xt l U. Thus,- such a net exists. x x' 

Since x1[0,ti] is connected_and intersects U and the complement ef _ 

U, -there exists a number- si, 0 < s < t , 
. - i -- i such that xisi e: au. 

Since (x1.) is ·ultimately in every neigp.borhood of C, (xi) is 

ultimately in every neighborhood of M. Theorem 3.19 implies that 

(xisi) is ultimately in eve_ry neighborhood of M. Since M is 

compact, there exists a subnet (xi,ksi;k) of (xisi) that converges 

to a point y in M. Since (xi k) converges to x, 
' 

ye: D+(x). But 

au closed implies that; ye: au. This is a cqntradiction as D+ (x) c C 

implies that ye: C; and, U a neighborhood of C implies that 

y £ au,. Thus, C is stable. This completes the _proof. 

In the ne_xt section, stability of a d.osec;l set_ ~ith. compact' 

' 
boun4ary is characterized for a locally compact phase space. These 

results a.re given in Theorems 3.27 and 3.28, 
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*-stability and Ura's Theorem 

The concept of *-stability will be used to prove .seve~al lemmas 

that culminate in the proof of Ura's Theorem. Ura's Theorem 

characterizes stability of closed sets with compact boundary in terms 

of positive cl-invariance. Such restrictions are not necessary for 

characterizing *-stability. Examples will be given to show that 

stability and *-stability are not in general equivalent •. Several 

results give sufficient conditions for a stable set to be *-stable. 

Definition 3. 21: A set M is *-stable if and only if for each x ~ M, 

ye M, there exist neighborhoods U of x and V of y such that 

Example 3.9: The dynamical system (R,TI) defined by .the differential 

equation 

- 4 . 2 TI x = x sin 
x 

(see Figure 9) yields a set, actually an inf:Lnite collection of sets, 

that is *-stable but not stable. Note that the only critical points 

are 

M = 

O and 1:. 
n ' 

1 1 (- 4 , 4 J 

where n is a positive integer. In Figure 9, let 

(in general, let 1 1 
M = (- - - ] n n ' n for n.= 1,2,3, •.• ). 

To see that M is not stable, let 1 7 
A = (- 4 , 24 ) be a neighborhood 

of M. The set A is not positive invariant and contains no positive 

invariant neighborhoods of M, Thus, M is not stable, 

Now let x be any element not in M and y any element in M. 

If 
1 1 

x < -4 or x > 
4 ' then p(x,M) ·= E > o. Thus, 

(x 
1 1 

(y 
1 l are neighborhoods u = x + - ) and v = y + - ) of 

E E E E 
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__ _,,....,. __________ .. ,----~·~) ... •---~>,-------~> .... ----x 
o V3 112 

Figure 9. The Phase Space of Example 3.9. 

and respectively, such that C+ (V) ri u rJ. If 
1 and x y, = x = 
4 

y e: M, then p(x,y) =€ > o. Taking u and v as above, we have 

c+ (V) n u = 0. Thus, M is *-stable. 

Example 3.10: In Example 2.7, the open unit circle, Mo, is stable but 

not *-stable. Let x e: y and y any element in Mo. For any 

neighborhood v of Y, C+ (V) will intersect any neighborhood u of 

x. Thus, M0 is not *-stable. 

Theorem 3.22: A set M is *-stable if and only if D+(M) = M. 

Proof: Assume that M is *-stable. It suffices to show that 

+ D (M) c M. Let y e: M and :ic If M. The *-stability of M implies 

that there exist neighborhoods u of x and v of y such that 

+ K+ (V). x If C+(V), + 
U n C (V) = 0. Suppose that x e: Since x e: ac (V). 

This implies, by the definition of a boundary point, that 

Un C+(V) :/: 0. This is a contradiction and, thus, x If K+(V). 

Therefore, x ~ n{K+(V): V is a neighborhood of y}. Thus, 

x If D+(y) for any y e: ·M. This implies that 

x If D+(M) + 
= U{D (y): ye: M}. Thus, D+(M) C: M and M = D+ (M). 

To show the converse, let D+(M) = M. Let ye: M and x If M. 

Thus, + x If D (M). 
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l + + x lf- D (y) =n{K (V): V is a neighborhood of y}. 

This implies that there exists a neighborhood V' of y such that 

xi K+(V'). Since K+(V') is closed, U = X - K+(V') is a neighborhood 

of x. such that Un K+(V') = !iL Hence, Un C+(V') = (?) and M is 

*-stable. This completes the proof •. 

Lemma 3.23: If M is *-stable, then M is positive invariant. 

Proof: Let x ¢ M. Then by th.e definition of *-stability, for 

each y £ M, there exist neighborhoods U of x and V of y such 

that + Un C (V) = (?), Thus, for each y £ M. This implies 

x ¢ U C+(y) = C+(M). Therefore, C+(M) c: M, and M is positive 
yEM 

invariant. This completes the proof, 

Lemma 3. 24: Let M be a closed set wit.h compact boundary. If M is 

stable, then M is *-stable. 

Proof:. Let M be stable and x ¢ M. For each m £ 3M there 

exist disjoint open neighborhoods U of m and V of X, Since m x 

3M is compact and {U: m £ 3M} 
m is an open cover of 3M, there 

exists a finite collection {U .: m. £ 3M} that covers 3M. Thus, 
m,1 1 

U = M U (U U . ) is a neighborhood of M. For each 
m,1 

denote the corresponding neighborhood of x. Then, 

um,i let 

v = nv . x,1 

v x,i 

is a 

neighborhood of x such that Un V = 0, The stability of M implies 

that there exists a positive invariant neighborhood W of M such 

that W c: U. Thus, W is a neighborhood of each y £ M such that 

+ W = C (W) C: U. This implies that V n C+(W) = 0 as v n u = 0. 

Hence; M is *-stable, and the proof is complete. 
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Lemma 3.25: Let X be locally compact and M a closed subset of X. 

If M is stable, then M is *-stable. 

Proof: Let M be stable and x q; M. Since X is Haus.dorff and 

locally compact, X is regular. Thus, there exist disjoint 

neighborho0ds U and V of M and x, respectively. The stability 

of M implies the existence of apositive invariant neighborhood W of 

M such that W c U. Hence, C + (W) n V = ~ and M is *-stable. This 

complete$ the proof. 

Lemma 3.26: Let X be l0cally compact and M closed with compact 

boundary. Then there exists a closed neighborhood U of M such that 

au is compact. 

Proof: Since X is locally comp~ct, for each x E aM there 

exists a compact neighborhood u x 
of X, The collection 

{U: x E aM} is a covering of aM. The compactness of aM implies 
x 

that there exists a finite subcover {U i: x. E aM}, of aM. Thus, 
x' ]; 

U = MU (lJ U i) is a neighborhood of M. Since M is closed and x, 

each u x,i 
is closed, u is a closed neighborhood of M. For each 

define V = U • - M0 , 
x,i x,i 

Then, U = M U (lJ U • ) = M U (U V i) , x,i x, . 

Thus, 

au a (M u (U v . ) ) c aM u a (U v k) x,i x, 

ca(tJV i)cu(av i)cuu i' . x, x, x, 

T0 show that au is compact it suffices to show that· UU x,i is 

compi;Lct, as au is a closed subset of uu x,i' Let c be any cover 

uu .. Then c is a cover of each u x,i and, hence, by compactness 
x ,i 

i 

of 



of U . , 
x ,i 

there exists a finite subcover Ci of U i' x, Thus, U Ci 
i 

is a cover of UU i x, and U Ci is finite as there are only a finite 
i· 
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number of the U i' x, Hence, au is compact, and the proof is complete. 

Theorem 3,27: Let X be locally compact and M a closed set with 

compact boundary. Then M is stable if and only if M is *-stable. 

Proof: If M is stable, then Lemma 3.25 implies that M is 

*-stable. To show the converse, let M be *-stable and suppose that 

M is not stable. Lemma 3.26 implies that there exists a closed 

neighborhood U of M such that au is compact. It is now claimed 

that for any neighborhood W of M, C+(W) n au# 0, Since M is not 

stable, Theorem 3.19 implies that there exist nets (xi) and (yi), 

+ Yi EC (xi) for all i, such that (xi) is ultimately in every 

neighborhood of M and (yi) is not ultimately in every neighborhood 

of M. This implies that (yi) is frequently in the complement of 

every neighborhood of M. Let W be a neighborhood of M. Then there 

exists a number T' > .0 such that for all i > T' · - ' Also, 

there exists a number T" > 0 such that for all i > T" - , x. € u. 
J. 

Let 

T = max{T' ,Tl!}. Then, for all i > T, xi E Un W. Fix i > T. Then 

there exists a number k > i > T > T" such that + 
yk € c ("k.) and 

y. ~ u. Since k .:_ T, "k. € u n w. Thus, there exists a point xk in 
J. 

u n w such that y = k . xktk is not in u . This implies C+("k.) is 

both in U and in the complement of U. Hence, there exists a number 

sk .::_ 0 such that "k.sk E au. Thus, C+(W) n au ,f,.·(/J, 

The neighborhoods of M are directed by set inclusion and for 

each such neighborhood W it has been shown that.there exists a point 

x e W such that C + (x ) n au # 0. Lemma 3. 23 implies that M is 
w w 



posit;:ive invariant, and this implies that x ¢ M. 
w 

x e: M. 
w 

Then 
+ + 

C (x ) c: C (M) = Mc: U0 

w 
implies that 
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For suppose that 

This contradiction shows x ¢ M. 
w 

It is now claimed that the net (x) 
w 

has a cluster point x e: 3M. For suppose not. Then for each me: 3M 

there exists a neighborhood T of m such that (x) is not m w 

frequently in T . Thus, (x) is ultimately in . X - T . The m w m 

collection {T : m e: 3M} covers 3M and the compa.ctness of 3M m 

implies that there exists a finite subcover {T .. } ' that. covers oM. 
m,1. 

The set · A =. ( U Tm,i) U M0 is a neighborhood of M such that (x) 
w 

is not frequently in A, Thus, (x) is ultimately in X - A. But 
w 

this contradicts (x) c: (x.) as (xi) is ultimately in every 
w l. 

neighborhood of M. Thus, (x) has a cluster point x in 3M. Thus, 
w 

there exists a subnet (x . ) of (x ) that converges to x e: aM. 
w ,.J. w 

For each x . there is a t . > 0 such that x it . e: au. Since w,i w,1.·- w, w,1. 

au is compact, there is a subnet (x t . ) w,i,k w,1.,k of (x . t · i) w,1. w,. 

that converges to a point u e: au. · Also, (xw, i, k) converges to 

x e: 3M. This implies that u e: D + (x) c: D + (M). Theorem 3. 22 implies 

that D+(M) = M and, therefore, tie: M. This is a contra.diction as 

u e: au and Mc: U0 • Thus, M is stable, and the proof is complete, 

Theorem 3. 28: (Ura) Let X be locctlly compact and M a closed 

subset of· X with compact boundary. Then, M is stable if and only 

if D+ (M) = M. 

Proof: By Theorem 3.27, M is stable if and only if M is 

*-stable·. By Theorem 3. 22, M is *-stable if and only if D+(M) = M. 

This completes the proof. 
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Example 3.11: To show local compactness is necessary for Ura's 

Th id the flow '(R2,'IT) eorem, cons er defined by the system of 

. differential equations 

(see Figure 10). 

r = r(l - r) 

a • sin2 ·1 ! . 2 

The unit circle is the union of y and {p2}. Let X' = X - y. 

That X' is not locally compact follows from considering any 

neighborhood U of p2 • Each U will contain a net (xi) that 

converges to a point x e: y, but x i U. . Thus, p2 has no compact 

neighborhoods. However, and {p} 
2 

is not stable due 

to the behavior of the trajectories. interior and ex~erior to the unit 

circle. 

Figure 10. The Phase· Space of Example 3.11. 
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Proposition 3.29: If X is locally compact, then a compact set M is 

positive cl-invariant .if and only if each of its components is positive 

cl-invariant •. 

Proof: If M is compact and positive cl-invariant, then Ura's 

Theorem implies that M is stable. Since M is compact and stable, 

every .component C of M is stable, see Theorem 3.20. Since· C is a 

closed subset of M, C is compact. Ura's Theorem implies that C is 

pos:i.tive d"'."invariant. 

Conversely, let each component C of M be positive .cl-invariant. 

Since M is the union of all its components, M is positive 

cl-invariant, see Proposition 2.41. This completes the proof. 

Theorem 3. 30: Let X be .locally compact and M a closed set with 

compact boundary. Then, the following are equivalent: 

(a) M is stable; 

(b) M is k-stable; 

(c) i/ (M) = M; 

-(d) J (X - M) n M = ~' and M is positive invariant; and 

(e) X - M is negative cl-stable. 

Proof: Equivalence will be shown by proving: 1. (a) if and only 

if (b); 2. (a) if and only if (c); 3. (c) if and only if (d); and 

4. (c) if and only if (e). 

1. Let M be stable. Since X is locally compact and Hausdorff, 

X is regular. Thus, Theorem 3.8 implies that M is k-stable. 

Conversely, if M is k-stable, then Proposition 3.7 implies that M 

is stable. 



2. Ura's Theorem. 

3. Assume that D+(M) = M. Then, by Proposition 2.42, 

D-(X - M) = X - M. Proposition 2.43 implies that J-(X - M) c X - M, 

and X - M is negative invariant. Thus, J-(X - M) n M = 0, Since 

X - M is negative invariant, Proposition 2.42 implies that M is 

positive invariant. 

Conversely, assume that J- (X - M) n M = 0 and that M is 

positive invariant. Thus, J-(X - M) c X - M, and X - M is 

negative invariant, Since, see Proposition 2,34, 
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D-(X - M) = C-(X - M) U J-(X - M) and C (X - M) and J-(X - M) are 

subsets of X - M, it follows that D-(X - M) = X - M. Thus, M is 

positive cl-invariant. 

4. By Proposition 2.42, D+(M) = M if and only if X - M is 

negative cl-invariant, Since M is closed, X - M is. open. Thus, 

Proposition 3, 3 implies that . X - M is negative d-stable. Conversely, 

if X - M is negatived-stable, then X - M is negative cl-invariant. 

Thus, M is positive cl-invariant. This completes the proof. 

Zubov' s Stability Criterion 

In [32], Zubov gave the following criterion for the stabili.t;y of a 

closed invariant set. 

Proposition 3. 31: A closed invariant set M is stable if and cmly if 

L-(x) n M = 0 for all xi M. 

The necessity of the above proposition has been shown in 

Theorem 3. lL The criterion is not sufficient as the following example 

shows. 



Example 3.12: Consider the flow 2 
(R ,1r) defined by the system of 

differential equations 

x = 0 

(see Figure 11). Let M = {(O,O)}. For each point p not in M, 

(O ,O) ~ L + (P). Thus, L + (P) n .M = 0. But clearly, M is unstable. 

y 

I I\ 
I 

'" -~ ' " 'I' 'I' 
I 
2, ~ I 

3 

----~---------1~------1-------+--------t----X 

. ,.. 
-I 

Figure 11. The Phase Space of Example 3.12. 

Relative Stability 

Definition 3,32: Let M be a compact set and Uc X. Then D+(M,U) 

denotes the positive prolongation of M relative to U and is given 

by 
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D+(M,U) = U {y e: X: there exist nets (x·) 
i xe:M 

such that (xi) converges to x and­

(xiti) converge.s to y}. 

Proposition 3. 33: If U is a neighborhood of M, then_ 

+· + D (M,U) = D (M). 
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Proof: If +-
y .e: D (M, U) , then there exist nets in U and 

(ti) in R+ such .that . (xi) converges to x e: M and (xi.ti) 

converges to y. This implies that ye: D+(M) and, hence, 

+ + + 
D (M, U). c:: D (M). If y e: D (M), . then there_ exis.ts a _net (xi) 

converging to x e: M and numbers ti~ 0 such that (xiti) converges 

to y. Since U is a neighborhood of M, (xi) is ultimately in U. 

Thus, there exists an integer n such that xi e: U for all i > n. 

Thus, for all i > n; (xi) c U. This implies that.ye: 1/(M,U) and, 

hence, D + (M) c:: D + (M, U) • This completes the proof. 

In the proof of the above proposition, tpe fact that. U is a 

neighberhood of M was not used ts show D + (M, U) c D + (M) • · Thus , 

D + (M, U) c:: D + (M) for any U c:: X. 

Definition 3. 34: If M is compact and U c:: X~ then M is stable. 

relative to U, denoted by M is '(]-stable, if and only if for every 

neighbad1ood W of M. there. exists a neighborhood V af M such 

+· that , c ('V n U) c:: .W. 

Theorem 3. 35: If M is U-stable and . U is a neighborhood of M, then -

M is stable. 



Proof: Let M be U-st.able where U is a neighborhoed of M: 

Let W be any neighborhood of M. Thus, there exists a neighborhood 

V of M such that C + (V n U) is contained in W. Since V and U 

are neighborhoods of M, V n U is a neighborhood. of M and 

Mc: V n UC: C + (V n U) •. Since C + (V n U) is a positive invariant 

subset of W, M is stable and the proof is complete. 

Proposition 3. 36: If M is compact and stable, then · M is U-stable 

for all Uc: X. 
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Proof: Let W be any neighborhood of M. Then the stability of 

M. implies the existence of a positive invariant neighborhood V of M 

such that V c: W. Thus, V n U c: V and C + (V 11 U) c: c + (V) = V c: W. 

This implies that M is U-stable as was to be shown. 

Theorem 3.37: Let X be locally compact. A compact set M is 

U-stable if and only if D+(M,U) c: M. If Mc: U, then M is U-stable 

if and only if + D (M,U) = M. 

Proof: First, let M be U-stable and + ye D (M,U). Since M is 

U-stable, for any neighborhood W of M there exists a neighborhood 

V of M such that + C (V n · U) c: W. Since + ye D (M,U), there exist 

nets (x.) in u and (ti) in R+ such that (xi) converges to 
J. 

x e M and (xiti) converges to y. Suppose that y ~ M. Then, there 

exist neighborhoods w of M and y of y such that y n w = !IL 

The U-stability of M implies that there exists a neighborhood v of 

M such tha,t · C + (V n U) c: W. Since (xi) converges to x e M, (xi) 

C+(V n U). + c+ (v n u) is ultimately in Thus,· (xiti) C: C (V n U) as 

is positive invariant. Since (xi ti) converges to y, (xiti) is 
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ultimately in Y. But, C+(V n U) C: W implies that Y n C+(V n U) = 0, 

This contradiction shows y EM and, hence, D+(M,U) c: M. 

Conversely, let + D (M,U) c: M and assume that M is not U-stable. 

Then there exists a neighborhood W of M such that for all 

neighborhoods V of M, C+(V n U) { W. Since X is locally compact,· 

there exists a compact neighborhood N of M such that N c W. For 

each neighborhood v of M such that V c: N, there exists a point 

x E v nu and a t ER+ such that x t E c3N. Since (x) is in 
v v v v v 

N and N is compact, there exists a subnet (x k) of (x) that v, v 

converges to some x EN. In fact, x EM. For suppose that x ~ M. 

Then, by the compactness of M, there exist disjoint neighborhoods P 

and Q of x and M respectively. This contradicts the construction 

of and, thus, x EM, For each x k' v, x t v,k v,k is in the 

(x kt k) 
v' v' 

has a subnet compact set aN. Thus, the net 

(x k .t k .) that converges to v, ,1 v, ,1 
y E c3N. Nots that (xv,k,i) 

converges to x E M. This implies that + y ,E D (M,U), But y E oN 

implies that. y ~ M. This contradicts + D (M,U) c M and, thus, M 

U-stable. 

is 

To prove the second assertion, let Mc: U and assume that M is 

U-stable. 

by 

By the above proof, 

x. = x 
1 

for each i. 

+ D (M, U) c M, 

Let t = 0 
i 

Let x EM and define 

for each i. Since 

Mc U, (xi) is in U and (xi) converges to x E M. Also, 

(xiti) = (xi) and, thus, converges to x. Thus, x E D+(M,U) and 

+' + + M c D (M, U) • Therefore, . M = D (M, U) .. Conversely, let D (M, U) = M. 

By the first part of the theorem, M is U-stable. This completes the 

proof. 
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In this chapter the concepts of stability, *-stability, and 

relative stability have been introduced and their properties 

investigated. Also, the relationships between these types of stability 

have been examined. The concept of stability has been extensively 

studied in [14]. Additional references on stability include [5], [7], 

[11], [12], [13], [16], [19], [21], [22], [23], [27], and [31]. The 

concept of relative stability is presented in [13], [14], and [31]. 

Additional results on stability can be found in papers that present the 

concept of asymptotic stability. 



CHAPTER IV 

PARA-STABILITY 

The concepts of para-stability and para-,Liapunov functions were 

introduced by Hajek in [22]. The definition for para-stability was 

motivated by several results in [21]. These results indicated that new 

concepts of stability should be defined by requiring a set M to be 

the intersection of certain neighborhoods of. M. This is in contrast 

to the usual definitions that require a certain property to be true for 

all neighborhoods of M. Since stability and para-stability may be 

characterized in terms of Liapunov and para-Liapunov functions, the 

chapter begins with a presentation of these concepts. After presenting 

some results of para-stability theory, the relationship between 

st1:1.hil'ity and para-stability will be examined. 

Para-Liapunov Functions 

Definition 4.1: A function v: X.-+ R is a Liapunov function on (X,1r) 

if and only if v is continuous and v(xt) 2_ v(x) for all t > 0 and 

x E: x. 

Example 4.1: In the flow 
2 

(R '1T) of Example 2.1, defined by the system 

of differential equations 

x = -x 

y = y, 

7() 



the function 2 2 1T: R x R-+ R 

Let- the continuous .function 

is given by· 7r((x,y),t) = (xe-t,yet). 

v: R2 -+ R be given by' v(x,y) = e -lxy 1. 
That· v is a Liapunov function follows from letting (x,y) be any 

element of R2 and considering v((x,y)t) for all t > O. From the 

definitions of 1T and v, 

I -t t I I I -t t - xe e -v((x,y)t) = v(xe ,ye ) = e. Y • e xy . 

This implies that v is a Liapunov function on (X,7T), 

Definition 4.2.: A mapping v: X-+ R+ on the phase space X is a 
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para-Liapuriov functiot1, for (X,7T) if and only if v is ·continuous and 

for every € > 0 there. exists a o > 0 such that v(xt) < € for all 

t > 0 whenever v(x) < o. 

Example 4.2: Let the function 1T be as in Example 4,1, Then the 

continuous function v: R2 -+ R+ defined by v(xt) = e-t(2 + 10 sin t) 

is a para-Liapunov · function but not a Liapunov function, Let € > 0 

be given. Since e-t(2 + 10 sin t) converges to O as t converges 

to +oo, there exists an integer n such that v(xt) < € whenever · 

t > n. Let o = €. If v(x') < o = €, whe-re .x' = xt', then_ t' ·> n. 

Then, for any t;:,. O, v(x't) = v(x(t + t')). 
I 

Since t + t '· > t' > n - - ' 
v(x(t + t')) < €. Thus, v is a para-LiapunQv function. 

Te show that v is not a Liapunov function, note that a Liapunov 

functien must satisfy v(xt) ~ v(x) for all x and all t > O. 

CCDnsider the point xO and t = 1. Then,. v(xO) = e -O (2 + 10 sin 0) = 2 

while e-1 (2 + 10 sin 1) ~ 3.83. Thus, v(xl) .i v(x) and v is not a 

Liapunov function. 
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Proposition 4.3: Every Liapunov function is a para-Liapunov function. 

Proof: · Let v be . a Liapunov function and let E > 0. Thus, v 

is continuous and v(xt) ..::_.v(x) for all t > 0 and x £ X. Let 

8 = E • If v(x) < 8 = E , then v(xt) < v(x) < E for all t > 0. 

Thus, v is a para-Liapunov function, and the proof is complete. 

Proposition 4.4: If v is a para-Liapunov function on X, x £ X, 

and v(x) = O, then + -1 D(x)c::v (O). Thus, is 

closed and positive invariant. 

Proof: Let + y £ D (x). Then there exists a net (xi) converging 

to x and numbers ti.::._ 0 such that (xiti) converges to y. From 

the definition of v, for any E > 0 there exists a 8 > 0 such that 

v(xt) < E whenever v(x) < 8. Since v is continuous, v(x.) 
l. 

converges to v(x) = 0. Thus, v(xi) is ultimately less than o, 

Therefore, v(xi ti) is ultimately less than E. Therefore, v(y.) < E 

and since E was arbitrary, v(y) = O. This implies that -1 
y £ v (0) 

d h D+(x) C:: v-1 (0). an. , ence, 

To show that D+(v-1 (0)) -1 = v (0), first note that, 

definition of + -1 
D (v. (O)), v-1(0) c:: D+(v-1(0)), If x £ 

by the 

-1 v (0), 

v(x) = 0. Thus, by the first part of the proof, + -1 
D (x) c v (0). 

+ -1 U + -1 Therefore, D (v (O)) = _1 D (x) c:: v (Q), 

+ -l -l XEV (0) 
D (v (O)) = v (0). Proposition 2. 37 implies that 

Thus, 

closed and positive invariant, and the proof is complete. 

then 

is 

Proposition 4.5: Let v be a para-Liapunov function and for a> 0 

define V = {x: v(xt) < a for all t .::._ O}. Th.en V is closed, 
a a 

positive invariant, and 
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Proof: Let x EV. 
ll 

Then there exists a net (xi) in V such 
ll 

that converges to x. Since. for each i, Xi EV, . ll 

for all t > O. Since v is C(}ntinuous., v(xi) canverges to v(x). 

Suppose v (xt') > a for some t' . Then v (xi t') converges to v (xt ') • 

Let €' > 0 be picked such that. v(xt') - €' > a. Thus, v(xit') is 

ultimately in the €'-neighborhood of v(xt '). Thus, there exists an 

integer k such that for all i > lt, v(xit') > ll o This contradiction 

shows v(xt) < ll for all t > () and thus X E v . Therefore, - ll 

v a. .C v and v is closed. 
ll ll 

To show that v is positive inva.riant, let y E C+(V ). Then· 
ll a. 

y = xt for some X E v and some t E R+_ Thus, v(y) = v(xt). a 

Since X E V 
ll' 

v(xt) < ll. Therefore, v(y) < ll and y E v • This 
ll . 

implies that C+(V ) C V and v is positive inv~riant. a a. Cl. 

To show that: v-1 (0) = n{v 
Cl. 

a> O}, let -1 x Ev (O). By the. 

definition of v, for any € > 0 there exists a cS > 0 such that 

v(xt) <€,.for all t ..::_ O, whenever· v(x) < cS. Thus, since 

v(x) = 0 < cS, v(xt) < € for all t > 0 and for all €. This implies 

that X E V for, each ll > o. Th:us, x E n {V · • a. > O} and 
ll ll. 

-1 O}. Now let x En {V O}. Thus, v v (0) c n {V : a. .> Cl. > X E 
a a. a 

each a and v(xO) = v(x),:.. a for all Cl.> o. l'his implies that 

v(x) 
-1 n{v ...;l 

= 0 or that X E v (O). Therefore, Cl. > O} c v (O), 
Cl. 

the proof is complete. 

Proposition 4.6: . Let v be a para-Liapunov function and let V a 

defined as iri Proposition 4.5. Th.en there .exists a sequence (a) ·n ' 

for 

and 

be 

a. > 0 for each n, such that (a.) converges to O and such that 
n n 

v a 
n 

is a neighborhood of for each n. 
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Proof:. For notational convenience V will be denoted by v· • · a an 
n 

· Define the. sequence (a) 
n 

inductiv~ly by letting a1 = 1 and choosing 

an+l such. that 2a +l <a. n - n· Thus, for each n, -n a < 2 • n- This 

implies that (a) 
n 

converges to O. To show the-second assertion, fix 

n and consider 

Proposition 4. 5, 

v an and 

v a(n+l) 

v a(n+l) that converges to 

V a(n+l) • Let x e: va(n+l)" Since, by 

is closed, .there exists a net in 

x. Since x e: va(n+l)' 

v(x) ~ an+l < 2an+l· Since (xi) converges to x, v(xi) converges to 

v(x); and thus, v(xi) is ultimately less than 2an+l· Let e = a 
n 

and o = 2an+l • Then, by _definition of - v bei~g para-Liapunov, . 

< °' n 

and,. thus, 

for all 

x e; v an 

t > o. 

as v . an 

Va (n+l) c: Van. · Suppose 

This implies that each xi.· is in 

is closed. 

vo • 
an· 

Therefore~ 

Then there exists 

v an-

x e: Va(n+i) su-ch that x e; av • Thus ' 
<:¥n 

x e; x - v • an This implies 

that .. there. exists a net (y i) in X - V such that an (y i) converges · 

to x. Using the same argument as above, v(yi) converges to 

v(~) < Cl.ri+l < 2a ·· < a • 
n+l - n Thus, v(yi). is ultimately less than 

This 

Thus, 

implies, by 

Yi e: V. • an 

definition of v, . 

This contradicts 

that _v(yit) < a for all n 

Yi e: X - V • . an Therefore, 

V is a_neighborhood.of V and the proof .is complete. an a(n+l)' 

2°'n+1 • 

t > o. 

Corollary 4. 7: . Let v be a p~ra-Liapunov function and le_t Va be 

defiµed as in.Proposition 4.5. Then the sets G = V0 have the 
n an._ 

following properties: Gn is open and positive invariant;. Gn+l c Gn 

for all n ~ l; and 

Pro0f: Since 

v - 1 co> = nc = nc;. 
n n 

G = V0 and the interibr of a set·is _open, n an G 
n 

is open.. Prapositio-q 4. 5 implies that G d.s positive inva.riant and 
n 



Proposition 2.12 implies that· G is positive invariant. From 
n 

Proposition 4.6, Gn is a neighborhood of Gn+l and, thus, 

Gn+l c: Gn for all n > 1. 

To show the last property; it is first claimed that nG = nc. n n 
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Since each G c: G, nG c: nc. 
n n n n Now let x e: nc. 

n 
Then, x e: G for 

n 

each n > 1. This implies that x e: G l n-
for all n > 1 and thus , 

x e: nG for all 
n 

Proposition 4.5, 

n, Thus, nGn C: nGn and equal.ity holds, By. 

v-1 (0) = n{v : a> O}, Since nc =in{v : a> O}, 
a · n a 

-1 -· v (O)c:nG. 
n 

Let x e: nc. 
n 

Then, x e: G for each n. 
n 

This implies 

that x e: V for all a. Therefore, v(x) < a for all a. an n - n n 

Since (ci. ) 
n 

converges to O, v(x) = O. Thus, 
-1 x e: v (0). Therefol;'e, 

nee: v-1 (0). 
n 

Theorem 4.8: 

Thus, -1 -· 
v (O) = .n G = n G n n' 

In a normal phase space X, 

and the proof is complete. 

let {G: n = 1,2,3, ,,,} 
n 

be a sequence of open positive invariant sets such that Gn+l C: Gn' 

for a:1-1 n, Then there exists a para-Liapunov function v: X + [O,l] 

such that: 

(1) {x: 1 
G c: v(x) < - } c: G 1; n -n n-

(2) =nG -1 and nG = v (O); n n 

(3) x - -1 G1 C: v (1). 

Proof: Let Hn . Gn - Gn+l for ea.ch n, Since G is closed 
n 

and Gn+l 

H n H 
n+l n-1 

is open, H 
n 

is closed for each n. For each n, 

Suppose that this 

intersection is not empty. Then .there exists an x such that· 

and x e: G - G, . Since 
n-1 n 

x e: G , 
n 

Thus, 
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x ii: Gn-l - Gn, and this _contradiction shows Hn+l n Hn-l · is empty fer 

each. n, 

It is now claimed. that _for each n, H 1 n H = aG • Let 
n- n n 

x e Hn-l n Hn = (Gn-:-l - Gn) n (Gn - Gn+l), Then x .e Gn, but : 

X 4 (G) 0 = G , 
n. n 

Thus, x e oG and H l n H . c: aG • n n- n n If· x e aG, 
n 

then · x 4 Gn+l as Gn+l c: Gn and G is open. n. Thus,. 

H , 
n 

Sinc;e x e aG, 
n 

x l G , 
If' n Since G.C:G l' n n- · 

x e G - G = H , n-1 n n-1 Thus, x e Hn n Hn-l and aG c:: H n H 1' n n n-

Thus; aGn = Hn n Hn-l' Now consider aGn n aGn+l for each n, 

Since. Gn+l c:: Gn and G~ is open, Gn+l n Gn = 0, Thus, 

aG +l n aG = !lJ. n · n 

Since H is a clo!:!ed se.t in the no.rmal space X, H is a n n 

normal subspace o! X · [18, VII_, 3, 3], For each n, aG is a closed 
n 

subset af H • 
n 

Since H = G - G where n n n+l is open, 

closed subset of H, Thus, n. aGn U aGn+l. is a closed subset of Hn. 

Define 

x e .aG. 
n 

the function v' : . aG . n 
1 and v' (x) = -.- if 

n+l 

-+ { ! -L } I ( ,. l if U aGntl n 'n+l by v x) n 

x .. e aGn+l' Since v' is continuous, 

there exists .a cbntinuo.us exJ:ension of v' to a function. 

v": H -+ [ 1 
n · n+l 

1 ;._ . ] 
n 

[18, VII, 5.1]. Now define 

l 
0'. if x e nG 

n 

v(x) = v" (x), if x e: UH n 

l, if x € X - G . 1 

Let (a,b) · be any open set in. [d ,l]. Then· 

-1 v (a,b) = {x e X: a< v(x} < b} 

= U{G: a< v(x). < ~}. 
n 

v: X-+ [O,l] by 
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Thus, -1 v (a,b) is an open set since each G 
n 

is open. Thus, v is 

continuous. Let e > 0, choose 

1 
v(x) < o = n+l , x E Gn. Thus, 

1 n>-
e ' and let 1 

0 = n+l • For 

1 v(xt) < - < e 
-n for all t > 0 as 

is positive invariant. Thus, v is a para-Liapunov function. 

To show (1), if G ' then v(x) 1 
This implies that X E < -n -n 

{x: v(x) 1 
} . Thus, G c {x: v(x) 1 

} . Now let X E < - < --n n -n 

{x: v(x) < l }. Since, 1 1 v(x) < ,--L and this implies X E - < ---n n n-1 ' n-1 

G 
n 

that x E G 1· Thus, {x: v(x) < l } CG n-1 · and (1) has been shown. n- -n 

The proof of statement (2) is as in the proof of Corollary 4.7. 

Statement (3) follows from v(x) = 1 if X E x - Gl. Thus, if 

x - Gl, v(x) = 1 which implies that. -1 and, hence, X E X E V (1) 

x - -1 
Gl c v (1). This completes the proof. 

Para-Stability 

Definition 4.9: A subset M of a phase space X is (positively) 

para-stable if and only if M is the intersection of sets Pi each of 
00 

which has the following property: P. = n G. for suitable open 
1 n=l 1,n 

positive invariant se.ts G. 1,n such that G, ·+i c Gi 1,n ,n for all n. 

Thus , M = n Pi = n 
i i 

00 

( n G. ). 
n=l i,n 

Proposition 4.10: Each para-stable set M is the intersection of its 

closed positive invariant neighborhoods; in particular, ·M is closed, 

positive invariant, and + D (M) = M. 

G i,n 

Proof: 

is an 

Let 

open 

M be para-stable. 

positive invariant 

each i, G c G for all n. i,n+l i,n 

00 

Then M=n < n G. ) where 
i n=l 1,n 

neighborhood of M such that for 

Since MC G. C Gi for all 1,n ,n 
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00 00 

i and n, M c: n c n C:-). Let X E n c n c;_-). Then, 
i n=l l. ,n i n=l ,n 

--·-x E G for all i and . n, Since f0r fixed i and any n > 1, i,n 
00 

G C: Gi n-l' x E G. for all n, i,n , 00 1.,n 00 

Hence, x e; n ( n Gi ) , 
i n=l 00 ,n 

Thus, n ( n ~i ) C: n ( n G, ) = M, 
i n=l ,n i n=l 1.,n 

Hence, M = n c n ~). 
i n=l 1.,n 

Since each G is positive invariant, i,n Proposition 2.12 implies that 

G is positive invariant. Hence, the first statement has been shown. 
i,n 

That M is closed follows from each Gi being closed. ,n 

Proposition 2.11 implies that M is positive invariant. 

Proposition 3. 3 implies that: each G i,n is stable and, thus, 

D+(G. ) = Gi , Since Mc: D + (M) c D + ( G i ) = G. c: G. is true 
l. ,n ,n ,n i ,n i ,n 

00 

for all i and n, D+(M) c: n en ~) = M, Thus, D+(M) = M. 
i n= 1 i,n 

This completes the proof, 

Proposition 4.11: Finite unions and arbitrary intersections of 

para-stable sets are para~stable. 

Proof: Let M1 ,M2 , •.• , ~ be para-stable sets. Then each 
00 

M. = n Pj . , 1 .::_ j .::_ k, where Pj . = n G. . with the G. i 
J ·i ,1. ,1. n=l J ,1.,n J' ,n 

as in the definition of para-stability. Then 

M = 
k 
u 

j=l 
M, = 

J 

k 
u c n Pj . ) • 

' l. j=l i 

It is now claimed that. 
k k 
u cnP .. )=ncu 

j =1 i J '1. i j =1 
pj . ) • 

'l. 
Let 

k 
XE LJ (nP, ,), 

j=l i J,l. 
Then for some 1 .::_ m .::_ k , x En P ,, This implies 

k i m,1. 

that x E P . for all i and, hence, x E 
m,1. k 

U P for all i. 
j,i 

Thus, x En ( U P. i) and set inclusion 
i j=l . J, . k 

jal 
from the left has been 

k 
shown. Now let x E n ( U Pj . ) • Then, x E 

l.. . 1 ,1.. 
J= 

U P, i for all i, 
j =1 J ' . 



This implies that for some l2_r2_k, 

Therefore, x € n p i and, hence,. x € 
i r ,. 

equality has been established. 
k 

x E P i for all. i. 
k r,. 

u ( n pj i). Thus, the. 
j=l i ' 

k 
Thus, M = U M is the intersection of set~ 

j=l · j 00 

p = 
i 

u p 
j=l j ,i 

where, for each j, Pj i = n Gj i with each 
' · n=l ' ,.n 

G j,i,n being an 
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open positiv~ invariant set and G ! G j,i,n+ j,i,n for all n. As _above, 
k 00 00 k k 

p = u < n G. i ) = n ( u Gj i ) • Thus,. u G is an i j,i,n j=l · n=l J' ,n n=l j=l , '~ j=l 
open. positive invariant set and 

k k k 
U G l C U G C U G 

j=l j ,i,n+. j=-l j ,i,n+l j=l j ,i,n 

for aJ,.1 n. Thus; M is para-stable. 

Now let {Mj} jEA be an arbitrary colleqtion of para-stable sets 

and let M= n M, • Then 
jEA' J 

00 

M= n M = n ( n P j i) = n < n < n Gj,i,n)), 
jEA j jEA i ' jEA i n=l 

wher_e each G .is an .open positive invariant set .such that j,i,n 

G · C: G for all . n. j,i,n+l j,i,n Let P1 = n P1 i' P2 = n P2 i' 
i ' . i , 

Then each Pk, k = 1,2,3, n G where k,i·,n .. •., equals 
n,i 

~,i,n+l c Gk,i,n" Thus, M is para-stable, and the proof.is cemplete. 

Proposition 4.12: If v: X + R+ is a para-Liapunov function, then 

v-1 (0) is a para-stable G0 set. 

Proof: Let v be a para-Liapunov function and_ the sets v 
a 

and 

G be defined as in Preposition 4.5 and Corollary 4.7, respectively. 
n 



Corollary 4.7 implies that v-1 (0) = n G , · where each 
n 

n 
G is open 
n· 

positive invariant and Gn+l C: Gn for all n > 1, Thus, 

a G0 set. To show that v-1 (0) is para-stable, let. Pn 

each n. Thus, 

para-stable, and 

-1 
v (0) = n P, This implies that 

n 
n 

the proof is complete, 

= G for 
n 

is 
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Theorem 4.13: Let X be a normal.phase space. Then M is para-stable 

if and only if 

+ v.:X-+R, 

-1 
M = n v. (O) 

. 1 
1 

for suitable para-Liapunov functions 

1 

-1 Proof:. First, assume that M = n v. (0), where for each i, v1• • 1 

1 -1 
is a para-Liapurtov function. Proposition 4.12 implies that v. (O) is 

1 

para-,,stable, and Proposition 4.11 implies that -1 
M =~vi (0) is 

1 

para-stable. 
00 

Conversely, let M be para-stable. Thus, M = ~ (n~l Gi,n) 

where each G is ari open positive invariant set such that for all i,n 

n, Gn+l c: Gn. Theorem 4.8 implies that for each i a para-Liapunov 

function v. 
i 

--1 
M = ~ vi (O) 

1 

00 

can be constructed such that -1 
vi (O) = n 

n=l 
as was required. This completes the proof. 

G . 
n 

Thus, 

Corollary 4.14: In a normal phase space X, a set M is para-stable 

if and only if M is the intersection of para-stable G0 sets. 

Proof: First, assume that· M is para-stable. Theorem 4.13 

-1 
implies that M = nvi (0) where each vi is a para-Liapunov function. 

Proposition 4.12 implies that each v~1 (0) is a para-stable G0 set. 

Thus, M is the intersection of para-stable G0 sets. Conversely, 

let M equal the intersection of para-stable G0 sets, _ G , 
n 
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Proposition 4 .11 implies that M is then para-stable. This complet~s 

the proof. 

Lemma. 4.15: For n = 1,2,3, ••• let v ; X -+ [O ,l·] be para-Liapunov 
n 

functions ·and. let . a > 0 be constants such that '\'an < f<,o. Then, n - Li 

'\'a v is a para-Liapunov function. Li n n 

Proof:. First, it _will be established that if v1 and are 

para-Liapunov functions, then av1 , a~ O, and v1 + v2 are 

para-Liapunov functions. Let a > 0 and let e: > 0 be given. Since 

v1 is a para-Liapunov function, the·re exists a o > 0 such that if 

v1 (x) < 0' then v1 (xt) < € for all t > o. Thus, for € > 0 ' let 

€ ' 
€ and 0' = ao' where 0 is .determined by. € ' and Then, = - vl. 2 ' 

if v1 (_x) < o' = ao' v1 (x) < e. Thus, v (xt) < €' 
€ Thus, 1 =2· 

and is a para-Liapunov function. 

Now iet e: > 0 be given. Then for (1/2)e: > 0, there exists 

o1 > 0 and o2 > 0 such that v1(xt) < (1/2)e: if v1 (x) < o1 and 

v2(~t) < (1}2)e: if v2(x) < o2• Let 

o, v1(xt) + v2(xt) < (1/2)€ + (1/2)e: = € 

Then for this 

is a 

para-Liapunov function. This proof also serves as the first step for an 

inductive proof of Lanvµ being a para"".'Liapunov function. Thus, 

assume Ia .v 
W ' nn 
Li a v • Since 

is a para-Liapunov functio'Q. for ~11 n < k. Consider 
k+i . ~1 . -

ri=l n n k+l 
implies ~hat I; 

k+l n=2 

~ anvn = a1v1 + Li ~nvn' the induction hypothesis 
n=l · n=2. 
av is a para-Liapunov function. By the proof for 
n n 

v1 + v2 , ~ anvn is a para-Liapunov·function. 'Ihus; for all n, 
. n=l 

'\'a v is a para-Liapunov function and this completes the preof. 
Li n n 
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Theorem 4.16: Let X be a regular Lip.delof phase space and Mc X. 

Then the following properties are equivalent: 

(1) M is a para-stable Go set; 

00 

(2) M= n G ' where each G is an open positive 
n=l n n 

invariant set and Gn+l C:: Gn; and 

(3) 
-1 

M = v (0) for some para-Liapunov.function v. 

Proof:. First, it will be shown that (3) implies (2). 

results and notation of Proposition 4.5 and Corollary 4.7, 

Using the 

v-1 (0) = nc 
n 

where each Gn is open, positive invariant, and Gn+l c Gn. Thus, 

since M = v - l ( 0) , M = n G , 
n 

To show (2) implies (3) note that X regular and Lindelof implies 

X is para-compact and, thus, normal [ 18, VII I, 6, 5 and 2, 2] • Thus, 

Theorem 4,8 implies that there exists a para-Liapunov function v such 

that v-1 (0) = nc = M. 
n 

That (3) implies (1) is precisely Proposition 4.12, It remains to 

show (1) implies (3), Let M be para-stable and where each 

H is open. Fix n and let x £ X - H. Since X is normal and M 
n n 

is para-stable, the conditions of Theorem 4.13 are satisfied. Thus, 

for each x £ X;.. H 
n' 

there. exists a para-Liapunov function v 
n 

that v: X + [O,l], 
n 

-1 
M C:: v (O), 

n 
and v (x) > O. 

n 

v (x) > 0, 
n 

note that the sets 

construction of Theorem 4.8 and 

H 
n 

contain the sets 

v (x) = O 
n 

only on 

To see that 

G 
n 

in the 

nc c H 
n n 

such 

Since 

x £ X - H, v (x) > 0. For each x £ X - H, let A = {x: v (x) > O}. n n n x · n 

Thus, 

X - H C:: 
n u 

xEX-H 
n 

A. 
x 



Since each A is open, 
x 

is an open cover of X - H , 
n 

u 
xe:X-H 

n 

A 
x 

Since H 
n 

is open, X - H 
n 
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is closed 

and, hence, is Lindelof [18, VIU, 6.6], Thus, thet:e exists a countable 

subcover for X - H, This subcover determines a family of para­
n 

Liapunov functions {v m = 1,2,3, ,,,} such that Mc v-1 (0) nm nm 

each m. For each x e: X - H, there exists an m such that 
n 

v (x) > 0. Le.t the function v be defined by 
nm 

00 

2-(n+m)v (x). v(x) = I Since for each x ~ 
n,m=l nm 

a m such that v (x) > 0' v(x) > 0 for x ~ nm 
00 

M = nH there n 

M. Since 

for 

exists 

~ 2-(n+m) < +oo, Lemma 4.15 implies that v is .a para-Liapunov 
n,m=l 

Mc v-1 (0) -1 function. Since for all n and m, Mc v (O). To show nm 

v -l (0) c M let x ~ M. Then v(x) > 0 which implies that x ~ v-1 (0), 

Thus' M -- v-1 (0) b h as was to es own, This completes the proof of the 

theorem. 

Stability and Para-Stability 

Example 4.3: In the flow 2 
(R '7T) defined by the system of differential 

equations 

x.= -xy 

1 - 2 
if x > 0 t- y 

' y = 2 
-x - 1 - y ' if x < 0 

(see rigure 12), the y-axis is para-stable but not stable. The 

para-stability of the y-axis follows from letting Gi· ' ,n for all n, 

be the interior of the set formed by the trajectories and 



Figure 12. The Phase Space of Example 4.3. 

Each G i,n is open and positive invariant and 

The y-axis equals n P . and Gi c G. 1 . 
i i ,n i,n-

is para-stable. Let U = {(x,y): -1 < x < l}. 

P. 
]. 

00 

n 
n=l 

G, = G, • 
i,n i,n 

This implies the y-axis 

Thus, U is a 

neighborhood of the y-axis that contains no positive invariant 
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neighborhood of the y-axis. This implies that the y-axis is not stable. 

Example 4.4: Stability does not imply para-stability since any open 

positive invariant set M is stable, see Proposition 3.3. But 

Proposition 4.10 implies that any para-stable set must be closed. 

Example 4.5: In Example 2.2, every disk is both stable and para-stable. 

Theorem 4.17: If X is normal and M is a closed stable set, then 

M is para-stable. 
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Proof: Let U. be any open neighborhood of M. 
J. 

Thus, X - U. is 
J. 

closed. Since X is normal, there. exist disjoint open neighborhoods 

Vi and Wi of M and Ui' respectively. Since M is stable, there 

exists an open positive invariant neighborhood G of M such that i,l 

Gi,l.c Vic Ui, and Gi,l n Wi = {i), Thus, Gi,l c Ui. Since Gi,l is 

an open neighborhood of. M, there exists an open positive invariant. 

neighborhood Gi, 2 of M such that Continuing in this 

manner, we obtain a sequence .of open positive invariant neighborhoods 
00 

G. 
J. ,n 

of M with G. +l c Gi • i,n . ,n 
Let n 

n=l 
G. , 

J. ,n 
Then, 

Since U. 

P. = 
J. 

n Gi , 
n=l ,n 

J. 

To show 

n P. such that x ~ M. 
i J. 

neighborhoods V' of 

neighborhood of M, V' 
00 

M 

n P. = n < n G. ) c V'. 
• J. ; 1 
J. J. n= 

J. ,n . 

was arbitrary, we have M c n P. , where. each 
• J. 
J. 

n P. c M, suppose that there exists an x in 
J. 

i 
This implies that there exist open disjoint 

and W' of X, But since V' is an open 

is one of the ui. Thus, 

This implies that X E v' . This 

contradiction shows x EM and, thus, n Pi c M. 
i 

Hence, M= nP., 
i J. 

and M is para-stable. This completes the proof~ 

Theorem 4.18: Let X be locally compact and Hausdorff and let M be 

a closed set with, the compact boundary. Then the following are 

equivalent: 

(1) M is stable; 

(2) M is para-stable; and 

(3) + M = D (M). 

Proof:. That (1) and (3) are equivalent is Ura' s Theorem. 

Proposition 4.10 shows that (2) implies (3). To complete the proof, it 

will be shown that (1) implies (2). Let M be stable and Ui any open· 

• 
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neighborhood of M, Since X is locally compact and Hausdorff, X is 

regular. Thus, there exists a neighbo rh0od. V. of M such that· 
l. 

vi c: ui. The stability of M implies that there exists an open 

positive invariant neighborhood, Gi 1 of M such that Gi,l c v. 
' 

Since G, 1 is an open neighborhood of M, there 
l., 

exists a neighborhood v. 1 
l.' 

of M such that vi,l c Gi,l' 

G, 2 of M such that 
l.' 

Thus, there 

is a positive invariant neigh~orhood 

G. 2 c V. 1 C: G. 1 • Continuing in this same manner, we have, as in 
1., 1., 1., 

Theorem 4,17, a sequence of open positive invariant neighborhoods G, 
i ,n 

of. M such that G, +l c G. 
i,n oo l. ,n As in the proof of Theorem 4.17, 

M = n P where 
. i 

P. 
1 

= n G i,n Thus, M is para-stable as t-Tas to be 
l. n=l 

shown. 

Theorem 4.19: Let X be para-compact, locally compact, and M a 

closed G0 set with compact boundary. Then M 

if M = v-1 (0) for some para-Liapunov function 

is stable if and only 

V, 

Proof: First, assume that a para-Liapuno\l' function v exists such 

that -1 M = v (O). Proposition 4,12 implies that v-1 (0) is para-stable . 

and Theorem 4.18 implies that v-\o) is stable. Thus, M is stable. 

Conversely, let M be a stable set, Since x is para-compact and 

locally compact, it follows that X = UXi where each Xi is a-compact, 

open; and Xi n Xj = 0 for i =r j [18, XI, 7,3]. Since, for each i, 

Xi is a-compact, xi is Lindelof and locally compact [18, XI, 7, 2]. 

Hence, each Xi is regular [18, XI, 6. 4 and VII; 7]. It ·is now 

claimed that each x. is invariant. For suppose that there exists 
l. 

Then there exists x £ x. and t £ R such that 
l. 

y £ C(Xi) - Xi, 

y = xt ~ Xi. The openness of Xi implies that x. n ax. = 0, 
l. l. 

that is, 
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xi n u (X.) = r/J. Also, since each x.' j :/: i, is open, u x. is 
j:;&i J . J j:;&i J 

open and u. xJ n x. = r/J. Thus, xi. and u x. are separated sets 
1 J j:;&i j:;&i 

and C(x) has points in each of the sets. This is a contradiction of 

C (x) being a connected set and, hence, there does not exis.t a 

y e: C (Xi) such that y ~ xi. Thus, C(Xi) = xi and x. is invariant. 
1 

Since M is stable, Proposition 2.35 implies that M is positive 

invariant. Proposition 2 .10 implies that xi n M is positive 

invariant. Since X. = X -
1 

that X. is closed. Thus, 
1 

x. 
J 

n M 

and U X. is open, it follows 
j;&i J 

is closed and X. n M = X. n (n G ), 
1 1 n 

where each Gn is open since M is a G0 set. Since X. is also 
1 

open, Xi n M is a G0 set in Xi. Since Xi is open and invariant, 

Xi is stable according to Proposition 3. 3. Thus,· the stability of Xi 

and M implies that Xi n M is stable in the dynamical system 

relativized to Xi. 

Since aM is compact and the Xi are disjbint, aM intersects 

at most a finite. number of the x .. 
1 

For if not, then the infinite open 

covering of aM by the X. would not reduce to a finite subcovering 
1 

of aM, which contradicts the compactness of M. Thus, 

I= {i: X. n aM :/: r/J} has cardinality less than +oo. If j ~ I, then 
1 

x. 
J 

open and x. n aM = r/J 
J 

imply that X, n M = X. n M0 • 
J J. 

is open in x .. 
J 

are closed in 

[25, page 113]. 

Also, X. n M 
J 

is closed in x. since 
J 

X.. Since X. is regular and Lindelof, 
J J 

Thus, there exists a continuous function 

Thus, X, n M 
J 

x. 
J 

and M 

X, is normal 
J 

+ v.: X. + R 
J . J 

such that v. (x) = 0 
J 

if x e: X. n M and v.(x) = 1 if x e: X - M 
J J j 

[ 18 , vu , 4 • 1] . If i e: I' then xi n aM ;& r/J' that is ' xj n M 'F r/J. 

Since is stable, Theorem 4.18 implies that X. n M is 
1 

para-stable. Since, from above, Xi n M is·a G0 set, ·Theorem 4.16 



implies the existence of a para-Liapunov function v.: X. -+ R+ 
l. l. 

that Now define v: X-+ R+ by v(x) = v.(x) 
l. 

xe:X., i=l,2,3, ... 
l. 

continuous. 

To show 
-1 M = v (O), 

Since each v. is continuous, v is 
l. 

let x ·e: M. 

x e: X. n M for some i. If 
l. 

i e: I, 

Since M = U (Xi n M) , 

then x e: v:1 (0) c: v-1(0) 
l. 
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such 

if 

and, 

thus, 
-1 Mc: v (O). If i $ I, then v.(x) 0 and MCv-1 (0). 

l. 
Now 

let 
-1 

x e: v (O). If x £ x.' 
l. . 

i e: I, 

this implies, by the definition of vi, 

then. v(x) = v. (x) = 0 
l. 

that x e: X. n M c M. 
l. 

and 

If 

x e: Xi, i ¢ I, then v(x) = vi(x) = 0 implies x e: Xi n Mc M. Thus, 

x £ M and v-1 (0) CM. Hence, M = v-1 (0). 

It ·remains to show that v is a para-Liapunovfunction. It has 

been established that v is continuous and that for each i e: I, 

is para~Liapunov. If i ¢ I, then for x £ x.' l. 

x £ x. - M. If x £ xi n M, then v(x) = v. (x) 
l. Ji 

let 0 = €. If v. (x) < 0, then vi (xt) = 0 < 
l. 

follows from the fact that x. n M is positive 
l. 

xt e: X. n M and v.(xt) = O. 
l. l. 

If x £ Xi - M, 

x £ x. n M or 
l. 

= o. For any € 

€ • That v. (xt) 
l. 

= 

invariant. Thus, 

then v(x) = v.(x) 
l. 

v. 
l. 

> o, 

0 

1. 

Since Xi is invariant, xt e: Xi for all t > O. Thus, xt e: Xi n M 

or xt e: xi - M. If for some t 1 .::._ 0, xt' e: xi n M, then 

xt £ xi n M for all t > t I since xi n M is pos it:i ve invariant. 

Let E > 0 and let o = E. 

all t > o. For if 0 < € < 

1 < € , then v. (x) < 0 = € 
l. 

v. (xt) is either 1 or 0 
l. 

Therefore, for i ¢ I, vi 

1, 

by 

and 

is a 

then the 

definition 

v. (xt) < 
]. 

result 

then ·· v. (xt) < E 
]. 

follows vacuously. 

of x £ x. - M. Thus, 
l. 

€ for all t > o. 

for 

If 

para-Liapunov function, Since each vi' 
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i = 1,2,3, ••. , is a para-Liapunov function, v is a para-Liapunov 

functi0n, and the proof is complet.e. 

Theorem 4.20: Let X be normal and M a closed set. Then, M is 

stable if and only if, for every neighborhood U of M, there exists 

a para-Liapunov function v: X -+ [O, 1] with M C: v -l (O) and 

X - U c: v -l (1) • 

Proof: First, assume that M is stable and let U be any 

neighborhood of M. Since X is normal, and M is closed and stable, 

a sequence of open positive invariant neighborhoods G. of M can be 
n 

constructed, as in Theorem 4.17, such that Gn+l c Gn C: G1 CU. 

Theorem 4.8 implies that there exists a para~Liapunov function 

v: X-+ [0,1] such that 1'1G = v-1 (0) 
n 

MC: G for all n, Mc: nG = v-1 (0). 
n n 

-1 X - Uc X - G1 C: v (1). 

and 
-1 

X - Gl c v (1). Since 

Since G1 c: U, 

Conversely, let U be any neighborhood of M. Then there exists 

a para-Liapun0v function v: X-+ [0,1) with Mc v-1 (0) and 

X - Uc: v-1 (1). ;By definition of v, for € .. 1 there exists a 

o > 0 such that if v(x) < o, then v(xt) < € = 1 for all t > 0. 

Let V = {x: v(x) < o}. Thus, .for x e.: V, v(xt) < l, for all t > o. 

This implies that xt ~ X - U. Thus, xt e; U. This implies that 

Mc vo. 

x e; av. 

Since 
-1 MC: v (0), 

For if not, then there 

+ Mc V C: C (V). 

exists an x 

It remains to show 

such that x e; M and 

Thus, there exists a net (y i) in x - v such that (yi) 

converges to x. Thus, v(y i) converges to v(x) = o. This implies 

that v(yi) is ultimately less than 0 and this implies Yi e; v. 

This contradiction shows MC:: V0 • Thus, C+(V) is a positive invariant 
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neighborhood of M such that C + (V) c U. Since U was arbitrary, M 

is stable, and the proof is camplete. 

Theorem 4.21: Let X be narmal and M a closed set. Then M is a 

stable G0 set if and anly if, for every neighborhoad U of M, there 

exists a para-Liapunov function v: X + [0,1] such that M = v-1 (0) 

and X - U c:: v -l (1) • 

Proof: Let M be a clased and stable G0 set and U any 

neighborhood of M. Then M = nH where each H is an open 
n n 

neighborhood of M. Si H and Uo nee 1 are open neighborhoods of M, 

H1 n U0 is an open neighborhood of M, Since M is closed and X. is 

normal, there exists an open set v1 such that MC: v1 c:: v1 C: H1 n U0 • 

Thus, since M is stable, there exists an open pasitive invariant 

neighborhood G1 of M such that Mc: G1 c:: G1 c:: V c:: H1 n U0 • Since 

G1 and H2 are open neighborhoods of M, H2 n G1 is also an.open. 

neighborhood of M. Thus, there exists an open set v2 such that 

Mc: V2 c:: v2 c:: H2 n G1 • Hence, there exists an open positive invariant 

set G2 such that . M c:: G2 c G2 c V 2 c H2 n G1 • This implies that 

Continuing in this same manner, a sequence G of open 
n. 

positive invariant neighborhoods ef M can be constructed such that 

Since Mc G for all n, Mc:: nG . n n To show nG c M let 
n 

x e:nG. n 
Then, x e: G . n for all n. By the construction of the G ' n 

x e: H for all n arid, hence:, x e: nH = M. Thus, · M == nG . Also, 
n n n 

Theorem 4, 8 implies that there exists a para-Liapunov function· 

[O ,1] such that nG v-1 (0) and -1 Since v: X+ = X - Gl c:: v (1) , n 

M = nG 
-1 Since G1 c:: U, fol10ws that n' M = v (0). it 

-1 X - Uc:: X - G1 c:: v (1). Thus, the first assertion is camplete. 
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Conversely, let U be any neighborho0d of M. Then there exists 

a para-Liapunov function v: X ~ [0,1] such that M = v-1(0) and 

X - Uc: v-1 (1). Proposition 4.12 implies that v-1 (0) is a G0 set 

and,.hence, M is a G0 set. The proof that U contains a positive 

invariant neighborhood C+(V) of M is precisely the proof used in 

Theorem 4.20. Thus, M is· a stable G0 set. This completes the 

proof. 

In this chapter the relationships between stability, para-stability, 

and para-Liapunov functions have been examined. Due to the recent 

introduction of para-stability, the only reference that can be given is 

[22]. The relationships between stability and Liapunov functions can be 

found in [7], [14], [21], [27], and [28]. 
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