
AN OBJECTIVE FUNCTION REDUCTION

ALGORITHM FOR INTEGER

LINEAR PROGRAMMING

By

JAMES MELVIN SHIRLEY
((

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1963

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1968

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1972

AN OBJECTIVE FUNCTION REDUCTION

ALGORITHM FOR INTEGER

LINEAR PROGRAMMING

Thesis Approved:

-

· Dean of the Graduate College

OKLAHOMA
STATE UNIVERSITY

LIBRARY

AUG 16 1973

PREFACE

The principal goal of this research is to extend the

existing theory of solution procedures for pure integer

linear programming. This study is concerned with the devel

opment of a new algorithm for solving the pure integer

linear programming problem. The procedure presented in this

thesis uses combinatorial search methods to find the solu

tion to the problem. A family of objective function hyper

planes is examined until an integer solution is found.

Beginning at the optimum noninteger solution, the algorithm

inspects parallel objective function hyperplanes in the

feasible solution space.

Additional, secondary problems are considered in this

research. These are (1) to identify any heuristic proce

dures that will speed the convergence of the algorithm,

(2) to develop a procedure for finding a good approximate

solution to the problem, and (J) to·write a computer code

to evaluate the algorithm. One stage of the algorithm pro

poses a ranking scheme for the variables to potentially

eliminate many combinatorial solution possibilities from

explicit consideration. A heuristic method of ranking is

developed for a certain class of problems. This heuristic

method allows the algorithm to take full advantage of

; ; ;

techniques that speed convergence. A technique is examined

for finding an approximate solution to the pure integer

linear programming problem. Also, this procedure can be

used to establish a lower bound on an objective function

that is to be maximized. A computer code is presented for

further evaluation of the algorithm and any refinements or

additions that may be considered,

The members of my doctoral advisory committee have

given generously of their time and effort throughout my

study and research. Dr. James E. Shamblin, the committee

chairman and thesis adviser, continually offered the inspi

ration for new ideas. His perspective and understanding

gave direction throughout the research and preparation of

the thesis. Dr. Hamed K. Eldin guided in establishing re

search objectives. He provided an overview that added sig

nificantly to the continuity of this research. Dr. M.

Palmer Terrell carefully reviewed this research as it devel

oped. His perception added immeasurably to the accuracy and

composition of this thesis. Dr. David L. Weeks gave direc

tion and insight to my graduate study in statistics. His

ability to find the central issue of any logic continually

challenged me to reason clearly.

In particular, I gratefully acknowledge the contribu

tions of Dr. James E. Shamblin during our years of work

together. He provided the opportunity to do research in

mathematical programming and teach in engineering. He gave

the motivation to make this thesis possible.

I am thankful to Miss Velda Davis for her excellent

typing. Her suggestions on appearance and form were

invaluable.

I sincerely appreciate the work, patience, and under

standing of my wife, Elaine, and son, Steven.

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II.

Objectives • • • • • • • • • • • • • • • • 3
General Concepts of the Objective

Function Reduction Algorithm • • • • • • 5
A Two-Variable Introductory Example 9
Notation • • • • • • • • • • • • • • • • • 20

LITERATURE REVIEW OF INTEGER
LINEAR PROGRAMMING • • • . . • • . • • • . • • • •

General Classification of
Cutting Plane Algorithms
Backtrack Algorithms
Other Methods ••••••

Algorithms

22

23
25
JO
34

III. SOME CONCEPTS OF LINEAR DIOPHANTINE EQUATIONS. • 37

The Greatest Common Divisor.
Euclid's Algorithm •••••
Linear Diophantine Equations

.

IV. THE OBJECTIVE FUNCTION REDUCTION ALGORITHM.

Stage One • • •••.•••
Stage Two. • • •••
Stage Three ••••••••••
Stage Four. • • ••
A Three Variable Example

V. SOME IMPLICATIONS OF THE ALGORITHM.

39
44
47

52

55
58
63
67
74

90

The Computer Code. • • • • • • • • • • 90
The Scheme of Ranking the Variables. • • • 93
Modifying the Coefficients in the

Objective Function • • • • • • • • • • • 97

VI. SUMMARY AND CONCLUSIONS

Important Findings •••••••
Areas for Further Investigations
Conclusions ••••••••••••

103

103
106
107

Chapter Page

SELECTED BIBLIOGRAPHY 109

APPENDIX A - FLOW OF LOGIC IN THE ALGORITHM • . 112

APPENDIX B - MAIN TEST PROGRAM • . 124

APPENDIX c - SUBROUTINE GCD 130

APPENDIX D - SUBROUTINE RANK 1JJ

APPENDIX E - SUBROUTINE SEARCH 136

APPENDIX F - TEST PROBLEMS AND SOLUTIONS 146

Table

I.

LIST OF TABLES

An Example With the Variables Ranked
According to Range Size .•••••

LIST OF FIGURES

Figure

1.

2.

J.

4.

5.

6.

7.

Two Variable Introductory Example Problem

Two Variable Introductory Example Problem
With Ranked Variables • • • • • ••

Family of Objective Functions in the
Solution Space

Stage 1 Logic Flow Diagram
Stage 2 Logic Flow Diagram . . .
Stage J Logic Flow Diagram
Stage 4 Logic Flow Diagram

Page

95

Page

10

15

. . . . 19

. . . . 57

. . . 62

. . . . 66

. . . . 72

NOMENCLATURE

a coefficient in the ith constraint for the original

problem variable, x 3 •

a coefficient in the ith constraint for the ranked

variable, y 3 •

b 1 the right-hand side value of the ith constraint.

bi the temporary right-hand side value of the ith

constraint.

c 3 an objective function coefficient for variable x 3 •

It must be integer.

" c 3 an objective function coefficient for variable y 3 •

g

i

IF LAG

j

f.,

m

It must be integer.

the greatest common divisor of the coefficients in

the objective function.

index for number of functional constraints.

a key word indicating all successive subscripts in

the ranking~ IFLAG have even coefficients.

index for number of variables.

a superscript indicating a lower bound.

the number of functional constraints in the problem.

That is, the nonnegativity constraints are not

counted in m.

MAX a key word indicating a maximization problem when it

equals one,indicating a minimization problem when

it equals zero.

n the number of problem variables, not including the

slack or artificial variables.

re x) j the range of a variable x 3 in the original problem.

re y) j the range of a variable y 3 in the ordered :r-artking of

the variables.

x* an optimum continuous value for a variable.

x* an optimum integer solution vector.

x a solution vector.

x 3 a problem variable.

1,
x 3 a lower integer bound on variable x 3 •

·u
x 3 an upper integer bound on variable x 3 •

y* an optimum integer value for a ranked variable.

z* an optimum integer solution vector in terms of

ranked variables.

z a solution vector in ter~s of ranked variables.

y 3 a ranked variable.

1,
YJ

u
Y3

J,
YC .!) t

u
Y(J) t

the

the

the

the

lower integer bound on

upper integer bound on

temporary lower bound

temporary upper bound

ranked variable YJ •

ranked variable YJ •

the .t.h ranked variable. on J

the .th ranked variable. on J

z a value of the objective function.

z* the value of the objective function at the optimum

integer solution.

Zt a temporary value of the objective function.

ZOF the value o:f the objective function that is being

ZSIM

ZSUBT

searched for a solution.

the value of the objective function for the

simplex linear programming solution.

a temporary value of the objective function.

CHAPTER I

INTRODUCTION

The subject of pure integer linear programming is

approximately fifteen years old. Even though a great amount

of successful work has been done when the problem variables

can take on continuous values, the area of integer program

ming is still difficult in practice. Many early algorithms

suggested cutting-plane methods that added new constraints

at each iteration. Later, branch-and-bound techniques were

developed to solve the integer programming problem. Enumer-

ation schemes and heuristic techniques have been examined as

possible solution procedures. While most algorithms offer

convergence in a finite number of steps, in practice finite

can often be very large.

Many situations of both industrial and theoretical

importance can be formulated as an integer linear program-

ming problem. Problems involving equipment utilization,

labor allocationj capital budgeting and others require that

the variables can take on only integer values. Therefore,

integer linear programming has offered the promise of

solving several operations research models. The algorithms

available to date have not always been able to fulfill the

promised solution. Some algorithms are only useful on

1

2

certain limited problems. In any of the algorithms, certain

examples can be devised that require approximately an equiv

alent amount of effort as complete enumeration of the feasi

ble solutions.

So, the paradox exists. Integer linear programming has

offered the solution to many problems of operations research,

while the available algorithms have provided only limited

practical success. The research of this thesis explores a

new, potentially useful method of extending the analysis of

integer linear programming. This algorithm can provide a

pure integer programming solution or a good approximate

solution with a lower bound on the maximand. Even though

the exact solution is important, an approximate solution

greatly increases the efficiency of some optimal algorithms.

Hillier (14) indicates the great importance of good approxi

mate solutions in integer linear programming problems.

The difficulties associated with solving the integer

linear programming problem can be enormous. Constrained

optimization problems often imply a finite solution space

exists. Nevertheless, the potential combinatorial possibil

ities can be great even in problems with a moderate number

of variables and constra~nts. It is no wonder that some

early thinkers concluded the problem was impossible to

solve.

Complete enumeration quickly becomes impractical, since

each combinatorial possibility within the solution space

must be tested for its feasibility and must have the

3

objective function value tested. Because of the efficiency

of the simplex method, a common procedure in practice is to

solve the problem for the optimal noninteger solution and

then use a rounding procedure to obtain an approximate solu

tion. On certain problems, this technique can lead to solu

tions far from the optimum integer solution. Wagner (JO)

and Hillier and Lieberman (16) present examples of how

rounding can sometimes lead to poor solutions. The possi

bility of rounding the optimal noninteger solution to simply

a feasible solution can be a difficult problem when dealing

with several constraints in a multispace system.

The method of searching the feasible integer solution

space must be intelligently structured or certain problems

could not be solved in several lifetimes. For example, if

a problem contained only 25 variables and each could take on

only two values, then 226 = J3,554,4J2 possible combina

tions exist. Any practical algorithm must take advantage of

techniques to avoid complete enumeration and examination.

The algorithm developed in this research takes advantage of

several methods that implicitly examine and eliminate a

large number of possible solutions.

Objectives

The primary goal of this research is to extend the

existing theory of solution procedures for pure integer

linear programming. In particular, a new algorithm for

solving the pure integer linear programming problem is

developed. Additionally 1 other objectives are (1) to iden-

tify any heuristic procedures that will speed the conver

gence of the algorithm, (2) develop a procedure for finding

a good approximate solution to the problem, and (J) write a

computer code to evaluate the algorithm. To meet these

objectives, this thesis presents an algorithm that uses

combinatorial search methods to find the solution to the

pure integer linear programming problem.

Heuristic procedures can point the way to obtaining

more insight into the structure of a solution technique.

Also, they can often be used to speed convergence of an

algorithm. Since computational efficiency is a prime con-

sideration in integer programming, heuristic procedures can

frequently be used to move the algorithm quickly to the

solution.

Many integer linear programming algorithms can benefit

from a good approximate solution. Hillier (14, 15) de-

scribes the importance of finding methods that will provide

near optimum solutions. Oftentimes, large problems with a

4

great many variables and constraints can only be economical-

ly solved with approximate procedures. Therefore, a method

for finding a good approximate solution of the integer

linear programming problem will be investigated in this

research.

To be able to evaluate the solution procedure described

in this thesis a computer code is required. Problems of

practical and theoretical importance often involve several

5

variables and constraints. A computer code is essential to

solve large problems. Also, it provides a useful method for

evaluating modifications and variations in solution proce-

dures. A brief summary of the main concepts of the algo-

rithm developed in this research is given in the following

section.

General Concepts of the Objective

Function Reduction Algorithm

The objective function reduction algorithm seeks a

solution to the pure integer linear programming problem.

The problem can be expressed in cannonical form as follows:

n

maximize z = l C j Xj (1-1)

j=l

n

subject to l a1 J Xj < b1 for i 1 ' 2, . . . ' m (1-2)

j=l

xj > 0 for j = 1 ' 2, ... ' n (1-3)

Xj, cJ INTEGER for j - 1 , 2 , .•. , n. (1-4)

It is assumed that the set of constraints of Equations (1-2)

and (1-3) bound the solution space. The nonnegativity

requirement of Equation (1-3) is not necessary for the con-

ceptual approach developed in this research. Nevertheless,

this is a typical and often a necessary condition in a

practical problem. The algorithm restricts the objective

6

function coefficients to integers, while the coefficients in

the constraints and their right-hand side values may be non-

integer. Constraint coefficients and objective function

coefficients are not restricted as to sign and may be nega

tive or positive.

Very generally, the objective function reduction algo

rithm moves through a family of parallel objective function

planes within the solution space, away from the optimal

noninteger solution, until a feasible integer solution is

found, which is the optimal integer solution. The basic

flow of the logic of the algorithm can be described in four

stages. Stage 1 requires that the simplex method be used

to find the optimal continuous-variable solution. If this

solution is all-integer, the algorithm stops. Otherwise,

the algorithm requires knowledge of the value of the objec-

tive function at the optimal noninteger solution. The next

part of Stage 1 is to identify the bounds on each problem

variable, as defined by the functional and nonnegativity

constraints. If n is the number of problem variables, then

this can be done by solving 2n linear programming problems.

These linear programming problems are subject to the func

tional constraints and have objective functions of the form

maximize Z = Xj (1-5)

and,

minimize (1-6)

for each j, j = 1, 2, ••• , n. In practice these bounds can

be found reasonably fast. They may be readily known from

experience of working with the problem. Minimization prob

lems with only greater-than-or-equal-to constraints must

have a finite upper bound defined for each variable. These

bounds become integer bounds when the quantities found in

Equation (1-5) are selected so the upper bound on the vari

able is the greatest integer less than or equal to x 3 •

Similarly 1 the lower integer bound on each variable is

selected such that it is the least integer greater than or

equal to x 3 found in Equation (1-6).

Stage 2 examines the coefficients of the objective

function. Using concepts from the study of linear

Diophantine equations and the theory of numbers, the

greatest common divisor of the objective function coeffi-

7

cients is found. Assuming a maximization problem, the value

of the objective function as found with the simplex method

in Stage 1 is rounded down to the greatest integer that has

the greatest common divisor as a factor.

Stage 3 determines how the variables should be ranked

so the search of Stage 4 will implicitly examine and exclude

several solutions. Also, Stage 3 identifies any successive

sequence of objective function coefficients in the ranking

such that all succeeding values are even integers. This

sequence of even coefficients is used to take advantage of

additional concepts of linear Diophantine equations.

The final stage, Stage 4, is the heart of the implicit

search of the feasible integ~r solution space. Again

8

assuming a maximization problem, the first variable in the

ranking of Stage 3 is set at its upper bound. The objective

function is set equal to the integer value determined in

Stage 3, giving an upper bounding hyperplane on the maxi

mand. Using the objective function and the functional con

straints, new, potentially tighter bounds are found on the

next variable in the ranking. This next variable in the

ranking is then set at its new upper bound. This process of

finding tighter upper and lower bounds continues until the

algorithm finds it can take advantage of some concepts of

linear Diophantine or the next to last variable in the rank

ing is reached. Using the objective function and the held

value of the variables, the value of the final variable in

the ranking is calculated. If this solution is integer, its

feasibility is tested in the functional constraints. If the

final variable is noninteger or an all-integer solution is

found infeasible, then the algorithm backtracks through the

ranking until it has explicitly or implicitly examined each

combinatorial possibility for a particular objective func

tion value. The first feasible integer solution found is

the optimum integer solution for the problem. When all

solutions have been considered for the first objective func

tion value, and no feasible solution has been found, then

the objective function is incremented down one greatest

common divisor increment. The algorithm returns to the

beginning of Stage 4 to examine the possibility of a feasi

ble integer solution on a new, reduced hyperplane.

9

Some of the essential concepts of the objective func

tion reduction algorithm can be introduced with a simple

two-variable example. The following section describes such

an example.

A Two-Variable Introductory Example

One advantage of a two-variable example is the solution

space can be easily visualized. The simplicity of finding

the solution in two dimensions often indicates a particular

search technique will be very valuable. When several vari

ables are considered, that is, the problem is multidimen

sional, the satisfactory techniques of two dimensions often

become tedious and ineffectual. Nevertheless, because of

the visual properties of a two-dimensional example, it is

useful to fall back on to point out some of the features of

an established algorithm, such as the one developed in this

research.

Consider the following two-variable example:

maximize z = 8 Xl + 10 X2 (1-7)

subject to 7~ + 5.5 X2 < 38.5 (1-8)

4.5 Xl + 8 xa < 36.0 (1-9)

Xj > 0 for j = 1 ' 2 (1-10)

~' cj INTEGER for j = 1 ' 2. (1-11)

Figure 1 shows how the constraints bound the solution area.

8

6

4

•

2 •

•

7x.1 + 5.5'X.2: 38.5
(CONSTRAINT ONE) .,

' ' • ' z : '~

•

. . ' ' ' ' . . '

• • •

2 4 6

4.5x., + 8x.2 = 36
'~CONSTRAINT TWO)

' ' ' ' '
8

NOTES:

(I) OPTIMUM NONINTEGER SOLUTION, i = (3.52, 2.52)
(2) OPTIMUM INTEGER SOLUTION, ~ * = (2, 3)

'

Figure 1. Two Variable Introductory Example
Problem

10

11

The Stage 1 analysis of the algorithm determines first

the optimum noninteger solution of the problem.

Figure 1, the optimum noninteger solution is

As shown in

~ = (x1, xa) = (J.52, 2.52). Since this solution is not

all-integer, the algorithm continues its search for a feasi

ble integer solution. The value of the objective function,

Equation (1-7), at the optimum noninteger solution is

z = 53.36. By inspecting the constraint boundaries of

Figure 1, the maximum over-all integer bounds of the problem

variables can be found. Therefore, the upper and lower

integer bounds can be defined by the inequalities

0 < Xl < 5 (1-12)

and

0 < xa < 4. (1-13)

Stage 1 says the objective function at the optimal non

integer solution is

z = 8 x1 + 10 xa = 53.36. (1-14)

This would be a straight line parallel to the objective

function equation shown in Figure 1, intersecting the opti·

mum noninteger solution at x = (x1, x 2) = (3.52, 2.52).

Since this solution is not integer optimum, the optimum

solution must lie on some parallel objective function line

below the maximum described in Equation (1-14). Also,

notice that the cj coefficients are restricted to integer

values. Therefore, the left-hand side of the objective

12

function must equal some integer value, since the product

and sum of integers must be an integer value. To force the

right-hand side of the objective function to an integer

value, it seems justifiable to round Equation (1-14) down to

the greatest integer below 53.36 to get the equation

Z = 8 Xl + 10 Xa = 53. (1-15)

Using the methods that will be explained in Chapter III,

Stage 2 calculates the greatest common divisor of the coef

ficients (cj) in the objective function, Equation (1-7).

For this simple introductory example problem, the greatest

common divisor can be determined by inspecting the coeffi

cients c1 = 8 and ca= 10 in Equation (1-?). It can be seen

that the greatest integer that will divide evenly into 8 and

10 is the number 2. Therefore, the greatest common divisor

for the objective function is 2.

As will be shown in Chapter III with the study of

linear Diophantine equations, no integer solution is possi

ble for Equation (1-15). The optimum noninteger solution

value must be rounded down until it has the greatest common

divisor as a factor. That is, begih the recursive search

for a feasible integer solution with the first reduced

objective function being

Z = 8 X1 + 10 X2 = 52. (1-16)

The greatest common divisor, 2, divides evenly into the

integer value z = 52. This says there is at least one

13

integer solution to this objective function. If this

integer solution is within the solution area, as defined by

the functional and nonnegativity constraints, the optimum

solution has been found. Otherwise, the optimum solution

must be located on a further reduced objective function

parallel to Equation (1-16). Stage 2 is complete when z= 52

of Equation (1-16) is found.

In Stage 3, the variables are ranked or ordered accord

ing to the number of feasible integer possibilities each

variable can take on. Equations (1-12) and (1-13) describe

the lower and upper bounds on each variable. Variable x1

can take on six integer values, while variable xa can take

on five integer values. As described later in Chapter IV,

the ranking scheme is to assign the variable with the

tightest bound the highest ranking position. A new symbol,

yj, will be used to indicate a ranked variable. Therefore,

the direct change of variables will give

Y1 = xa (1-17)

and,

Ya = x1. (1-18)

Therefore, the bounds on the ranked variable are

0 < y1 < 4 (1-19)

and,

0 <Ya< 5. (1-20)

14

Based on the change of variables given in Equations

(1-17) and (1-18) a new problem described in terms of the

ranked variables (y3) is defined. This new problem will be

solved using the objective function reduction algorithm. To

avoid notation difficulties, it is often convenient to think

completely in terms of the ranked variables and the new

problem. Later, the variables can be returned to their origi-

nal form. The new problem, written with ranked variables,

is

maximize z = 10 Y1 + 8 Ya (1-21)

subject to 5 · 5 Y1 + 7 Ya < 38.5 (1-22)

8 Y1 + 4.5 Ya < 36.0 (1-23)

Y3 > 0 for j = 1' 2 (1-24)

,.
Y3 , C3 INTEGER for j = 1' 2. (1-25)

Figure 2 shows how the ranked constraints bound the solution

area.

An additional requirement of Stage 3 is to identify any

successive sequence in the ranking such that all succeeding

coefficient values in the objective function are even inte-

gers. Equation (1-21) shows that both coefficients in the

objective function are even integers. The algorithm records

and potentially uses this fact. From the theory of numbers

and linear Diophantine equations, the algorithm uses a

rather simple observation. If during any part of the

8y1 + 4.5y2 = 36
(CONSTRAINT TWO)

8 ' ' ' . ' ,~z = IOy, + 8y2
6 •

' • ' ' ' 4 • • • ' ' 5.5y, -t 7Y2 = 38.5
• • , (CONSTRAINT ONE)

' 2 • • . ' ' ' • • • .,
' 00 2 4 6 8 10 Y,

NOTES:
(I) OPTIMUM NONINTEGER SOLUTION, y = (2.52,3.52)
(2) OPTIMUM INTEGER SOLUTION, y_* = (3,2)

Figure 2. Two Variable introductory Example
Problem With Ranked Variables

15

16

search, the objective function is given a value that is an

odd integer, while all coefficients are even, then no inte

ger solution can exist for that equation. Consequently,

several solutions can be implicitly examined and eliminated.

As stated before, Stage 4 is the heart of the objective

function reduction algorithm. Using the ranking scheme and

the bounds found earlier, the first variable in the ranking

is set at its upper bound. Therefore, set

Y1 = 4. (1-26)

From Stage 2, the first reduced objective function value to

be examined is

z - 10 Y1 + 8 Ya= 52. (1-27)

In a problem involving several variables, the held value of

Yl (y1 = 4) would be substituted into the reduced objective

function and the functional constraints. Obviously, with

one variable held at a fixed value, the right-hand side of

the constraints and the reduced objective function value can

be modified. As Figure 2 shows, when the variable Y1 is

held fixed at Y1 = 4, the constraints will provide tighter

bounds on the next variable the ranking, ya. With y1 = 4,

the functional constraints of Equations (1-22) and (1-2J)

indicate tighter bounds on Ya· That is,

5.5(4) + 7 Ya< J8.5

8(4) + 4.5 ya< J6.o

(1-28)

(1-29)

17

and this leads to

Y:a < 2.J5 (1-JO)

from constraint one, and

Y:a < 0.88 (1-J1)

from constraint two. This is shown clearly in Figure 2.

The minimum value from Equations (1-JO) and (1-J1) provides

a new, temporary upper bound on y:a. This means that ya must

be no greater than the greatest integer less than or equal

to Ya< 0.88 from Equation (1-J1). Therefore,

Ya< 0 (1-J2)

is a new upper bound on the next variable in the ranking.

This procedure has reduced the number of possible values to

examine.

With only two variables, the process of finding tighter

bounds is unnecessary. For a fixed value of one variable,

the reduced objective function of Equation (1-27) provides

the value of the other variable~ Nevertheless, the two

variable example easily shows the principle of finding

tighter bounds. In the complete algorithm described in

Chapter IV, the reduced objective function equation is used

similarly as a constraint would be used to aid in identify

ing the tightest possible bound on the next variable in the

ranking.

With two variables, Equation (1-27) leads quickly to

18

the solution, for a fixed value of Y1 = 4. That is,

10(4) + 8 Ya= 52 (1-JJ)

and

Ya= 1.5. (1-J4)

Since Ya has been found to be a noninteger value, it is

immediately eliminated as a feasible solution. If Ya had

been found integer, the feasibility of the solution

y = (y1, ya) would be tested in the functional constraints.

The first feasible, all-integer solution found is the opti

mum solution.

For this two-variable example, the algorithm says no

feasible, integer solution exists for z = 52 and y1 = 4.

The search continues by incrementing y1 down one integer and

solving for Ya• This process continues until all integer

possibilities for Yl have been tested, which implies all

values of Ya have been tested. If the optimum solution is

not found at z = 52, then the objective function is still

further reduced by the amount of the greatest common divisor

to z = 50. This gives a new objective function equation to

be searched, which is

z = 10 y1 + 8 ya = 50. (1-35)

Figure 3 shows this process will continue until the

optimum solution is found at y* = (J, 2) with z = 46.

Notice how Figure 3 indicates that the first feasible inte

ger solution that is found, as the objective function moves

5

4

3

2 •

l •

0 1

•

•

2

6y1 + 4,5y2 • 36.

(CONSTRAINT TWO)

Z = 10y1 + 8y2 • ·53.36

5.5yl T 7y2 : 38, 5
(CONSTRAINT ONE)

•

3 4 5

NOTES:
(1) OPTIMUM NON INTEGER SOLUTION, 1. = (2.52, 3.52)

(2) OPTIMUM INTEGER SOLUTION, 1.*= (3,2) ·

Figure J. Family of Objective Functions in the
Solution Space

19

6 Y1

20

down through the solution space, is the optimum solution.

The limitation of only dealing with two variables did

not allow all of the objective function reduction algorithm

to be demonstrated. It does provide a visual reference for

many concepts that will be extended and examined in more

detail later.

Some of the notation used in this research will now be

described.

Notation

One part of the algorithm ranks the variables according

to a ranking scheme. A ranked variable will be indicated by

the letter y. The ranked variables do not necessarily have

the same subscript number as the problem variable they rep-

resent. The subscripts on they-variables i~dicate ranking

order. Therefore, Ya, the second ranked variable, could be

the ranked variable identification for problem variable xs.

It is sometimes convenient to represent a solution as

an n-vector of the form

Y... = (Yl , Ya , • • • , Y n) • (1-J6)

To indicate the optimal integer solution, then-vector

* (* * Y = Yl, Ya, ... ' y:) (1-37)

will be used.

During certain parts of the algorithm, it is necessary

to round down or round up to the nearest integer. The

21

common notation that is used for this is

[y] = the greatest integer< y (1-38)

and

<y) = the least integer> y. (1-39)

Upper and lower bounds often need to be identified as

the algorithm is described. An upper integer bound on a

variable will be indicated with the superscript u and a

lower integer bound will be indicated by the superscript£.

Some typical examples might be

£
Ys = 5 (1-40)

and

u
Ys = 7° (1-41)

The complete notation required for this thesis is

listed in the Nomenclature section preceding this introduc-

tory chapter. Before looking more closely at the details of

the objective function reduction algorithm, a brief review

of the literature and some concepts from the study of linear

Diophantine equations will be presented.

CHAPTER II

LITERATURE REVIEW OF INTEGER

LINEAR PROGRAMMING

During the past ten years, there has been a great

amount of research and publications on integer linear pro

gramming. This literature review will identify some of the

more recent articles that are widely referenced and are

typical of the work being done using a particular approach

to the problem. In 1965, two surveys appeared that examined

many of the important algorithms up to that year. Balinski

(3) summarizes the major methods that have been successful

or interesting in their method of approaching the problem.

Included are some descriptions of general algorithms and

computational experience dealing with integer linear pro

gramming. Beale (4) presents a survey of linear programming

problems where some or all of the variables are required to

take on integer values. Four separate methods of solving

integer linear programming problems are reviewed and dis

cussed. A survey of the literature of the late 1960 1 s would

make an excellent contribution to the literature of integer

programming. This gap in the literature should certainly be

filled in the coming months.

23

General Classification of Algorithms

Several methods of classifying the algorithms of inte

ger linear programming have been used. Any general method

of classification will be incomplete l)ecause of the variety

of methods proposed to solve discrete programming problems.

Nevertheless, the two areas of classification suggested by

Wagner (JO) are appropriate for the literature reviewed in

this thesis. The two main approaches for finding optimal

solutions to integer programming problems are the cutting

plane algorithms and the backtrack algorithms.

The cutting-plane algorithms appear in several forms.

They can be used to solve both the mixed integer programming

problems and pure integer programming problems. The

cutting-plane algorithms start at the optimum linear pro

gramming solution and then move toward the optimum integer

linear programming solution. The early work of Ralph E.

Gomory ide.ntif'ied the signific"arit· contribution that

this approach could make to solving integer linear program

ming problems. Generally, these methods assume the optimum

linear programming solution has been found and is not inte

ger. Additional cuts or constraints are then added to the

original constraints. These new constraints are added in

such a way that they reduce the feasible solution space, but

they do not exclude any possible integer solutions. The

algorithm is completed when a feasible integer programming

solution has been found. These methods have been shown to

be finite converging algorithms. With the addition of new

24

constraints at each iteration, the number of iterations in

the finite convergence of even a moderate problem can be

quite large.

The second classification group is somewhat broad and

includes many approaches to the problem. Again, the back

track algorithms can be used to solve both mixed and integer

linear programming problems. Under this category are the

branch-and-bound algorithms, implicit enumeration algorithms,

shifted functional hyperplane methods, and many others. As

in the cutting-plane algorithms, the backtrack algorithms

begin at the optimal linear programming solution. These

techniques then create a group of related linear program

ming algorithms. For example, in the branch-and-bound algo

rithms, a series of subproblems and a lower bound (for

minimization) are determined. Similar to the concepts of

dynamic programming, at each stage of subdivision, certain

solutions are excluded as infeasible and are not examined.

The name backtrack algorithms is given to these methods

because they start at the optimal noninteger solution and

back away from it, searching a sequence of generated prob

lems for the optimal integer linear programming solution.

Naturally, all of the approaches to the integer pro

gramming problems cannot be classified with these two prin

cipal methods. The heuristic programming techniques or the

statistical methods do not readily fall within either of the

two categories. Some papers that are difficult to classify

will be discussed at the end of the chapter.

25

Cutting Plane Algorithms

The name most often mentioned when discussing cutting

plane algorithms is that of Ralph E. Gomory. Until some of

his early work was presented in 1958, a general method for

solving integer linear programming problems was assumed to

be impossible by many people. Since that time, Gomory and

several others have continued to explore the possibilities

of cutting-plane algorithms.

Of the surveys made during the mid 1960•s, the one by

E. M. L. Beale (4) is most readable. The theory of Gomory's

methods are explained quite well by Beale. In the early

cutting-plane algorithms for pure integer programming, the

method begins by finding the optimal noninteger solution to

the linear programming problem. If the solution to this

problem, where the variables can take on continuous values,

happens to turn out to be all-integer, the algorithm stops.

If some or all of the variables in the solution are noninte

ger, a new constraint is added to the problem. This new

constraint eliminates a part of the feasible solution space

near the optimum noninteger solution. It eliminates the

optimal noninteger solution and other solutions near the

optimum, but it does not eliminate any feasible integer

solutions. Then, the simplex tableau is manipulated using

the dual simplex method to move away from the optimal non-

integer solution. If the dual simplex iteration finds an

optimum integer solution, the algorithm is complete. If not,

a new constraint is added and the process continues until

26

the optimum integer solution is found. The new constraints

are often called cuts or cutting-plane constraints. They

get their name from the way they cut away some of the feasi-

ble solution space.

solution.

Their purpose is to force an integral

After the work described above, Gomory (10) presented

some new, important modifications to his all-integer inte-

ger programming algorithm.

in two main ways:

It differs from the earlier work

1. The technique is all-integer. The coeffi-

cients in the original matrix are integers

and all coefficients remain integer during

the whole calculation.

2. It is a uniform procedure similar to the dual

simplex method. Also, the cycle of adding an

inequality has been eliminated.

This method does not begin at the optimal solution deter

mined by letting all the variables have a continuous range.

It begins by making the problem dual feasible. This is done

by adding an artificial constraint that the sum of the non

basic variables be less than or equal to some arbitrarily

large number. From this point on each succeeding pivotal

row is a new cut and is generated in such a way that it

makes the pivot equal to minus one. This causes the

integral tableau to remain integral.

This contribution of Gomory (10) is widely referenced

in the literature on cutting-plane algorithms of integer

27

linear programming. This work apparently influenced much of

the later research.

Economic applications of some of the initial work in

integer programming began appearing in the literature in the

early 19601s. Gomory and Baumol (11) discussed the topic of

integer programming and pricing in a paper in 1960. The

article describes and gives an example of integer linear

programming. The majority of the paper discusses economic

considerations such as prices, marginal yields of scarce

indivisible resources, and efficient allocation of resources.

The work of Fred Glover has made a significant contri

bution to the study of integer programming. In 1967, Glover

(8) presented a paper describing a primal integer program

ming algorithm. The technique is described by Glover as a

new foundation for a simplified primal integer programming

algorithm. The main focus of this research starts by con

sidering the ordinary linear programming problem. Then, the

same problem is considered again where the solution is

required to be in pure integer form. Because the simplex

technique is so effective for solving the ordinary linear

programming problem, Glover sought an adoption of the

simplex algorithm to solve the pure integer programming

problem. The goal is to maintain a primal feasible and

integer solution at each iteration. The author says such an

adoption is straightforward and points to his earlier work

and that of Richard D. Young (31). This adoption, called

the rudimentary primal algorithm, draws on the early

concepts of Gomory where cuts are added to the feasible

solution.

28

Glover's (8) simplified primal algorithm begins with

the rudimentary primal algorithm and provides some rules

that lead to a convergent algorithm. The author provides

theorems and proofs to describe the success of this method.

Even though Glover describes the rules as simple and the

theorems as elementary, the analysis is still somewhat dif

ficult to follow. Nevertheless, the fact that a primal

integer programming algorithm has been found is a signifi

cant contribution to the literature.

A companion paper to Fred Glover's (8) article is one

by Richard D. Young (J1). Glover describes Young?s work as

a pioneering paper that produced a finite primal algorithm.

He goes on to call it an outstanding, original contribution

to integer programming. Young's algorithm is a complicated

and difficult technique for primal integer programming.

Richard D. Young's (J1) paper describes a primal, all

integer algorithm for solving a bounded and solvable pure

integer programming problem. This algorithm is a primal

analogy to some of Gomory 1 s early work with cutting plane

techniques. The method is tied closely to the simplex

method, but Young's simplified primal algorithm adds a

special row to the tableau and modifies the method of

selecting the pivot column. At each iteration, a cutting

plane constraint is added to the tableau. Young shows his

simplified primal algorithm is a finite procedure.

29

Young's (J1) paper parallels Glover's (8) work.

Young's algorithm develops alternative rules for adding the

new row of cutting-plane constraints. This method is not as

general or the tableau format as elaborate as Glover's (8),

according to Youngvs evaluation. Both papers were presented

in the literature to speed the understanding and analysis of

the basic approach to integer linear programming.

From an applications point-of-view, the ability of

computer codes to solve integer programming problems is an

essential consideration. Several cutting-plane algorithms

have been coded and evaluated. Beale (4) mentions some

codes that used the cutting-plane concepts of much of

Gomory's early work in integer programming. As of Beale's

(4) 1965 survey date, computer codes were available that

solved about 100 equations and 2000 variables. Beale says

that up to 1964 the largest single problem solved with this

code had 215 equations and about 2600 variables. The author

does not mention the speed or efficiency of the computer

code, but refers his readers to the author of the computer

code.

By the summer of 1967 9 C. A. Trauth, Jr. and R. E.

Woolsey (28) had completed their analysis of four different

computer codes. The codes were based primarily on Gomoryws

cutting-plane methods of integer linear progrrunming. The

authors compared the computational efficiency and practical

applicability of the four codes. They discovered difficul

ties with machine round-off errors can sometimes be

30

controlled, but the procedures required can be time con

suming. Another difficulty they noted was the amount of

time required to actually solve a given integer programming

problem. As mentioned earlier in this literature review,

Gomory proved his methods will produce a solution in a

finite number of steps. In practice, a finite number of

steps can be so large as to be impractical, even in a moder

ate size problem.

Trauth and Woolsey (28) indicated the amount of time

involved in obtaining a solution was related to the density

of the constraint coefficient matrix. Also, the magnitude

of the elements in this matrix had an effect on the solution

time. The four codes were tested on some test problems that

are commonly used in the literature to evaluate computer

codes. The authors present tables and their analysis show

ing the solution time and number of iterations required for

each computer code they evaluated.

Even though much important work has been done on

cutting-plane algorithms, a great deal of attention has been

given in the literature to backtrack algorithms. Some

typical articles from this literature will now be reviewed.

Backtrack Algorithms

In the middle of 1960, a paper appeared that suggested

an approach different from the cutting-plane method to solve

discrete programming problems. The numerical algorithm of

A.H. Land and A.G. Doig (20) is widely respected and

31

referenced in the literature of integer programming. This

early work of Land and Doig (20) is often classified as a

shifted hyperplane method or a branch-and-bound method. The

algorithm described by the authors uses a systematic parallel

shift of the objective function in the direction of a reduc

tion of the maximand. This process is continued until an

integer solution is found within the ordinary feasible solu

tion space. The upper bound on the objective function is

first found by solving the ordinary linear programming prob

lem without the discrete variable constraints. This is the

upper bound on the maximand since no higher value of the

objective function can take an integer value •

. The method of Land and Doig (20) then moves to identify

a unique minimum and maximum for each variable at a particu

lar value of the objective function. These minimum and

maximum values of the variables can be found by solving the

linear programming problems that minimize and maximize each

variable. The authors extend these basic concepts to examin

ing the convex set of feasible solutions as the objective

function hyperplane is moved down from its maximum position.

They give a step-by-step algorithm of their procedure and an

example of its application.

E. L. Lawler and D. E. Wood (21) have written an excel

lent paper discussing branch-and-bound methods of integer

linear programming. They describe the main concepts of the

branch-and-bound approach to constrained optimization prob

lems. Even though this article is not limited to a

32

discussion of branch-and-bound in integer linear program

ming, it still often appears as an important reference in

the literature. The authors discuss several specific appli

cations, including integer linear programming, nonlinear

programming, the traveling-salesman problem, and the

quadratic assignment problem.

Lawler and Wood (21) point out tha~ as in dynamic pro

gramming, the technique of branching-and-bounding is an

intelligent examination of the feasible solution space.

They describe the branch-and-bound method as repeatedly

separating the feasible solution space into smaller and

smaller subsets of feasible solutions. Within each subset

a bound is calculated for the value of the objective func

tion. After each separation of the feasible solution space,

the subsets that have a bound that exceeds the value of the

objective function for a known feasible solution are

excluded from any further separation and examination. The

authors present a generalized, formal mathematical descrip

tion of the branch-and-bound algorithm.

In the last part of 1966, an article by Norman Agin (1)

appeared. This article gave a generalized description of

branch-and-bound algorithms. The author's paper points out

the wide variety of applications of the branch-and-bound

algorithm to many combinatorial problems. One of the best

aspects of this paper is that it describes the branch-and

bound technique for optimum seeking in general. Agin

says part of the philosophy of this paper is to introduce

branch-and-bound to those who are unfamiliar with the

technique.

33

Agin (1) points out two interesting limitations of

branch-and-bound methods. One is that each problem needs a

specific method for finding the bound and for finding good

heuristics for branching. Another limitation is that in

large problems the computational time may exceed the avail

able computer time.

One of the newest algorithms to appear is the bound

and-scan algorithm of Frederick S. Hillier (15). This tech

nique applies to pure integer linear programming. The

approach is to find tight bounds on the variables. Then, a

sequence of constantly improving feasible solutions is iden

tified by scanning the relevant solutions. Hillier (15)

reports encouraging computational experience with this algo

rithm as compared to other existing methods. This is an

excellent, readable paper that describes the new method and

plans for increasing its efficiency even more.

Establishing bounds on the problem variables is a

common principle in many backtrack algorithms. Patrick D.

Krolak (17, 18) has completed some work that lead to a

Bounded Variable Algorithm. These papers present some use

ful generalized equations to establish upper and lower

bounds on variables. Krolak (18) presents some computa

tional results of this algorithm and other existing methods

when they are tested on some standard problems.

Stanley Zionts (32) proposed some ideas toward unifying

the theory of integer linear programming. Basically, the

author generalizes much of the work in integer linear pro

gramming in the framework of upper and lower bounds on

integer variables. The main contribution of this work is

that it tends to unify several of the proposed methods of

solving integer linear programming problems.

34

One of the most important applications of integer pro

gramming is in capital budgeting problems. Zero-one and

mixed zero-one integer programming are mathematical tools

that are essential to the solution of many capital budgeting

problems. V. E. Unger, Jr. (29) describes how some of the

zero-one algorithms can be used to assist a firm with the

allocation of limited amounts of capital. Even though this

article deals with only one class of the capital budgeting

problem, the problem formulation and solution procedure make

it an interesting article.

Some additional examples of papers from the literature

that discuss the work on zero-one integer programming are

Glover (9) and Geoffrion (7). Both of these authors are

often referenced in the literature of integer linear

programming.

Other Methods

The approach used in many methods of integer program

ming cannot be easily classified as cutting-plane or back

track algorithms. An example of this is an article by

G. Graves and A. Whinston (13). The authors present a new

35

approach to discrete mathematical programming for zero-one

integer programming. This paper describes the theoretical

concepts that extend some of the enumeration methods. Where

many of the backtrack algorithms would use bounds to trun

cate parts of the method, Graves and Whinston (tJ) use popu

lation statistics. The authors indicate that the term

population statistics should not be confused with the meth

ods of sampling statistics or random search procedures. The

concepts described in this paper use the idea of selecting

the optimal function among a certain class of functions.

Set theory and functions viewed as maps are used to develop

the concepts of this theoretical paper.

Approximation methods provide the only method of

solving many integer programming problems. S. Senju and

Y. Toyoda (27) have approached the zero-one integer linear

programming problem from the point-of-view of trying to find

a good approximate solution. The fundamental concept the

authors say they use is to develop some ordinal scales for

the proposed projectso They suggest this method is quite

satisfactory when there are a large number of proposals and

constraints.

Frederick S. Hillier (14) has developed an approxima

tion method for integer linear programming. This paper is

very well written and is an excellent example of some of the

better work in the literature. This article presents the

theoretical concepts of a heuristic procedure to find a good

approximate solution which gives an objective function value

36

close to the optimum. The step-by-step method of analysis

is outlined by the author. A small example is given to

demonstrate the algorithm. A computer code and the results

of evaluating the procedure on several test problems are

given. Since many optimal algorithms can obtain greater

efficiency when given a good approximate solution initially,

this paper makes an outstanding contribution to the

literature.

In a recent paper, R. E. Gomory and E. L. Johnson (12)

introduce some theory that has applications to both cutting

plane and backtrack algorithms. The authors analyze some

continuous functions and inequalities when some or all of

the variables are restricted to be integers. The article

shows how inequalities can be used to furnish cut-off points

for integer programming algorithms. This paper is very

theoretical and difficult to read. A companion paper demon

strating the basic technique would be a fine contribution to

the literature.

The concepts of linear Diophantine equations are essen

tial in the development of objective function reduction

algorithm. Some of the necessary concepts 'will' be reviewed

in the following chapter.

CHAPTER III

SOME CONCEPTS OF LINEAR

DIOPHANTINE EQUATIONS

The concepts of linear Diophantine equations from the

theory of numbers are essential to the objective function

reduction algorithm presented in this thesis. Several

topics will be discussed in this chapter that are necessary

to follow the flow of logic in the algorithm developed in

this research. Even though number theory is often consid

ered one of the prime examples of pure mathematics, some of

the observations associated with linear Diophantine equa

tions and the divisibility property of integers form a vital

part of the objective function reduction algorithm. Some of

the basic theorems from this area of mathematics allow

implicit examination of several solutions in integer linear

programming problems. Many of these concepts speed the

algorithm and the computer code toward the integer feasible

solution.

The wide variety of topics associated with linear

Diophantine equations and number theory is discussed in

several books. Anthony J. Pettofrezzo and Donald R. Byrkit

(26) present several selected topics in number theory in a

very readable and interesting book. This book describes

38

many essential topics of number theory at an introductory

level. Ivan Niven and Herbert s. Zuckerman (24) have

written another book that introduces several of the concepts

of number theory and Diophantine equations. It includes

many examples and proofs necessary to understand this area

of mathematics.

In order to examine the philosophy of the divisibility

properties of integers, some basic terms and notation are

required. If r, s~ and tare integers such that

r • s = t, (3-1)

then rands are called factors or divisbrs oft. Also, t

is said to be a multiple of rand of s.

n, then it is written

min.

If mis a factor of

(3-2)

For example, if m = 5 and n = 25, then 5 I 25 says 5 is a factor

of 25. If mis not a factor of n, then the notation

m)n <.3-3)

is written to describe how the integers are related. For

example, if m = 2 and n = 15, then 2)' 15 says 2 is not a fac

tor of 15.

The terms prime and composite often appear in discus

sions of linear Diophantine equations and the theory of num

bers. A prime number is a number that has no positive

factors other than one and itself. The number seven is a

39

prime number. A composite number is a number that has fac

tors other than one and itself. Since the number nine has

the number three as a factor, as well as one and itself, it

would be called a composite number

The i.dea of the greatest common divisor is an integral

part of the objective function reduction algorithm. This

topic and its notation will be reviewed briefly.

The Greatest Common Divisor

If klr and kls, then the number k is called a common

divisor or common factor of rands. Supposer= 50 and

s = Bo. The integer number 5 is a common divisor to both 50

and Bo. Therefore, 5150 and 5IBo indicates that 5 is a com

mon divisor to 50 and Bo. The greatest common divisor can

now be defined. The largest positive integer g that divides

the absolute value of each of two integers rands is called

the greatest common divisor of rands. The greatest common

divisor is denoted

(r, s) = g. (J-4)

This implies glr and gls, with gas the greatest positive

integer that is a factor to both rands.

An objective function for a two-dimensional linear pro

gramming problem would have the form

(J-5)

For a particular problem, a greatest common divisor could be

40

found if both c1 and ca were integers. That is, a factor of

c1 and ca can be found such that

(J-6)

In an elementary integer linear programming problem, the

objective function might be

Z = 21 Xl + 77 Xa. (J-7)

The greatest common divisor of both c 1 and ca would be the

number 7. This would be denoted

(C1 1 Ca) = g

(21, 77) = 7.

(J-8)

(.3-9)

The definition of the greatest common divisor says that

g must be a common divisor to the absolute value of rands.

Therefore, negative coefficients can be handled within the

greatest common divisor definition. If'.., in the example of

Equation (J-7), one or both of the coefficients were nega

tive, then

(-21, 77) = (21,· -77) = (-21, -77) = 7. (3-10)

The definition also implies that if r = s = O, then (r, s)

does not exist. Additionally, if r F O ands= O, then

(r, s) = lrl; if r = 0 ands~ O, then (r, s) = Isl. As

somewhat of a side issue, if dlr and dis, then dig. This

says that if dis a factor of both rands, where (r, s) =g,

then d is also a factor of the. greatest commo:ti. divisor •...

41

The concept of greatest common divisor is also appli

cable when more than two integers are involved. The defini

tion can be generalized so that the greatest common divisor

for n > 3 integers is the largest positive integer g such

that it is a factor of the absolute values of each of then

integers r1 , r2, ••. , rn. For then integers, r1, r2, . .. ,
and rn, the greatest common divisor is written

(J-11)

For example, suppose an integer linear programming objective

function were

Z = 56 X1 - 24 X2 + 96 X3 + 40 X4. (J-12)

The greatest common divisor of the objective function coef

ficients is

(J-13)

(J-14)

(56, -24, 96, 40) = 8. (J-15)

As the general definition indicates, the greatest common

divisor of the coefficients is the greatest integer, g, where

for j = 1 , 2 , ••• , n. (J-16)

Two theorems are needed to give additional insight to

the greatest common divisor and its application in the ob

jective function reduction algorithm.

THEOREM ,.1: If v and ware positive integers

such that vlw and wlv, then v = w.

PROOF: If vlw, then v times some number, call

it x, must equal w. That is,

and this implies xlw. Also, if wlv, then w

times some number, call it y, must equal v.

Therefore,

and this implies ylv. ·Now, if Equations (3-17)

and (3-18) are solved for x and y, respectively,

then

x =

and

y =

w
v

v -. w

Now, Equation (J-19) can be written

X=w=,!= 1 0

v v y
w

By the definition of the term factor as used in

Equation (J-17), v, x, and ware integers. But,

Equation (3-21) says

x = 1
y'

42

(3-18)

()-19)

(J-20)

(J-21)

0-22)

which means y must be equal to one for x to be

integer. This implies from Equation (J-17)

that

v = w.

43

(:J-2.3)

Another theorem that is needed deals with the greatest com

mon divisor for the situations where three or more numbers

are involved. This theorem will make use of Theorem .3.1

during its proof.

THEOREM J.2: If c1, ca, ••• , and en are nonzero

integers where n > 3, then

PROOF: Let

g1 = (c 1 , ca , ••• , c n)

and

Since g1 lc1 for j = 1, 2, ~ •• , n, then

g1 l<c1, ca, ••• , Cn-1) and g1 lcn• This implies

g1 lga. Also, gal(c1, ca, ••• , Cn-1) and galen,

then ga I er for J = 1, 2, ••• , n. Therefore,

ga lg1 • The definition of greatest common divisor

requires that g1 and ga be positive integers.

Therefore, g1 = ga from Theorem 3.1 and

(C1 , Ca , ••• , Cn) = ((C1 , ca , ••• , Cn - 1) , Cn) •

(3-24)

(3-25)

(.'.3-26)

(J-27)

44

Another important concept that can be used in integer

linear programming is when some coefficients of variables in

the objective function are zero. Should that case occur,

the greatest common divisor is

(c1, ca, ••• , ck, O, O, ••• , O) = (c1, ca, ••• , cl().

(3-28)

For small problems, the greatest common divisor often

can be found by inspection. As the number of integers in

creases, the search for the greatest common divisor would

become lengthy and tedious using inspection and trial and

error methods. Fortunately, the ancient Greek mathemati

cian, Euclid, developed an algorithm to determine the

greatest common divisor. Euclid's algorithm will now be

examined.

Euclid's Algorithm

Euclid's algorithm gives a method for finding the

greatest common divisor for a group of integers. First,

consider the case of two unequal positive integers d and e.

If it is assumed that d > e, then d can be written as

d=qe+r, where O < r < e. (3-29)

For example, let d = 23 and e = 7. Therefore, d can be

written as

2.3 = .3 • 7+2. (.3-JO)

45 .

From Equation (3-29) , q = 3 and r = 2 for the example of

Equation (3-30). The integer q is the quotient resulting

from the division of d bye. The integer r is the remainder

after dis divided bye. Euclid developed a step-by-step

procedure for continuing this type of analysis until it

leads to the greatest common divisor.

Let q 1 be the quotient from the ith iteration and r 1

the remainder associated with the ith iteration. For a

simple example that requires only three iterations, Euclid's

algorithm would be as follows:

d = q1 e + r1 , where O < r1 < e; (3-31)

e = q2r1 + ra, where O < ra < r1; (3-32)

(3-33)

The algorithm is completed when the remainder in the ith

iteration is zero. The greatest common divisor is the last

nonzero remainder (r 1 - 1) found by the algorithm. If r 3 were

found to be zero in Equation (3-33), then the integer ra is

the greatest common divisior ford and e. That is,

(d, e) = ra • (3-34)

As an example, suppose an integer programmi·ng objective

function were

Z = 36 Xl + 132 Xz. (3-35)

Using Euclid's algorithm as described in Equations (3-31)

46

through (j-33), the greatest common divisor of the objective

function coefficients can be found as follows:

If d = 132 and e = 36, then

132 = 3 • 36 + 24 (3-36)

36 = 1 • 24 +'12 (3-37)

24 = 2 • 12 + o. (3-38)

From Equation (l-38) 1 r 3 = 0 which means the greatest common

divisor, g, is ra = 12. Therefore, in the notation developed

here,

(d, e) = g

(d, e) = ra

(132, 36) = 12.

(j-39)

(j-40)

(j-41)

It should be noted that the integer coefficients in Equation

<3-35) were ordered so the -larger one Aca,; 132) became d for

the algorithm of Equations 0-31) through (J-33), where it

is required that d>e. This is a necessary condition so

the larger integer can be set ·e·qual to a quotient times the

smaller number plus a remainder.

T~e form of Euclid's algorithm described in Equations

(3-31) through (3-32) allows for only three iterations.

Naturally, other problems may require several iterations.

In the example for (d, e) the greatest common divisor, g,

must be found in a finite number of steps, since there is

only a finite number of positive integers less thane, where

d > e. The general form of Euclid's algorithm to find

(d, e) = g, where d > e, is as follows:

(J-42)

e = q2r1 + r2, where O < r2 < r1; (J-4J)

(J-44)

rk - 3 = qk - 1 rk - 2 + rk - 1 , where O < rk - 1 < rk - 2 ; (J-45)

(J-46)

(J-47)

The concepts of the greatest common divisor and Euclid's

algorithm provide a foundation for examining some of the

properties of linear Diophantine equations.

Linear Diophantine Equations

Any polynomial equation in several variables, where all

of the coefficients, variables, and the right-hand side

values are required to be integers, is called a Diophantine

equation. In general, the form would be

n

l C j Xj = z (J-48)
j=1

where

Cj integer for j = 1 ' 2' ... ' n

48

xj integer for j = 1, 2, ••• , n

z integer.

The Greek mathematician, Diophantus, studied the form and

solution of this type of linear equation. Since he was one

of the first to study these equations at great length, they

are named in his honor.

An interesting theorem associated with the greatest

common divisior and linear Diophantine equations will be

discussed.

THEOREM 3. 3: If c1, c2, ••• , and en are integers

which are not all zero, then the greatest common

divisior (C1 , C2, . . . ' Cn) of the coefficients

C1 , c2, . . . , and Cn is the smallest positive

integer that can be expressed as a linear

homogeneous function of c1, c2, ••• , and en;

that is , (c 1 , c 2 , ••• , c n) is the sma 11 est

positive integer such that

(C 1 , C 2 , ••• , C n) = C 1 X1 + C 2 X2 + • • • + C n Xn , (J-49)

where xJ integer for j = 1, 2, ••• , n.

Pettofrezzo and Byrkit (26) indicate how this theorem can be

proved. This theorem has a significant implication in the

objective function reduction algorithm. If an integer pro-

gramming objective function is of the form

MAXIMIZE Z = ! Cj Xj
j=1

(J-50)

then, the greatest common divisor could be found for the

coefficients, such that

g = (c1 , c:a, ••• , Cn). (3-51)

The implication of Theorem 3.3 is that the greatest common

divisor, g, is the lower integer bound of a maximization

objective function value. That is, the objective function

hyperplane

= g (3-52)

is the smallest integer value of the maximand.

Another property of linear Diophantine equations in-

volves the special case where all of the coefficients are

even numbers and the right-hand side value is odd. For

example, if an equation had the form

12 Xl + 34 xa + 8 X3 + 92 X4 = 533, (3-53)

then it can be observed that all the coefficients are even

numbers, while the right-hand side value is an odd number.

Since the left-hand side of Equation (3-53) must be an even

integer, no integral solutions can exist for the equation.

This comes from the observation that an even integer multi-

plied times an odd or even integer must give an even integer

as the product. Consequently, some linear Diophantine equa-

tions have no integer solutions. This fact will be used in

the objective function reduction algorithm as solutions are

implicitly examined.

50

The next theorem is most important for the search meth-

od of the objective function reduction algorithm developed

in this research.

THEOREM 3.4: The linear Diophantine equation

n

l Cj Xj = Z

j:1

has a solution if and only if glz, where

g = (c1, ca, ••• , cn)•

0-54)

Pettofrezzo and Byrkit (26) indicate how this theorem can be

proved. The importance of this theorem lies in the fact

that it can eliminate searching certain objective function

hyperplanes for integral solutions. This says that an

objective function of the form

n

z = \ C:, X:, (3 -55)
j=1

where

c 3 integer for j = 1, 2, ••• , n

x 3 integer for j = 1, 2, ••• , n

can only have integral solutions for those values of z such

that gjz, where g = (c1, ca, ••• , cn). Hyperplanes that

have values such that g) z need not be considered or

searched, since integral solutions cannot lie on these

hyperplanes.

As an example of how Theorem 3.4 could be used,

51

consider the following integer linear programming objective

function:

z = 27 x1 + 9 xa + 18 X3. (3-56)

Using Euclid~s algorithm or by inspection 9 the great common

divisor of the coefficients would be found to beg= 9.

Suppose the objective function had a value

Z = 27 X1 + 9 Xa + 18 X3 = 82 (3-57)

during one part of the search by the objective function

reduction algorithm. Since g = 9 and 9}82, no integral

solutions can lie on the plane defined in Equation (3-57).

With this brief review of some of the concepts of

linear Diophantine equations and the theory of numbers, the

objective function reduction algorithm will be examined.

CHAPTER IV

THE OBJECTIVE FUNCTION

REDUCTION ALGORITHM

The objective function reduction algorithm is a solu-

tion procedure that searches for a solution to a solvable

pure integer linear programming problem. This algorithm

uses the concept of examining a family of objective function

hyperplanes until an integer solution is found. Basically,

the solution procedure begins at the optimum noninteger

solution and examines parallel objective function planes in

the feasible solution space. For example, in maximization

problems the algorithm starts at the upper bound on the

objective function, as determined by the simplex method or

some other primal optimum seeking procedure. Successively

reduced values of the objective function effectively move

the objective function down through the solution space. The

problem to be solved can be expressed mathematically using

the following cannonical form:

maximize

n

subject to l a 13 x 3 < b 1 for i = 1, 2, ••• , m

j=1

(4-1)

(4-2)

53

xj > 0 for j = 1, 2, ••• , n (4-J)

Xj , Cj INTEGER for j = 1, 2, ••• , n. (4-4)

The requirement that each cj be integer valued is not overly

restrictive since this is always obtainable by scaling the

objective function, as long as the original coefficients are

rational numbers.

The algorithm developed in this research examines the

solution space by considering the bounds on each variable.

Therefore, this procedure requires that the variables have

upper and lower integer bounds. The functional and nonnega

tivity c0nstraints of Equations (4-2) and (4-J) are assumed

to provide a bound on the solution space. A minimization

problem with strictly greater-than-or-equal constraints must

be modified to obtain finite upper bounds on each problem

variable. This is required for computational efficiency.

The essential structure of the objective function

reduction algorithm can be described by dividing the solu

tion procedure into four stages. In Stage 1, the optimal

continuous--variable solution is found using the simplex

method or some similar procedure. Naturally, if this solu-

tion is all-integer, the algorithm goes no further since the

desired solution has been found. Stage 1 also defines the

over-all bounds on each problem variable. Stage 2 of the

algorithm prepares the way to potentially take advantage of

some techniques from the study of linear Diophantine equa-

tions. The greatest common divisor of the objective

function coefficients is established along with the first

value of the objective function to be considered. Stage J

selects the ranking that each variable will have in the

implicit enumeration scheme. It also examines the objective

function coefficients noting how even coefficients might be

used to take advantage of additional concepts of linear

Diophantine equations.

While the first three stages of the algorithm are some

what preparatory, Stage 4 carries out the implicit and

explicit enumeration of the feasible integer solution

space. Using the ranking scheme of Stage J, the problem

variables are set at integer values that potentially will

eliminate the necessity for complete enumeration of the

integer solution space. New, potentially tighter bounds

are found on successive variables in the ranking as the

algorithm proceeds. This process continues to move through

the ranking order, until the next to last variable is

reached or until the algorithm can use a tool of linear

Diophantine equations to eliminate additional solutions.

The objective function and the previous variables at their

held values are used to calculate the final variable in the

ranking. An integer solution is tested for feasibility,

while a noninteger final variable is immediately identified

as infeasible. An infeasible solution causes the algorithm

to begin moving back through the combinatorial solution

possibilities. Should a feasible all-integer solution not

be found at the first objective function value, a new

55

reduced (for maximization) objective function value is

selected for continuing the search.

With the above brief statements as an introduction, the

theory of the objective function reduction algorithm will be

described fully in the following sections. The step-by-step

instructions of the algorithm are provided in Appendix A.

This appendix can be used as a reference as the theory is

described.

Stage One

Stage 1 of the objective function reduction algorithm

begins by relaxing the integer requirement on the problem

variables. Therefore, the variables are temporarily allowed

to take on continuous values. With this interim change in

the problem, the efficient procedures of the simplex method

can be used to find the continuous solution. At this point,

the algorithm identifies two elements of information from

the simplex solution. First, if it is found that the con

tinuous solution vector,~*= (x{, x~, ••• , x:), is all

integer, then the algorithm goes no further. The optimum

pure integer solution has been found by the established

optimal seeking procedures of the simplex method. The

second element of required information is the value of the

objective function at the optimum continuous-variable linear

programming solution. The key word for this value is ZSIM.

It will be used in Stage 2 to establish an integer bound on

the objective function.

Integer bounds on each problem variable are an

56

additional requirement of Stage 1. Patrick D. Korlak (17,

18) and Stanley Zionts (32) have published some recent

papers describing their work on integer bounds for all-

integer linear programming. Krolak (17, 18) develops an

iteration scheme to be used in finding upper and lower

integer bounds for each individual variable. Zionts (J2)

attempts to unify much of the work of integer programming in

terms of upper and lower bounds on integer variables.

Krolak (17) suggests one straightforward method of

finding the bounds on the variables is to solve the 2n lin-

ear programming problems where the objective functions are

of the form

maximize z - . xJ · for j = 1 , 2 , ••• , n (4-5)

and

minimize z = xJ for j = 1, 2, ..• , n. (4-6)

For a particular problem, the constraints and Equation (4-5)

can be used to solve a linear programming problem to find

the upper bounds on each variable, XJ, = j = 1, 2, ••• , n.

Lower bounds can be similarly found using Equation (4-6).

The upper integer bound on each variable is identified by

taking the value of xJ found from the linear programming
'

solution using Equation (4-5) and defining

(4-7)

for j = 1, 2, ••. , n. Using the solution value for each Xj

from the linear programming problem where Equation (4-6) is the

DETERMINE
25 AND ZSIM

NO

DETERMINE
x.l:1 AND x.~

j j

FOR j=l,2, ... ,n

SET
MAX= l

YES

NO

SET
MAX=O

Figure 4. Stage 1 Logic Flow
Diagram

57

objective function, the lower integer bounds are

J,
x., = (x.,) (4-8)

for j = 1 1 2, ••• , n.

The objective function reduction algorithm requires

that the problem variables have finite integer bounds.

Therefore, the method described in Equations (4-5) through

(4-8) will establish upper and lower integer bounds on each

variable.

A final requirement for Stage 1 is an indication

whether the objective function is to be maximized or mini-

mized. In both the algorithm of Appendix A and the computer

code of Appendix B, the key word MAX is used to indicate

maximization or minimization. Maximization is indicated

when MAX= 1 and minimization is identified by setting

MAX= O. Figure 4 shows a flow chart for Stage 1.

Stage Two

Some of the concepts of linear Diophantine equations

and the theory of numbers are used in Stage 2. First, the

greatest common divisor, g, of the objective function coef-

ficients is determined. Given an objective function of the

form

z = (4-9)

then the greatest common divisor of the c., coefficients is

59

defined as

In Chapter III, Euclid's algorithm is described. This algo-

rithm can be used to find the greatest common divisor for

Equation (4-9), where CJ is integer, for j = 1, 2, ••• , n.

When the greatest common divisor is greater than one,

the algorithm takes advantage of the implication of this

fact. If g > 1,. then certain parallel hyperplanes can be

eliminated from consideration, since integer solutions can

only occur when gjk, where k is some specific objective

function value. This very important observation can signif-

icantly reduce the number of combinatorial solutions the

algorithm must examine. Very simply, if g)' k, where

(c1, ca, ••• , Cn) = g, then no integer solution can lie on

the hyperplane

n

l CjXj = k.

j:1

(4.:..11)

The initial objective function value that is considered

is identified by the key word ZOF in the statement of the

algorithm in Appendix A and in the computer code. In Stage

1, the optimum continuous-variable simplex solution, ZSIM,

was established. For a maximization problem where the

greatest common divisor is g = 1, then the first of objec-

tive function value used by the algorithm is

ZOF = [ZSIM]. (4~12)

60

If g I 1, then ZOF is set equal to the greatest integer less

than ZSIM that has glZOF. Similarly, if minimization prob

lems are to be solved, then

ZOF = (ZSIM) (4-13)

when g = 1; and, ZOF is set equal to the smallest integer

greater than ZSIM such that glZoF when g I 1.

The logic of beginning at the continuous-variable solu

tion is an important part of the objective function reduc

tion algorithm. In many problems, the optimum integer

solution lies on a hyperplane that is very near the hyper

plane that contains the optimum noninteger solution.

Unfortunately, the set of solutions to the integer program-

ming problem is not conve4 • If only the space near the

optimum noninteger solution is searched, then only a local

optimum can be assured with an integer solution. Therefore,

the objective function reduction algorithm begins at the

hyperplane that contains the optimum noninteger solution

because the optimum integer solution is often nearby, but

the search method of Stage 4 considers successive hyper

planes and uses procedures to identify a global optimum.

Where g = 1, for maximi~ation, the first integer value

of the objective function, ZOF, was defined to be

ZOF = [ZSIM]. This means the simplex optimum objective

function value, ZSIM, is rounded down to the greatest integer

less-than-or-equal-to ZSIM. The proof that this is an

acceptable place to begin the search will now be considered.

The fact that the simplex method finds the optimum

continuous-variable solution is a basic axiom of

61

mathematical programming. Let the value of the objective

function at the optimum continuous-variable solution be

defined as

w = ZSIM (/±-14)

for this analysis. Therefore, the optimum objective func-

tion to the linear programming problem, where the integer

restriction has been relaxed, would be of the form

n

\ C,1 X,1 = w. L (4-15)

In Equation (4-15), the coefficients are restricted to

integer values. The variables, X,1, j = 1, 2, ••• , n, may be

'

any real number within the limits set by the constraints.

Obviously, this means w may assume a real number for the

optimum simplex objective function value. Assuming the

objective is to be maximized, w must set an upper bound on

the objective function. Since each coefficient and variable

on the left-hand side of Equation (4-15) must be integer in'

the final optimal all-integer solution, the·, sum of their

products must be less-than-or-equal-to w.

The above analysis implies that when g = 1 9 then

ZOF = [w] provides an upper bound on the objective function.

The theorems of linear Diophantine equations require that

g!ZOF for an all-integer solution to exist at a particular

objective function value. Consequently, when g ! 1, then

[ZSTM] must be incremented down in integer amounts until it

leads to a ZOF that has g I ZOF. Similar logic can be used

ZOF= GREATEST
INTEGER<ZSIM

3 gjZOF

NO

DETERMINE
g

ZOF=
[ZSIM]

YES

ZOF=
(ZSIM)

NO

62

ZOF=LEAST
INTEGER> ZSIM

a 91 ZOF

Figure 5. Stage 2 Logic Flow Diagram

63

to prove that the ZOF described for minimization problems

is acceptable.

The logic of Stage 2 is shown in the flow diagram of

Figure 5,

Stage Three

In Stage 3, a ranking scheme for ordering the variables

is specified. The objective of ordering the variables is to

develop a procedure that will implicitly examine and elimi-

nate several combinatorial solution possibilities. To do

this, the bounds on each variable are examined. The upper

and lower bounds determine the range of possible integer

values for a variable. The range size is the number of

integer possibilities for a particular variable. A permuta

tion from the set of problem variables, [x., lj = 1, 2, ••• ,

n}, is identified such that the range size of the variables,

r(x).i, proceeds from smallest to largest. That is, the

first variable in the ranking has the smallest range of

possible integer values, the second variable the next

smallest range, and so on.

The ranked variables are assigned a new symbol, Y.i, for

j = 1, 2 1 ••• , n. The first variable in the ranking, Y1,

represents the variable with the smallest range of possible

integer values. This change of variables process continues

so that the ranked variables will correspond to the ordered

original problem variables. This will give r(y)l < r(y)2 <

.•. < r(y)n, where r(y).l is the range size of the jth ranked

variable.

In some problems, the range size may be the same for

two or more variables. The algorithm breaks the tie for

ranking position by selecting the variable (x3) with the

largest objective function coefficient (c 3) to have the

64

higher ranking. That is, if in some problem r(x)s = r(x)t,

wheres# t, then c 8 and Ct must be examined. If Cs > Ct,

then the algorithm would order the variables so Xs preceded

Xt in the ranking. If the situation should occur such that

r(x)s = r(x)t and cs = Ct, then the tie for ranking position

is arbitrarily broken.

The general philosophy of this ranking scheme is to

describe a procedure that will mean that fewer combinatorial

solutions will have to be explicitly examined. An addi-

tional way to move toward this goal is to use an observation

from linear Diophantine equations. As was discussed in

Chapter III, if all the coefficients in a Diophantine equa-

tion are even, then an odd right-hand side value means there

are no integer solutions to that equation. In Stage 4, the

objective function reduction algorithm will take advantage

of this fact, whenever possible, to truncate the search.

Using this concept, the algorithm examines the objective
II

function coefficients (c 3) that correspond to the ranked

variables (y3). If a successive series of even coefficients

occurs from the kth to the nth variable in the ranking, the

algorithm records this fact. Stage 4 will describe the

implicit examination of solutions that can be obtained using

65

this procedure.

An additional heuristic procedure that blends the ideas

of range size and even coefficients has been developed. If

it is found that the range sizes on the ranked variables are

approximately the same, the speed of convergence can often

be improved by purposefully placing any variables with even
II
cj last in the ranking. Therefore, the variables would be

first ranked according to range size. Then, change the

II
ranking to place any variables with even CJ at the end of

the ordered variables. Again, this heuristic procedure is

only advantageous when the r(y)j, for j = 1, 2, ••• , n, are

II
approximately the same and some c 3 are even integers.

One of the goals of Stage 4 will be to attempt to

tighten the upper and lower bounds on the ranked variables.

Before going to Stage 4, the upper and lower bounds are set

equal to variables indicating temporary bounds. This is

done by setting

(4-16)

and

u u
Y< 3) t = Y3 (4-17)

for j = 1, 2, ••• , n. As the algorithm moves to Stage 4,

the tightest bounds that are known are the ones given in

Equation (4-16) and (4-17).

Figure 6 presents a flow diagram of the logic used in

Stage J.

DETERMINE
re x) j

FOR j=l,2, ... , n

ORDER
VARIABLES

ACCORDING TO
r(xl j

DEFINE
RANKED

VARIABLES
Yi

NO

SET
Y,. - y•
(j)t - j

FOR
j: l, 2,. •,In

SET
Y, U -yU
(j)t - j
FOR

j=l,2,.,.,n

Yj+l RANKED

IN POSITION

YES

Yi RANKED

IN POSITION'

Figure 6. Stage 3 Logic Flow
Diagram

66

67

Stage Four

The essential features ofStage 4"will be considered in

this section. Appendix A gives detailedi step-by-step

instructions for Stage 4. In Stage 4, the search for an

optimal integer solution begins. Explicitly or implicitly,

all of the integer combinatorial possibilities are examined

in the feasible solution space. Beginning at the optimal

continuous-variable solution, a family of parallel objective

function hyperplanes is searched for the optimal feasible

solution.

The basic procedure is to let the variables take on

integer values within their range of feasible values. When a

variable is assigned a specific value, this means poten-

tially tighter bounds can be found on each variable not

assigned a specific value. This procedure of finding

tighter bounds can often be used to eliminate the need for

explicitly considering several integer combinatorial possi-

bilities. The highest ranked variable, Y1, is set at its

bound, such that

u
Y1 = YC 1) t (4-18)

for maximization problems, or

f.,
Y1 = YC 1) t

for minimization problems. Also, initialize a temporary

objective function value, Zt, such that Zt = ZOF. With Y1

now assigned a value, the initial value of the objective

68

function, Zt = ZOF, can be modified. Therefore, the remain-

ing variables can only take on values such that

,. ,. ,. ,.
caya + CaYs + ••• + CnYn = Zt - C1Yl• (4-20)

This fact, alone, may exclude some values of certain vari

able8 from being considered for a given Zt and the held

value of y 1 • Still further, the held value of Y1 also·

offers the possibility of tightening yariable bounds due to

the functional constraints. Where bi .is a temporary right

hand side value in the ith constraint, the b; are first

initialized to the original right-hand side constants, such

that b; = b 1 for i = 1i 2, ••• , m. The constraints are now

of the cannonical form

n

I (4-21)

j:1

for i = 1, 2, ••• , m. Since·y1 has been assigned an integer

value, each b:, for i = 1, 2, ••• , m, can be potentially

modified. t The new b 1 are found from

(4-22)

for i = 1, 2, ••• , m.

,.
If a 11 'F O, a new tighter bound on.the next variable in

the ranking can now be found. If a maximization problem is

being considered, then the new temporary upper bound on y 2

is

u
Y< a) t = min [[A J

i=1,2, ••• ,m Zt/ca ' (4-23)

Equation (4-23) imposes a new, temporary upper bound on ya,

given y 1 is being held at some fixed value. Only coeffi-

A A
cients where ca> 0 and a 1 a > 0 are considered when finding

A A
a tighter upper bound on Ya• If ca< 0 and all a 1 a ~ O,

then no tighter bound on ya is defined.

Similarly, for a minimization problem, the new.tighter

lower bound on ya is found from

t
Y(a)t = max (4-24)

i=1,2, ••• ,Ill

A A
As before, only coefficients where ca> 0 and a 12 > 0 are

considered when finding a tighter lower bound on ya. If

A A
ca< 0 and all a 1 a ~ O, then no tighter bound is defined for

Ya•

Now, ya is set at its new bound. If the objective

function is to be maximized, then

u
Ya = Y(a) t ,

otherwise, for minimization set

t
Ya= Y(a)t• (4-26)

The fact that Ya has been assigned a value means that a new

Zt and b:, for i = 1, 2, ••• , m, can be found. This implies

that a new, potentially tighter bound can be determined for

70

the next variable in the ranking, y 3 • Then, y 3 can be set

at its new, temporary bound. This method continues until

the algorithm finds it can truncate the process, where fur-

ther enumeration would lead to infeasible solutions. Some

of these methods of implicit examination will now be

considered.

If at any time Zt is ·an odd 'iint·eger · duri:p.g · the ·process

of assigning values to variebles and finding. tightter

bounds,: then the algorithm checks to see if this fact can

be used. From the theory of linear Diophantine equations,

an equation with even coefficients and an odd right-hand

side value is immediately recognized as having no integer

solution. Suppose the first k - 1 variables have been

assigned a value in the ranking and the resulting Zt is an

odd integer. If it is found that all succeeding objective
,. ,.

function coefficients from ck to Cn are even integers, then

an equation with no integer solutions has been defined.

Therefore, all of the combinations of the remaining vari-

ables in the ranking (yk to Yn) can be eliminated from con-

sideration, given the present held values of y1 to Yk-1•

The algorithm immediately begins to backtrack, reducing Yk-l

by one integer amount, finding a new zt, determining a new

bound for Yk, and so on. On certain problems, several solu-

tions can be implicitly examined and eliminated with this

proc·edure.

During the.calculation of a new zt, the value of Zt can

be driven negative. This is an immediate indication that

71

all of the remaining variables in the ranking can be elimi

nated from consideration, given the present held values of

the preceding variables in the ranking. The algorithm

begins to backtrack as described before.

When the truncation methods fail to eliminate a certain

combination, the algorithm advances through the ranking

until the variable identified as Yn-i is reached. Since all

preceding variables in the ranking, Y1 through Yn-a, have

been set equal to one of their integer possibilities, only

Yn-1 need be assigned a value. When this is done, Yn can be

calculated from the objective function equation. If the

value calculated for Yn is noninteger, the algorithm begins

backtracking through the combinations. If Yn is found to

be integer, the feasibility of the solution

X = (y1, Ya, •••, Yn) (4-27)

is tested in the functional constraints~ If it is infeasi-

ble, the algorithm backtracks and examines other combina

tions. In a finite number of iterations, the solution space

will be examined explicitly and implicitly. If no integer

solution is found for the first value of ZOF, then a new

objective value is determined from

ZOF = ZOF - g. (4-28)

This will assure that the new value of ZOF has glzoF. Only

objective function values such that glzoF need be consid

ered as shown in the theory of linear Diophantine equations.

Zt:

I\
Zt + Cj-tl ·Yj+l

INCREMENT
Yj+l ONE iNTEGER

AWAY FROM
BOUND

SET YJ+l

AT BOUND

, Zt:

Zt-ej+lYj+l

YES

j = j - l

Zt:

Zt +ej+l Yj+l

Figure 7. Stage 4 Logic Flow Diagram

72

SET
j .. j + l

FIND NEW
BOUND ON

Yj+l

NOTES:

INCREMENT·
Yj+l ONE INTEGER

AWAY FROM
BOUND

Zt = ZOF

t
bi = bi

FOR i=l,2, ... ,m

YES

INCREMENT
ZOF BY O

SET
j = l

.GOTO
LOGIC FOR

Y1

1. ONLY LOGIC AFTER y1 IS SHOWN

2. ONLY GENERAL FLOW OF LOGIC
IS SHOWN

Figure 7. (Continued)

73

74

If the solution~ in Equation (4-27) is found to be

feasible, the algorithm stops and indicates the optimal

solution has been found. Since the optimal solution must be

the extreme point of the set feasible solutions, the first

feasible solution found on the family of parallel objective

hyperplanes is the optimal solution.

The logic of Stage 4 is shown in Figure 7. A three

variable example will be demonstrated in the next section to

further explain the concepts of the algorithm.

A Three Variable Example

The three variable example presented in this section

will be used to demonstrate several of the characteristics

of the objective function reduction algorithm. The logic of

the algorithm is described in Appendix A. This appendix

should be used as a reference while following the step-by-

step solution of the example problem. The following example

will be used in this section:

maximize z = 6- X1 + 3 X:a + 6 X3 (4-29)

subject to - 4 Xl + 5 X;a + 2 X3 < 4 (4-30)

- 2 X1 + 5 X:a + O X3 < 5 (4-31)

3 Xl - 2 Xa + 2 X3 < 6 (4-32)

2 X1 - 5 Xa + O X3 < - 1 (4-33)

Xj 1~:;;> 0 for j = 1' 2, 3 (4-34)

Xj ' Cj INTEGER for j = 1, 2, 3. (4-35)

75

The solution to this problem with the objective function

reduction algorithm begins with Stage 1.

Stage 1

Step 1

Step 1 asks for the simplex linear programming solution

to the problem. Using a simple computer code~ the solution

was found to be

ZSIM = 29.2 (4-J6)

and

x* = (J. 64, 2. 45, 0. 0) • (4-37)

Since this solution is not all integer, the algorithm goes

to Step 2.

Step 2

The upper and lower integer bounds on each variable,

x., , j ·= 1, 2, J 9 must now be defined. One way of doing this

is to use the procedure of solving six linear programming

problems. The first three problems will have objective

functions of the form

maximize (4-J8)

for j = 1, 2 9 J. The constraints associated with the objec

tive functions of Equation (4-J8) are the original problem

constraints of Equations (4-JO) through (4-J4). These three

problems provide upper bounds on each variable. Similarly,

three minimization problems with objective functions of the

form

minimize (4-39)

for j = 1, 2, 3, can be solved to obtain lower bounds on

each variable. When this is done, then

x~ = [x; J (4-40)

for j = 1, 2, 3 9 where xf is the value obtained from maxi-

. . th .th . bl b' t t th bl t . t mizing e J varia e su Jee o e pro em cons rain Se

The lower integer bounds are

(4-41)

for j = 1, 2, 3, where xr is the value found from minimizing

the J.th vari"able b' t t th bl t · t su Jee o e pro em cons rains. Using

this method, it was found that

u
3 X1 = (4-42)

u
X:a = 2 (4-43)

u
2 X3 = (4-44)

and

for j = 1, 2, 3. (4-45)

Step J

Since the problem is to be maximized, the key word MAX

77

is set to

MAX = 1. (4-46)

Stage 2

Step 1

Using Euclid's algorithm or by inspection the greatest

common divisor of the objective function coefficients is

(6, 6, .3) = .3

or,

g = .3.

Step 2

Now, the initial objective function value must be

found. Stage 1 says ZSIM = 29.2. Since g I 1,

ZOF = [ZSIM]

ZOF = [29.2]

ZOF = 29

(4-47)

(4-48)

(4-49)

(4-50)

(4-51)

will not lead to an integer solution to the objective func

tion of Equation (4-29). The first integer value below 29

that has g = .3 as a factor is 27. Therefore, with

ZOF = 27 (4-52)

the requirement of glZOF is met.

78

Stage 3

Step 1

In Stage 3, the variables are ranked according to the

number of integer values they can take on. Using the bounds

found in Stage 1, the range size, r(x)J, for j = 1, 2, 3,

can be determined. In general, the variables are bounded

such that

(4-53)

for j = 1, 2, ••• , n. In this example, the bounds are

0 < X1 < J (4-54)

0 < X2 < 2 (4-55)

0 < X3 < 2. (4-56)

Therefore, the range size for each variable is

r(x) 1 = 4 (4-57)

re x) 2 = J (4-58)

rcx)3 = 3. (4-59)

Although not described in Appendix A or used in the computer

code, an interesting and useful heuristic procedure will be

pointed out. Given the range sizes are approximately the

~ame, rank the variables so the even objective function
l

coefficients appear last in the ranking. This leads to

79

Yl = xa (4-60)

Ya = Xs (4-61)

Ys = x1 (4-62)

as a ranking. This will allow the methods of linear

Diophantine equations to be used in truncating part of the

search. Also, this implies the bounds in terms of the

ranked variables are

u
Y1 = 2 (4-6J)

y~ = 2 (4-64)

u
Ys = J (4-65)

and

"P,
Yj = 0 (4-66)

for j = 1, 2, 3.

Notice that using the methods of Appendix A would lead

to ranking of Y1 = x 3 , ya= x 2 , y 3 = x1. Unless altered by

using the heuristic procedure of ranking, the algorithm

would select this ranking scheme. In the special case where

the r(x)j are approximately the same and some c 3 are even

integers, a modified ranking as in Equations (4-60) through

(4-62) often speeds convergence.

Step 2

With the ranking proposed in Equations (4-60) through

(4-62), a successive sequence of even objective func.tion: ·

foefficients is described.·· The ordered c.oeff'iciertts are

Bo

" (4-67) C1 = 3

" 6 (4-68) Ca =

" 6, (4-69) C3 =

which has the last two coefficients in the ranking even

integers. The key word IFLAG is set equal to the number of

the ranking position where the even coefficients begin.

That is, all coefficients must be even integers from k ton

in the set [~., lj = 1,

Step 3

' 2, ••• , k, , nJ .•

IFLAG = 2.

T}:lere:fore, set

(4-70)

During Stage 4, tighter bounds will be sought for the

variables. Temporary bounds will be established and modi-

fied at various points in the algorithm. The temporary

bounds are first set equal to the over-all bounds for each

variable. Using the change of variables and the bounds

u u £ £
found earlier, set Y(J)t = Y.i and Y(.i)t = YJ for j = 1, 2,

••• , n. This implies

u 2 Y(1) t = (4-71)

y~ 2) t = 2 (4-72)

u 3 Y(3) t = (4-73)

and

£
0 Y(.l) = (4-74)

for j = 1' 2, 3.

81

Before going to Stage 4, the example problem will be

stated in terms of the ranked variables, YJ, j = 1, 2, J.

maximize z = J Y1 + 6 Ya + 6 Y3 (4-75)

subject to 5 Yl + 2 Ya - 4 Y3 < 4 - (4-76)

5 Y1 + 0 Ya - 2 Y3 < - 5 (4-77)

- 2 y1 + 2 Ya + J Y3 < - 6 (4-78)

- 5 Y1 + 0 Ya + 2 Y3 < - 1 (4-79)

YJ > 0 for j - = 1' 2, J (4-80)

,.,

y j ' cj INTEGER for j = 1' 2' J. (4-81)

Stage 4

Step 1

Set j = 1.

Step 2

Since MAX = 1' set

u
2. Y1 = Y1 = (4-82)

A heuristic p~ocedure is to.set y 1 ~ y[if :1 is ne~ative.

Step 3

Set ZSUBT = 27, NOTE4 = :0'. and

t
b1 = b1 = 4 (4-83)

t
b2 = b2 = 5. (4-84)

82

(4-85)

(4-86)

The key word NOTE4 is used in the computer code and the

written form of the algorithm as an indicator which equals

zero when all right-hand side values of the constraints are

positive or zero. It is set equal to one when a right-hand

side value has been forced to a negative value.

Step 4

Since this is the first time a ZSUBT value has been

found that is tighter than the ZOF = 27 value, the following

equation is used

Therefore, set

II
ZSUBT = ZSUBT - c1 Yl·

ZSUBT = 27 - (3)(2) = 21.

This ZSUBT value is> O, so go to Step 5.

Step 5

ZSUBT = 21 is an odd integer, so go to Step 6.

Step 6

(4-87)

(4-88)

The key word IFLAG = 2 indicates all successive ranked

variables from 2 through n have even objective function

coefficients. Therefore, truncate the search and do not

consider any further solutions with y1 = 2, because none can

83

produce an integer solution. Go to Step 26, since !FLAG= 2

and j = 1.

Step 26

With MAX= 1, set

y1 = y1 - 1 = 2 - 1 = 1 (4-89)

and go to Step 27.

Step 27

Here, a check is made to see if all solutions for this

particular objective function plane have been considered.

This would be the case if the algorithm had incremented y1

below its temporary lower bound.
j,

But, Y1 = 1 and Y(1)t = 0

which says

j,
Y1 > Y(1) t. (4-90)

Therefore, set ZSUBT = ZOF; that is,

ZSUBT = 27 (4-91)

and go to Step 28.

Step 28

The value of n -I 2, so set

b{ = b1 = 4 (4-92)

b~ = ba = 5 (4-93)

b! = b3 = 6 (4-94)

84

(4-95)

and, go to Step 4.

Step 4

Again, as far as the algorithm is concerned, this is

the first time a ZSUBT value has be~n found that is tighter

than ZOF = 27. Therefore, set

ZSUBT
,..

= ZSUBT - c1 Yi _ (4-96)

ZSUBT = 27 - (3)(1) = 24 (4-97)

and, ZSUBT > 0 1 go to Step 5.

Step 5

ZSUBT is an even integer. Go to Step 7.

Step 7

This step checks to see if the final variable, Yn, is

to be calculated yet. Since n - 1 = 2 and j + 1 = 2, there-

fore

n - 1 = j + 1;

so the algorithm says go to Step 13, because new right-hand

side values have not been calculated for the held value of

Y1, yet.

Step 1J

The new right-hand side b-values for the constraints

85

are calculated from

bi bt
,. .

= i - a11 y1 (4-98)

for i = 1, 2, . . . ' m. This leads to

b{ = 4 - (5)(1) = -1 (4-99)

b: = 5 - (5)(1) = 0 (4-100)

b! = 6 - (-2)(1) = 8 (4-101)

bl = 1 - (-5)(1) = 6 (4-102)

t A right-hand side b-value, b1, has been forced negative.

Therefore, set

NOTE4 = 1,

implying the methods of Step 18 cannot be used to find

tighter bounds on Yj+i· Go to Step 14.

Step 14

The subscript j = 1 and tighter bounds have not been

found on Yj+l. Go to Step 15.

Step 15

The subscript j + 1 = 2, so go to Step 16.

Step 16

Since NOTE4 = 1, go to Step 17.

86

Step 17

u u
The key word MAX equals one, so Y(a)t = Ya gives

YCa)t = 2. (4-103)

Go to Step 23.

Step 23

The next variable in the ranking, Yj+l, is set at its

bound. With MAX= 1, set

u
Yj+l = Y{j+l)t (4-104)

u
Ya= Y(a)t = 2, (4-105)

and go to Step 24.

Step 24

Variable Yj+l has not been incremented below its bound,

such that

P,
Yj + 1 > YC j + 1) t • (4-106)

Therefore, go to Step 4.

Step 4

This time a ZSUBT has been calculated before, so the

new ZSUBT is found from

ZSUBT
,.

= ZSUBT - Cj+l Yj+~ (4-107)

ZSUBT = 24 - (6)(2) = 12. (4-108)

87

Since ZSUBT _:::. O, go to Step 5.

Step 5

ZSUBT is an even integer. Go to Step 7.

Step 7

Now, the final variable is to be calculated, n - 1 =

j + 1, and right-hand side b-values have been found for y1.

Go to Step.8.

Step 8

Check to see if Yn is an integer from

A
Yn = ZSUBT/cn

Yn = 12/6 = 2.

The variable Yn is integer so go to Step 9.

Step 9

(4-109)

(11-110)

Check to see if Yn > y~. The value of y; = J, so

y3 < y~. Go to Step 11.

Step 11

The feasibility of the solution

X = (1, 2, 2) (4-111)

is now tested in the functional constraints, Equations

(4-76) through (4-79). This solution is found to be

88

infeasible in the third constraint, Equation (4-78). Go to

Step 12.

Step 12

A solution has been found infeasible, so y 3+1 = ya is

incremented down one integer. With MAX= 1,

Y3+1 = Y3+1 1

ya= Ya - 1

Ya= 2 - 1 = 1.

(4-112)

(4-11J)

(4-114)

The algorithm continues attempting to fi.nd tighter

bounds and searching for a feasible solution on the plane

z = 3 Y1 + 6 ya+ 6 y; = 27. (4-115)

No feasible solution is found on this plane. Aft!er several

steps.similar to the ones described above, the algorithm

reaches Step 27 with y1 incremented to a value of Y1 = -1.

This is below yf which indicates all solutio~s on the ,plane

of Equation (4-115) have been implicitly or explicitly con-

sidered. The objective function is incremented down by the

amount of the greatest common divisor to get

ZOF = ZOF - g (4-116)

ZOF = 27 - 3 = 24. (4-117)

Now~ the plane

z = 3 Y1 + 6 Ya+ 6 y3 = 24 (4-118)

89

will be searched for a feasible solution with the methods of

Stage 4. A feasible solution, therefore, the optimal solu

tion, is found on this plane, such that

x* = <2, o, 3). (4-119)

The optimal solution in terms of the ranked variables

can be changed to the original variables to give

x* = (J, 2 , 0) • (4-120)

This example demonstrates many of the essential fea

tures of the objective function reduction algorithm.

Chapter V will discuss the computer code and some of the

implications of the algorithm.

CHAPTER V

SOME IMPLICATIONS OF THE ALGORITHM

This chapter discusses some of the implications of the

algorithm developed in this research. The computer code

that performs the step-by-step process of the objective

function reduction algorithm is described. The proposed

method of ranking the problem variables is discussed more

fully. Because of the importance of finding good approximate

solutions to the pure integer linear programming problem, a

heuristic procedure for establishing a lower bound on the

maximand is presented.

considered.

First, the computer code will be

The Computer Code

The computer program used for the objective function

reduction algorithm is written in the FORTRAN IV language.

The code is composed of a main driver test program and

three subroutines. The main driver test program is shown in

Appendix B. This main program performs several functions,

the first of which is initialization of certain parameters.

Some parameters are set to their initial or normal values

early in the main program. Later, tests are made to see if

violations of limits or anticipated errors have been found

91

as the program searches for the solution.

The main driver test program reads in the values that

describe the integer linear program to be solved. These

include the number of constraints, the number of real vari

ables, whether the problem is maximization or minimization,

the constraint coefficients, the right-hand side b-values,

and the objective function coefficients. Also, the Stage 1

information of the upper and lower integer bounds on the

variables and the objective function value at the continuous

variable solution are read into computer memory. For refer-

ence and analysis, the main program writes out the input

data.

In Appendix C, SUBROUTINE GCD is presented. This sub-

routine calculates the greatest common divisor for a set of

objective function coefficients. The greatest common

divisor is calculated using Euclid's algorithm that was

described in Chapter III. In addition, this subroutine cal-

culates the first objective function value that is searched

while looking for the optimal integer solution. Since it

must have the greatest common divisor as a factor, the

initial objective function value is calculated after the

greatest common divisor has been determined.

The FORTRAN IV code for SUBROUTINE RANK is listed in

Appendix D. This subroutine ranks the variables in the

objective function according to their range of possible

values. The ranking procedure was demonstrated and

explained in Chapter IV, but will be discussed again later

92

in this chapter. The subroutine first calculates the range

of possible values that each real variable can take on.

Using a Shell sorting technique, the variable with the

smallest range size is ranked first in the ranking. The

next part of the subroutine tests for the situation that

some variables have equal range sizes in the ranking. When

this occurs, the variable with the larger objective function

coefficient is given the ranking position nearest the vari-

able ranked first. Also, this subroutine calculates the

value for the even sequence indicator, IFLAG. The subrou-

tine scans the objective function coefficients of the ranked

variables, looking for an even sequence of coefficients from

A A
c~ to Cn• If there is no such even sequence, the program

defaults to setting IFLAG at one greater than the number of

real variables. This indicates to the program that no even

sequence exists.

The main part of the explicit and implicit search for

the optimal integer solution is conducted in SUBROUTINE

SEARCH, which is reproduced in Appendix E. This subroutine

takes the information from the main program and subroutines

RANK and GCD as it begins examining the solution space. The

combinatorial search starts by holding the highest ranked

variable at its upper limit for a maximization problem.

SUBROUTINE SEARCH corresponds directly to Stage 4 of the

analysis presented in Chapter IV and Appendix A. The steps

of Stage 4 in Appendix A provide a direct reference to the

step-by-step analysis of SUBROUTINE SEARCH.

Several integer linear programming test problems that

have been solved by the computer code are collected in

Appendix F. Many of the problems are examples used in the

93

literature. The majority of the examples are small in size,

but they have sufficient variety to test the computer code.

The computer code and all test problems were run on an IBM

System/J60 Model 65 computer. The method of ranking the

variables used in the objective function reduction algorithm

will now be discussed.

The Scheme of Ranking

the Variables

The objective function reduction algorithm searches for

the optimal integer solution by considering the feasible

integer combinatorial possibilities. Any practical algo

rithm must examine the solution space in such a manner that

many solutions need not be explicitly considered. One tech-

nique used in the algorithm presented in this thesis is a

ranking scheme for ordering the variables. The objective of

ordering the variables is to develop a procedure that will

implicitly examine and eliminate sever~l combinatorial solu-

tion possibilities. Appendix A gives a written description

of the ranking procedure used in the algorithm. In Appendix

D, SUBROUTINE RANK shows how the computer code ranks the

variables.

Briefly, the ranking scheme will be reviewed again.

The integer bounds on each variable are examined and used to

determine the range of possible integer values for each

variable. The range size is the number of integer values a

particular variable can take on within the feasible solution

space. From the set of problem variables, a permutation is

developed such that the range size of the variables, r(x)J,

will proceed from smallest to largest. The ranked variables

are assigned a new symbol, y 3 , for j = 1, 2, ••• , n.

When the range size is the same for two or more vari-

ables, the tie for ranking position is broken by selecting

the variable (x 3) with the largest c 3 to have the ranking

position nearest Y1. If two or more variables have the same

range size and the same objective function coefficients, the

tie for ranking position is broken arbitrarily.

The cannonical form of a maximization problem will be

assumed throughout the remainder of this discussion. The

algorithm begins its search for the optimal solution by

setting the variable ranked as y1 at its upper limit.

value of y1 is set at

u
Y1 = Y1,

the upper limit on the first variable in the ranking.

This

(5-1)

From

this held value of Y1, a new, reduced temporary objective

function value can be found such that

II II II II
ca Ya + ca Y3 + •• • + Cn Yn = Zt - c1 Y1 , (5-2)

II
if c1 > 0. As described earlier, this process of tightening

the value of Zt for the held values of variables continues

95

until the algorithm can truncate the search or Yn-i is

reached. If the algorithm must proceed through the combina-

torial possibilities to Yn-l without truncating the search,

the ranking scheme does not increase the speed of the

algorithm. When a method can be used to implicitly examine

the remainder of the combinatorial possibilities, the rank-

ing method is beneficial in eliminating solution

combinations.

Table I shows the feasible integer values of each

variable in an example with 2535 feasible integer combina-

tions. The variables have been ranked according to their

range size, such that, rcy)l < rcy)2 < r(y)3 < rcy)4•

TABLE I

AN EXAMPLE WITH THE VARIABLES RANKED
ACCORDING TO RANGE SIZE

YI Y2 Y3 Y4

2 4 12 12
1 3 11 11
0 2 10 10

1 9 9
0 8 8

7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

96

The preceding table shows the advantage the ranking scheme

offers when a specific situation is considered. Suppose the

algorithm sets y 1 at one of its feasible values. If the

algorithm now finds it can truncate the search, the pyramid

effect of the ranking scheme provides a maximum of implied

examination of the solution space.

The ranked variables y 3 and y4 in Table I both have the

same range size,

r(y)3 = r(y)4 = 1J. (5-J)

In the particular problem selected as an example for Table~
,..

the associated objective function coefficients are c 3 = 7
,..

and c 4 = J. When the original problem variables (xJ) were

being examined to determine ranking positions, it was found

that two variables had the same range size. The tie for

which variable should be given ranking position y 3 was
,..

broken by assigning the variable with the greater CJ the y 3

position. The reason for selecting that variable is because

it potentially allows the algorithm to take advantage of one

of its truncation methods. If the algorithm ever causes the

temporary Zt value to be driven negative, it can be immedi-

ately implied that all succeeding combinations of ranked

variables are infeasible for the held value of all preceding

variables. Therefore, the ranking scheme should maximize

the feature whenever possible. By selecting the variable

with the largest coefficient, the value of Zt can be

reduced most quickly. This may lead to truncation early

97

in the search.

In certain problems, it may be beneficial to override

the ranking scheme used in SUBROUTINE RANK. A heuristic

procedure has been developed that reduces the number of

iterations on certain types of problems. When the range

sizes on the ranked variables are approximately the same,

the number of iterations can often be reduced by modifying

" the ranking so any variables with even c 3 appear last in the

ranking. After the variables have been ranked according to

their range size, the ranking is changed so any variables

with even objective function coefficients appear at the end

of the ordered variables. This will allow the algorithm to

set the even sequence indicator, IFLAG, at a value that will

increase the number of variables 'truncated. The newly formed

sequence of even objective function coefficients allows the

algorithm to truncate the search each time Zt is found to

be an odd integer 9 when only the even sequence of coeffi-

cients is being considered. This ranking modification pro-

cedure is only beneficial when the variable range sizes are

approximately the same and some of the objective function

coefficients are even integers.

Modifying the Coefficients in

the Objective Function

In many integer linear programming problems, the size

or configuration of the solution space make finding the

optimal solution difficult, even with high speed computing

equipment. These situations can make the computing time

impractical for finding the optimal integer solution. A

good approximate solution can be of great value when the

optimal solution cannot be easily obtained. Hillier (14)

has pointed out this fact in his work in developing an

efficient heuristic procedure for integer linear

programming.

The objective function reduction algorithm has some

features that allow it to converge most rapidly on some

98

types of problems. Conversely, convergence speed is limited

when certain situations exist. In the case where the

greatest common divisor (g) of the objective function

coefficients is one, the algorithm must search each succeed

ing hyperplane beyond the continuous variable solution.

Also, if each objective function coefficient is an odd

integer, the even sequence indicator, IFLAG, can never be

used to truncate the search and implicitly examine some com-

binatorial possibilities. As with other linear programming

algorithms, the objective function reduction algorithm con

verges increasingly slower as the number of variables and

constraints enlarges. A heuristic procedure will now be

discussed that will modify the objective function coeffi

cients to take advantage of some of the algorithm•s methods

of speeding convergence. The cannonical form of a maximiza-

tion problem will be assumed throughout the remainder of

this discussion.

When the algorithm has determined that the greatest

99

common divisor (g) is greater than one, only certain hyper-

planes are considered in the search for the optimal solu-

tion. As previously mentioned, for an integer solution to

be possible, g must be a factor of the value of the particu-

lar hyperplane being considered. Using the earlier nota

tion, glk must be true for an integer solution to be

possible in the objective function

A A A
C1 Yl + C2 Y:a + • • • + Cn Yn = k, (5-4)

A
where cj, for j = 1, 2, ••• , n, and k are integers. Using

this concept, an approximate solution procedure that modi-

fies the objective function coefficients to get g > 1 can

potentially reduce the number of hyperplanes the algorithm

must examine.

Consider an objective function of the form

Z = 501 X1 + 98 X2 - 296 X3 + 705 X4. (5-5)

The objective function reduction algorithm would find that

the greatest common divisor is one. With small changes in

each coefficient, a new, approximate objective function

could have the form

z = 500 X1 + 100 X2 - JOO X3 + 700 X4· (5-6)

The algorithm would now conclude that g = 100 should be used

for the greatest common divisor. As described in Chapter

III on linear Diophantine equations, objective function

values in increments of g are the only ones that need be

100

searched for an integer solution. Again, this comes from

the fact that the greatest common divisor must be a factor

of the objective function value. The number of hyperplanes

the algorithm must search has been significantly reduced.

Also, Theorem 3.3 in Chapter III can be used to set a lower

bound on the search. For a feasible integer solution to

exist, the value of the objective function must be greater

than-or-equal-to g.

Another consideration would be to try to modify the

objective function coefficients to obtain a sequence of even

integers from k ton in the set (~J lj = 1, 2, ••• , k, ••• n1

This will allow the algorithm to use the even sequence indi

cator, IFLAG, to truncate the search. The number of itera

tions can be reduced appreciably when IFLAG can be used to

implicitly examine some solution combinations.

Finally, modifying the objective function to obtain an

approximate solution offers still other advantages. Many

primal integer programming algorithms benefit from having a

good approximate solution to begin their search. An approx-

imate solution that is obtained rapidly can reduce the

computing time for many optimal algorithms. Also, this

approximate solution can be used to describe a lower bound

on the maximand.

Using the techniques described above for modifying the

objective function coefficients, an approximate solution can

be obtained with methods that speed the algorithm. Tests

on several example problems have shown that minor changes in

101

objective function coefficients can be made and still lead

to the optimal solution. Obviously, a modified objective

function gives no direct assurance the optimal solution has

been found. Nevertheless, the solution found with the

modified objective function,

y = (Y1 , Y2 , • • • , Y n) , (5-7)

is potentially useful. Even if the objective function slope

is changed sufficiently so that y I y*, they solution can

be used to set a lower bound on the maximand. If the solu-

tion y is substituted in the unmodified objective function,

A A A
Z = C1 Yl + C2 Y2 -+ ••• + Cn Yn, (5-8)

then a new constraint can be formed. If the value of

Equation (5-8) with the approximate solution substituted in

for y 3 , j = 1, 2, . . . ' n is called k, then a new lower

bound can be made with the constraint

A A A
C1 Yl + C2 Ya + • • • + Cn Yn > k. (5-9)

The new constraint defined in Equation (5-9) can be

added to the original problem constraints to describe a new

integer linear programming problem. The solution space has

been reduced and some solutions eliminated from further con-

sideration. This approach offers an approximate solution

and tighter bound on the optimal feasible solution.

The next and final chapter of this thesis will briefly

102

state the problem, summarize the important findings, and

suggest areas of further research, investigation, and study.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The primary problem considered in this research is an

extension of the existing theory of solution procedures for

pure integer linear programming. The objective is to pro

vide a new algorithm for solving the pure integer linear

programming problem. Secondary problems approached are (1)

to identify any heuristic procedures that will speed the

convergence of the algorithm, (2) develop a procedure for

finding a good approximate solution to the problem, (J)

write a computer code to evaluate the algorithm.

Important Findings

Several important techniques for integer linear pro

gramming have been identified in this research. A new algo

rithm has been developed. The objective function reduction

algorithm presented in this thesis uses a combinatorial

search procedure to implicitly and explicitly search the

solution space. This algorithm uses the concept of examin

ing a family of objective function hyperplanes until an

integer solution is found. Beginning at the optimum non

integer solution, the algorithm inspects parallel objective

function hyperplanes in the feasible solution space.

104

The basic structure of the algorithm developed in this

research is divided into four stages. Stage 1 identifies

the optimum continuous-variable solution, defines the over

all bounds on each variable, and determines whether the

objective function is to be maximized or minimized. Stage 2

calculates the greatest common divisor of the objective

function coefficients and determines the first hyperplane to

be searched. In Stage J, a ranking scheme is selected for

the variables. It also examines the objective function

coefficients of the ranked variables and defines an even

sequence indicator used to truncate the search for implicit

consideration of solution combinations. Stage 4, the main

section of the algorithm, carries out the implicit and

explicit enumeration of the feasible integer solution space.

The ranking scheme proposed in this research shows how

the variables can be ordered to potentially eliminate many

combinatorial solution possibilities from explicit consider-

ation. The ranking method examines the range of possible

integer values for each variable. A range size is defined

as the number of integer possibilities for a particular

variable. Using the range sizes, a permutation from the set

of problem variables, [XJ I j = 1, 2, ••• , n}, is identified

such that the range size of the variables proceeds from the

smallest to the largest. The search of the algorithm pro-

ceeds from the variables with the smallest range size to

those with the largest range size. This ordering of the

variables allows the algorithm to use truncation procedures

to maximize the number of solution combinations that are

examined implicitly.

105

A heuristic method of ranking has been developed for a

certain class of problems. For the situation where the

variable range sizes are approximately the same and some of

the objective function coefficients are even integers, a

modification of the ranking scheme can often speed conver-

gence. When the variables with even objective function

coefficients are positioned last in the ranking, the trunca

tion method of the even sequence indicator (IFLAG) can be

used. Since the range sizes are approximately the same, any

additional truncation method and the even sequence indicator

will be used to greatest advantage.

Another important result of this research is associated

with finding an approximate solution to the pure integer

linear programming problem. Some of the concepts of linear

Diophantine equations allow the algorithm to implicitly con

sider certain combinatorial solution possibilities. In

order to take advantage of these concepts, the objective

function coefficients can be modified to produce a new,

approximate objective function that can be handled more

rapidly by the algorithm. This procedure can be used to

establish a lower bound on the maximand, as described in

Chapter V. The lower bound can potentially be used to

tighten the solution space.

The computer code in Appendixes B, C, D, and Eis a

valuable tool for further evaluation of the algorithm. It

106

is a practical necessity for solving problems of moderate or

large size. The computer code can be used to experiment

with refinements and additions to the algorithm.

Areas for Further Investigations

During this research into integer linear programming,

some topics were found for future study and investigation.

First, a review of the literature identified the need for a

thorough survey of the recent literature. From the late

1950's through the middle of the 196ovs, surveys such as

those by Balinski (J) and Beale (4) adequately describe the

work in integer linear programming. Nevertheless, in recent

years no comprehensive survey has appeared to unify and up-

date this area of study. It is needed and, hopefully, this

void in the literature will be filled soon.

As a companion of a survey of the recent literature,

additional work should be published evaluating the recent

integer programming computer codes. Although some of the

published literature does list experimental results with

individual computer codes, no computational efficiency sur

vey such as the 1967 work of Trauth and Woolsey (28) has

appeared recently. From a practical point of view, the

ability of existing computer codes to solve problems is very

important. Further investigations are needed.

Additional testing of the algorithm developed in this

research should be considered. Larger, more difficult prob-

lems offer a severe test to any integer programming

107

algorithm. These problems can consume an enormous amount of

computer time and should be studied and evaluated carefully.

The objective function reduction algorithm should be com

pared for computational efficiency with other procedures.

Further investigation of several heuristic procedures

associated with this research should be evaluated and

refined. Some of these techniques have the potential of

becoming an integral part of the algorithm. For example,

the heuristic ranking scheme that can be used when the

range sizes are approximately the same offers the possibil-

ity of being quantified. The heuristic procedures for

obtaining a good approximate solution can be developed fur

ther. The speed and efficiency of these concepts should be

considered.

The study of other problems in integer programming has

become an area of increasing interest in recent years.

Some of the concepts of this thesis may suggest a new

approach to a mixed-integer programming algorithm. Also,

further research could consider the integer nonlinear pro

gramming problem and see if some of the theory of nonlinear

Diophantine equations can be used.

Conclusions

Many of the conclusions of this research are discussed

and analyzed in the earlier chapters of this thesis. The

dominant conclusions are as follows:

(1) A new algorithm for integer linear programming

has been developed. This algorithm uses a

combinatorial search procedure to implicitly

and explicitly search the solution space.

(2) Some heuristic procedures have been identified

that speed the convergence of the algorithm.

A technique for ranking the variables in cer

tain classes of problems has been developed.

(J) A ranking scheme for the variables has been

defined as a part of the algorithm. This

ranking method produces an ordered set of

variables to potentially eliminate many combi

natorial solution possibilities.

(4) A procedure for finding a good approximate

solution has been outlined. Also, this tech

nique can be used to establish a lower bound

on the maximand.

(5) Finally, a computer code has been written to

provide an additional method of evaluating

the algorithm. Also, it can be used to test

modifications and refinements of the algorithm.

108

The area of integer linear programming cannot be con-

sidered complete. No practical algorithm comparable in

efficiency to the simplex method has yet been discovered.

This research has continued the search for such an algo

rithm and has proposed some new, useful techniques for

solving the integer linear programming problem.

SELECTED BIBLIOGRAPHY

(1) Agin, Norman. "Optimum Seeking Methods With Branch
and Bound." Management Science, Vol. 13, No. 4
(December, 1966).

(2) Balasj Egon. 11 A Note on the Branch-and-Bound
Principle." Operations Research, Vol. 16 (1968),
442-445.

(3) Balinski, M. L. "Integer Programming: Methods, Uses,
Computation." Management Science, Vol. 12 (1965),
253-313.

(4) Beale, E. M. L. "Survey of Integer Programming."
Operational Research Quarterly, Vol. 16 (1965),
219-228.

(5) Cook, R. "An Algorithm for Integer Linear Prograni
ming.11 (Unpub. Doctoral Dissertation, Sever
Institute of Technology, Washington University,
1966.)

(6) Forsythe, G. E., and C. B. Moler.
of Linear Algebraic Systems.
Prentice-Hall, 1967.

Computer Solution
Englewood Cliffs:

(7) Geoffrion, A. M. "An Improved Enumeration Approach
for Integer Programming." Operations Research,
Vol. 17 (1969), 437-454.

(8) Glover, Fred. 11 A New Foundation for a Simplified
Primal Integer Programming Algorithm." Opera
tions Research, Vol. 16'. (1968), 727-740.

(9) Glover, Fred. "A Note on Linear Programming and
Integer Feasibility." O~erations Research,
Vol. 16 (1968), 1212-121 •

(10) Gomory, Ralph E. "All-Integer Integer Programming
Algorithm." Research Report RC-189. Yorktown
Heights: IBM Corp., 1960.

(11) Gomory, Ralph Ee, and William J. Baumol. "Integer
Programming and Pricing." Econometrica, Vol. 28
(1960), 521-550.

110

(12) Gomory, Ralph E., and Ellis L. Johnson. 11 Some
Continuous Functions Related to Corner
Polyhedra." Research Report RC-3311. Yorktown
Heights: IBM Corp., 1971.

(13) Graves, G., and A. Whinston. "A New Approach to
Discrete Mathematical Programming." Management
Science, Vol. 15, No. 3 (1968), 177-190.

(14) Hillier, Frederick S. "Efficient Heuristic Procedures
for Integer Linear Programming With an Interior."
Operations Research, Vol. 17 (1969), 600-637.

(15) Hillier, Frederick S. "A Bound-and-Scan Algorithm for
Pure Integer Linear Programming With General
Variables." Operations Research, Vol. 17 (1969),
638-679.

(16) Hillier, Frederick S., and Gerald J. Lieberman.
Introduction to Operations Research. San
Francisco: Holden-Day, 1969.

(17) Krolak, Patrick D. "The Bounded Variable Algorithm
for Solving Integer Linear Programming Problems."
(Unpub. Doctoral Dissertation, Sever Institute of
Technology, Washington University, 1968.)

(18) Krolak, Patrick D. "Computational Results of an
Integer Programming Algorithm." Operations
Research, Vol. 17 (1969), 743-749.

(19) Kunzi, H.P., H. G. Tzschach, and C. A. Zehnder.
Translated by Werner C. Rheinboldt and Cornelia J.
Rheinboldt. Numerical Methods of Mathematical
Optimization. New York: Academic Press, 1971.

(20) Land, A. H., and A. G. Doig. "An Automatic Method of
Solving Discrete Programming Problems."
Econometrica, Vol. 28 (1960), 497-520.

(21) Lawler, E. L., and D. E. Wood. "Branch-and-Bound
Methods: A Survey." Operations Research,
Vol. 16 (1966), 699-719.

(22) McCracken, D. D., and W. S. Dorn. Numerical Methods
and Fortran Programming. New York: John Wiley
and Sons, 1964.

(23) Mitten, L. G. "Branch-and-Bound Methods: General
Formulation and Properties." Operations Research,
Vol. 18 (1970), 24-34.

111

(24) Niven, Ivan, and H. S. Zuckerman. An Introduction to
the Theort of Numbers. New York: John Wiley and
Sons, 196 •

(25) Petersen, Clifford C. "Integer Linear Programming."
Journal of Industrial Engineering, Vol. 18 (1967),
456-464.-

(26) Pettofrezzo, A. J., and D.R. Byrkit. Elements of
Number Theory. Englewood Cliffs: Prentice-Hall,
1970.

(27) Senju, S., and T. Yoshiaki. "An Approach to Linear
Programming With 0-1 Variables." Management
Science, Vol. 15 (1968), 196-207.

(28) Trauth, C. A. Jr.,
Programming:
Efficiency."
481-493.

and R. E. Woolsey. "Integer Linear
A Study in Computational
Management Science, Vol. 15 (1969),

(29) Unger, V. E. Jr. "Capital Budgeting and Mixed Zero
One Integer Programming." A.I.I.E. Transactions,
Vol. 2 (1970), 28-36.

(JO) Wagner, Harvey M. Principles of Operations Research.
Englewood Cliffs: Prentice-Hall, 1969.

(31) Young, R. D. "A Simplified Primal (all-integer)
Integer Programming Algorithm." Operations
Research, Vol. 16 (1968), 750-782.

(32) Zionts, Stanley. "Toward a Unifying Theory for
Integer Linear Programming." Operations Research,
Vol. 17 (1969), 359-366.

APPENDIX A

FLOW OF LOGIC IN THE ALGORITHM

113

The Objective Function

Reduction Algorithm

The following statements describe the flow of logic

used in the objective function reduction algorithm. The

logic is divided into four stages. The first three stages

are preparatory, while the Stage 4 carries out the implicit

and explicit examination of the solution space.

Stage 1

1. Find the simplex linear programming solution,

x and ZSIM.

a. Is the solution,~' all integer?

(1) If yes, stop, solution found. 1

(2) If no, go to step 2.

2. Determine the over-all integer bound on each

variable.

a. £ Set x.j equal to the lower integer bound

for j : = 1 , 2, ••• , n.

b. Set x;· equal to the upper integer bound

for j = 1, 2, ••• , n.

J. Set MAX= 1 for maximization or set MAX= 0

for minimization of the objective function.

Stage 2

1. Find the greatest· common divisor, g, of the

objective function coefficients such that

(c1, ca, ••• , Cn) = g.

2. Find the initial objective function value,

ZOF, to be considered.

a. If MAX= 1, then ZOF = [ZSIM] where g = 1;

otherwise, ZOF equals the greatest integer

less than ZSIM such that glzoF.

b. If MAX = 0, then ZOF = _ (ZS IM) where g = 1;

otherwise, ZOF equals the smallest integer

greater than ZSIM such that glZOF.

114

(A-1)

Stage 3

1. Rank the variables according to the number of

feasible integer values they can take on.

a. Identify a permutation from the set of

problem variables [Xj I j = 1, 2, ••• , n}

such that the variable range size, r(x)J,

proceeds from smallest to largest in

permutation of x 3 variables. Set the

ranked variables, y 3 , j = 1, 2, ••• , n,

equal to the ordered x3 variables in the

permutation, such that y1 equals the

first ordered x 3 variable, ya equals the

second ordered x 3 variable, and so on,

for j = 1, 2, ••• , n, giving r(y)l <

r(y)a < ••. < r(y)n•

b. Break any ties in the ranking scheme where

r(y)J = rcy)J+l by selecting the variable

with the largest objective function coeffi

cient to have the jth ranking position.

A A
When c 3 = c 3 + 1 and r (y) 3 = r (y) 3 + 1 ,

arbitrarily break the tie.

2. Identify any successive sequence of objective

function coefficients corresponding to the

ordered set [y 3 I j = 1, 2, ••• , n}, such that

all coefficients are even integers from k to

A
'n in the set [c 3 lj = 1, 2, ••• , k, ... , n}.

a. Set IFLAG = k. ·

115

116

4. £ £ u u
Set Y(j) t = y 3 and Y< 3) t = y 3 for j = 1, 2,

• • • , n.

Stage 4

1. Set j = 1.

2. Set highest ranked variable at its upper bound,

y1 = y¥, if MAX= 1; otherwise, set y1 = yf.

J. Set ZSUBT t = ZOF, NOTE4 = O, and b 1 = b 1 for

i = 1, 2, ••• , m.

4. Find a new modified objective function value,

ZSUBT, based on the held value of the variables.

a. If ZSUBT has not been found before, then

117

,.,
ZSUBT = ZSUBT - c1 y1; (A-2)

otherwise,

ZSUBT = ZSUBT

b. If ZSUBT > O,go ·to step 5; otherwise, if
,.,
Cj+l < O,go to step 5; otherwise, go to

step 12.

5. Check to see if ZSUBT is an odd integer.

a. If yes, go to step 6.

b. If no, go to step 7.

6. Check to see if all succeeding objective

function coefficients in the ranking are

even integers.

a. If !FLAG= 1, go to step 26.

b. If !FLAG I j + 1, go to step 7; otherwise,

(A-,3)

if j = 1, go to step 26; otherwise, set
,.,

ZSUBT = ZSUBT + c 3+ 1 y 3+ 1 ; and, if MAX= 1,

set y 3+1 = y 3+1 - 1; otherwise, set

YJ+l = YJ+l + 1, and

go to step 24.

7. Determine if the final variable is to be

calculated.

a. If n = 2, go to step 8; otherwise,

check if n - 1 F j + 1.

(1) If yes, go to step 13.

(2) If no, go to step 8, unless b-valHes

not found for y1, go to step 13.

8. Check to see if Yn is integer from

9.

A
Yn = ZSUBT/cn•

a. If yes, to to step 9.

b. If no, go to step 12.
u

Check to see if Yn is greater than Yn•

a. If yes, go to step 10.

b. If no, go to step 11.

10. Check if n = 2.

a. If yes 9 go to step 26.

b. If no 9 go to step 12.

11. Test the feasibility of the solution in the

functional constraints.

a. If the solution is feasible, the optimum

feasible integer solution has been found.

b. If the solution is infeasible in any func-

tional constraint, go to step 12.

12. A test solution has been found infeasible.

Increment YJ+l one integer amount.

118

(A-4)

(A-5)

119

a. If MAX= 1, set

Y,1+1 = Y.1+1 - 1; (A-6)

otherwise, set

Y,1+1 = Y,1+1 + 1. (A-7)

b. Go to step 24.

13. Calculate new right-hand side b-values.

a. If new b-values have not been calculated ---
for the held value of y1, then~

bit bt ,, = 1 - a11 Y1 ·, : (A"""B)

for i = 1, 2, ••• , m.

b. If new b-values have been calculated for

the held value of y1, then

t t " b1 b = 1 - a 1, .r+ 1, Y .1 + 1 · . (A-9)

for i = 1, 2, ••• , m.

t c. If any b 1 < O, for i = 1, 2, ••• , m,

then set the flag NOTE4 = 1.

d. Go to step 14.

14. Determine if j should be incremented.

a. If j f 1, set j = j + 1 and go to step

15; otherwise, check if tighter bounds

have been found on Y,1+1•

120

(1) If yes, set j = j + 1 and go to

step 15.

(2) If no, go to step 15. •

15. If j + 1 I 2, go to step 19; otherwise, go

to step 16.

16. If NOTE4 = 1, go to step 17; otherwise, go

to step 18.

17. Check if MAX= 1.

a. If u u
yes, set Y(a)t = Ya, and go to step 2J.

b. If t t
no, set Y(a)t = Ya, and go to step 2J.

18. Find a new, tighter bound on the next variable

in the ranking, Ya·
II

a. If MAX= 1, considering ca> 0 and

II · II u t
a 1 a > 0, adding -au YJ to b 1 for all

II
a 1 j < O,

u
Y(a)t = min

i=1,2, ••• ,m
(A-10)

b.

and, check if Y(a)t < y~.

If yes, go to step 2J. (1)

(2) u u
If no, set Y(a)t = Ya, and go to

step 23.

If MAX = o, considering
II
ca > 0 and

II II. t
b: a1a > o, adding -a..1 J Y.1 to for all

II
a1 J <.o,

t
Y(a)t = max

i=1,2, ••• ,m

t f,
and check if Y(a)t > Ya·

(A-11)

(1)

(2)

121

If yes, go to step 23.

f, f,
If no, set Y(a)t = Ya, and go to

step 23.

19. If MAX= O, go to step 22; if not, go to

step 20.

20. If NOTE4 = 1, set Y~J+i)t
u

= YJ+l, and go to

step 23; otherwise, go to step 21.

21. Considering only
,.
Cj+l > 0

,.
and a1,3+1 > o, adding

,. u bt
,.

-a!t;J + l YJ+l to 1 for all a1, J + 1 < o,

Y~j+l)t = min [[ZSUBT/~j+1J, [b:/:1 ,j+1J}
i=1,2, ••• ,m

(A-12)
u u

and, check if Y(J+l)t < YJ+l •

a. If yes, go to step 23.

b. u u If no, set Y(J+l)t = Yj+l, and go to step 23.

22.
,. ,.

Considering only cJ+l > 0 and a 1 ,J+l > O, adding
,. f, ,.

-a1, j' + 1 y 3 .+ 1 to b ; for a 11 a 1 , J + 1 < 0 ,
~ .

f, ,. t ,. }
Y(J+l)t = max [(ZSUBT/cj+l), (b 1 /a 1 ,j+l)

i=1,2, ••• ,m
(A-13)

and, ~heck if yfJ+l)t >

a. If yes, go to step 23.

b. If set
f, f,

and to step 23. no, Y(J+l)t = y .l + l ' go

23. Set next variable in ranking at its new bound.

a. If MAX= 1, set

u
Y J + 1 = y·(J + 1) t (A-14)

otherwise, set

f,
YJ+l = Y(J+l)t (A-15)

and, go to step 24.

24. Check to see if a variable has been incremented

122

beyond its bound.

a. If MAX= o, check if YJ+l < u
- Y(J+l)t•

(1) If yes, go to step 4.

(2) If set u and go no, YJ+l = Y(J+l)t,

to step 25.

If MAX= 1, check if YJ+l >
i,

- Y(J+l)t• b.

(1) If yes, go to step 4.

(2) If set
i,

and no, Y3+1 = Y(J+1)t,

go to step 25.

25. If j = 1, go to step 26; otherwise, set

j = j - 1,

ZSUBT
I\

= ZSUBT + cJ+l YJ+l, (A-16)

and

(A-17)

for i = 1, 2, ••• , m; also, set NOTE4 = O,

and check to see if MAX= 1.

(1) If yes, set y 3+1 = y 3+1 - 1, and go to

step 24.

(2) If no, set y 3+1 = YJ+l + 1, and go to

step 24.

26. Increment first variable in ranking, y1, one

integer.

a. If MAX= 1, set

Y1 = Y1 - 1, (A-18)

and go to step 27; otherwise, set

123

Yl = Y1 + 1, (A-19)

and go to step 27.

27. Check to see if all solutions have been

examined.
.R,

a. If MAX= 1, check if Y1 < Y(l)t•

(1) If yes, set ZOF = ZOF - g, and

go to step 1.

(2) If no, set ZSUBT = ZOF, and go to

step 28.

b.
u

If MAX= O, check if y1 > Y(l)t•

(1) If yes, check ZOF < O.

(a) If yes, set ZOF = ZOF - g,

and go to step 1.

(b) If no, set ZOF = ZOF + g, and

go to step 1.

(2) If no, set ZSUBT = ZOF, and go to

step 28.

28. Check if n = 2.

a. If yes 1 .go to step 4~

b. If no, set b; = b 1 for i = 1, 2, ••• , m,

and go to step 4.

APPENDIX B

MAIN TEST PROGRAM

A-··

125

IJ08 12217,it4l-38-2562 ,R.EGIONaitOK,T IHE•30 JAMES Ho SHIRLEY

C ••••••••••••••••••••••·•• OfROOOl
C • • OFR0002
C • THE OBJECTIVE FUN CT ION • OFR 0003
C • REDUCTION ALGORITHM • OFR0004
C * • OFR0005
C * • OFR 0006
C * JAMES Mo SHIRLEY • OFR0007

· C * • OFROOOB
C • SCHOOL OF INDUSTRIAL ENGINEERING * OFR0009
C • .ANO MANAGEMENT • OFROOlO
C * OKLAHOMA STATE UNIVERSITV * OFROOll
C * MAY 14,1972 * OFR0012
C * * OFROOll
C * * OFR0014
C • * OFR0015
C * * OFR0016
C * THIS PROGRAM IS THE HAIN DRIVER TEST PROGRAM TO CALL * OFR0017
C • INTEGER LINEAR PROGRAH SUBROUTINES. THE SUBROUTINES USE AN * OFR0018
C * CBJECTIVE FUNCTION REDUCTION ALGORITHM DEVELOPED DURING RESEARCH • OFR0019
C * INTO INTEGER LINEAR PROGRAMMING. FOR FURTHER INFORMATION SEE * OFR0020
C * THE DOCTORAL THESIS 11 AN OBJECTIVE FUNCTION REOUCTJ.ON ALGORITHM * OFR002l
C * FOR INTEGER LINEAR PROGRAMMING.• * OFR0022
C • * OFR0023
C * * OFR0024
C * THE USER HUST SU.PPLY THE FOLLOW ING INFORMATION ON CONTROL * OFR 0025
C • CARDS AS INPUT DATA: * OFR0026
C * ORDER CONSTRAINTS SO ALL GKEATER-THAN-OR-EQUAL TO * OfR0027
C * CONSTRAINTS APPEAR LAST• * DFR0028
C * * OFR0029
C * CAROl-LM,KM,LN,MAX: FORMATC415l *OFR0030
C * * OFR0031

. C * LM • THE NUMUER Of LESS-THAN-OR-EQ'lJAL-TO • OFR0032
C * CONSTRAINTS • OFR0033
C * KM • THE NU148ER OF GREATER-THAN-OR-EQUAL-TD * OFR0034
C * CONSTRAINTS • OFR0035
C * LN • THI:: NUMBER OF REAL PROBLEM VARIABLES * OFR0036
C * MAX • SET H1UAL l FOR MAXllilllATION • OFR0037
C * SET EQUAL O FOR MINIMIZATlON • Off\0038
C * * OFR0039
C * CARD 2 - Z.SIM: FORHA Tlfl0.2.1 * OFR0040
C * * OFR0041
C * ZSIM = OBJECT IVE FUNCTION VALUE fOR CONTINUOUS * OFR0042
C * VAR IA ti LE SOLUTION * OFR0043
C * • OFR0044
C * CARD 3 - ANO SUCCESIVE CARDS REQUIRED TO DEFINE THE * OFR0045
C * CONSTRAINT COEFFICIENTS,ACl,JI. ONE COEFFICIENT * OFR0046
C * PER CARD,KEAD BY THE R0111S: FORMATU0.2) * OfR0047
C * * OFR0048
C • AII,JI = CONSTRAINT COEFFICIENT Of THE I TH ROW * OFR0049
C • A1'40 J TH COLUMN * OFR0050
C * * OFR0051
C • CARD J - AND SUCCESSIVE CARDS REQUIRED TO DEFINE THE * OFR0052
C * RIGHT-HANO SIDE CONSTRAINT 8-VALUES. ONE VALUE * OFR0053
C * PER CARO: FORMAflfl0.2.1 * OFR0054
C * * OFR0055
C • BC I) = CONSTRAINT RIGHT-HAND SIDE VALUES * OFROOS6
C * * OFR0057
C * CARD K - ANO SUCCESS I VE CARDS RE QUI RED TO DEFlNE THE * OfR0058

126

C • OBJECTIVE FUNCTION COEFFICIENTS. ONE VALUE PER • OFR0059
C • CARO a FORMA Tl I 10) • OFR0060
C • • OFR0061
C • CIJ) • OBJECTIVE FUNC.TION COEFFICIENTS • OfR0062
C • • OFR0063
C • CAROL - ANO SUCCESSIVE CARDS REQUIRED TO DEFINE THE • OFR0064
C • UPPER INTEGER LIMIT ON EACH VARIABLE. ONE VALUE • OFR0065
C • PER CARO: FORMAT I UO> . • OFROOo6
C • • OFR 0067
C • XU(J) "' UPPER INTEGER LI MIT .ON VARIABLE X (J) * OFR00b8
C • * OFROOb9
C • CAROM - ANO SUCCESSIVE CARDS REQUIRED TO DEFINE THE * OFR0070
C • LOWER INTEGER LHU T ON EACH VARIABLE. ONE V·ALUE * OfR0071
C *' PER CARO: FORHATUlO> * OFR00,72
C * • OFR0073
C • XL(J.) = LOWER INTEGER LIMIT ON VARIABLE XIJI * OfR0074
C * * OfR0075
C • * OFR0076
.C • * OFR0077
C • * OFR 0078
C * PARAMETERS .FOR PROGRAM: * OFR0079
C • * 'OFR0080
C • * OFR008l
C * Kl = INPUT DEVICE NUMBER ASSOC IA TEO WITH READ STATE HE NT * OfR0082
C * KO= OUTPUT DEVICE NUMBER ASSOCIATED WITl1 WRITE STATEMENT * OFROOB3
C * HCOUNT = A COUNTER KEEPING TRACK Of THE NUMBER OF ITERATIONS * OfR0084
C * REQUIRED * OfR0085
C • NCOUNT = A COUNTER LI HIT SET ON THE UPPER LIMIT ON THE NUMBER OF • OFR0086
C • ITERATIONS * OFR0087
C * NOFLAG = A COUNTER TO RECORD THE NUMBER OF TIMES lfLAG TRUNCATES* OFR0088
C * THE SEA-CH * OFR0089
C *NITER= NUMBER OF ITERATIONS ALLO~ED * OFR0090
C * NCNTl ,. A FL.AG EQUALING l WHEN NUMBER Of ITERATIONS EXCEEDED; * OfR0091
c; * OTHERWISE, IT E'-!UALS ZERO • OFR0092
C * ERRl • AN INDICATOR WHIGH EQUALS l WHEN AN OBJECTIVE FUNCTION • OFR0093
C * COEFFICIENT E'-JUAL:. ZERO; OTHERWISE, IT EQUALS ZERO * OFR0094
C * ERR2 • AN INOICATOH. WHICH EQUALS l WHEN AN ERROR IN THE * OFR0095
C * EUCLI0 1 S ALGORITHM CAUSED A NEGATIVE REMAINDER • OFR009o
C * EPS • ERROR TEST LIMIT * OFR0097
C * LM"" THE NUMBER OF LESS THAN OR EQUAL TO CCNSTRAINTS * OFR0098
C * KM z THE NUMBER OF GREATER THAN OR EQUAL TO CONSTRAINTS * OFR0099
C * LN = THE NUMBER OF REAL VARIABLE~ IN THE PROl:ILEM . * OFROlOO
C *MAX= AN INDICATOR WHICH EQUALS 1 WHEN OBJECTIVE FUNCTION JS TO * OfROlOl
C * BE MAX IM IZED, EQUALS ZERO fOR MINIMllATION · * OFR0102
C *A= MATRIX Of CONSTRAINT COEFFICIENTS * OfR0103
C * B = COLUMN VECTOR Of CONSTRAINT RIGHT-HAND SIDE VALUES • OFR0104
C * C = THE COEFFICIENT VECTOR FOR THE OBJECTIVE FUNCTION * OFR0105
C *XU= COLUMN VECTOR GIVING THE UPPER LIMIT ON EACH REAL VARIABLE * OFR0106
C *XL= COLUMN VECTOR GIVING THE LOWER LIMIT ON EACH REAL VARIABLE * OFR0107
C * X = SOLUTION VECTOR Of INTEGER VALUES * OFROlO.S
C * KY = THE CONSTRAINT ROW WHERE THE GREATER-THAN-OR-EQUAL-TO * OFR0109
C * CONSTRAINTS BEGIN * OFROllO
C * KZ = THE TOTAL NUMBER OF CONSTRAINT ROWS * OFROlll
C * ZSJM~ THE VALUE Of THE OBJECTIVE FUNCTION AT THE CONTINUOUS • OfROll2
C * VARIABLE SOLUTION * OFR0113
C * ZOF = THE FIRST INTEGER OBJECTIVE FUNCTION VALUE SEARCHED * OFROll4
C * G = THE GREATEST COMMON DIVISOR OF THE OBJECTIVE ·FUNCTION • OFR0115
C • COEFFICIENTS * OFROll6
C * IFLAG = INDICATES ALL RANKED OBJECTIVE FU"4CTION C06FFICIENTS * OFROll.t

1~.7

C • SUBSCRIPT FROM SUBSCIUPT IFLAG TO N ARE EVEN * 0fROll8
C • Y • COLUMN VECTOR INDICATING THE RANKING OF THE REAL VARIABLES BY• OFR0119
C • RECORDING THE SUBSCRIPTS Of THE VARIABLES * OFR0120
C. • RX • A VECTOR DESCRIB lNG THE NUMBER OF .INTEGER VALUES THE J TH * OFROl2l
C • ELEMENT CAN TAKE ON . * OFROl22
C • * OFR0123
C ••.•• OFR0124
C . OFR0125
C OFROUl6

INTEGER CCl01 1 XL(l01 1 XUll0) 1 Yll0) 1 XC10) 1 ZOF,G,ERRl,ERR2,RX(l0l OFR0127
DIMENSION A(l0,10),BClOI OfR0128

C OFR0129
C OfROi90
C OFR0131

Kl :: 5 OFROl32
KO = 6 OFR0133
MCOIJNT = 0 OfR0134
NCOUNT = 0 OFR0135
t.OFLAG = 0 OfR0136
NCNTl = 0 OFR0137
N IT ER . • 4 OF RO 13 8
ERRl = 0 OFR0139
ERR2 = 0 UFR0140
EPS s OolE-04 OFR0141

C OFROl't2
C READ IN REQUIRED INPUT INFORMATION OFROl43
C OFROl44

READIKltlOl LM,KH,Lt.,MAX OFR0145
10 FORMA Tl 4151 OFRO 146

KY• LH + 1 OFR0147
KZ • LM t KH OFR0148

C OFR0149
C OFR0150
c; OFR0151

READ CK I, lH ZSIM OFR0152
J5 fORMATIFl0.21 OFR0153

ReADIKI ,ZOll lACLX,LYI ,LY•l ,LNI ,LX•l ,KZI OFR0154
20 FORMAT(flO.Zt . OFR0155

REAO(KI1201CB(LZl,LZ•l,Kll OFR0156
READ(Kl ,30) ICC LVI ,Lllal,Lt.l OFR0157

30 FORMAT C 110 I OfROl 58
READ(KJ,301(XUCLUl,LU~l,LNI OfROl59
REAOCKJ,30)(XLILT),LT;l,LN) OfR0160

C OfROl61
C hRlTE .OUT THE INPUT OAT A OFR0162
C OFR0163

lf(MAX.EQ.11 GO TO 50 OFR0164
WRITE(K0,40) OFR0165

40 FORMATC1Hl,10X,21H MINIMIZATION PROBLEHI OFR016o
GO lO 65 OfROl67

SC WRI TECK0,601 OfROl68
60 FORMATC1Hl,10X,21H MAXIMIZATION PROBLEM) OfROl69
65 hRITElK0,701 OfR0170
10 FORMAJllHO,lOX,37H OBJECTIVE FUNCTION COEFFICIENTS:) OFR0171

WRJTECK0,801CCILVl,LV=l,LNI OfR0172
80 FORMATC1H0,19X,10171 OFR0173

IflLM.EQ.O) GO TO 120 OFR0174
WRITE(K0,901 OFR0175

90 FORMATC1H0,10X,47H LESS-THAN-OR-EQUAL-TO CONSTRAINT, Gf.lfffJClENTS:l lliR0176

128

CO 110 JA•l,LM OFR0177
WRITEIKO~lOOIIAIJA,JBl,JB•l,LNI OFROl78

100 FORMATllH0,20X,10F7.21 OFR0179
110 CONTINUE OFROlSO

JFIKM,EQ,01 GO TO 150 . OFROlSl
120 WRITEIX0,1301 OFROla2
130 FORMATllHO,lOX,SOH GREATER-THAN•OR-EQUAL-TO CONSTRAINT COEFFICIENT OFR0183

IIIS: j OFR0184
CO 140 JC•KV,KZ OFROl85

WRl TE I KO, 1001 CA t JC ,JOf, JD•l I LNI UFRO l Sb
140 CONTINUE OFR0187
150 ~RITEIK0,1551 OFR0188
155 FlJRMATI lHO,lOX,41H RIGrlT-HAND SlOE 8-IIALUES OF CONStRAlNTS:J OFR0189

DO 170 J E• l I KZ OFROl.90
BJsB(JEI OFR0l91
WRI TEIKO, 1601 JE ,BJ OFR0192

160 FORMATl1H0,22X,3H Bt I Il,3HJ •,F7.21 OFR0l93
l 7C CONTINUE OFROl94

WRITEIK0,1751 OFR0195
175 FORMATllH0,10X,23H 1/ARIABLE LOW.ER BOUNDS: I OFR0196

DO 185 JF = l,LN OFR0197
MXL = XLIJFI OFR019d
WRlTEIK0 1 l801JF,MXL OFROl99

180 FORMATllH0,22X,4H XU,ll,3HI =,151 OFR0200
185 CONTINUE DFR0201

WRITEIK0,1901 Ofll.0202
190 FORMAT(lHO,lOX 1 23H VARIABLE UPPER BOUNDS:) OFR0203

DO 200 JG= l,LN OFR0204
MXU = XUCJG) OFR0205
WRITEIK0,1951JG,MXU OFR0206

195 FORMATUH0,22X,4H XUl,Il,JHJ ==,15) OFR0207
200 CONTINUE OFR0208

C OFR0209
C CALCULATE THE GREATEST COMMON DIVISOR AND ZOF WITH SUBROUTINE. GCO OFR0210
C OFR0211

CALL GCOIC,G,LN,ZSIM,ZOF,MAX,ERR1,ERR2) OFR02l2
IFIERRl.EQ.OJ GO TO 210 ' OFR02l3
WRITEIK0,2051 OFR0214

205 FORMAT UHl, 50H * AN OBJECT IVE FUNCTION COEFFICIENT EQUALS ZERO *I OFR0215
GO TO 1000 OFR0216

210 1FIERR2.EQ.OI GO TO 220 OFR0217
WR IT E (KO, 21 5 l OF R 02 18

215 FORMATl1Hl,59H** A REMAINDER wAS FORCED NEGATIVE IN EUCLID'S ALGOR OFR0219
IJ 1Tl1M ** I OFR0220

GC TO 1000 OFR0221
220 wRITE(K0,2251 G OFR0222
225 FORl1ATtlH0,10X,27H GREATEST Cul'tl10N DIVISOR: ,3HG =,15) OFR0223

i.RlTEIK0,2301. ZOF OFR0224
230 FORMATllHO,lOX,44H INITIAL INTEGER OBJECTIVE FUNCTION 1/ALUE: 1 5HZ OFR0225

#CF =, 151 OFR0226
C OFR0227
C RANK THE VARIABLES iii TH SUBROUTINE RANK OFR0228
C OFR0229

CALL RANKIC,XL,XU,LN,Y,IFLAG,RXI OFR0230
WRITE(K0,235) OFR0236

235 FORMATl1H0,10X,22H VARIABLE RANGE SIZES: J OFR0237
DO 245 JH = 1,LN OFR0238

MRX = RX(JHl OFR0239
WRITECK0,2401 JH,MRX OFR0240

c
c
c

c
c
c

240 FCRMATClH0,22X,4H RXC,1i,3Hl •,151
245 CONTINUE

WRITECK0, 2501
250 FORMATl1H0,10X,36H COLUMN I/ECTOR OF RANKED SUBSCRIPTS:)

00 260 JK •1,LN ,.y • YIJKI
WRl TEIK0,2551 JK,MY

255 FORMATC 1H0,22X,3H YI ,11 1 3Hl •,151
260 CtJNTlNU E

WRITEIK0,2651 lfLAG
265 FORMATI lHO, lOX,46H IIALUE OF El/EN COEFFICIENT lNOlCATOR: lfLAG • 1 1

345

520
525

505
510

515

500

501
899
900

1000

i115J

BEGIN EXAMINING SOLUTION SPACE WITH SUBROUTINE SEARCH

CALL SEARCH I A ,B ,C, Y, X lJ, XL ,X ,EPS, I FLAG, G, LM, KM, LN, MAX, NCOUNT; ZOF, NC
#NT1,N1TER,MCOUNT 1 NOFLAGI .

lFINCNTl.E~.Ol GO TO 520
WRI TEI K0,3451
FORMATllH0, 1 *** NUMBER OF ITERATIONS EXCEEDED***')
GO TO 899

WR IT E SOL UT ION INFORMAi ION

WRlTE(KO, 5251
FORMATUHll
00 510 JC = l,LN

JX"' X(JCI
WR1TE(K0,505lJC,JX
FORMATllH ,40X,'***"'* X(',ll, 1 1 1 ,151

CONTINUE
WRITEIK0,5151 ZOF
FORMATllH0,40X,'***** l = ',151
WRITEiK0,5001 MCOUNT
FORMA Tl lH- ,40X,' Y(NI kAS CALCULATED', 15,3X, 1 TIMES• l
WRJTEIK0,5011 NOFLAG
FORMAT(lH-,40X, 1 IFLAG WAS USED ',I5,3X,'TlMES TO TRUNCATE SEARCH')
i.iRlTEIK0,9001
FORMAT I lHl l
STOP
ENO

129

OFR0241
OFR 0242
OfR0243
OFR0244
OfR0245
UFR0246
IJFfl.0247
Ufk024tl
OFR0249
OFR0250
OFR0.251
OFR0252
OFR0253
OFR0264
OFR02 55
OFR0256
OFR0257
OFR0258
OFR0259
OFR02b0
UFR026l
UFR0,62
OFR0.263
Ofk02b4
OFR0265
OFR026o
OFR02b7
OFR026B
OFR0269
OFR0270
OFR027l
OFR0272
OFR02 73
OFR0274
OFR0275
OFR0.27 b

OFR02 77
OfR0278
OFR0279
OFR0280
OFR0281

APPENDIX C

SUBROUTINE GCD

131

SUBROUTINE GCDC C ,G ,LN ,z SI M,ZOf, MAX ,ERRl ,ERRZJ GCDOOO 1
C ****•*** GCDOOOZ
C * · * GCD0003
C • SUBROUTINE GCO * GCD0004
C • • GCD0005
C * • GCD0006
C • JAMES M. SHIRLEY • GCD0007
C . ·* * GCD 0008
C * SCHOOL OF INDUSTRIAL ENGINEERING * GCD0009
C . * ANO MANAGEMENT * GCOOOlO
C · * OKLAHOMA STATE UNI\/ERSITY • GCDOOll
C *, HAY l't,1972 • GCD0012
C · . * * GCD0013
C * • GCD00.14
C • • GCD0015
C * * GCD0016
C * THIS SUBROUTINE CALCULATES THE GREATEST COMMON DIVISOR .FOR • GCD0017
C * A SET OF OBJECTIVE FUNCTION CIJEFflCIENTS. IT ALSO DETERMINES • GCD0018
C • THE FIRST OBJECTIVE FUNCTION VALUE USED IN SUBROUTINE SEARCH. • GCD0019
C * FOR FURTHER INFORMATION SEE THE DOCTORAL THESIS "AN OBJECTIVE * GC00020
C * FUNCTJON REDUCTION ALGORITHH FOR INTEGER LlNEM PROGRAMMING.• * GC00021
C • * GCD0022
C • * GCD0023
C * * GC00024
C • * GCD0025
C • PARAMETERS FOR PROGRAM: · • GC00026
C * * GCD0027
C * • GCD0028
C * C'"' THE COEFHC.IENT VECTOR FOR THE OBJECTIVE FUNCTION • GC00029
C • G = THE GREATEST COMMON DIV !SOR Of THE OBJECTIVE FUNCTION • GC00030
C * COEFFICIENTS . * GCD0031
C • LN = THE NUMBER Of REAL VARIABLES IN THE PROBLEM • GC00032
C * ZSl M:s THE VALUE Of THE OBJECT IVE FUNCTION AT THE CONHNUOUS • GCD0033
C * VARIABLE S.OLUHON • GC00034
,C * ZOF = THE FIRST JNTEGER,OBJECTIVE FUNCTION VALUE SEARCHED * GC00035
C * MAX = AN INDICATOR WHICH EQUALS l WHEN OBJECT.IVE FUNCTION IS TO • GCD0036
C • BE MAXIMIZED i l T EQUALS ZERO. FOR Ml NI HIZATI ON . * GC00037
C * ERRl :a AN INDICATOR WHICH EQUALS 1 WHEN AN OBJECTIVE FUNCTION * GC00038
C * COEFFICIENT EQUALS ZEROi OTHERWISE, IT EQUALS ZERO * GC00039
C * ERRZ = AN IND IC ATOR WHICH EQUALS 1 W.HEN AN ERROR 1 N THE * GC00040
C * CALCULATION Of EUCLID'S ALGOR ITHH CAUSED A NEGATIVE • GCD004l
C * REMAINDER TO BE FORMED.; OTHERWISE, IT EQUALS ZERO * GC00042
C * GC: A MODIFIED COEFFICIENT VECTOR WHERE All VALUES ARE POSITIVE• GCD0043
C * • GCD0044
C ** GCD0045
C GCD0046
C GC00047

c
c
c

20

30

INTEGER CllO),GC(lOl,D,E,Q,R,lEHP,ZOF,ERRl,ERRZ,G
EPS = O.lE-04

.ESTABLISH THE VECTOR GC WHICH HAS ALL POSITIVE ELEMENTS

DO 50 JA =1,LN
lf(C(JAl120,30,40
NCJA = CC JAi
GC(JAJ = ABS(NCJAJ
GO TO 5.0
ERRl = 1
GO TO 300

GC0004B
GCD0049
GC00050
GC00051
GCD0052
GCD0053
GCDOO 54
GCD0055
GCD0056
GC00057
GC00058
GC00059

c
c
c

c
c
c

40 GCtJAl • CCJAI
SO COt\TINUE

DETERMINE GREATEST COMHON DIVISOR, G, USING EUCLID'S ALGORITHM

TEMP • GCCll
DO 145 L • 1,LN

IFCTEHP - GC{Lll70,140,90
10 0 • GCC LI

E a TEMP
GO TO 100

90 0 = TEMP
E = GCILI

100' Q .,.. D/E
R • D ... CQ•E I
IFCRUlO, 120, 130

110 ERR2 • l
GO TO 30.0

120 TEMP• E
GO TO 140

130 D • E
E = R
GO TO 100

140 lflTEMP.EQ.1) GO TO 150
IF IL, EQ. Ud GO TO 150

1'15 CONTINUE

CALCULATE fll~ST OBJE~TI VE FUNCTION VALUE

150 G a TEMP
ZOF .,;. Z SIM
TEMPG • G
TMPZDF • ZOF 160

170
180
l'iO
200

21C

300

TEMPl • TMPZOF/TEMPG
NTEMP 1 • TEMP 1 .
TE~P2 '" NT EMPl
Dlff = TEM~l ... TEMP2
ASDIFf = ABS(Olffl
IF(ABDIFF ... EPS)300,300,170
lflZSlHllS0,190,190
lFIMAX ... 11210,200;200
IFIHAX.EQ.11 GO TO 210
ZOF = ZOF + 1
GO TO 160
ZOF = ZOF ... l
GO TO 160
RETURN
END

132

1',c;~.Q061
GCD0062
GC00063
GCD0064
GCD0065
GC000b6
GCD0067
GCD0068
GC00069
GCD0070
GCD0071
GC00072
GCOOOH
GC00074
GC00075
GC00076
GCD0077
GCD0078
GC00079
GCDOOBO
GCD 0081
GCD0082
GC00083
GCD0084
GCD0085
GC00086
GC00087
GCD0088
GCD0089
GC00090
GCD009 l
GCD0092
GCD0093
GCD0094
GC00095
GC00096
GCD0097
GC00098
GC00099
GCDOlOO
GCOOlOl
GCD0102
GCD0103
GCD0104
GCD0105
GCD0106
GC00l07

APPENDIX D

SUBROUTINE RANK

134

SUBROUTINE RANKCC,XL,XU,LN,Y,IFLAG,RXI RNKOOOl
C ** RNK0002
C * * RNK0003
C * SUBROUTINE RANK * RNKOOOlt
C • • RNKOOOS
C * • RNKOOOb
C * JAMESM •. Sl'IIRLEY *RNK0007
C • • RNK0008
C * SCHOOL OF INDUSTRIAL ENGINEERING * RNK0009
C * AND MANAGE ME NT * RNKOO 10
c * OKLAHOMA ·sure UNIVERS ITV • RNKOOll
C * HAY l't,1972 * RNK0012
C * * RNK0013
C •· * RNK00.14
C * * RNK0015
C * * RNK.0016
C * THIS SUBROUTINE RANKS THE VARIABLES IN THE 06JECTIVE * RNK0017
C * FUNCTION ACCORDING TO THEIR RANGE Of POSSIBLE VALUES. THE * RNK0018
C * VARUBLE WITH THE SMALLEST RANGE IS RANKED FIRST. FOR FURTHER * RNK0019
C * INFORMATION SEE THE DOCTORAL THESIS "AN OBJECT IVE FUNCTION * RNK0020
C ·• REDUCTION ALGORITHM FOR INTEGER LINEAR PROGRAMMING." * RNK0021
C * * RNK0022
C * * RNKQ023
C * * RNK0024
C *' * RNK0025
C * PARAH·ETERS FO.R. PROGRAM: * RNK002b
C . * * RNK0027
C * * RNK0028
C * C • THE COEFFICIENT VECTOR FOR THI: OBJECTIVE FUNCTION * RNK0029
C * XU • COLUMN VECTOR GIVING THE UPPER LIMIT ON EACH REAL VARIABLE * RNK0030
C * ,XL • COLUMN VECTOR .GI VI.NG THE LOW'.IER LIMIT ON EACH REAL VARIABLE * RNK0031
C •·JfLAG • INDICATES ALL RANKED OBJcCTIVE FUNCTION COEFFICIENT * Rl'.K0032
C * . SUBSCRIPTS FROM SUBSCRlPT !FLAG TO N ARE EVEN SUBSCRIPTS * RNK0033
C * LN .., THE NUMBER OF REAL VARI ABLES lN THE PROBLEM * RNK0034
C * Y "' COLUMN VECTOR INDICATING THE RANKING OF THE REAL VARIABLES av• RNK0035
C + RECORDING THE SUBSCRIPTS OF THE VARIABLES * RNK0036
C * RX -= A VECTOR DESCRIBING THE NUMBER OF INTEGER VALUES THE J .TH * RNKOOH
C * EL EHENT CAN TAKE ON . . . * RNK0038
C • EPS = ERROR TEST LIMIT • RNK0039
C * RXT = TEMPORARY RX VALUES * RNKOOltO
C * INDEX A VECTOR Of THE SUBSCRIPTS .OF THE RANKED VARIABLES * RNK0041
C * JFLAG = AN INDICATOR WHICH CHECKS TO BE SURE ALL POS.SIBLE EQUAL * RNK0042
C * RANGE SIZES HAVE BEEN CONSIDERED * RNK0043
C * • RNK0044
C ** RNK0045
C RNK0046
C RNK0047

INTEGER CllOl ,XLClOI ,XUllOI ,RXllO) ,YllOl ,INOEXUO),RXTClOl,CJA,CJA RNK0048
#Pl,CJE RNK0049

C RNK0050
C RNK0051

EPS = O.lE-04 RNK0052
LNMl = LN - l RNK0053

C RNK0054
C ~NK0055

DO 30 JA • 1,LN RNK0056
RXCJAI = XU(JAI - XLCJAI + l il,/'-IK0057
RXTCJA) = RXIJAI QNK0058
INDEX IJA) = JA RNK0059

c
YCJAI • 0

30 CONTINUE

C SORT RANGE SIZES WITH SHELL SORT
c

c

H • LN
40/"•H/2

lf(H.LE.EPSI GO TO 75
K s LN - H
J .. l

5C L "' J
60 lf(RXTCLJ.LE.RXT(L+MII GO TO 70

TEMP = RXT CL I
RXHLI = RXHL+Ml
RX T IL +MI = TEMP
ITEMP = INDEX(Ll
INDEX(LI = INDEX(L+M)
INOEX(L+MI = ITEHP
l = L - M
IFCL.GT.OI GO TO 60

70 J = J + l
lf(J-Kl50,50,40

C ~OOIFY RANKING FOR ·EQUAL RANGE SIZES
c

c

75 JFLAG = 0
80 DO 100 JA = l,LNMl

JAPl = JA + l
lFCRXTCJAJ.NE.RXTCJAPlll GO TO 100
CJA • CllNDEXIJAII
CJAPl ""CllNDEX(JAPlll
If I CJA - CJAP l l 90, 100, 100

90 lTEMP • INDEXIJAI
INDEXI JA I • I NDE XI JAPll
lNOEX(JAPll • lTEMP
JFLAG • l

100 CONTINUE
IFIJFLAG.EQ.lJ GO TO 75
DO 105 JB = l,LN

Y(JB) .. lNDEX(JBI
105 CONTINUE

C CHECK FOR EVEN INTEGER SEQUENCE AND SET lfLAG
c

lfLAG = LN + l
DO 110 JD= 1,LN

JE = LN - JD+ l
CJE = CIINDEX(JE)I
TCJE = CJE
DIV = TCJE/2.0
NDIV = DIV
TNDIV = NOIV
TMUL = TNDIV * 2,0
Dlff = TCJE - TMUL
IFCDIFF.GT .EPS) GO TO 120
lfLAG = JE

110 CUNT lNU E
120 RETURN

END

135

RNK006Q
RNK0061
RNK0062
RNK0063
RNK 0064
RNK0065
RNK0066
RNK0067
RNK0068
RNK0069
RNK0070
RNK007l
RNK007 2
RNKOOB
RNK0074
RNK0075
RNK007o
RNK0077
RNK0078
RNKOOH
RNK0080
RNK 0081
KNK00d2
RNt<.0083
RNK0084
RNK0085
RNK0086
RNt<.0087
RNK0088
RNK0089
RNK0090
RNK0091
RNK 0092
RNK009l
RNK0094
RNK 0095
RNK0.096
RNK0097
RNK0098
kNK0099
RNKOlOO
RNt<.0101
RNK0102
RNKOl 03
RNK0104
RNK0105
RNK0106
RNK0107
.RNK0108
RNK0109
RNKOllO
RNKOlll
RNt<.0112
RNK0113
RNKOll4
RNK0115
RNK0ll6
RNKOll 7
RNKOll8

APPENDIX E

SUBROUTINE SEARCH

137

SUBROUTINE SEARCH(A,B,C,Y,XU,XL,X,EPS,IFLAG,G,LH,KM,LN,MAX,NCOUNT, SEAOOOl
#ZOF,NCNTl,NITER,MCOUNT,NOFLAG) . SEA0002

C ** SEA0003
C * * SEA0004
C * SUBROUTINE SEARCH * SEAOOO,
C * * SEAOOOb
C * * S EA0007
C * JAMES M. SHIRLEY * SEA0008
C * * SEA0009
C * SCHOOL Of INDUSTRIAL ENGINEERING • SEAOOlO
C * ANO MANAGEMENT * SEAOOll
C * OKLAHOMA STATE UNI\IERSITY * SEA00i2
C * MAY 14,1972 * SEA0013
C * * SEA 0014
C * * S EA0015
C * • SEAOOlb
C * • SEA0017
C * THIS SUBROUTINE SEARCHES FOR A FEASIBLE SOLUTION FOR A FIXED* SEA0018
C * \IAlUE Of THE OBJECTIIIE FUNCTION IN AN INTEGER LINEAR PROGRAMMING* SEA0019
C * PROBLEM. IT ACCEPTS THE RANKING DETERNIN~O IN.SUBROUTINE RANK. * SEA0020
C * IT BEGINS A COHBlNATORl AL SEARCH BY HOLDING THE LOWEST RANKED • SEA0021
C * IIARIABLE AT ITS UPPER LIMIT THEN EXPLICITLY OR IMPLICITLY • SEA0022
C * EXAMINES THE POSSIBLE RANGE Of ALL OTHER \IARIASLES. FOR FURTHER• SEA002J
C * INFORMATION SEE THE DOCTORAL THESIS "AN OBJECTIVE FUNCTION * SEA0024
C * REDUCTION ALGORITHM FGR INTEGER LINEAR PROG~AMMING." * SEA0025
C • * SEA002b
C * * SEA0027
C * * SEA0028
C * • SEA0029
C * PARAMETERS FOR PROGRAM: * SEA0030
C * • SEA003l
C * • SEA0032
C * A = MATRIX OF CONSTRAINT COEFFICIENTS * SEA0033
C * B • COLUMN \/ECTOR Of CONSTRAINT RIGHT-HAND SIDE VALUES • SEA0034
C * BT -= COLUMN \/ECTOR OF TEMPORARILY MODIFIED RIGHT-HAND SIDE IIALUES* SEA0035
C * C = THE COEFFICIENT VECTGR FOR THE Ot!JECTIVE FUNCTION * SEA003b
C * ZSUBT = THE TEMPORARY 1/ALUE OF THE OBJECTIIIE FUNCTION * SEA0037
C * Y = COLUMN VECTOR INDICATING THE RANKING Of THE REAL VARIABLES av• SEA0038
C * RECORDING THE SUBSCRIPTS OF THE IIARlABLES * SEA0039
C *XU= CCLUMN \/ECTON GIVING THE UPPER LIMIT ON EACH REAL VARIABLE * SEAOOIO
C * XL : COLUMN \/ECTOR Gii/ING THE LOWER LIMIT ON EACH REAL VARIABLE * SEA0041
C * XUT = COLUMN VECTOR Of TEMPORARY UPPER LIMITS ON A VARIABLE * SEA0042
C * XLT-= COLUMN VECTOR OF TEMPOMARY LOWER LIMITS ON A VARIABLE • SEA0043
C * X = SOLUTION VECTOR Of INTEGER VALUES * SEA0044
C * XTEMP = COLUMN VECTOR OF TEMPORARY INTEGER VALUES Of VARIABLES * SEA0045
C * WHICH ARE AT A Hl::LD VALUE DURING THE COMBINATORIAL SEARCH• SEA0046
C * EPS = ERROR TEST LIMIT * Sl::A0047
C * IFLAG = INDICATES ALL kANKED OBJECTJVE FUNCTION COEFFICIENTS * SEA0048
C • SUBSCRIPT FROM SU.BSCRIPT IFLAG TO N ARE EVEN * SEA0049
C •G=GREATESTCOMMONDlVISOR *SEA0050
C * NOTEl AN INDICATOR WHICH EQUALS l WHEN B-VALUES HAVE BEEN * SEA0051
C * CALCULATl:D FOK Ht:LD 1/ALUE Of Y SUB l, ZERO OTHERWISE * SEA0052
C * NOTE2 AN INDICATOR IIHICH EQUALS l WHEN TIGHTER BOUNDS HAVE BEEN* SEA0053
C * FOUND ON VARIABLE¥ SUB L+l,ZERO OTHERWISE * SEA0054
C * NOTE3 AN INDICATOR WHICH Ef.lUALS l WHEN ZSUBT HAS BEEN * SEA0055
C * NOTE4 AN INDICATOR WHICH EQUALS ZERO WHILE ALL RIGHT-HAND SIDE* SEA005b
C * CALCULAT EO THE FIRST T HiE US ING Y SUB 1, ZERO OTHERWISE • SEA0057
C * VALUES ARE POSI Tl VE OR ZEROi IT EQUALS ONE WHEN A * S EA0058
C * RIGHT-HAND SIDE IIALUE HAS BEEN FORCED TO A ,NEGATIVE VALUE• SEA0059

138

C • LM • THE NUMBER OF LESS THAN OR EQUAL TO CCNSTRAINTS * SEAOObO
C *KM• THE NUMBER OF GREATER THAN OR EQUAL TO CONSTRAINTS * SEAOObl
C • LN • THE NU,.,8ER OF REAL VARIABLES IN THE PROBLEM • ScAOOl:t2
C *MAX• AN INDICATOR WHICH EQUALS 1 WHEN·OBJECTIVE FUNCTION JS TO * SEA00b3
C * BE MAXIMIZED; EQUALS ZERO FOR MINIMUATJON * SEAOOb4
C • NCOUNT • A COUNTER LI loll T SET ON THE UPPER LIMIT ON THE NUMBER OF • SEA00o5
C • ITERATIONS • ScAOObb
C • NITER • NUMBER OF ITERATIONS ALLOWl:O • Sl:A00&7
C • NCNTl • A FLAG EQUALING 1 WHEN NUMBER Of ITERATIONS EXCEEDED; • SEAOOo8
C • OT HERW IS E, IT EQUALS ZERO . • SEA 00&9
C • ZOF • AN INTEGER OBJECTIVE FUNCTION VALUE BEING· SEARCHED * SEA0070
C • MCOUNT • A COUNTER KEEP ING TRACK OF THE NUMBER OF ITERATIONS • SEA007l
C * REQUIRED * SEA0012
C • NOFi.AG = A COUNTER TO RECORD THE NUMBER OF TIMES IFLAG TRUNCATED * SEA00,73
C * THE SEARCH * SEA0074
C *ROW= AN INDICATOR VECTOR IOENTlFYlNG CONSTRAINT ROWS-WITH * SEA0075
C * NEGATIVE COEFFICIENTS; ZERO EQUALS ALL POSITIVE, ONE EQUALS* SEA007b
C * CNE OR MORE NEGATIVE . * SEA0077
C * * SEA0078
C •*•****************-*** S EAOO 79
C SEAOOBO
C SEAOOIH

INTEGER C(lOl,XLllOl,XUllOl~YllOJ,X(lOJ,XTEMP(lOJ,XLTllOJ,XUTllOJ, SEA0082
#ZOF, ZSUST ,G,Vl ,YLP1,YN,Y2,ROW llOI Sl:A0083

DIMENSION Afl0,101,BllOJ,BT(lOI SEA0084
C SEA0085
C SEAOOB&

DO 1 KA = 1, LN S EAOO 8 7
XUTIKAI = XUIKAI SEA0088
XLTIKAI = XL1KAJ SEA0089

1 CONTINUE S EAOO 90
KV = LM + 1 SEA0091
KZ = LM + KM i SEA0092
00 3 NA = 1,KZ SEA0093

CO 2 NB = l,LN SEA0094
ROWINAI = 0 SEA0095
lf(AINA,NB).GE.0.01 GU TU 2 SEA0096
ROWtNAl • 1 SEA0097
GO TO 3 SEA0098

2 CONTINUE SEA0099
3 CONTINUE SEA 0100

C SEAOlOl
C STEP NUMBER 1 SEA0102
C SEA0103
C INITIALIZATION TO BEGIN RECURSION SEA0104
C SEA0105

4 L = 1 SEAOlOb
C SEA0107
C CHECK If NUMBER OF ITEMATIUNS EXCEEDED SEAOlOB
C SEA0109

NCOUNT = NCOUNT + l SEAOllO
lf(NCOUNT.LE.NITERI GO TO 5 SEAOlll
NCNTl = l SEA0ll2
GO TO 1000 SEA0113

5 NOTE 1 = 0 SEA 0114
NOTE2 = 0 SEA0115
00& KB= 1,LN SEAOllb

~TEMPIKBI = 0 SEA0117
b CONT lNUE SEA0118

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c

l

a
9

10

11

12

'·&

STEP NUMBER 2

SET HIGHEST RANKED VARIABLE AT ITS .BOUND

Yl • Vlll
lFIMAX.EQ,11 GO TO 8
XTEMPIVll • X(lYl)
GO TO 9
.XTEMP&Vl I • XUIYU
t.OTE3 "' 0

STEP NUMBER 3

INITIALIZE ZSUBT ANO BT VECTOR

ZSliB T "' ZOF
00 ll KA "' l,KZ

BT IKAI "' BIKAI
cot. Tl NUE
NOTE4 = 0

STEP NUMBER 4

FIND NEW MODIFIED OBJECTIVE FUNCTION VALUE, ZSUBT

Yl = Y{l)
YLPl = \'IL+ll
IFINOTE3,EQ.ll GO TO 14
ZSUBT = ZSUBT - Ch'lJ*XTEMP(Yl)
hOTE3 = l
lflZSUBTll3il5•15

13 IFIC(YLPllll5,75,75
14 ZSliBT • ZSUBT - CIYLPll•XTEMPIYLPll

IFIZSUBTl13,15,15

STEP NUMBER 5

CHECK TO SEE IF ZSUBT IS AN ODO INTEGER

15 YLPl -= Y IL+ll
LPl = L+l
TEMP= ZSUBT
ALPhA = TEMP/2,0
NALPHA = ALPHA
BETA =- NALPHA
DIFF = ALPHA - BETA
ABDIFF = ABSIDIFFI
If(ABDIFF-EPSl20,20,l6

STEP NUMBER 6

CHECK TO SEE IF ALL SUCCEEDING OBJECTIVE FUNCTION COEFFIEICNTS ARE

16 IFC lfLAG.EIJ. ll GO TO 350
If (LPl. NE, IF LAG I GO TO 20

NOFLAG KEEPS A RECORD OF THE NUMBER OF TIMES lfLAG IS USED TO
TRUNCATE THE SEARCH

139

SEA0ll9
SEA0120
SEA0121
S EA0122
SEA0123
SEA 0124
SHOl25
SEA 0126
SEA0127
SEA0l28
SEA0129
SEAOL30
SEA0l3l
SEAOl:32
SEA0133
· SEAOl34
SEA0l35
SEA0l36
SEA0137
SEAOl38
SEAOl39
SEAOL40
SEA014l
SEA0142
SEA0143
S EA0144
SEA0l45
SEA 0146
S EA014 7
SEA0148
SEA0149
S EAO 150
SEAOl 51
SEA01!>2
SE:A0l53
SEA 0154
SEA015,
SEA0156
SEA0157
S EAO 158
SEAOl59
SEA 0160
S EAOlol
SEA0l62
SEA0lo3
Sl:A0164
SEA0165
SEAOl66
SEA0l67
SEA0l68
SEAOl69
SEAOl 70
SEAOl 71
S EAOl 72
SEAOl 73
SEA0174
SEA0175
SEAOl 76
SEA0177

c

c

NUFLAG • NOFLAG + 1
IFIL.EQ.1) GO TO 350
ZSUBT • ZSUBT + CIYLPll*XTEMPCYLPll
lFIMAX.EQ .11 GO TO 18
XTEMPtVLPll "'XTEMPIVLPll + 1
GU TO 340

18 XTEMPIYLPll ... XTEMPIYLPll - l
GO TO 340

C STEP NUMBER 1
c
C CETERMJNE IF FINAL VARIABLE IS TO BE CALCULATED
c

c

2C LPl = L+l
YL Pl = YI L + 11
IFILN.E,.21 GO TO 22
IFILN-1.NE.LPll GO TO 80
IFINOTEl.EQ.01 GO TO 80

C STEP NUMBER 8
c
C CHECK XTEMl'IY IN) I I NT EGER
c

22 YI\= YILNI
c
C MCOUNT KEEPS A RECORD OF THE N0MBER UF TIMES YINl IS CALCULATED
c

c

MCOLNT = MCOLINT + l
RZSUBT = ZSUBT
RCYN = CIYNJ
RXTPYN = RZSUBT/RCYN
l\U/11 = RXTPVN
DEL TA = fl.UM
GAMMA= ~XTPYN - DELTA
JF(GAMMA - EPSl30,J0,75

C STEP NUMBER 9
c
C CHECK TO SEE IF XTEMP IV (1\1 l IS GREAT.ER THAN ITS UPPER BOUND
c

c

30 XTEIIP(YNJ = RXTPYN
IFIXTEMP(YNll75,31,31

31 XTl = XTEMPIYNI
XT2 = Xlll YNI
lF(XTl - XT2150,50,40

C STEP NUMBER 10
c

40 IFILN - 21350,350,75
c
C STEP NUMBER 11
c
C TEST SOLUTION FEASIBILITY IN FUNCTIONAL CONSTRAINTS
c

50 00 55 JB = l,LM
VALUE = 0 .O
00 54 JA 1,LN

VALUE= VALUE+ A(JB,YIJA)I * XTEMPIYIJAII

11±0

SEAOl78
SEA0179
SEA0l80
SEA 0181
S EA0182
SEA O 183
SEAOl84
SEA0l85
SEA 01 86
SEA0187
SEAOll:18
SE:A 0189
SEA0.190
SEAOl9l
SEAOl92
S EA0193
SEA0194
SEA0195
SEAOl96
SEA 0197
S EAOl98
SEA0l99
SEA0200
S EAOlOl
SEA0202
SEA 0203
S EA0204
SEA0205
SEA0206
SEA0207
SEA0208
S EA0209
SEA02 l O
SEA02ll
SEA0212
SEA02l3
SEA 0214
S f:A02l5
SEA02l6
SEA0.217
S EA0218
SEA02l9
S EA0220
SEA0221
SEA0222
S EA0223
SEA0224
SEA0225
SEA0226
SEA0227
SEA0228
SEA0229
SEA 0230
SEA0231
S EA0232
SEA 0233
SEA0234
SEA0235
SEA0236

c
c
c
c
c

c
c
c
c
c

c

54 CCNTINUE
TESr= BIJBI - VALUE
IFITEST 175,55,55

55 CONT.I NUE .
56 IFIKM.LE.01 GO TO ~3

57

60
63

65

15
11

78

80

00 60 KX = KY,KZ
AMOUNT"' O.O
DD ?7 KW = 1,LN

AMOUNT= AMOUNT+ AIKX,YIKWII * XTEMPIVIKWII
CONHNUE
CHECK= BIKXI - AMOUNT
IFICHECK160,b0175

CONTINUE
DO 65 JC= l,LN

XIJCI = XTEMPIJCl
CONT lNUE
GO TC 1000

STEP NUMBER 12

SOLUTION INFEASUILE; INCREMENT XTEMPIYILPlll ONE INTEGER

lFILN - 21350,350,77
ZSUdT = ZSUtlT + CIYLPll*XTEMPIYLPll
lFIMAX ,EQ.11 GO TO 78
XTEMPI YLPl I • XUHYLPll + l
GO TU 340
XTEMP(YLPll ~ XTEMP(YLPll - l
GO W 340

STEP NUMBER 13

CALCULATE NEW RIGHT-HAND SlDt tl-VALUES

LP l = L+ l
YLPl = YIL+ll
lFINOTEl,EQ,11 GO TU 90
LJO 85 Jl) = 1,KZ

BT(JDI = BTIJDI - A(JD,Yllll*XTEMPIYllll
IF(BT!JO)l84,85,85

84 NLlTE4 = l
85 CU/\T INUE

NO TE l = l
GO TD 9b

90 RXTEMP = XTEMPIYLPll
DO 95 JE = l,KZ

ET(JE} = BT(JEI - AIJE,YLPll*RXTEMP
1FlBT(JEll94,95,9~

94 NOTE4 = l
95 COI-.T INUE

C STEP NUMtlER 14
c
C DETERMINE IF L SHOULD oE 1 NCREMENTED
c

96 lFIL.Ei..11 GO TU 98
'i7 L = L+l

GO TO 99
SS 1FINOTE2 - 1199,97,97

141

SEA0237
SEA0238
SEA0239
SEA0240
S EA024 l
SEA0242
SEA 0243
S EA02 4'+
SEA0245
SEA 0246
SEA0247
SEA0241:1
S EA0249
SEA0250
SEA 0251
SEA0252
SEA0253
SEA0254
S EA02 55
SEA C2 56
SEA02':i7
SEA02 5ti
:.l:A02,9
SEA0260
SEt\0261
SEA 0262
S E:A0263
SEA0264
SEA0265
SEA0266
SEA0267
SEA0268
SEA0269
SEA 0270
S EA027 l
SEA0272
SEA 02 73
S EA0274
SEA 02 75
SEA0276
SEA0277
SEA027tl
S EA0279
SE:A0280
SEA028l
S EA02 82
SEA0283
Sl:A 02 84
SEA0285
SEA02 86
SEA02tl7
S EA0281:1
SEA0289
SEA0290
SEA029l
SEA0292
SEA0293
5EA0294
SEA 0295

c
C FINO NEW BOUND ON NEXT VARIABLE IN RANKING
c

c

99 LPl = L+l
YLPl = YIL+ll
Y2 = Yl21

C STEP NUMBER 15
c

IF(LPl.NE.21 GO TO 124
c
C STEP NUMBER 16
c

IflNOTE4 - lllOZ,100,100
c
C STEP NUMBER 17
c

100 lf(MAX.EQ~ll GO TO 101
XL Tl V21 = XLI Y2l
GO TO 330

101 XUTl¥21 = .XUl¥21
GO TO 330

c
C STEP NUMBER. 18
c

. _102 NOT E2 = l
RZ. Sl.lBT a ZSUBT
·RC Y 2 "' CI Y 2 I
Yl : Y C lJ
lflMAX.EQ .•. 01 GO TO .107

. XUHV21 .. RZSUBT/RC.¥2
DO lOb, Jf = 1,LM

lFIAIJf,Y21.LE.EPSI GO TO 106
lflROWIJF).EQ.Ol GO TO 104
SliM = O.O
DO 103 NC = l,LN

IFIA(Jf,NC).GE.0.01 GO TO 103
SUM= SUM+ AIJF,t-.CI * XUINC)

l 03 CONT lNUE
BTIJF) = BTIJFl - :.UM

lC4 MTEMP = BT(JFI/AIJF,Y2l
lFIROWIJfl.EU.Ol GO TO 105
lHIJF) = BT!Jfl + SUM

105 lFIMTEMP.GE.XUTIVZll GO TO 106
XUTl¥2 I = MTEMP

lC6 CONT!NUE
IFIXUTIY21.LE.XU(Y2ll GO TU 330
XUTl¥2l = XUIY2l
GO TO 330

107 XLTY2 = RZSUBT/RCY2
I\UM2 = XLTY2
DELTAl = NUM2
GA~MAl = XLT¥2 - DELTAl
IFIGAMMAl - EPSll08,108,l09

lOll XLTI Y2l = XL TY2
GO TO 110

lC9 XLTY2T = XLTY2 + 1.0
XLTIY2) = XLTVZT

110 DO 123 JK = KY,KZ

SEA0296
SEA0297
SEA0298
SEA0299
SE AO JOO
SEA0301
SEA0302
SEA0303
SEA0304
SEA0305
SEA0306
SEA0;107
SEA 0308
SEA0309
SEA03l O
SEA03ll
SEA0312
SEA0313
SEA0314
SEA0315
SEA 0316
S E:AOH 7
SEA0318
SEA 0319
SEA0320
SEA0.>21
SEA0322
SEA0323
SEA0324
S EA0325
SEA032b
SEA032 7
S EA0328
SEA0329
SEA0330
S EA033 l
SEA0332
SEA0333
SEA0334
SEA0335
SEA0336
SEA0337
SEA 0338
S EA0339
SEA0.340
SEA0341
SEA0342
.SEA0343
SEA0344
SEA0345
SEA0346
S EA034 7
SEA0348
SEA0349
SEA0350
SEA0351
SEA0352
SEA0353
SEA0354

c

IFIAIJK,V2).LE.EPSI GO TO 123
lf{RO~IJKI.EQ.01 GO ro 112
SUM= O.O
DO 111 NO= l,LN

IflAIJK,NOI.GE.0.01 GO TO lll
SU.M = SUM . + .A I JK, NDI * XU NDI

l ll CONTINUE
BTIJK) = BTCJKI - SUM

112 TEMPl = BTIJKJ/AIJK 1 Y21
IF(ROW(JKI. EQ.01 GO TO 113
BTIJKI = BTIJKI + SUM

113 I\UM3 = T EM Pl
DELTA3 .. NUM3
GAMMA 3 "' TEMP 1 - DELTA3
.IflGAMMA3 - EPSH20,120.,l21

12C NlEMP • TEMPl
GO TO 122

121 TEMPZ = TEMPl + loO
N TE MP = Tli·MPZ

122 IF(NTEMP.LE.XLT(Y2)1 GO ro 123
.l!L Tl ¥21 - NTEMP

123 CONT lNUE
1FIXLTIY2).GE.XLl¥2ll GO TO 330
.Xlll'tZl = XLl'l'21
GO TO 330

C STEP NUMBER 19
c

124 IFl~AX.EQ.Ol GO TO 200
c
C STEP NUMBER 20
c

c

125 IFINOH4 - lil27,l26,l2b
126 XUTIYLPll = XUIYLPll

GO TO 330

C STEP NUMBER 21
c

127 RlSUBT = ZSUBT
RC 'tL Pl = C I Y LP l l
XUT(~lPll = RlSU~T/RCVLPl
00 145 JG= l,LM

lF{AIJG,YlPll.LE.EPSl GO TO 145
IF!ROWIJGl,EQ.01 GO TU 135
SUM"' O.O
00 130 NE= 1,LN

lf(A(JG,NEI.GE.O.Ol GU TO 130
SUM= SUM+ A(JG,NEI * XU{Y(NE}J

l3C CONTINUE
BTIJGl = BT(.JGI - SUM

135 MTEMP = BTtJGl/A{JG,YLPll
IF(ROWIJGl.EQ.Ol bU TO 140
BTIJG) = BTIJGl + SUM

140 IfCMTEMP.GE.XUT(YLPlll GO TO 145
XUTIYLPll = MTEMP

145 CONTINUE
IFIXUT(YLPll.LE.XUIYLPl)l GO TU, 330
XUTIYLPll = XUIYLPU
GO TO 330

143

SEA 03 55
SEA0356
SEA0357
SEA0358
SEA0359
SEA03b0
SEAC3bl
S EA0362
SEA0363
SEA 0364
S EA0365
SEA0366
SEA 0367
SEA03.68
SEA0369
S EA0370
SEA037l
SEA0372
SEA03H
SEA0374
SEA 0375
SEA0376
SEA0317
SEA037tl
SEA03.79
SEA0380
SEA0381
SEA0382
SEA0383
SEA0384
SEA038.5
SEA0386
S EA0387
SEA038 8
SEA0389
SEA0390
SEA 0391
SEA0392
SEA0393
SEA0394
S EA0395
SEA0396
SEA0397
S EA0398
SEA0399
SEA0400
SEA.0401
SEA0402
SEA0403
SEA0404
SEA0405
SEA0406
SEA0407
SEA 0408
SEA0409
SEA0410
SEA04ll
SEAO'tl2
SEA0413

c
C STEP NUMBER 22
c

t

200 IF&NOTE4 - 11210,220,230
210 XLJCYLPll = XLlYLPll

GO TO 330
220 RZSUBJ • ZSUBT

RC ~LPl = Cl YLPll
XLYLPl = R2SUBJ/RCYLP1
NUM4 = XLYLPl
OELJA4 = NUH4
GAMMA4 = XLYLPl - OELTA4
IFIGAMMA4 - EPSl225,225,230

225 XLT I YLP 11. = XL YL Pl
GO JO 235

23C JEMXLJ = XLYLPl + l.O
XL JI YLP 11 = TEMXLJ

235 DO 245 JL = KY,KZ
lflA(JL,Y21.LE.EPSJ GO TO 245
lflROWlJLI.EQ.01 GO JO 237
SUM= O.O
00 236 NF= 1,LN

lf(AIJL,Nfl.GE.O.Ol GO JO 2lb
SUM= SUM+ AIJL,Nfl * XLIYINFJI

236 CONTINUE
BHJU = BJCJLJ - SUM

237 TEMPS= BT(JL)/ACJL,YLPll
lf(ROW(JL).EQ.Ol GO TO 238.
BT(Jll = BJ(Jll + SUM

23S NuM5 = TEMPS
CELJA5 • NUMS
GAMMAS a TEMP5 ~DELTAS
IFIGAMMA~ - EPSlZ40,240,i4l

240 MEMP5 • TEMPS
GO TO 242

2~1 JEMPY • TEMPS + l, 0
~TEMPS • TEMP\'

242 lFlNTEMPSoLE.XLTIYLPlll GO TO 245
XLTI YLPll = NTEMP5

245 CONTINUE
lFCXLTIYLPU.GE.XLlYLPlll l>O TO 330
XLTIYLPll = XLIYLPll

C STEP NUMBER 23
c
C SET NEXT VARIABLE IN RANKlNG AT ITS NEW BOUND
c

33 0 l f CM AX • E Q .1 I GU TO H l
XTEMPIYLP11 XLT(YLPll
GO TO 340

331 XTEMP(YLPl I = XUHYLPU
c
C STEP NUMBER 24
c
C CHECK TO SEE IF A VAIUABLE HAS BEEN 1 NCREMENTEO BEYOND' ITS BOUND
c

34C LPl "'L+l
YL Pl = Y (L + ll
IF(MAX.EQ,11 GO TO 341

144

SEA0414
SEA0415
S EA0416
SEA0417
SEA04lt1
Sf:A0419
SEA0420
SEA0421
SEAO"t22
SEA0423
S i:A0424
SEA0425
SEA042b
S EA0427
SEA0428
SEA0429
SEA0430
SEA043l
SEA0432
SEA043~
SEA 0434
SEA0435
SEA043b
SEA04J7
SEA04.3tl
SEA0439
SEA0440
SEAOHl
SEA 0442
SEA0443
SEA0444
SEA 0445
SEA0446
SEA0447
SEA 04'tl:l
SEA01t49
SEA0450
SEA045l
SEA0452
SEA0453
SEA0454
SEA0455
SEA045b
S EA0457
SEAO"t58
SEA0459
S EA0460
SEA04bl
SEA04b2
SEA0463
SEA04b4
SEA04b5
SEA04bb
SEA0467
SEA04b8
SEA04b9
SEA0470
SEA0471
SEA04 72

c
c
c

c
c
c
c
c

c.
c
c
c
c

c
c
c

.341

342

345

346

350

351
352

355

3H

365
3 75
316

380

1000

lFIXTEHPIYLPl I .LE .XUTIYLPU I GO TO 12
llTEHPI YLPl I • XUTI YI.Pl I
GO TO 3'12
lFIXTEHPIYLPll.GE.XLTIYLPlll GO TO 12
XTE~PCYLPll • XLTCYLPl)

STEP NUMBER 25

IFIL.EQ.11 GO TO 350
L "' L-1
'tLPl = YIL•ll
ZSUBT = ZSUBT + CIYLPU*XTEMPIY!,.Pll
RXTEMP = XTEMPCYLPll
DO 345 JH 1,LM

BTIJH) = BTIJHI + AIJH,YLPll*RXTEMP
COl';ll NUE
NOTE4 = 0
LPl =· L+l
IFIMAX.EQ.11 GO TO 346
XTEMP(YLPll XTEMPIYLPll + l
GO lO 340
XTEMPIYLPll = XTEMPIYLPll - l
GO TO 340

STEP NLIMBEK 26

INCREMENT FIRST VARIABLE IN RANKING ONE INTEGER

IFIMAX.EQ.11 GO TO 351
XTEMPI YI 111 a XTEMPI Y ll l I t- l
GO TO 352
XTEt4PCYllll • XTEMPIYllll - l
NO Tl: l • 0
IICT E2 • 0

STEP NUMBER 27

CHECK TO SEE IF ALL SCLUTIONS HAVE BEEN EXAMINED

IF(MAX.EQ.Ol GO TO 3b5
IF I XTEMPI YI ll) - XL.Tl YI 11 l 1355 ,3b0 ,3b0
ZOF = ZOF - G
GU TO 4
ZSUB T = lOF
NOTE3 = 0

ST El' NUMBER 2 d

IF I Ll\-2112 ,12 ,10
IFIXTEMP(Yllll - XUTIY(llll380,3d0,37"
IFIZOFl355,355,376
lOF = ZOF t- G
GO TO 4
lSliBT = lOF
NO TE3 = 0
IF IL N- 2) l 2, 12, l O
RETURN
ENO

SEA0473
SEA 0474
SEA0475
SEA 04 7o
SEA0477
SEA04 7ti
SE A 04 79
SEA0480
SEAO<tlll
!:.EA0482
S EA0483
S EA04 tl't
SEA 0485
S f:A04,8o
SEA0487
SEA0488
SEA0489
SEA 0490
SEA0491
SEA0492
SEA 0493
S. EAC494
5EAO<t9'.?
SEA u49o
S EA0497
SEA0498
SEA 0499
S EA0500
SEA0501
SEA0502
SEA0503
SEA0504
SEA0505
SEA0506
SEA0507
SEA0508
SEA0509
SEA0510
SEA05ll
SEA0512
SEA0513
SEA0514
SEA 0515
SEA05 l6
SEA0517
SEA0518
SEA0519
SEA0520
5EA052l
SEA0522
SEA0523
SEA0524
SEA0525
SEA0526
SEA0527
SEA0528
5,EA0529
SfA0530

APPENDIX F

TEST PROBLEMS AND SOLUTIONS

A I. r

147

1. maximize z = 15 Xl + 6 X2 + 9 X3 + 2• X4 (F-1)

subject to 2 X1 + 1 X2 + 5 X3 + o.6 X4 < 12.5 (F-2)

J Xl + 1 X2 + J X3 + o.25x4 < 12.6 (F-J)

7 Xl + 0 X2 + 0 X3 + 1 X4 < 35 (F-4)

Xj > 0 for j = 1' 2, J, 4 (F-5)

Xj INTEGER for j = 1, 2, 3, 4 (F-6)

x* = (1 ' 9, o, 2) (F-7)

z* = 73. (F-8)

2. From Wagner (JO):

maximize z = 3 Xl + J X2 + 1J X3 (F-9)

subject to - J X1 + 6 X2 + 7 X3 < 8 (F-10)

6 X1 - 3 X2 + 7 X3 < 8 (F-11)

Xj > 0 for j - = 1 ' 2, J (F-12)

Xj INTEGER for j = 1' 2, J (F-13)

x* = (0' o, 1) (F-14)

z* = 13. (F-15)

3. From Gomory (11) :

maximize z = 4 X1 + 5 X2 + X3 (F-16)

3 X1 + 2 X2 + 0 X3 < 10 (F-17)

1 Xl + 2 X2 + 0 X3 < 11 (F-18) -
3 Xl + J X2 + 1 X3 < 13 (F-19)

148

X3 > 0 for j = 1, 2, J (F-20)

x., INTEGER for j = 1' 2, J (F-21)

x* = (2, 2, 1) (F-22)

z* = 19. (F-2J)

4. From Young (31) :

maximize z = Xl + Xa + Xs (F-24)

subject to - 4 Xl + 5 Xa + 2 X3 < 4 (F-25) -
- 2 Xl + 5 Xa + 0 X3 < 5 (F-26) -

J Xl - 2 X2 + 2 X3 < - 6 (F-27)

2 Xl - 5 xa + 0 X3 < 1 (F-28) -
X3 > 0 - for j = 1' 2, J (F-29)

Xj INTEGER for j = 1, 2, J (F-JO)

x* = (3' 2, O) (F-J1)

z* = 5. (F-J2)

5. minimize z = 10 Xl + 14 xa + 21 X3 (F-JJ)

subject to 4 Xl + 4 Xa + 7 X3 < 28 (F-J4) -
8 Xl + 11 Xa + 9 X3 > 12 (F-35)

2 Xl + 2 xa + 7 X3 > 14 (F-J6)

9 X1 + 6 Xa + 3 X3 > 10 (F-37)

x* = (1 ' o, 2) (F-J8)

z* = 52. (F-39)

149

6. From Cook (5) :

maximize z = 1 Xl - J xa + J X3 (F-40)

subject to 2 Xl + 1 Xa - 1 X3 < 4 (F-41) -

4 Xl - J xa + 0 X3 < 2 (F-42)

- J Xl + 2 xa + 1 X3 < J (F-4.3)

Xj > 0 f'or j = 1, 2, J (F-44)

Xj INTEGER for j = 1' 2, J (F-45)

x* = (2 ' 2, 5) (F-46)

z* = 11. (F-47)

7. From Cook (5) :

maximize z = 1 X1 + 2 xa + J X3 + 1 X4 + 1 X5 (F-48)

subject to 1 X1 + 0 xa + 4 X3 + 2 X4 + 1 XS < 41

(F-49)

4 Xl + J Xa + 1 X3 + 0 X4 - 1 X6 < 147

(F-50)

Xj > 0 for j = 1' 2, J, 4, 5

(F-51)

Xj INTEGER for j = 1' 2, .3 ' 4, 5

(F-52)

x* = (0' 42, o, 19, J) (F-5J)

z* = 106. (F-54)

150

8. From Trauth and Woolsey (28):

maximize Z = 20 Xl + 18 Xa + 17 X3 + 15 X4 + 15 X5

+ 10 Xe + 5 X7 + 3 Xe + X9 + Xl O

(F-55)

subject to JO X1 + 25 Xa + 20 Xs + 18 X4 + 17 Xs

+ 11 Xe + 5 X7 + 2 Xe + X9 + X1 0

< 55 (F-56)

X3 < 1 for j = 1' 2, ' 10

(F-57)

X3 > 0 for j = 1' 2, ... ' 10

(F-58)

Xj INTEGER for j = 1, 2, . . . ' 10

(F-59)

x* = (0' o, o, 1, 1, 1' 1, 1 ' 1' 1)

or (F-60)

x* = (0' o, 1' o, 1' 1' '1 ' 1, o, 0)

(F-61)

z* = 50. (F-62)

•\
Q

VITA

James Melvin Shirley

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN OBJECTIVE FUNCTION REDUCTION ALGORITHM FOR
INTEGER LINEAR PROGRAMMING

Major Field: Engineering

Biographical:

Personal Data: Born in Oklahoma City, Oklahoma,
June 22, 194,0, the son of Mr. and Mrs. M. F.
Shirley.

Education: Attended Central State College, Edmond,
Oklahoma, from September, 1958 to January, 1961;
transferred to Oklahoma State University in
January, 1961; received a Bachelor of Science de
gree from Oklahoma State University in May, 1963,
with a major in Electrical Engineering; attended
and completed courses at the Federal Aviation
Administration FAA Academy during 1965, studying
basic radar techniques and radar bright display
equipment; attended the University of Oklahoma
during 1966 and 1967; completed the requirements
for a Master of Science degree at Oklahoma State
University in May, 1968; completed requirements
for Registered Professional Engineer in the State
of Oklahoma, January, 1971; completed requirements
for the Doctor of Philosophy degree at Oklahoma
State University, with a major in Industrial Engi
neering and Management, in May, 1972.

Professional Experience: Student engineering trainee,
Oklahoma Gas and Electric Company, summers 1961
and 1962; electronic engineer, Federal Aviation
Administration, communication engineering, 1963,
radar engineering, 1964 to June, 1968; test set
engineer, Western Electric Company, Inc., June,
1968 to September, 1969; research graduate
assistant, Oklahoma State University, September,

1969 to September, 1971; teaching graduate
assistant, Oklahoma State University, September,
1971 to May, 1972.

