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CHAPTER I
INTRODUCTION

The evolution of the theory of dynamical systems had its origins
in the study of systems of ordinary differential equations. While no
one individual can be credited as the founder of this theory, it is
generally agreed that G. D. Birkhoff, in [15], provided the impetus .
that established a systematic approach to the theory. Prior to
Birkhoff's work in the 1920's, the investigation of the functional and
topological properties of solutions of systems of ordinary differential
equations had been initiated by the French mathematician Henri Poincare
and the American mathematician E. H. Moore. In the early 1930's, .

A. A. Markov and H. Whitney independently gave the first abstract
definitions of a dynamical system. Nemytskii and Stepanov's book, .
"Qualitative Theory of Differential Equations," published in 1947,
renewed interest in dynamical systems and provided a basis for the
modern development.of the theory.

In the early 1890's, Liapunov set forth a precise definition of
stability, a concept that had been investigated by Lagrange and
Dirichlet. During the first half of this century attention centered on
developing Liapunov's methods:for stability as related to systems of
differential equations. Researchers then started to examine stability,

in fact all of dynamical systems, in more general terms. This led to



abstracting to more general topological spaces and finally to.what many.
feel is a separate field of mathematical study.

In the 1940's, Bebutov introduced several new types.of stability, .
the most notable one being uniform stability. 1In the late 1950's,
Zubov, Bass, and Lefschetz all contributed to the systematic development
of stability theory. It was Zubov, in [32], who gave the first complete
development of the theory. During this same period, Ura introduced.
prolongations and characterized stability of.compact sets in terms of
prolongations.

Since the 1950's, stability theory has been indorporated into most
of the developments in dynamical systems. These developments are
surveyed in [13], [14], and [19]. 1In [14], Bhatia and Szego present an
extensive survey of results in stability theory. Theilr work, as well as
the work of many others, is restricted to metric spaces. A more
general setting is used by Bhatia -and Hajek, in [1l1l], but the scope of
their work is restricted to several particular types of dynamical
systems.

The purpose of this dissertation is to investigate the concepts of
stability and para-stability. ' Chapter II presents the -basic concepts
of dynamical systems theory that are necessary for studying stability
theory. It is hoped that Chapter II will not only lay the groundwork
for the rest of the dissertation, but will invite the reader to
investigate other areas of dynamical systems -theory.

In Chapter III, stability, in the sense of Liapunov, is presented.
Characterizations of stability are given, including Ura's Theorem which
is proven by using %*-stability. Chapter III concludes with Zubov's -

stability criterion and relative stability.



In Chapter IV, the relationship between stability and
para-stability is examined., The concept of para-stability was -
introduced by Hajek in 1972, see [22]. The relationship of Liapunov

and para-Liapunov functions to stability and para-stability is also

presented. .



CHAPTER II
PRELIMINARY CONCEPTS

Dynamical Systems

Throughout this paper, R, R+, and R will denote the real
numbers, nonnegative real numbers, and nonpositive real numbers,
respectively. The topological p;operties that are necessary for this
chapter are elementary, and the reader is referred to [18], [24], and

[25].

Definition 2.1: The pair (X,r), where X is a topological space and

7 1is a mapping from X x R dinto X, 1s a dynamical system if and only

if the following conditions ‘hold:
(i) Identity axiom:. 7(x,0) = x, for all x & X;

(i1) Homomorphism axiom: w(n(x,t),s) = n(x,t+s), for all

xe X and t,s € R; and

(iii) Continuity axiom: the mapping m is centinuous on X x R.

The topological space X 1s called the phase space, and m is .

called the phase mapping. A dynamical system (X,7) is often referred

to as a continuous flow or simply as a flow. Unless stated otherwise,

it_will always be assumed that the phase space X 1is a Hausdorff space.

All sets and points shall be assumed to be subsets and elements of X,

A



respectively. Unless stated otherwise, all sets will be assumed to be
nonempty. For notational convenience, 7(x,t)  will be denoted by xt.
Thus, axiom (i1i) of Definition 2.1 would be written as - (xt)s = x(t + s8),
for all xe X and t,s e Re For Tc R and all x e X, w(x,T)  will
be denoted by xT. In particular, for Mc X and T< R, ~(M,T) will
be denoted by | xT.

xeM-
Definition 2.2: For each x.¢ X, the sets C(x) = xR = {xt: t ¢ R},
+ + + - - -
C(x) =xR ={xt: teR}, and C (x) = xR = {xt: t € R } are called,

respectively, the trajectory of x, the positive trajectory of x, and.

the negative trajectory of x. The trajectory C(x) ~is also called the

orbit of x and C+(x) and C (x) are called the semi-trajectories or

semi-orbits of x.

If MC X, ‘then - C(M) = U C(x), 'C+(M) = U C+(x), and
_ _ xeM xeM
cCM = U ¢ (x).
xeM
The following two properties of = C(x) are immediate from

Definition 2.2.
Proposition 2.3: For x € X, C(x) =.C+(x).U C (x).
Proposition 2.4: For x'e X and any t e R, C(x) = C(xt).

It can be easily verified that Proposition 2.4 does ‘not hold for

C+(x). and C—(x), see Example 2.1.

Definition 2.5: If C(x) = {x}, then x .is a critical or rest point.
If C(x) # {x} but there exists a t.¢ RT  such that Xt .= x, then x

is a periodic point.




Example 2.1: Let the'dynamical system (Rz,n) be defined by the
following system of differential equations (R2 denotes the Euclidean

plane with the usual topology):

(The phase space is shown in Figure 1).

Figure 1. The Phase:Space of
Example 2.1.

’

The point (0,0) is the only critical point. For any point

P = (x,0), with x# 0



+ {(x',0): 0 <x'"<x}, if x>0
C (P) =
{(x',00: x<x' <0}, if x <O0.

A similar statement holds for Q = .(0,y), y # O. For any point

S = (x,y), With x # 0, vy # 0,

C+(S) = {(xe_t,yet): t e R+}.

Remark 2.6: In Example 2.1, the positive trajectories were the only-
ones given; and in Figure 1, the arrows indicate the positive directien
of the trajectories. . This procedure will be used- throughout the paper
in regard to examples. Definitions will contain both the positive and
negative versions, and in most cases, the bilateral version will be
given. All theorems and proepositions that are true for the positive
version are also true for the negative version. Since the negative
version is the dual of the positive version, only the positive versioen
will be proven. The bilateral version will generally be given fer

theorems and propositions, but will not be proven.
Invariance

Definition 2.7: A subset M of X 4is invariant if and only 1if
C(M) =M. If Mc X, then M is positive (negative) invariant if and

only if CT(M) =M. (CT QD) = M).
Progosition 2,8: If M 1is a subset of X, then the following are
equivalent:

(a) M is invariant;

(b) CcM) &« M;



(¢) C(x)E M, for all x € M; and

@ M=y C(x.
xeM

Proof: (a) implies (b): Follows from Definition 2.7.

(b) implies (¢): Since C(M) = U C(x) and CM) S M, C(x) ©M for
xeM
all x e M. (c) implies (d): If C(x) ¢ M for all x e M, then-

U C(x) M. Let xe M. Then, x.e C(x) and MC U C(x).

xeM xeM
Therefore, M= U C(x). (d) implies (a):. Since M = U C(x) and
xeM xeM
CM) = U C(x), M=C(M). This implies that - M is invariant. This
xeM

" completes the proof.

Using a similar proof, Proposition 2,8 is true for positive
(negative) invariance, where C(M) is replaced by C+(M)» (c ).

Examples of invariant sets will be presented in Examples 2.5, 2.6,
2.7, and 2.8. These examples not only discuss invariance, but relate
the cencept ‘of -invariance to the concepts of k-invariance and

d-invariance.

Propesition 2.9: For each x e X, "C(x), C+(x), and G (x) are.

invariant, positive invariant, and negative invariant, respectively.
Proof:. Follows from Definition 2.7.

Proposition 2.10: A subset M of X dis positive (biiaterally)

invariant if and only if X - M  is negative (bilaterally) invariant.

Proof: First, assume that M is positive invariant and let
y € C (X~ M.  Then, y = xt for some x € X =M and t € R .

Suppose xt is not an element of X - M. Thus, xt e M and the



positive invariance of M dimplies that (xt)(~t) e M. But

(xt)(-t) = x(t + t) = xo Thus, x € M, and this contradicts

x € X - M. . Therefore, y =xt e X - M and CEX-MC (X-M.

Proposition 2.8 implies that- X = M 1is negative invariant.
Conversely, let X - M be negative invariant. For any

y € C+(M),» y = xt for some x e M and t € R+. If xt é M, then

xt € X - M. This implies thatb'(xt)(-t) =xeX~-M as X~-M is

negative invariant. . This contradicts x.e€ M. Thus, y = xt e M and

C+(M)<: M. Therefore, Proposition 2.8 implies that M 1is positive

invariant, and the proof is complete.

Proposition 2.11: If (Mi) 1s ‘a family of positive (bilaterally)

invariant sets, then (y M

1 and N Mi are also positive (bilaterally)
1 i

invarilant.

+
Proof: Let xe C (U Mi)' Then, x = mt for some m e U Mi

. + 1 + 1
and t e R . Thus, me Mi for some 1 and x = mt € C (Mi)' The
positive invariance of Mi implies that C+(Mi) = Mi’ Therefore,
x e M,. Thus, xe (M, and C+(‘U M,) «U M,. Proposition 2.8

i - 1 i 1 i ; T ‘
then implies that | Mi is positive invariant.

i
To prove N Mi is positive invariant, consider
i

X~-NM =y (X~M,)., Since M, is positive invariant,

1 i 1 i i.
Proposition 2.10 implies that X —_Mi is negative invariant. Thus, by
the first part of thils proof, | (X - Mi) =X - N Mi is negative

, : i i

invariant. Proposition 2.10 implies that n Mi is poesitive invariant.

i
This completes the proof.

The boundary, interior, and closure of M will be denoted by

oM, M°, and ﬁ; respectively. The derived set of M- will be denoted
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by M'.  For the definition and basic properties of a net, the reader
is referred to [25, pp. 65-66]. Nets and sequences will be denoted by
is

(x,). The context in which (xi) appears will clarify if . (x

1 1)
being used to denote a net or a sequence. A subnet.(subsequence) of

).

(xi) will be written as (xi,n
Proposition 2.12: 1If a subset M of X is'posifive (bilaterally)

invariant, then M. and M° are positive (bilaterally) invariant.

Proof: Suppose C+(ﬁ) is not a subset of M. Then, there exists
meM and t e R+ such that mt ¢ M. Since M=MUM, me M;
for if m dis in M, then mt ¢ MC M- as M 1is positive invariant.
Since m ¢ M', there exists a net (mi) in. M such that (mi)
converges to. m. Thus, (mit) converges to mt. Since M is positive
invariant, each mit is in M, and this implies that mt e M. This
contradicts mt not being an element of M. Thus, . d+db is a subset
of ﬁ, and Proposition 2.8 implies that M is positive invariant.

To show the interior of M is positive invariant, consider
M° = X - Cifrib. Since M 1is positive invariant, Proposition 2.10

implies that X - M is negative invariant. Thus, by the first part of

this proposition, X - M 1is negative invariant. Proposition 2.10 then
implies that X - (X - M) 1is positive invariant.  This completes the.

proof.

Proposition 2.13: If M is positive (bilaterally) invariant, then the

boundary of M is positive (bilaterally) invariant.
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Proof:. By definition, &M =Mn (X - M). The positive invariance
of M 4implies that M and X - M are positive invariant, see
Proposition 2.12. Then Propoesition 2.11 implies that MN (X - M = M

is positive invariant. This completes the proof.

The converse of Proposition 2.13 1s not true as shall be shown in
Example 2.2.  Propoesition 2.17 sﬁows~that'if M 1is either open or
closed, then the converse of Proposition 2.13 is true if 3M is
invariant. Examples 2.2 and 2.3 also show the necessity of M being

either open or clesed.

Definition 2.14: For each x ¢ X, the x-motion, T -1s the mapping

M’ R > X defined by ﬂx(t) = xt, for all t e R.

Propositien 2.15: For any x e X, the x-motion, L is centinuous.

Proof: Immediate from Definition 2.15 and axiom (i1i) of

Definition 2.1.
Proposition 2.16: For each x e X, C(x) (C+(x),Cf(x)) is connected.

Proof: Since TR X = {xt: t € R} = C(x) and e is
continuous; C(x) 1is the continuous image of the connected set R.

Thus, C(x) 1is connected as claimed.

Proposition 2.17: If M 1is open or.clesed and %M is invariant, then-

M is invariant.

Proof: Assume that M 1s open, and oM is inwvariant. Suppose
M is not invariant. ' Then, there exists m e M and t1 e R such that

mt ¢ M. Without loss of generality let t. be in R+. Then

1
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C+(m)r7 oM .= @. For if not, then there exists t in R+ such that

mt 1s an element of 9M, This implies that C(mt) is a subset of M
since oM 1s invariant. Thus, (mt)(-t) = m(t + _t) =m 1is an element
of ©8M. This contradicts m being in M and M being open. Thus,
C+(m) N oM = @. Further, Cf(m) n x - Fb‘= @#. TFor suppose that there
exists a t in Rf such that mt 1is an element of X - M. . Since"
C+(m) is connected and C+(m) N oM = @, C can be written as the

union of the two sets A = {mt': mt' ¢ M and t' ¢ [0,t]} and
B={mt':mt' e X~-M and t' e [0,t]}. Clearly, A NE = @ and
ANB=@. Thus, C can be written‘as the union of two separated

sets, and this contradicts C being connected. Thus, no point of
C+(m) can lie on oM or in X - M. Therefore, C+(M) is contained in
M, and Proposition 2.8 implies that M is invariant.

Assume that M is closed and &M is invariant. Since the
interior of M is open, the proof of the first part of the proposition
implies that the interior of M 1is invariant. Proposition 2.12 then
implies that .the closure of the interior of ﬁ, which is M, 1is also

invariant. This completes the proof.

Example 2.2: Consider the flow defined by the system of differential -

equations

[V
]
<

(see Figure 2)., 1In Figure 2, let x € y and let M be the union of
{x} and the interior of the disk bounded by Y. The boundary of M is
y which is positive invariant. By the definition of M, M is neither

open notr closed. Sirnce C+(x) =y # M, M is noet positive invariant
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Figure 2. - The Phase Space of
Example 2.2.

and, hve.nce, cannot be invariant. Thus, the condition that M is
elther open or closed cannot be omitted from Pfoposition 2,17,

Figure 3 1is a portidn of Figute 1 with M being the shaded region.
The set M 1s closed, but 3M is not invariant. For any x € M such
that x is not on the x-axis, C+(x) # M, and M> is not invariant.
By éonsidering the interior of M, M° 1is a noninvariant open set with
noninvériant boundary. Thus, the invariance of the boundary of M

cannot be omitted from Propositién 2.17.

Proposition 2.18: If M 1s positive invariant, then each of its

components is positive invariant.

Proof: Let A be a component of M. For x e A, C (x) is
connected, see Proposition 2.16, and is a subset of M as M is

.positive invariant. Then, A U C+(x) is connected since ‘A N C+(x) # 0.
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Figure 3. The Set M of
' Example 2.2.

Since A 1is a component of M, it follows that C+(x)<: A. Therefore,

U C+(x)c A, and this implies that C+(A) c A. Thus,
xeA. ' : - ‘
Proposition 2.8 implies that A 1is positive invariant, and the proof

is complete.

Proposition 2.19: If M is ppsitive invariant, M = M1 U M2, and

EH N M2 =g=M NN then M, and M, are each positive invariant. .

1 2° 1 2

Proof: By definition

C+(Ml) - U chw.
xeMl -

Proposition 2.16 implies that C+(x) is connected. Therefore, for

X e'Ml, C+(x) c Ml’ and M1 is positive invariant by Proposition 2.8.
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An analogous proof shows that M, 1is positive invariant. This

2

completes the proof.

Definition 2.20: " A subset M. of X 1s relatively compact ‘if and only

if M 4is contained in a compact set:

Proposition 2,21: The phase space’ X contains a compact invariant set

if and enly if .it contains a relatively compact semi-trajectory.

Proof: Assume that . X contains a compact invariant set M. For

any element x of M, the invariance of M _implies C+(x) is

contained in M.  Since M is compact and C+(x) is a subset of

- + +
M=M, C (x) 1is compact. Thus, C (x) is -the desired relatively.
compact semi-trajectory.
+
Now let C (x)  be.a relatively compact semi-trajectory of X.

X +
' Thus, there exists a compact set A containing C (x). The compactness

of A and C+(xb C A=A implies that C (x) is compact. Consider

+ ¥
the sequerice (xn), n =1,2,3, .., in C (x). -Since C (x) 1is

)

compact, there exists a subsequence ,(xnk) of (xn) such that (xnk

, + +
converges to a point y  in C (x). The positive invariance of C (x)

+ i -
implies that C+(y) c C(x). Let te R . Then ~t.c R, Thus,

there exists an integer N such that for all i > N, ooy > -t.
H

cqnsidef-the~sequen¢e (x(n, , + t)), where (n + t) > 0. Thus,
k,1i k,i —

(x(nk i +t)) = ((xn'k i)t) is a sequence in C+(x) that converges to
s L — ’

. + : + .
yt. Since C (x) 1is compact, yt is an element of C (x). Thus,

- +
C (y) 1is a subset of C+(x). Also, C+(y) is a subset of C (%)

since y 4is in C+(x). Thus;» C(y) =-C+(y) U € (y) is contained in

C+(x). This implies that C(y) is a subset of C+(x), and C(y) is

*
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+
compact ‘as - C (x) 1is compact. Since C(y) is invariant,

Proposition 2.12 implies that C(y) is invariant. Thus, C(y) is the

desired compact invariant subset of X. This completes the proof. .

Actually, more has been proven. It has been shown that any

relatively compact semi-trajectory contains a compact invariant set.

Limit -Sets

Definition 2.22: For each .x ¢ X, K(x) = C(x), K+(x)‘= C+(x), and

K (x) = C (x).

Definition 2.23: For each x e X, the positive (negative) limit set

of x, L+(x) (L' (%)), 1is given by

+ .
L (x) = {y e X: (xti) +y for some net (ti)‘+ +oo}

(L (x) = {y e X: (xt;) »y for some net - (t;) —©}).

The limit set of x 1is L(x) = L+(x)lJ L (x).

Propositions 2.24 through 2.27 show the relationships between

C+(x), K+(x), and L+(x).

Proposition 2.24: For any x e X, K+(x) = C+(x) u L+(x)

(K (x) =C (x) UL ().

Proof: To show that_;C+(x)lJ L+(x0 c K+(x), first note that

C+(x) c K%(x) = C+(x), If y e L+(x),- then there exists a net (ti)

converging toe +» such that _(xti) converges to y. For each i,

xt, € C+(x). The positive invariance of C+(x) implies that
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(xt,) c €', Thus, y e =K@ and '@ c ¥, Hence,
U tTw e K.
To show that K&Kx) c C+(x) U L+(x); let "y ¢ Kf(x). If

+ . .
y € C (x), then the result follows. Suppose that vy # Cf(x). Then,

y cannot be written as xt' for t' e R'. But y € C+(x) implies
that there exists a net (xi) "in C+(x) - that converges to y. For
each 1, X, = Xt for some t; € RT. If the net- (ti) does not
converge te +», then y is expressible as y = xt for some. t € R+.
But this cqntradicfs y ¢ C+(x). Thus, the net. (ti) does converge to-

: +, + +
+o and, hence, y € L (x). Thus, K (x)e= C (x) U L+(x), and the

result follows.
Proposition 2.25: For any x ¢ X, K(x) = C(x) U L+(x) UL (%).

Proof:. Since C(x) = C+(x)'U C (%), Proposition 2.24 implies that

it will suffice to show ' K(x) = K+(x)lJ K (x). This equality follows

from K(x) = C(®) = C () U C(x) = CT(x) U C(x) = K (x)U K (x). This

completes the proof.

Example 2.3: Consider the dynamical system given in Example 2.1. Let

P-and S Be,as in Example 2.1. Then,

the) = 10,03,

+ {(x',0): 0 <x"'"<x}, if x>0

{(x",00): x<x'" <0}, 1if x <0,

tts) = ¢,
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and

K'(S) = c'(s).
‘s + +
Proposition 2.26: If x e X, then L (x) =L (xt) for all t e R.

Proof: Let y e L+(x). Then, there exists a net (ti) converging
to +» such that (xti)_ converges to y. For each ti there exists a
tj such that ty=t+ tj and‘the.net (tj) converges to +». Thus,
(Xti) = (x(t»+.tj)) = ((xt)tj) and ((gt)tj) converges to y. Thus,
y € L+(xt)_ and . L+(x).<: L+(xt).

To show L+(xt) c L+(x), let y ¢ L+(xt). Then, there exists a
net (ti) converging to -+« such that “((xt)ti) converges to y.
But, (xt)ti = x(t + ti), and the net (t + ti) converges to +w,
This implies that 1y ¢ L+(x). Therefore, L+(xt) c B+(x)‘ Hence, .

+ +
L (x) =L (xt), and the proof is complete.

. +
Proposition 2.27: L+(x) = N +»K-'-(xt.) = N K (xt).
’ teR teR
+
Proof: If y e L (x), then Proposition 2.26 implies that
. + + + +
y e L+(xt) for all te R . Since L (xt) e K (xt), y € K (xt) for-
+
all t ¢ R+; This implies that vy € ﬂ{Kf(xt):‘ t e R+}. Thus, L (x)

+, .
is -contained in N + K (xt).
teR

If j e N K+(xt),‘ then y ¢ Kf(xt) for-all t e R+. Since.
teR
kT(xt) = ctxe) U LVxe) and 1hxe) = 1T, ®hae) = cfxe) Uth ).

If yel'(x), then N , K (xt) S L (). If ye C(xt) for all
teR
te Rf, then there exists a net_,(ti) converging to +e such that

y e C+(xti) for each £y For each i, y = (xti)tj for some
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t, > 0. Thus, y = xt] where t! =+t, + t,. Since (t!) converges
j = i i i j i

+
to 4o and (xti) converges to y, y € L (x). Thus,

+ +
n 4 K (xt) o L (x). Therefore, N + K+(xt) = L+(x).
teR teR

Now let y e N + K+(xt). Then, y ¢ K+(xt) for all ¢t ¢ R+.
' + +EeR + + +
Since K (xt) = C (xt) U L (xt), them y e C (xt) or y e L (xt). If

y € C+(xt), then y € C(xt) for all t ¢ R+. Since C(x) =.C(xt) for
all teR, yeC(xt) for all teR. If ye L+(xt) for every
t e R+, "then -y ¢ L+(xt) for all t ¢ R, see Proposition 2.26. Thus,

vy e K+(xt) for all te R and N + K+(xt) c N K+(xt). Clearly,
+ + teR + teR +

n Kt)e N + K (xt). Thus, N K (xt) N + K (xt). This

teR teR teR teR

completes the proof.

+ .
Proposition 2.28: For x in X, K (x) is a closed positive invariant

+ -
set, and L (x) i1s closed and invariant.

+ + + +
Proof: Since K (x) = C (x), K (x) 1is closed. Since C (x) 1is

positive invariant, Proposition 2.12 implies that C+(x) is positive
invariant. Thus, K+(x) is' closed and positive invariant.
+ , ¥ +

That - L (x) 1is closed follows from L (x) =.n + K (xt) and each
+ + teR
K (xt) being closed. To show that L (x). is invariant, let
Z € C(L+(x)). Thus,- z = yt where y ¢ L+(x) and t € R. Since
y € L+(x),, there exists a net (ti) converging to += such that ,
(xti) converges to y. Thus, (x(ti + t)) = ((xti)t) converges to
yt. Since (ti) converges to +», (ti + t) converges to +», . Thus,

yt € L+(x). Therefore; C(L+(xj) c L+(x), and Proposition 2.8 implies

that L+(x)’ is -invariant. This completes the proof. .
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Prolongation

Definition 2.29: For each x ¢ X, the positive (negative)

prolongation of x, D+(x) (D (x)), is given by

> 0}

D+(x) 1=

{y ¢ X:- (xiti)~+ y for some net (xi) + x and numbers t

(D (%) {y~e‘X:‘ (xiti) -+ y for some net (xi) -+ x and numbers ti <oh.

The prolongation of x 1is D(x) = D+(x) U D—(x).

Definition 2.30: For each x € X, the positive (negative)

prolongational limit set of  x, J+(x). (Ji‘x)), is given by

[

J+(x) {y ¢ X: (xiti) -+ y for some nets (xi) »> x and (ti) > +w}

{y € X: (xiti> > y for some nets (xi) + x and (ti) > =x}).,

(I (x)

The prolongational limit set of x 1is J(x)’=.J+(x).U J-(x).

Example 2.4: Consider the flow defined in Example 2.1. Let P and S

be as in that example. Then,
.\ ‘
J(P) = {(0 ,Y) Yy e R}’

+ {(x',0): 0<x'<x}U{O,y)ryeR} 1if x>0
D (P) =
{(x",00: x<x"<0}U{,y): yeR} if x <0,

3T s)

g,

and .

pT(s) = ctesy.
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Propositions 2.31 through 2.37 describe some of the properties of
+
D (x)  and J+(x) - as well as showing the relationships between C+(x),

K, @, pt&), and JT(x).

Proposition 2.31: For x,y in X, y e D+(x), if and only 1if

xeD (y).

Proof: Let vy ¢ D+(x). Then, there exists a net (xi) converging
to x  and numbers ty > 0 such that (xiti) converges to y. Thus,
—ti <0 and ((xiti)(—ti)) = (xi) converges to x. Thus, x e D (y).
Similarly, if x e D (y), then y ¢ Df(x). Thus, -the proof. is

complete.

Proposition 2.32: For x,y in X, y e J+(x) if and only if.

X € J-(y).

Proof: Let vy ¢ Jf(x). Then, there exist nets (x and (ti)

1)
such that (xi) converges to x, (ti) converges to +*, and (xiti)
converges to y. Thus, (-ti) converges to -», Consider

((xiti)(_ti))' This net converges to x which implies that .x e J (y).

v _ +
A similar argument shows that if x e J (y), then y e J (x). This.

completes the proof.

Proposition 2.33: For M a subset of X, K+(M) C:D+(M) and

ttan e Ty ® ) e D(M and L (M <J M)."

Proof: Let x € K+(M). Then, x ¢ K+(m) =,C+(m) U L+(m) for some
me M If xe¢ C+(m), then x = mt for some t > 0. Define the nets
(mi) and . (ti) by m o=m and ti'= t for each i. ' Thus, (mi)

converges to m and (miti) converges to mt ='xX. This implies that
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X € D+(n0 - D+(M), If x¢ L+(m),‘ then there exists a net- (ti)
converging to. +» such that (mti) converges to x. Since (ti)
converges to +», there exists-an integer n such that fer all i > n,
ty > 0. Define the net ’(mi) by m =m for each i. Thus, for all
i>n, (miti) converges to x. This implies that

X € D+(m) C.D+(M). Hence, K+(M) c D+(M).'

If ye L+(M),‘ then there exists a net  (t,) converging to +e

i
such that (xti) converges to y for some x.¢ M. Define the net-

(xi) by x, ='x for each i. Thus, '(xi) converges to x, (t

i i)

+
converges to +, and (xiti) converges to y. Thus, y ¢ J (M) and

L+(M) c J+(M). This completes the proof.
. + + + - - -
Proposition 2.34: D (x) =C (x) UJ (x), (@ (x) =C (x) UJ (x)).

Proof: If y ¢ D+(x), then there exists a net (xi) converging
to x and numbers ts > 0 such that (xiti) converges to y. If
y € C+(x), then D+(xj c C+(x) U J+(x). If y ¢ C+(x), then there
does not exist a t > 0 such that y = xt. If the numbers ti >0 do

' for some t' > 0.

not converge to +x; then y can be written as xt
This contradiction shows that the numbers ti do converge to +w.
Thus, (xi) converges to x, (ti) converges to +=, and (xiti)
converges to y. This implies that y ¢ J+(x). Hence,
vyectx) U I and DT @ U I ).

Now let y € C+(x) U J+(x)¢ If y e C+(x), then y = xt for
some t >'0. Define the net (xi) by X, =X for each i. For each
i, let ti = t. Hence, ts >0 for each i. Thus, (xiti) = (xt)

+ +
converges to . xt =y and y e D (x). If ye J (x), then there exist
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nets (xi) and (ti) such that (xi) converges to X, (ti)

converges to +e, and (xiti) converges to y. Since (ti) converges
to -+, there exists an integer n such that fer gll 1 > n, ti > 0.
Thus, . y € D+(x) and J+(xj c D+(x). Therefore,

C+(x) U J+(x)<: D+(x), “and the proof is complete.

Proposition 2.35: For each x in X, D+(x) =f7{UR+: Ue N(x)I,

where N(x) is the neighborhood system of x.

———

Proof: To show that D+(x) c nUR+, let vy ¢ D+(x). Then, there

exists a net (x,) converging to x and numbers ty > 0 such that

i

(xiti) converges to. y. Let U be any neighborhood of x. Since
(xi) converges to x, there exists an integer n such that for all

i>mnm, X, € U. Thus, for 1°'> n, xiti € Uti c UR+. Therefore,

(xiti) c UR*'C UR+ for all" i > n. Since. (xiti) converges to ¥y

and UR% is closed, y ¢ UR+. Since U was arbitrary, y € ﬂUR+ and,

+
thus , D+(xﬂ) CNUR .

To show that ﬂURf<: D+(x), let y e ﬂURf. Order .the collection

N(x) x N(y) by set inclusion. Hence, (Ui’vi) > (U ) if and only

v,
3’3

if Ui < Uj and Vi c Vj’ where Ui’Uj e N(x) ' and Vi,Vj‘e N(y).

Thus, N(x) x N(y) 1is a directed set. Let A denote the ordered
collection N(x) x N(y). - For each (U,V) in A, 'y e,UR+ implies
that . V contains a point of UR+. Thus, for each (U,V) € A choose

u €U and t_ >0 such that u t e V. It is now claimed that (u )
v . v—- vV v
is a net that converges to x. Let U' be any neighborhood of  x and
V' a neighborhooed of y. Then, for all (U,V) > (U',V'), u, € ue u'.

Thus,. (uv) is eventually in U'. This implies that (uv) converges

to x. Similarly, the net- (uvtv) converges to y. Therefore,



24

+
y € D (x) and ﬂIHJ-C D+(x). Thus, the desired equality has been

shown.

Proposition 2.36: For each x in X, J+(x) = N + D+(xt).
teR

+
Proof: TLet 'y € J (x). Thus, there exist nets (x ) converging

i

to x and (t,) converging to +» such that (xiti) converges. to

i
y. Let t e R+. - Since (ti) converges to +x, there exists an
integer n such that for all i > n, ti > t. Thus,
sy ='ti - t>0 for all i >n. Also, for 1 >'n, the net (si)

converges to +=, The net (xit) converges to xt and the net
(xit(si)) = (xiti) converges to y. Thus, y ¢ Df(xt). Since this is

true for all t E.R+, ye N + D+(xt).
+ teR +
Now let ye N + D (xt). Suppose that there exists a t e R
teR
such that for some net (wi), the net (witi) converges to y, where

the net (w,) converges to xt and the net (ti) converges to +=.

i
Then the net (wi(-t)) converges to xt(-t) = x. Thus,

(wi(—t)(ti + t)) = (witi) converges to y. Since (ti + t) converges
to 4=, y is'in J+(x). Suppose such a t does not exist. Since.

y € D+(xt) for all t e R+, there exists a net (w,) converging to

i

xt’' and numbers ti_z_O, (ti) not converging to +w, such that

(witi) converges to y. Hence, there exists a subnet (ti j) of (ti)
3

such that (t, .) converges to m_ < +~. Thus, (w, ,) converges to

i,] t i,j

xt and (w ) converges to y. But, W ) - cenverges to

t PR PR
i,j 1,3 i,j1,]
(xt)tﬁt = x(t +_mt). Thus, y = x(t + mt). Define the set (xt) by

xt‘= x for each  t. Thus, (xt) converges to 'x. Also, (t + mt)

converges to +».. Thus, the net (xt(t>+ mt)) converges to y. This

implies tﬁat v e J+(x). This completes thé proof of the proposition.



25

Proposition 2.37: TFor x in X, D+(x) is closed and positive

. . + , , .
invariant, and J (x). is closed and invariant.

Proof:. Since D+(x) = OUR+, and each UR+' is closed, D+(x) is
closed. To show that D+(x) is positive invariant, let y € C+(D+(x)).
Then, y = zt where 2z is in D+(x) and t e R+. Thus, there exists
a net (xi) converging to x and numbers t; > 0 such that (xipi)
converges to z. Hence, (xi(ti + t)) = ((xiti)t) converges to
zt = y. Since (ti +t) >0 for all i, y ¢ D+(x). This implies
C+(D+(x)) c D+(x). Thus, by Proposition 2.8, D+(x) is positive
Invariant.

Since J+(x) = ﬂD+(xt) and each D+(xt) is closed, J+(x) is
closed. To show J+(x) is invariant, let y € C(J+(x)). This implies
that y = zt where =z e‘J+(x) and t ¢ R. Thus, there exists a net
(xi) converging to x, and a net (ti) converging to += such that
(xiti) converges to z. Since (ti) converges to += there exists
an integer n such that for each j > n, (tj + t) > 0. Also,

(xi(tj + t)) =_((xi§i)t) converges to. zt =y, Since (tj'+ t)
converges to +», y € J+(x). Thus, C(J+(x)) C1J+(x).
Proposition 2.8 implies that J+(x) is invariant. This completes the

proof.

Definitien 2.38: A subset M of X is positive (ﬁegative) k—-invariant
if ‘and only if K+(M) =M (K_(M) = M). The set M is k-invariant if
and only if K(M) = M,

If Mc X, then M is positive (negative) d-invariant if and only
if D+(M) =M (D-(M) = M). The set M is d-invariant if and only if

D(M) = M.
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Example 2.5: In the flow (Rz,n) defined by the system of differential

equations

XxX=y
Y S SANEE B
y =-sin 7 2 y X,
X'+y

(see Figure.4), each Y, is given by

s, n.= 1;2,3, ...} .

B

2 2
Yn={(x,y)= X +y =

Let Gn be the disk bounded by Yo* Each G; is invariant but not.
positive k~invariant. Each Gn is invariant and k-invariant, but not
positive d-invariant. That- Gn is not positive d-invariant follows

+
from J.(x) € Y- for any x E‘nlc Gn' However, the closure of the

1

complement of G is invariant, k-invariant and positive d-invariant.

1
Example 2.6: In Example 2.2 each disk is invariant, k-invariant, and

d-invariant.

Example 2.7: In the dynamical system (Rz,ﬂ) defined by the system of

differential equations

r(l - r)

2}
]

De
]
[

0 is the only critical point, and the unit circle vy 1is a periodic
trajectory . (see Figure 5).
The unit disk M 1is invariant, k-invariant, and positive

d-invariant. For any x in M, M-~ {x} 4is not positive invariant.
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Figure 4. The Phase Space of Example 2.5.

Figure 5. The Phase Space of
Example 2.7.
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Example 2.8: For the flow (Rz,ﬁ) defined by the system of

differential equations

2.2

X, if xy >1 - and y >0
x =9 2y - x, if xy* <1 and y > 0
-X, if y <0
. =Y it y>0
0, if y<o0

(see Figure 6), the set of critical points is

{(x,y): x=0, ye Rﬁ}.

For xzyz <1l . and y > 0, all sets M, as indicated in Figure 6, are

invariant, k-invariant, but not positive d-invariant.

Proposition 2.39: If M is closed and positive (bilaterally)

invariant, then M 41s positive (bilaterally) k-invariant.

Proof:. Since M is closed and positive invariant,

Kf(M) = C+(M) =M=M This implies that M dis positive k-invariant,

and the proof is complete.

Proposition 2.40: Positive (bilateral) d-invariance implies positive

(bilateral) k-invariance which implies positive (bilateral) invariance.

+
Proof: If M 1is positive d-invariant, then D (M) = M.
Proposition 2.33 implies that K+(M)<: M. Since M c:Kf(M), K+(M) = M.

Thus, M is positive k-~invariant. For M positive k-invariant,
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AN q\

Figure 6. The Phase Space of Example 2.8.

KT =M. since cTa e K@) =M and Me ctoy, cT0H =M. This

implies that M 4is positive invariant, and the proof is complete.

Proposition 2.41: 1If '(Mi) is a family of positive k-invariant sets

(negétive k-invariant sets), then | Mi and N M, are also positive
- i

k-invariant (negative k-invariant). A similar statement holds if the

i

M, are positivé d-invariant or negative d-invariant.

i
Proof: To show that Mi is positive k-invariant, it suffices
to show K+( U M.) cUM;. Let x¢ K+( U Mi)' Then,
i i ' i .

X € C ( U M, ) U L ( U M ), see Proposition 2.24. Since each Mi is
positive k—invariant, Proposition 2.40 implies that each Mi is

positive invariant. Proposition 2.11 implies that- U Mi is positive
1
invariant. Hence, C ( U M ) UM T Thus, if x € C+( U Mi)’ then
: i i
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x ¢ U M,. This implies that C+( UMYeUM. If xc¢ L+(LIM.), then
;1 1 i 1 i i

there exists a netv_(ti) converging to +~ such that (mti) converges
+
to x for some me U Mi' Thus, x € L+(m) is contained in L (Mi)
1 + + +
for some Mi' This implies that x ¢ K (Mi) as L (Mi) c K (Mi);

Since 'Mi is positive k-invariant, K+(Mi) = M Thus,

i.
X € M& c U Mi' Therefore, L+( U Mi) cu Mi' Therefore, -
i i i
K+( UM,) cuU M,, and U M, is positive k-invariant.
i i7 1 i ; L ;

Now let x.¢ K+( N M) =‘c+( nuMyu L+( NM) If xe c+( nwu,),
g 1 i i 1 i i i
then x e N Mi as Proposition 2.1 implies that the intersection of
i
positive invariant sets 1s positive invariant. If =x € L+( gl Mi)’ " then

i
(mti) converges to x for some m e N Mi and some net (ti)
i.
converging to +~.  Thus, X € L+(m) c:L+(Mi) for all Mi.'_Since
+ + +
L (Mi) cKk (Mi)’ x e K (Mi) = Mi for all Mi' Thus, X € 2 Mi and

K+( N Mi) cn M,. Therefore, - n M, is positive k-invariant.
i i i

If (Mi) is a family of positive d-invariant sets, then the proof
that U Mi and N Mi are positive d-invariant follows as above by
i , 1
noting that D+(Mi) ='C+(Mi) U J+(Mi) and each Mi is positive

invariant. This completes the proof.

Proposition 2.42: A set M is positive d-invariant if and only if

X - M is negative d-invariant.

Proof: Assume that M is positive d-invariant and let y e M
and x € X- M, Then x ¢ M= D+(M) implies that x,¢ D+(y) for all
y € M. Proposition 2.3l implies that for each y e M; y i‘D_(x).
Therefore, for each ye M, y ¢ D (X - M). This implies that

D (X-M cX~M . Hence, X - M is negative d-invariant.
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Now assume that X - M is negative d-invariant. . Let y € M and
X € X - M. Hence, ¥y ¢,X -M=D (X - M. Since y ¢ D (x),
Proposition 2,31 implies that x ¢ Df(y). This implies that for each
xeX-M  x ¢ D+(M). Therefore, D+(M)<: M, and M is positive

d-invariant. This completes the proof..

Proposition 2.43: A set M is positive (negative) d-invariant if and
only if Jf(M) cM (J(M)c M), and M is positive (negative)

invariant.

Proof: First, assume that ﬁ is positive d-invariant.
Proposition 2,40 implies that M is positive invariant..
Proposition 2.34 implies that - D+(M) = C+(M) U J+(M). Thus, -
sfop ep = M

Conversely, let M be positive invariant and J+(M) C M. Since
M is positive invariant, C+(M) = M, Thus, J+(M) c C+(M).
Proposition 2.34 implies that D+(M) = C+(M) U J+(M). Thus,
D+(M) = C+(M) =M, and M is positive d-invariant. This completes

the proof.

Proposition 2.44: If M 1s positive (bilaterally) invariant, then M

is positive (bilaterally) k-invariant,

Proof: Since M is pesitive invariant,_'ﬁ‘ is pésitive invariant.

Thus, M= C+(-ﬁ). This implies that M = ﬁ = C+(ﬁ) = K+(ﬁ). Thus, M

is positive k-invariant, and the proof is complete.

In light of the above proposition, it would be natural to ask if- M
is pesitive d-invariant whenever M 1is positive k—invariant. This is

not true in general as the following example shows.
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Example 2.9: In Example 2.5, see Figure 4, let M be the disk G2.
+ —
Since J (M) = Yy D+(M) # M. Hence, M is not.positive d-invariant,

but M 1is positive k-invariant.
Attraction

Definition 2.45: Let M be a subset of X and x an element of - X.

The point x 1s positively weakly attracted to M i1f and enly if the

net. (xt), t-e R*, is frequently in everylneighborhood:of M.

The point x 1s positively attracted to M if and only if the
net (xt), t e Rf, is ultimately in every neighborhood of M.

The point =x 1is positively strongly attracted to M if and only

if for any neighborhood U of M there exists a neighborhood V of
x such that Vt, ¢t e R+ is ultimately in U.

The negative versions are formed by requiring t to be in R .-
The bilateral cases are .defined by taking the conjunction of the
positive and negative cases.

Positive weak attraction will be denoted by weak attraction.
Similarly for attraction and streong attraction. Negative and bilateral

will never be .omitted. .

Definition 2.46: Let Mc& X. Then,

Az(M) = {x: x 1s weakly attracted to M},

A+(M) = {x: x - is attracted to M},

and

A:(M) = {x: x 1s strongly attracted to M}.'



33

« + +
The sets Az(M), A (M), and AS(M) are called the region of weak

attraction, the region of attraction, and the region of strong

attraction, respectively.
Regions of negative attraction are defined -similarly. The
bilateral versions are the intersection of the regions of positive and

negative attraction.

Definition 2.47: A subset M of X .is a weak attractor if and only if

A;(M) is a neighborhood of M. Similarly, M is an attractor if and

only if ,A+(M) is a neighborhood of M, and a strong attractor if and

only if A:(M) is a neighborhood of M. Negative and bilateral

versions ‘are defined similarly.

Proposition 2.48: If x is strongly attracted to M,. then x is
attracted to M, If  x 1s attracted to M, then x is weakly

attracted to M.

Proof: Let M<: X and let x be strongly attracted to M, Then,
for any neighborhood. U of M there exists a neighborhood Vx of x°
and a t, < 0 such that th<: U for all t > t Thus, for all
t > tx, xt ¢ U, This implies that the net. (xt) is ultimately in.any
neighborhood of M, This implies x i1s attracted to M.

If  (xt) is ultimately in every neighborhood of M, then (xt)
is frequently in that same neighborheod and, thus, x is weakly

attracted to . M. This completes the proof. .

Proposition 2.49: Let M < X. Then- A:(M) c A+(M) c Az(M).
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+
"Proof: Let x ¢ AS(M). Then x 1is strongly attracted to M. By
Proposition 2.48, x 1s attracted to M and, hence, x ¢ A+(M).
Since any x. that is attracted to M is weakly attracted to M,

+
A (M e Ag(M); This completes the proof.

Proposition 2.50: Let Mc X. A point x 1is weakly attracted to M
if and only if either the met (xt) is frequently in M or:

O TN

Proof: Assume that x is weakly attracted to M. This implies
that the net (xt) 1is frequently. in every neighborhood of M. Now
suppose that the net (xt) is not frequently in M. Thus, (xt) is

ultimately in X - M. Thils implies that there exists a t such ‘that

k

xt € X- M for all t > t . Suppose L+(x) N M=@. Since

k
L+(x) = L+(xtk), ‘L+(x¢k) X -M Also, C+(xtk) < X - M. Thus,
+ +, + , + ,
K (xtk) =L (xtk) Uc (xtk) is a subset of X - M. Since K (th) is
closed, X - K+(xtk) is a neighborhood of M and the net (xt),

: +
t>t is not frequently in X - K (xtk). This contradicts x being

K’
weakly attracted to M. Thus, L+(x) NM#G6.

Conversely, let the met (xt) be frequently in M or
L+(x) N M+ @, If (xt) is frequently in M, then (xt) is-
frequently in every neighborhood of M and is thus weakly attracted to
M. If L+(x)»ﬁ M# @, then let y ¢ Lf(#) N M. This implies that there
exlsts a net,,(ti) converging to +» such that (Xti) converges to
y. Since y e M, the net. (xti) is ultimately and, therefore,

frequently in every neighborhood of M. Therefore, x 1s weakly

attracted to M., This completes the proof.
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The following three examples illustrate the reglons of attraction
that have been presented. They will also be used to illustrate the-
conditions of Theorem 3.18. Theorem 3.18 characterizes stability in

terms of .the regions of attraction.

Example 2.10: In Example 2.1, let M = {(0,0)}. Then,
A;:(M) =AM = {(x,9): vy =0} and A:(M) = ¢.
If M= {(x,9): y =0}, then A:;(M) = ¢, If

M={(x,y): x=0, y> 0}, then
£on = a7 = 700 = (ey: y > ol

Example 2.11: Let M be any disk in Example 2.2. Then,

+, -
ALQD = A_Q) =M

Example 2.12: As in Example 2.7, let M be the unit disk. Then,

A(M°) = ° and A:(M°) = X.

The concepts of this chapter, in particular the concepts of
invariance and prolongation, will be used in Chapter III to
investigate Liapunov stability, *-stability, and relative stability.
For further results related to the topics presented in this chapter,
as well as additional topics in the basic theory of dynamical systems,

the reader is referred to [12], [13], [14], and [19].



CHAPTER ITIL
LIAPUNOV STABILITY

In contrast -to the analytical development .of stability as given by
Liapunov, in this chapter stability will be examined from a topological
viewpoint. After giving a number of basic results, several important
characterizations of stability will be proven, including Ura's
characterization of stability of compact sets using prolongations. The
chapter concludes by examining Zubov's stability criterion and some.

results on relative stability.
Stability

Definition 3.1: A set MC X is positively (negatively) stgble if and
only if every neighborhood of = M contains a positive (negative)

invariént neighborhood of M. A set M« X is bilaterally stable if.

and only if every neighborhood of M contains an invariant neighborhood

of M. .

The usual convention of denoting 'positive stability" by
"stability" will be used throughout the remainder of the dissertation.
Negative and bilateral will never be omitted when referring to these.

types of stability.

Definition 3.2: A set M& X is positively (negatively) k-stable if

and only if every neighborhood ef M contains a positive (negative)

W
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k~-invariant neighborhood of - M. A set.. M is bilaterally k-stable ‘if

and only if every mneighborhood of . M contains a k-invariant
neighborhood of M.

Positive (negative) and bilateral d-stability of M are defined

similarly by requiring each neighborhoed of M to contailn a positive
(negative) d-invariant neighborhood of M or-a d-invariant
neighborhood of M, respectively.

Positive k-stability and positive d-stability are denoted by
k-stability and d-stability. The adjectives negative and bilateral

will never be suppressed.

Proposition 3.3: If M is an open, positive (bilaterally) invariant

set, then M is (bilaterallyj stable,

Proof: Let U be any neighborhood of M. Since M is open, M
is-a neighborhood of itself. Thus, U contains -a positive invariant
neighborhood of M. This implies that M 1is stable, and the proof is

complete.

Proposition 3.3 remains true if M 1s an open, positive
(bilaterally) k-invariant (d~invariant) set. The proof of this

statement 1s analogous to the proof of Proposition 3.3.

Example 3.1l: In Example 2.1, the set {0} 4is invariant, but not

stable. ' Thus, invariance does not imply stability.

Example 3.2: In Example 2.2, see Figure 2, each disk is positive
d-stable and, hence, is 'stable. In fact, each disk is bilaterally-

stable.
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Example 3.3: Example 2.5 shows that positive invariance does not imply
stability. Consider the disk bounded by Yl" This disk is positive
invariant, but not stable.

The set {0} 1is stable and positive k-stable, but not positive

d-stable since the trajectories spiral outward.

Example 3.4: In Example 2.7, the unit disk is stable. The set {0}
is negatively stable. The open unit disk is stable as it is open and
positive invariant, see Proposition 3.3. The open unit disk is not-
positive k—staﬁle as it is '‘a neighborhood of itself and does not

contain a positive k-invariant neighborhood of itself.

Example 3.5: The set {(x,y): x=0, ye R }, in Example 2.8, is
stable as it is the union of the stable sets {(0,y): y ¢ R }, see

Proposition 3.4.

Proposition 3.4: The union of stable (k-stable, d-stable) sets is

stable - (k-stable, d-stable).

Proof: Let Ml and M2 be stable sets and U - an arbitrary

neighborhood of Ml U M2. The stability of M implies that there

1

exists a positive invariant neighborhood V of M.

1 such that Vc U.

Similarly, there exists a positive ‘invariant neighborhood W of- M2
such that W& U. Thus, ‘Ml U M2 c VU We U, and, by Proposition 2.11,

VU W is positive invariant. Thus,” M, U M, is stable. Thus, for

1 2
i = 1,2, the union of the members of the family 8 = {Mi: M, is stable}
k
is stable. Proceeding by induction, assume. that U Mi is stable,
k+1 - 1=1
where each Mi‘ is stable. Consider U Mi’ where each Mi is
k+1 k i=1

stable.  Clearly, U Mi = (U Mi) U Mi+
i=1 i=1

1 By the induction ,
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k .
hypothesis = |J Mi is' stable, and by the first part of the proof,
k i=1 k+1 '
(u Mi) u Mk+l is stable. Thus, U Mi is stable. Therefore,
i=1 ' i=1 :
the arbitrary union of stable sets is stable. This completes the

proof.

The intersection of positive invariant sets was shown to be
positive invariant in Pfoposition 2.11, This property does not apply

to stable sets as the following example shows.

Example 3.6: Consider the flow (Rz,w) defined by the system of

differential equatiohs

x =1
y =0
(see Figure 7).
v

,¥ ~
N \.
”~ ~>
> = > X
>— >
> >

Figure 7. The Phase Space of Example 3.6.
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Let M, = {(x,y):x<1, y=0ty {(x,y): x>1, y # 0} and
let M, = {x, ) x<2, y=0}y {(x,y): x>2, y#0} Thus,
Mi’ i=1,2, 1is the union of the x-axis with the half-plane =x > i
miﬁus all points on the x-axis of the form (x,0), see Figure 8. That

M1 and M2 ‘are stable sets follows from the definition of stability.

The intersection of _Ml and M2 is

{((x,y)rx<1l, y=0ry {(x,y):x>2, y#0}

To show that Ml.ﬂ M2 is not .stable, let

U= oy 2) UGy ix > L

Thus, . U 1is a neighborhood of M, N M

1 2°

. +
x<1l, y=0, C (x,y) #:U and,vhence, U cannot contain a pesitive

For -any point (x,y), where

invariant neighborhood of Ml n This implies that Ml N M, Iis

2" 2

not ‘stable.
By considering the definition of Mi’ for 1i=1,2,3, «¢c., a
countable collection of stable sets can be constructed such that their

intersection is not stable.

Proposition 3.5: If M is stable (k-stable, d-stable), then "M is

positive invariant (positive k-invariant, positive d-invariant). .

Proof: Let M be stable and suppose that - M is not positive
invariant. . Then, there exists x € C+(M) - M., Since x € C+(M),
Xx =mt where me M and t € R+. Since x é M and X is Hausdorff,

there'exists,a-neighborhood U of M such that x é U. But M stable



41

}
-
-
L 3
-
e
ﬁ.
L
-
L 3

I S W U T 1 x
LIMNR AR ZNNN Zme man

- Figure 8. The Set Mi of
Example 3.6.

implies there is a positive invariant neighborhood V of M contained
in U. Thus, x ¢ Ve U. This contradicts x ¢ U. Hence, M is

positive invariant, and the proof is complete.

The negative and bilateral versions of Proposition 3.5 are also

true.

Theorem 3.6: If X is regulaf, M closed and stable, then M 1is

positive d-invariant.

Proof: Suppose that M is not positive d-invariant. Then, there
exists x ¢ D+(M) - M. Since X  is regular and M is closed, there
exist disjoint neighborhoods U and V of M and ' X, respectively.
But U 1is a neighborhood of M, and M stable implies that there

exists a positive invariant neighborhood W of M such that W c U.
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+
Since x.e D (M), there exists me M such that x ¢ D+(m). Thus,

there is a net (m,) converging to m and numbers ti > 0 such that

i
(miti) converges to X. Hence, there exists an integer n such that
for all i > n, m, € U. Thus, miti e U for all i > n. But this

implies that (miti) does not converge to =x.., This contradiction

implies that ' M is positive d-invariant. This completes the proof.

Propesition 3.7: If M is d-stable, then M is k-stable. If M is

k~stable, then M is stable.

Proof: Let M be d-stable and U an arbitrary neighborhood of
M.. Then, there exists a positive d-invariant neighborhood V' of M
such that VC U. Since V is positive d-invariant, Proposition 2.40
implies that - V 1s positive k—invafiant. Thus, for any neighborhood .
U of M there exists a positive k~invariant neighborhood of M that-
is contained in U. Thus, M iSIK—stable.

Let M be k-stable and U an arbitrary neighborhood of M. Then,
there exists a positive k-invariant neighborhood V of M such that
V « U, The positive k~invariance of V implies, see Proposition -2.40,
that V . 1Is positive invariant. Hence, M 1is stable, and the proof

is comple.te .

Theorem 3.8: If X 4dis regular and M dis cleosed with compact
boundary, then M (negative) stable implies that M dis (negative)

k-stable.

Proof: Let U be a neighborhood.of M.  Since X dis regular, .
there exists a neighborhood. V of M such that_ V CU. Since M 1is-

stable, there exists a positive invariant neighborhood W of M. such.
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that We V. Thus, WC Vc U, Proposition 2.44 implies that W 1is
positive k-invariant. ' Thus, for any neighborhood U of- M there
exists a positive k-invariant neighborhood . W of M such that wCu.

Therefore, M . 1s k-stable, and the proof is complete.

Proposition 3.9: In a regular space X, i1f M is bilaterally stable

and compact, then M i1s bilaterally k-stable.

Proof: Since M 1is bilaterally stable and compact, M 1is
positive k-stable, see Theorem 3.8. By the same theorem, M is
negative k-stable and, hence, M 1s bilaterally k-stable. This

completes the proof.

Proposition 3.10: Let X be a regular space and M a closed and
bilaterally stable set. Then, X - M 1is positive and negative

d-invariant.

Proof:. Theorem 3.6 implies that M 1is pesitive and negative
d-invariant. By Preposition 2.42, X - M is then positive and

negative d-invariant. This cempletes the proof.

Theorem 3.11: If M is bilaterally stable, then K(x) N M =0 for
all x ¢ M. Thus, if X 1s regular and M i1s closed with .compact
boundary, then every neighborhood U of M contains some X‘¢ M with

RK(x)c U-M if M dis not open.

Proof: Suppose that K(x)N M # ¢ for some x é M. Then, there
exists a. y such that y € K(x) ~and y & M. By Proposition 2,24,
K(x) = C(x) U L(x). Since M is bilaterally stable, M is invariant.

Thus, X - M 1s invariant and this implies that  y é,C(x), Thus,
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Theorem 3,13.. If M dis compact and stable, then for all x & M,

D+(x) is a compact and connected subset of M. Thus, D+(M) =M,

Proof: To show that ‘D+(x)m: M, suppose that there exists
y e D+(x) - M. Then, there exists a net- (xi) converging to x and-
numbers ts >.0 such that (xi;i) converges to ¥y i M, Since M 1is
compact, there exist disjoint neighborhoeds U and W of M and vy,
respectively. Since M is stable, there exists a positive invariant
neighborhood V of M  such that Vc U. Since (xi) converges to
x € M, there exists an integer n such that for i > n, (xiti)<: V.
But, (xiti) converging to y dimplies that (xiti) is ultimately in
W. This contradiction shows that y e M.. Thus,. D+(x) - is ‘a closed
subset of M  and, hence, is compact.

Suppose that D+(x) is not connected. Then, there exists disjoint
compact sets- A and B such that AU B = D+(x). Let x e A and
y € B. Since AN B =.¢, there exist disjoint neighborhoods U and
V of A and B, respectively. Since. y e D+(x), there exists a net

(xi) converging te x and numbers ¢t

{20 such that (xt.)

converges to y. Thus, there exists an integer n - such that for all
i>n, x;, eU and x;t, eV, For each i>n, C+(xi)_n 3U # @. TFor
suppose that C+(xi) N 3U = @. Since (xi)_ converges to x ¢ ACU, -
C+(xi) NU+#@. For i> n, Cf(xi) NV+# @ and this implies that
C+(xi) N (X -1U) # . Thus, C+(xi) meets U and X - U but

C+(xi) N 3U = @. This contradicts C+(xi)b being a connected set.
Thus, C+(xi) N3V #@ for i>n., This implies that for each i > n

there exists a number s, > 0 such that  x,s, € 3U. Thus, there

i i1

exists a net (xisi) < 3U. Also, (xisi) CM, as M is stable and,
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therefore, positive invariant. - Thus, there exists a subnet (

¥ k%1 ,»k)

of (xisi) such that (x ) converges to a point z in M. But,

1,k%1,k
89U  closed.implies that 2z ¢ 3U. Thus, z € 3U and 2z ¢ D+(x)

implies that D+(x) N 3U # 0. Thus, z e AU B and z e oU. If

ze AN BU,T then, since U 1is a neighborhood of - A, there exists an
open set- § in U such that AS 8. Thus, no element of A  is an-
element of dU. Also, if 2z € BN 23U, then since V is a neighborhood
of B, there exists an open set T in - V such that B & T. Thus, no
element of B 1is an element of * 3V, But, V disjoint from U and

z € V implies that no element of B dis an element of 293U. These-
results contradict D+(x) N 3U # #. Thus, D+(x) is connected.

+
Since M is always contained ih D (M), and it has been proven

that D+(M)<: M, D+(M) = M, and the proof is complete.
Characterizations of Stability

In this section several important characterizations of stability
will be established. These results not.-only give a greater insight into
the meaning of stability, but serve as useful tools for proving further
results.. In the first characterization, the phase space is a locally
compact metric space. The remaining results are proven in more general
spaces. In Theorem 3.18, stability is characterized in terms of the
regions of streng attraction. Theorem 3.19 gives a characterization in

terms of nets.

Theorem 3.14: Let- M be a clesed subset of a locally compact metric
phase space X.. Then, M 1s stable if and only if D+(M) =M and.
every x € oM has a neighborhood U . such that »C+(U) - M has compact

closure.
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Proof: It will be assumed that the phase space X is o-compact.
This is possible since [13, XI, 7.3] implies that X  is the direct sum
of .c-compact spaces Xi which are locally compact and metric. Thus,
there exists a sequence of compact subsets Qm such that X = UQm. It -
is now possible to show that if P 1is a subset of X that does not
have compact closure, then there exists a sequence- (pn) in P such
that for each . m and sufficiently large n, 12 é Qm. For suppose
that no such sequence exists. Then, for all sequences (pn) in P
there exists an m such that P, € Qm for all n. Since P  1is the
union of all sequerices in P, we have P ¢ Qm. Thus, since- Qm is
compact and, therefore, closed, P Qm. This implies that P is
compact. This contradiction proves that such a sequence (pn) does
exist.

Assume that M is stable. Theorem 3.6 implies that D+(M)'= M.
Now assume that for some x ¢ 3M and every neighborhood U of x,
C+(U) -~ M does not have compact closure. Order the neighborhoods Un
of x by set inclusion where Un is a neighborhood of radius %-.
Using the result above, if m = n, then for each C+(Un) - M an
element %, can be selected such that X, ¢ Qn. For each k,
x =xt. where x € Un- and t > 0. Since the neighborhoods Un
of x are ordered by set inclusion, a sequence (xn) has been
constructed such that . (xn) converges to x. For each n, xntn'¢ Qn

and x_.t -¢ M, that is x_t é MU Q.. Therefore, the set
n n nn n

F={xt: n=1,2,3, ...} is closed and FN M

ntn @. Thus,

G

X - F 1is an open neighborhood of M. Since M 1is stable, there
exists a positive invariant neilghborhood V of M such that V C G,

Since V is a neighborhood of M and x¢e¢ M, x € V°, Since (xn)
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converges to Xy (xn) is ultimately in V. Thus,  there exists an
integer k such that Xt E'th' for all n > k. Since V is
positive invariant, Vtﬁc V. Hence, V& G and xntn € F imply that
xntn_e U,  Since G is disjoint from F, 'this gives the needed
contradiction and, hence, the result.

To show sufficiency, let M be closed and let D+(M) = M.
Further, assume that for every x € 9M there exists a neighborhood U
of x such that C+(U) - M has compact closure. Suppose that M 1is
not stable. This implies that there exists a neighborhood G of M
such that G contains no positive invariant neighborhoods of M. Thus,
for all neighborhoods U of x, there exists a point x in M. with
C+(U) ¢ G. For suppose not. Then for all xe€ M there exists a
neighborhood U of x such that C+(UX) CG. Let U= U U. Then

: + +x€M
U is a neighborhood . of M such that C (U) €« G. But C (U) is-
positive invariant and is a neighborhood of M. This implies that: G
contains a positive invariant neighborhood of M. This contradicts the
selection of G.

The positive d-invariance of M dimplies that M  i1s positive.
invariant. This implies that x e 3M. For if not, themn x € M°. This
implies that there exists a neighborhood U' of x such that U'c M.
The positive invariance of M dimplies that iC+(U“) c Mc G. But this
contradicts the fact that for all neighborhoods U of x, C+(U)<# G
Hence, x & dM; that is, X'eii;:jﬁ. Thus, there exists a sequence
(xn) in X - M such that- (xﬁ) converges to x. For each X € (xn),
X € Un and there exists a tn > 0 with xntn # G. The selection of

such.a séquence is possible since for all U e N(x), C+(U)v¢.G and for

each ' x € 9aM, U must contain points of X - M. Since MC G,
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xntn ¢ M, for each n. By assumption, there exists a neighborhood U
of x such that C+(U) - M hds compact closure.: The sequence (xn)
is ultimately in U and, therefore, the sequence (xntn) is
ultimately in C+(U). For each n, x t ¢ M. This implies that
(xntn) is ultimately in C+(U) - M. Thus, there exists a convergent

subsequence (x that converges to a point y in C+(U) - M.

n,ktn,k)

Since (xn.k) converges to x and t, >0, ye Df(x) C:D+(M) = M.
3

k
H
But (xntn) # G dimplies that vy ¢ G° @ M. This contradiction shows

that - M d1s stable. This completes the proof of the theorem.

Proposition 3.15: Let X be a locally compact Hausdorff space, M a
closed invariant subset of X, x-e€ oM, and U ' a neighborhood of x.

Then, CT(U) =M =K (U-M) =K (T =M.

Proof: To show the equalities, it will suffice to show the
following: (a) o -vextw-w; o w-wet@-m;
and (c) Kf(ﬁf:_ﬁb c:C+(U) - M. To show (a), it suffices to show
Cf(U) - M C:K+(U - M) since K+(U - M) is closed. Let
X € C+(U) - M. Then, X = ut where ut ¢ M, ue U, and t >0,
The>positive invariance of M and ut ¢ M dmplies that u ¢ M. Thus,
u e U= M,  Therefore, x = ut € K+(U - M) and C+(U) -Mc K+(U - M).
Statement (b) follows from the fact that U - M < U - M. Thus,
KW -M) ckK @ - m.
To show (c¢), it will first .be shown that C+(U) -~ M and, hence,
C+(U) - M is positive invariant. Let x ¢ C+(C+(U) -~ M). Then,
X = yt where y € C+(U) - M and t > 0. Since y ¢ M, yt ¢ M. For
if yt € M, then the invariance of M would imply (yt)(-t) =7y e M.

This contradicts y ¢ M and, thus, yt ¢ M. Since y.¢ C+(U) and
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C+(U) is positive invariant, x = yt e C+(U)._ Hence, x ¢ C+(U) - M.
This implies that C (¢t - < ctw) - 4. Thus, cTu) - M 1is
positive invariant. Since  UC C+(U) , U-Mc C+(U) - M. This implies
that ITTfEZc: C+(U) + M. Since C+(U) - M 4is positive invgriant,
c+(1i——M) cct@w -M Thus, K@-mWecc @ -4 as cT@U) - M is

closed. This completes the proof.

The following corollaries state sufficient conditions for a point

X to be positively Lagrange stable. A point x  is positively Lagrange

stable if and only if K+(x) is compact.

Corollary 3.16: Let X be a locally compact Hausdorff space and M a
closed invariant set in X. If M is stable, then each x ¢ oM 1is

positively Lagrange stable.

Proof: Let M be stable and x € dM. Theorem 3.14 ‘implies that
there exists a neighborhoed U of x such that C+(U) - M has
compact closure. If x e OM, then x € U - M. . Thus,

+ + — + A —
C(x)€ C(U-M and this implies that K (x) €@ K (U - M). From the
v —_— + +
preceeding proposition, K+(U-— MU C (@) ~M.,. Thus, K (x) is a
closed subset of the compact set C+(U) - M and, hence, is compact.
This implies that < x is positively Lagrange stable.' This completes

the proof.

Corollary 3.17: - Let the phase space X be Hausdorff and M an
invariant subset of X. If x ¢ M and x dis attracted te M, then

x 1s positively Lagrange stable.

+
Proof: If K (x) 1s not compact, then there exists a net (th)

+
in C (x). with no convergent subnets. Then, the set.
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A= {Xth: Xt € (Xth)} is closed. Since x ¢ M and M is invarianmt,
no element of A is in M. Thus, X - A 1s a neighborhood of - M.
Since x  is attracted to M, there exists a number t > 0 such that
d+0nﬁ c X-A. If t=0, then,_(}&t)tn = xtn € A and this
contradicts Xt € X-A, If t >0, then since the numbers t
converge to . +°, there exists a number m such that tm >t and

xt e A. Thus, t' = t — t. is greater than zero. Thus,

(xt)t' = x(t + t") = x(t + t, t) =xt ¢ A. This again contradicts

+
(xt)t' € C (xt) © X - A, These contradictions complete the proof.

Theorem 3.18: A set M 1is stable if and only if it is positive
invariant and Mg A:(M). A set M is-bilaterally stable if and only

N
1f AT =M= A (M.

Proof: Assume that M 1is stable. Proposition 3.5 implies that .
M 1is positive invariant. Let x € M- and let U be a neighborhood.of
M. - The stability of M implies the existence of a positive invariant
neighborhood V of M such that V& U. Since Vt C C+(V) =V CUu,

X € A:(M). Thus, Mc A:(M).

Conversely, let M be positive invarianﬁ and Mvc A:(M). Let U
be a neighborhood of M. Since M C A:(M),~ for each x € M there
exists a neighborhood ‘Vx__of X and a number tx.1‘0 such that
th cU for all t > t Now consider all numbers t such that
0 <t St The continuity axiom implies that x[O,t*] is compact.

The positive invariance of M implies that x[O,tx] €M and, hence,
x[O,tx] c U. Since U is a neighborhood of x[O,tx], there exists for

each xt ¢ x[O,tx] open neighborhoods Ux of x- and At of t- such
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that, by the continuity axiom, UA c U. For each =xte x[O,tx],
UxAt is an open neighborhood of xt. Thus, the collection
{UxAt:vxt £ x[O,tx]} is an open cover, of x[O,tx]f By the compactness

.} that covers

of x[O,tx], there is a finite collection {Ux,iAf,l

x[0,t_]. Thus, W_=NU_ , 1is a neighborhood of x and W tC€ U for.

X X x,1i. : - - X -
0O<t<t . Let B =V N W. Therefore, B is a neighborhood of

- = X X: X X X -

x  and Cf(Bx) < U.' Since each C+(Bx) is positive invariant and
contained in. U, B = UBx is a positive invariant subset of U. This
implies that M. is stable.

To prove the second assertion, assume that M is biiaterally
stable. This implies that M is stable and neéative stable. Thus,
M is positive invariant and negative invariant. Thus, M 1is invariant.
Also by the above proof, M c A:(M).-_An-analogous proof shows that
Me A;(M). Since the proofs for Az(M) =M and A;(M) =M are.
similar, only. A:(M) = M will be shown. Suppose that A:(M) # M,

+ + + +

Then there exists an x ¢ AS(M) -~ M. Since AS(M) C!AW(M), X € AW(M)'
Proposition 2.50 implies that either ‘L+(x) NM#@ or that 'C+(x)
is frequently in M. Since M is invariant and x ¢ M, C+(x) is net
frequently in M. Hence, there exists a y ¢ L+(x) N M., Since

y € L+(X), there exists a net (t,) converging to +* such that the

i
net- (xti) converges to y.. Since X is Hausdorff and  x é M, there
exists a neighborhood- U of M such that x‘¢.U. " Let Vy be any
neighborhood of y and t < 0. Since (xti) converges to y, there
exists an integer n  such that for all i >n, xt, e V . Lec

- i y

t, € R such that k> n and by <t Then, Vytk contains the point

X. This implies that Vot ¢ U. Thus, y ¢ A;(M), and this'is a

+ .
contradiction. Therefore, AS(M)‘= M.
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To show the converse, let A:(M) =M= A;(M).~ Thus, Mc A:(M)
- + +
and Mc AS(M). Since AS(M) = M and AS(M) is invariant, M 1is
invariant. Thus, by the first statement of the theorem, M is positive

and negative stable, that is, M 1is stable. This completes the proof.

The following examples show that it is not possible to weaken the

conditions of Theorem 3.18.

Example 3.7: As in Example 2.10, let M = {(0,0)}. Then, Md A7 (W).
Since (0,0) 1is a critical point, M is positive invariant. But M
1s not stable as Theorem 3,18 indicates.

In Example 3.1l, see Figure 10, let M be an €-disk centered at
P,- Then, Mc A:(M) =-X. But M. 1s not positive invariant and net.

stable.

. + -
Example 3.8: In Example 2.11, for any disk M, ‘AS(M) = AS(M) = M,
Thus, M 1s bilaterally stable.
In Example 2.7, M° denotes the open unit disk. Since-
A;(M°) = M° and A:(M°) = X, Theorem 3.18 implies that M° cannot be

bilaterally stable. However, M° is stable.

Theorem 3.19: A set M is stable if and only if for all nets (xi)

and .(yi), y, € C+(xi), the net (yi) is ultimately in every

i
neighborhood of M whenever the net. (xi) is ultimately in .every
neighborhood of M. Similar statements also hold for k-stability and

d-stability.

Proof: Assume M- is stable. Let '(xi) be -any net that is

ultimately in every neighborhood of M. Let _(yi) be ‘a net such that
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for each . i, Y€ C+(xi). If U 1is any neighborhood of M, then
there exists a positive invariant neighborhood V of M such that
Ve U. Thus, (xi) is ultimately in- V. This implies that there .
exists an integer n such that for all i > n, X, € V. The positive
invariance of V implies C+(Xi) cV, for 1 Z_n.. Thus, for i > n,
vy is ‘in V.  This implies (yi) is ultimately in V and, thus,
ultimately in U as V& U.

Conversely, suppose M. 1s not stable. ' Then there exists a
neilghborhood U of M. such that U does not contain any positive -
invariant neighborhoods of - M. Let (Ui) be the collection of all
ﬁeighborhoods of M that are contained in U. Partially order the

Uifsﬂby set inclusion and let x € M. Then for each U, there exists

i
+
a y, = xti such that vy ¢ Ui and ti € R'. Thus, vy € Uj for
some Uj o Ui'. Since vUj is not pesitive invariant, there exists a

. V.
number t, € R such that =y.t, = (xt,)t, = xt! ¢ U, where

3 M RREAS (13 J¢J

+ o

t! =t, +t,. Since vy, = xt! , € C . Continuing in this same
gty Y it Yy (x) inuing _
manner, a net. (yk) is constructed such that (yk) is not ultimately
in Uif But, the net (xk), defined by X, =X for all k, converges
to  x and is ultimately in. Ui' By the hypothesis, since Yy € C+(xk)
for each k, the net (yk) is ultimately in Ui' This gives the

desired contradiction; and thus M is stable. This completes the.

proof. -

Theorem 3.20: If each component of a set M 1is stable, then M is

stable, If M is compact and stable, then so is each component of M.

Proof:. The first statement follows from M equaling the unien of

its components and the union of stable sets being stable. Now let M
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be compact and stable and let C be a component of M. Since C 1is a
closed subset of the compact set M, C is compact. For .each x ¢ C,
D+(x)<= C. This is true since x is in D+(x), and Theorem 3,13
implies that D+(x) is ‘a connected subset of M. Now suppose that C
is not stable. Then there exists a neighborhood U . of C that contains
no positive invariant neighborhoods of C. Thus, there exists x g C
and tx,z_O such that,,xtx # U. It follows that there exists a net
(xi) that converges to x and numbers ti >0 such that xiti ¢ U.
Suppose not, then for all nets (xi) converging to - x and all numbers
t; > 0, xiti ¢ U. In particular, let X, =X for each X in (xi).
Then xtx € U, This contradicts xtx # U. Thus, such a net exists.
Since xi[O,ti] is connected and intersects U and the complement of

U, there exists a number S;» 0<s such that X8, € aUu.

1= Fy0
Since (xi) is ultimately in every neighborhood of C, (xi) is
ultimately in every neighborhood of M. Theorem 3.19 implies that
(xisi) is ultimately in.every neighborhood of M. Since M 1is
compact, there exists a subnet (xi,ksi,k) of (xisi) that converges
‘ +

to a point y in M. Since (xi k) converges to x, y € D (X). But

’
oU . closed implies that y € doU. This is a contradiction as D+(x) cC

implies that y € C; and, U a neighborhood of C implies that

y € dU. Thus, C 1is stable. This completes the proof.

In the next section, stability of a closed set‘with.compact
boundary is characterized for a locally coﬁpact phase space. These

results are given in Theorems 3.27 and 3.28.
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*-stability and Ura's Theorem

The concept of *-stability will be used to prove several lemmas
that culminate in the proof of Ura's Theorem. Ura's Theorem
characterizes stability of closed sets with compact boundary in  -terms
of positive d-invariance. Such restrictions are not necessary for
characterizing *-stability. Examples will be given to show that
stability and *-stability are not in general equivalent. . Several

results give sufficient conditions for a stable set to be *-stable.

Definition 3.21: A set M  1s *-stable if and only 1f for each x ¢ M,
y € M, there exist neighborhoeds U of x and V of y such that

un C+(V) = f.

Example 3.9: The dynamical system (Rym) defined by the differential

equation

M.
1

X 'sinz I
X

(see Figure 9) yields a set, actually an infinite collection of sets,
that is *-stable but not stable. Note that the only critical points

are 0 and » where n is a positive integer. In Figure 9, let

Bl

M= (- %-, %—] (in general, let Mn = (- %-, %-] for n=1,2,3, ...).

To see that M is not stable, let A = (- %-, E% ) be a neighborhood

of M. The set A 1is not positive invariant and contains no positive
invariant neighborhoods of M. Thus, M is not stable.
Now let x be any element not-in M and y any element in M.

If x < —% or > -i— » then p(x,M) =€ > 0. Thus,

p's
1 1 ‘ 1 1 .
U= (x - il x + E—) and V= (y - P + E—) are neighborhoods of
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3 -' A N
> s '73)1/2) — X

Figure 9. The Phase Space of Example 3.9.

x and y, respectively, such that C+(V)r7 U=¢g. If x= - %- and
y e M, then p(x,y) =e¢ > 0. Taking U and V as above, we have

+
C(WN U=¢@, Thus, M is *-stable.

Examgle 3.10: In Example 2.7, the open unit circle, M°, is stable but
not *-stable. Let x €y and y any element in M°. For any
neighborhood V of y,. C+(V) will intersect any neighborhood U of

X. Thﬁs; M° is not *-stable.
Theorem 3.22: A set M is *;s;able if and only if D+(M) = M,

gzgéiz Assume that M 1is *-stable. It suffices to show that
D+(M)<: M. Let yeM and x ¢ M. The *-stability of M implies
that there exist ﬁeighborhoods U of x and V of y such that
un C+(V) = . Suppose that X € K+(V). Since x ¢ C+(V), X € BC+(V).
This impiies, by the definition of a boundary péint, that
U.ﬂ C+tV) # §.. This is a contradiction and, thus,r X ¢ K+(V).
'Theféfore, X é ﬂ{K+(V); V. ié.a.neighborhpod of y}. Thus,
x.¢ D+(y) for any y ¢ M, This implies that
x ¢ (M) = U{Df(y): y € M}. Thus, pT(M) &M and M = ph(M).

To show the convérse, let D+(M) =M, Let yeM and x ¢ M.

Thus, x ¢ D+(M). Since D+(y) c ﬁ+(M),
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x ¢ D+(y) = ﬂ{K%(V): V 1is a neighborhood of y}.

This -implies that there exists a neighborhood V' of y such that

+ . togry s + gt
X ¢ K (V'). Since K (V') is closed, U=X-K (V') ig a neighberhood
of x such that UN K+(V') = (. Hence, UN C+(V') =@ and M is

*-stable. This completes the proof..
Lemma 3.23: If M is #*-stable, then M is positive invariant.

Proof: Let x ¢ M. Then by the definition of *-stability, for
each y € M, there exist neighborhoods U of x and V of y. such
+
that UN C (V) = . Thus, x ¢ C+(y) for each y € M. This implies
+ + + ,
x¢ U C(y) =C (M). Therefore, C (M) c M, and M 1is positive
yeM
invariant. This completes the proof.

Lemma 3.24: Let M be a closed set with compact boundary. If M is

stable, then M 1is *-stable,

Proof:. Let M be stable and x ¢ M. TFor each m ¢ aﬁ there
exist disjoint open neighborhoods Um of m and Vx of x. Since
3M 1is compact and {Um: m € dM} is an open cover .of 3M, there
exists a finite collection {Um i: m, € oM} that covers: oM. Thus,

’

U=MU ‘U Um,i) is a neighborhood of M. For each Uh,i let Vx,i

denote the corresponding neighborheod of x. Then, V = ﬂVx,i is a
neighborhood of x such that UN V = (). The stability of M implies
that there exists a positive invariant neighborheod W of M such
that W& U. Thus, W is a neighborhood of ea;h y € M such that
W= d+OD € U. This implies that VN C+(W) =@¢ as VN U=4¢g,

Hence; M is *-stable, and the proof is complete.
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Lemma 3.25: Let X be locally compact and M. a closed subset of X.

If M 4is stable, then M is #*-stable.

Proof: Let M be stable and x # M. Since X 1s Hausdorff and
'1oca11y compact, X 1s regular, Thus, there exist disjoint
neighborhoods U and V of M and x, respectively. The stability
of M implies the existence of apositive invariant neighborhood W of
M such that W< U. Hence, C+(W),ﬂ V=@ and M is *-stable. This

completes the proof.

Lemma 3.26: Let X be locally compact and M closed with compact
boundary. Then there exists a closed neighborhood U of M such that

dU 1is compact.

Proof: Since X 1is locally compact, for each =x € 9M there
exists a compact neighborhood Ux of x. The collection
{Ux: x € oM} 1is a covering of oM. The compactness of 9M implies

that there exists a finite subcover {Ux PRI T oM}, of M. Thus,
’ - -

U=MU (lJUx ) is a neighborhood .of M. Since M 1is closed and

o1

each Ux is closed, U is a closed neighborhood of M. For each i

i
3
define AVx,i = Ux,i - M°. Then, U=MU (U Ux,i) = MU (LJVx’i).
Thus,
VW =9MU U Vx,i)) c MU a(uU Vx,k)
c3(UV, ) UG, ) Ul .
To show that 0dU is compact it suffices to show that UU_ , 1is

x,i

compact, as d9U 1is a closed subset of UUx Let ¢ be any cover of

i

UUx 1" Then C 1is a cover of each Ux 1 and, hence, by compactness
3 b
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of U_,, there exists a finite subcover C, of U ,. Thus, U C
,1 i X,1 1 i
1ls a cover .of UUx i cand U Ci is finite as there are only a finite
’

i -

number of the Ux Hence, 09U 1s compact, and the proof 1s complete.

o1°

Theorem 3.27: Let X be locally compact and M a closed set with

compact boundary. Then M 1is stable if and only if M is *-stable.

Proof: If M 1is stable, then Lemma 3.25 implies that M 1is
*-stable. To show the converse, let M be *-stable and suppose that
M is not stable. Lemma 3.26 implies that there exists a closed
neighborhood U of M such that 23U is compact. It is now claimed
that for any neighborhood W of M, C+(W) N Bﬁ # @. Since M is not
stable, Theorem 3.19 implies that there exist nets (xi) and (yi),

vy € C+(xi) for all i, such that (x,) 4is ultimately in every

i
neighborhood of M and (yi) is not ultimately in every neighborheod

of M, This implies that (yi) is frequently in the complement of
every neighborhood of M. Let W be a neighborhood of M. Then there
exists a number T' > 0 such that for all i > T', x, € W. Also,

there exists a number T" > 0 such that for all {1 > T", X, € U. Let

T = max{T',T"}. Then, for all i > T, x, €U N W. Fix i > T. Then"

there exists a number k > 1 > T > T" such that Vi € C+(xk) and
vy # U. 8ince k > T, X € U N W. Thus, there exists a point X in

+
UN W such that is not in U. This implies C (xk) is

Y T Fety

both in U and in the complement of U. Hence, there exists a number

s, > 0 such that X8, € 3U. Thus, C+(W) N 3U # 0.

k
The neighborhoods of M are directed by set inclusion and fer
each such_neighborhoéd W it has been shown that there exists a point

X € W such that C+(xW) Na3u # @, Lemma 3.23 implies that M 1is
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positive invariant, and thié implies that X, ¢ M. For suppose that:
X € M. Then C+(xw) c C+(M) = Mc U° implies that C+(xW) N sU.= ¢@.
This contradiction shows X, ¢ M. It is now claimed that the net (xw)
has a cluster point =x € 9M. For suppose not. Then for each m e aM
there exists a neighborhood Tm of m such that (xW) is not
frequently in . Tm. Thus, (xW) is ultimately in X - Tm. The
collection {Tm: m e oM} covers 9M and the compactness of oM
implies that there exists a finite subcover {Tm,i}’ that covers oM.
The set A = ({ Tm,i) U M° 1is a neighborhood of M such that (xW)

is not frequently in A. Thus, (xw) is ultimately in. X - A. But
this contradicts (xw) c (xi) as (xi) is ultimately in every
neighborhood of - M., Thus, (xw) has a cluster point x in JM. Thus,
there exists a subnet (xW i)' of (xW) that converges to x € 9M,

For each x_ ., thereis a t_ ., > 0 such that x

t . e 93U, Since
Wi w,i w,i w,i. ‘

) of . )

89U  1s compact, there 1s a subnet  (x_ .

w,i,ktw, 1,k (1t 1

that converges to a peint u € 9U. " Also, ) converges to

(xw,i,k
x € oM. This implies that u e D+(x) c ﬁ+(M). Theorem 3.22 implies
that -D+(M) =-M and, therefore, u € M. This is a contradiction as

ue 3U and M < U°, Thus, M is stable, and the proof is complete.

Theorem 3.28: (Ura) Let X be locally compact and M a clesed
subset of ° X with compact boundary. Then, M 1s stable if and only

if bt = M.

Proof: By Theorem 3.27, M is stable if and only if M 1is
*-stable. - By Theorem 3.22, M is *-stable if and only if D+(M) = M,

This completes the proof.
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Example 3.11: To show local compactness is necessary for Ura's
Theorem, consider the £low ’(Rz,n) defined by the system of
.differential equations

= r(l ~- 1)

R

/

= sinz_‘%

De

(see Figure 10).

The unit circle is the union of y and {p,}. Let X' =X -y.

2

That X' 4is not locally compact follows from considering any

neighborhood U of pz; Each U will contain a net (x that

. . i)
converges to a point x' e y, but x # U. Thus, Py has no compact
neighborhoods. 'However, D+(p2) = {pz} and fpz} is not stable due

to the behavior of the trajectories. interior and exterior to the unit

circle.

Figure 10. The Phase Space of Example 3.11.
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Proposition 3.29: If X 1s locally compact, then a compact set M 1is
positive d-invariant if and only if each of its components is positive

d-invariant.

Proof: If M is compact and pesitive d-invariant, then Ura's
Theorem implies that M 1s stable. Since M 1s compact and stable,
every component C of M is stable, see Theorem 3.20. Since C is a
closed subset of M, C is compact. Ura's Theorem implies that C is
positive d-invariant.

Conversely, let each component C of M be positive d-invariant.
Since M 4is-the union of all its components, M is positive

d-invariant, see Proposition 2.41., This completes the proof.

Theorem 3.30: Let X be locally compact and M a closed set with

compact boundary. Then, the following are equivalent:

(a) M 1s stable;

(b) M is k-stable;

() DGO = M

(d) J_(X ~-MNM=@, and M is positive invariant; and

(e) X - M is negative d-stable.

Proof: Equivalence will be shown by proving: 1. (a) if and only
if (b); 2. (a) if and enly if (c¢); 3. (c) if and only if (d); and

4, (¢) if and only 1f (e).

1. Let M be stable. Since X 1is locally compact and Hausdorff,
X 1s regular. Thus, Theorem 3.8 implies that M is k-stable.
Cenversely, if M d1s k-stable, then Proposition 3.7 implies that M

is stable.
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2., Ura's Theorem.

3.  Assume that 'D+(M) = M., Then, by Proposition 2.42,
D (X-M) =X - M. Proposition 2.43 implies that J (X - M) c X - M,
and X - M is negative invariant. Thus, J (X - M) N M = . Since
X - M 1is negative invariant, Proposition 2.42 implies that M is
positive invariant. .

Conversely, assume that J—(X -MNA M=0 and that M is
positive invariant. Thus, J (X -M c X-M, and X - M is
negative invariant. Since, see Proposition 2.34,

D(X-M =C(X-MUJ(X-M ad C(X-M and J (X-M) are
subsets of X - M, it follows that D(X-M =X-M. Thus, M is

positive d-invariant.

4, By Propositien 2.42, D+(M) =M if and only if X - M 1is
negative d-invariant. Since M 1is closed, X - M 1s open. Thus,
Proposition 3.3 implies that:. X - M 1s negative d-stable. Conversely,
if X - M is negative d-stable, then X - M is negative d~invariant.

Thus, M is positive d-invariant. This completes the proof.
Zubov's Stability Criterion

In [32], Zubov gave the following criterion for the stability of a

closed invariant set.

Progosition 3.31: A closed invariant set M is stable if and only if

L(x)NM=@ for all x_é M.

The necessity of the above proposition has been shown in
Theorem 3.1l. The criterion is not sufficient as the following example

shows.
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Example 3.12: Consider the flow (Rz,ﬂ) defined by the system of

differential equations

~
()

+ x2

I
y

(see Figure 11). Let M= {(0,0)}. For each point p not in M,

: +
(0,0) ¢ L (P). Thus, L+(P) N .M=0@. But clearly, M is unstable.

Figure 11, The Phase Space of Example 3.12,

Relative Stability

' : +
Definition 3.32: Let M be a compact set and U cX. Then D M,10)

denotes the positive prolongation of M relative to U and is given

by
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+
D (M,U) = U {y e X: there exist nets (x. in R

i) in U, (t,
xeM

4
such that (xi) converges to X and

(xiti) converges to y}.

Proposition 3.33: If U is a neighborhood of M, then

D+(M,U) = D+(M) .

Proof: If vy ¢ D+(M,U), then there exist nets (xi) in U and

+
(t;) in R such that '(xi) converges to x € M and .(xiti)

i
converges to y.  This implies that vy ¢ D+(M) and, hence,

+ +
D+(M;U),c D M. If yeD (M),  then there exists a net (xi)

converging to x ¢ M and numbers > 0 such that (xiti) converges

4
to y. Since U . is a neighborhoed of M, (xi) is ultimately in U.
Thus, there exists an integer n such that X, € U for all i > n.

Thus, for all i > n, (xi) c U. This implies that y ¢ D+(M,U) and,

hence, ﬁ+00 < D+(M,U). This completes the proof.

In the proof of the above proposition, the fact that U is a
neighborhood of M was not used to show D+(M,U) c D+(M).' Thus,

D+(M,U) c D+(M) for any Uc X.

Definition 3.34: If M 1s compact and Uc X, then M is stable
relative to U, denoted by M is U-stable, if and only if for every
neighberhood W of M there exists a neighborhoed V of M such

that cvnu ew. .

Theorem 3.35: If M is U-stable and U is a neighborhood of M, then

M is stable.
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Proof: Let M be U-stable where U is a neighborheed of M.
Let W be any neighborhood of M. Thus, there exists a neighborhoed
V of M such that C+(Vf1 U) is contained in W. Since V and U
are neighborhoods of M, VN U is a neighborhood‘of M and
Me Vn UcC C+(V N U). Since C+(Vﬂ U) 1is a positive invariant

subset of W, M is stable and the proof is complete.

Proposition 3.36: If M is compact and stable, then M is U-stable

for all UC X.

Proof: Let W be any neighborhood of M. Then the stability of
M  1implies the existence of a positive invariant neighborhood V of M
such that V& W. Thus, VN UCV deﬂVﬂUﬂzaW)=VCW

This implies that M . is U-stable as was to be shown.

Theorem 3.37: Let X be locally compact. A compact set M is
U-stable if and only if D (M,U) ¢ M. If Mc U, then M is U-stable

if and only if D' QM,U) = M.

Proof: First, let M be U-stable and ¥y € D+(M,U). Since M 1is
U-stable, for any neighborhood W of M ' there exists a neighborhood
+
V of M such that C+(V N U) €W, Since y e D (M,U), there exist

nets (xi) in- U and (t in Rf such that . (x,) converges to

i) i

x e M and '(xiti) converges to y. Suppose that ¥y é M. Then, there
exist neighborhoods W of M and Y of y such that YNW-=¢.
The U-stability of M implies that there exists a neighborhocod V of

M such that'~C+(V N U) €W. Since (x,) converges to x e M, (xi)

i
is ultimately in C+(V N U). Thus, (xiti) c C+(V N U) as C+(V n u

is positive invariant. Since (xiti) converges to ¥y, (xiti) is
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ultimately in. Y. But, C+(VF1ID C W implies that YN C+(V nNu =dg.
This contradiction shows y € M and, hence, D+(M,U)<: M.

Conversely, let D+(M;U) c M and assume that M is not U-=stable.
Then there exists a neighborhood W of M such that for all
neighborhoods V of M, C+(V n u #:w. Since X 1is locally compact,
there exists a compact neighborheod N of M such that N ¢ W.  For
each neighberhood V of M such that Ve N, there exists a point
x, € VAU and a tv € R+ such that xvtv e ON. Since (xv) is in
N and N is compact, there exists a subnet (xv,k) of (xv) that
converges to some x € N. In fact, x € M. For suppose that x,¢ M.
Then, by the compactness of M, there exist disjoint neighborhoods P
and Q of x and M respectively. This contradicts the construction

of (xv) and, thus, . x € M. For each x is in the

v,k’ xv,ktv,k

compact set oN. Thus, the net ) has a subnet

(

converges te x € M. This implies that y ¢ D+(M,U). But y € oN

(xv,ktv,k
) that converges to y € 3N. Note that (x .)
v,k,1

gk, 15k, 1
implies that vy i M. This contradicts D+(M,U) c M and, thus, M is
U-stable.

To prove the second assertion, let Mc U and assume that M is
U-stable. By the above proof, D+(M,U) c M. Let x &€ M and define
(xi) b& X, =x for each {i. Let ti =0 for each 1. Since
Mc U, (xi) is in U and (xi) converges to x e M. Also,

(xiti) = (xi). and, thus, converges to x. Thus, x € D+(M,U) and
Mc D+(M,U). Therefore, M = D+(M,U). Conversely, let D+(M,U) = M,
By the first part of the theorem, M is U—stable. This completes the

proof.
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In this chapter the concepts of stability, *-stability, and
relative stability have been intreduced and their préperties
investigated. Also, the relationships between these types of stability
have been examined. The ceoncept of stability has been extensively
studied in [14]. Additional references on stability include [5], [7],
[11], [12], [13], [16], [19], [21], [22], [23], [27], and [31]. The
concept of relative stability is presented in [13], [14], and [31].
Additional results on stability can . be found in papers that present the

concept of asymptotic stability.



CHAPTER IV
PARA-STABILITY

The concepts of para-stability and para-Liapunov functions were
introduced by Hdjek in [22]. The definition for para-stability was
motivated by several results in [21]. These results indicated that new
concepts of stability should be defined by requiring a set M to be
the intersection of certain neighborhoods of M. This-is in contrast
to the usual definitions that require a certain property to be true for
all neighborhoods of M. Since stability and para-stability may be
characterized in terms of Liapunov and para-Liapunov functiens, the
chapter begins with a presentation of these concepts. After presenting
some results of paré—stability theory, the relationship between

stability and para-stability will be examined.
Para-Liapunov Functions

Definition 4.1: A function v: X > R is a Liapunov functien on (X,m)

if and only if v dis continuous and v(xt) < v(x) fer all t >0 and

x.£ X.

Example 4,1: In the flew (Rz,n) of Example 2.1, defined by the system

of differential equations

<
]

Y

n
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the function m: R2 x R - R2 is given by 7w ((x,y),t) = (xe_t,yet).

Let the continuous function v:'R2 -~ R be given by v(x,y) = e_IXYI.
That - v is a Liapunov functien follews from letting (x,y) be any
element of R2 and coensidering v((x,y)t) for all t > 0. From the

definitions of 7 and v,

~xetyet]  -lwl

-t t
V((x’y)t) = v(xe sye ) = e
This ‘implies that v 1s a Liapunov function on x,m).

Definition 4.2: A mapping v: X -~ R% on the phase space X 1is a

para-Liapunov function for (X,m) 1f and only if v is continuous and

for every € > 0 there exists a &6 > 0 such that v(xt) < € feor all

t > 0 whenever v(x) < §.

Example 4.2: Let the function 7 be as in Example 4.1. Then the
continuous function v: R2'+ R% defined by v(xt) = e-t(z + 10 sin t)
is a para-Liapunov function but not a Liapunov function. Let € > 0

be given. Since e_t(Z + 10 sin t) converges to 0 as ¢t converges
to +», there exists an integer n such that v(xt) < ¢ whenever
t>n, Let 8§ =¢. If v(x') <8 =¢, where x" = xt', them t'>n.
Then, for any t > 0, v(x't) = v(x(t + t')); dince t+ t' > t' > n,
v(x(t + t')) <e. Thus, v 1is a para-Liapunov functien.

Te show that v 1s not a Liapunov functien, note that a Liapunov
functien must satisfy v(xt) < v(x) for all x and all t > 0.
Consider the point x0 and t-= 1. Then, v(x0) = e_O(Z + 10 sin 0) = 2
while e_l(Z + 10 sin 1) = 3,83, Thus, v(xl) i_v(x) and v 1s not a

Liapunov function.
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Propositien 4.3: Every Liapunov function is a para-Liapunov functien.

Proof: 'Let v be.a Liapunov function and let € > 0. Thus, v
is continuous and v(xt) < v(x) for all t >0 and x e X. Let
§=e¢. If v(x) <8§=€, then v(xt) <v(x) <€ for all t > 0.

Thus, v 1s a para-Liapunov function, and the preef is complete.

Proposition 4.4: If v 1is a para-Liapunov functien en X, x ¢ X,

1

and v(x) = 0, then D+(x)<: v-l(O). . Thus, D+(v—l(0)) =v ~(0) is

clesed and positive invariant.

Proof: Let y ¢ D+(x). Then there exists a net (xi) converging
to x and numbers ty > 0 such that (xiti) converges to y. From
the definition of v, for any € » 0 there exists a § > 0 such that
v(xt) <€ whenever v(x) < §. Since v 1is continuous, v(xi)
converges to v(x) = 0. Thus, v(xi) is ultimately less than &,
Therefore, v(x;t,) is ultimately less than €. Therefore, v(y) 5 €
and since € was arbitrary, v(y) = 0. This implies that vy ¢ v-l(O)
and, hence, ﬁ+00 c v_l(O).

To show that D+(v_l(0)) = v-l(O), first note that, by the
definition of D (v 1(0)), v 1(0) @ D (v I(0)). If x e v i(0), then
v(x) =.0, Thus, by the first part of the proof, D+(x) c v_l(O).
Therefore, D+(v—l(0)) = U D+(x) c v_l(O). Thus 4

XEV (9) v

D+(v_l(0)) =;v~l(0). Proposition 2.37 implies that D+(v-l(0)) is

closed and positive invariant, and the proof is complete.

Proposition 4.5: Let v be.a para-Liapunov function and for o > O
define V = {x: v(xt) < o for all t > 0}. Then v, is clesed,

positive invariant, and v_l(O) = ﬂ{Va: o >0},
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Proof: Let x ¢ V&. Then there exists a net (xi) in Va such

that (xi) converges to X. Since for each i, x, € Va’ v(xit) <a

i
for all t > 0., Since v is continuous, v(xi) cenverges to Vv(x).
Suppose v(xt') > o for some t'. Then v(xit') converges to v(xt').
Let ‘€' > 0 be picked such that wv(xt') —¢' > a. Thus, V(xit') is
ultimately in the ¢ '-neighborhood of v(xt'). Thus, there exists an
integer k such that for all 1 > k, v(xitf) > o, This contradictien
shows v(xt) < o for all t 3_0 and thus x ¢ Va. Therefore,
Va,c Va and Va_ 1s closed. -

To show that Va is positive invariant, let ¥y ¢ C+(Va). Then -

v(xt).

y = xt for some x e_VOZ and some "t ¢ R+. Thus, v(y)
Since x ¢ Va?’ v(xt) < a. Therefore, v(y) <o and ye V . This
implies that C+(Va)<: Va and Va is positive invariant.

Te show that V-l(O) = ﬂ{Va: a > 0}, let x ¢ v_l(O). By the
definition of v, for any € > 0 there exists a § > 0 such that
v(xt) <€, for all t > 0, whenever v(x) < é. Thus, since
v(x) =0 <8, v(xt) <e for all t > 0 and for all €. This implies
that x e V for each a > 0. Thué, X € ﬂ{Vd: a > 0} and
v—l(O) c:ﬂ{Va: o > 0}. Now let x ¢ ﬂ{Va: o > 0}. Thus, X € Va for
each o and v(x0) = v(x) < o fer all a > 0. This implies that

v(x) = 0 or that x € v_l(O). Therefore, ﬂ{Va: a>0}c v_l(O), and

the proof is .complete.

Proposition 4.6: Let v be a para-Liapunov function and let Va be
defined as in Proposition 4.5. Then there exists a sequence (qn),
o > 0 for each n, ' such that (an) converges to 0 and such that

\Y is a neighborhood ef V for each n.
o o
n n+l
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Proof: For notational convenience ,Va will be denoted by Vdn.
n

"Define the sequence (un) inductively by letting o, = 1 and choosing

1
‘ -n ;
@ 41 such that 2an+l I Thus, for each n, o <2 7. This

implies that (un) converges to 0. To show the second assertion, fix

n and consider van and V let - x e V Since, by

a(n+l)’ a(n+l)’

Proposition 4.5, V is closed, there exists a net (xi) in

a(n+l)

Va(n+l) that cenverges toe x. Since x € Va(n+l)’
v(x) i{an+l < 2an+l' Since (Xi) converges to X, v(xi)‘ converges to
v(x); and thus, v(xi) is ultimately less than 2an+l' let € =g
and ¢ = 2an+l' Then, by definition of v being para-Liapunov,
vix,t) < o for all t > 0, This implies that each x is in V

i n - i on
and, thus, x e V as V is cleosed. Therefore,

, an on

va(n+l) = van' Suppose va(n+l)¢ Vin' Then there exists

xeV such that x € 3V _. Thus, x € X -V . This implies
on on

o (n+l)
that there exists a net (yi) in X - van such that (yi) converges
te x. Using the same argument as above, v(yi) converges to

v(x) Sog < 2an+l <o Thus, v(yi)b is ultimately less than 2an+l..
This implies, by definition of v, that vy t) < o for all t >0,

- Thus, y; € Vdn' This contradicts v, € X - Van' Therefore,

\Y is a neighborhoed of V

on a(n+l)? and the proof is complete.

Corollary 4.7: Let v be a para-Liapunov function and let Va be
defined as in Proposition 4.5. Then the sets Gn = V;n have .the

U : 3 . ‘i ) - —c r
follewing preperties Gn is open and poesitive -invariant; Gn+1 Gn

for all n 3_l§ and v_l(O) = ﬂGn = ﬂE;.

Proof: Since. Gn = V&n and the interior of a set is open, Gﬁ

is open. Propesition 4.5 implies that ‘E; is peositive invariant and
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Proposition 2,12 implies that 'Gn is positive invariant. From

Proposition 4.6, E; is a neighborhood of. Gn+l and, thus,

Gn+lc G, for all =n > 1.

To show the last property, it is first claimed that ﬂGn = ﬂEr:.
Since each G € G, NG NG . Now let x e NG.. Then, x e G_ for
n n’ n n n n
each n > 1. This implies that x ¢ Gn—l for all n > 1 and thus,
X E ﬂGn for all n. Thus, nE;:c ﬂGn and equality holds. By
Proposition 4.5, v—l(O) = ﬂ{Va: o > 0}. Since ﬂE; Dn{Va: o > 0},
v_l(O) c ﬂq. let x € ﬂ—G;. Then, x € E; for each n. This implies
that x e V for all o_. Therefore, v(x) < o for all: o .
~ on n Y — n n
Since (an) converges to 0, v(x) = 0. Thus, X € v_l(O). Therefore,
1

ﬂ'§c v ~(0). : Thus, v_l(O) = ﬂGn = ﬂar:,. and the proof is complete.

Theorem 4.8: In a normal phase space X, let {Gn: n=1,2,3, ...}

be a sequence of open positive invariant sets such that Gn+l c Gn’
for all n. Then there exists a para-Liapunov function v: X ~ [0,1]

such that:
(1) G e {x: v(x) < L e G L
- ’ —n n-1?
. R -1 . o
(2) ﬂGn = ﬂGn =v 7(0); and

3 X-g6c viay.

Proof: Let Hn _=-G_— G for each n. Since E; 1s clesed

n nt+l
and G is epen, H is closed for each n. For each n,
o+l n

N = (G - - '
Hn+l Hn—l (Gn-l-l Gn+2) n (Gn—l Gn). Suppose that this

interséction is not empty. Then there exists an x such that-

X € Gn+l - Gn+2 and x € 'Gn—l_- Gn. . 8ince x € Gn+l’ X € Gn' Thus,
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X ¢ Gn—l - Gn’_ and this contradiction shows Hn+l N Hn—l- is empty feor

each . n.
It is now claimed that for each n, H NH =23G_. Let
: n-1 n n

X € Hn—l N Hn = (anl - Gn) N (Gh - Gn+1>'

—‘°-= .
x # (Gn) Gn. Thus, x € aGn and Hn-l n Hn c aGn. If x¢ aGn,

Then x € E;; but -

then - x # Gn+l as. Gn+l o Gh and Gn is open. Thus,
X £ Gn - Gn+1 = Hn' Since x € acn, b4 ¢ Gn' Since Gn c Gn—l’
xeG -G =H ,. Thus, xeH N Hn—l and 3G < H/ N Ho 1
Thus, 8G =H N H .. Now consider 5G N 3G fer each n.
n n n-1" n n+l -
0 - - 1 c = .
Since. Gn+l Gn and Gn is open, anl n Gn @. Thus,
aGn+l n aGn =0
Since Hn is a closed set in the noermal space X, Hn is a

normal subspace of X [18, VII, 3.3]. For each n, acn is a closed

subset of H . Since H =G -G, where G . is open, 3G ., 1is a

. 1s a closed subset of H . .
1 n

Define the function v': 3G U 3G > {":L
n n+l n

closed subset of H . Thus, 3G U 3G
n n nt+

1 ' -1

[} n+l} by v (X) a if

: ' 1
' BN — . ] 'y
X € aGn and v'(x) ol if x e aGn+1. Since v is continuous,

there exists a cbntinuous>ex;ension of v' to a function

v': Hn > [ E%I . %~] [18, VII, 5.1]. Now define v: X - [0,1] by

0, 1f x e NG

n

vix) =< v'"(x), if x € UHn
1, if xe¢X-G

Let (a,b) be any open set in [0,1]. Then"

v-l(a,b) = {xe X a<vx) <b}

= U{Gn: a < v(x) <bl.
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Thus, v—l(a,b) is an open set since each Gn is open. Thus, v is

. For

continuous. . Let € > 0, choese n > l-, and let § = L
€ n+l

1 1
v(x) < 6§ = i v X ¢ Gn' Thus, v(xt) :_H-<_€ for all t >0 as G

is pesitive invariant. Thus, v is a para-Liapunoev functien.

To show (1), if =x e E;; then v(x) < This implies that

BSl=B|=

x e {x: v(x) j_%-}. Thus,

1
n

c {x:vv(x) <

1
n-1 *

Thus, {x: v(x) < l-} c G
ey n—

G }. Now let
n .
1

v < nil

and (1) has been shown.

<

x € {x: v(x) <= 1}. Since and this implies

that x € Gn—l' 1.
The proof of statement (2) is as in the prooef of Corollary 4.7.

Statement (3) follows from v(x) =1 if xe X - G Thus, if

1
xe X - Gl’ v(x) = 1 which implies that . x € v_l(l) and, hence,
1

X=-G cv

1 (1). This completes the proof.

Para-Stability

Definition 4.9: A subset M of a phase space X is (positively)
para-stable if and only if M is the'intersectioﬁ of sets Pi

which has the following property: Pi = Gi 0 for suitable open
' n=1 ?
positive invariant sets G, such that G, _ € G, . for all n.
o 1,1 _ i,n+l i,n

Thus, M=NPp, =N (N G, ).
1 i 1 n=1 i,n

each of

Proposition 4.10: Each para-stable set M is the intersection of its
closed positive invariant neighborhoods; in particular, M 1s closed,

positive invariant, and D+(M) = M.

«©
Proof: Let M be para-stable. Then M =N (N Gy n) where
. i n=1 °
Gi n is an open positive invariant neighborhood of M such that for
b

. T e . si c cG, _
each 1, Gi,n+l Gi,n for all n Since M Gi,n Gi,n for all
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i and n, McN (N G, ). Let xeN (N G

). Then,
| 1 p=1 10 i =l DB
X € Gi n for all i and - n. Since for fixed i and any n > 1,
’ (o]
Gi,n C:Gi n1’ X € Gi,n ior all n. Hence, x € g (nzl gi,n)'
Thus, N (N Gi)Cﬂ(ﬂGn)=M. Hence, M=N (N G, ).
1 n=1 o1 i n=1 ’ i n=1 20
Since each Gi n is positive invariant, Proposition 2.12 implies that
3
Gi n is positive invariant. Hence, the first statement has been shown.
? .
That M 1s closed fellows from each Gi 0 being closed.
3

Propoesition 2.11 implies that M i1s positive invariant.

Proposition 3.3 implies that each G is stable and, thus,

i,n
pi@e, )=¢ Since Mc D (M c D (G, )=G _CC is tr
i,n i,n’ ne 5 i,n in  Ti;n s true
forall 1 and m, D (M) N (N G ) =M Thus, D (N = M
y

1 n=1
This completes the proof.

Progosition 4,11: Finite unions and arbitrary intersections of

para-stable sets are para-stable. -

Proof: Let Ml’MZ’ ey Mk be para-stable sets. Then each

—nP 1<3j<k, where P, , = N G, . with the G,
J,1° - - Js1 n=1 J,1l,n jsi,m

as in the definition of para-stability. Then

h|
k k
It is now claimed that U (.N P, ) =N (y Pj i). Let
k =1 1 Y5 a1
xe U (NP, ). Then for some 1l <m<k, xeNP . This implies
. . J,i - - m,1
j=1 i k i
that x e P , for all i and, hence, xe¢ U P - for all 1.
m,i. k 4=1 jsi
Thus, xenN (U P, ,) and set inclusion from the left has been
o1 J.17
‘ 1 j=1- k k
shown. Now let xen (U P, .). Then, x¢ U P, , for all i.
i 3=1. Js1 j=1 Jsd
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This implies that for some 1 <r <k, x Pr for all . 1.

€
g tol
Therefore, x e N Pr 1 and, hence, xe U (N Pj i). Thus, the .
i > j=1 i ’
equality has been established.
k k
Thus, M= U M, is the intersection of sets P, = U P,
j=:|_:l © i j=l J’i
where, for each j, P, ., = N G with each G, ., being an
Joi- o1 dsism Jsi,n
open positive invariant set and. G, G, for all n. As above,
P pk - - K J,i,n+f jsim 7o ’
P. = U n G, . = G, . . Th U G, |, i
1 j=1 (n=1 J,l,n) ngl (JL=Jl Jsl‘sn«) s j=1 jsi,m s an
open pesitive invariant set and
k k , k
U G, . c U G, c U G,
j=1 jsi,ntl j=1 j,i,n+l j=1 j,i,n

for all n. Thus; M is para-stable.

Now let {N%}, be an arbitrary collection of para-stable sets

jeA
and let M=-N M,. Then
jeh.

M= N M,= N (NP Q=N cnen ),

jgeb 3 gen 1 B gen 4 n=r 10107

where each G, 1s -an.open positive invariant set such that

jsi,m
Gj,i,n+l,c Gj,i,n for all =n. Let Pl = g Pl,i’ P2-= g P2,i’ co
Then each Pk’ k =1,2,3, ..., equals nﬂi Gk,i;n where
3

Gk,i,n+l C:Gk,i,n' Thus, M is para-stable, and the proof is cemplete.

Proposition 4.12: If v: X » R+ is a para-~Liapunov functioen, then

v_l(O) is a para-stable GG set.

Proof: Let v be a para-Liapunov functien and the sets Va and

Gn be defined as in Propesition 4.5 and Corollary 4.7, respectively.
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Corollary 4.7 implies that v—l(O) = Gn’ "where each Gn~ is open.
n

positive invariant and Gn C:Gn for all n > 1. Thus, v—l(O) is

+1

G for
n

a G6 set. To show that v-l(O) is para-stable, let Pn

each n. Thus, v_l(O) =N Pn. This implies that v—l(O) is
n .
para-stable, and the proof is cemplete.

Theorem 4.13: Let X be a normal phase space. Then M is para-stable

1

if and only if M =N v; (0) for suitable para-Liapunov functions
i

v,: X » R+.
i
Proof: First, assume that M =N v;l(O), where for each i, v

i
is a para-~Liapunov functien. Proposition 4.12 implies that v;l(O) - is

i

1 (0) 1is

para-stable, and Proposition 4.11 ‘implies that M =N v
i

para-stable.

(o]
Conversely, let M be para-stable. Thus, M =N (N G
i n=1
where each Gi n is an open positive invariant set such that for all
3

i,n)

n, Gn+l c Gn' Theorem 4.8 implies that for each i a para-Liapunov

can be constructed such that v;;(O) = N Gn' Thus,
n=1

(0) as was required. This completes the proof.

function v

M=n v;l
i

i

Corollary 4.14: 1In a normal phase space X, a set. M is para-stable

if and only if M is the intersection gf para-stable G6 sets.

Proof: First, assume that M 1is para-stable. Theorem 4.13

implies that M = nv;l(O) where each v, 1is a para-Liapunov function.

i
Proposition 4.12 implies that each v;l(O) is a para-stable G6 set.
Thus, M is the intersection of para-stable G6 sets. Conversely,

let . M equal the intersection of para-stable G6 sets, . Gn'
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Proposition 4.11 implies that M is then para-stable. This completes

the proof.

Lemma.4.15: For n = 1,2,3, ... let v X » [0,1] Dbe para-Liapunov
functions and let a > 0 be constants such that ’EZan < 4o, Then,

Zaanvn is a para-Liapunoev function.

Proof:. First, it will be established that if vy and v, are

para~Liapunov functiens, then avy, o >0, and vy + v, are

para-Liapunov functions. Let a > 0 and let € > 0 be given. Since

v, 1s a para-Liapunov function, there exists a § > 0 such that if

1
vl(x) < §, then vl(xt) <€ for all t > 0. Thus, for € > 0, let

] '

e = , and &' = o8, where § is determined by € and v.. Then,

1
if vl(x) < 8" = as, vl(x) < €. Thus, vl(xt) <e' = %—. Thus,

oM

uvl(xt) < ¢ and avy is a para-Liapunov function.
Now let € > 0 be given. Then for (1/2)e > 0, there exists

61 >0 and 62 > 0 such that vl(xt) < (1/2)e 1if vl(x) < 61 and

v2(xt) < (1/2)e if vz(x) < 62. Let 6§ = 2 max(él,éz). Then for this
s, vl(Xt) +,v2(xt) < (1/2)e + (1/2)e = € and vyt v, is a

para—LiapunOQ function. This proof also serves as the first step for an
inductive proof of Ziunvn being a para-Liapunov function. Thus,
assume zaunv is a para-Liapunov function for all n < k. Consider

1%1 ‘ k+1 k+1l
o V_. Since :2 a vV, = aqVvy + zz @ Vs the inductien hypethesis

n=l 1% ktl n=1 % n=2

implies that ZS a v, is a para-Liapunov function. By the proof fer
~ ktl n=2

vy + Vs o v, is a para-Liapunov function. Thus, for all n,

n=1
Zaanvn is a para-Liapunov function and this completes the proof.
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Theorem 4.16: Let X be a regular Lindelof phase space and M < X.

Then the following properties are equivalent:

(1) M 4is a para-stable GG set;

(2) M= N Gn’ where each Gn is an open positive
n=1
invariant set.and G € G ; and
nt+l n
(3) ™ ='V—l(0) for some para-Liapunov function wv.

Proof:. First, it will be shown that (3) implies (2). Using the
results and notation of Proposition 4.5 and Corollary 4.7, V—l(O) = nGn

where each Gn is open, positive invariant, and Gn

4+ € Gn' Thus,

since M = v_l(O), M= ﬂGn.

To show (2) implies (3) note that X regular and Lindelof implies
X 4is para-compact and, thus, normal [18, VIII, 6.5 and 2.2]. Thus,
Theorem 4.8 implies that there exists a para-Liapunov function v such
that v_l(O) = nGh = M,

That (3) implies (1) is precisely Proposition 4.12. It remains to
show (1) implies (3). Let M be para-stable and M = ﬂHn, where each
Hn is open. Fix n and let x¢e X - Hn' Since X is normal and M
is para-stable, the conditions of Theorem 4.13 are satisfied. Thus,
for each x e X - Hn, there exists a para-Liapunov function vn such
that v : X -+ [0,1], Mc v;l(O), and vn(x) > 0. To see that
vn(x) > 0, note.that the sets Hn contain the sets Gn in the
construction of Theorem 4.8 and vn(x) = 0 only on ﬂGn C:Hn’ Since
xe X - Hn’ vn(x) > 0. For each x e X - Hn’ let Ax = {x: vn(x) > 0}.
Thus, |

X-H e U A.
xeX-H ¥
n
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Since each Ax is open,

U A
xeX-H x
n

is an open cover of X - Hn' Since Hn is open, X - Hn is clesed
and, hence, is Lindelof [18, VIII, 6.6]. Thus, there exists a countable

subcover for X - Hn. This subcover determines a family of para-

Liapunov functions {v__: m =1,2,3, ...} such that Mc v;i

m (0) for

each m. For each x e X - Hn, there exists an m such that
vnm(x) > 0. Let the function v be defined by
v(x) = 22 2_(n+m)vnm(x). Since for each x ¢ M = ﬂHn there exists
n,m=1
a m such that vnm(x) >0, v(x) >0 for =x é M. Since
ZS 2—(n+m) < +», Lemma 4.15 implies that v 1is.a para-Liapunov

n,m=1 -1 -1
function. Since McC vnm(O) for all n and m, Mec v (0). To show

v—l(0)<: M let x é M., Then v(x) > 0 which implies that x é v'-l

(0).

Thus, M =\V-l(0) - as was to be shown. This completes the proof of the

theorem.
Stability and Para~Stability

Example 4.3: In the flow (RZ,W) defined by the system of differential

equations

X.= —Xy

x-1- y2, if x>0

~-x -1 - y2, if x<0

<
]

(see Figure 12), the y-axis is para-stable but not stable. The

para-stability of the y—-axis follows from letting Gi n® for all n, -
3

be the interior of the set formed by the trajectories Yy and Yi.
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X

Figure 12. The Phase Space of Example 4.3.
Each G is open and positive invariant and P, = N G, =G, .
i,n i n=1 i,n i,n

The y-axis equals q P, and Gi,n c Gi,n-l'

is para-stable. Let U = {(x,y): -1 < x < 1}, Thus, U is a

This implies the y-axis

neighborhood of the y-axis that contains no positive invariant

neighborhood of the y-axis. This implies that the y—axis is not stable.

Example 4.4: Stability does not imply para-stability since any open
positive invariant set M 1is stable, see Proposition 3.3. But

Proposition 4.10 ihplies that any para-stable set must be closed.

Example 4.5: In Example 2.2, every disk is both stable and para-stable.

Theorem 4.17: If X is normal and M is a closed stable set, then

M 1is para-stable.
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Proof: Let Ui be any open neighborhood of M. Thus, X - Ui is
closed. Since X 1is normal, there exist disjoint open neighborhoods

V, and W, of M and U respectively. Since M is stable, there

i i i’
exists an open positive invariant neighborhood Gi 1 of M such that
) ‘9
Gi,ljc vV, < Uy, and Gi,l N W, = @. Thus, 'Gi’.l CU;. Since Gi,l is

an open neighborhood of - M, there exists an open positive invariant

neighborhood Gi,2 of M such that Gi,Z'C Gi,l’ Continuing in this
manner, we obtain a sequence of open positive imvariant neighborhoods
0
Gi,n of M with Gi,n+l C:Gi,n' Let Pi = nzl Gi,n' Then,
- Mc Pi c Ui' Since Ui was arbitrary, we have M CN Pi’ where each
o i
Pi =N Gi n To show N Pi C M, suppose that there exists an x in
3 .

n=1 i

N Pi such that x ¢ M. This implies that there exist open disjoint
i

neighborhoods V' of M and W' of x. But since V' 4is an open

neighborhood of M, V' is one of the U;. Thus,

Ne, =N (N G,

. 1 B 1

i i n=1

contradiction shows x € M and, thus, N Pi c M. Hence, M =N Pi’
i i

and M 1is para-stable. Thils completes the proof,

n) C V', This implies that x € V'. This

]

Theorem 4.18: Let X be locally compact and Hausdorff and let M be
a .closed set with the compact boundary. Then the following are

equivalent: -

(1) M is stable;
(2) M 4is para-stable; and

(3) M=n0n@.

Proof: That (1) and (3) are equivalent is Ura's Theorem.
Proposition 4.10 shows that (2) implies (3). To complete the proof, it

will be shown that (1) implies (2). Let M be stable and Ui any open -
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neighborhood of M. Since X 1is locally compact and Hausderff, X '1is

regular. Thus, there exists a neighberhood Vi of M such that-

\G_C Ui' The stability of M. implies that there exists an open
positive invariant neighbeorhood Gi 1 of M such that Gi l<: v.
’ b
Thus, G € U,. Since. G, is an.open . neighborhood of M, there
i,1 i - i,l
exists a neighborhood Vi,l of M such that 1,1 C:Gi,l' Thus, there
is a positive invarilant neighboerhood G, of M such that

i,2

G, ,CV, .C G, ,. Continuing in this same manner, we have, as in
i,2 i,l i,l :
Theorem 4.17, a sequence of open.positive invariant neighborhoeds Gi n

»

of M such that G, ., C G, . As in the proof of Theorem 4.17,
i,ntl i,n
M=N Pi where Pi = N G . Thus, M 1is para-stable as was te be
i n=1 :
shown.

Theorem 4.19: Let X be para-cempact, locally compact, and M a

closed G, set with compact’boun&ary. Then M 1is stable if and only

$
-1

if. M='v ~(0) for some pafa—Liapundv function wv.

Proof: First, assume that a para-Liapunoev function v exists such

l(O).~ Propositien 4.12 implies that v_l(O) is para-stable

that M= v
and Theorem 4.18 implies that v_l(O) 1s stable. Thus, M dis stable.
Conversely, let M be a stable set. Since X 1is para-cempact and

locally compact, it follews that X =UX:.L where each X, is 0-compact,

i
open, and Xi N Xj =@¢ for 1+ 3 [18, XI, 7.3]. Since, for each i,
Xi is o-compact, X:L is Lindelof and locally compact [18, XI, 7.2].

Hence, each X, is regular [18, XI, 6.4 and VII, 7]. It is now
claimed that each Xi is invariant. . For suppose that there exists
y € C(Xi) - Xi. Then there exists x e X, and t e R such that

y = xt é,Xi. The opernness of X, implies that X N oK, = @, that is,

i
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X, N U (X,) =@. Also, since each Xj’ j#1i, is open, U X, 1is

g it
open and U X, N X, =@. Thus, X, and U X, are separated sets
. 3 i i .
j# j#i

and C(x) has points in each of the sets. This is a contradiction of
C(x) being a connected set and, hence, there does not exist a

y € C(Xi) such that vy ¢ Xi' Thus, C(Xi) = X, and Xi is invariant.

i
Since M is stable, Proposition 2.35 implies that M is positive

invariant. Proposition 2.10 implies that X, N'M 4is positive

invariant. Since X, =X - U X, and U X, is open, it follows
j#L 3 i
that X, is closed. Thus, X, NM 1is closed and X, NM= X, n (N Gn),

where each Gn is open since M 1is a GG set. Since Xi is also
open, Xi NM is a GG set  in Xi' Since' Xi 1s open and invariant,

Xi is stéble according to Proposition 3.3. Thus,-the.stability of Xi
and M implies that Xi N'M 1s stable in the dynamical system
relativized to Xi'

Since oM 1s compact and the Xi are disjoint, dM - intersects
at most'a finite number of the Xi. For if not, then the infinite open
covering of oM by the Xi would not reduce to a finite subéovering

of 9M, which contradicts the compactness of M. Thus,

I={4: Xy N 3M # @} has cardinality less than +. If j ¢ I, then

Xj open and Xj N 3 =@ imply that X.j N M 'Xj n m°. Thus,-vXj,ﬂ M

is open in Xj' Also, Xj.ﬂ M 1is closed in Xj since Xj and M
are closed in - Xj' Since . X.j 1s regular and Lindelof, Xj is normal
[25, page 113]. Thus, there exists a continuous function Vj:'xj - R%
such that _vj(x) =0 1f =x-¢ Xj N M and vj(x) = 1 if X € Xj - M
[18, VII, 4.1]. If 1€ I, then X, N 3M # @, that is, X, N M+ ¢,
Since xi‘n M 1is stable, Theorem 4.18 implies that- Xi NM is

para-stable. Since, from above, Xi NM is a GG set, Theorem 4,16
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implies the existence of a para-Liapunov functioen v, ¢ Xi -+ R+ such
-1

that Xi NM= vy (0). Now define wv: X > Rf by v(x) = vi(x) if

X € Xi, i=1,2,3, ... . Since each v, is continuous, Vv is
continuous.

To show M = v_;(O),' let x'e M. Since M = U(Xi n,

L0) and,

0 and MC v'l(o). Now

X € Xi NM for some 1. If i e I, then x ¢ v;l(O) cv
1

thus, M C v

let x ¢ v_l(O). If x ¢ Xi’ i e I, then v(x) = vi(x)

(0). "If i4¢ I, then v, (%)

0 and

this implies, by the definition of v that x e X, NMcM. If

1°
xe X, 1 ¢ I, then v(x) = vi(x) =0 implies x ¢ X, N M c M. Thus,
xe M and v_l(O) € M. Hence, M=v “(0)."

It remains to show that v 1is a para-Liapunov function. It has
been established that v 1s continuous and that for each 1 ¢ I, 7
is para-Liapunov. If i ¢ I, then for x € Xi’ X € Xi N M or
X E‘Xi - M., If xc¢ Xi A M, then v(x) = vi(x) = 0, For any € > 0,
let 6 = é. If vi(x) < 8§, then vi(Xt) = 0 <e. That vi(xt) =0
follows from the fact that Xi A M is positive invariant. Thus,

Xt € Xi A M and vi(xt) =0, If xe X, - M, then v(x) = vi(x) =1,

i
Since X, dis invariant, xt ¢ X; for all t > 0. Thus, xt e X, n M

i i
or xt e X, - M. If for some t' >0, xt' e X, NM, then
xt € X, N M for all t2>t' since X, N M is positive invariant.
let € >0 and let &§ =€, If vi(x) < § = €, then "vi(xt) < e for
all t > 0. For if 0 <e <1, then the result follows vacuously. If
1l <e, then vi(x) < § = ¢ by definition of =x'e Xi - M. Thus,

vi(xt) is either 1 or 0 and vi(xt) <€ for all t > 0.

Therefore, for i ¢ I, w is a para-Liapunov functien. Since each v

i i
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i=1,2,3, ..., 1is a para-Liapunov functien, v is a para-Liapunov

function, and the proof is complete.

Theorem 4.,20: Let X be normal and M a clesed set. Then, M 1is

gstable if and only if, for every neighborheod U of M, there exists

1

a para-Liapunov functien v: X - [0,1] with MC v ~(0) and

1

X-Uecv (1),

Proof:. First, assume that M is stable and let: U be any
neighborhood of M. Since X is normal, and M is closed and stable,

a sequence of open positive invariant neighborhoods Gn of M can be

constructed, as in Theorem 4.17, such that G cG €6, &U.
~ nt+l n 1

Theorem 4.8 implies that there exists a para-Liapunov function
v: X - [0,1] such that ﬂGn = v-l(O) and X - Gl«: v_l(l). Since
Mc Gn for all n, MCﬂGn=.v_l(O). Since»GlCU,
X—UCX—GlCV_l(l).

Conversely, let U be any neighborhood of M., Then there exists
a ?ara—Liapunov function v: X - [0,1] with Mc v-l(O) and

X-Uc v_l

(1). By definition of v, for € = 1 there exists a

§ > 0 such that if v(x) < §, then v(xt) <e =1 for all t > 0.
Let V = {x: v(x) < 8}. Thus, for x e V, v(xt) <1, for all t > O.
This implies that xt ¢ X - U. Thus, =xt e U. This implies that -
C+(V) c U. Since McC v_l(O), Mc Ve C+(V).’ It remains to show

Me V°., For if not, then there exists an x such thaﬁ x € M and
x.€ V. Thus, there exists a net (yi) in X - V such that (yi)
converges to x. Thus, v(yi) converges to v(x) = 0. This implies

that v(yi) is ulfimately less than & and this implies vy € V.

. R + . - .
This contradiction shews M C V°, Thus, C (V) is a pesitive invariant
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neighborhood of M such that C+(V)c: U. Since U was. arbitrary, M

is stable, and the proof is cemplete.

Theorem 4.21: Let X be normal and M a closed set. Then M is a

stable G, set if and oenly if, fer every neighborhood U of M, there

)
exists a para-Liapunov function wv: X - [0,1] such that M = v_l(O)
and X -UC v_l(l).

Proof: Let M be a closed and stable G, set and U any

S

neighborhood of M. Then M = ﬁHn where each Hn is an open

neighborhood of M. Since Hl and U° are open neighborhoeds of M,

Hl N U° 4is an open neighborhood of M. Since M is clesed and X 1is

normal, there exists an open set Vl such that MC Vl c Vl c Hl n ve.

Thus, since M 1is stable, there exists an open pesitive invariant

1 16

Gl and H2 are open neighborhoods of M, H2 n Gl is alsoe an open.

neighborhood of M. Thus, there exists an open set V2 such that

Hence, there exists an open positive invariant

neighborheod G, of M such that Mc G cVe Hl N U°. Since

Me V2c V2 1

set'G2 such that_McGZCGZC Vchzﬂ G

c H2 ne

1° This implies that

G2 c:Gl. Continuing in this same manner, a sequence Gn' of open

positive invariaht neighborheeds ef M can be constructed such that

G CG. Since Mc G for all n, McNG . To show NG c M let
n+l n n n : n

X € ﬂGn. Then, x € Gn for all n. By the construction of the Gn,
xeH for all = and, hence, x e,ﬂHn =M. Thus, M= nGn. Also,

Theorem 4.8 implies that there exists a para-Liapunov function -

v: X -~ [0,1] such that ﬂGn = v-l(O) and X - Gl_C:v-l(l). Since

M= ﬂGn, M= v-l(O). Since Gi c U, it follews that

X-Uc X - Gl < v—l(l). Thus, the first assertion is cemplete.
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Conversely, let U be any neighborheed of M. Then there exists
a para-Liapunov function v: X - [0,1] such that M = v—l(O) and

X-Uc¢ v-l(l). Propesitien 4.12 implies that v-l(O) is a G, set

$

and, hence, M 1is a GG set. The proof that U contains a positive
invariant neighborhood C+(V) of M 1is precisely the proef used in
Theorem 4.20. Thus, M 1s a stable GG set. This completes the

proof.

In this chapter the relatienships between stability, para-stability,
and para-Liapunov functions have been examined. Due to the recent
introductien of para-stability, the only reference that can be given is
[22]. The relationships between stability and Liapunov functions can be

found in (7], {14], [21], [27], and [28].
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