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PREF ACE

The principal goal of this research is to extend the
existing theory of solution procedures for pure integer
linear programming. This study is concerned with the devel-
opment of a new algorithm for solving the pure integer
linear programming problem. The procedure presented in this
thesis uses combinatorial search methods to find the solu-
tion to the problem. A family of objective function hyper-
planes is examined until an integer solution is found.
Beginning at the optimum noninteger solution, the algorithm
inspects parallel objective function hyperplanes in the
feasible solution space.

Additional, secondary problems are considered in this
research. These are (1) to identify any heuristic proce-
dures that will speed the convergence of the algorithm,

(2) to develop a procedure for finding a good approximate
solution to the problem, and (3) to write a computer code
to evaluate the algorithm. One stage of the algorithm pro-
poses a ranking scheme for the variables to potentially
eliminate many combinatorial solution possibilities from
explicit consideration. A heuristic method of ranking is
developed for a certain class of problems. This heuristic

method allows the algorithm to take full advantage of



techniques that speed convergence. A technique is examined
for finding an approximate solution to the pure integer
linear programming problem. Also, this procedure can be
used to establish a lower bound on an objective function
that is to be maximized. A computer code is presented for
further evaluation of the algorithm and any refinements or
additions that may be considered,

The members of my doctoral advisory committee have
given generously of their time and effort throughout my
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gave direction throughout the research and preparation of
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search objectives. ‘He provided an overview that added sig-
nificantly to the continuity of this research. Dr. M.
Palmer Terrell carefully reviewed this research as it devel-~-
oped. His perception added immeasurably to the accuracy and
composition of this thesis. Dr. David L. Weeks gave direc-
tion and insight to my graduate study in statistics. His
ability to find the central issue of any logic continually
challenged me to reason clearly.
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tions of Dr. James E. Shamblin during our years of work
together. He provided the opportunity to do research in
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the motivation to make this thesis possible.
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NOMENCLATURE

a coefficient in the ith constraint for the original
problem variable, x;.

a coefficient in the ith constraint for the ranked
variable, y;.

the right-hand side value of the ith constraint.
the temporary right-hand side value of the ith
constraint.

an objective function coefficient for variable x;.
It must be integer.

an objective function coefficient for variable y;.
It must be integer.

the greatest common divisor of the coefficients in
the objective function.

index for number of functional constraints.

a key word indicating all successive subscripts in
the ranking > IFLAG have even coefficients.

index for number of variables.

a superscript indicating a lower bound.

the number of functional constraints in the problem.
That is, the nonnegativity constraints are not
counted in m.

a key word indicating a maximization problem when it
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MEPR

u
ME DR
Z*

Zy,

ZOF

equals one, indicating a minimization problem when
it equals zero.
the number of problem variables, not including the

slack or artificial variables.

‘the range of a variable x; in the original problem.

the range of a variable y; in thé ordered ranking of
the variables.

an optimum continuous value for a variable.

an optimum integer solution vector.

a solution vector.

a problem variable.

a lower integer bound on variable x;.

an upper integer bound on variable x;,.

an optimum integer value for a ranked variable.

an optimum integer solution vector in terms of
ranked variables.

a solution vector in terms of ranked variables.

a rgnked variable.

the lower integer bound on ranked variable y,.

the upper integer bound on ranked variable y,.

the temporary lower bound on the jth ranked variable.
the temporary upper bound on the jth ranked variable.
a value of the objective function.

the value of the objective function at the optimum
integer solution.

a temporary value of the objective function.

the value of the objective function that is being



searched for a solution.
Z5TM the value of the objective function for the
simplex linear programming solution.

ZSUBT a temporary value of the objective function.



CHAPTER I

INTRODUCTION

The subject of pure integer linear programming is
approximately fifteen years old. Even though a great amount
of successful work has been done when the problem variables
can take on continuous values, the area of integer program-
ming is still difficult in practice. Many early algorithms
suggested cutting-plane methods that added new constraints
at each iteration. Later, branch-and-bound techniques were
developed to solve the integer programming problem. Enumer-
ation schemes and heuristic techniques have been examined as
possible solution procedures. While most algorithms offer
convergence in a finite number of steps, in practice finite
can often be very large.

Many situations of both industrial and theoretical
importance can be formulated as an integer linear program-—
ming problem. Problems involving equipment utilization,
labor allocation, capital budgeting and others require that
the variables can take on only integer values. Therefore,
integer linear programming has offered the promise of
solving several operations research models. The algorithms
available to date have not always been able to fulfill the

promised solution. Some algorithms are only useful on



certain limited problems. In any of the algorithms, certain
examples can be devised that require approximately an equiv-
alent amount of effort as complete enumeration of the feasi-
ble solutions.

So, the paradox exists. Integer linear programming has
offered the solution to many problems of operations research,
while the available algorithms have provided only limited
practical success. The research of this thesis explores a
new, potentially useful method of extending the analysis of
integer linear programming. This algorithm can provide a
pure integer programming solution or a good approximate
solution with a lower bound on the maximand. Even though
the exact solution is important, an approximate solution
greatly increases the efficiency of some optimal algorithms.
Hillier (14) indicates the great importance of good approxi-
mate solutions in integer linear programming problems.

The difficulties associated with solving the integer
linear programming problem can be enormous. Constrained
optimization problems often imply a finite solution space
exists. Nevertheless, the potential combinatorial possibil-
ities can be great even in problems with a moderate number
of variables and constraints. It is no wonder that some
early thinkers concluded the problem was impossible to
solve.

Complete enumeration quickly becomes impractical, since
each combinatorial possibility within the solution space

must be tested for its feasibility and must have the



objective function value tested. Because of the efficiency
of the simplex method, a common procedure in practice is to
solve the problem for the optimal noninteger solution and
then use a rounding procedure to obtain an approximate solu-
tion. On certain problems, this technique can lead to solu-
tions far from the optimum integer solution. Wagner (30)
and Hillier and Lieberman (16) present examples of how
rounding can sometimes lead to poor solutions. The possi-
bility of rounding the optimal noninteger solution to simply
a feasible solution can be a difficult problem when dealing
with several constraints in a multispace system.

The method of searching the feasible integer solution
space must be intelligently structured or certain problems
could not be solved in several lifetimes. For example, if
a problem contained only 25 variables and each could take on

2%° = 33,554,432 possible combina~

only two values, then
tions exist. Any practical algorithm must take advantage of
techniques to avoid complete enumeration and examination.

The algorithm developed in this research takes advantage of

several methods that implicitly examine and eliminate a

large number of possible solutions.

Objectives

The primary goal of this research is to extend the
existing theory of solution procedures for pure integer
linear programming. In particular, a new algorithm for

solving the pure integer linear programming problem is



developed. Additionally, other objectives are (1) to iden-
tify any heuristic procedures that will speed the conver-
gence of the algorithm, (2) develop a procedure for finding
a good approximate solution to the problem, and (3) write a
computer code to evaluate the algorithm. To meet these
objectives, this thesis presents an algorithm that uses
combinatorial search methods to find the solution to the
pure integer linear programming problem.

Heuristic procedures can point the way to obtaining
more insight into the structure of a solution technique.
Also, they can often be used to speed convergence of an
algorithm. Since computational efficiency is a prime con-
sideration in integer programming, heuristic procedures can
frequently be used to move the algorithm quickly to the
solution.

Many integer linear programming algorithms can benefit
from a good approximate solution. Hillier (14, 15) de-
scribes the importance of finding methods that will provide
near optimum solutions. Oftentimes, large problems with a
great many variables and constraints can only be economical-
ly solved with approximate procedures. Therefore, a method
for finding a good approximate solution of the integer
linear programming problem will be investigated in this
research.

To be able to evaluate the solution procedure described
in this thesis a computer code is required. Problems of

practical and theoretical importance often involve several



variables and constraints. A computer code is essential to
solve large problems. Also, it provides a useful method for
evaluating modifications and variations in solution proce-
dures. A brief summary of the main concepts of the algo~
rithm deveioped in this research is given in the following

section.

General Concepts of the Objective

Function Reduction Algorithm

The objective function reduction algorithm seeks a
solution to the pure integer linear programming problem.

The problem can be expressed in cannonical form as follows:

n
maximize z = z Cy Xy (1-1)
j=1
n
subject to z a;; Xy <b;y for i =1, 2, ..., m (1-2)
j=1
xy 20 for j =1, 2, «.., n (1-3)
xy, ¢; INTEGER for j =1, 2, ..., n. (1-4)

It is assumed that the set of constraints of Equations (1-2)
and (1-3) bound the solution space. The nonnegativity
requirement of Equation (1-3) is not neceSsary for the con-
ceptual approach developed in this research. Nevertheless,
this is a typical and often a necessary condition in a

practical problem. The algorithm restricts the objective



function coefficients to integers, while the coefficients in
the constraints and their right-hand side values may be non-
integer. Constraint coefficients and objective function
coefficients are not restricted as to sign and may be nega-
tive or positive.

Very generally, the objective function reduction algo-
rithm moves through a family of parallel objective function
planes within the solution space, away from the optimal
noninteger solution, until a feasible integer solution is
found, which is the optimal integer solution. The basic
flow of the logic of the algorithm can be described in four
stages. Stage 1 requires that the simplex method be used
to find the optimal continuous-variable solution. If this
solution is all-integer, the algorithm stops. Otherwise,
the algorithm requires knowledge of the value of the objec-—
tive function at the optimal noninteger solution. The next
part of Stage 1 is to identify the bounds on each problem
variable, as defined by the functional and nonnegativity
constraints. If n is the number of problem variables, then
this can be done by solving 2n linear programming problems.
These linear programming problems are subject to the func-

tional constraints and have objective functions of the form
maximize Z = X (1-5)
and,
minimize z = X (1-6)

for each j, j =1, 2, ..., n. In practice these bounds can



be found reasonably fast. They may be readily known from
experience of working with the problem. Minimization prob-
lems with only greater-than-or-equal~to constraints must
have a finite upper bound defined for each variable. These
bounds become integer bounds when the quantities found in
Equation (1-5) are selected so the upper bound on the vari-
able is the greatest integer less than or equal to x;.
Similarly, the lower integer bound on each variable is
selected such that it is the least integer greater than or
equal to x; found in Equation (1-6).

Stage 2 examines the coefficients of the objective
function. Using concepts from the study of linear
Diophantine equations and the theory of numbers, the
greatest common divisor of the objective function coeffi-
cients is found. Assuming a maximization problem, the value
of the objective function as found with the simplex method
in Stage 1 is rounded down to the greatest integer that has
the greatest common divisor as a factor.

Stage 3 determines how the variables should be ranked
so the search of Stage 4 will implicitly examine and exclude
several solutions. Also, Stage 3 identifies any successive
sequence of objective function coefficients in the ranking
such that all succeeding values are even integers. This
sequence of even coefficients is used to take advantage of
additional concepts of linear Diophantine equations.

The final stage, Stage 4, is the heart of the implicit

search of the feasible integer solution space. Again



assuming a maximization problem, the first variable in the
ranking of Stage 3 is set at its upper bound. The objective
function is set equal to the integer value determined in
Stage 3, giving an upper bounding hyperplane on the maxi-
mand. Using the objective function and the functional con-
straints, new, potentially tighter bounds are found on the
next variable in the ranking. This next variable in the
ranking is then set at its new upper bound. This process of
finding tighter upper and lower bounds continues until the
algorithm finds it can take advantage of some concepts of
linear Diophantine or the next to last variable in the rank-
ing is reached. Using the objective function and the held
value of the variables, the value of the final variable in
the ranking is calculated. If this solution is integer, its
feasibility is tested in the functional constraints. If the
final variable is noninteger or an all-integer solution is
found infeasible, then the algorithm backtracks through the
ranking until it has expliqitly or implicitly examined each
combinatorial possibility for a particular objective func-
tion value. The first feasible integer solution found is
the optimum integer solution for the problem. When all
solutions have been considered for the first objective func-
tion value, and no feasible solution has been found, then
the objective function is incremented down one greatest
common divisor increment. The algorithm returns to the
beginning of Stage 4 to examine the possibility of a feasi-

ble integer solution on a new, reduced hyperplane.



Some of the essential concepts of the objective func-
tion reduction algorithm can be introduced with a simple
two-variable example. The following section describes such

an example.
A Two-Variable Introductory Example

One advantage of a two-variable example is the solution
space can be easily visualized. The simplicity of finding
the solution in two dimensions often indicates a particular
search technique will be very valuable. When several vari-
ables are considered, that is, the problem is multidimen-
sional, the satisfactory techniques of two dimensions often
become tedious and ineffectual. Nevertheless, because of
the visual properties of a two-dimensional example, it is
useful to fall back on to point out some of the features of
an established algorithm, such as the one developed in this
research.

Consider the following two-variable example:

maximize z = 8 x1 + 10 x2 (1-7)
subject to 7 x1 + 5.5 x2 < 38.5 (1-8)
b5 x1 + 8 xz < 36.0 (1-9)

x; >0 for j =1, 2 (1-10)

1, 2. (1-11)

i

Xy, ¢y INTEGER for

Figure 1 shows how the constraints bound the solution area.
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N 7x; +5.5%, = 38.5
' (CONSTRAINT ONE)

NOTES:
(1) OPTIMUM NONINTEGER SOLUTION, x =(3.52, 2.52)
(2) OPTIMUM INTEGER SOLUTION, x*=(2,3)

Figure 1. Two Variable Introductory Example
Problem
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The Stage 1 analysis of the algorithm determines first
the optimum noninteger solution of the problem. As shown in
Figure 1, the optimum noninteger solution is
x = (x1, x2) = (3.52, 2.52). Since this solution is not
all-integer, the algorithm continues its search for a feasi-
ble integer solution. The value of the objective function,
Equation (1-7), at the optimum noninteger solution is
z = 53.36. By inspecting the constraint boundaries of
Figure 1, the maximum over-all integer bounds of the problem
variables can be found. Therefore, the upper and lower

integer bounds can be defined by the inequalities

0<x2 <5 (1-12)
and

0 < x2 < L, (1-13)

Stage 1 says the objective function at the optimal non-—

integer solution is
z = 8 x3 + 10 xz = 53.36. _ (1-14)

This would be a straight line parallel to the objective
function equation shown in Figure 1, intersecting the opti-
mum noninteger solution at x = (x1, xz) = (3.52, 2.52).
Since this solution is not integer optimum, the optimum
solution must lie on some parallel objective function line
below the maximum described in Equation (1-14). Also,

notice that the c; coefficients are restricted to integer

values. Therefore, the left-hand side of the objective
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function must equal some integer value, since the product
and sum of integers must be an integer value. To force the
right-hand side of the objective function to an integer
value, it seems justifiable to round Equation (1-14) down to

the greatest integer below 53.36 to get the equation
z =8 x + 10 x2 = 53. (1-15)

Using the methods that will be explained in Chapter III,
Stage 2 calculates the greatest common divisor of the coef-
ficients (cJ) in the objective function, Equation (1-7).

For this simple introductory example problem, the greatest
common divisor can be determined by inspecting the coeffi-
cients ¢; = 8 and c2 = 10 in Equation (1-7). It can be seen
that the greatest integer that will divide evenly into 8 and
10 is the number 2. Therefore, the greatest common divisor
for the objective function is 2.

As will be shown in Chapter III with the study of
linear Diophantine equations, no integer solution is possi-
ble for Equation (1-15). The optimum noninteger solution
value must be rounded down until it has the greatest common
divisor as a factor. That is, begin the recursive search
for a feasible integer solution with the first reduced

objective function being
z = 8 x1 + 10 xz = 52. (1-16)

The greatest common divisor, 2, divides evenly into the

integer wvalue z = 52. This says there is at least one
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integer solution to this objective function., If this
integer solution is within the solution area, as defined by
the functional and nonnegativity constraints, the optimum
solution has been found. Otherwise, the optimum solution
must be located on a further reduced objective function
parallel to Equation (1-16). Stage 2 is complete when z =52
of Equation (1-16) is found.

In Stage 3, the variables are ranked or ordered accord-
ing to the number of feasible integer possibilities each
variable can take on. Equations (1-12) and (1-13) describe
the lower and upper bounds on each variable. Variable x;
can take on six integer values, while variable xz can take
on five integer values. As described later in Chapter IV,
the ranking scheme is to assign the variable with the
tightest bound the highest ranking position. A new symbol,
¥y, will be used to indicate a ranked variable. Therefore,

the direct change of variables will give

Y1 = Xz (1-17)
and,
V2 = X1. (1-18)

Therefore, the bounds on the ranked variable are

0<yL <4 (1-19)
and,

0 <yz <5. (1-20)
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Based on the change of variables given in Equations
(1-17) and (1-18) a new problem described in terms of the
 ranked variables (y;) is defined. This new problem will be
solved using the objective function reduction algorithm. To
avoid notation difficulties, it is often convenient to think
completely in terms of the ranked variables and the new
problem. Later, the variables canbe returned to their origi-
nal form. The new problem, written with ranked variables,

is

maximize z =10 y; + 8 ya2 (1-21)
subject to 5.5 y1 + 7 y2 < 38.5 (1-22)
8 y1 + 4.5 y3 < 36.0 (1-23)

(1-24)

1]
oy
[\s]

y; 20 for j

A
¥y, ©; INTEGER for j 1, 2. (1-25)

Figure 2 shows how the ranked constraints bound the solution
area.

An additional requirement of Stage 3 is to identify any
successive sequence in the ranking such that all succeeding
coefficient values in the objective function are even inte-
gers. Equation (1-21) shows that both coefficients in the
objective function are even integers. The algorithm records
and potentially uses this fact. From the theory of numbers
and linear Diophantine equations, the algorithm uses a

rather simple observation. If during any part of the



8y, + 4.5y, = 36
(CONSTRAINT TWO)

e \
\
AN
\ .\\\(/‘Z=|OY|+8Y2
\
e N\
\
\

5.5y, + Ty = 38.5
\ (CONSTRAINT ONE)

AN

1 >
O 2 4 6 8 10 Yi

NOTES :
(1) OPTIMUM NONINTEGER SOLUTION, y =(2.52,3.52)
(2) OPTIMUM INTEGER SOLUTION, y* = (3,2)

Figure 2. Two Variable Introductory Example
Problem With Ranked Variables

15
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search, the objective function is given a value that is an
odd integer, while all coefficients are even, then no inte-
ger solution can exist for that equation. Consequently,
several solutions can be implicitly examined and eliminated.
As stated before, Stage 4 is the heart of the objective
function reduction algorithm. Using the ranking scheme and
the bounds found earlier, the first variable in the ranking

is set at its upper bound. Therefore, set
Y1 = l.l-. (1—26)

From Stage 2, the first reduced objective function value to

be examined is
z = 10 y1 + 8 y2 = 52. (1-27)

In a problem involving several variables, the held value of
yv1 (y1 = 4) would be substituted into the reduced objective
function and the functional constraints. Obviously, with
one variable held at a fixed value, the right-hand side of
the constraints and the reduced objective function value can
be modified. As Figure 2 shows, when the variable y; is
held fixed at y1 = 4, the constraints will provide tighter
bounds on the next variable the ranking, yz. With y; = 4,
the functional constraints of Equations (1-22) and (1-23)

indicate tighter bounds on yz. That is,
5.5(4) + 7 y2 < 38.5 (1-28)

8(4) + 4.5 y2 < 36.0 - (1-29)
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and this leads to
vz < 2.35 | (1-30)
from constraint one, and
yz < 0.88 (1-31)

from constraint two. This is shown clearly in Figure 2.

The minimum value from Equations (1-30) and (1-31) provides
a new, temporary upper bound on yz. This means that yz must
be no greater than the greatest integer less than or equal

to y» < 0.88 from Equation (1-31). Therefore,

y2 <0 (1-32)

is a new upper bound on the rnext variable in the ranking.
This procedure has reduced the number of possible values to
examine.

With only two variables, the process of finding tighter
bounds is unnecessary. - For a fixed value of one variable,
the reduced objective function of Equation (1-27) provides
the value of the other variable. Nevertheless, the two-
variable example easily shows the principle of finding
tighter bounds. In the complete algorithm described in
Chapter IV, the reduced objective function equation is used
similarly as a’constraint would be used to aid in identify-
ing the tightest possible bound on the next variable in the
ranking.

With two variables, Equation (1-27) leads quickly to
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the solution, for a fixed value of y; = 4. That is,
10(4) + 8 y2 = 52 (1-33)
and
vz = 1.5. (1-34)

Since yz has been found to be a noninteger value, it is
immediately eliminated as a feasible solution. If yz had
been found integer, the feasibility of the solution
y = (y1, yz) would be tested in the functional constraints.
The first feasible, all-integer solution found is the opti-
mum solution.

For this two-variable example, the algorithm says no
feasible, integer solution exists for z = 52 and y1 = 4.
The search continues by incrementing y1 down one integer and
solving for yz. This process continues until all integer
possibilities for y; have been tested, which implies all
values of yz have been tested. If the optimum solution is
not found at z = 52, then the objective function is still
further reduced by the amount of the greatest common divisor
to z = 50. This gives a new objective function equation to

be searched, which is
z = 10 y» + 8 y= = 50. (1-35)

Figure 3 shows this process will continue until the
optimum solution is found at y* = (3, 2) with z = 46.
Notice how Figure 3 indicates that the first feasible inte-

ger solution that is found, as the objective function moves
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8y, + 4.5y, * 36
" (CONSTRAINT TWO)

—2Z =10y, + 8y, = 53.36

3. ° » :\'

5.5y, + 7y, = 38.5
N\ \\ (CONSTRAINT ONE )

\\\.
2¢ ° \. . \

(2) \
14 . [ .

, A\
. - AN —

o 1 2 3 4 5 6y,
NOTES: ‘

(1) OPTIMUM NONINTEGER SOLUTION, y =(2.52, 3.52)
(2) OPTIMUM INTEGER SOLUTION, y*= (3,2) -

Figure 3. Family of Objective Functions in the
" Solution Space
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down through the solution space, is the optimum solution.
The limitation of only dealing with two variables did
not allow all of the objective function reduction algorithm
to be demonstrated. It does provide a visual reference for
many concepts that will be extended‘and examined in more
detail later.
Some of the notation used in this research will now be

described.
Notation

One part of the algorithm ranks the variables according
to a ranking scheme. A ranked variable will be indicated by
thelletter yv. The ranked variables do not necessarily have
the same subscript number as the problem variable they rep-
resent. The subscripts on the y-variables indicate ranking
order. Therefore, yz, the second ranked variable, could be
the ranked variable identification for problem variable xs.

It is sometimes convenient to represent a solution as

an n-vector of the form

Y = (Y14 Y2y eeey Vu)eo (1-36)
To indicate the optimal integer solution, the n-vector

y* = (yi, ¥5, --y v2) (1-37)

will be used.
During certain parts of the algorithm, it is necessary

to round down or round up to the nearest integer. The
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common notation that is used for this is

[yl the greatest integer <y (1-38)

and

{y)

the least integer > y. (1-39)

Upper and lower bounds often need to be identified as
the algorithm is described. An upper integer bound on a
variable will be indicated with the superscript u and a
lower integer bound will be indicated by the superscript 4.

Some typical examples might be

vt = 5 (1-40)

and
vz = 7. (1-41)

The complete notation required for this thesis is
listed in the Nomenclature section preceding this introduc-
tory chapter. Before looking more closely at the details of
the objective function reduction algorithm, a brief review
of the literature and some concepts from the study of linear

Diophantine equations will be presented.



CHAPTER II

LITERATURE REVIEW OF INTEGER

LINEAR PROGRAMMING

During the past ten years, there has been a great
amount of research and publications on integer linear pro-
gramming. This literature review will identify some of the
more recent articles that are widely referenced and are
typical of the work being done using a particular approach
to the problem. In 1965, two surveys appeared that examined
many of the important algorithms up to that year. Balinski
(3) summarizes the major methods that have been successful
or interesting in their method of approaching the problem.
Included are some descriptions of general algorithms and
computational experience dealing with integer linear pro-
gramming. Beale (4) presents a survey of linear programming
problems where some or all of the variables are required to
take on integer values. Four separate methods of solving
integer linear programming problems are reviewed and dis-
cussed. A survey of the literature of the late 1960's would
make an excellent contribution to the literature of integer
programming. This gap in the literature should certainly be

filled in the coming months.
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General Classification of Algorithms

Several methods of classifying the algorithms of inte-
ger linear programming have been used. Any general method
of classification will be incomplete because of the wvariety
of methods proposed to solve discrete programming problems.
Nevertheless, the two areas of classification suggested by
Wagner (30) are appropriate for the literature reviewed in
this thesis. The two main approaches for finding optimal
solutions to integer programming problems are the cutting-
plane algorithms and the backtrack algorithms.

The cutting-plane algorithms appear in several forms.
They can be used to solve both the mixed integer programming
problems and pure integer programming problems. The
cutting-plane algorithms start at the optimum linear pro-
gramming solution and then move toward the optimum integer
linear programming solution. The early work of Ralph E.
Gomory identified the significant contribution that
this approach could make to solving integer linear program-
ming problems. Generally, these methods assume the optimum
linear programming solution has been found and is not inte-
ger. Additional cuts or constraints are then added to the
original constraints. These new constraints are added in
such a way that they reduce the feasible solution space, but
they do not exclude any possible integer solutions. The
algorithm is completed when a feasible integer programming
solution has been found. These methods have been shown to

be finite converging algorithms. With the addition of new
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constraints at each iteration, the number of iterations in
the finite convergence of even a moderate problem can be
quite large.

The second classification group is somewhat broad and
includes many approaches to the problem. Again, the back-
track algorithms can be used to solve both mixed and integer
linear programming problems. Under this category are the
branch-and-bound algorithms, implicit enumeration algorithms,
shifted functional hyperplane methods, and many others. As
in the cutting-plane algorithms, the backtrack algorithms
begin at the optimal linear programming solution. These
techniques then create a group of related linear program-
ming algorithms. For example, in the branch-and-bound algo-
rithms, a series of subproblems and a lower bound (for
minimization) are determined. Similar to the concepts of
dynamic programming, at each stage of subdivision, certain
solutions are excluded as infeasible and are not examined.
The name backtrack algorithms is given to these methods
because they start at the optimal noninteger solution and
back away from it, searching a sequence of generated prob-
lems for the optimal integer linear programming solution.

Naturally, all of the approaches to the integer pro-
gramming problems cannot be classified with these two prin-
cipal methods. The heuristic programming techniques or the
statistical methods do not readily fall within either of the
two categories. Some papers that are difficult to classify

will be discussed at the end of the chapter.
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Cutting Plane Algorithms

The name most often mentioned when discussing cutting-
plane algorithms is that of Ralph E. Gomory. Until some of
his early work was presented in 1958, a general method for
solving integer linear programming problems was assumed to
be impossible by many people. Since that time, Gomory and
several others have continued to explore the possibilities
of cutting-plane algorithms.

Of the surveys made during the mid 1960's, the one by
E. M. L, Beale (4) is most readable. The theory of Gomory's
methods are explained quite well by Beale. In the early
cutting-plane algorithms for pure integer programming, the
method begins by finding the optimal noninteger solution to
the linear programming problem. If the solution to this
problem, where the variables can take on continuous values,
happens to turn out to be all-integer, the algorithm stops.
If some or all of the variables in the solution are noninte-—
ger, a new constraint is added to the problem. This new
constraint eliminates a part of the feasible solution space
near the optimum noninteger solution. It eliminates the
optimal noninteger solution and other solutions near the
optimum, but it does not eliminate any feasible integer
solutions. Then, the simplex tableau is manipulated using
the dual simplex method to move away from the optimal non-
integer solution. If the dual simplex iteration finds an

optimum integer solution, the algorithm is complete. If not,

a new constraint is added and the process continues until
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the optimum integer solution is found. The new constraints
are often called cuts or cutting-plane constraints. They
get their name from the way they cut away some of the feasi-
ble solution space. Their purpose is to force an integral
solution.

After the work described above, Gomory (10) presented
some new, important modifications to his all-integer inte-
ger programming algorithm. It differs from the earlier work
in two main ways:

1. The technique is all-integer. The coeffi-

cients in the original matrix are integers
and all coefficients remain integer during
the whole calculation.

2., It is a uniform procedure similar to the dual
simplex method. Also, the cycle of adding an
inequality has been eliminated.

This method does not begin at the optimal solution deter-
mined by letting all the variables have a continuous range.
It begins by making the problem dual feasible. This is done
by adding an artificial constraint that the sum of the non-
basic variables be less than or equal to some arbitrarily
large number. From this point on each succeeding pivotal
row is a new cut and is generated in such a way that it
makes the pivot equal to minus one. This causes the
integral tableau to remain integral.

This contribution of Gomory (10) is widely referenced

in the literature on cutting-plane algorithms of integer
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linear programming. This work apparently influenced much of
the later research.

Economic applications of some of the initial work in
integer programming began appearing in the literature in the
early 1960's. Gomory and Baumol (11) discussed the topic of
integer programming and pricing in a paper in 1960. The
article describes and gives an example of integer linear
programming. The majority of the paper discusses economic
considerations such as prices, marginal yields of scarce
indivisible resources, and efficient allocation of resources.

The work of Fred Glover has made a significant contri-
bution to the study of integer programming. In 1967, Glover
(8) presented a paper describing a primal integer program-
ming algorithm. The technique is described by Glover as a
new foundation for a simplified primal integer programming
algorithm. The main focus of this research starts by con-
sidering the ordinary linear programming problem. Then, the
same problem is considered again where the solution is
required to be in pure integer form. Because the simplex
technique is so effective for solving the ordinary linear
programming problem, Glover sought an adoption of the
simplex algorithm to solve the pure integer programming
problem. The goal is to maintain a primal feasible and
integer solution at each iteration. The author says such an
adoption is straightforward and points to his earlier work
and that of Richard D. Young (31). This adoption, called

the rudimentary primal algorithm, draws on the early
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concepts of Gomory where cuts are added to the feasible
solution.

Glover's (8) simplified primal algorithm begins with
the rudimentary primal algorithm and provides some rules
that lead to a convergent algorithm. The author provides
theorems and proofs to describe the success of this method.
Even though Glover describes the rules as simple and the
theorems as elementary, the analysis is still somewhat dif-
ficult to follow. Nevertheless, the fact that a primal
integer programming algorithm has been found is a signifi-
cant contribution to the literature.

A companion paper to Fred Glover's (8) article is one
by Richard D. Young (31). Glover describes Young’s work as
a pioneering paper that produced a finite primal algorithm.
He goes on to call it an outstanding, original contribution
to integer programming. Young's algorithm is a complicated
and difficult technique for primal integer programming.

Richard D. Young's (31) paper describes a primal, all-
integer algorithm for solving a bounded and solvable pure
integer programming problem. This algorithm is a primal
analogy to some of Gomory's early work with cutting plane
techniques. The method is tied closely to the simplex
method, but Young's simplified primal algorithm adds a
special row to the tableau and modifies the method of
selecting the pivot column. At each iteration, a cutting-
plane constraint is added to the tableau. Young shows his

simplified primal algorithm is a finite procedure.
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Young's (31) paper parallels Glover's (8) work.

Young's algorithm develops alternative rules for adding the
new row of cutting~plane constraints. This method is not as
general or the tableau format as elaborate as Glover's (8),
according to Young's evaluation. Both papers were presented
in the literature to speed the understanding and analysis of
the basic approach to integer linear programming.

From an applications point—of-view, the ability of
computer codes to solve integer programming problems is an
essential consideration. Several cutting-plane algorithms
have been coded and evaluated. Beale (4) mentions some
codes that used the cutting-plane concepts of much of
Gomory's early work in integer programming. As of Beale's
(4) 1965 survey date, computer codes were available that
solved about 100 equations and 2000 variables. Beale says
that up to 1964 the largest single problem solved with this
code had 215 equations and about 2600 variables. The author
does not mention the speed or efficiency of the computer
code, but refers his readers to the author of the computer
code.

By the summer of 1967, C. A. Trauth, Jr. and R, E.
Woolsey (28) had completed their analysis of four different
computer codes. The codes were based primarily on Gomory's
cutting-plane methods of integer linear programming. The
authors compared the computational efficiency and practical
applicability of the four codes. They discovered difficul-

ties with machine round-off errors can sometimes be
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controlled, but the procedures required can be time con-
suming. Another difficulty they noted was the amount of
time required to actually solve a given integer programming
problem. As mentioned earlier in this literature review,
Gomory proved his methods will produce a solution in a
finite number of steps. In practice, a finite number of
steps can be so large as to be impractical, even in a moder-
ate size problem.

Trauth and Woolsey (28) indicated the amount of time
involved in obtaining a solution was related to the density
of the constraint coefficient matrix. Also, the magnitude
of the elements in this matrix had an effect on the solution
time. The four codes were tested on some test problems that
are commonly used in the literature to evaluate computer
codes. The authors present tables and their analysis show-
ing the solution time and number of iterations required for
each computer code they evaluated.

Even though much important work has been done on
cutting-plane algorithms, a great deal of attention has been
given in the literature to backtrack algorithms. Some

typical articles from this literature will now be reviewed.
Backtrack Algorithms

In the middle of 1960, a paper appeared that suggested
an approach different from the cutting-plane method to solve
discrete programming problems. The numerical algorithm of

A. H. Land and A. G, Doig (20) is widely respected and
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referenced in the literature of integer programming. This
early work of Land and Doig (20) is often classified as a
shifted hyperplane method or a branch-and-bound method. The
algorithm described by the authors uses a systematic parallel
shift of the objective function in the direction of a reduc-
tion of the maximand. This process is continued until an
integer solution is found within the ordinary feasible solu-
tion space. The upper bound on the objective function is
first found by solving the ordinary linear programming prob-—
lem without the discrete\variable constraints. This is the
upper bound on the maximand since no higher value of the
objective function can take an integer value.

. The method of Land and Doig (20) then moves to identify
a unique minimum and maximum for each variable at a particu-
lar value of the objective function. These minimum and
maximum values of the variables can be found by solving the
linear programming problems that minimize and maximize each
variable. The authors extend these basic concepts to examin-
ing the convex set of feasible solutions as the objective
function hyperplane is moved down from its maximum position.
They give a step-by-step algorithm of their procedure and an
example of its application.

E, L. Lawler and D. E. Wood (21) have written an excel-
lent paper discussing branch-and-bound methods of integer
linear programming. They describe the main concepts of the
branch—-and-bound approach to constrained optimization prob-

lems. Even though this article is not limited to a
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discussion of branch-and-bound in integer linear program-—
ming, it still often appears as an important reference in
the literature. The authors discuss several specific appli-
cations, including integer linear programming, nonlinear
programming, the traveling—-salesman problem, and the
quadratic assignment problem.

Lawler and Wood (21) point out that, as in dynamic pro-—
gramming, the technique of branching-~and-bounding is an
intelligent examination of the feasible solution space.

They describe the branch—-and-bound method as repeatedly
separating the feasible solution space into smaller and
smaller subsets of feasible solutions. Within each subset
a bound is calculated for the value of the objective func-
tion. After each separation of the feasible solution space,
the subsets that have a bound that exceeds the value of the
objective function for a known feasible solution are
excluded from any further separation and examination. The
authors present a generalized, formal mathematical descrip-
tion of the branch-and-bound algorithm.

In the last part of 1966, an article by Norman Agin (1)
appeared. This article gave a generalized description of
branch-~and-bound algorithms. The author's paper points out
the wide variety of applications of the branch-and-bound
algorithm to many combinatorial problems. One of the best
aspects of this paper is that it describes the branch-and-
bound technique for optimum seeking in general. Agin

says part of the philosophy of this paper is to introduce
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branch—-and-bound to those who are unfamiliar with the
technique.

Agin (1) points out two interesting limitations of
branch-and-bound methods. One is that each problem needs a
specific method for finding the bound and for finding good
heuristics for branching. Another limitation is that in
large problems the computational time may exceed the avail-
able computer time.

One of the newest algorithms to appear is the bound-
and-scan algorithm of Frederick S. Hillier (15). This tech-
nique applies to pure integer linear programming. The
approach is to find tight bounds on the variables. Then, a
sequence of constantly improving feasible solutions is iden-
tified by scanning the relevant solutions. Hillier (15)
reports encouraging computational experience with this algo-
rithm as compared to other existing methods. This is an
excellent, readable paper that describes the new method and
plans for increasing its efficiency even more.

Establishing bounds on the problem variables is a
common principle in many backtrack algorithms. Patrick D.
Krolak (17, 18) has completed some work that lead to a
Bounded Variable Algorithm. These papers present some use-
ful generalized equations to establish upper and lower
bounds on variables. Krolak (18) presents some computa-
tional results of this algorithm and other existing methods
when they are tested on some standard problems.

Stanley Zionts (32) proposed some ideas toward unifying
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the theory of integer linear programming. Basically, the
author generalizes much of the work in integer linear pro-
gramming in the framework of upper and lower bounds on
integer variables. The main contribution of this work is
that if tends to unify several of the proposed methods of
solving integer linear programming problems.

One of the most important applications of integer pro-
gramming is in capital budgeting problems. Zero-one and
mixed zero-one integer programming are mathematical tools
that are essential to the solution of many capital budgeting
problems. V. E. Unger, Jr. (29) describes how some of the
zero—-one algorithms can be used to assist a firm with the
allocation of limited amounts of capital. Even though this
article deals with only one class of the capital budgeting
problem, the problem formulation and solution procedure make
it an interesting article.

Some additional examples of papers from the literature
that discuss the work on zero-one integer programming are
Glover (9) andvGeoffrion (7). Both of these authors are
often referenced in the literature of integer linear

programming.
Other Methods

The approach used in many methods of integer program-
ming cannot be easily classified as cutting-plane or back-
track algorithms. An example of this is an article by

G. Graves and A. Whinston (13). The authors present a new
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approach to discrete mathematical programming for zero-one
integer programming. This paper describes the theoretical
concepts that extend some of the enumeration methods. Where
many of the backtrack algorithms would use bounds to trun-
cate parts of the method, Graves and Whinston (13) use popu-
lation statistics. The authors indicate that the term
population statistics should not be confused with the meth-
ods of sampling statistics or random search procedures. The
concepts described in this paper use the idea of selecting
the optimal function among a certain class of functions.

Set theory and functions viewed as maps are used to develop
the concepts of this theoretical paper.

Approximation methods provide the only method of
solving many integer programming problems. S, Senju and
Y. Toyoda (27) have approached the zeré—one integer linear
programming problem from the point-of-view of trying to find
a good approximate solution. The fundamental concept the
authors say they use is to develop some ordinal scales for
the proposed projects. They suggest this method is gquite
satisfactory when there are a large number of proposals and
constraints.

Frederick S. Hillier (14) has developed an approxima-—
tion method for integer linear programming. This paper is
very well written and is an excellent example of some of the
better work in the literature. This article presents the
theoretical concepts of a heuristic procedure to find a good

approximate solution which gives an objective function value
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close to the optimum. The step-by-step method of analysis
is outlined by the author. A small example is given to
demonstrate the algorithm. A computer code and the results
of evaluating the procedure on several test problems are
given. Since many optimal algorithms can obtain greater
efficiency when given a good approximate solution initially,
this paper makes an outstanding contribution to the
literature.

In a recent paper, R. E. Gomory and E. L. Johnson (12)
introduce some theory that has applications to both cutting-
plane and backtrack algorithms. The authors analyze some
continuous functions and inequalities when some or all of
the variables are restricted to be integers. The article
shows how inequalities can be used to furnish cut-off points
for integer programming algorithms. This paper is very
theoretical and difficult to read. A companion paper demon-
strating the basic technique would be a fine contribution to
the literature.

The concepts of linear Diophantine equations are essen-—
tial in the development of objective function reduction
algorithm. Some of the necessary concepts will be reviewed

in the following chapter.



CHAPTER IITI

SOME CONCEPTS OF LINEAR

DIOPHANTINE EQUATIONS

The concepts of linear Diophantine equations from the
theory of numbers are essential to the objective function
reduction algorithm presented in this thesis. Several
topics will be discussed in this chapter that are necessary
to follow the flow of logic in the algorithm developed in
this research. Even though number theory is often consid-
ered one of the prime examples of pure mathematics, some of
the observations associated with linear Diophantine equa-
tions and the divisibility property of integers form a vital
part of the objective function reduction algorithm. Some of
the basic theorems from this area of mathematics allow
implicit examination of several solutions in integer linear
programming problems. Many of these concepts speed the
algorithm and the computer code toward the integer feasible
solution.

The wide variety of topics associated with linear
Diophantine equations and number theory is discussed in
several books. Anthony J. Pettofrezzo and Donald R. Byrkit
(26) present several selected topics in number theory in a

very readable and interesting book. This book describes
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many essential topics of number theory at an introductory
level. Ivan Niven and Herbert S. Zuckerman (24) have
written another book that introduces several of the concepts
of number theory and Diophantine equations. It includes
many examples and proofs necessary to understand this area
of mathematics.

In order to examine the philosophy of the divisibility
properties of integers, some basic terms and notation are

required. If r, s, and t are integers such that
res =t, (3-1)

then r and s are called factors or divisors of t. Also, t
is said to be a multiple of r and of s. If m is a factor of

n, then it is written
mln. (3-2)

For example, if m=5 and n =25, then 5|25 says 5 is a factor

of 25. If m is not a factor of n, then the notation
m/tn (3-3)

is written to describe how the integers are related. For
example, if m=2 and n= 15, then 2,*15 says 2 is not a fac-
tor of 15.

The terms prime and composite often appear in discus-
sions of linear Diophantine equations and the theory of num-
bers. A prime number is a number that has no positive

factors other than one and itself. The number seven is a



39

prime number. A composite number is a number that has fac-
tors other than one and itself. Since the number nine has
the number three as a factor, as well as one and itself, it
would be called a composite number

The idea of the greatest common divisor is an integral
part of the objective function reduction algorithm.. This

topic and its notation will be reviewed briefly.
The Greatest Common Divisor

It klr and k|s, then the number k is called a common
divisor or common factor of r and s. Suppose r = 50 and
s = 80. The integer number 5 is a common divisor to both 50
and 80. Therefore, 5|50 and 5|80 indicates that 5 is a com-
mon divisor to 50 and 80. The greatest common divisor can
now be defined, The largest positive integer g that divides
the absolute value of each of two integers r and s is called

the greatest common divisor of r and s. The greatest common

divisor is denoted
(r, s) = g. (3-4)

This implies g|r and g]s, with g as the greatest positive
integer that is a factor to both r and s.
An objective function for a two-—-dimensional linear pro-

gramming problem would have the form
Z = C1X1 + CzXz. (3-5)

For a particular problem, a greatest common divisor could be
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found if both ci1 and cz were integers. That is, a factor of

c1 and cz can be found such that
(c1, c2) = g. (3-6)

In an elementary integer linear programming problem, the

objective function might be
z = 21 x1 + 77 X=. (3-7)

The greatest common divisor of both c¢i; and cz would be the

number 7. This would be denoted

(3-8)

(011 02)

]
(5]

The definition of the greatest common divisor says that
g must be a common divisor to the absolute value of r and s.
Therefore, negative coefficients can be handled within the
greatest common divisor definition. If, in the example of
Equation (3-7), one or both of the coefficients were nega-—

tive, then

(-21, 77) = (21, -77) = (=21, -77) = 7. (3~10)

The definition also implies that if r = s = 0, then (r, s)
does not exist. Additionally, if r £ O and s = O, then
(r, s) = |r|s if r = 0 and s £ O, then (r, s) = |s|. As

somewhat of a side issue, if dlr and dls, then dlg. This
says that if d is a factor of both r and s, where (r, s) =g,

then d is also a factor of the gréatest common. divisor.
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The concept of greatest common divisor is also appli-
cable when more than two integers are involved. The defini-

tion can be generalized so that the greatest common divisor

for n > 3 integers is the largest positive integer g such
that it is a factor of the absolute values of each of the n
integers r1, r2y, +4., ry. For the n integers, ri, ra, ...,

and r,, the greatest common divisor is written
(1"1,1"2, ...,I‘n)Zg. (3-11)

For example, suppose an integer linear programming objective

function were
z = 56 x1 - 24 xz + 96 x5 + 40 x4. (3-12)

The greatest common divisor of the objective function coef-

ficients is

(r1, ra, ra, ra) = g (3-13)
(ci, cz, ca, ca) = g (3-14)
(56, -24, 96, 40o) = 8. (3-15)

As the general definition indicates, the greatest common

divisor of the coefficients is the greatest integer, g, where
glcy for j =1, 2, ..., n. (3-16)

Two theorems are needed to give additional insight to
the greatest common divisor and its application in the ob-

jective function reduction algorithm.
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THEOREM 3.1: If v and w are positive integers
such that v[w and w|v, then v = w.
PROOF: If v‘w, then v times some number, call

it x, must equal w. That is,
VeX = W (3-17)

and this implies x|w. Also, if w|v, then w
times some number, call it y, must equal v,

Therefore,
Wey =V (3—18)

and this implies y|v. Now, if Equations (3-17)

and (3-18) are solved for x and y, respectively,

then
w .
X = v (3—19)
and
v
y = o (3-20)
Now, Equation (3-19) can be written
x=2.1_1 (3-21)
v vy
w
By the definition of the term factor as used in
Equation (3-17), v, x, and w are integers. But,
Equation (3-21) says
1 .
X = = (3-22)
y’ >
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which means y must be equal to one for x to be
integer. This implies from Equation (3-17)
that

V = W. (3-23)

Another theorem that is needed deals with the greatest com-
mon divisor for the situations where three or more numbers
are involved. This theorem will make use of Theorem 3.1

during its proof.

THEOREM 3.2: If ¢1, ¢c2, ..., and ¢, are nonzero

integers where n > 3, then

(01, C2y eoey Cn) = ((01, C24 oseey Cn—l), Cn)' (3-24)

PROOF: Let

g1 = (c1, €2y oo, Cy) (3-25)
and
gz = ((c1, Cay eoey Cy=1), Cp)e (3-26)
Since g1|cf for j =1, 2, «.., n, then

g1](ci, c24 «ve, cp-1) and gi]c,. This implies
¢ |g2. Also, gz|(c1i, c2, +eo, Cp=1) and gz]|cCq,
then gglci for . j =1, 2, ..., n. Therefore,
gglgl. The definition of greatest common divisor
requires that g1 and g- be positive integers.

Therefore, g1 = g2 from Theorem 3.1 and

(c1, €2y eesy ) = ((c1, €24 ceey €a=1), cp). (3=27)
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Another important concept that can be used in integer
linear programming is when some coefficients of variables in
the objective function are zero. Should that case occur,

the greatest common divisor is

(01’ 02’ oo 0 g ck’ 0, 0, o0 oy 0) = (Cl’ 02’ oo 09 ck).

(3-28)

For small problems, the greatest common divisor often
can be found by inspection. As the number of integers in-
creases, the search for the greatest common divisor would
become lengthy and tedious using inspection and trial and
error methods. Fortunately, the ancient Greek mathemati-
cian, Euclid, developed an algorithm to determine the
greatest common divisor. Euclid's algorithm will nbw be

examined.
Euclid's Algorithm

Euclid's algorithm gives a method for finding the
greatest common divisor for a group of integers. First,
consider the case of two unequal positive integers d and e.

If it is assumed that d > e, then d can be written as
d =ge + r, where O<r<e. (3-29)

For example, let d = 23 and e = 7. Therefore, d can be

written as

23 = 3.7+ 2, (3-30)
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From Equation (3-29), g=3 and r =2 for the example of
Equation (3-30). The integer q is the quotient resulting
from the division of d by e. The integer r is the remainder
after d is divided by e. Euclid developed a step-by-step
procedure for continuing this type of analysis until it
leads to the greatest common divisor.

Let gq; be the quotient from the ith iteration and r;

the remainder associated with the ith iteration. For a

simple example that requires only three iterations, Euclid's

algorithm would be as follows:

d = que + ri1, where 0 < r; < e; (3-31)
e = gqzr1 + r2, where 0 < rz < ri; (3-32)
r, = gsrz + ry, where rz; = O. (3-33)

The algorithm is completed when the remainder in the ith

iteration is zero. The greatest common divisor is the last
nonzero remainder (r;-.,) found by the algorithm. If r; were
found to be zero in Equation (3-33), then the integer rz is

the greatest common divisior for d and e. That is,
(d, e) = Trae. (3_34)

As an example, suppose an integer programming objective

function were
z = 36 x3 + 132 xpz. (3-~35)

Using Euclid's algorithm as described in Equations (3-31)
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through (3-33), the greatest common divisor of the objective

function coefficients can be found as follows:

If d = 132 and e = 36, then

132 = 3 - 36 + 24 (3-36)
36 = 1. 24 +12 (3-37)
24 - 2 .12 + 0. (3-38)

From Equation (3-38), rz =0 which means the greatest common
divisor, g, is rz = 12, Therefore, in the notation developed

here,

(d, e) = g (3-39)
(d, e) = rg (3=40)
(132,_36) = 12, (3-41)

It should be noted that the integer coefficients in Equation
(3-35) were ordered so the largér one :(cs = 132) became d for
the algorithm of Equations (3-31) through (3-33), where it
is required that d>e. This is a necessary condition so

the larger integer can be set equal to a quotient times the
smaller number plus a remainder.

The form of Euclid‘s algorithm described in Equations
(3-31) through (3-32) allows for only three iterations.
Naturally, other problems may require several iteratiomns.

In the example for (d, e) the greatest common divisor, g,

must be found in a finite number of steps, since there is



only a finite number of positive integers less than e,

d > e. The general form of Euclid's algorithm to find

(d, e) = g, where d > e, is as follows:
d = q1e + r1, where O < r; < e;
e = qzr1 + rz, where O < rz < ri;

ry = qaYrz +r3,
Yp-3 = Qgx~-1Tx-~-2 +
Fy-2 = Qyryx-1 + Ty
Ty-1 = Qe+1T + O.

where O < rz < rgz;

ry-14, where O<ry.; <r,.js;

, where 0 < r, < rp.1;
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where

(3-42)

(3-43)

(3-4h)

(3-45)

(3-46)

(3-47)

The concepts of the greatest common divisor and Euclid's

algorithm provide a foundation for examining some of the

properties of linear Diophantine equations.

Linear Diophantine Equations

Any polynomial equation in several variables,
of the coefficients, variables,

values are required to be integers,

equation. In genefal, the

where

c; integer for j = 1

form would be

where all
and the right-hand side

is called a Diophantine

(3-48)
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x, integer for j =1, 2, ..., n

z integer.

The Greek mathematician, Diophantus, studied the form and
solution of this type of linear equation. Since he was one
of the first to study these equations at great length, they
are named in his honor.

An interesting theorem associated with the greatest
common divisior and linear Diophantine equations will be

discussed.

THEOREM 3.3: If ¢;, ¢c2, ..., and c, are integers
which are not all zero, then the greatest common
divisior (c1, ¢z, ..., c,) of the coefficients
Ci1, C2, .e., and c, is the smallest positive
integer that can be expressed as a linear
homogeneous function of ¢c1, ¢cz, ..., and c,;

that is, (c1, ¢c2, +.., C;) is the smallest

positive integer such that
(1, Cay eeey Cp) = C1X] + CpX2 + e.o. + CpXgy, (3-49)
where x; integer for g =1, 2, ..., n.

Pettofrezzo and Byrkit (26) indicate how this theorem can be
proved. This theorem has a significant implication in the
objective function reduction algorithm. If an integer pro-

gramming objective function is of the form

MAXIMIZE z = §‘cjxj; (3-50)
j=1
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then, the greatest common divisor could be found for the

coefficients, such that
g = (01, C2,3 eeey Cn)- (3"51)

The implication of Theorem 3.3 is that the greatest common
divisor, g, is the lower integer bound of a maximization
objective function value. That is, the objective function

hyperplane

i’cdxj = g (3-52)
j=1

is the smallest integer value of the maximand.

Another property of linear Diophantine equations in-
volves the special case where all of the coefficients are
even numbers and the right-hand side value is odd. For

example, if an equation had the form

12 x1 + 34 x2 + 8 x5 + 92 x4 = 533, (3-53)

then it can be observed that all the coefficients are even
numbers, while the right-hand side value is an odd number.
Since the left-hand side of Equation (3-53) must be an even
integer, no integral solutions can exist for the equation.
This comes from the observation that an even integer multi-
plied times an odd or even integer must give an even integer
as the product. Consequently, some linear Diophantine equa-—
tions have no integer solutions. This fact will be used in
the objective function reduction algorithm as solutions are

implicitly examined.
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The next theorem is most important for the search meth-
od of the objective function reduction algorithm developed

in this research.

THEOREM 3.4: The linear Diophantine equation
n
Y eixy = 2 (3-54)
j=1

has a solution if and only if g|z, where

g€ = (c1, 2y esey, cy).

Pettofrezzo and Byrkit (26) indicate how this theorem can be
proved. The importance of this theorem lies in the fact
that it can eliminate searching certain objective function
hyperplanes for integral solutions. This says that an

objective function of the form

n
zZz = Y\ C»'j X3 (3_55)
j=1 ’
where
c; integer for j =1, 2, ..., n
X; integer for j =1, 2, ..., n

can only have integral solutions for those values of z such
that g|z, where g = (¢1, c2, «+.., Cc;). Hyperplanes that
have values such that g,*z need not be considered or
searched, since integral solutions cannot lie on these
hyperplanes.

As an example of how Theorem 3.4 could be used,
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consider the following integer linear programming objective

function:
z = 27 x1 + 9 xz + 18 x3. (3-56)

Using Euclid®s algorithm or by inspection, the great common
divisor of the coefficients would be found to be g = 9.

Suppose the objective function had a value
Z = 27 X, + 9 xz + 18 Xa = 82 (3‘—57)

during one part of the search by the objective function
reduction algorithm. Since g = 9 and 9,*82, no integral
solutions can lie on the plane defined in Equation (3-57).
With this brief review of some of the concepts of
linear Diophantine equations and the theory of numbers, the

objective function reduction algorithm will be examined.



CHAPTER IV

THE OBJECTIVE FUNCTION

REDUCTION ALGORITHM

The objective function reduction algofithm is a solu-
tion procedure that searches for a solution to a solvable
pure integer linear programming problem. This algorithm
uses the concept of examining a family of objective function
hyperplanes until an integer solution is found. Basically,
the solution procedure begins at the optimum noninteger
solution and examines parallel objective function planes in
the feasible solution space. For example, in maximization
problems the algorithm starts at the upper bound on the
objective function, as determined by the simplex method or
some other primal optimum seeking procedure. Successively
reduced values of the objective function effectively move
the objective function down through the solution space. The
problem to be solved can be expressed mathematically using

the following cannonical form:

maximize Z = E: Cy Xy (4-1)

j=1
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x; > 0 for j 2, vee, N (4-3)

1]
-
-

Xy, ¢; INTEGER for j 1, 2, ..., n. (4-4)

The requirement that each c; Be integer valued is not overly
restrictive since this is always obtainable by scaling the
objective function, as long as the original coefficients are
rational numbers.

The algorithm developed in this research examines the
solution space by considering the bounds on each variable.
Therefore, this procedure requires that the variables have
upper and lower integer bounds. The functional and nonnega-
tivity coenstraints of Equations (4-2) and (4-3) are assumed
to provide a bound on the solﬁtion space. A minimization
problem with strictly greater—-than-or-equal constraints must
be modified to obtain finite upper bounds on each problem
variable. This is required for computational efficiency.

The essential structure of the objective function
reduction algorithm can be described by dividing the solu-
tion procedure into four stages. In Stage 1, the optimal
continuous—variable solution is found using the simplex
method or some similar procedure. Naturally, if this solu-
tion is all-integer, the algorithm goes no further since the
desired solution has been found. Stage 1 also defines the
over—all bounds on each problem variable. Stage 2 of the
algorithm prepares the way to potentially take advantage of
some techniques from the study of linear Diophantine equa-

tions. The greatest common divisor of the objective
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function coefficients is established along with the first
value of the objective function to be considered. Stage 3
selects the ranking that each variable will have in the
implicit enumeration scheme. It also examines the objective
function coefficients noting how even coefficients might be
used to take advantage of additional concepts of linear
Diophantine equations.

While the first three stages of the algorithm are some-
what preparatory, Stage 4 carries out the implicit and
explicit enumeration of the feasible integer solution
space. Using the ranking scheme of Stage 3, the problem
variables are set at integer values that potentially will
eliminate the necessity for complete enumeration of the
integer solution space. New, potentially tighter bounds
are found on successive variables in the ranking as the
algorithm proceeds. This process continues to move through
the ranking order, until the next to last variable is
reached or until the algorithm can use a tool of linear
Diophantine equations to eliminate additional solutions.
The objective function and the previous variables at their
held values are used to calculate the final variable in the
ranking. An integer solution is tested for feasibility,
while a noninteger final variable is immediately identified
as infeasible. An infeasible solution causes the algorithm
to begin moving back through the combinatorial solution
possibilities. Should a feasible all-integer solution not

be found at the first objective function value, a new
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reduced (for maximization) objective function value is
selected for continuing the search.

With the above brief statements as an introduction, the
theory of the objective function reduction algorithm will be
described fully in the following sections. The step-by-step
instructions of the algorithm are provided in Appendix A.
This appendix can be used as a reference as the theory is

described.
Stage One

Stage 1 of the objective function reduction algorithm
begins by relaxing the integer requirement on the problem
variables. Therefore, the variables are temporarily allowed
to take on continuous values. With this interim change in
the problem, the efficient procedures of the simplex method
can be used to find the continuous solution. At this point,
the algorithm identifies two elements of information from
the simplex solution. First, if it is found that the con-
tinuous solution vector, x* = (xf, x4, ..., x;), is all-
integer, then the algorithm goes no further. The optimum
pure integer solution has been found by the established
optimal seeking procedures of the simplex method. The
second element of required information is the value of the
objective function at the optimum continuous-variable linear
. programming solution. The key word for this value is ZSIM.
It will be used in Stage 2 to establish an integer bound on
the objective function.

Integer bounds on each problem variable are an
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additional requirement of Stage 1. Patrick D. Korlak (17,
18) and Stanley Zionts (32) have published some recent
papers describing their work on integer bounds for all-
integer linear programming. Krolak (17, 18) develops an
iteration séheme to be used in finding upper and lower
integer bounds for each individual variable. Zionts (32)
attempts to unify much of the work of integer programming in
terms of upper and lower bounds on integer variables.

Krolak (17) suggests one straightforward method of
finding the bounds on the variables is to solve the 2n lin-
ear programming problems where the objective functions are
of the form

maximize z = x,; - for j =1, 2, ..., n (&-5)
and

minimize z = x; ~ for j =1, 2, ..., n. (4-6)

For a particular problem, the constraints and Equation (4-5)
can be used to solve a linear programming problem to find
the upper bounds on each variable, x;, = j =1, 2, ..., n.
Lower bounds can be similarly found using Equation (4-6).
The upper integer bound on each variable is identified by
taking the value of x; found from the linear programming

solution using Equation (4-5) and defining
Xl‘; = ‘[XJ] (L-l""?)

for j =1, 2, ..., n. Using the solution value for each x,

from the linear programming problem where Equation (4-6) is the
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Figure 4. Stage 1 Logic Flow
Diagram
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objective function, the lower integer bounds are

x) = (x;) (4-8)

for j =1, 2, ..., n.

The objective function reduction algorithm requires
that the problem variables have finite integer bounds.
Therefore, the method described in Equations (4-5) through
(4-8) will establish upper and lower integer bounds on each
variable.

A final requirement for Stage 1 is an indication
whether the objective function is to be maximized or mini-
mized. In both the algorithm of Appendix A and the computer
code of Appendix B, the key word MAX is used to indicate
maximization or minimization. Maximization is indicated
when MAX = 1 and minimization is identified by setting

MAX = 0. Figure 4 shows a flow chart for Stage 1.
Stége Two

Some of the concepts of linear Diophantine equations
and the theory of numbers are used in Stage 2. First, the
greatest common divisor, g, of the objective function coef-
ficients is determined. Given an objective function of the

form

z = Z CJ xj‘, (4_9)

then the greatest common divisor of the c; coefficients is
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defined as
(C1, C2y eeey Cp) = Zo (4-10)

In Chapter IIT, Euclid's algorithm is described. This algo-
rithm can be used to find the greatest common divisor for
Equation (4-9), where c; is integer, for j = 1, 2, ..., n.
When the greatest common divisor is greater than one,
the algorithm takes advantage of the implication of this
fact. If g > 1,. then certain parallel hyperplanes can be
eliminated from consideration, since integer solutions can
only occur when gl|k, where k is some specific objective
function value. This very important observation can signif-
icantly reduce the number of combinatorial solutions the
algorithm must examine. Very simply, if g,*k, where
(ci1y C2y esey Cp) = g, then no integer solution can lie on

the hyperplane
Z c;xy; = k. (4-11)

The initial objective function value that is considered
is identified by the key word ZOF in the statement of the
algorithm in Appendix A and in the computer code. In Stage
1, the optimum continuous—variable simplex solution, ZSIM,
was established. For a maximization problem where the
greatest common divisor is g = 1, then the first of objec-

tive function value used by the algorithm is

ZOF = [ZsIM]. (4-12)
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If ¢ # 1, then ZOF is set equal to the greatest integer less

than ZSIM that has g|ZOF., Similarly, if minimization prob-

lems are to be solved, then
ZOF = (ZSIM) (4-13)

when g = 1; and, ZOF is set equal to the smallest integer

greater than ZSIM such that g|ZOF when g # 1.

The logic of beginning at the continuous-variable solu-
tion is an important part of the objective function reduc-
tion algorithm. In many problems, the optimum integer
solution lies on a hyperplane that is very near the hyper-
plane that contains the optimum noninteger solution.
Unfortunately, the set of solutions to the integer program-—
ming problem is not conve#. If only the space near the
optimum noninteger solution is searched, then only a local
optimum can be assured with an integer solution. Therefore,
the objective function reduction algorithm begins at the
hyperplane that contains the optimum noninteger solution
because the optimum integer solution is often nearby, but
the search metho& of Stage 4 considers successive hyper-
planes and uses procedures to identify a global optimum.

Where g = 1, for maximization, the first integer value
of the objective function, ZOF, was defined to be
ZOF = [2SIM]. This means the simplex optimum objective
function value, ZSIM, is rounded down to the greatest integer
less—-than-or—-equal-to ZSIM. The proof that this is an
acceptable place to begin the search will now Be considered.

The fact that the simplex method finds the optimum

continuous-~variable solution is a basic axiom of
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mathematical programming. Let the value of the objective
function at the optimum continuous-variable solution be

defined as
w = ZSIM (4-14)

for this analysis. Therefore, the optimum objective func-
tion to the linear programming problem, where the integer

restriction has been relaxed, would be of the form

z: Xy = W. (4-15)

In Equation (4-15), the coefficients are restricted to
integer values. The variables, x;, j =1, 2, ..., n, may be
any real number within the limits set by the constraints.
Obviously, this means w may assume a real number for the
optimum simplex objective function value. Assuming the
objective is to be maximized, w must set an upper bound on
the objective function. Since each coefficient and variable
on the left-hand side of Equation (4-15) must be integer in’
the final optimal all-integer solution, the sum of their
products must be less-than-or—-equal-to w.

The above analysis implies that when g = 1, then
ZOF = [w] provides an upper bound on the objective function.
The theorems of linear Diophantine equations require that
gIZOF for an all-integer solufion to exist at a particular
objective function value. Consequently, when g # 1, then
[Z$IM] must be incremented down in integer amounts until it

leads to a ZOF that has g|ZOF. Similar logic can be used
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to prove that the ZOF described for minimization problems
is acceptable.
The logic of Stage 2 is shown in the flow diagram of

Figure 5,
Stage Three

In Stage 3, a ranking scheme for ordering the variables
is specified. The objective of ordering the variables is to
develop a procedure that will implicitly examine and elimi-
nate several combinatorial solution possibilities. To do
this, the bounds on each variable are examined. The upper
and lower bounds determine the range of possible integer
values for a variable. The range size is the number of
integer possibilities for a particular variable. A permuta-
tion from the set of problem variables, {lej =1, 2, ...,
n}, is identified such that the range size of the variables,
r(g)J, proceeds from smallest to largest. That is, the
first variable in the ranking has the smallest range of
possible integer values, the second variable the next
smallest range, and so on.

The ranked variables are assigned a new symbol, y,;, for
=1, 2, «..., n. The first variable in the ranking, vyi,
represents the variable with the smallest range of possible
integer values. This change of variables process continues
so that the ranked variables will correspond to the ordered
original problem variables. This will give r(§)1 S r(yyz <

cee < r(Q)n, where r(y,); is the range size of the jth ranked
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variable.

In some problems, the range size may be the same for
two or more variables. The algorithm breaks the tie for
ranking position by selecting the variable (x;) with the
largest objective function coefficient (cJ) to have the
higher ranking. That is, if in some problem r(yx); = T(x)ts
where s # t, then ¢, and c; must be examined. If c, > cg,
then the algorithm would order the variables so x; preceded
Xy in the ranking. If the situation should occur such that
r(,;)s = r(gy)y and ¢, = c;, then the tie for ranking position
is arbitrarily broken.

The general philosophy of this ranking scheme is to
describe a procedure that will mean that fewer combinatorial
solutions will have to bé explicitly examined. An addi-
tional way to move toward this goal is to use an observation
from linear Diophantine equations. As was discussed in
Chapter III, if all the coefficients in a Diophantine equa-
tion are even, then an odd right-hand side value means there
are no integer solutions to that equation. In Stage 4, the
objective function reduction algorithm will take advantage
of this fact, whenever possible, to truncate the search.
Using this concept, the algorithm examines the objective
function coefficients (éd) that correspond to the ranked
variables (YJ)° If a successive series of even coefficients
occurs from the kth to the nth variable in the ranking, the
algorithm records this fact. Stage 4 will describe the

implicit examination of solutions that can be obtained using
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this procedure.

An additional heuristic procedure that blends the ideas
of range size and even coefficients has been developed. If
it is found that the range sizes on the ranked variables are
approximately the same, the speed of convergence can often
be improved by purposefully placing any variables with even
éj last in the ranking. Therefore, the variables would be
first ranked according to range size. Then, change the
ranking to place any variables with even éJ at the end of
the ordered variables. Again, this heuristic procedure is
only advantageous when the r(;)i, for j =1, 2, ..., n, are
approximately the same and some éJ are even integers.

One of the goals of Stage 4 will be to attempt to
tighten the upper and lower bounds on the ranked variables.
Before going to Stage 4, the upper and lower bounds are set

equal to variables indicating temporary bounds. This is

done by setting

£ £
Yyt = Y3 (4-16)
and
Y%J)t = ¥y (4-17)

for j =1, 2, ..., n. As the algorithm moves to Stage 4,
the tightest bounds that are known are the ones given in
Equation (4-16) and (4-17).

Figure 6 presents a flow diagram of the logic used in

Stage 3.
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Stage Four

The essential features of. Stage 4 will be considered in
this section. Appendix A gives detailed, step-by-step
instructions for Stage 4. In Stage 4, the search for an
optimal integer solution begins. Explicitly or implicitly,
all of the integer combinatorial possibilities are examined
in the feasible solution space. Beginning at the optimal
continuous-variable solution, a family of paraliel objective
function hyperplanes is searched for the optimal feasible
solution.

The basic procedure is to let the variables take on
integer values within their range of feasible values. When a
variable is assigned a specific value, this means poten-
tially tighter bounds can be found on each variable not
assigned a specific value. This procedure of finding
tighter bounds can often be used to eliminate the need for
explicitly considering several integer combinatorial possi-
bilities. The highest ranked variable, y1, is set at its

bound, such that

Y1 = Y%l)t (4-18)

for maximization problems, or

y1 = Y£1)t (4-19)

for minimization problems. Also, initialize a temporary
objective function value, z;, such that =z, = ZOF. With y;

now assigned a value, the initial value of the objective
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function, z; = ZOF, can be modified. Therefore, the remain-

ing variables can only take on values such that

A A A A
Cay2 + C3¥a + eee + Cp¥y = Z¢y = C1¥1 e (4-20)

This fact, alone, may exclude some values of certain vari-
ables from being considered for a given z, and the held
valye of y1. Still further, the held value of y; also
offers the possibility of tightening variable bounds due to
the functional constraints. Where b: is a temporary right-
hand side value in the ith constraint, the b: are first
initialized to the original right-hand side constants, such
that b: = by for i =1, 2, ..., m. The constraints are now

of the cannonical form

n
A t
j=1
for i =1, 2, ..., m. Since y; has been assigned an integer
value, each b;, for i =1, 2, ..., m, can be potentially

modified. The new bf are found from

A
b: = b: = a;1y1- (4-22)

for i =1, 2, ..., m.

A
If a,; # 0, a new tighter bound on. the next variable in

the ranking can now be found. If a maximization problem is

being considered, then the new temporary upper bound on y,
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o eIl AT e

Equation (4-23) imposes a new, temporary upper bound on yaz,
given yi1 is being held at some fixed value. Only coeffi-
cients where éz > 0 and 212 > 0 are considered when finding
a tighter upper bound on yz. If ég < 0 and all g12{£ 0,
then no tighter bound on yz is defined.

Similarly, for a minimization problem, the new tighter
lower bound on yz is found from

Y%B)t = max {<Zt/éz>, <b:/£12>}- (4~24)
i=1,2,...,m

As before, only coefficients where éz> 0 and 212 > 0 are
considered when finding a tighter lower bound on yz. If
ég < 0 and all 212 < 0, then no tighter bound is defined for
Ya.

Now, yz is set at its new bound. If the objective

function is to be maximized, then
Y2 = ¥(2)+¢, (4-25)
otherwise, for minimization set
£
Y2 = Y(z2)te (4-26)

The fact that yz; has been assigned a value means that a new
zy and bf, for i =1, 2, ..., m, can be found. This implies

that a new, potentially tighter bound can be determined for
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the next variable in the ranking, ysz. Then, ysz can be set
at its new, temporary bound. This method continues until
the algorithm finds it can truncate the process, where fur-
ther enumeration would lead to infeasible solutions. Some
of these methods of implicit examination will now be
considered.

Ir atvany time z, 1is ‘an odd “fnteger during the process
of assigning values to variables and finding tighter
bounds,. then: the algorithm checks to see if this fact can
be used. From the theory of linear Diophantine equations,
an equation with even coefficients and an odd right-hand
side value is immediately recognized as having no integer
solution. Suppose the first k-1 variables have been
assigned a value in the ranking and the resulting z, is an
odd integer. If it is found that all succeeding objective
function coefficients from ék to én are even integers, then
an equation with no integer solutions has been defined.
Therefore, all of the combinations of the remaining vari-
ables in the ranking (y, to y,) can be eliminated from con-
sideration, given the present held values of y1 to yy-1.
The algorithm immediately begins to backtrack, reducing yg-l
by one integer amount, finding a new z,, determining a new
bound for yg, and so on. On certain problems, several solu-
tions can be implicitly examined and eliminated with this
procedure.

During the calculation of a new z;, the value of z; can

be driven negative. This is an immediate indication that
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all of the remaining variables in the ranking can be elimi-
nated from consideration, given the present held values of
the preceding variables in the ranking. The algorithm
begins to backtrack as described before.

When the truncation methods fail to eliminate a certain
combination, the algorithm advances through the ranking
until the variable identified as y,-; is reached. Since all
preceding variables in the ranking, y; through y,-,, have
been set equal to one of their integer possibilities, only
¥n~1 nheed be assigned a value. When this is done, y, can be
calculated from the objective function equation. If the
value calculated for y, is noninteger, the algorithm begins
backtracking through the combinations. If y, is found to

be integer, the feasibility of the solution
Yy = (YIq Y243 cecey Yn) (4-27)

is tested in the functional constraints. If it is infeasi-~
ble, the algorithm backtracks and examines other combina-
tions. In a finife number of iterations, the solution space
will be examined explicitly and implicitly. If no integer
solution is found for the first value of ZOF, then a new

objective value is determined from

ZOF = ZOF - g. (4-28)

This will assure that the new value of ZOF has g|ZOF. Only
objective function values such that g|ZOF need be consid-

ered as shown in the theory of linear Diophantine equations.
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If the solution y in Equation (4-27) is found to be
feasible, the algorithm stops and indicates the optimal
solution has been found. Since the optimal solution must be
the extreme point of the set feasible solutions, the first
feasible solution found on the family of parallel objective
hyperplanes is the optimal solution.

The logic of Stage 4 is shown in Figure 7. A three
variable example will be demonstrated in the next section to

further explain the concepts of the algorithm.
A Three Variable Example

The three variable example presented in this section
will be used to demonstrate several of the characteristics
of the objective function reduction algorithm. The logic of
the algorithm is described in Appendix A. This appendix
should be used as a reference while following the step-by-
step solution of the example problem. The following example

will be used in this sectioh:

maximize z = 6% + 3 x2 + 6 x5 (4-29)
subject to - 4 x + 5 x + 2 x5 < & (4-30)
- 2x +5 x2 + 0 x3 <5 (4-31)

3% - 2 Xz + 2 x3 <6 (4-32)

2 x3 -5 %x3 +0x3 <1 (4-33)

x,%>» 0 for j = 1, 2, 3 (4-34)

X;, ¢; INTEGER for j = 1, 2, 3. (4-35)
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The solution to this problem with the objective function

reduction algorithm begins with Stage 1.

Stage 1
SteR 1

Step 1 asks for the simplex linear programming solution
to the problem. Using a simple computer code, the solution

was found to be
ZSIM = 29,2 (4~36)
and
x* = (3.64, 2.45, 0.0). (4-=37)

Since this solution is not all integer, the algorithm goes

to Step 2.

Step 2

The upper and lower integer bounds on each variable,
X, j=1, 2, 3, must now be defined. One way of doing this
is to use the procedure of solving six linear programming
problems. The first three problems will have objective

functions of the form
maximize zZ = X (4-38)

for j = 1, 2, 3. The constraints associated with the objec-
tive functions of Equation (4-38) are the original problem

constraints of Equations (4=30) through (4~34). These three
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problems provide upper bounds on each variable. Similarly,
three minimization problems with objective functions of the

form

minimize Z = X, (4-39)

for j =1, 2, 3, can be solved to obtain lower bounds on

each variable. When this is done, then

for j = 1, 2, 3, where x{ is the value obtained from maxi-
mizing the jth variable subject to the problem constraints.

The lower integer bounds are
4 "
x; = (x}) (4~-41)

for j = 1, 2, 3, where x is the value found from minimizing
the jth variable subject to the problem constraints. Using

this method, it was found that

xI = 3 (h-42)
xz = 2 (4-143)
Xz = 2 (h-Lh)
and
x;, =0 for j =1, 2, 3. (4-45)
Step 3

Since the problem is to be maximized, the key word MAX
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is set to

MAX = 1. (4-46)
Stage 2
SteE 1

Using Euclid's algorithm or by inspection the greatest

common divisor of the objective function coefficients is

(6, 6, 3) = 3 (L-47)
or,
g = 3. (4-48)
Step 2
Now, the initial objective function value must be
found. Stage 1 says ZSIM = 29.2. Since g £ 1,
ZOF = [ZSIM] (4-49)
ZOF = [29.2] (4-50)
ZOF = 29 (4-51)

will not lead to an integer solution to the objective func-
tion of Equation (4-29). The first integer value below 29

that has g = 3 as a factor is 27. Therefore, with

ZOF = 27 (4-52)

the requirement of g|ZOF is met.
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Stége 3
Step 1

In Stage 3, the variables are ranked according to the
number of integer values they can take on. Using the bounds
found in Stage 1, the range size, r(yx);, for j =1, 2, 3,

can be determined. In general, the variables are bounded

such that
2 u
xy 2 x5 2 Xy (4-53)
for j =1, 2, ..., n. In this example, the bounds are
0 <x1 <3 (4-54)
0 < x2 <2 (4-55)
0 < x3 < 2. (4-56)

Therefore, the range size for each variable is

rigyyr = 4 (4-57)
rig)z = 3 (4-58)
r(gy)s = 3. (4—59)

Although not described in Appendix A or used in the computer
code, an interesting and useful heuristic procedure will be
pointed out. Given the range sizes are approximately the
same, rank the variables so the even objective function

coefficients appear last in the ranking. This leads to
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Y1 = Xz (4-60)
Yz = Xa (4-61)
Ya = X1 (4—62)

as a ranking. This will allow the methods of linear
Diophantine equations to be used in truncating part of the
search, Also, this implies the bounds in terms of the

ranked variables are

vi = 2 (4-63)

yvi = 2 (4-64)

yz = 3 (4-65)
and

vl =0 (4-66)

for j =1, 2, 3.

Notice that using the methods of Appendix A would lead
to ranking of y1 = X3, Y2 = Xz, ¥ya = X1. Unless altered by
using the heuristic procedure of ranking, the algorithm
would select this ranking scheme. In the special case where
the r(x); ére approximately the same and some c; are even
integers, a modified ranking as in Equations (4-60) through

(4-62) often speeds convergence.

Step 2

With the ranking proposed in Equations (4-60) through
(4-62), a successive sequence of eveén objective ‘function

¢oefficients is described..: The ordered éoefficierits are
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cy = 3 (4—67)
&s = 6 (4-68)
cs = 6, (4-69)

1

which has the last two coefficients in the ranking even
integers. The key word IFLAG is set equal to the number of
the ranking position where the even coefficients begin.

That is, all coefficients must be even integers from k to n

A [}
in the set {cjlj =1, 2, .e.y ky ¢e., n}. Therefore, set
IFLAG = 2. (4-70)
Step 3

During Stage 4, tighter bounds will be sought for the
variables. Temporary bounds will be established and modi-
fied at various points in the algorithm. The temporary
bounds are first set equal to the over-all bounds for each
variable. Using the change of variables and the bounds

R u . u 2 2 )
found earlier, set y(;): = y; and y(;3y¢y =¥y for j = 1, 2,

eeey N. This implies

Yi1ye = 2 (4-71)
ylays = 2 (4=72)
yiays = 3 (4-73)
and
2



81

Before going to Stage 4, the example problem will be

stated in terms of the ranked variables, y;, j = 1, 2, 3.

maximize z =3vy1 +6 yz + 6 ya (4~75)
subject to 5y1 +2yz - bys <k (4-76)
5y1 +0yz -2ys <5 (b-77)
- 2y1 +2y2 +3y3 <6 (4-78)
-5y1 +0ys +2y3s <1 (4-79)
yy) 20 for j =1, 2, 3 (4-80)
¥;, ¢, INTEGER for j = 1, 2, 3. (4-81)
Stage 4
Step 1
Set j = 1.
Step 2
Since MAX = 1, set
yi = y1 = 2. (4-82)
A heuristic procedure is to set y; = y% if él is negative,
Step 3
Set ZSUBT = 27, NOTEA = .0, and
b = by = 4 (4-83)

bz = bz = 5 (4-84)
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by = bs = 6 (4-85)
be = bs = 1. (4-86)

The key word NOTE4 is used in the computer code and the
written form of the algorithm as an indicator which equals
zero when all right-hand side values of the constraints are
positive or zero. It is set equal to one when a right-hand

side value has been forced to a negative value.

Step 4

Since this is the first time a ZSUBT value has been
found that is tighter than the ZOF = 27 value, the following

equation is used

A
ZSUBT = ZSUBT - c1 yi. (4-87)

Therefore, set
ZSUBT = 27 - (3)(2) = 21. (4-88)
This ZSUBT value is > 0, so go to Step 5.

Step 5

ZSUBT = 21 is an odd integer, so go to Step 6.

Step 6

The key word IFLAG = 2 indicates all successive ranked
variables from 2 through n have even objective function
coefficients. Therefore, truncate the search and do not

consider any further solutions with y1 = 2, because none can
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produce an integer solution. Go to Step 26, since IFLAG = 2
and j = 1.
Step 26
With MAX = 1, set
yi =y1r -1 =2~1=1 (4-89)

and go to Step 27.

SteE 27

Here, a check is made to see if all solutions for this
particular objective function plane have been considered.
This would be the case if the algorithm had incremented y:
below its temporary lower bound. But, yi1 = 1 and y%l)t = 0

which says
£
Y1 7 ¥Y(1)t. ' (4-90)
Therefore, set ZSUBT = ZOFj3; that is,
ZSUBT = 27 (4-91)

and go to Step 28.

Step 28
The value of n # 2, so set
b{ = b1 = & (4—92)

bs = bz = 5 (4-93)

bt = bs = 6 (L—9kL)
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ba_t = bse =1 (4-95)

and, go to Step 4.

Step 4

Again, as far as the algorithm is concerned, this is
the first time a ZSUBT value has been found that is tighter

than ZOF = 27. Therefore, set

ZSUBT = ZSUBT - 31y1~' (4-96)

I

ZSUBT = 27 - (3)(1) = 24 (4-97)

1l

and, ZSUBT > O, go to Step 5.

Step 5

ZSUBT is an even integer. Go to Step 7.

Step 7

This step checks to see if the final variable, y,, is
to be calculated yet. Since n - 1 =2 and j + 1 = 2, there~

fore

so the algorithm says go to Step 13, because new right-hand

side values have not been calculated for the held value of

yi, yet.
Step 13

The new right-hand side b-values for the constraints
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A

by = bl - a;; y1 (4-98)
for i = 1, 2, ..., m. This leads to
b = & - (5)(1) = -1 (4-99)
bs =5 - (5)(1) =0 (4-100)
bs = 6 - (=2)(1) = 8 (4-101)
bi =1 - (-5)(1) = 6 (4-102)

A right-hand side b-value,

Therefore, set

bf, has been forced negative.

NOTE4 = 1,

implying the methods of Step 18 cannot be used to find

tighter bounds on yy;+;. Go to Step 14.

Step 1k

The subscript j = 1 and tighter bounds have not been

found on y;+;. Go to Step 15.

Step 15

The subscript j + 1 =

Step 16

2, so go to Step 16.

Since NOTEL = 1, go to Step 17.
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Step 17
The key word MAX equals one, so y%z)t = y; gives
Yizye = 2. (4-103)

Go to Step 23.

Step 23

The next variable in the ranking, y;+,, is set at its

bound. With MAX = 1, set

Y%J+1)t (4-104)

[k}

Yi+1

yizye = 2, (4-105)

Yz

and go to Step 24.

Steg 24

Variable y;+1 has not been incremented below its bound,

such that
2
Yi+1l 2 Y(g+1)te (4-106)

Therefore, go to Step 4.

Step 4

This time a ZSUBT has been calculated before, so the

new ZSUBT is found from

A
ZSUBT = ZSUBT - cy+1 yjy+1 (4-107)

ZSUBT = 24 - (6)(2) = 12. (4-108)
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Since ZSUBT > 0, go to Step 5.

Step 5

ZSUBT is an even integer. Go to Step 7.

Step 7

Now, the final variable is to be calculated, n - 1 =
J + 1, and right-hand side b-values have been found for yi.

Go to Step 8.

Step 8

Check to see if y, is an integer from

y, = ZSUBT/é, (4-109)

1}

Y 12/6 = 2. (4-110)

The variable y, is integer so go to Step 9.

Step 9

Check to see if y, > yi. The value of y% = 3, so

yas < yg. Go to Step 11.
Step 11
The feasibility of the solution
y = (1, 2, 2) : (4-111)

is now tested in the functional constraints, Equations

(4-76) through (4-79). This solution is found to be
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infeasible in the third constraint, Equation (4-78). Go to

Step 12.

Step 12

A solution has been found infeasible, so y;+1 = yz2 is
incremented down one integer. With MAX = 1,

Yi+1 = yy+1 - 1 (4-112)
yz = yz — 1 (4-113)
yz = 2 - 1 = 1. (4-114)

The algorithm continues attempting to find tighter

bounds and searching for a feasible solution on the plane
z=3yL +6yz +6ys = 27, (4-115)

No feasible solution is found on this plane. Aftler several
steps. similar to the ones described above, the algorithm
reaches Step 27 with y1 incremented to a value of y; = -1.
This is below yf which indicates all solutions on the plane
of Equation (4-115) have been implicitly or explicitly con-
sidered. The objective function is incremented down by the

amount of the greatest common divisor to get

ZOF

11

ZOF - g (4-116)

ZOF

Il

27 - 3 = 24, (4-117)

Now, the plane

Z=3yl+6yz+6}73:24 (4—118)
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will be searched for a feasible solution with the methods of
Stage 4. A feasible solution, therefore, the optimal solu-

tion, is found on this plane, such that
y* = (2, 0, 3). (4-119)

The optimal solution in terms of the ranked variables

can be changed to the original variables to give
x* = (3, 2, 0). (4-120)

This example demonstrates many of the essential fea-
tures of the objective function reduction algorithm.
Chapter V will discuss the computer code and some of the

implications of the algorithm.



CHAPTER V
SOME IMPLICATIONS OF THE ALGORITHM

This chapter discusses some of the implications of the
algorithm developed in this research. The computer code
that performs the step-by-~step process of the objective
function reduction algorithm is described. The proposed
method of ranking the problem variables is discussed more
fully. Because of the importance of finding good approximate
solutions to the pure integer linear programming problem, a
heuristic procedure for establishing a lower bound on the
maximand is presented. First, the computer code will be

considered.
The Computer Code

The computer program used for the objective function
reduction algorithm is written in the FORTRAN IV language.
The code is composed of a main driver test program and
three subroutines. The main driver test program is shown in
Appendix B. This main program performs several functions,
the first of which is initialization of certain parameters.
Some parameters are set to their initial or normal values
early in the main program. Later, tests are made to see if

violations of limits or anticipated errors have been found
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as the program searches for the solution.

The main driver test program reads in the values that
describe the integer linear program to be solved. These
include the number of constraints, the number of real vari-
ables, whether the problem is maximization or minimization,
the constraint coefficients, the right-hand side b-values,
and the objective function coefficients. Also, the Stage 1
information of the upper and lower integer bounds on the
variables and the objective function vélue at the continuous
variable solution are read into computer memory. For refer-
ence and analysis, the main program writes out the input
data.

In Appendix C, SUBROUTINE GCD is presented. This sub-
routine calculates the greatest common divisor for a set of
objective function coefficients. The greatest common
divisor is calculated using Euclid's algorithm that was
described in Chapter IITI. In addition, this subroutine cal-
culates the first objective function value that is searched
while looking for the optimal integer solution. Since it
must have the greatest common divisor as a factor, the
initial objective function value is calculated after the
greatest common divisor has been determined.

The FORTRAN IV code for SUBROUTINE RANK is listed imn
Appendix D. This subroutine ranks the variables in the
objective function according to their range of possible
values. The ranking procedure was demonstrated and

explained in Chapter IV, but will be discussed again later
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in this chapter. The subroutine first calculates the range
of possible values that each real variable can take on.
Using a Shell sorting technique, the variable with the
smallest range size is ranked first in the ranking. The
next part of the subroutine tests for the situation that
some variables have equal range sizes in the ranking. When
this occurs, the variable with the larger objective function
coefficient is given the ranking position nearest the vari-
able ranked first. Also, this subroutine calculates the
value for the even sequence indicator, IFLAG. The subrou-
tine scans the objective function coefficients of the ranked
variables, looking for an even sequence of coefficients from
ék to én. If there is no such even sequence, the program
defaults to setting IFLAG at one greater than the number of
real variables. This indicates to the program that no even
sequence exists.

The main part of the explicit and implicit search for
the optimal integer solution is conducted in SUBROUTINE
SEARCH, which is reproduced in Appendix E. This subroutine
takes the information from the main program and subroutines
RANK and GCD as it begins examining the solution space. The
combinatorial search starts by holding the highest ranked
variable at its upper limit for a maximization problem.
SUBROUTINE SEARCH corresponds directly to Stage 4 of the
analysis presented in Chapter IV and Appendix A. The steps
of Stage 4 in Appendix A provide a direct reference to the

step~-by-step analysis of SUBROUTINE SEARCH.
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Several integer linear programming test problems that
have been solved by the computer code are collected in
Appendix F. Many of the problems are examples used in the
literature. The majority of the examples are small in size,
but they have sufficient variety to test the computer code.
The computer code and all test problems were run on an IBM
System/360 Model 65 computer. The method of ranking the
variables used in the objective function reduction algorithm

will now be discussed.

The Scheme of Ranking

the Variables

The objective function reduction algorithm searches for
the optimal integer solution by considering the feasible
integer combinatorial possibilities. Any practical algo-
rithm must examine the solution space in such a manner that
many solutions need not be explicitly considered. One tech-
nique used in the algorithm presented in this thesis is a
ranking scheme for ordering the variables. The objective of
ordering the variables is to develop a procedure that will
implicitly examine and eliminate several combinatorial solu-
tion possibilities. Appendix A gives a written description
of the ranking procedure used in.the algorithm. In Appendix
D, SUBROUTINE RANK shows how the computer code ranks the
variables.

Briefly, the ranking scheme will be reviewed again.

The integer bounds on each variable are examined and used to
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determine the range of possible integer values for each
variable. The range size is the number of integer values a
particular variable can take on within the feasible solution
space. From the set of problem variables, a permutation is
developed such that the range size of the variables, r(x)i,
will proceed from smallest to largest. The ranked variables
are assigned a new symbol, y;, for j = 1, 2, ..., n.

When the range size is the same for two or more vari-
ables, the tie for ranking position is broken by selecting
the variable (xJ) with the largest c, to have the ranking
position nearest y;. If two or more variables have the same
range size and the same objective function coefficients, the
tie for ranking position is broken arbitrarily.

The cannonical form of a maximization problem will be
assumed throughout the remainder of this discussion. The
algorithm begins its search for the optimal solution by
setting the variable ranked as y:1 at its upper limit. This

value of y1 1is set at
u
Yi = Y1, (5-1)

the upper 1limit on the first variable in the ranking. From
this held value of yi1, a new, reduced temporary objective

function value can be found such that

A A A ' A
Cz Y2 + C2 ¥Ya + eee 4+ Cp ¥n = Zy — C1 Vi, (5~-2)

A
if c¢c1 » 0. As described earlier, this process of tightening

the value of z, for the held values of variables continues
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until the algorithm can truncate the search or y,-; is
reached. If the algorithm must proceed through the combina-
torial possibilities to y,-; without truncating the search,
the ranking scheme does not increase the speed of the
algorithm. When a method can be used to implicitly examine
the remainder of the combinatorial possibilities, the rank-
ing method is beneficial in eliminating solution
combinations.

Table I shows the feasible integer values of each
variable in an example wiéh 2535 feasible integer combina-
tions. The variables have been ranked according to their

range size, such that, r(y,y: < r(i)g S.r(i)s < r(y)a.

TABLE I

AN EXAMPLE WITH THE VARTIABLES RANKED
ACCORDING TO RANGE SIZE

Y1 Y= Ysa Y4
2 4 12 12
1 3 11 11
0 2

1
0

=
O R MDWHEVUIOA] OO O

=
O R MWLV 00 O
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The preceding table shows the advantage the ranking scheme
offers when a specific situation is considered. Suppose the
algorithm sets y; at one of its feasible values. If the
algorithm now finds it can truncate the search, the pyramid
effect of the ranking scheme provides a maximum of implied
examination of the solution space.

The ranked variables yz and ys in Table I both have the

same range size,
r(y)ya = Ir(yys = 13. ' (5-3)

In the particular problem selected as an example for Table I,
the associated objective function coefficients are 33 = 7
and é4 = 3. When the original problem variables (xJ) were
being examined to determine ranking positions, it was found
that two variables had the same range size. The tie for
which variable should be given ranking position yz was
broken by assigning the variable with the greater éJ the ya
position. The reason for selecting that variable is because
it potentially allows the algorithm to take advantage of one
of its truncation methods. If the algorithm ever causes the
temporary z, value to be driven negative, it can be immedi-
ately implied that all succeeding combinations of ranked
variables are infeasible for the held value of all preceding
variables. Therefore, the ranking scheme should maximize
the feature whenever possible. By selecting the variable

with the largest coefficient, the value of z, can be

reduced most quickly. This may lead to truncation early
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in the search.

In certain problems, it may be beneficial to override
the ranking scheme used in SUBROUTINE RANK. A heuristic
procedure has been developed that reduces the number of
iterations on certain types of problems. When the range
sizes on the ranked variables are approximately the same,
the number of iterations can often be reduced by modifying
the ranking so any variables with even éj appear last in the
ranking. After the variables have been ranked according to
their range size, the ranking is changed so any variables
with even objective function coefficients appear at the end
of the ordered variables. This will allow the algorithm to
set the even sequence indiéator, IFLAG, at a value that will
increase the number of variables truncated. The newly formed
sequence of even objective function coefficients allows the
algorithm to truncate the search each time z; is found to
be an odd integer, when only the even sequence of coeffi-
cients is being considered. This ranking modification pro-
cedure is only beneficial when the variable range sizes are
approximately the same and some of the objective function

coefficients are even integers.

Modifying the Coefficients in

the Objective Function

In many integer linear programming problems, the size
or configuration of the solution space make finding the

optimal solution difficult, even with high speed computing
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equipment. These situations can make the computing time
impractical for finding the optimal integer solution. A
good approximate solution can be of great value when the
optimal solution cannot be easily obtained. Hillier (14)
has poihted out this fact in his work in developing an
efficient heuristic procedure for integer linear
programming.

The objective function reduction algorithm has some
features that allow it to converge most rapidly on some
types of problems. Conversely, convergence speed is limited
when certain situations exist. In the case where the
greatest common divisor (g) of the objective function
coefficients is one, the algorithm must search each succeed-
ing hyperplane beyond the continuous variable solution.
Also, if each objective function coefficient is an odd
integer, the even sequence indicator, IFLAG, can never be
used to truncate the search and implicitly examine some com-
binatorial possibilities. As with other linear programming
algorithms, the objective function reduction algorithm con-
verges increasingly slower as the number of variables and
constraints enlarges. A heuristic procedure will now be
discussed that will modify the objective function coeffi-
cients to take advantage of some of the algorithm*s methods
of speeding convergence. The cannonical form of a maximiza-
tion problem will be assumed throughout the remainder of
this discussion.

When the algorithm has determined that the greatest
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common divisor (g) is greater than one, only certain hyper-
planes are considered in the search for the optimal solu-
tion. As previously mentioned, for an integer solution to
be possible, g must be a factor of the value of the particu-
lar hyperplane being considered. Using the earlier nota-
tion, g|k must be true for an integer solution to be

possible in the objective function

A A A
Cl1 Y1 + C2 V2 + e.e + Cp ¥y = k, (5-4)
A
where ¢y, for j =1, 2, ..., n, and k are integers. Using

this concept, an approximate solution procedure that modi-
fies the objective function coefficients to get g > 1 can

potentially reduce the number of hyperplanes the algorithm
must examine.

Consider an objective function of the form
z = 501 x1 + 98 x3 - 296 x5 + 705 X4. (5-5)

The objective function reduction algorithm would find that
the greatest common divisor is one. With small changes in
each coefficient, a new, approximate objective function

could have the form
z = 500 x1 + 100 xz -~ 300 x5 + 700 Xa. (5-6)

The algorithm would now conclude that g = 100 should be used
for the greatest common divisor. As described in Chapter
IIT on linear Diophantine equations, objective function

values in increments of g are the only ones that need be
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searched for an integer solution. Again, this comes from
the fact that the greatest common divisor must be a factor
of the objective function value. The number of hyperplanes
the algorithm must search has been significantly reduced.
Also, Theorem 3.3 in Chapter III can be used to set a lower
bound on the search. For a feasible integer solution to
exist, the value of the objective function must be greater-
than—or—equal—to g.

Another consideration would be to try to modify the
objective function coefficients to obtain a sequence of even
integers from k to n in the set {éd li =1, 2, .., kK, ... nk
This will allow the algorithm to use the even sequence indi-
cator, IFLAG, to truncate the search. The number of itera-
tions can be reduced appreciably when IFLAG can be used to
implicitly examine some solution combinations.

Finally, modifying the objective function to obtain an
approximate solution offers still other advantages. Many
primal integer programming algorithms benefit from having a
good approximate solution to begin their search. An approx-
imate solution that is obtained rapidly can reduce the
computing time for many optimal algorithms. Also, this
approximate solution can be used to describe a lower bound
on the maximand.

Using the techniques described above for modifying the
objective function coefficients, an approximate solution can
be obtained with methods that speed the algorithm. Tests

on several example problems have shown that minor chariges in
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objective function coefficients can be made and still lead
to the optimal solution. Obviously, a modified objective
function gives no direct assurance the optimal solution has
been found. Nevertheless, the solution found with the

modified objective function,

X—“—(Yl,yz, '-',Yn)’ (5-7)

is potentially useful. Even if the objective function slope
is changed sufficiently so that y # y*, the y solution can
be used to set a lower bound on the maximand. If the solu-

tion y is substituted in the unmodified objective function,

A A . A
Z = C1 Y1 + C2 Y2 + eee + Cn Yn, (5~8)

then a new constraint can be formed. If the value of
Equation (5-8) with the approximate solution substituted in
for y;, j =1, 2, ..., n is called k, then a new lower

bound can be made with the constraint

A A A
CI y1 + €2 Y2 + ... + Cy yn > k. (5-9)

The new constraint defined in Equation (5-9) can be
added to the original problem constraints to describe a new
integer linear programming problem. The solution space has
been reduced and some solutions eliminated from further con-
sideration. This approach offers an approximate solution
and tighter bound on the optimal feasible solution.

The next and final chapter of this thesis will briefly
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state the problem, summarize the important findings, and

suggest areas of further research, investigation, and study.



CHAPTER VI

SUMMARY AND CONCLUSIONS

The primary problem considered in this research is an
extension of the existing theory of solution procedures for
pure integer linear programming. The objective is to pro-
vide a new algorithm for solving the pure integer linear
programming problem. Secondary problems approached are (1)
to identify any heuristic procedures that will speed the
convergence of the algorithm, (2) develop a procedure for
finding a good approximate solution to the problem, (3)

write a computer code to evaluate the algorithm.

Important Findings

Several important techniques for integer linear pro-
gramming have been identified in this research. A new algo-
rithm has been developed. The objective function reduction
algorithm presented in this thesis uses a combinatorial
search procedure to implicitly and explicitly search the
solution space. This algorithm uses the concept of examin-
ing a family of objective function hyperplanes until an
integer solution is found. Beginning at the optimum non-
integer solution, the algorithm inspects parallel objective

function hyperplanes in the feasible solution space.
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The basic structure of the algorithm developed in this
research is divided into four stages. Stage 1 identifies
the optimum continuous-variable solution, defines the over-
all bounds on each variable, and determines whether the
objective function is to be maximized or minimized. Stage 2
calculates the greatest common divisor of the objective
function coefficients and determines the first hyperplane to
be searched. 1In Stage 3, a ranking scheme is selected for
the variables. It also examines the objective function
coefficients of the ranked variables and defines an even
sequence indicator used to truncate the search for implicit
consideration of solution combinations. Stage 4, the main
section of the algorithm, carries out the implicit and
explicit enumeration of the feasible integer solution space.

The ranking scheme proposed in this research shows how
the variables can be ordered to potentially eliminate many
combinatorial solution possibilities from explicit consider-
ation. The ranking method examines the range of possible
integer values for each variable. A range size is defined
as the number of integer possibilities for a particular
variable. Using the range sizes, a permutation from the set
of problem variables, {x;|j =.1, 2, ..., n}, is identified
such that the range size of the variables proceeds from the
smallest to the largest. The search of the algorithm pro-
ceeds from the variables with the smallest range size to
those with the largest range size. This ordering of the

variables allows the algorithm to use truncation procedures
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to maximize the number of solution combinations that are
examined implicitly.

A heuristic method of ranking has been developed for a
certain class of problems. For the situation where the
variable range sizes are approximately the same and some of
the objective function coefficients are even integers, a
modification of the ranking scheme can often speed conver-
gence. When the variables with even objective function
coefficients are positioned last in the ranking, the trunca-
tion method of the even sequence indicator (IFLAG) can be
used. Since the range sizes are approximately the same, any
additional truncation method and the even sequence indicator
will be used to greatest advantage.

Another important result of this research is associated
with finding an approximate solution to the pure integer
linear programming problem. Some of the concepts of linear
Diophantine equations allow the algorithm to implicitly con-
sider certain combinatorial solution possibilities. In
order to take advantage of these concepts, the objective
function coefficients can be modified to produce a new,
approximate objective function that can be handled more
rapidly by the algorithm. This procedure can be used to
establish a lower bound on the maximand, as described in
Chapter V. The lower bound can potentially be used to
tighten the solution space.

The computer code in Appendixes B, C, D, and E is a

valuable tool for further evaluation of the algorithm. It
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is a practical necessity for solving problems of moderate or
large size. The computer code can be used to experiment

with refinements and additions to the algorithm.
Areas for Further Investigations

During this research into integer linear programming,
some topics were found for future study and investigation.
First, a review of the literature identified the need for a
thorough survey of the recent literature. From the late
1950's through the middle of the 1960's, surveys such as
those by Balinski (3) and Beale (4) adequately describe the
work in integer linear programming. Nevertheless, in recent
years no comprehensive survey has appeared to unify and up-
date this areé of study. It is needed and, hopefully, this
void in the literature will be filled soon.

As a companion of a survey of the recent literature,
additional work should be published evaluating the recent
integer programming computer codes. Although some of the
published literature does list experimental results with
individual computer codes, no computational efficiency sur-
vey such as the 1967 work of Trauth and Woolsey (28) has
appeared recently. From a practigal point of wview, the
ability of existing computer codes to solve problems is very
important. Further investigations are needed.

Additional testing of the algorithm developed in this
research should be considered. Larger, more difficult prob-

lems offer a severe test to any integer programming
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algorithm. These problems can consume an enormous amount of
computer time and should be studied and evaluated carefully.
The objective function reduction algorithm should be com-
pared for computational efficiency with other procedures.

Further investigation of several heuristic procedures
associated with this research should be evaluated and
refined. Some of these techniques have the potential of
becoming an integral part of the algorithm. For example,
the heuristic ranking scheme that can be used when the
range sizes are approximately the same offers the possibil-
ity of being quantified. The heuristic procedures for
obtaining a good approximate solution can be developed fur-
ther. The speed and efficiency of these concepts should be
considered.

The study of other problems in integer programming has
become an area of increasing interest in recent years.
Some of the concepts of this thesis may suggest a new
approach to a mixed-integer programming algorithm. Also,
further research could consider the integer nonlinear pro-
gramming problem and see if some of the theory of nonlinear

Diophantine equations can be used.

Conclusions

Many of the conclusions of this research are discussed
and analyzed in the earlier chapters of this thesis. The
dominant conclusions are as follows:

(1) A new algorithm for integer linear programming
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has been developed. This algorithm uses a
combinatorial search procedure to implicitly
and explicitly search the solution space.

(2) Some heuristic procedures have been identified
that speed the convergence of the algorithm.

A technique for ranking the variables in cer-—
tain classes of problems has been developed.

(3) A ranking scheme for the variables has been
defined as a part of the algorithm. This
ranking method produces an ordered set of
variables to potentially eliminate many combi-
natorial solution possibilities.

(4) A procedure for finding a good approximate
solution has been outlined. Also, this tech-
nique can be used to establish a lower bound
on the maximand.

(5) Finally, a computer code has been written to
provide an additional method of evaluating
the algorithm. Also, it can be used to test
modifications and refinements of the algorithm.

The area of'integer linear programming cannot be con-

sidered complete. No practical algorithm comparable in
efficiency to the simplex method has yet been discovered.
This research has pontinued the search for such an algo-
rithm and has propoéed some new, useful techniques for

solving the integer linear programming problem.
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FLOW OF LOGIC IN THE ALGORITHM
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The Objective Function

Reduction Algorithm

The following statements describe the flow of logic
used in the objective function reduction algorithm. The
logic is divided into four stages. The first three stages
are preparatory, while the Stage 4 carries out the implicit

and explicit examination of the solution space.

Stage 1

1. Find the simplex linear programming solution,
x and ZSIM,
a. Is the solution, x, all integer?
(1) If yes, stop, solution found.:
(2) If no, go to step 2.
2., Determine the over-all integer bound on each
variable.
a. Set xf equal to the lower integer bound
for j:= 1, 2, ..., n.
b. Set X, equal to the upper integer bound
for jA= 1, 2, ..., n.
3. Set MAX = 1 for maximization or set MAX = O

for minimization of the objective function.



Stage 2

Find the greatest common divisor, g, of the

objective function coefficients such that
(01, Czy eseey Cn) = g.

Find the initial objective function wvalue,

ZOF, to be considered.

a. If MAX = 1, then ZOF = [ZSIM] where g = 1;
otherwise, ZOF equals the greatest integer
less than ZSIM such that g]|ZOF.

b. If MAX = O, then ZOF = (ZSIM) where g = 1;

otherwise, ZOF equals the smallest integer

greater than ZSIM such that gl|ZOF.
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(A=1)



Stage 3

1,

2.
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Rank the variables according to the number of

feasible integer values they can take on.

a. Jldentify a permutation from the set of
problem variables {lej = 1, 2, 4e., n}
such that the variable range size, r(x)s,
proceeds from smallest to largest in
permutation of x; variables. Set the
ranked variables, y;, j =1, 2, ..., n,
equal to the ordered x; variables in the
permutation, such that y1 equals the
first ordered x; variable, yz equals the
'second ordered x; variable, and so on,
for j =1, 2, .4+, n, giving r(;)l <
F(y)2 € eee < Tlyrne

b. Break any ties in the ranking scheme where
r(§)5 = I(y)s+1 by selecting the variable
with the largest objective function coeffi-
cient to have the jth ranking position.
When éd = éj+1 and r(;)d = r(;)5+1,
arbitrarily break the tie.

Identify any sucéessive sequence of objective

function coefficients corresponding to the

ordered set {y,;|j = 1, 2, ..., n}, such that
all coefficients are even integers from k to
“n in the set {édlj =1, 2, ve., K, v.., nl.

.

a. Set IFLAG = k..
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2 Y u _—
L4, Set Y(3)r = y; and y%”t =y, for j =1, 2,

00 g nNe.
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Set j = 1.

Set highest ranked variable at its upper bound,
y1 = yg, if MAX = 1; otherwise, set y1 = yf.

Set ZSUBT = ZOF, NOTE4 = O, and b; = b, for
i=1, 2, ..., m.

Find a new modified objective function value,
ZSUBT, based on the held value of the variables.

a. If ZSUBT has not been found before, then

A
ZSUBT = ZSUBT - c1 yi 3 (A-2)
otherwise,
A
ZSUBT = ZSUBT = Cyi1 Vy+1 - (A-3)

b. If ZSUBT > 0,go to step 5; otherwise, if
éJ+1 < 0,go to step 5; otherwise, go to
step 12.

Check to see if ZSUBT is an odd integer.

a. If yes, go to step 6.

b. If no, go to step 7.

Check to see if all succeeding objective

function coefficients in the ranking are

even integers.

a. If IFLAG = 1, go to step 26.

b, If IFLAG # j + 1, go to step 7; otherwise,
if j = 1, go to step 26; otherwise, set
ZSUBT = ZSUBT + Cy+1 y,+1; and, if MAX = 1,

set yy;+1 = yy+1 — 1; otherwise, set



7.

10.

11.

12.

yy+1 = yy+1 + 1, and

go to step 24.
Determine if the final variable is to be
calculated.
a. If n =2, go to step 8; otherwise,

check if n = 1 £ j + 1.

(1) If yes, go to step 13.

(2) If no, go to step 8, unless b-values

not found for yi, go to step 13.

Check to see if y, is integer from
A
y, = ZSUBT/c,.

a. If yes, to to step 9.

b. If no, go to step 12.

Check to see if y, is greater than yﬁ.

a. If yes, go to step 10.

b. If no, go to step 11.

Check if n = 2.

a. If yes, go to step 26.

b. If no, go to step 12.

Test the feasibility of the solution in the

functional constraints.

a. If the solution is feasible, the optimum
feasible integer solution has been found.

b. If the solution is infeasible in any func-
tional constraint, go to step 12.

A test solution has been found infeasible.

Increment y,,1 one integer amount.
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(A-4)

(A-5)



a. If MAX = 1, set

Yi+1 = Yy+1 = 13
otherwise, set
Yi+1l = Yy+1 *F 1.

b. Go to step 24i.

13. Calculate new right-hand side b-values.,

a. If new b=-values have not been calculated

for the held value of yi,

for i = 1, 2,

b. If new b-values have been calculated

the held value of y;, then

A

t t
by = by — &y, 3+1:¥y+1 -

for i = 1, 2,

c. If any b: <0, for i = 1,

then set the flag NOTEL4 = 1.

d. Go to step 1k.

14, Determine if j should be incremented.
a. If j #£#1, set j = J + 1 and go to step

15; otherwise, check if tighter bounds

have been found on yj;+1.
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(A-6)

(A-7)

(A-8)

(A-9)
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16.

17.

18.

If

to

If

to
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(1) If yes, set j = j + 1 and go to
step 15.

(2) If no, go to step 15. »

J+ 1 #£ 2, go to step 19; otherwise, go
step 16.

NOTE4 = 1, go to step 17; otherwise, go

step 18.

Check if MAX = 1.

a.

b.

If yes, set Y%z)e = y3, and go to step 23.

y y
If no, set y(z2y)t = yz, and go to step 23.

Find é new, tighter bound on the next variable

in the ranking, yz.

a.

A
If MAX = 1, considering cz > 0 and

A > L A u t
ay 4 0, adding ~a;; y; to by for all

A

ary < 0O,
u . A t A,
Y(z2y¢ = min {[zsUBT/c2], [b;/a;,]1}
i:1,2,...,m
(A-10)
and, check if yfzy; < yz.
(1) If yes, go to step 23.
(2) If no, set y%g)t = V8, and go to
step 23.
A
If MAX = 0, considering cz - O and
A ) AR t
a;, - 0, adding ~a;; y; to b; for all
A
agy <.0,
2 A A
Y(2)s = max { (zsuBT/cz), <b§/a12)}
i=1,2,...,m
(A-11)

and check if yfg)t'z yf.
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20.

21.

22.

23.

24,
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(1) 1If yes, go to step 23.
(2) If no, set yfg)t = yé, and go to
step 23.
If MAX = O, go to step 22; if not, go to
step 20.

If NOTE4 = 1, set y{;+;)¢ = yj+1, and go to

step 23; otherwise, go to step 21.
A A
Considering only cy+1 > O and a;,;+; = 0, adding
A u t A '
—aw3+1 yi+1 to bi for all ai,J+1 < 0,
. A t ,A '
Y%5+1)t = min {[ZSUBT/CJ+1]1 [bi/ai,J+1]}

i=1,2,...,m
(A-12)

and, check if Y%J+1)t E Y?+1.
a. If yes, go to step 23.
b. If no, set y(y+1)t = Yj+1, and go to step 23.
A A
Considering only c;+; > O and aj, j+1 > 0, adding
‘A 2 £ A
-2y, 5+1 yg+1 to by for all ay ;+1 < O,
2 : A £ A
Y(j+1)t = max {(ZSUBT/CJ+1>1 <b1/ai,5+1>}

i:1,2,...,m

(A-13)
_ _ L S ot
and, check if y(3+1)¢ 2 ¥Yy+1.

a. If yes, go to step 23.
b. If no, set y%3+1)t = yf+1, and go to step 23.
Set next variable in ranking at its new bound.
a. If MAX = 1, set
Yy+1 = Y%J+1)t H (A-14)
’otherwise, set
Yi+1 = Y?5+1)t (A-15)
and, go to step 24.

Check to see if a variable has been incremented
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26.
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beyond its bound.
a. If MAX = 0, check if y;+1 S.Y%J+1)t'
(1) If yes, go to step 4.
(2) If no, set yy+1 = y(j+1)¢, and go
to step 25.
b. If MAX = 1, check if yj+1 > y%5+1)t.
(1) If yes, go to step 4.
(2) If no, set y 41 = y?5+1)t, and
go to step 25.
If j = 1, go to step 26; otherwise, set

=3 -1,
A
ZSUBT = ZSUBT + Cy41 ¥Yjy+1 (A-16)

and

t A '
by, = b: toag, g+ Yi+ls (A-17)

for i =1, 2, ..., m; also, set NOTE4 = O,

and check to see if MAX = 1.

(1) If yes, set yy+1 = yj+1 - 1, and go to
step 24.

(2) If no, set yyj+1 = yj+1 + 1, and go to
step 24.

Increment first variable in ranking, yi1i, one

integer.

a. If MAX = 1, set

yi =y, = 1, (A-18)

and go to step 27; othérWise, set
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yi =y1 + 1, (A-19)

and go to step 27.
27. Check to see if all solutions have been
examined.
a. If MAX = 1, check if y; < yf1>t.
(1) If yes, set ZOF = ZOF -~ g, and
go to step 1.
(2) If no, set ZSUBT = ZOF, and go to
step 28.
b. If MAX = O, check if y1 > y%l)t.
(1) 1If yes, check ZOF < O.
(a) If yes, set ZOF = ZOF - g,
and go to step 1.
(b) If no, set ZOF = ZOF + g, and
go to step 1.
(2) If no, set ZSUBT = ZOF, and go to
step 28.
28. Check if n = 2.
a. If yes,.go to step L.
b. If no, set by = b, for i = 1, 2, ..., m,

and go to step L.
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CARD K -

THE OBJECT IVE FUNCT ION
REDUCTION ALGORITHM

JAMES M. SHIRLEY

SCHOOL QF INDUSTRIAL ENGINEERING
AND "MANAGE MENT
OKLAHOMA STATE UNIVERSITY
MAY 1441972

THIS PROGRAM IS THE MAIN DRIVER TEST PROGRAM TO CALL
INTEGER L INEAR PROGRAM SUBROUTINES. THE SUBROUTINES USE AN
CBJECTIVE FUNCTION REDUCTION ALGORITHM DEVELOPED DURING RESEARCH
INTO INTEGER LINEAR PROGRAMMING. FOR FURTHER INFORMAT ION SEE
THE DOCTORAL THESIS "AN OBJECTIVE FUNCTION REDUCTION ALGORITHM
FOR INTEGER LINEAR PRGbRAHMING.

MUST SUPPLY THE FOLLOWING INFORMAT ION ON CONTROL

CARDS AS INPUT DATA:
ORDER CONSTRAINTS SO ALL GREATER~THAN-OR-EQUAL TO
CONSTRAINTS APPEAR LAST.

LMoKMy LNy MAX S FORMAT (415)

LM = THE NUMBER OF LESS-THAN-OR-EQUAL~TO
CONSTRAINTS ’
KM = THE NUMBER OF GREATER- THAN-OR EQUAL—TO
CONSTRAINTS
LN = THE NUMBER OF REAL PROBLEM VARIABLES
MAX = SET EQUAL 1 FOR MAXIMIZATION
SET EQUAL O FOR MINIMIZATION

25IM: FORMAT(FLO.2)

ZSIM = UBJECTIVE FUNCTION VALUE FOR CONTINUOUS
VARIABLE SOLUTION

AND SUCCESIVE CARDOS REQUIRED TO DEFINE THE
CONSTRAINT COEFFICIENTS,A{IsJ). ONE COEFFICIENT
PER CARDyREAD BY THE ROwWSs FORMAT(10.2}

Allyd) = CONSTRAINT COEFFICIENT OF THE I TH ROMW
AND J TH COULUMN

AND SUCCESSIVE CARDS REQUIRED TO DEFINE THE
RIGHT-HAND SIDE CONSTRAINT B-VALUES. ONE VALUE
PER CARD: FORMAT(Fl0.21 '

BUI) = CONSTRAINT RIGHT-HAND SIDE VALUES

AND SUCCESSIVE CARDS REQUIRED TO DEFINE THE
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OFRO001
OFROQO02
OFR 0003
OFROQ04
GFK0005
UFR 0006
OFRO0O0O7
OFRO0O08
0FR 0009
0FROO10
OFR0O11
OFROQO12
OFROO13
OFRO0O014
OFRO015
OFROOL6
OFROO17
OFROO18
OFROO19
UFR0020
UFRO0O21
UFRO022
0FROC23
UFR0O024
0FR 0025
OFR0O026
OFR0027
0OFR0028
0OFR0029
OFR0030
OFR0O031
QOFRO032
OFRO0033
OFRO034
OFRO035
0FR 0036
OFR0037
OFRO038
OFR 0039

OFRQ040
OFRO041
OFR0042
OFRO043
OFRO0 44
OFR0O045
OFR 0046
OFRO047
OFR0048
UFR0049
OFR0O050
OFROO51
OFR 0052
0OFRO053
OFR0O054
OFR0055
OFRO056
OFR0057
OFROO58
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OBJECTIVE FUNCTION COEFFICIENTS. ONE VALUE PER
CARD: FORMAT(I10)

ClJ) = OBJECTIVE FUNCTION COEFFICIENTS

CARD L = AND SUCCESSIVE CARDS REQUIRED TO DEFINE THE
UPPER INTEGER LIMIT ON EACH VARIABLE- ONE VALUE
PER CARD: FORMAT(I10)

XU(J) = UPPER INTEGER LIMIT ON VARIABLE X(J)

CARD M -~ AND SUCCESSIVE CARDS REQUIRED TO DEFINE THE
- LOWER INTEGER LIMIT ON EACH VARIABLE. ONE VALUE
PER CARD: FORMAT(I110)

" XL{J) = LOWER INTEGER LIMIT ON VARIABLE X{J

PARAMETERS FOR PROGRAM:

K1 = INPUT DEVICE NUMBER ASSOCIATED WITH READ STATEMENT
KO .= OUTPUT DEVICE NJUMBER ASSOCIATED WITH WRITE STATEMENT
HCOUNT = A COUNTER KEEPING TRACK OF THE NUMBER OF ITERAT IONS
REQUIRED :
NCOUNT = A COUNTER LIMIT SET ON THE UPPER LEIMIT ON THE NUNBER OF
ITERATIONS
NOFLAG = A COUNTER TO RECORD THE NUMBER OF TIMES IFLAG TRUNCATES
THE SEARCH
NITER = NUMBER OF ITERATIONS ALLOWED
NCNT1 = A FLAG EQUALING 1 WHEN NUMBER OF ITERATIONS EXCEEDED;
. OTHERWISE, IT EWQUALS ZERO
ERR1 = AN INDICATOR WHICH EQUALS.1 WHEN AN DBJECTIVE FUNCTION
COEFFICIENT EQUALS ZERO; OTHERWISE, IT EQUALS ZERD
ERR2 = AN INDICATOR wHICH EQUALS 1 WHEN AN ERROR IN THE
EUCLID'S ALGORITHM CAUSED A NEGATIVE REMAINDER
EPS = ERROR TEST LIMIT
LM = THE NUMBER OF LESS THAN OR EQUAL TO CCNSTRAINTS
KM = THE NUMBER OF GREATER THAN OR EQUAL TO CONSTRAINTS
LN = THE NUMBER OF REAL VARIABLES IN THE PROHBLEM
MAX = AN INDICATOR WHICH EQUALS 1 WHEN OBJECTIVE FUNCTION IS TO
BE MAXIMIZED; EQUALS ZERQO FOR MINIMIZATION -
MATRIX OF CONSTRAINT COEFFICIENTS
COLUMN VECTOR UF  CONSTRAINT RIGHT-HAND SIDE VALUES
THE COEFFICIENT VECTUR FOR THE OBJECTIVE FUNCTION
XU COLUMN VECTOR GIVING THE UPPER LIMIT ON EACH REAL VARIABLE
XL CCLUMN VECTOR GIVING THE LOWER LIMIT ON EACH REAL VARIABLE
X = SOLUTION VECTOR OF INTEGER VALUES
KY = THE CONSTRAINT RUW WHERE THE GREATER-THAN~OR-EQUAL-TO
CONSTRAINTS BEGIN
KZ = THE TOTAL NUMBER OF CONSTRAINT ROWS
ZSIM= THE VALUE OF THE OBJECTIVE FUNCTION AT THE CONTINUOUS
VARI ABLE SOLUTICN
Z0F = THE FIRST INTEGER OBJECTIVE FUNCTION VALUE SEARCHED
G = THE GREATEST COMMON DIVISOR UF THE OBJECTIVE FUNCTION
COEFFICIENTS
IFLAG = INDICATES ALL RANKED OBJECTIVE FUNCTION COBFFICIENTS

A
8
c

nonou

]

e Sare SIS  EE E N E R E K XX I IR NI R R N RN N R S Sr S SRS IR N R L R B R R R R R
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OFR0059
OFRO060
OFROO61
OFR0O062
OFRO063
OFRO064
OFRO065
OFRO0b66
OFR 0067
OFRCO068
OFR0O069
OFR 0070
GFROO71
OFR0O0T2
OFR0073
OFRO0O74
OFRO075
OFROO76
OFROOT77
OFROO78 -
OFR0079

'OFR0080

OFRO0B1
OFR0082
OFR008 3
OFR 0084
OFR0085
OFRCQ8S
OFR0087
OFR0088
OFR0089
0FR0090
OFR0091
OFR0092
OFR0093
OFR 0094
0FRO095
OFR0096
OFR0097
OFR0098
OFR0099
0FR 0100
0FRO101
OFRO1 02
OFR0O103
OFROL04
OFRO105
0FR0106
0FR0107
OFR0108
OFRO109
OFRO110
OFROLL1L
OFRO112
OFRO113
OFROL14
OFRO115
OFROL16
OFROLLZ
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10

15
20

30

40
5C
60
65
70

80

90

SUBSCRIPT FROM SUBSCRIPT IFLAG TO N ARE EVEN

*

Y = COLUMN VECTOR INDICATING THE RANKING OF THE REAL VARIABLES BY*

RECORDING THE SUBSCRIPTS OF THE VARIABLES
RX = A VECTOR DESCRIBING THE NUMBER OF INTEGER VALUES THE J4 TH

ELEMENT CAN TAKE ON

ERRRRRE R RN RREKERRREE KRR AR R KRR AR ER XX KRR KRR KRR K&

INTEGER C(L10)sXLELO0)pXUL10)gYE10) yX{10),2Z0F sG4ERRLYERR24RX{10}

DIMENSION A(10,10),8(10)

KI = 5
KQ = &
MCQUNT
NCOUNT
NOFLAG
NCNTL = 0
NITER = 4
ERRL ‘= 0

ERR2 = 0

EPS = 0 +1E-04

0
0
0

Wt

READ IN REQUIRED INPUT INFORMATION

READUKI 910) LMy KMy LNy MAX
FORMAT( 4I5)

KY = LM + 1

KL = LM + KM

READIKI»15) ZSIM
FORMAT{F10.2)

READ(KI|20)((A(LXoLY)oLYﬂlpLN)vLXIl KZ)

FORMAT(F10.2)
READ(KI20)(BI(LZ) )LI=1,KZ)
READIKI 300 (CILV)sLV=1,yLN)
FORMAT(110)

READ(KI 930) (XULLU) yLU=14LN)
READIKI ¢ 303 { XLL{LT),LT=1,LN)}

WRITE OUT THE INPUT DATA

IF(MAX .EQ.1) GO TO 50
WRI TE(KO 440}

FORMAT(1HL1,10Xy21H MINIMIZATION PROBLEM)

GO 10 65
WRITE(KD60)

FORMAT{ 1HL,10X,21H MAXIMIZATIUN PRUBLEM)

WRITE(KO,70)

FORMAT( 1HO,10X+37H OBJECTIVE FUNCTION COEFFICIENTS

WRITE(KOy 80} {CILVI,L¥=1,4LN)
FORMAT(1HO,19X,1017)
IF{LM.EQ.0} GO TG 120
WRITE(KO,90)

*
*
*®
*

127,

OFRO118
OFRO119
* OFR0120
OFROL21
0FROL22
OFRO123
OFRO124
OFRO125
OFRO126
OFROL27
OFR0128
OFRO129
OFRO130
OFR0131
OFRO132
OFRO133
OFRO0134
OFRO135
OFRO136
OFRO137
OFR0O138
OFR0139
UFRO140
OFKO141
UFROL 42
OFRO143
OFROL4%
OFRO145
OFRO146
OFROL47
OFROL48
OFRO1 49
OFROL50
OFROLS1
QFRO152
OFR0153
OFRO154
OFROL55
QFRO156
UFROL57
OFROL58
OFROL59
OFR0160
OFROL61
OFR 0162
OFRO163
OFROL 64
OFRO165
OFRO166
OFROL67
OFRO168
OFRO169
OFRQ170
OFRO1T1
OFRO172
OFRO173
OFRO1T4
OFRO175

FORMAT(1HO,10X,4TH LESS—=THAN-QR-EQUAL~TO CONSTRAINT. CDEFFIC’ENYS»} Q&R 0176



o600

CO 110 JA=],LM
WRITELKO9100) (A(JA¢JB) o JB=1,4LN)
100 FORMAT ( 1HOy 20Xy LOF 7, 2}
110 CONTINUE
IF(KM.EQ.0) GO TO 150
120 WRITE(KQO,130)

128

OFRO177
OFRO178
OFROL179
OFRQ180

" OFRO181

130 FORMATLLHO,10X50H GREATER-THAN-OR—EQUAL-TO CONSTRAINT COEFFICIENT

#53)
CO 140 JC=KY, K1
NRITE(K0|100)(AIJC-JD)uJD-l LN}
140 CONT INUE
150 WRITE(KO,155)
155 FURMATI 1HOys 10X s41H RIGH T=HAND SIDE B-VALUES OF CONSTRAINTS:)
DO 170 JE=l,KZ
8J=B(JE)
WRITE(KO,160)JE+BJ
160 FORMAT (1HO9 22X93H B( o I143H) =9F7.2)
17C CONTINUE
WRITE(KOs175)
175 FORMAT(LHO»10X¢23H VARIABLE LOWER BOUNDS:)
DO 185 JF = loLN
MXL = XL{JF)
WRITE(KD180) JFoMXL
180 FORMAT(1HO922X94H XL {11 43H) =415)
185 CONTINUE
WRITE{KDy190)
190 FORMAT{1HO,10Xy23H VARIABLE UPPER BGUNDS:)
DO 200 JG = lsLN
MXU = XU(JG)
WRITELKD, 195)UG+MXU
195 FORMAT {1 HO 922X y4H XUl ,I193H) =,15)
20C CONTINUE

CALCULATE THE GREATEST COMMON DIVISOR AND 20F NITH SUBROUTINE, GCD

CALL GCD(C.G.LN:ZSIM.ZUF,HAX ERRL, ERRZ)
IFLERRL1.EQ.0) GO TO 210
WRITE{KO,205)

205 FORMAT{1Hl,50H * AN OBJECTIVE FUNCTION COEFFICIENT EQUALS ZERO *)

GO 101000
210 IF(ERR2.EQ.0) GU TO 220
WRITE(KO,215)

215 FORMAT(1HL »5%9H** A REMAINUER WAS FORCED NEGATIVE IN EUCLID'S AL GOR

#1ThM *%)
GC TQ 1000
220 WRITE(KO,225) G
225 FORMAT(1HOy 10X, 27H GREATEST CUMMON DIVISOR: §3HG =,15)
WRITE(KD+230) Z0F
230 FORMATI 1HO, 10Xs44H INITIAL INTEGER CBJECTIVE FUNCTION VALUE:
#CF =,15)

RANK THE VARIABLES wlITH SUBROUTINE RANK

CALL RANKI(C ¢ XL¢XUpLN,YIFLAG4RX)}
WRITE{KD,235)
235 FORMAT(1HO,10X422H VARIABLE RANGE SIZES:)
DO 245 JH = loLN
MRX = RX{JH)
WRITE{KO2240) JHeMRX

15HZ

UFROL 82
OFRO183
OFRO184
OFROL 85
UFRO186
OFRO187
OFRO188
OFRO189
OFR0190
OFR 0191
0FRO192
OFRO193
OFR 0194
OFRO195
OFRO196
0FROLG7
OFRCL98
0FRO199
UFRO200
OFRO201
OFR 0202
GFR0203
OFRO02 04
OFR0205
OFR0206
OFR0207
OFR0208
OFRO209
0FR0210
0FRO211
OFRO212
OFR0213
OFRO214
OFRO215
0FR0216
OFRO217
OFR0218
0FR0219
0FR0220
0FR0221
OFR0222
0FR0223
OFR0224
0FRO225
OFR0226
0FRO227
OFR0228
OFR0229
OFR0230
OFR0236
OFR0237
0FR0O238
OFR0239
OFR0240
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240
245

250

255
260

265

345

520
525

505
510

515
500
501
899

900
1000

FCRMAT (1 HO922Xs4H RX{9I1l93H) =415)
CONTINUE
WRITELKO, 250)
FORMAT (1HO ¢10X y36H COLUMN VECTUR OF RANKED SUBSCRIPTS2)
DO 260 JK =]1,LN
MY = Y {JK)
WRITE(KO¢255) JKy MY
FORMATL 1HO422X93H Y(411,3H) =415)
CONT INUE
WRITE(KOy265) IFLAG ‘ - )
FORMAT({ 1HOy 10X, 46H VALUE OF EVEN COEFFICIENT INDICATOR:

#5)

BEGIN EXAMINING SOLUTION SPACE WITH SUBROUTINE SEARCH

IFLAG =41

CALL SEARCHUA 4B 4C oY o XUsXLyX sEPS s IFLAGsG o LMy KMy LNy MAXy NCOUNT ; ZOF,NC

#NTL1,NITER, MCOUNT yNOFLAG)

IFINCNT1.EQ.0) GO TO 520

WRITE(KD345)

FORMAT (1HO,* *x¥& NUMBER OF ITERATIONS EXCEEDED #*%%1)
GO T0. 899

WRITE SOLUTION INFORMAT ION

WRITE(KO, 525)
FORMAT (1H1)
DO 510 JC = 1l,LN

JX = X{(JC)

WRITE(KG,505)4C X

FORMATULH 440X *xkxx X(0,[L,") = ¢,15)
CONT INUE
WRITE(KD,515) ZOF
FORMAT( LHOy 40X, " X kkk L = v,15)
WRITE(KO, 500} MCUUNT
FORMAT( LH= 940X " YIN) nAS CALCULATED® 41543X,*TIMES?)
WRITE(KOs501) NOFLAG

FORMAT (1H~ 240X * IFLAG WAS USED *y15,3X, 'TIMES TO TRUNCATE SEARCH?')

WRITE{KD,900)
FORMAT (LHL)
sTop

END
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UFR0241
OFR0242
0FRO243
OFROZ44
GFRO245
UFRO246
OFR0247
UFKD248
OFR0249
OFR 0250
QFRO251
OFRO252
OFRO0253
OFRO264
OFR0255
OFRO256
OFR0257
OFR0258
0FR0259
OFR0260
UFROZb1
UFROZ62
OFR0Z63
OEROZb64
OFR0265
UFRO2606
OFR0267
OFR0O268
OFR0269
0FRO270
OFRO271
OFR0272
OFRO273
OFR0274
OFRO275
OFRO276
OFR0277
OFRO278
OFRO279
OFRO280
0OFR0281
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SUBROUTINE GCD(C,GoLNoZSIMyZOF sMAXERRL yERR2)
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SUBROUTINE GCD

JAMES M, SHIRLEY

"SCHOQGL OF INDUSTRIAL ENGINEERING
AND MANAGEMENT
OKLAHOMA STATE UNIVERSITY
MAY 14,1972

THIS SUBROUTINE CALCULATES THE GREATEST COMMON DIVISOR FOR
A SET OF OBJECTIVE FUNCTION COEFFICIENTSs, IT ALSO DETERMINES
THE FIRST OBJECTIVE FUNCTION VALUE USED IN SUBROUT INE SEARCH.
FOR FURTHER INFORMATION SEE THE DOCTORAL THESIS ®“AN OBJECTIVE
FUNCTION REDUCTION AL GORITHM FOR INTEGER L INEAR PROGRAMMING.™®

PARAMETERS FOR PROGRAM3 -

C = THE COEFFICIENT VECTOR FOR THE OBJECTIVE FUNCTION
G = THE GREATEST COMMON DIVISUR OF THE OBJECTIVE FUNCTION
COEFFICIENTS

LN = THE NUMBER OF REAL VARIABLES IN THE PROBLEM

ZSIM= THE VALUE OF THE OBJECTIVE FUNCTIDN AT THE CONTINUOUS

VARIABLE SOLUTION

THE FIRST INTEGER -OBJECTIVE FUNCTION VALUE SEARCHED

AN INDICATOR WHICH EQUALS 1 WHEN OBJECTIVE FUNCTION IS TO

BE MAXIMIZED; IT EQUALS ZERG FOR MINIMIZATION

ERR1L = AN INDICATOR WHICH EQUALS 1 WHEN AN OBJECTIVE FUNCTION
COEFFICIENT EQUALS ZERO; OTHERWISE, IT EQUALS ZERO

ERR2 = AN INDICATOR WHICH EQUALS 1 WHEN AN ERROR IN THE
CALCULATION OF ‘EUCLID*S ALGORITHM CAUSED A NEGATIVE
REMAINDER TO BE FORMED; OTHERWISEs IT EQUALS ZERO

GC = A MODIFIED COEFFICIENT VECTOR WHERE ALL VALUES ARE POSITIVE

20F
MAX

INTEGER C(10)¢GC{10),D,E,Q)RyTEMP Z0F +ERR1)ERR2,6

- EPS = 0.1E-04

20

3¢

_ESTABL ISH THE VECTOR GC WHICH HAS ALL POSITIVE ELEMENfS

DO 50 JA =1,LN
IF(CUJA))20,30,40
NCJA = CLJA)
GC(JA) = ABSINCJA)
GO TO 50
ERRL = 1
G0 TO 300

FRFERERRR S EETNREERF R TR RRRRRE R RE R SR AR R R T SRR R R Rk R R TR TRk

131

GCDOOO 1
6CD0002
6CD0003
GCDO004
6CD0005
GCD 0006
6CD0007
GCD 0008
GCD000Y
GCDOO010
GCDOO11
GCho012
GCDOO13
GCDOOL14
GCDOO15
GCDOOL6
GCDOOLT
GCDOO L8
GCDOOLS
6CD0020
6CD0021
6CD0022
GCD0023
6CD0024
6CD0025
GCD0026
6CD0027
GCDO0028 -
GCD0029
6CD 0030
GCDOO31
6CD0032
6C00033
GCD0034
GCD 0035
6CD0036
GCD0037
6CD0038
GCD0039
GCD0040
GCD 0041
GCD00%2
GCDO0043
GCDO044
GCDO04S
GCDO0046
GCDO047
GCDO048B
GCD 0049
GCD0050
6CDO051
6CD 0052
GCDOO53
6CDOO0 54
6CD0055
GCDO056
6CD0057
6€D0058
6CDO059
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(2 gX o

40
50

70

90

10C

11¢
120
130

140

145

150

160

170
180
150
200

21C

300

GC{JA} = CLJA)
CONTINVE

DETERMINE GREATESY COMMON DIVISORs Gy USING EUCLID'S ALGORITHM

TEMP = GC{1)
DO 145 L = 1,LN
IF(TEMP — GCAL))T70.140,90
D= GCIL) :
E = TEMP
GO0 TO 100
D = TEMP
E = GC{L)
Q = D/E
R = D~ (Q*E)
IF(R)}110,120,130
ERR2 = 1
GO TO 300
TEMP = E
GO TO 140
D= E
E'=R
GO TOo 100
IFITEMP .EQ.1l) GO TO 150
IFIL.EQ.LN) GO TO 150
CONT INUE

CALCULATE FIRST OBJECTIVE FUNCTION VALUE

G = TEMP

I0F = ZSIM

TEMPG = G

TMPZOF = ZOF

TEMPL = TMPZOF/TEMPG
NTEMPL = TEMP1

TEMP2 = NTEMPL

DIFF = TEMPLl — TEMP2
ABDIFF = ABS(DIFF)
IF{ABDIFF - EPS5)300,300,170
IF{Z51M)180, 190,190
1IF{MAX - 1)210,200,200
IF(MAX.EQ.1) GO TO 210
I0F = Z0F + 1

GO T0 160

Z0F = I0F ~ 1}

GO TO 160

RE TURN

END

132

GLLO061

GCD 0062
6CDO063
GCDO00 64
6CD0065
6CD0066
GCDO0067
'6CD0068
GCDO06Y
GCDO070
6CDOO71
6CD0072
GCDO073
GCDOOT4
6CD0075
6CDOOT6
GCDO077
GCDOO78
GCDO0079
6CD008O
6CD 0081
GCD0082
GCD00B3
GCD 0084
GCD0085
GCD 0086
6C00087
6CD0088
6CD0089
6CD0090
6CD0091
GCD 0052
6CD0093
GCDO094
GCD 0095
6CD0096
GCDO097
GCD00SB
GCD0099
GCDO100
GCDO101
GCDO102
GCDO103
GCDOLO4
GCDO105
GCDOL06
GCD0107
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SUBROUTINE RANK(CsXLsXUgLNoY sIFLAGyRX)
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SUBROUTINE RANK

JAMES M. SHIRLEY

*
*
*
*
*
*
SCHOOL OF INDUSTRIAL ENGINEERING *
AND MANAGEMENT ‘ ¢ *

OKL AHOMA ‘STATE UNIVERSITY ’ *

MAY 14,1972 *

N *

*

*

*

THIS SUBROUTINE RANKS THE VARIABLES IN THE OBJECTIVE
FUNCTION ACCORDING TO THEIR RANGE OF POSSIBLE VALUES. THE
VARIABLE WITH THE SMALLEST RANGE IS RANKED FIRST. FOR FURTHER
INFORMATION SEE THE DOCTORAL THESIS “AN OBJECTIVE FUNCTION
REDUCTION ALGORITHM FOR INTEGER LINEAR PROGRAMMING.Y

C = THE COEFFICIENT VECTOR FOR THE OBJECTIVE FUNCTION
XU = COLUMN VECTOR GIVING THE UPRER LIMIT ON EACH REAL VARIABLE
XL = COLUMN VECTOR GIVING THE LOWER LIMIT ON EACH REAL VARIABLE
'JFLAG = INDICATES ALL RANKED OBJECTIVE FUNCTION COEFFICIENT
) SUBSCRIPTS FROM SUBSCRIPT IFLAG TO N ARE EVEN SUBSCRIPTS
LN = THE NUMBER OF REAL VARIABLES IN THE PROBLEM )
Y = COLUMN VECTOR INDICATING THE RANKING OF -THE REAL VARIABLES BY:
RECORDING THE SUBSCRIPTS OF THE VARIABLES *
RX = A VECTOR DESCRIBING THE NUMBER OF I[NTEGER VALUES THE J TH *
ELEMENT CAN TAKE ON *
EPS = ERROR TEST LIMIT *
RXT = TEMPORARY RX VALUES *
INDEX A VECTOR OF THE SUBSCRIPTS OF THE RANKED VARIABLES *
*
*
*®
*

*

*

*

*

*®

*®

*

*

‘ . ‘ ) -
PARAMETERS FOR PRDGRAM: *
' ]

»

*

*

*®

*

*

*

*

[

*
*®
*®
*
*
»®
-
*
»®
*
*
*®
*
*
*
»
*
*
*
*®
*
*
*
»
»
*
¥
*
*
*
*®
*®
*
*
*
*
*®
*®
*
* JFLAG AN INDICATOR WHICH CHECKS TO BE SURE ALL POSSIBLE EQUAL
* RANGE SIZES HAVE BEEN CONSIDERED

*
*

FRRE R ERE R AE RGNk RRE R R R R KSR R R R TR F LR R RE R R R E R kR R Rk k&

"INTEGER CUL10} +XLULO) ¢ XULLO) yRX{10) Y (100 INDEX{LO)oRXT{10),CJA,CJA
#PlyCJE

EPS = 0.1E-04
LNML = LN - 1

D0 30 JA = 1lsLN
RX{JA) = XULJA) = XL{JA) + 1
RXTEJA) = RX{JA)
INDEX {JA) = JA

13k

RNK0OO1
RNK00O2
RNK0003
RNK 0004
RNKOO0O5
RNK 0006
RNK0007
RNK0008
RNK 0009
RNKOO 10
ANKOO11
RNK0012
RNKOO13
RNK0O.14
RNKOOL5
RNKOO16
RNK 0017
RNK 0018
RNKOOL9
RNK 0020
RNK0O21
RNK 0022
RNK 0023
RNK0O2 4
RNK 0025
RNK0026
RNK0027
RNK 0028
RNK0029
RNK0030
RNK 0031
RNK0032
RNK0033
RNK 0034
RNK0O35
RNK 0036
RNK0037
RNK0038
RNK0039
RNKOO 40
RNKOO41
RNK 0042
RNKOO43
RNK0O 44
RNK 0045
RNKQO 486
RNK0OO47
RNK 0048
RNKOO49
RNK0050
RNK 0051
RNK0052
RNK 0053
RNKQO54
RNK0OO55
ANK 0056
RNKOOS7
RNK0O58
RNK0OO59
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40

5C
60

70

[zN X gl

15
80

90

100

105

[zN el x}

110
120

Y{JA) = 0O
CONTINUE

SORT RANGE SIZES WITH SHELL SORT

M = LN

V= M2

1F(M.LEEPS) GO TO 75
K= LN - M '
J=1

L=y
IF(RXT(L ) LLE.RXTIL+M))} GO TO 70
TEMP = RXTHL)

RXTIL) = RXT(L+M)
RXTI(L+M) = TEMP

ITEMP = INDEXIL)
INDEX{L) = INDEX{L¥M)
INDEX(L +M) = ITEMP
L=L~-M

IF{L.GT.0) GO TO 60
b= 4Jd.+1
IF{J=K)50450,40

MOCLFY RANK ING FOR 'EQUAL RANGE SIZES

JFLAG = 0

00 100 JA = 1,LNML
JAPL = JA + |
IFIRXT{JA) JNELRXT{JAPL)) GO TO 100
CJA = CUINDEXIJAY) '
CJUAPL = C{INDEX{JAPL))
IFICJA - CJUAPLI90, 100,100
ITEMP = [NDEXLJA)
INDEX(JA) = INDEX{JAPL)
INDEX(JAPL) = ITEMP
JFLAG = 1

CONTINUE

IF(JFLAG.EQ.l) GO TD 75

DO 105 JB = 1,LN
Y(JB) = INDEX(JB)

CONTINUE

CHECK FOR EVEN INTEGER SEQUENCE AND SET IFLAG

IFLAG = LN + 1

D0 L10 JD = 1,LN
JE = LN - JD + 1
CJE = CUINDEX{JE})

TCJE = CJE
DIV = TCJE/2.0
NDIV = DIV

TNDIV = NDIV
TMUL = TNDIV * 2.0
DIFF = TCJE ~ TMUL
IF(DIFF.GT .EPS) GU TO 120
IFLAG = JE

CONT INVE

RETURN

END
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RNK006Q
RNK 0061
RNK 0062
RNKO063
RNK 0064
RNK 0065
RNK0O66
RNK 0067
RNK0068
RNK0069
RNKO070
RNKOOT1
RNKOOT 2
RNK0O73
RNKOO T4
RNKO075
RNK0O76
RNKOO77
RNK 0078
RNK0OT9
RNKOQHO
RNK 0081
RNKOO82
RNKOO83
RNK 0084
RNK0O8S5
RNK0086
RNK 0087
RNKOOSS
RNK0089
RNK 0090
RNK0O91
RNK 0062
RNK 0093
RNK 0094
RNK 0095
RNK 0096
RNKOO97
RNK 0098
RNKO099
RNK0100
RNKO101
RNKO102
RNKO1 03
RNKO 104
RNKO105
RNKOL106
RNK0107
RNKOL 08
RNK 0109
RNK 0110
RNKOL11
RNKO112
RNKOL13
RNKOL14
RNKO115
RNKOL16
RNKOL17
RNKO118
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SUBROUTINE SEARCH{A o8 9C oY s XUsXL o XsEPSo IFLAGe GoLM ¢ KMy LNy MAX 9 NCOUNT,
#Z0F ¢NCNT1,NITER » MCOUNT, NOFLAG) ~
EENBERERR SRR R ERAKEEE RN R R R R EEE R ERE R R SR Rk R R kR Rk Rk

SUBROUTINE SEARCH

JAMES M+ SHIRLEY

SCHOOL OF INDUSTRIAL ENGINEERING
AND MANAGEMENT
OKLAHOMA STATE UNIVERSITY
MAY 1441972

3K BK ISR BF B IR PR R RS AR

~ THIS SUBROUTINE SEARCHES FOR A FEASIBLE SOLUTION FOR A FIXED*
VALUE OF THE OBJECTIVE FUNCTION IN AN INTEGER L INEAR PROGRAMMING *
PROBLEM. IT ACCEPTS THE RANKING DETERMINEC IN SUBROUTINE RANK.
IT BEGINS A COMBINATORIAL SEARCH BY HOLDING THE LOWEST RANKED
VARIABLE AT .ITS UPPER LIMIT THEN EXPLICITLY OR IMPLICITLY
EXAMINES THE POSSIBLE RANGE OF ALL OTHER VARIABLES. FOR FURTHER
INFORMATION SEE THE DOCTORAL THESIS "AN OBJECTIVE FUNCTION
REDUCTION ALGORITHM FGR INTEGER LINEAR PROGRAMMING.™

PARAMETERS FOR PROGRAM:’

A = MATRIX OF CONSTRAINT CUEFFICIENTS
B = COLUMN VECTOR OF CONSTRAINT RIGHT-HAND SIDE VALUES .
BT = COLUMN VECTOR OF TEMPORARILY MODIFIED RIGHT—HAND SIDE VALUES*

3E 3R AR SR B B S BE PR BE IR ¥ 3

C = THE COEFFICIENT VECTOGR FOR THE OBJECTIVE FUNCTION *
ZSUBT = THE TEMPORARY VALUE OF THE OBJECTIVE FUNCTION *
Y = COLUMN VECTOR INDICATING THE RANKING OF THE REAL VARIABLES Bv=*

RECORDING THE SUBSCRIPTS OF THE VARIABLES *

XU = CCLUMN VECTOR GIVING THE UPPER LIMIT CN EACH REAL VARIABLE =
"XL = COLUMN VECTOR GIVING THE LOWER LIMIT ON EACH REAL VARIABLE *
XuT COLUMN VECTOR OF TEMPURARY UPPER LIMITS ON A VARIABLE ¥
XLT COLUMN VECTUR OF TEMPORARY LOMWER LIMITS ON A VARIABLE *
X = SOLUTION VECTOR OF INVEGER VALUES *
XTEMP = COLUMN VECTOR UF TEMPORARY INTEGER VALUES OF VARIABLES *
WHICH ARE AT A HELD VALUE DURING THE COMBINATORIAL SEARCH*

EPS = ERROR TEST LIMIT *
{FLAG = INDICATES ALL RANKED OBJECTIVE FUNCTION COEFFICIENTS *
SUBSCRIPT FROM SUBSCRIPT IFLAG TO N ARE EVEN *
x

*

*

*

*x

*

*

*

*

L

B o#

G = GREATEST COMMON DIVI SGR

NOTEL = AN INDICATOR WHICH EQUALS 1 WHEN B-VALUES HAVE BEEN
CALCULATED FOR HELD VALUE OF Y SUB 1y ZERO OTHERWISE

AN INDICATOR wWilICH EQUALS 1 WHEN TIGHTER BOUNDS HAVE BEEN
FOUND ON VARIABLE Y SUB L+1,ZERO OTHERWISE

NOTE 2

NOTE3 = AN INDICATOR wHICH EQUALS 1 WHEN ZSUBT HAS BEEN

NOTE4 = AN INDICATOR WHICH EQUALS ZERU WHILE ALL RIGHT-HAND SIDE
CALCULATED THE FIRST TIME USING Y SUB 1y ZERO OTHERWISE
VALUES ARE POSITIVE OR ZERO; IT EQUALS ONE WHEN A
RIGHT~HAND SIDE VALUE HAS BEEN FORCED TO A .-NEGATIVE VALUE
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o060 o000

w

L]
L]
L]
L]
L]
L]
L]
]
*
L]
]
*
*
*
*
*
*
*
*
*

NOF

ROw

LM = THE
KM = THE
LN = THE
MAX = AN

BE

LAG

= A

NCOUNT =

NUMBER QOF LESS THAN OR EQUAL TO CCNSTRAINTS
NUMBER OF GREATER THAN OR EQUAL TO CONSTRAINTS

NUMBER OF REAL VARIABLES IN THE PROBLEM

INDICATOR WHICH EQUALS 1 WHEN- OBJECTIVE FUNCTION IS TO

MAXIMIZED; EQUALS ZERO FOR MINIMIZATION

A COUNTER LIMIT SET ON THE UPPER LIMIT ON THE NUMBER QF

ITERATIONS

NITER = NUMBER OF ITERATIONS ALLOWED
NCNT1 = A FLAG EQUALING 1 WHEN NUMBER OF ITERATIONS EXCEEDED;

OTHERWISE,y IT EQUALS ZERQ

20F = AN
MCOUNT =

N

INTEGER OBJECTIVE FUNCTION VALUEVBEING‘SEARCHED
A COUNTER KEEPING TRACK OF THE NUMBER OF ITERATIONS

REQUIRED :

A COUNTER TO RECORD THE NUMBER OF TIMES IFLAG TRUNCATED

THE SEARCH

INDICATOR VECTOR IDENTIFYING CONSTRAINT ROWS WITH
NEGATIVE COEFFICIENTS; ZERO EQUALS ALL POSITIVE,

CNE QR MORE NEGATIVE

R A T R

ONE EQUALS*
*

*

RIS PR F R RS2 222 2 2222 RS R 2SR E 2 RS S22 S22 R R RS2 22 T2

INTEGER CU10)oXL{10)yXUC10)yY({10)yX{10) +XTEMPLLON}4XLT(10) XUT(L10),
# Z0F ZSUBT oG 4Y1oYLPLWYNy Y2, ROW110)
DIMENSION AL10+10),84(10),BT(10)

DO 1 KA =
XUTI{KA) = XULKA)
XLTUKA) = XL(KA)
CONT INUE

Ky
KZ
o]

= LM
= LM
3 NA

W+ &

1sLN

i
KM
1,KZ

CO 2 NB = 1ly4LN
ROWINAY = 0
IFLAINAYNB) . GEL0.0) GU TO 2
ROWINA) = 1
G0
CONT INUE
CONTINUE

T0 3

STEP NUMBER 1

INITIAL IZATION TO BEGIN RECURSION

L =

1

CHECK IF NUMBER OF ITERATIUNS EXCEEDED

NCOUNT
IF{NCOUNT.LE.NITER) GO TU 5

NCN

Tl =

1

NCOUNT + |

G0 TO 1000
NQTEL =

NOT

g2 =

00 6 K8
XTEMP(KB) = 0
CONT INUE

0
0

1sLN
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STEP NUMBER 2
SET HIGHEST RANKED VARIABLE AT ITS BOUND .

Yl = ¥(1)
IF{MAX.EQ.1) GO TO 8
XTEMPIYLl) = XL(Y1)
GO 10 9

XTEMPLY 1) = XUIlYL)
NOTE3 = O

STEP NUMBER 3
INITIALIZE ZSUBT AND BT VECTOR

ZSUBT = 10F

CU 11 KA = 14KZ
BT(KA) = B(KA)

CONTINUE

NOGTE4 = O

STEP NUMBER 4
FIND NEW MODIFIED QOBJECTIVE FUNCTION VALUE, 2SUBT

Yl = Y(1)

YLPL = Y(L+1)

IF(NOTE3.EQ.1) GO TO 14 )

ZSUBT = ZSUBT =~ CUV1I®XTEMP(Y1)
NOTE3 = 1

IF(ZSUBTIL3,15.15
IFCCLYLPL))L15475,75

LSUBT = ZSUBT - C(YLPL)*XTEHP(YLPL)
IF(Z5UBT)13,15,415

STEP NUMBER 5
CHECK TO SEE IF ZSUBT IS AN 0ODD INTEGER

YLPL = YI(L+1)

LPl = L#l

TEMP = ZSuUBT

ALPHA = TEMP/2.0
NALPHA = ALPHA

BETA = NALPHA

DIFF = ALPHA -~ BETA
ABDIFF = ABS(DIFF)
IF{ABDIFF-EPS 120420, 10

STEP NUMBER 6

CHECK TO SEE IF ALL SUCCEEDING OBJECT IVE FUNCTIUON COEFFIEICNTS ARE

IF{IFLAG.EU.1) GO TO 350
IF{LPl.NE.IFLAG) GO TG 20

NOFLAG KEEPS A RECORD OF THE NJUMBER OF TIMES IFLAG lS USED TO

TRUNCATE THE SEARCH

139

SEAOLL9
SEA0L20
SEAO121
SEAOL22
SEAO0L23
SEAOL24
SEADL2S
SEADL26
SEAOL27
SEAOL28
SEA0129
SEAO130
SEAOL31
SEA0132
SEA0L33

"SEAQ134

SEAOL35
SEAO136
SEAOL37
SEA0L38
SEA0L39
SEAOL40
SEAOL4]
SEAOL42
SEAD143
SEAOL44
SEAOL45
SEAOL46
SEADL47
SEAOL48
SEA0L49
SEAO150
SEAOLSL
SEAOL52
SEAOL53
SEADL 54
SEAOL5S
SEAOL56
SEAO157
SEAO158
SEA0159
SEAOL 60
SEAOL6L
SEAQL 62
SEA0L163
SEAOL64
SEAQL 65
SEAOQLl66
SEAOL67
SEA 0168
SEAOL69
SEAOL70
SEAOLT1
SEAOL72
SEA0173
SEAO174
SEAOL75
SEAO1T6
SEAO177



e X3 X2FeXR

oot OO0 OO0

o0

o000 e

18

2C

22

30

31

40

50

NUFLAG = NOFLAG + 1L

IFIL.EQ.1) GO TO 350

ZSUBT = ZSUBT + CIYLPL)®XTEMPIYLPL)
IF(MAX.EQ.1) GO TO 18

XTEMPIYLPL) = XTEMPIYLPL) + 1

GU T0 340

XTEMP(YLPL) = XTEMP(YLP1l} - 1

GO TO 340

STEP NUMBER 7 ‘

CETERMINE IF FINAL VARIABLE IS TO BE CALCULATED
LP1 = L+l

YLPLl = Y(L+1)}

IF(LN.EQ.2) GO TO 22

IF(LN-1.NE.LP1l) GO TO 80

IFINOTEl1.EQ.0) GD TO 80

STEP NUMBER 8

CHECK XTEMP(Y {N)) INTEGER

YN = Y{LN)

MCOUNT KEEPS A RECORD OF THE NUMBER OF TIMES YIN} IS CALCULATED

MCOUNT = MCQUNT + 1
RISUBT = ZSUBT

RCYN = CIYN) .
RXTPYN = RZSUBT/RC YN
NUM = RXTPYN

DELTA = NUM

GAMMA = RXTPYN - DELTA
IF(GAMMA ~ EPS)30,30,75

STEP NUMBER 9

CHECK TO SEE IF XTEMPIY(N)) IS GREATER THAN ITS UPPER BOUND

XTENPLYN) = RXTPYN
IFOXTEMPLYN) ) 755 31,31
XT1l = XTEMPIYN)

XT2 = XULYN}

IF(XTL - XT2)50,50,40
STEP NUMBER 10

IF(LN - 2)350,4350,75
STEP NUMBER 11

TEST SOLUTION FEASIBILITY IN FUNCTIONAL CONSTRAINTS

DO 55 JB = 14LM
VALUE = 0.0
00 54 JA = 1,4LN
VALUE = VALUE + A{JB,Y(JA)) * XTEMPIY{JA))
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CCONT INUE
TEST = B{JB) = VALUE
IF{TEST 175455555
CONTINUE
IFLKM.LE.O0) GO TO &3
D0 60 KX = KY,KZ
AMOUNT = 0.0
DO 57 KW = 14LN .
AMOUNT = AMOUNT + A(KX Y(KW)) * XTEMP(Y(KW))
CONTINUE .
CHECK = B{KX} = AMOUNT
« IF{CHECK)60,60,75
CONTINUE )
00 65 JC
x{J4C}
CONT INUE
GO TC 1000

LyLN
XTEMP(J4C)

non

STEP NUMBER 12

SOLUTION INFEASIBLE; INCREMENT XTEMP(Y(LPL)) ONE INTEGER

TFILN = 2)350,350,77

ZSudT = ZSUBT + CUYLPL)*XTEMPLYLPL)
IFIMAX.EQ.1l) GO TO 78

XTEMP{YLPL) = XUTIYLPL) + 1

G0 TU 340

XTEMPIYLPL) = XTEMP(YLPL) - 1

60 TO 340

STEF NUMBER 13
CALCULATE NEW RIGHT~HAND SIDE B~VALUES

LP1l = L+l

YLPL = YIL+1)

[F{NOTEL.EQ.1) GO TO %0

U0 85 JD = 1l4KZ
BT(JD) = BTI{JD) = A(JDsY{L)IXTEMP{Y( 1))
IF{BTIJD) ) 84485,85
NOTE4 = 1

COUNTINUE

NOTEL = 1

cO0 10 96

RXTEMP = XTEMPIYLPL)

DO 95 JE = 1.KI
BT(JE} = BTIJE) — ALJE,YLPL)*RXTEMP
[FIBT(JE) } 94,495,595
NOTE4 = 1

CONTINUE

STEP NUMBER 14

DETERMINE IF L SHOULD sE INCREMENTED

IFILLEGQ.L) GO TO 98

L =L+l

GO TQ 99

IFINOTE2 =~ 1199497497
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FIND NEW BOUND ON NEXT VARIABLE IN RANKING

LPL = L+l

YLPL = Y{L+l)
Y2 = Yl2)

STEP NUMBER 15

. IF(LP1.NE«2) GO TO 124

1¢0

“101

‘102

107

108
1€

110

STEP NUMBER 16
IF(NOTE4 = 1110241004100
STEP NUMBER 17

IF (MAX. EQ.1) 60 TQ 101
ALT(Y2) = XL(Y2)

€0 7O 330

XUTIY2) = XULY2)

60 TO 330

STEP NUMBER 18
NOTEZ = 1

RLSUBT = ZSUBT
RCYZ = CLY2)

¥l = Y{1)

IF(MAX<EQ..0) 6O TO 107

" XUT(Y2) = RISUBT/RCY2

DO 106 JF = 1l4LN
[FLALJUF ¢ Y2 LELEPS) GU TU 106
IF(ROW(JF)EQ.0) GU TO 104
SUM = 0.0 . -

0O 103 NC = 1,LN
IF(ALJFyNC) «GE 0.0} GO TG 103
SUM' = SUM + A({JFsNC) ¥ XUINC)

CONT INUE

BTUJF) = BT(JF) - SuM

MTEMP = BTUJUF) /AL JF ,¥2)

IF(ROM{JF).EQ.0) GU TU 105

BT(JF) = BTUJF) + SUM

IF{MTEMP .GE . XUT(Y2)) GU TU 106

XUT(Y2) = MTEMP

6 CONTINUE

IF(XUT(Y2).LE.XULYZ2)) 0 TU 330
XuTiv2) = Xulyz)

GO T0 330

XLTY2 = RISUBT/RCYZ

NUMZ = XLTY2

DELTAL = NUMZ2

GAMMAL = XLTY2 - DELTAL
IF{GAMMAL - EPS)108,108,109
XLTLY2) = XLTv2

GO TO 110

XLTY2T = XLTY2 + 1.0
XLTL{Y2) = XLTY2T

DO 123 JK = KYKZ
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IF{A{JKIY2).LE.EPS) GO TO 123
IF(ROWI JK).EQeO0) GO TO 112 -
SUM = 0.0
DG 111 ND = 1sLN

IFIALJKyND) «GE.0.0) "GO TO 111
SUM = SUM. + A(JKyND) * XL{ND)

CONTINUE
BT(JK) = BTLJIK) — SUM
TEMPL = BT (JK)/ALJKY2)
IF(ROW(JK}.EQ.0) GO TO 113
BT{JK) = BT(JK) + SUM
NUM3 = TEMPL
DELTA3 = NUM3 - :
GAMMA3 = TEMP1 - DELTA3
IF(GAMMA3 -~ EPS)120,1204121
NTEMP = TEMPL -
GO 70 122 :
TEMPZ = TEMPL + 1.0
NTEMP = TEMPZ .
IF{NTEMPLELXLT{Y2)) GO TO 123
XLTLY2) = NTEMP .
CONT INUE
IF(XLT(Y2).GELXL(Y2)) GO TO 330
XLT{Y2) = XL(Y¥2)
GO TO 330

STEP NUMBER 19

IF {MAX.EQ.0) GO TO 200
STEP NUMBER 20

IFINOTE4 = L)127,1265126
XUTLYLPL) = XULYLPL)

GO TO 330

STEP NUMBER 21

R2SUBT
RCYLPL

ZSuUsT

ClYLPL)
XUT(YLPLl) = RZISUBT/RCYLPL
DO 145 46 = 1,LM

IFEALJGsYLPLY aLECEPS) GO TOU 145

IF{ROW{ JG) «EQ.0) GU Tu 135
SUM = 0.0
00 130 NE = 1l.LN

IFCA(JGINE).GEZ0.0) GU TO 130
SUM = SUM + A(JGyNE) * XULYINE))

CONTINUE

BY(JGI = BT(JG) ~- SumM
MTEMP = BT{JG)/ALJIGyYLPL)
IF(ROW(JGI.EQ.OQ) LU TU 140
BT(J4G) = BT(J4G) + SUM

IF{MTEMP.GE.XUT{YLFL)) GO TO Ll45

XUTUYLPL) = MTEMP
CONT INUE

IF{XUT{YLPL) .LE.XULYLPL)}) GO TU 330

XUTLYLPLl) = XUlYLPL)
GO TO 330
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STEP NUMBER 22

IF(NGTE4 = 1)210,220,230
XLT(YLP1) = XL{YLPL)
€O TO 330
RISUBT = ZSUBT
RCYLPL = CLYLPL)
XLYLPL = RZSUBT/RCYLP1
NUM4 = XLYLPL
DELTA4 = NUM4
GAMMA4 = XLYLPL - DELTA4
IF(GAMMAG — EPS)22542254230
XLT(YLP L) = XLVLPI
GO TQ 235
TEMXLT = XLYLPL + 1.0
XLT(YLPLl) = TEMXLT
DO 245 JL = KYKZ
IF(ALJL,Y2) LLE.EPS) GO TG 245
IF(RONIJL).EQ.0) GO TO 237
SUM = 0.0
DO 236 NF = LlsLN
IFLALJLaNF) JGE.0.0) GO TU 236
SUM = SUM + A(JL«NF) ¥ XLIY(NF))
CONTINUE
BTHJL) = BT(JL) ~ SUM
TEMP5 = BTLJL)/ACJL,YLPL)
IF{ROW{JLI.EQ.0) GO TO 238 .
BT(JL)} = BTLJL) + SUM
NUM5 = TEMPS
CELTAS = NUMS :
GAMMAS = TEMPS =DELT A5
IF(GAMMAS = EPS) 240,240,241
NTEMPS = TEMPS
GO TO 242
TEMPY = TEMP5 + 1,0
NTEMPS = TEMPY
IFINTEMP5.LE.XLTIYLPL}) GU TO 245
XLT(YLPLl) = NTEMPS
CONTINUE
IFOXLTOYLPLY JGELXLEYLPLYY LO TO 330
XLT(YLPLl) = XLIYLPL1}

STEP NUMBER 23

SET NEXT VARIABLE IN RANKING AT ITS NEW BOUND
IF{MNAX.EQ.1) GU TO 331

XTEMPLYLPL) = XLT{VYLPL)

CO TO 340

XTEMP{YLPL) = XUT{YLPLI

STEP NUMBER 24

CHECK TO SEE IF A VARIABLE HAS BEEN INCREMENTED BEYOND ITS BOUND

LPl = L+]
YLP1l = Y{L+1)
IF{MAX . EQ.l) GO TO 341
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IF(XTEMP(YLPL)LLEXUT(YLPL}) GO TO 12
XTEMP({YLPL) = XUT(YLPL)

GO TO 342
IF(XTEMP(YLPL)+GEXLT(YLPL)) GO TO 12
XTEMPLYLPL) = XLTLYLPL)

STEP NUMBER 25

IF(L.EQ.1) GO TO 350
L= L=l
YLPL = Y(L¢l)
ISUBT = ZSUBT + CUVLP LI*XTEMPIYLP L)
RXTEMP = XTEMP{YLPL)
DO 345 JH = 1,LM
BT{JH) = BT(JH) ¢ ALJHs YLPL)*RXTEMP
CONTENUE :
NOTE4 = 0
LPL = L+l
IF(MAX,EQ.1) GO TO 346
XTEMP(YLPL) = XTEMP(YLPL) + 1
GG TO 340
XTEMPLYLPL) = XTEMPIYLPL) - 1
GO TO 340 '

STEP NUMBER 26
INCREMENT FIRST VARIABLE IN RANKING ONE INTEGER

IFIMAX.EQsl) GO TO 351

XTEMPIY(L1)) = XTEMP(Y(l)) + 1

CO TO 352

XTEMPLY{Ll}) = XTEMPIY (1)) = 1 '
NOTEL = O

NCTE2 = O

STEP NUMBER 27
CHECK TO SEE IF ALL SCLUTIONS HAVE BEEN EXAMINED
IF(MAX.EQ.0) GU TQ 365

IFOXTEMPIYLLE) — XLTLY{1))) 355,360,360
I0F = I0F - 6

GU TO 4
ZSuBT = LOF
NOTE3 = 0

STEP NUMBER 23

IFILN-2012412,10

IFOXTEMPIYLLD)Y ~ XUTLY(L1))) 380,380,375
IF(Z0F)355 4,355,376

LO0F = LOF + G

GO TO 4

LSGBT = 20F
NOTE3 = O
IFILN-2)12,12,410
RE TURN

END
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APPENDIX F

TEST PROBLEMS AND SOLUTIONS

al.



maximize

subject to

maximize

subject to

maximize

Xy 2

o

x; INTEGER

o]
*
Il

(1,

73.

N
*
Il

From Wagner (30):

= 3 x1 + 3 X2
- 3 x3 + 6 x2

6 x1 - 3 x2

9,

X3

X3

X3

for j

for j

2)

+ 13 xa
+ 7 x3 <

+ 7 x3 <

x; > 0 for

x; INTEGER for

x* = (0,

z*¥ = 13.

From Gomory (11):

=4 x5 + 5 xp

0,

X3

X3

X3

0.6 x4 < 12.5

0.25 x¢ < 12.6

147

(F-1)

(F=2)

(F-3)

(F=14)

(F-5)

(F-6)

(F-7)

(F=8)

(F-9)
(F-10)
(F-11)
(F-12)
(F-13)
(F-14)

(F-15)

(F-16)
(F-17)
(F-18)

(F-19)
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x; >0 for j = 1, 2, 3 (F-20)
x; INTEGER for j = 1, 2, 3 (F-21)
x* = (2, 2, 1) (F=-22)
z* = 19, (F-23)
From Young (31):
maximize Z = X1 + Xz + Xa (F=24)
subject to - & x1 + 5 xz + 2 x3 < & (F-25)
-2x +5 %z +0x3 <5 (F-26)
3x1 -2 xz2 + 2 x3 <6 (F-27)
2x1 -5 x2 +0 x3 <1 (F-28)
xy >0 for j = 1, 2, 3 (F-29)
x; INTEGER for j = 1, 2, 3 (F=30)
x* = (3, 2, 0) (F-31)
z* = 5. (F-32)
minimize =z = 10 x1 + 14 xz + 21 xj (F-33)
subject to b x1 + 47x2 + 7 xa < 28 (F-34)
8 x1 + 11 x2 +9 x3 > 12 (F-35)
2 x1 + 2 xz + 7 x5 > 14 (F~36)
9 x1 +6 x2 + 3 x3 > 10 (F-37)
x* = (1, 0, 2) (F-38)
z* = 52, (F-39)



6. From Cook (5):

maximize z =1 x3 - 3 x2 + 3 X3
subject to 2 x1 + 1 x3 - 1 x5
b % - 3 x3 + 0 x4

- 3 x1 + 2 x3 + 1 x5
XJ z 0 for
x; INTEGER for

x* = (2, 2, 5)

z¥ = 11.
7. From Cook (5):
maximize z =1 x1 + 2 X2 + 3 X3
subject to 1 x1 + 0 x2 + 4 x3

b x1 + 3 %2 + 1 xa

X, z 0 for

x; INTEGER for

* = (0, 42, 0,

]
I

z* = 106.

IN A
n =

IA
w

Xa

3)

+1X5

+ 1 xs

—1XE_

3,

3,

149

(F-40)
(F-41)
(F=-42)
(F=43)
(F-44)
(F-45)
(F-46)

(F=47)

(F-48)
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8. From Trauth and Woolsey (28):

maximize z = 20 x3 + 18 x2 + 17 x5 + 15 x4 + 15 xs

+ 10 x5 + 5 Xy + 3 Xs + X9 + Xio
(F=55)

subject to 30 x1 + 25 x3 + 20 X3 + 18 x¢ + 17 x5

+ 11 x6 + 5 X9y + 2 Xg + Xg + Xio

IA

55 (F-56)

x; < 1 for j

1
-
[\S]
L]
L ]
.
-
o

- xy 20 for j =1, 2, ..., 10

(F-58)
x; INTEGER for j = 1, 2, ..., 10
(F-59)
x* = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1)
or (F-60)

50. (F-62)

N
*
1
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