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PREFACE 

The principal goal of this research is to extend the 

existing theory of solution procedures for pure integer 

linear programming. This study is concerned with the devel

opment of a new algorithm for solving the pure integer 

linear programming problem. The procedure presented in this 

thesis uses combinatorial search methods to find the solu

tion to the problem. A family of objective function hyper

planes is examined until an integer solution is found. 

Beginning at the optimum noninteger solution, the algorithm 

inspects parallel objective function hyperplanes in the 

feasible solution space. 

Additional, secondary problems are considered in this 

research. These are (1) to identify any heuristic proce

dures that will speed the convergence of the algorithm, 

(2) to develop a procedure for finding a good approximate 

solution to the problem, and (J) to·write a computer code 

to evaluate the algorithm. One stage of the algorithm pro

poses a ranking scheme for the variables to potentially 

eliminate many combinatorial solution possibilities from 

explicit consideration. A heuristic method of ranking is 

developed for a certain class of problems. This heuristic 

method allows the algorithm to take full advantage of 
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techniques that speed convergence. A technique is examined 

for finding an approximate solution to the pure integer 

linear programming problem. Also, this procedure can be 

used to establish a lower bound on an objective function 

that is to be maximized. A computer code is presented for 

further evaluation of the algorithm and any refinements or 

additions that may be considered, 

The members of my doctoral advisory committee have 

given generously of their time and effort throughout my 

study and research. Dr. James E. Shamblin, the committee 

chairman and thesis adviser, continually offered the inspi
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search objectives. He provided an overview that added sig

nificantly to the continuity of this research. Dr. M. 

Palmer Terrell carefully reviewed this research as it devel

oped. His perception added immeasurably to the accuracy and 

composition of this thesis. Dr. David L. Weeks gave direc

tion and insight to my graduate study in statistics. His 

ability to find the central issue of any logic continually 

challenged me to reason clearly. 

In particular, I gratefully acknowledge the contribu

tions of Dr. James E. Shamblin during our years of work 
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mathematical programming and teach in engineering. He gave 

the motivation to make this thesis possible. 
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NOMENCLATURE 

a coefficient in the ith constraint for the original 

problem variable, x 3 • 

a coefficient in the ith constraint for the ranked 

variable, y 3 • 

b 1 the right-hand side value of the ith constraint. 

bi the temporary right-hand side value of the ith 

constraint. 

c 3 an objective function coefficient for variable x 3 • 

It must be integer. 

" c 3 an objective function coefficient for variable y 3 • 

g 

i 

IF LAG 

j 

f., 

m 

It must be integer. 

the greatest common divisor of the coefficients in 

the objective function. 

index for number of functional constraints. 

a key word indicating all successive subscripts in 

the ranking~ IFLAG have even coefficients. 

index for number of variables. 

a superscript indicating a lower bound. 

the number of functional constraints in the problem. 

That is, the nonnegativity constraints are not 

counted in m. 

MAX a key word indicating a maximization problem when it 



equals one,indicating a minimization problem when 

it equals zero. 

n the number of problem variables, not including the 

slack or artificial variables. 

re x) j the range of a variable x 3 in the original problem. 

re y) j the range of a variable y 3 in the ordered :r-artking of 

the variables. 

x* an optimum continuous value for a variable. 

x* an optimum integer solution vector. 

x a solution vector. 

x 3 a problem variable. 

1, 
x 3 a lower integer bound on variable x 3 • 

·u 
x 3 an upper integer bound on variable x 3 • 

y* an optimum integer value for a ranked variable. 

z* an optimum integer solution vector in terms of 

ranked variables. 

z a solution vector in ter~s of ranked variables. 

y 3 a ranked variable. 

1, 
YJ 

u 
Y3 

J, 
YC .! ) t 

u 
Y( J ) t 

the 

the 

the 

the 

lower integer bound on 

upper integer bound on 

temporary lower bound 

temporary upper bound 

ranked variable YJ • 

ranked variable YJ • 

the .t.h ranked variable. on J 

the .th ranked variable. on J 

z a value of the objective function. 

z* the value of the objective function at the optimum 

integer solution. 

Zt a temporary value of the objective function. 

ZOF the value o:f the objective function that is being 



ZSIM 

ZSUBT 

searched for a solution. 

the value of the objective function for the 

simplex linear programming solution. 

a temporary value of the objective function. 



CHAPTER I 

INTRODUCTION 

The subject of pure integer linear programming is 

approximately fifteen years old. Even though a great amount 

of successful work has been done when the problem variables 

can take on continuous values, the area of integer program

ming is still difficult in practice. Many early algorithms 

suggested cutting-plane methods that added new constraints 

at each iteration. Later, branch-and-bound techniques were 

developed to solve the integer programming problem. Enumer-

ation schemes and heuristic techniques have been examined as 

possible solution procedures. While most algorithms offer 

convergence in a finite number of steps, in practice finite 

can often be very large. 

Many situations of both industrial and theoretical 

importance can be formulated as an integer linear program-

ming problem. Problems involving equipment utilization, 

labor allocationj capital budgeting and others require that 

the variables can take on only integer values. Therefore, 

integer linear programming has offered the promise of 

solving several operations research models. The algorithms 

available to date have not always been able to fulfill the 

promised solution. Some algorithms are only useful on 

1 
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certain limited problems. In any of the algorithms, certain 

examples can be devised that require approximately an equiv

alent amount of effort as complete enumeration of the feasi

ble solutions. 

So, the paradox exists. Integer linear programming has 

offered the solution to many problems of operations research, 

while the available algorithms have provided only limited 

practical success. The research of this thesis explores a 

new, potentially useful method of extending the analysis of 

integer linear programming. This algorithm can provide a 

pure integer programming solution or a good approximate 

solution with a lower bound on the maximand. Even though 

the exact solution is important, an approximate solution 

greatly increases the efficiency of some optimal algorithms. 

Hillier (14) indicates the great importance of good approxi

mate solutions in integer linear programming problems. 

The difficulties associated with solving the integer 

linear programming problem can be enormous. Constrained 

optimization problems often imply a finite solution space 

exists. Nevertheless, the potential combinatorial possibil

ities can be great even in problems with a moderate number 

of variables and constra~nts. It is no wonder that some 

early thinkers concluded the problem was impossible to 

solve. 

Complete enumeration quickly becomes impractical, since 

each combinatorial possibility within the solution space 

must be tested for its feasibility and must have the 
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objective function value tested. Because of the efficiency 

of the simplex method, a common procedure in practice is to 

solve the problem for the optimal noninteger solution and 

then use a rounding procedure to obtain an approximate solu

tion. On certain problems, this technique can lead to solu

tions far from the optimum integer solution. Wagner (JO) 

and Hillier and Lieberman (16) present examples of how 

rounding can sometimes lead to poor solutions. The possi

bility of rounding the optimal noninteger solution to simply 

a feasible solution can be a difficult problem when dealing 

with several constraints in a multispace system. 

The method of searching the feasible integer solution 

space must be intelligently structured or certain problems 

could not be solved in several lifetimes. For example, if 

a problem contained only 25 variables and each could take on 

only two values, then 226 = J3,554,4J2 possible combina

tions exist. Any practical algorithm must take advantage of 

techniques to avoid complete enumeration and examination. 

The algorithm developed in this research takes advantage of 

several methods that implicitly examine and eliminate a 

large number of possible solutions. 

Objectives 

The primary goal of this research is to extend the 

existing theory of solution procedures for pure integer 

linear programming. In particular, a new algorithm for 

solving the pure integer linear programming problem is 



developed. Additionally 1 other objectives are (1) to iden-

tify any heuristic procedures that will speed the conver

gence of the algorithm, (2) develop a procedure for finding 

a good approximate solution to the problem, and (J) write a 

computer code to evaluate the algorithm. To meet these 

objectives, this thesis presents an algorithm that uses 

combinatorial search methods to find the solution to the 

pure integer linear programming problem. 

Heuristic procedures can point the way to obtaining 

more insight into the structure of a solution technique. 

Also, they can often be used to speed convergence of an 

algorithm. Since computational efficiency is a prime con-

sideration in integer programming, heuristic procedures can 

frequently be used to move the algorithm quickly to the 

solution. 

Many integer linear programming algorithms can benefit 

from a good approximate solution. Hillier (14, 15) de-

scribes the importance of finding methods that will provide 

near optimum solutions. Oftentimes, large problems with a 

4 

great many variables and constraints can only be economical-

ly solved with approximate procedures. Therefore, a method 

for finding a good approximate solution of the integer 

linear programming problem will be investigated in this 

research. 

To be able to evaluate the solution procedure described 

in this thesis a computer code is required. Problems of 

practical and theoretical importance often involve several 
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variables and constraints. A computer code is essential to 

solve large problems. Also, it provides a useful method for 

evaluating modifications and variations in solution proce-

dures. A brief summary of the main concepts of the algo-

rithm developed in this research is given in the following 

section. 

General Concepts of the Objective 

Function Reduction Algorithm 

The objective function reduction algorithm seeks a 

solution to the pure integer linear programming problem. 

The problem can be expressed in cannonical form as follows: 

n 

maximize z = l C j Xj (1-1) 

j=l 

n 

subject to l a1 J Xj < b1 for i 1 ' 2, . . . ' m (1-2) 

j=l 

xj > 0 for j = 1 ' 2, ... ' n (1-3) 

Xj, cJ INTEGER for j - 1 , 2 , .•. , n. (1-4) 

It is assumed that the set of constraints of Equations (1-2) 

and (1-3) bound the solution space. The nonnegativity 

requirement of Equation (1-3) is not necessary for the con-

ceptual approach developed in this research. Nevertheless, 

this is a typical and often a necessary condition in a 

practical problem. The algorithm restricts the objective 
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function coefficients to integers, while the coefficients in 

the constraints and their right-hand side values may be non-

integer. Constraint coefficients and objective function 

coefficients are not restricted as to sign and may be nega

tive or positive. 

Very generally, the objective function reduction algo

rithm moves through a family of parallel objective function 

planes within the solution space, away from the optimal 

noninteger solution, until a feasible integer solution is 

found, which is the optimal integer solution. The basic 

flow of the logic of the algorithm can be described in four 

stages. Stage 1 requires that the simplex method be used 

to find the optimal continuous-variable solution. If this 

solution is all-integer, the algorithm stops. Otherwise, 

the algorithm requires knowledge of the value of the objec-

tive function at the optimal noninteger solution. The next 

part of Stage 1 is to identify the bounds on each problem 

variable, as defined by the functional and nonnegativity 

constraints. If n is the number of problem variables, then 

this can be done by solving 2n linear programming problems. 

These linear programming problems are subject to the func

tional constraints and have objective functions of the form 

maximize Z = Xj (1-5) 

and, 

minimize (1-6) 

for each j, j = 1, 2, ••• , n. In practice these bounds can 



be found reasonably fast. They may be readily known from 

experience of working with the problem. Minimization prob

lems with only greater-than-or-equal-to constraints must 

have a finite upper bound defined for each variable. These 

bounds become integer bounds when the quantities found in 

Equation (1-5) are selected so the upper bound on the vari

able is the greatest integer less than or equal to x 3 • 

Similarly 1 the lower integer bound on each variable is 

selected such that it is the least integer greater than or 

equal to x 3 found in Equation (1-6). 

Stage 2 examines the coefficients of the objective 

function. Using concepts from the study of linear 

Diophantine equations and the theory of numbers, the 

greatest common divisor of the objective function coeffi-

7 

cients is found. Assuming a maximization problem, the value 

of the objective function as found with the simplex method 

in Stage 1 is rounded down to the greatest integer that has 

the greatest common divisor as a factor. 

Stage 3 determines how the variables should be ranked 

so the search of Stage 4 will implicitly examine and exclude 

several solutions. Also, Stage 3 identifies any successive 

sequence of objective function coefficients in the ranking 

such that all succeeding values are even integers. This 

sequence of even coefficients is used to take advantage of 

additional concepts of linear Diophantine equations. 

The final stage, Stage 4, is the heart of the implicit 

search of the feasible integ~r solution space. Again 
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assuming a maximization problem, the first variable in the 

ranking of Stage 3 is set at its upper bound. The objective 

function is set equal to the integer value determined in 

Stage 3, giving an upper bounding hyperplane on the maxi

mand. Using the objective function and the functional con

straints, new, potentially tighter bounds are found on the 

next variable in the ranking. This next variable in the 

ranking is then set at its new upper bound. This process of 

finding tighter upper and lower bounds continues until the 

algorithm finds it can take advantage of some concepts of 

linear Diophantine or the next to last variable in the rank

ing is reached. Using the objective function and the held 

value of the variables, the value of the final variable in 

the ranking is calculated. If this solution is integer, its 

feasibility is tested in the functional constraints. If the 

final variable is noninteger or an all-integer solution is 

found infeasible, then the algorithm backtracks through the 

ranking until it has explicitly or implicitly examined each 

combinatorial possibility for a particular objective func

tion value. The first feasible integer solution found is 

the optimum integer solution for the problem. When all 

solutions have been considered for the first objective func

tion value, and no feasible solution has been found, then 

the objective function is incremented down one greatest 

common divisor increment. The algorithm returns to the 

beginning of Stage 4 to examine the possibility of a feasi

ble integer solution on a new, reduced hyperplane. 
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Some of the essential concepts of the objective func

tion reduction algorithm can be introduced with a simple 

two-variable example. The following section describes such 

an example. 

A Two-Variable Introductory Example 

One advantage of a two-variable example is the solution 

space can be easily visualized. The simplicity of finding 

the solution in two dimensions often indicates a particular 

search technique will be very valuable. When several vari

ables are considered, that is, the problem is multidimen

sional, the satisfactory techniques of two dimensions often 

become tedious and ineffectual. Nevertheless, because of 

the visual properties of a two-dimensional example, it is 

useful to fall back on to point out some of the features of 

an established algorithm, such as the one developed in this 

research. 

Consider the following two-variable example: 

maximize z = 8 Xl + 10 X2 (1-7) 

subject to 7~ + 5.5 X2 < 38.5 (1-8) 

4.5 Xl + 8 xa < 36.0 (1-9) 

Xj > 0 for j = 1 ' 2 (1-10) 

~' cj INTEGER for j = 1 ' 2. (1-11) 

Figure 1 shows how the constraints bound the solution area. 
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6 

4 

• 

2 • 

• 

7x.1 + 5.5'X.2: 38.5 
(CONSTRAINT ONE) ., 

' ' • ' z : '~ 

• 

. . ' ' ' ' . . ' 

• • • 

2 4 6 

4.5x., + 8x.2 = 36 
'~CONSTRAINT TWO) 

' ' ' ' ' 
8 

NOTES: 

(I) OPTIMUM NONINTEGER SOLUTION, i = (3.52, 2.52) 
( 2) OPTIMUM INTEGER SOLUTION, ~ * = ( 2, 3) 

' 

Figure 1. Two Variable Introductory Example 
Problem 
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The Stage 1 analysis of the algorithm determines first 

the optimum noninteger solution of the problem. 

Figure 1, the optimum noninteger solution is 

As shown in 

~ = (x1, xa) = (J.52, 2.52). Since this solution is not 

all-integer, the algorithm continues its search for a feasi

ble integer solution. The value of the objective function, 

Equation (1-7), at the optimum noninteger solution is 

z = 53.36. By inspecting the constraint boundaries of 

Figure 1, the maximum over-all integer bounds of the problem 

variables can be found. Therefore, the upper and lower 

integer bounds can be defined by the inequalities 

0 < Xl < 5 (1-12) 

and 

0 < xa < 4. (1-13) 

Stage 1 says the objective function at the optimal non

integer solution is 

z = 8 x1 + 10 xa = 53.36. (1-14) 

This would be a straight line parallel to the objective 

function equation shown in Figure 1, intersecting the opti·

mum noninteger solution at x = (x1, x 2 ) = (3.52, 2.52). 

Since this solution is not integer optimum, the optimum 

solution must lie on some parallel objective function line 

below the maximum described in Equation (1-14). Also, 

notice that the cj coefficients are restricted to integer 

values. Therefore, the left-hand side of the objective 
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function must equal some integer value, since the product 

and sum of integers must be an integer value. To force the 

right-hand side of the objective function to an integer 

value, it seems justifiable to round Equation (1-14) down to 

the greatest integer below 53.36 to get the equation 

Z = 8 Xl + 10 Xa = 53. (1-15) 

Using the methods that will be explained in Chapter III, 

Stage 2 calculates the greatest common divisor of the coef

ficients (cj) in the objective function, Equation (1-7). 

For this simple introductory example problem, the greatest 

common divisor can be determined by inspecting the coeffi

cients c1 = 8 and ca= 10 in Equation (1-?). It can be seen 

that the greatest integer that will divide evenly into 8 and 

10 is the number 2. Therefore, the greatest common divisor 

for the objective function is 2. 

As will be shown in Chapter III with the study of 

linear Diophantine equations, no integer solution is possi

ble for Equation (1-15). The optimum noninteger solution 

value must be rounded down until it has the greatest common 

divisor as a factor. That is, begih the recursive search 

for a feasible integer solution with the first reduced 

objective function being 

Z = 8 X1 + 10 X2 = 52. (1-16) 

The greatest common divisor, 2, divides evenly into the 

integer value z = 52. This says there is at least one 
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integer solution to this objective function. If this 

integer solution is within the solution area, as defined by 

the functional and nonnegativity constraints, the optimum 

solution has been found. Otherwise, the optimum solution 

must be located on a further reduced objective function 

parallel to Equation (1-16). Stage 2 is complete when z= 52 

of Equation (1-16) is found. 

In Stage 3, the variables are ranked or ordered accord

ing to the number of feasible integer possibilities each 

variable can take on. Equations (1-12) and (1-13) describe 

the lower and upper bounds on each variable. Variable x1 

can take on six integer values, while variable xa can take 

on five integer values. As described later in Chapter IV, 

the ranking scheme is to assign the variable with the 

tightest bound the highest ranking position. A new symbol, 

yj, will be used to indicate a ranked variable. Therefore, 

the direct change of variables will give 

Y1 = xa (1-17) 

and, 

Ya = x1. (1-18) 

Therefore, the bounds on the ranked variable are 

0 < y1 < 4 (1-19) 

and, 

0 <Ya< 5. (1-20) 
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Based on the change of variables given in Equations 

(1-17) and (1-18) a new problem described in terms of the 

ranked variables (y3 ) is defined. This new problem will be 

solved using the objective function reduction algorithm. To 

avoid notation difficulties, it is often convenient to think 

completely in terms of the ranked variables and the new 

problem. Later, the variables can be returned to their origi-

nal form. The new problem, written with ranked variables, 

is 

maximize z = 10 Y1 + 8 Ya (1-21) 

subject to 5 · 5 Y1 + 7 Ya < 38.5 (1-22) 

8 Y1 + 4.5 Ya < 36.0 (1-23) 

Y3 > 0 for j = 1' 2 (1-24) 

,. 
Y3 , C3 INTEGER for j = 1' 2. (1-25) 

Figure 2 shows how the ranked constraints bound the solution 

area. 

An additional requirement of Stage 3 is to identify any 

successive sequence in the ranking such that all succeeding 

coefficient values in the objective function are even inte-

gers. Equation (1-21) shows that both coefficients in the 

objective function are even integers. The algorithm records 

and potentially uses this fact. From the theory of numbers 

and linear Diophantine equations, the algorithm uses a 

rather simple observation. If during any part of the 



8y1 + 4.5y2 = 36 
( CONSTRAINT TWO) 

8 ' ' ' . ' ,~z = IOy, + 8y2 
6 • 

' • ' ' ' 4 • • • ' ' 5.5y, -t 7Y2 = 38.5 
• • , (CONSTRAINT ONE) 

' 2 • • . ' ' ' • • • ., 
' 00 2 4 6 8 10 Y, 

NOTES: 
(I) OPTIMUM NONINTEGER SOLUTION, y = (2.52,3.52) 
( 2) OPTIMUM INTEGER SOLUTION, y_* = ( 3,2) 

Figure 2. Two Variable introductory Example 
Problem With Ranked Variables 
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search, the objective function is given a value that is an 

odd integer, while all coefficients are even, then no inte

ger solution can exist for that equation. Consequently, 

several solutions can be implicitly examined and eliminated. 

As stated before, Stage 4 is the heart of the objective 

function reduction algorithm. Using the ranking scheme and 

the bounds found earlier, the first variable in the ranking 

is set at its upper bound. Therefore, set 

Y1 = 4. (1-26) 

From Stage 2, the first reduced objective function value to 

be examined is 

z - 10 Y1 + 8 Ya= 52. (1-27) 

In a problem involving several variables, the held value of 

Yl (y1 = 4) would be substituted into the reduced objective 

function and the functional constraints. Obviously, with 

one variable held at a fixed value, the right-hand side of 

the constraints and the reduced objective function value can 

be modified. As Figure 2 shows, when the variable Y1 is 

held fixed at Y1 = 4, the constraints will provide tighter 

bounds on the next variable the ranking, ya. With y1 = 4, 

the functional constraints of Equations (1-22) and (1-2J) 

indicate tighter bounds on Ya· That is, 

5.5(4) + 7 Ya< J8.5 

8(4) + 4.5 ya< J6.o 

(1-28) 

(1-29) 
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and this leads to 

Y:a < 2.J5 (1-JO) 

from constraint one, and 

Y:a < 0.88 (1-J1) 

from constraint two. This is shown clearly in Figure 2. 

The minimum value from Equations (1-JO) and (1-J1) provides 

a new, temporary upper bound on y:a. This means that ya must 

be no greater than the greatest integer less than or equal 

to Ya< 0.88 from Equation (1-J1). Therefore, 

Ya< 0 (1-J2) 

is a new upper bound on the next variable in the ranking. 

This procedure has reduced the number of possible values to 

examine. 

With only two variables, the process of finding tighter 

bounds is unnecessary. For a fixed value of one variable, 

the reduced objective function of Equation (1-27) provides 

the value of the other variable~ Nevertheless, the two

variable example easily shows the principle of finding 

tighter bounds. In the complete algorithm described in 

Chapter IV, the reduced objective function equation is used 

similarly as a constraint would be used to aid in identify

ing the tightest possible bound on the next variable in the 

ranking. 

With two variables, Equation (1-27) leads quickly to 
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the solution, for a fixed value of Y1 = 4. That is, 

10(4) + 8 Ya= 52 (1-JJ) 

and 

Ya= 1.5. (1-J4) 

Since Ya has been found to be a noninteger value, it is 

immediately eliminated as a feasible solution. If Ya had 

been found integer, the feasibility of the solution 

y = (y1, ya) would be tested in the functional constraints. 

The first feasible, all-integer solution found is the opti

mum solution. 

For this two-variable example, the algorithm says no 

feasible, integer solution exists for z = 52 and y1 = 4. 

The search continues by incrementing y1 down one integer and 

solving for Ya• This process continues until all integer 

possibilities for Yl have been tested, which implies all 

values of Ya have been tested. If the optimum solution is 

not found at z = 52, then the objective function is still 

further reduced by the amount of the greatest common divisor 

to z = 50. This gives a new objective function equation to 

be searched, which is 

z = 10 y1 + 8 ya = 50. (1-35) 

Figure 3 shows this process will continue until the 

optimum solution is found at y* = (J, 2) with z = 46. 

Notice how Figure 3 indicates that the first feasible inte

ger solution that is found, as the objective function moves 
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4 

3 

2 • 

l • 

0 1 

• 

• 

2 

6y1 + 4,5y2 • 36. 

(CONSTRAINT TWO) 
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down through the solution space, is the optimum solution. 

The limitation of only dealing with two variables did 

not allow all of the objective function reduction algorithm 

to be demonstrated. It does provide a visual reference for 

many concepts that will be extended and examined in more 

detail later. 

Some of the notation used in this research will now be 

described. 

Notation 

One part of the algorithm ranks the variables according 

to a ranking scheme. A ranked variable will be indicated by 

the letter y. The ranked variables do not necessarily have 

the same subscript number as the problem variable they rep-

resent. The subscripts on they-variables i~dicate ranking 

order. Therefore, Ya, the second ranked variable, could be 

the ranked variable identification for problem variable xs. 

It is sometimes convenient to represent a solution as 

an n-vector of the form 

Y... = ( Yl , Ya , • • • , Y n ) • (1-J6) 

To indicate the optimal integer solution, then-vector 

* ( * * Y = Yl, Ya, ... ' y: ) (1-37) 

will be used. 

During certain parts of the algorithm, it is necessary 

to round down or round up to the nearest integer. The 
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common notation that is used for this is 

[y] = the greatest integer< y (1-38) 

and 

<y) = the least integer> y. (1-39) 

Upper and lower bounds often need to be identified as 

the algorithm is described. An upper integer bound on a 

variable will be indicated with the superscript u and a 

lower integer bound will be indicated by the superscript£. 

Some typical examples might be 

£ 
Ys = 5 (1-40) 

and 

u 
Ys = 7° (1-41) 

The complete notation required for this thesis is 

listed in the Nomenclature section preceding this introduc-

tory chapter. Before looking more closely at the details of 

the objective function reduction algorithm, a brief review 

of the literature and some concepts from the study of linear 

Diophantine equations will be presented. 



CHAPTER II 

LITERATURE REVIEW OF INTEGER 

LINEAR PROGRAMMING 

During the past ten years, there has been a great 

amount of research and publications on integer linear pro

gramming. This literature review will identify some of the 

more recent articles that are widely referenced and are 

typical of the work being done using a particular approach 

to the problem. In 1965, two surveys appeared that examined 

many of the important algorithms up to that year. Balinski 

(3) summarizes the major methods that have been successful 

or interesting in their method of approaching the problem. 

Included are some descriptions of general algorithms and 

computational experience dealing with integer linear pro

gramming. Beale (4) presents a survey of linear programming 

problems where some or all of the variables are required to 

take on integer values. Four separate methods of solving 

integer linear programming problems are reviewed and dis

cussed. A survey of the literature of the late 1960 1 s would 

make an excellent contribution to the literature of integer 

programming. This gap in the literature should certainly be 

filled in the coming months. 
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General Classification of Algorithms 

Several methods of classifying the algorithms of inte

ger linear programming have been used. Any general method 

of classification will be incomplete l)ecause of the variety 

of methods proposed to solve discrete programming problems. 

Nevertheless, the two areas of classification suggested by 

Wagner (JO) are appropriate for the literature reviewed in 

this thesis. The two main approaches for finding optimal 

solutions to integer programming problems are the cutting

plane algorithms and the backtrack algorithms. 

The cutting-plane algorithms appear in several forms. 

They can be used to solve both the mixed integer programming 

problems and pure integer programming problems. The 

cutting-plane algorithms start at the optimum linear pro

gramming solution and then move toward the optimum integer 

linear programming solution. The early work of Ralph E. 

Gomory ide.ntif'ied the signific"arit· contribution that 

this approach could make to solving integer linear program

ming problems. Generally, these methods assume the optimum 

linear programming solution has been found and is not inte

ger. Additional cuts or constraints are then added to the 

original constraints. These new constraints are added in 

such a way that they reduce the feasible solution space, but 

they do not exclude any possible integer solutions. The 

algorithm is completed when a feasible integer programming 

solution has been found. These methods have been shown to 

be finite converging algorithms. With the addition of new 
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constraints at each iteration, the number of iterations in 

the finite convergence of even a moderate problem can be 

quite large. 

The second classification group is somewhat broad and 

includes many approaches to the problem. Again, the back

track algorithms can be used to solve both mixed and integer 

linear programming problems. Under this category are the 

branch-and-bound algorithms, implicit enumeration algorithms, 

shifted functional hyperplane methods, and many others. As 

in the cutting-plane algorithms, the backtrack algorithms 

begin at the optimal linear programming solution. These 

techniques then create a group of related linear program

ming algorithms. For example, in the branch-and-bound algo

rithms, a series of subproblems and a lower bound (for 

minimization) are determined. Similar to the concepts of 

dynamic programming, at each stage of subdivision, certain 

solutions are excluded as infeasible and are not examined. 

The name backtrack algorithms is given to these methods 

because they start at the optimal noninteger solution and 

back away from it, searching a sequence of generated prob

lems for the optimal integer linear programming solution. 

Naturally, all of the approaches to the integer pro

gramming problems cannot be classified with these two prin

cipal methods. The heuristic programming techniques or the 

statistical methods do not readily fall within either of the 

two categories. Some papers that are difficult to classify 

will be discussed at the end of the chapter. 
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Cutting Plane Algorithms 

The name most often mentioned when discussing cutting

plane algorithms is that of Ralph E. Gomory. Until some of 

his early work was presented in 1958, a general method for 

solving integer linear programming problems was assumed to 

be impossible by many people. Since that time, Gomory and 

several others have continued to explore the possibilities 

of cutting-plane algorithms. 

Of the surveys made during the mid 1960•s, the one by 

E. M. L. Beale (4) is most readable. The theory of Gomory's 

methods are explained quite well by Beale. In the early 

cutting-plane algorithms for pure integer programming, the 

method begins by finding the optimal noninteger solution to 

the linear programming problem. If the solution to this 

problem, where the variables can take on continuous values, 

happens to turn out to be all-integer, the algorithm stops. 

If some or all of the variables in the solution are noninte

ger, a new constraint is added to the problem. This new 

constraint eliminates a part of the feasible solution space 

near the optimum noninteger solution. It eliminates the 

optimal noninteger solution and other solutions near the 

optimum, but it does not eliminate any feasible integer 

solutions. Then, the simplex tableau is manipulated using 

the dual simplex method to move away from the optimal non-

integer solution. If the dual simplex iteration finds an 

optimum integer solution, the algorithm is complete. If not, 

a new constraint is added and the process continues until 
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the optimum integer solution is found. The new constraints 

are often called cuts or cutting-plane constraints. They 

get their name from the way they cut away some of the feasi-

ble solution space. 

solution. 

Their purpose is to force an integral 

After the work described above, Gomory (10) presented 

some new, important modifications to his all-integer inte-

ger programming algorithm. 

in two main ways: 

It differs from the earlier work 

1. The technique is all-integer. The coeffi-

cients in the original matrix are integers 

and all coefficients remain integer during 

the whole calculation. 

2. It is a uniform procedure similar to the dual 

simplex method. Also, the cycle of adding an 

inequality has been eliminated. 

This method does not begin at the optimal solution deter

mined by letting all the variables have a continuous range. 

It begins by making the problem dual feasible. This is done 

by adding an artificial constraint that the sum of the non

basic variables be less than or equal to some arbitrarily 

large number. From this point on each succeeding pivotal 

row is a new cut and is generated in such a way that it 

makes the pivot equal to minus one. This causes the 

integral tableau to remain integral. 

This contribution of Gomory (10) is widely referenced 

in the literature on cutting-plane algorithms of integer 
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linear programming. This work apparently influenced much of 

the later research. 

Economic applications of some of the initial work in 

integer programming began appearing in the literature in the 

early 19601s. Gomory and Baumol (11) discussed the topic of 

integer programming and pricing in a paper in 1960. The 

article describes and gives an example of integer linear 

programming. The majority of the paper discusses economic 

considerations such as prices, marginal yields of scarce 

indivisible resources, and efficient allocation of resources. 

The work of Fred Glover has made a significant contri

bution to the study of integer programming. In 1967, Glover 

(8) presented a paper describing a primal integer program

ming algorithm. The technique is described by Glover as a 

new foundation for a simplified primal integer programming 

algorithm. The main focus of this research starts by con

sidering the ordinary linear programming problem. Then, the 

same problem is considered again where the solution is 

required to be in pure integer form. Because the simplex 

technique is so effective for solving the ordinary linear 

programming problem, Glover sought an adoption of the 

simplex algorithm to solve the pure integer programming 

problem. The goal is to maintain a primal feasible and 

integer solution at each iteration. The author says such an 

adoption is straightforward and points to his earlier work 

and that of Richard D. Young (31). This adoption, called 

the rudimentary primal algorithm, draws on the early 



concepts of Gomory where cuts are added to the feasible 

solution. 
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Glover's (8) simplified primal algorithm begins with 

the rudimentary primal algorithm and provides some rules 

that lead to a convergent algorithm. The author provides 

theorems and proofs to describe the success of this method. 

Even though Glover describes the rules as simple and the 

theorems as elementary, the analysis is still somewhat dif

ficult to follow. Nevertheless, the fact that a primal 

integer programming algorithm has been found is a signifi

cant contribution to the literature. 

A companion paper to Fred Glover's (8) article is one 

by Richard D. Young (J1). Glover describes Young?s work as 

a pioneering paper that produced a finite primal algorithm. 

He goes on to call it an outstanding, original contribution 

to integer programming. Young's algorithm is a complicated 

and difficult technique for primal integer programming. 

Richard D. Young's (J1) paper describes a primal, all

integer algorithm for solving a bounded and solvable pure 

integer programming problem. This algorithm is a primal 

analogy to some of Gomory 1 s early work with cutting plane 

techniques. The method is tied closely to the simplex 

method, but Young's simplified primal algorithm adds a 

special row to the tableau and modifies the method of 

selecting the pivot column. At each iteration, a cutting

plane constraint is added to the tableau. Young shows his 

simplified primal algorithm is a finite procedure. 



29 

Young's (J1) paper parallels Glover's (8) work. 

Young's algorithm develops alternative rules for adding the 

new row of cutting-plane constraints. This method is not as 

general or the tableau format as elaborate as Glover's (8), 

according to Youngvs evaluation. Both papers were presented 

in the literature to speed the understanding and analysis of 

the basic approach to integer linear programming. 

From an applications point-of-view, the ability of 

computer codes to solve integer programming problems is an 

essential consideration. Several cutting-plane algorithms 

have been coded and evaluated. Beale (4) mentions some 

codes that used the cutting-plane concepts of much of 

Gomory's early work in integer programming. As of Beale's 

(4) 1965 survey date, computer codes were available that 

solved about 100 equations and 2000 variables. Beale says 

that up to 1964 the largest single problem solved with this 

code had 215 equations and about 2600 variables. The author 

does not mention the speed or efficiency of the computer 

code, but refers his readers to the author of the computer 

code. 

By the summer of 1967 9 C. A. Trauth, Jr. and R. E. 

Woolsey (28) had completed their analysis of four different 

computer codes. The codes were based primarily on Gomoryws 

cutting-plane methods of integer linear progrrunming. The 

authors compared the computational efficiency and practical 

applicability of the four codes. They discovered difficul

ties with machine round-off errors can sometimes be 
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controlled, but the procedures required can be time con

suming. Another difficulty they noted was the amount of 

time required to actually solve a given integer programming 

problem. As mentioned earlier in this literature review, 

Gomory proved his methods will produce a solution in a 

finite number of steps. In practice, a finite number of 

steps can be so large as to be impractical, even in a moder

ate size problem. 

Trauth and Woolsey (28) indicated the amount of time 

involved in obtaining a solution was related to the density 

of the constraint coefficient matrix. Also, the magnitude 

of the elements in this matrix had an effect on the solution 

time. The four codes were tested on some test problems that 

are commonly used in the literature to evaluate computer 

codes. The authors present tables and their analysis show

ing the solution time and number of iterations required for 

each computer code they evaluated. 

Even though much important work has been done on 

cutting-plane algorithms, a great deal of attention has been 

given in the literature to backtrack algorithms. Some 

typical articles from this literature will now be reviewed. 

Backtrack Algorithms 

In the middle of 1960, a paper appeared that suggested 

an approach different from the cutting-plane method to solve 

discrete programming problems. The numerical algorithm of 

A.H. Land and A.G. Doig (20) is widely respected and 
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referenced in the literature of integer programming. This 

early work of Land and Doig (20) is often classified as a 

shifted hyperplane method or a branch-and-bound method. The 

algorithm described by the authors uses a systematic parallel 

shift of the objective function in the direction of a reduc

tion of the maximand. This process is continued until an 

integer solution is found within the ordinary feasible solu

tion space. The upper bound on the objective function is 

first found by solving the ordinary linear programming prob

lem without the discrete variable constraints. This is the 

upper bound on the maximand since no higher value of the 

objective function can take an integer value • 

. The method of Land and Doig (20) then moves to identify 

a unique minimum and maximum for each variable at a particu

lar value of the objective function. These minimum and 

maximum values of the variables can be found by solving the 

linear programming problems that minimize and maximize each 

variable. The authors extend these basic concepts to examin

ing the convex set of feasible solutions as the objective 

function hyperplane is moved down from its maximum position. 

They give a step-by-step algorithm of their procedure and an 

example of its application. 

E. L. Lawler and D. E. Wood (21) have written an excel

lent paper discussing branch-and-bound methods of integer 

linear programming. They describe the main concepts of the 

branch-and-bound approach to constrained optimization prob

lems. Even though this article is not limited to a 
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discussion of branch-and-bound in integer linear program

ming, it still often appears as an important reference in 

the literature. The authors discuss several specific appli

cations, including integer linear programming, nonlinear 

programming, the traveling-salesman problem, and the 

quadratic assignment problem. 

Lawler and Wood (21) point out tha~ as in dynamic pro

gramming, the technique of branching-and-bounding is an 

intelligent examination of the feasible solution space. 

They describe the branch-and-bound method as repeatedly 

separating the feasible solution space into smaller and 

smaller subsets of feasible solutions. Within each subset 

a bound is calculated for the value of the objective func

tion. After each separation of the feasible solution space, 

the subsets that have a bound that exceeds the value of the 

objective function for a known feasible solution are 

excluded from any further separation and examination. The 

authors present a generalized, formal mathematical descrip

tion of the branch-and-bound algorithm. 

In the last part of 1966, an article by Norman Agin (1) 

appeared. This article gave a generalized description of 

branch-and-bound algorithms. The author's paper points out 

the wide variety of applications of the branch-and-bound 

algorithm to many combinatorial problems. One of the best 

aspects of this paper is that it describes the branch-and

bound technique for optimum seeking in general. Agin 

says part of the philosophy of this paper is to introduce 
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technique. 
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Agin (1) points out two interesting limitations of 

branch-and-bound methods. One is that each problem needs a 

specific method for finding the bound and for finding good 

heuristics for branching. Another limitation is that in 

large problems the computational time may exceed the avail

able computer time. 

One of the newest algorithms to appear is the bound

and-scan algorithm of Frederick S. Hillier (15). This tech

nique applies to pure integer linear programming. The 

approach is to find tight bounds on the variables. Then, a 

sequence of constantly improving feasible solutions is iden

tified by scanning the relevant solutions. Hillier (15) 

reports encouraging computational experience with this algo

rithm as compared to other existing methods. This is an 

excellent, readable paper that describes the new method and 

plans for increasing its efficiency even more. 

Establishing bounds on the problem variables is a 

common principle in many backtrack algorithms. Patrick D. 

Krolak (17, 18) has completed some work that lead to a 

Bounded Variable Algorithm. These papers present some use

ful generalized equations to establish upper and lower 

bounds on variables. Krolak (18) presents some computa

tional results of this algorithm and other existing methods 

when they are tested on some standard problems. 

Stanley Zionts (32) proposed some ideas toward unifying 



the theory of integer linear programming. Basically, the 

author generalizes much of the work in integer linear pro

gramming in the framework of upper and lower bounds on 

integer variables. The main contribution of this work is 

that it tends to unify several of the proposed methods of 

solving integer linear programming problems. 
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One of the most important applications of integer pro

gramming is in capital budgeting problems. Zero-one and 

mixed zero-one integer programming are mathematical tools 

that are essential to the solution of many capital budgeting 

problems. V. E. Unger, Jr. (29) describes how some of the 

zero-one algorithms can be used to assist a firm with the 

allocation of limited amounts of capital. Even though this 

article deals with only one class of the capital budgeting 

problem, the problem formulation and solution procedure make 

it an interesting article. 

Some additional examples of papers from the literature 

that discuss the work on zero-one integer programming are 

Glover (9) and Geoffrion (7). Both of these authors are 

often referenced in the literature of integer linear 

programming. 

Other Methods 

The approach used in many methods of integer program

ming cannot be easily classified as cutting-plane or back

track algorithms. An example of this is an article by 

G. Graves and A. Whinston (13). The authors present a new 
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approach to discrete mathematical programming for zero-one 

integer programming. This paper describes the theoretical 

concepts that extend some of the enumeration methods. Where 

many of the backtrack algorithms would use bounds to trun

cate parts of the method, Graves and Whinston (tJ) use popu

lation statistics. The authors indicate that the term 

population statistics should not be confused with the meth

ods of sampling statistics or random search procedures. The 

concepts described in this paper use the idea of selecting 

the optimal function among a certain class of functions. 

Set theory and functions viewed as maps are used to develop 

the concepts of this theoretical paper. 

Approximation methods provide the only method of 

solving many integer programming problems. S. Senju and 

Y. Toyoda (27) have approached the zero-one integer linear 

programming problem from the point-of-view of trying to find 

a good approximate solution. The fundamental concept the 

authors say they use is to develop some ordinal scales for 

the proposed projectso They suggest this method is quite 

satisfactory when there are a large number of proposals and 

constraints. 

Frederick S. Hillier (14) has developed an approxima

tion method for integer linear programming. This paper is 

very well written and is an excellent example of some of the 

better work in the literature. This article presents the 

theoretical concepts of a heuristic procedure to find a good 

approximate solution which gives an objective function value 
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close to the optimum. The step-by-step method of analysis 

is outlined by the author. A small example is given to 

demonstrate the algorithm. A computer code and the results 

of evaluating the procedure on several test problems are 

given. Since many optimal algorithms can obtain greater 

efficiency when given a good approximate solution initially, 

this paper makes an outstanding contribution to the 

literature. 

In a recent paper, R. E. Gomory and E. L. Johnson (12) 

introduce some theory that has applications to both cutting

plane and backtrack algorithms. The authors analyze some 

continuous functions and inequalities when some or all of 

the variables are restricted to be integers. The article 

shows how inequalities can be used to furnish cut-off points 

for integer programming algorithms. This paper is very 

theoretical and difficult to read. A companion paper demon

strating the basic technique would be a fine contribution to 

the literature. 

The concepts of linear Diophantine equations are essen

tial in the development of objective function reduction 

algorithm. Some of the necessary concepts 'will' be reviewed 

in the following chapter. 



CHAPTER III 

SOME CONCEPTS OF LINEAR 

DIOPHANTINE EQUATIONS 

The concepts of linear Diophantine equations from the 

theory of numbers are essential to the objective function 

reduction algorithm presented in this thesis. Several 

topics will be discussed in this chapter that are necessary 

to follow the flow of logic in the algorithm developed in 

this research. Even though number theory is often consid

ered one of the prime examples of pure mathematics, some of 

the observations associated with linear Diophantine equa

tions and the divisibility property of integers form a vital 

part of the objective function reduction algorithm. Some of 

the basic theorems from this area of mathematics allow 

implicit examination of several solutions in integer linear 

programming problems. Many of these concepts speed the 

algorithm and the computer code toward the integer feasible 

solution. 

The wide variety of topics associated with linear 

Diophantine equations and number theory is discussed in 

several books. Anthony J. Pettofrezzo and Donald R. Byrkit 

(26) present several selected topics in number theory in a 

very readable and interesting book. This book describes 
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many essential topics of number theory at an introductory 

level. Ivan Niven and Herbert s. Zuckerman (24) have 

written another book that introduces several of the concepts 

of number theory and Diophantine equations. It includes 

many examples and proofs necessary to understand this area 

of mathematics. 

In order to examine the philosophy of the divisibility 

properties of integers, some basic terms and notation are 

required. If r, s~ and tare integers such that 

r • s = t, (3-1) 

then rands are called factors or divisbrs oft. Also, t 

is said to be a multiple of rand of s. 

n, then it is written 

min. 

If mis a factor of 

(3-2) 

For example, if m = 5 and n = 25, then 5 I 25 says 5 is a factor 

of 25. If mis not a factor of n, then the notation 

m)n <.3-3) 

is written to describe how the integers are related. For 

example, if m = 2 and n = 15, then 2 )' 15 says 2 is not a fac

tor of 15. 

The terms prime and composite often appear in discus

sions of linear Diophantine equations and the theory of num

bers. A prime number is a number that has no positive 

factors other than one and itself. The number seven is a 



39 

prime number. A composite number is a number that has fac

tors other than one and itself. Since the number nine has 

the number three as a factor, as well as one and itself, it 

would be called a composite number 

The i.dea of the greatest common divisor is an integral 

part of the objective function reduction algorithm. This 

topic and its notation will be reviewed briefly. 

The Greatest Common Divisor 

If klr and kls, then the number k is called a common 

divisor or common factor of rands. Supposer= 50 and 

s = Bo. The integer number 5 is a common divisor to both 50 

and Bo. Therefore, 5150 and 5IBo indicates that 5 is a com

mon divisor to 50 and Bo. The greatest common divisor can 

now be defined. The largest positive integer g that divides 

the absolute value of each of two integers rands is called 

the greatest common divisor of rands. The greatest common 

divisor is denoted 

(r, s) = g. (J-4) 

This implies glr and gls, with gas the greatest positive 

integer that is a factor to both rands. 

An objective function for a two-dimensional linear pro

gramming problem would have the form 

(J-5) 

For a particular problem, a greatest common divisor could be 
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found if both c1 and ca were integers. That is, a factor of 

c1 and ca can be found such that 

( J-6) 

In an elementary integer linear programming problem, the 

objective function might be 

Z = 21 Xl + 77 Xa. (J-7) 

The greatest common divisor of both c 1 and ca would be the 

number 7. This would be denoted 

( C1 1 Ca ) = g 

(21, 77) = 7. 

(J-8) 

( .3-9) 

The definition of the greatest common divisor says that 

g must be a common divisor to the absolute value of rands. 

Therefore, negative coefficients can be handled within the 

greatest common divisor definition. If'.., in the example of 

Equation (J-7), one or both of the coefficients were nega

tive, then 

(-21, 77) = (21,· -77) = (-21, -77) = 7. ( 3-10) 

The definition also implies that if r = s = O, then (r, s) 

does not exist. Additionally, if r F O ands= O, then 

(r, s) = lrl; if r = 0 ands~ O, then (r, s) = Isl. As 

somewhat of a side issue, if dlr and dis, then dig. This 

says that if dis a factor of both rands, where (r, s) =g, 

then d is also a factor of the. greatest commo:ti. divisor •... 
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The concept of greatest common divisor is also appli

cable when more than two integers are involved. The defini

tion can be generalized so that the greatest common divisor 

for n > 3 integers is the largest positive integer g such 

that it is a factor of the absolute values of each of then 

integers r1 , r2, ••. , rn. For then integers, r1, r2, . .. , 
and rn, the greatest common divisor is written 

(J-11) 

For example, suppose an integer linear programming objective 

function were 

Z = 56 X1 - 24 X2 + 96 X3 + 40 X4. (J-12) 

The greatest common divisor of the objective function coef

ficients is 

(J-13) 

(J-14) 

(56, -24, 96, 40) = 8. (J-15) 

As the general definition indicates, the greatest common 

divisor of the coefficients is the greatest integer, g, where 

for j = 1 , 2 , ••• , n. (J-16) 

Two theorems are needed to give additional insight to 

the greatest common divisor and its application in the ob

jective function reduction algorithm. 



THEOREM ,.1: If v and ware positive integers 

such that vlw and wlv, then v = w. 

PROOF: If vlw, then v times some number, call 

it x, must equal w. That is, 

and this implies xlw. Also, if wlv, then w 

times some number, call it y, must equal v. 

Therefore, 

and this implies ylv. ·Now, if Equations (3-17) 

and (3-18) are solved for x and y, respectively, 

then 

x = 

and 

y = 

w 
v 

v -. w 

Now, Equation (J-19) can be written 

X=w=,!= 1 0 

v v y 
w 

By the definition of the term factor as used in 

Equation (J-17), v, x, and ware integers. But, 

Equation (3-21) says 

x = 1 
y' 
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(3-18) 

()-19) 

(J-20) 

(J-21) 

0-22) 



which means y must be equal to one for x to be 

integer. This implies from Equation (J-17) 

that 

v = w. 
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( :J-2.3) 

Another theorem that is needed deals with the greatest com

mon divisor for the situations where three or more numbers 

are involved. This theorem will make use of Theorem .3.1 

during its proof. 

THEOREM J.2: If c1, ca, ••• , and en are nonzero 

integers where n > 3, then 

PROOF: Let 

g1 = ( c 1 , ca , ••• , c n ) 

and 

Since g1 lc1 for j = 1, 2, ~ •• , n, then 

g1 l<c1, ca, ••• , Cn-1) and g1 lcn• This implies 

g1 lga. Also, gal(c1, ca, ••• , Cn-1) and galen, 

then ga I er for J = 1, 2, ••• , n. Therefore, 

ga lg1 • The definition of greatest common divisor 

requires that g1 and ga be positive integers. 

Therefore, g1 = ga from Theorem 3.1 and 

( C1 , Ca , ••• , Cn ) = ( ( C1 , ca , ••• , Cn - 1 ) , Cn ) • 

(3-24) 

(3-25) 

(.'.3-26) 

(J-27) 
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Another important concept that can be used in integer 

linear programming is when some coefficients of variables in 

the objective function are zero. Should that case occur, 

the greatest common divisor is 

(c1, ca, ••• , ck, O, O, ••• , O) = (c1, ca, ••• , cl(). 

(3-28) 

For small problems, the greatest common divisor often 

can be found by inspection. As the number of integers in

creases, the search for the greatest common divisor would 

become lengthy and tedious using inspection and trial and 

error methods. Fortunately, the ancient Greek mathemati

cian, Euclid, developed an algorithm to determine the 

greatest common divisor. Euclid's algorithm will now be 

examined. 

Euclid's Algorithm 

Euclid's algorithm gives a method for finding the 

greatest common divisor for a group of integers. First, 

consider the case of two unequal positive integers d and e. 

If it is assumed that d > e, then d can be written as 

d=qe+r, where O < r < e. (3-29) 

For example, let d = 23 and e = 7. Therefore, d can be 

written as 

2.3 = .3 • 7+2. ( .3-JO) 
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From Equation ( 3-29) , q = 3 and r = 2 for the example of 

Equation (3-30). The integer q is the quotient resulting 

from the division of d bye. The integer r is the remainder 

after dis divided bye. Euclid developed a step-by-step 

procedure for continuing this type of analysis until it 

leads to the greatest common divisor. 

Let q 1 be the quotient from the ith iteration and r 1 

the remainder associated with the ith iteration. For a 

simple example that requires only three iterations, Euclid's 

algorithm would be as follows: 

d = q1 e + r1 , where O < r1 < e; (3-31) 

e = q2r1 + ra, where O < ra < r1; (3-32) 

(3-33) 

The algorithm is completed when the remainder in the ith 

iteration is zero. The greatest common divisor is the last 

nonzero remainder (r 1 - 1 ) found by the algorithm. If r 3 were 

found to be zero in Equation (3-33), then the integer ra is 

the greatest common divisior ford and e. That is, 

( d, e) = ra • (3-34) 

As an example, suppose an integer programmi·ng objective 

function were 

Z = 36 Xl + 132 Xz. (3-35) 

Using Euclid's algorithm as described in Equations (3-31) 
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through (j-33), the greatest common divisor of the objective 

function coefficients can be found as follows: 

If d = 132 and e = 36, then 

132 = 3 • 36 + 24 (3-36) 

36 = 1 • 24 +'12 (3-37) 

24 = 2 • 12 + o. (3-38) 

From Equation ( l-38) 1 r 3 = 0 which means the greatest common 

divisor, g, is ra = 12. Therefore, in the notation developed 

here, 

(d, e) = g 

( d, e) = ra 

( 132, 36) = 12. 

(j-39) 

(j-40) 

(j-41) 

It should be noted that the integer coefficients in Equation 

<3-35) were ordered so the -larger one Aca,; 132) became d for 

the algorithm of Equations 0-31) through (J-33), where it 

is required that d>e. This is a necessary condition so 

the larger integer can be set ·e·qual to a quotient times the 

smaller number plus a remainder. 

T~e form of Euclid's algorithm described in Equations 

(3-31) through (3-32) allows for only three iterations. 

Naturally, other problems may require several iterations. 

In the example for (d, e) the greatest common divisor, g, 

must be found in a finite number of steps, since there is 



only a finite number of positive integers less thane, where 

d > e. The general form of Euclid's algorithm to find 

(d, e) = g, where d > e, is as follows: 

(J-42) 

e = q2r1 + r2, where O < r2 < r1; (J-4J) 

(J-44) 

rk - 3 = qk - 1 rk - 2 + rk - 1 , where O < rk - 1 < rk - 2 ; ( J-45) 

(J-46) 

(J-47) 

The concepts of the greatest common divisor and Euclid's 

algorithm provide a foundation for examining some of the 

properties of linear Diophantine equations. 

Linear Diophantine Equations 

Any polynomial equation in several variables, where all 

of the coefficients, variables, and the right-hand side 

values are required to be integers, is called a Diophantine 

equation. In general, the form would be 

n 

l C j Xj = z (J-48) 
j=1 

where 

Cj integer for j = 1 ' 2' ... ' n 
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xj integer for j = 1, 2, ••• , n 

z integer. 

The Greek mathematician, Diophantus, studied the form and 

solution of this type of linear equation. Since he was one 

of the first to study these equations at great length, they 

are named in his honor. 

An interesting theorem associated with the greatest 

common divisior and linear Diophantine equations will be 

discussed. 

THEOREM 3. 3: If c1, c2, ••• , and en are integers 

which are not all zero, then the greatest common 

divisior ( C1 , C2, . . . ' Cn ) of the coefficients 

C1 , c2, . . . , and Cn is the smallest positive 

integer that can be expressed as a linear 

homogeneous function of c1, c2, ••• , and en; 

that is , ( c 1 , c 2 , ••• , c n ) is the sma 11 est 

positive integer such that 

( C 1 , C 2 , ••• , C n ) = C 1 X1 + C 2 X2 + • • • + C n Xn , (J-49) 

where xJ integer for j = 1, 2, ••• , n. 

Pettofrezzo and Byrkit (26) indicate how this theorem can be 

proved. This theorem has a significant implication in the 

objective function reduction algorithm. If an integer pro-

gramming objective function is of the form 

MAXIMIZE Z = ! Cj Xj 
j=1 

(J-50) 



then, the greatest common divisor could be found for the 

coefficients, such that 

g = ( c1 , c:a, ••• , Cn). (3-51) 

The implication of Theorem 3.3 is that the greatest common 

divisor, g, is the lower integer bound of a maximization 

objective function value. That is, the objective function 

hyperplane 

= g (3-52) 

is the smallest integer value of the maximand. 

Another property of linear Diophantine equations in-

volves the special case where all of the coefficients are 

even numbers and the right-hand side value is odd. For 

example, if an equation had the form 

12 Xl + 34 xa + 8 X3 + 92 X4 = 533, (3-53) 

then it can be observed that all the coefficients are even 

numbers, while the right-hand side value is an odd number. 

Since the left-hand side of Equation (3-53) must be an even 

integer, no integral solutions can exist for the equation. 

This comes from the observation that an even integer multi-

plied times an odd or even integer must give an even integer 

as the product. Consequently, some linear Diophantine equa-

tions have no integer solutions. This fact will be used in 

the objective function reduction algorithm as solutions are 

implicitly examined. 
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The next theorem is most important for the search meth-

od of the objective function reduction algorithm developed 

in this research. 

THEOREM 3.4: The linear Diophantine equation 

n 

l Cj Xj = Z 

j:1 

has a solution if and only if glz, where 

g = (c1, ca, ••• , cn)• 

0-54) 

Pettofrezzo and Byrkit (26) indicate how this theorem can be 

proved. The importance of this theorem lies in the fact 

that it can eliminate searching certain objective function 

hyperplanes for integral solutions. This says that an 

objective function of the form 

n 

z = \ C:, X:, (3 -55) 
j=1 

where 

c 3 integer for j = 1, 2, ••• , n 

x 3 integer for j = 1, 2, ••• , n 

can only have integral solutions for those values of z such 

that gjz, where g = (c1, ca, ••• , cn). Hyperplanes that 

have values such that g) z need not be considered or 

searched, since integral solutions cannot lie on these 

hyperplanes. 

As an example of how Theorem 3.4 could be used, 
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consider the following integer linear programming objective 

function: 

z = 27 x1 + 9 xa + 18 X3. (3-56) 

Using Euclid~s algorithm or by inspection 9 the great common 

divisor of the coefficients would be found to beg= 9. 

Suppose the objective function had a value 

Z = 27 X1 + 9 Xa + 18 X3 = 82 (3-57) 

during one part of the search by the objective function 

reduction algorithm. Since g = 9 and 9}82, no integral 

solutions can lie on the plane defined in Equation (3-57). 

With this brief review of some of the concepts of 

linear Diophantine equations and the theory of numbers, the 

objective function reduction algorithm will be examined. 



CHAPTER IV 

THE OBJECTIVE FUNCTION 

REDUCTION ALGORITHM 

The objective function reduction algorithm is a solu-

tion procedure that searches for a solution to a solvable 

pure integer linear programming problem. This algorithm 

uses the concept of examining a family of objective function 

hyperplanes until an integer solution is found. Basically, 

the solution procedure begins at the optimum noninteger 

solution and examines parallel objective function planes in 

the feasible solution space. For example, in maximization 

problems the algorithm starts at the upper bound on the 

objective function, as determined by the simplex method or 

some other primal optimum seeking procedure. Successively 

reduced values of the objective function effectively move 

the objective function down through the solution space. The 

problem to be solved can be expressed mathematically using 

the following cannonical form: 

maximize 

n 

subject to l a 13 x 3 < b 1 for i = 1, 2, ••• , m 

j=1 

(4-1) 

(4-2) 
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xj > 0 for j = 1, 2, ••• , n (4-J) 

Xj , Cj INTEGER for j = 1, 2, ••• , n. (4-4) 

The requirement that each cj be integer valued is not overly 

restrictive since this is always obtainable by scaling the 

objective function, as long as the original coefficients are 

rational numbers. 

The algorithm developed in this research examines the 

solution space by considering the bounds on each variable. 

Therefore, this procedure requires that the variables have 

upper and lower integer bounds. The functional and nonnega

tivity c0nstraints of Equations (4-2) and (4-J) are assumed 

to provide a bound on the solution space. A minimization 

problem with strictly greater-than-or-equal constraints must 

be modified to obtain finite upper bounds on each problem 

variable. This is required for computational efficiency. 

The essential structure of the objective function 

reduction algorithm can be described by dividing the solu

tion procedure into four stages. In Stage 1, the optimal 

continuous--variable solution is found using the simplex 

method or some similar procedure. Naturally, if this solu-

tion is all-integer, the algorithm goes no further since the 

desired solution has been found. Stage 1 also defines the 

over-all bounds on each problem variable. Stage 2 of the 

algorithm prepares the way to potentially take advantage of 

some techniques from the study of linear Diophantine equa-

tions. The greatest common divisor of the objective 



function coefficients is established along with the first 

value of the objective function to be considered. Stage J 

selects the ranking that each variable will have in the 

implicit enumeration scheme. It also examines the objective 

function coefficients noting how even coefficients might be 

used to take advantage of additional concepts of linear 

Diophantine equations. 

While the first three stages of the algorithm are some

what preparatory, Stage 4 carries out the implicit and 

explicit enumeration of the feasible integer solution 

space. Using the ranking scheme of Stage J, the problem 

variables are set at integer values that potentially will 

eliminate the necessity for complete enumeration of the 

integer solution space. New, potentially tighter bounds 

are found on successive variables in the ranking as the 

algorithm proceeds. This process continues to move through 

the ranking order, until the next to last variable is 

reached or until the algorithm can use a tool of linear 

Diophantine equations to eliminate additional solutions. 

The objective function and the previous variables at their 

held values are used to calculate the final variable in the 

ranking. An integer solution is tested for feasibility, 

while a noninteger final variable is immediately identified 

as infeasible. An infeasible solution causes the algorithm 

to begin moving back through the combinatorial solution 

possibilities. Should a feasible all-integer solution not 

be found at the first objective function value, a new 



55 

reduced (for maximization) objective function value is 

selected for continuing the search. 

With the above brief statements as an introduction, the 

theory of the objective function reduction algorithm will be 

described fully in the following sections. The step-by-step 

instructions of the algorithm are provided in Appendix A. 

This appendix can be used as a reference as the theory is 

described. 

Stage One 

Stage 1 of the objective function reduction algorithm 

begins by relaxing the integer requirement on the problem 

variables. Therefore, the variables are temporarily allowed 

to take on continuous values. With this interim change in 

the problem, the efficient procedures of the simplex method 

can be used to find the continuous solution. At this point, 

the algorithm identifies two elements of information from 

the simplex solution. First, if it is found that the con

tinuous solution vector,~*= (x{, x~, ••• , x:), is all

integer, then the algorithm goes no further. The optimum 

pure integer solution has been found by the established 

optimal seeking procedures of the simplex method. The 

second element of required information is the value of the 

objective function at the optimum continuous-variable linear 

programming solution. The key word for this value is ZSIM. 

It will be used in Stage 2 to establish an integer bound on 

the objective function. 

Integer bounds on each problem variable are an 
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additional requirement of Stage 1. Patrick D. Korlak (17, 

18) and Stanley Zionts (32) have published some recent 

papers describing their work on integer bounds for all-

integer linear programming. Krolak (17, 18) develops an 

iteration scheme to be used in finding upper and lower 

integer bounds for each individual variable. Zionts (J2) 

attempts to unify much of the work of integer programming in 

terms of upper and lower bounds on integer variables. 

Krolak (17) suggests one straightforward method of 

finding the bounds on the variables is to solve the 2n lin-

ear programming problems where the objective functions are 

of the form 

maximize z - . xJ · for j = 1 , 2 , ••• , n (4-5) 

and 

minimize z = xJ for j = 1, 2, ..• , n. (4-6) 

For a particular problem, the constraints and Equation (4-5) 

can be used to solve a linear programming problem to find 

the upper bounds on each variable, XJ, = j = 1, 2, ••• , n. 

Lower bounds can be similarly found using Equation (4-6). 

The upper integer bound on each variable is identified by 

taking the value of xJ found from the linear programming 
' 

solution using Equation (4-5) and defining 

(4-7) 

for j = 1, 2, ••. , n. Using the solution value for each Xj 

from the linear programming problem where Equation ( 4-6) is the 
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objective function, the lower integer bounds are 

J, 
x., = (x.,) (4-8) 

for j = 1 1 2, ••• , n. 

The objective function reduction algorithm requires 

that the problem variables have finite integer bounds. 

Therefore, the method described in Equations (4-5) through 

(4-8) will establish upper and lower integer bounds on each 

variable. 

A final requirement for Stage 1 is an indication 

whether the objective function is to be maximized or mini-

mized. In both the algorithm of Appendix A and the computer 

code of Appendix B, the key word MAX is used to indicate 

maximization or minimization. Maximization is indicated 

when MAX= 1 and minimization is identified by setting 

MAX= O. Figure 4 shows a flow chart for Stage 1. 

Stage Two 

Some of the concepts of linear Diophantine equations 

and the theory of numbers are used in Stage 2. First, the 

greatest common divisor, g, of the objective function coef-

ficients is determined. Given an objective function of the 

form 

z = (4-9) 

then the greatest common divisor of the c., coefficients is 
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defined as 

In Chapter III, Euclid's algorithm is described. This algo-

rithm can be used to find the greatest common divisor for 

Equation (4-9), where CJ is integer, for j = 1, 2, ••• , n. 

When the greatest common divisor is greater than one, 

the algorithm takes advantage of the implication of this 

fact. If g > 1,. then certain parallel hyperplanes can be 

eliminated from consideration, since integer solutions can 

only occur when gjk, where k is some specific objective 

function value. This very important observation can signif-

icantly reduce the number of combinatorial solutions the 

algorithm must examine. Very simply, if g )' k, where 

(c1, ca, ••• , Cn) = g, then no integer solution can lie on 

the hyperplane 

n 

l CjXj = k. 

j:1 

(4.:..11) 

The initial objective function value that is considered 

is identified by the key word ZOF in the statement of the 

algorithm in Appendix A and in the computer code. In Stage 

1, the optimum continuous-variable simplex solution, ZSIM, 

was established. For a maximization problem where the 

greatest common divisor is g = 1, then the first of objec-

tive function value used by the algorithm is 

ZOF = [ZSIM]. (4~12) 
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If g I 1, then ZOF is set equal to the greatest integer less 

than ZSIM that has glZOF. Similarly, if minimization prob

lems are to be solved, then 

ZOF = (ZSIM) (4-13) 

when g = 1; and, ZOF is set equal to the smallest integer 

greater than ZSIM such that glZoF when g I 1. 

The logic of beginning at the continuous-variable solu

tion is an important part of the objective function reduc

tion algorithm. In many problems, the optimum integer 

solution lies on a hyperplane that is very near the hyper

plane that contains the optimum noninteger solution. 

Unfortunately, the set of solutions to the integer program-

ming problem is not conve4 • If only the space near the 

optimum noninteger solution is searched, then only a local 

optimum can be assured with an integer solution. Therefore, 

the objective function reduction algorithm begins at the 

hyperplane that contains the optimum noninteger solution 

because the optimum integer solution is often nearby, but 

the search method of Stage 4 considers successive hyper

planes and uses procedures to identify a global optimum. 

Where g = 1, for maximi~ation, the first integer value 

of the objective function, ZOF, was defined to be 

ZOF = [ZSIM]. This means the simplex optimum objective 

function value, ZSIM, is rounded down to the greatest integer 

less-than-or-equal-to ZSIM. The proof that this is an 

acceptable place to begin the search will now be considered. 

The fact that the simplex method finds the optimum 

continuous-variable solution is a basic axiom of 
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mathematical programming. Let the value of the objective 

function at the optimum continuous-variable solution be 

defined as 

w = ZSIM (/±-14) 

for this analysis. Therefore, the optimum objective func-

tion to the linear programming problem, where the integer 

restriction has been relaxed, would be of the form 

n 

\ C,1 X,1 = w. L (4-15) 

In Equation (4-15), the coefficients are restricted to 

integer values. The variables, X,1, j = 1, 2, ••• , n, may be 

' 

any real number within the limits set by the constraints. 

Obviously, this means w may assume a real number for the 

optimum simplex objective function value. Assuming the 

objective is to be maximized, w must set an upper bound on 

the objective function. Since each coefficient and variable 

on the left-hand side of Equation (4-15) must be integer in' 

the final optimal all-integer solution, the·, sum of their 

products must be less-than-or-equal-to w. 

The above analysis implies that when g = 1 9 then 

ZOF = [w] provides an upper bound on the objective function. 

The theorems of linear Diophantine equations require that 

g!ZOF for an all-integer solution to exist at a particular 

objective function value. Consequently, when g ! 1, then 

[ZSTM] must be incremented down in integer amounts until it 

leads to a ZOF that has g I ZOF. Similar logic can be used 
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to prove that the ZOF described for minimization problems 

is acceptable. 

The logic of Stage 2 is shown in the flow diagram of 

Figure 5, 

Stage Three 

In Stage 3, a ranking scheme for ordering the variables 

is specified. The objective of ordering the variables is to 

develop a procedure that will implicitly examine and elimi-

nate several combinatorial solution possibilities. To do 

this, the bounds on each variable are examined. The upper 

and lower bounds determine the range of possible integer 

values for a variable. The range size is the number of 

integer possibilities for a particular variable. A permuta

tion from the set of problem variables, [x., lj = 1, 2, ••• , 

n}, is identified such that the range size of the variables, 

r(x).i, proceeds from smallest to largest. That is, the 

first variable in the ranking has the smallest range of 

possible integer values, the second variable the next 

smallest range, and so on. 

The ranked variables are assigned a new symbol, Y.i, for 

j = 1, 2 1 ••• , n. The first variable in the ranking, Y1, 

represents the variable with the smallest range of possible 

integer values. This change of variables process continues 

so that the ranked variables will correspond to the ordered 

original problem variables. This will give r(y)l < r(y)2 < 

.•. < r(y)n, where r(y).l is the range size of the jth ranked 



variable. 

In some problems, the range size may be the same for 

two or more variables. The algorithm breaks the tie for 

ranking position by selecting the variable (x3 ) with the 

largest objective function coefficient (c 3 ) to have the 
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higher ranking. That is, if in some problem r(x)s = r(x)t, 

wheres# t, then c 8 and Ct must be examined. If Cs > Ct, 

then the algorithm would order the variables so Xs preceded 

Xt in the ranking. If the situation should occur such that 

r(x)s = r(x)t and cs = Ct, then the tie for ranking position 

is arbitrarily broken. 

The general philosophy of this ranking scheme is to 

describe a procedure that will mean that fewer combinatorial 

solutions will have to be explicitly examined. An addi-

tional way to move toward this goal is to use an observation 

from linear Diophantine equations. As was discussed in 

Chapter III, if all the coefficients in a Diophantine equa-

tion are even, then an odd right-hand side value means there 

are no integer solutions to that equation. In Stage 4, the 

objective function reduction algorithm will take advantage 

of this fact, whenever possible, to truncate the search. 

Using this concept, the algorithm examines the objective 
II 

function coefficients (c 3 ) that correspond to the ranked 

variables (y3 ). If a successive series of even coefficients 

occurs from the kth to the nth variable in the ranking, the 

algorithm records this fact. Stage 4 will describe the 

implicit examination of solutions that can be obtained using 
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this procedure. 

An additional heuristic procedure that blends the ideas 

of range size and even coefficients has been developed. If 

it is found that the range sizes on the ranked variables are 

approximately the same, the speed of convergence can often 

be improved by purposefully placing any variables with even 
II 
cj last in the ranking. Therefore, the variables would be 

first ranked according to range size. Then, change the 

II 
ranking to place any variables with even CJ at the end of 

the ordered variables. Again, this heuristic procedure is 

only advantageous when the r(y)j, for j = 1, 2, ••• , n, are 

II 
approximately the same and some c 3 are even integers. 

One of the goals of Stage 4 will be to attempt to 

tighten the upper and lower bounds on the ranked variables. 

Before going to Stage 4, the upper and lower bounds are set 

equal to variables indicating temporary bounds. This is 

done by setting 

(4-16) 

and 

u u 
Y< 3) t = Y3 (4-17) 

for j = 1, 2, ••• , n. As the algorithm moves to Stage 4, 

the tightest bounds that are known are the ones given in 

Equation (4-16) and (4-17). 

Figure 6 presents a flow diagram of the logic used in 

Stage J. 
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Stage Four 

The essential features ofStage 4"will be considered in 

this section. Appendix A gives detailedi step-by-step 

instructions for Stage 4. In Stage 4, the search for an 

optimal integer solution begins. Explicitly or implicitly, 

all of the integer combinatorial possibilities are examined 

in the feasible solution space. Beginning at the optimal 

continuous-variable solution, a family of parallel objective 

function hyperplanes is searched for the optimal feasible 

solution. 

The basic procedure is to let the variables take on 

integer values within their range of feasible values. When a 

variable is assigned a specific value, this means poten-

tially tighter bounds can be found on each variable not 

assigned a specific value. This procedure of finding 

tighter bounds can often be used to eliminate the need for 

explicitly considering several integer combinatorial possi-

bilities. The highest ranked variable, Y1, is set at its 

bound, such that 

u 
Y1 = YC 1 ) t (4-18) 

for maximization problems, or 

f., 
Y1 = YC 1) t 

for minimization problems. Also, initialize a temporary 

objective function value, Zt, such that Zt = ZOF. With Y1 

now assigned a value, the initial value of the objective 
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function, Zt = ZOF, can be modified. Therefore, the remain-

ing variables can only take on values such that 

,. ,. ,. ,. 
caya + CaYs + ••• + CnYn = Zt - C1Yl• (4-20) 

This fact, alone, may exclude some values of certain vari

able8 from being considered for a given Zt and the held 

value of y 1 • Still further, the held value of Y1 also· 

offers the possibility of tightening yariable bounds due to 

the functional constraints. Where bi .is a temporary right

hand side value in the ith constraint, the b; are first 

initialized to the original right-hand side constants, such 

that b; = b 1 for i = 1i 2, ••• , m. The constraints are now 

of the cannonical form 

n 

I (4-21) 

j:1 

for i = 1, 2, ••• , m. Since·y1 has been assigned an integer 

value, each b:, for i = 1, 2, ••• , m, can be potentially 

modified. t The new b 1 are found from 

(4-22) 

for i = 1, 2, ••• , m. 

,. 
If a 11 'F O, a new tighter bound on.the next variable in 

the ranking can now be found. If a maximization problem is 

being considered, then the new temporary upper bound on y 2 



is 

u 
Y< a) t = min [[ A J 

i=1,2, ••• ,m Zt/ca ' (4-23) 

Equation (4-23) imposes a new, temporary upper bound on ya, 

given y 1 is being held at some fixed value. Only coeffi-

A A 
cients where ca> 0 and a 1 a > 0 are considered when finding 

A A 
a tighter upper bound on Ya• If ca< 0 and all a 1 a ~ O, 

then no tighter bound on ya is defined. 

Similarly, for a minimization problem, the new.tighter 

lower bound on ya is found from 

t 
Y(a)t = max (4-24) 

i=1,2, ••• ,Ill 

A A 
As before, only coefficients where ca> 0 and a 12 > 0 are 

considered when finding a tighter lower bound on ya. If 

A A 
ca< 0 and all a 1 a ~ O, then no tighter bound is defined for 

Ya• 

Now, ya is set at its new bound. If the objective 

function is to be maximized, then 

u 
Ya = Y( a) t , 

otherwise, for minimization set 

t 
Ya= Y(a)t• (4-26) 

The fact that Ya has been assigned a value means that a new 

Zt and b:, for i = 1, 2, ••• , m, can be found. This implies 

that a new, potentially tighter bound can be determined for 



70 

the next variable in the ranking, y 3 • Then, y 3 can be set 

at its new, temporary bound. This method continues until 

the algorithm finds it can truncate the process, where fur-

ther enumeration would lead to infeasible solutions. Some 

of these methods of implicit examination will now be 

considered. 

If at any time Zt is ·an odd 'iint·eger · duri:p.g · the ·process 

of assigning values to variebles and finding. tightter 

bounds,: then the algorithm checks to see if this fact can 

be used. From the theory of linear Diophantine equations, 

an equation with even coefficients and an odd right-hand 

side value is immediately recognized as having no integer 

solution. Suppose the first k - 1 variables have been 

assigned a value in the ranking and the resulting Zt is an 

odd integer. If it is found that all succeeding objective 
,. ,. 

function coefficients from ck to Cn are even integers, then 

an equation with no integer solutions has been defined. 

Therefore, all of the combinations of the remaining vari-

ables in the ranking (yk to Yn) can be eliminated from con-

sideration, given the present held values of y1 to Yk-1• 

The algorithm immediately begins to backtrack, reducing Yk-l 

by one integer amount, finding a new zt, determining a new 

bound for Yk, and so on. On certain problems, several solu-

tions can be implicitly examined and eliminated with this 

proc·edure. 

During the.calculation of a new zt, the value of Zt can 

be driven negative. This is an immediate indication that 



71 

all of the remaining variables in the ranking can be elimi

nated from consideration, given the present held values of 

the preceding variables in the ranking. The algorithm 

begins to backtrack as described before. 

When the truncation methods fail to eliminate a certain 

combination, the algorithm advances through the ranking 

until the variable identified as Yn-i is reached. Since all 

preceding variables in the ranking, Y1 through Yn-a, have 

been set equal to one of their integer possibilities, only 

Yn-1 need be assigned a value. When this is done, Yn can be 

calculated from the objective function equation. If the 

value calculated for Yn is noninteger, the algorithm begins 

backtracking through the combinations. If Yn is found to 

be integer, the feasibility of the solution 

X = (y1, Ya, •••, Yn) (4-27) 

is tested in the functional constraints~ If it is infeasi-

ble, the algorithm backtracks and examines other combina

tions. In a finite number of iterations, the solution space 

will be examined explicitly and implicitly. If no integer 

solution is found for the first value of ZOF, then a new 

objective value is determined from 

ZOF = ZOF - g. (4-28) 

This will assure that the new value of ZOF has glzoF. Only 

objective function values such that glzoF need be consid

ered as shown in the theory of linear Diophantine equations. 
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If the solution~ in Equation (4-27) is found to be 

feasible, the algorithm stops and indicates the optimal 

solution has been found. Since the optimal solution must be 

the extreme point of the set feasible solutions, the first 

feasible solution found on the family of parallel objective 

hyperplanes is the optimal solution. 

The logic of Stage 4 is shown in Figure 7. A three 

variable example will be demonstrated in the next section to 

further explain the concepts of the algorithm. 

A Three Variable Example 

The three variable example presented in this section 

will be used to demonstrate several of the characteristics 

of the objective function reduction algorithm. The logic of 

the algorithm is described in Appendix A. This appendix 

should be used as a reference while following the step-by-

step solution of the example problem. The following example 

will be used in this section: 

maximize z = 6- X1 + 3 X:a + 6 X3 (4-29) 

subject to - 4 Xl + 5 X;a + 2 X3 < 4 (4-30) 

- 2 X1 + 5 X:a + O X3 < 5 (4-31) 

3 Xl - 2 Xa + 2 X3 < 6 (4-32) 

2 X1 - 5 Xa + O X3 < - 1 (4-33) 

Xj 1~:;;> 0 for j = 1' 2, 3 (4-34) 

Xj ' Cj INTEGER for j = 1, 2, 3. (4-35) 
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The solution to this problem with the objective function 

reduction algorithm begins with Stage 1. 

Stage 1 

Step 1 

Step 1 asks for the simplex linear programming solution 

to the problem. Using a simple computer code~ the solution 

was found to be 

ZSIM = 29.2 (4-J6) 

and 

x* = ( J. 64, 2. 45, 0. 0) • (4-37) 

Since this solution is not all integer, the algorithm goes 

to Step 2. 

Step 2 

The upper and lower integer bounds on each variable, 

x., , j ·= 1, 2, J 9 must now be defined. One way of doing this 

is to use the procedure of solving six linear programming 

problems. The first three problems will have objective 

functions of the form 

maximize ( 4-J8) 

for j = 1, 2 9 J. The constraints associated with the objec

tive functions of Equation (4-J8) are the original problem 

constraints of Equations (4-JO) through (4-J4). These three 



problems provide upper bounds on each variable. Similarly, 

three minimization problems with objective functions of the 

form 

minimize (4-39) 

for j = 1, 2, 3, can be solved to obtain lower bounds on 

each variable. When this is done, then 

x~ = [x; J (4-40) 

for j = 1, 2, 3 9 where xf is the value obtained from maxi-

. . th .th . bl b' t t th bl t . t mizing e J varia e su Jee o e pro em cons rain Se 

The lower integer bounds are 

(4-41) 

for j = 1, 2, 3, where xr is the value found from minimizing 

the J.th vari"able b' t t th bl t · t su Jee o e pro em cons rains. Using 

this method, it was found that 

u 
3 X1 = (4-42) 

u 
X:a = 2 (4-43) 

u 
2 X3 = (4-44) 

and 

for j = 1, 2, 3. (4-45) 

Step J 

Since the problem is to be maximized, the key word MAX 
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is set to 

MAX = 1. (4-46) 

Stage 2 

Step 1 

Using Euclid's algorithm or by inspection the greatest 

common divisor of the objective function coefficients is 

(6, 6, .3) = .3 

or, 

g = .3. 

Step 2 

Now, the initial objective function value must be 

found. Stage 1 says ZSIM = 29.2. Since g I 1, 

ZOF = [ZSIM] 

ZOF = [29.2] 

ZOF = 29 

(4-47) 

(4-48) 

(4-49) 

(4-50) 

(4-51) 

will not lead to an integer solution to the objective func

tion of Equation (4-29). The first integer value below 29 

that has g = .3 as a factor is 27. Therefore, with 

ZOF = 27 (4-52) 

the requirement of glZOF is met. 
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Stage 3 

Step 1 

In Stage 3, the variables are ranked according to the 

number of integer values they can take on. Using the bounds 

found in Stage 1, the range size, r(x)J, for j = 1, 2, 3, 

can be determined. In general, the variables are bounded 

such that 

(4-53) 

for j = 1, 2, ••• , n. In this example, the bounds are 

0 < X1 < J (4-54) 

0 < X2 < 2 (4-55) 

0 < X3 < 2. (4-56) 

Therefore, the range size for each variable is 

r( x) 1 = 4 (4-57) 

re x) 2 = J (4-58) 

rcx)3 = 3. (4-59) 

Although not described in Appendix A or used in the computer 

code, an interesting and useful heuristic procedure will be 

pointed out. Given the range sizes are approximately the 

~ame, rank the variables so the even objective function 
l 

coefficients appear last in the ranking. This leads to 
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Yl = xa (4-60) 

Ya = Xs (4-61) 

Ys = x1 (4-62) 

as a ranking. This will allow the methods of linear 

Diophantine equations to be used in truncating part of the 

search. Also, this implies the bounds in terms of the 

ranked variables are 

u 
Y1 = 2 (4-6J) 

y~ = 2 (4-64) 

u 
Ys = J (4-65) 

and 

"P, 
Yj = 0 (4-66) 

for j = 1, 2, 3. 

Notice that using the methods of Appendix A would lead 

to ranking of Y1 = x 3 , ya= x 2 , y 3 = x1. Unless altered by 

using the heuristic procedure of ranking, the algorithm 

would select this ranking scheme. In the special case where 

the r(x)j are approximately the same and some c 3 are even 

integers, a modified ranking as in Equations (4-60) through 

(4-62) often speeds convergence. 

Step 2 

With the ranking proposed in Equations (4-60) through 

(4-62), a successive sequence of even objective func.tion: · 

foefficients is described.·· The ordered c.oeff'iciertts are 
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" (4-67) C1 = 3 

" 6 (4-68) Ca = 

" 6, (4-69) C3 = 

which has the last two coefficients in the ranking even 

integers. The key word IFLAG is set equal to the number of 

the ranking position where the even coefficients begin. 

That is, all coefficients must be even integers from k ton 

in the set [~., lj = 1, 

Step 3 

' 2, ••• , k, .... , nJ .• 

IFLAG = 2. 

T}:lere:fore, set 

(4-70) 

During Stage 4, tighter bounds will be sought for the 

variables. Temporary bounds will be established and modi-

fied at various points in the algorithm. The temporary 

bounds are first set equal to the over-all bounds for each 

variable. Using the change of variables and the bounds 

u u £ £ 
found earlier, set Y(J )t = Y.i and Y(.i )t = YJ for j = 1, 2, 

••• , n. This implies 

u 2 Y( 1 ) t = (4-71) 

y~ 2) t = 2 (4-72) 

u 3 Y( 3) t = (4-73) 

and 

£ 
0 Y( .l ) = (4-74) 

for j = 1' 2, 3. 
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Before going to Stage 4, the example problem will be 

stated in terms of the ranked variables, YJ, j = 1, 2, J. 

maximize z = J Y1 + 6 Ya + 6 Y3 (4-75) 

subject to 5 Yl + 2 Ya - 4 Y3 < 4 - (4-76) 

5 Y1 + 0 Ya - 2 Y3 < - 5 (4-77) 

- 2 y1 + 2 Ya + J Y3 < - 6 (4-78) 

- 5 Y1 + 0 Ya + 2 Y3 < - 1 (4-79) 

YJ > 0 for j - = 1' 2, J (4-80) 

,., 

y j ' cj INTEGER for j = 1' 2' J. (4-81) 

Stage 4 

Step 1 

Set j = 1. 

Step 2 

Since MAX = 1' set 

u 
2. Y1 = Y1 = (4-82) 

A heuristic p~ocedure is to.set y 1 ~ y[ if :1 is ne~ative. 

Step 3 

Set ZSUBT = 27, NOTE4 = :0'. and 

t 
b1 = b1 = 4 (4-83) 

t 
b2 = b2 = 5. (4-84) 
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(4-85) 

(4-86) 

The key word NOTE4 is used in the computer code and the 

written form of the algorithm as an indicator which equals 

zero when all right-hand side values of the constraints are 

positive or zero. It is set equal to one when a right-hand 

side value has been forced to a negative value. 

Step 4 

Since this is the first time a ZSUBT value has been 

found that is tighter than the ZOF = 27 value, the following 

equation is used 

Therefore, set 

II 
ZSUBT = ZSUBT - c1 Yl· 

ZSUBT = 27 - (3)(2) = 21. 

This ZSUBT value is> O, so go to Step 5. 

Step 5 

ZSUBT = 21 is an odd integer, so go to Step 6. 

Step 6 

(4-87) 

(4-88) 

The key word IFLAG = 2 indicates all successive ranked 

variables from 2 through n have even objective function 

coefficients. Therefore, truncate the search and do not 

consider any further solutions with y1 = 2, because none can 
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produce an integer solution. Go to Step 26, since !FLAG= 2 

and j = 1. 

Step 26 

With MAX= 1, set 

y1 = y1 - 1 = 2 - 1 = 1 (4-89) 

and go to Step 27. 

Step 27 

Here, a check is made to see if all solutions for this 

particular objective function plane have been considered. 

This would be the case if the algorithm had incremented y1 

below its temporary lower bound. 
j, 

But, Y1 = 1 and Y(1)t = 0 

which says 

j, 
Y1 > Y( 1) t. (4-90) 

Therefore, set ZSUBT = ZOF; that is, 

ZSUBT = 27 (4-91) 

and go to Step 28. 

Step 28 

The value of n -I 2, so set 

b{ = b1 = 4 (4-92) 

b~ = ba = 5 (4-93) 

b! = b3 = 6 (4-94) 
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(4-95) 

and, go to Step 4. 

Step 4 

Again, as far as the algorithm is concerned, this is 

the first time a ZSUBT value has be~n found that is tighter 

than ZOF = 27. Therefore, set 

ZSUBT 
,.. 

= ZSUBT - c1 Yi _ (4-96) 

ZSUBT = 27 - (3)(1) = 24 (4-97) 

and, ZSUBT > 0 1 go to Step 5. 

Step 5 

ZSUBT is an even integer. Go to Step 7. 

Step 7 

This step checks to see if the final variable, Yn, is 

to be calculated yet. Since n - 1 = 2 and j + 1 = 2, there-

fore 

n - 1 = j + 1; 

so the algorithm says go to Step 13, because new right-hand 

side values have not been calculated for the held value of 

Y1, yet. 

Step 1J 

The new right-hand side b-values for the constraints 
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are calculated from 

bi bt 
,. . 

= i - a11 y1 (4-98) 

for i = 1, 2, . . . ' m. This leads to 

b{ = 4 - (5)(1) = -1 (4-99) 

b: = 5 - (5)(1) = 0 (4-100) 

b! = 6 - (-2)(1) = 8 (4-101) 

bl = 1 - (-5)(1) = 6 (4-102) 

t A right-hand side b-value, b1, has been forced negative. 

Therefore, set 

NOTE4 = 1, 

implying the methods of Step 18 cannot be used to find 

tighter bounds on Yj+i· Go to Step 14. 

Step 14 

The subscript j = 1 and tighter bounds have not been 

found on Yj+l. Go to Step 15. 

Step 15 

The subscript j + 1 = 2, so go to Step 16. 

Step 16 

Since NOTE4 = 1, go to Step 17. 
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Step 17 

u u 
The key word MAX equals one, so Y(a)t = Ya gives 

YCa)t = 2. (4-103) 

Go to Step 23. 

Step 23 

The next variable in the ranking, Yj+l, is set at its 

bound. With MAX= 1, set 

u 
Yj+l = Y{j+l)t (4-104) 

u 
Ya= Y(a)t = 2, (4-105) 

and go to Step 24. 

Step 24 

Variable Yj+l has not been incremented below its bound, 

such that 

P, 
Yj + 1 > YC j + 1 ) t • (4-106) 

Therefore, go to Step 4. 

Step 4 

This time a ZSUBT has been calculated before, so the 

new ZSUBT is found from 

ZSUBT 
,. 

= ZSUBT - Cj+l Yj+~ (4-107) 

ZSUBT = 24 - (6)(2) = 12. (4-108) 
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Since ZSUBT _:::. O, go to Step 5. 

Step 5 

ZSUBT is an even integer. Go to Step 7. 

Step 7 

Now, the final variable is to be calculated, n - 1 = 

j + 1, and right-hand side b-values have been found for y1. 

Go to Step.8. 

Step 8 

Check to see if Yn is an integer from 

A 
Yn = ZSUBT/cn 

Yn = 12/6 = 2. 

The variable Yn is integer so go to Step 9. 

Step 9 

(4-109) 

(11-110) 

Check to see if Yn > y~. The value of y; = J, so 

y3 < y~. Go to Step 11. 

Step 11 

The feasibility of the solution 

X = (1, 2, 2) (4-111) 

is now tested in the functional constraints, Equations 

(4-76) through (4-79). This solution is found to be 
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infeasible in the third constraint, Equation (4-78). Go to 

Step 12. 

Step 12 

A solution has been found infeasible, so y 3+1 = ya is 

incremented down one integer. With MAX= 1, 

Y3+1 = Y3+1 1 

ya= Ya - 1 

Ya= 2 - 1 = 1. 

(4-112) 

(4-11J) 

(4-114) 

The algorithm continues attempting to fi.nd tighter 

bounds and searching for a feasible solution on the plane 

z = 3 Y1 + 6 ya+ 6 y; = 27. (4-115) 

No feasible solution is found on this plane. Aft!er several 

steps.similar to the ones described above, the algorithm 

reaches Step 27 with y1 incremented to a value of Y1 = -1. 

This is below yf which indicates all solutio~s on the ,plane 

of Equation (4-115) have been implicitly or explicitly con-

sidered. The objective function is incremented down by the 

amount of the greatest common divisor to get 

ZOF = ZOF - g (4-116) 

ZOF = 27 - 3 = 24. (4-117) 

Now~ the plane 

z = 3 Y1 + 6 Ya+ 6 y3 = 24 (4-118) 
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will be searched for a feasible solution with the methods of 

Stage 4. A feasible solution, therefore, the optimal solu

tion, is found on this plane, such that 

x* = <2, o, 3). (4-119) 

The optimal solution in terms of the ranked variables 

can be changed to the original variables to give 

x* = ( J, 2 , 0) • (4-120) 

This example demonstrates many of the essential fea

tures of the objective function reduction algorithm. 

Chapter V will discuss the computer code and some of the 

implications of the algorithm. 



CHAPTER V 

SOME IMPLICATIONS OF THE ALGORITHM 

This chapter discusses some of the implications of the 

algorithm developed in this research. The computer code 

that performs the step-by-step process of the objective 

function reduction algorithm is described. The proposed 

method of ranking the problem variables is discussed more 

fully. Because of the importance of finding good approximate 

solutions to the pure integer linear programming problem, a 

heuristic procedure for establishing a lower bound on the 

maximand is presented. 

considered. 

First, the computer code will be 

The Computer Code 

The computer program used for the objective function 

reduction algorithm is written in the FORTRAN IV language. 

The code is composed of a main driver test program and 

three subroutines. The main driver test program is shown in 

Appendix B. This main program performs several functions, 

the first of which is initialization of certain parameters. 

Some parameters are set to their initial or normal values 

early in the main program. Later, tests are made to see if 

violations of limits or anticipated errors have been found 
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as the program searches for the solution. 

The main driver test program reads in the values that 

describe the integer linear program to be solved. These 

include the number of constraints, the number of real vari

ables, whether the problem is maximization or minimization, 

the constraint coefficients, the right-hand side b-values, 

and the objective function coefficients. Also, the Stage 1 

information of the upper and lower integer bounds on the 

variables and the objective function value at the continuous 

variable solution are read into computer memory. For refer-

ence and analysis, the main program writes out the input 

data. 

In Appendix C, SUBROUTINE GCD is presented. This sub-

routine calculates the greatest common divisor for a set of 

objective function coefficients. The greatest common 

divisor is calculated using Euclid's algorithm that was 

described in Chapter III. In addition, this subroutine cal-

culates the first objective function value that is searched 

while looking for the optimal integer solution. Since it 

must have the greatest common divisor as a factor, the 

initial objective function value is calculated after the 

greatest common divisor has been determined. 

The FORTRAN IV code for SUBROUTINE RANK is listed in 

Appendix D. This subroutine ranks the variables in the 

objective function according to their range of possible 

values. The ranking procedure was demonstrated and 

explained in Chapter IV, but will be discussed again later 
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in this chapter. The subroutine first calculates the range 

of possible values that each real variable can take on. 

Using a Shell sorting technique, the variable with the 

smallest range size is ranked first in the ranking. The 

next part of the subroutine tests for the situation that 

some variables have equal range sizes in the ranking. When 

this occurs, the variable with the larger objective function 

coefficient is given the ranking position nearest the vari-

able ranked first. Also, this subroutine calculates the 

value for the even sequence indicator, IFLAG. The subrou-

tine scans the objective function coefficients of the ranked 

variables, looking for an even sequence of coefficients from 

A A 
c~ to Cn• If there is no such even sequence, the program 

defaults to setting IFLAG at one greater than the number of 

real variables. This indicates to the program that no even 

sequence exists. 

The main part of the explicit and implicit search for 

the optimal integer solution is conducted in SUBROUTINE 

SEARCH, which is reproduced in Appendix E. This subroutine 

takes the information from the main program and subroutines 

RANK and GCD as it begins examining the solution space. The 

combinatorial search starts by holding the highest ranked 

variable at its upper limit for a maximization problem. 

SUBROUTINE SEARCH corresponds directly to Stage 4 of the 

analysis presented in Chapter IV and Appendix A. The steps 

of Stage 4 in Appendix A provide a direct reference to the 

step-by-step analysis of SUBROUTINE SEARCH. 



Several integer linear programming test problems that 

have been solved by the computer code are collected in 

Appendix F. Many of the problems are examples used in the 

93 

literature. The majority of the examples are small in size, 

but they have sufficient variety to test the computer code. 

The computer code and all test problems were run on an IBM 

System/J60 Model 65 computer. The method of ranking the 

variables used in the objective function reduction algorithm 

will now be discussed. 

The Scheme of Ranking 

the Variables 

The objective function reduction algorithm searches for 

the optimal integer solution by considering the feasible 

integer combinatorial possibilities. Any practical algo

rithm must examine the solution space in such a manner that 

many solutions need not be explicitly considered. One tech-

nique used in the algorithm presented in this thesis is a 

ranking scheme for ordering the variables. The objective of 

ordering the variables is to develop a procedure that will 

implicitly examine and eliminate sever~l combinatorial solu-

tion possibilities. Appendix A gives a written description 

of the ranking procedure used in the algorithm. In Appendix 

D, SUBROUTINE RANK shows how the computer code ranks the 

variables. 

Briefly, the ranking scheme will be reviewed again. 

The integer bounds on each variable are examined and used to 



determine the range of possible integer values for each 

variable. The range size is the number of integer values a 

particular variable can take on within the feasible solution 

space. From the set of problem variables, a permutation is 

developed such that the range size of the variables, r(x)J, 

will proceed from smallest to largest. The ranked variables 

are assigned a new symbol, y 3 , for j = 1, 2, ••• , n. 

When the range size is the same for two or more vari-

ables, the tie for ranking position is broken by selecting 

the variable (x 3 ) with the largest c 3 to have the ranking 

position nearest Y1. If two or more variables have the same 

range size and the same objective function coefficients, the 

tie for ranking position is broken arbitrarily. 

The cannonical form of a maximization problem will be 

assumed throughout the remainder of this discussion. The 

algorithm begins its search for the optimal solution by 

setting the variable ranked as y1 at its upper limit. 

value of y1 is set at 

u 
Y1 = Y1, 

the upper limit on the first variable in the ranking. 

This 

(5-1) 

From 

this held value of Y1, a new, reduced temporary objective 

function value can be found such that 

II II II II 
ca Ya + ca Y3 + •• • + Cn Yn = Zt - c1 Y1 , (5-2) 

II 
if c1 > 0. As described earlier, this process of tightening 

the value of Zt for the held values of variables continues 
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until the algorithm can truncate the search or Yn-i is 

reached. If the algorithm must proceed through the combina-

torial possibilities to Yn-l without truncating the search, 

the ranking scheme does not increase the speed of the 

algorithm. When a method can be used to implicitly examine 

the remainder of the combinatorial possibilities, the rank-

ing method is beneficial in eliminating solution 

combinations. 

Table I shows the feasible integer values of each 

variable in an example with 2535 feasible integer combina-

tions. The variables have been ranked according to their 

range size, such that, rcy)l < rcy)2 < r(y)3 < rcy)4• 

TABLE I 

AN EXAMPLE WITH THE VARIABLES RANKED 
ACCORDING TO RANGE SIZE 

YI Y2 Y3 Y4 

2 4 12 12 
1 3 11 11 
0 2 10 10 

1 9 9 
0 8 8 

7 7 
6 6 
5 5 
4 4 
3 3 
2 2 
1 1 
0 0 
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The preceding table shows the advantage the ranking scheme 

offers when a specific situation is considered. Suppose the 

algorithm sets y 1 at one of its feasible values. If the 

algorithm now finds it can truncate the search, the pyramid 

effect of the ranking scheme provides a maximum of implied 

examination of the solution space. 

The ranked variables y 3 and y4 in Table I both have the 

same range size, 

r(y)3 = r(y)4 = 1J. (5-J) 

In the particular problem selected as an example for Table~ 
,.. 

the associated objective function coefficients are c 3 = 7 
,.. 

and c 4 = J. When the original problem variables (xJ) were 

being examined to determine ranking positions, it was found 

that two variables had the same range size. The tie for 

which variable should be given ranking position y 3 was 
,.. 

broken by assigning the variable with the greater CJ the y 3 

position. The reason for selecting that variable is because 

it potentially allows the algorithm to take advantage of one 

of its truncation methods. If the algorithm ever causes the 

temporary Zt value to be driven negative, it can be immedi-

ately implied that all succeeding combinations of ranked 

variables are infeasible for the held value of all preceding 

variables. Therefore, the ranking scheme should maximize 

the feature whenever possible. By selecting the variable 

with the largest coefficient, the value of Zt can be 

reduced most quickly. This may lead to truncation early 
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in the search. 

In certain problems, it may be beneficial to override 

the ranking scheme used in SUBROUTINE RANK. A heuristic 

procedure has been developed that reduces the number of 

iterations on certain types of problems. When the range 

sizes on the ranked variables are approximately the same, 

the number of iterations can often be reduced by modifying 

" the ranking so any variables with even c 3 appear last in the 

ranking. After the variables have been ranked according to 

their range size, the ranking is changed so any variables 

with even objective function coefficients appear at the end 

of the ordered variables. This will allow the algorithm to 

set the even sequence indicator, IFLAG, at a value that will 

increase the number of variables 'truncated. The newly formed 

sequence of even objective function coefficients allows the 

algorithm to truncate the search each time Zt is found to 

be an odd integer 9 when only the even sequence of coeffi-

cients is being considered. This ranking modification pro-

cedure is only beneficial when the variable range sizes are 

approximately the same and some of the objective function 

coefficients are even integers. 

Modifying the Coefficients in 

the Objective Function 

In many integer linear programming problems, the size 

or configuration of the solution space make finding the 

optimal solution difficult, even with high speed computing 



equipment. These situations can make the computing time 

impractical for finding the optimal integer solution. A 

good approximate solution can be of great value when the 

optimal solution cannot be easily obtained. Hillier (14) 

has pointed out this fact in his work in developing an 

efficient heuristic procedure for integer linear 

programming. 

The objective function reduction algorithm has some 

features that allow it to converge most rapidly on some 
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types of problems. Conversely, convergence speed is limited 

when certain situations exist. In the case where the 

greatest common divisor (g) of the objective function 

coefficients is one, the algorithm must search each succeed

ing hyperplane beyond the continuous variable solution. 

Also, if each objective function coefficient is an odd 

integer, the even sequence indicator, IFLAG, can never be 

used to truncate the search and implicitly examine some com-

binatorial possibilities. As with other linear programming 

algorithms, the objective function reduction algorithm con

verges increasingly slower as the number of variables and 

constraints enlarges. A heuristic procedure will now be 

discussed that will modify the objective function coeffi

cients to take advantage of some of the algorithm•s methods 

of speeding convergence. The cannonical form of a maximiza-

tion problem will be assumed throughout the remainder of 

this discussion. 

When the algorithm has determined that the greatest 
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common divisor (g) is greater than one, only certain hyper-

planes are considered in the search for the optimal solu-

tion. As previously mentioned, for an integer solution to 

be possible, g must be a factor of the value of the particu-

lar hyperplane being considered. Using the earlier nota

tion, glk must be true for an integer solution to be 

possible in the objective function 

A A A 
C1 Yl + C2 Y:a + • • • + Cn Yn = k, (5-4) 

A 
where cj, for j = 1, 2, ••• , n, and k are integers. Using 

this concept, an approximate solution procedure that modi-

fies the objective function coefficients to get g > 1 can 

potentially reduce the number of hyperplanes the algorithm 

must examine. 

Consider an objective function of the form 

Z = 501 X1 + 98 X2 - 296 X3 + 705 X4. (5-5) 

The objective function reduction algorithm would find that 

the greatest common divisor is one. With small changes in 

each coefficient, a new, approximate objective function 

could have the form 

z = 500 X1 + 100 X2 - JOO X3 + 700 X4· (5-6) 

The algorithm would now conclude that g = 100 should be used 

for the greatest common divisor. As described in Chapter 

III on linear Diophantine equations, objective function 

values in increments of g are the only ones that need be 
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searched for an integer solution. Again, this comes from 

the fact that the greatest common divisor must be a factor 

of the objective function value. The number of hyperplanes 

the algorithm must search has been significantly reduced. 

Also, Theorem 3.3 in Chapter III can be used to set a lower 

bound on the search. For a feasible integer solution to 

exist, the value of the objective function must be greater

than-or-equal-to g. 

Another consideration would be to try to modify the 

objective function coefficients to obtain a sequence of even 

integers from k ton in the set (~J lj = 1, 2, ••• , k, ••• n1 

This will allow the algorithm to use the even sequence indi

cator, IFLAG, to truncate the search. The number of itera

tions can be reduced appreciably when IFLAG can be used to 

implicitly examine some solution combinations. 

Finally, modifying the objective function to obtain an 

approximate solution offers still other advantages. Many 

primal integer programming algorithms benefit from having a 

good approximate solution to begin their search. An approx-

imate solution that is obtained rapidly can reduce the 

computing time for many optimal algorithms. Also, this 

approximate solution can be used to describe a lower bound 

on the maximand. 

Using the techniques described above for modifying the 

objective function coefficients, an approximate solution can 

be obtained with methods that speed the algorithm. Tests 

on several example problems have shown that minor changes in 
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objective function coefficients can be made and still lead 

to the optimal solution. Obviously, a modified objective 

function gives no direct assurance the optimal solution has 

been found. Nevertheless, the solution found with the 

modified objective function, 

y = ( Y1 , Y2 , • • • , Y n ) , (5-7) 

is potentially useful. Even if the objective function slope 

is changed sufficiently so that y I y*, they solution can 

be used to set a lower bound on the maximand. If the solu-

tion y is substituted in the unmodified objective function, 

A A A 
Z = C1 Yl + C2 Y2 -+ ••• + Cn Yn, (5-8) 

then a new constraint can be formed. If the value of 

Equation (5-8) with the approximate solution substituted in 

for y 3 , j = 1, 2, . . . ' n is called k, then a new lower 

bound can be made with the constraint 

A A A 
C1 Yl + C2 Ya + • • • + Cn Yn > k. (5-9) 

The new constraint defined in Equation (5-9) can be 

added to the original problem constraints to describe a new 

integer linear programming problem. The solution space has 

been reduced and some solutions eliminated from further con-

sideration. This approach offers an approximate solution 

and tighter bound on the optimal feasible solution. 

The next and final chapter of this thesis will briefly 
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state the problem, summarize the important findings, and 

suggest areas of further research, investigation, and study. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The primary problem considered in this research is an 

extension of the existing theory of solution procedures for 

pure integer linear programming. The objective is to pro

vide a new algorithm for solving the pure integer linear 

programming problem. Secondary problems approached are (1) 

to identify any heuristic procedures that will speed the 

convergence of the algorithm, (2) develop a procedure for 

finding a good approximate solution to the problem, (J) 

write a computer code to evaluate the algorithm. 

Important Findings 

Several important techniques for integer linear pro

gramming have been identified in this research. A new algo

rithm has been developed. The objective function reduction 

algorithm presented in this thesis uses a combinatorial 

search procedure to implicitly and explicitly search the 

solution space. This algorithm uses the concept of examin

ing a family of objective function hyperplanes until an 

integer solution is found. Beginning at the optimum non

integer solution, the algorithm inspects parallel objective 

function hyperplanes in the feasible solution space. 
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The basic structure of the algorithm developed in this 

research is divided into four stages. Stage 1 identifies 

the optimum continuous-variable solution, defines the over

all bounds on each variable, and determines whether the 

objective function is to be maximized or minimized. Stage 2 

calculates the greatest common divisor of the objective 

function coefficients and determines the first hyperplane to 

be searched. In Stage J, a ranking scheme is selected for 

the variables. It also examines the objective function 

coefficients of the ranked variables and defines an even 

sequence indicator used to truncate the search for implicit 

consideration of solution combinations. Stage 4, the main 

section of the algorithm, carries out the implicit and 

explicit enumeration of the feasible integer solution space. 

The ranking scheme proposed in this research shows how 

the variables can be ordered to potentially eliminate many 

combinatorial solution possibilities from explicit consider-

ation. The ranking method examines the range of possible 

integer values for each variable. A range size is defined 

as the number of integer possibilities for a particular 

variable. Using the range sizes, a permutation from the set 

of problem variables, [ XJ I j = 1, 2, ••• , n}, is identified 

such that the range size of the variables proceeds from the 

smallest to the largest. The search of the algorithm pro-

ceeds from the variables with the smallest range size to 

those with the largest range size. This ordering of the 

variables allows the algorithm to use truncation procedures 



to maximize the number of solution combinations that are 

examined implicitly. 
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A heuristic method of ranking has been developed for a 

certain class of problems. For the situation where the 

variable range sizes are approximately the same and some of 

the objective function coefficients are even integers, a 

modification of the ranking scheme can often speed conver-

gence. When the variables with even objective function 

coefficients are positioned last in the ranking, the trunca

tion method of the even sequence indicator (IFLAG) can be 

used. Since the range sizes are approximately the same, any 

additional truncation method and the even sequence indicator 

will be used to greatest advantage. 

Another important result of this research is associated 

with finding an approximate solution to the pure integer 

linear programming problem. Some of the concepts of linear 

Diophantine equations allow the algorithm to implicitly con

sider certain combinatorial solution possibilities. In 

order to take advantage of these concepts, the objective 

function coefficients can be modified to produce a new, 

approximate objective function that can be handled more 

rapidly by the algorithm. This procedure can be used to 

establish a lower bound on the maximand, as described in 

Chapter V. The lower bound can potentially be used to 

tighten the solution space. 

The computer code in Appendixes B, C, D, and Eis a 

valuable tool for further evaluation of the algorithm. It 
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is a practical necessity for solving problems of moderate or 

large size. The computer code can be used to experiment 

with refinements and additions to the algorithm. 

Areas for Further Investigations 

During this research into integer linear programming, 

some topics were found for future study and investigation. 

First, a review of the literature identified the need for a 

thorough survey of the recent literature. From the late 

1950's through the middle of the 196ovs, surveys such as 

those by Balinski (J) and Beale (4) adequately describe the 

work in integer linear programming. Nevertheless, in recent 

years no comprehensive survey has appeared to unify and up-

date this area of study. It is needed and, hopefully, this 

void in the literature will be filled soon. 

As a companion of a survey of the recent literature, 

additional work should be published evaluating the recent 

integer programming computer codes. Although some of the 

published literature does list experimental results with 

individual computer codes, no computational efficiency sur

vey such as the 1967 work of Trauth and Woolsey (28) has 

appeared recently. From a practical point of view, the 

ability of existing computer codes to solve problems is very 

important. Further investigations are needed. 

Additional testing of the algorithm developed in this 

research should be considered. Larger, more difficult prob-

lems offer a severe test to any integer programming 
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algorithm. These problems can consume an enormous amount of 

computer time and should be studied and evaluated carefully. 

The objective function reduction algorithm should be com

pared for computational efficiency with other procedures. 

Further investigation of several heuristic procedures 

associated with this research should be evaluated and 

refined. Some of these techniques have the potential of 

becoming an integral part of the algorithm. For example, 

the heuristic ranking scheme that can be used when the 

range sizes are approximately the same offers the possibil-

ity of being quantified. The heuristic procedures for 

obtaining a good approximate solution can be developed fur

ther. The speed and efficiency of these concepts should be 

considered. 

The study of other problems in integer programming has 

become an area of increasing interest in recent years. 

Some of the concepts of this thesis may suggest a new 

approach to a mixed-integer programming algorithm. Also, 

further research could consider the integer nonlinear pro

gramming problem and see if some of the theory of nonlinear 

Diophantine equations can be used. 

Conclusions 

Many of the conclusions of this research are discussed 

and analyzed in the earlier chapters of this thesis. The 

dominant conclusions are as follows: 

(1) A new algorithm for integer linear programming 



has been developed. This algorithm uses a 

combinatorial search procedure to implicitly 

and explicitly search the solution space. 

(2) Some heuristic procedures have been identified 

that speed the convergence of the algorithm. 

A technique for ranking the variables in cer

tain classes of problems has been developed. 

(J) A ranking scheme for the variables has been 

defined as a part of the algorithm. This 

ranking method produces an ordered set of 

variables to potentially eliminate many combi

natorial solution possibilities. 

(4) A procedure for finding a good approximate 

solution has been outlined. Also, this tech

nique can be used to establish a lower bound 

on the maximand. 

(5) Finally, a computer code has been written to 

provide an additional method of evaluating 

the algorithm. Also, it can be used to test 

modifications and refinements of the algorithm. 
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The area of integer linear programming cannot be con-

sidered complete. No practical algorithm comparable in 

efficiency to the simplex method has yet been discovered. 

This research has continued the search for such an algo

rithm and has proposed some new, useful techniques for 

solving the integer linear programming problem. 
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The Objective Function 

Reduction Algorithm 

The following statements describe the flow of logic 

used in the objective function reduction algorithm. The 

logic is divided into four stages. The first three stages 

are preparatory, while the Stage 4 carries out the implicit 

and explicit examination of the solution space. 

Stage 1 

1. Find the simplex linear programming solution, 

x and ZSIM. 

a. Is the solution,~' all integer? 

(1) If yes, stop, solution found. 1 

(2) If no, go to step 2. 

2. Determine the over-all integer bound on each 

variable. 

a. £ Set x.j equal to the lower integer bound 

for j : = 1 , 2, ••• , n. 

b. Set x;· equal to the upper integer bound 

for j = 1, 2, ••• , n. 

J. Set MAX= 1 for maximization or set MAX= 0 

for minimization of the objective function. 



Stage 2 

1. Find the greatest· common divisor, g, of the 

objective function coefficients such that 

(c1, ca, ••• , Cn) = g. 

2. Find the initial objective function value, 

ZOF, to be considered. 

a. If MAX= 1, then ZOF = [ZSIM] where g = 1; 

otherwise, ZOF equals the greatest integer 

less than ZSIM such that glzoF. 

b. If MAX = 0, then ZOF = _ (ZS IM) where g = 1; 

otherwise, ZOF equals the smallest integer 

greater than ZSIM such that glZOF. 
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(A-1) 



Stage 3 

1. Rank the variables according to the number of 

feasible integer values they can take on. 

a. Identify a permutation from the set of 

problem variables [ Xj I j = 1, 2, ••• , n} 

such that the variable range size, r(x)J, 

proceeds from smallest to largest in 

permutation of x 3 variables. Set the 

ranked variables, y 3 , j = 1, 2, ••• , n, 

equal to the ordered x3 variables in the 

permutation, such that y1 equals the 

first ordered x 3 variable, ya equals the 

second ordered x 3 variable, and so on, 

for j = 1, 2, ••• , n, giving r(y)l < 

r(y)a < ••. < r(y)n• 

b. Break any ties in the ranking scheme where 

r(y)J = rcy)J+l by selecting the variable 

with the largest objective function coeffi

cient to have the jth ranking position. 

A A 
When c 3 = c 3 + 1 and r ( y ) 3 = r ( y ) 3 + 1 , 

arbitrarily break the tie. 

2. Identify any successive sequence of objective 

function coefficients corresponding to the 

ordered set [y 3 I j = 1, 2, ••• , n}, such that 

all coefficients are even integers from k to 

A 
'n in the set [c 3 lj = 1, 2, ••• , k, ... , n}. 

a. Set IFLAG = k. · 
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4. £ £ u u 
Set Y( j ) t = y 3 and Y< 3 ) t = y 3 for j = 1, 2, 

• • • , n. 



Stage 4 

1. Set j = 1. 

2. Set highest ranked variable at its upper bound, 

y1 = y¥, if MAX= 1; otherwise, set y1 = yf. 

J. Set ZSUBT t = ZOF, NOTE4 = O, and b 1 = b 1 for 

i = 1, 2, ••• , m. 

4. Find a new modified objective function value, 

ZSUBT, based on the held value of the variables. 

a. If ZSUBT has not been found before, then 

117 

,., 
ZSUBT = ZSUBT - c1 y1; (A-2) 

otherwise, 

ZSUBT = ZSUBT 

b. If ZSUBT > O,go ·to step 5; otherwise, if 
,., 
Cj+l < O,go to step 5; otherwise, go to 

step 12. 

5. Check to see if ZSUBT is an odd integer. 

a. If yes, go to step 6. 

b. If no, go to step 7. 

6. Check to see if all succeeding objective 

function coefficients in the ranking are 

even integers. 

a. If !FLAG= 1, go to step 26. 

b. If !FLAG I j + 1, go to step 7; otherwise, 

(A-,3) 

if j = 1, go to step 26; otherwise, set 
,., 

ZSUBT = ZSUBT + c 3+ 1 y 3+ 1 ; and, if MAX= 1, 

set y 3+1 = y 3+1 - 1; otherwise, set 



YJ+l = YJ+l + 1, and 

go to step 24. 

7. Determine if the final variable is to be 

calculated. 

a. If n = 2, go to step 8; otherwise, 

check if n - 1 F j + 1. 

(1) If yes, go to step 13. 

(2) If no, go to step 8, unless b-valHes 

not found for y1, go to step 13. 

8. Check to see if Yn is integer from 

9. 

A 
Yn = ZSUBT/cn• 

a. If yes, to to step 9. 

b. If no, go to step 12. 
u 

Check to see if Yn is greater than Yn• 

a. If yes, go to step 10. 

b. If no, go to step 11. 

10. Check if n = 2. 

a. If yes 9 go to step 26. 

b. If no 9 go to step 12. 

11. Test the feasibility of the solution in the 

functional constraints. 

a. If the solution is feasible, the optimum 

feasible integer solution has been found. 

b. If the solution is infeasible in any func-

tional constraint, go to step 12. 

12. A test solution has been found infeasible. 

Increment YJ+l one integer amount. 
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(A-4) 

(A-5) 
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a. If MAX= 1, set 

Y,1+1 = Y.1+1 - 1; (A-6) 

otherwise, set 

Y,1+1 = Y,1+1 + 1. (A-7) 

b. Go to step 24. 

13. Calculate new right-hand side b-values. 

a. If new b-values have not been calculated ---
for the held value of y1, then~ 

bit bt ,, = 1 - a11 Y1 ·, : ( A"""B ) 

for i = 1, 2, ••• , m. 

b. If new b-values have been calculated for 

the held value of y1, then 

t t " b1 b = 1 - a 1, .r+ 1, Y .1 + 1 · . (A-9) 

for i = 1, 2, ••• , m. 

t c. If any b 1 < O, for i = 1, 2, ••• , m, 

then set the flag NOTE4 = 1. 

d. Go to step 14. 

14. Determine if j should be incremented. 

a. If j f 1, set j = j + 1 and go to step 

15; otherwise, check if tighter bounds 

have been found on Y,1+1• 
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(1) If yes, set j = j + 1 and go to 

step 15. 

(2) If no, go to step 15. • 

15. If j + 1 I 2, go to step 19; otherwise, go 

to step 16. 

16. If NOTE4 = 1, go to step 17; otherwise, go 

to step 18. 

17. Check if MAX= 1. 

a. If u u 
yes, set Y(a)t = Ya, and go to step 2J. 

b. If t t 
no, set Y(a)t = Ya, and go to step 2J. 

18. Find a new, tighter bound on the next variable 

in the ranking, Ya· 
II 

a. If MAX= 1, considering ca> 0 and 

II · II u t 
a 1 a > 0, adding -au YJ to b 1 for all 

II 
a 1 j < O, 

u 
Y(a)t = min 

i=1,2, ••• ,m 
(A-10) 

b. 

and, check if Y(a)t < y~. 

If yes, go to step 2J. ( 1) 

(2) u u 
If no, set Y(a)t = Ya, and go to 

step 23. 

If MAX = o, considering 
II 
ca > 0 and 

II II. t 
b: a1a > o, adding -a..1 J Y.1 to for all 

II 
a1 J <.o, 

t 
Y(a)t = max 

i=1,2, ••• ,m 

t f, 
and check if Y(a)t > Ya· 

(A-11) 



( 1 ) 

( 2 ) 
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If yes, go to step 23. 

f, f, 
If no, set Y(a)t = Ya, and go to 

step 23. 

19. If MAX= O, go to step 22; if not, go to 

step 20. 

20. If NOTE4 = 1, set Y~J+i )t 
u 

= YJ+l, and go to 

step 23; otherwise, go to step 21. 

21. Considering only 
,. 
Cj+l > 0 

,. 
and a1,3+1 > o, adding 

,. u bt 
,. 

-a!t;J + l YJ+l to 1 for all a1, J + 1 < o, 

Y~j+l)t = min [[ZSUBT/~j+1J, [b:/:1 ,j+1J} 
i=1,2, ••• ,m 

( A-12) 
u u 

and, check if Y(J+l)t < YJ+l • 

a. If yes, go to step 23. 

b. u u If no, set Y(J+l)t = Yj+l, and go to step 23. 

22. 
,. ,. 

Considering only cJ+l > 0 and a 1 ,J+l > O, adding 
,. f, ,. 

-a1, j' + 1 y 3 .+ 1 to b ; for a 11 a 1 , J + 1 < 0 , 
~ . 

f, ,. t ,. } 
Y(J+l)t = max [(ZSUBT/cj+l), (b 1 /a 1 ,j+l) 

i=1,2, ••• ,m 
(A-13) 

and, ~heck if yfJ+l)t > 

a. If yes, go to step 23. 

b. If set 
f, f, 

and to step 23. no, Y(J+l)t = y .l + l ' go 

23. Set next variable in ranking at its new bound. 

a. If MAX= 1, set 

u 
Y J + 1 = y·( J + 1 ) t (A-14) 

otherwise, set 

f, 
YJ+l = Y(J+l)t (A-15) 

and, go to step 24. 

24. Check to see if a variable has been incremented 
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beyond its bound. 

a. If MAX= o, check if YJ+l < u 
- Y(J+l)t• 

( 1) If yes, go to step 4. 

(2) If set u and go no, YJ+l = Y(J+l)t, 

to step 25. 

If MAX= 1, check if YJ+l > 
i, 

- Y(J+l)t• b. 

( 1) If yes, go to step 4. 

(2) If set 
i, 

and no, Y3+1 = Y(J+1)t, 

go to step 25. 

25. If j = 1, go to step 26; otherwise, set 

j = j - 1, 

ZSUBT 
I\ 

= ZSUBT + cJ+l YJ+l, (A-16) 

and 

(A-17) 

for i = 1, 2, ••• , m; also, set NOTE4 = O, 

and check to see if MAX= 1. 

(1) If yes, set y 3+1 = y 3+1 - 1, and go to 

step 24. 

(2) If no, set y 3+1 = YJ+l + 1, and go to 

step 24. 

26. Increment first variable in ranking, y1, one 

integer. 

a. If MAX= 1, set 

Y1 = Y1 - 1, (A-18) 

and go to step 27; otherwise, set 
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Yl = Y1 + 1, (A-19) 

and go to step 27. 

27. Check to see if all solutions have been 

examined. 
.R, 

a. If MAX= 1, check if Y1 < Y(l)t• 

(1) If yes, set ZOF = ZOF - g, and 

go to step 1. 

(2) If no, set ZSUBT = ZOF, and go to 

step 28. 

b. 
u 

If MAX= O, check if y1 > Y(l)t• 

(1) If yes, check ZOF < O. 

(a) If yes, set ZOF = ZOF - g, 

and go to step 1. 

(b) If no, set ZOF = ZOF + g, and 

go to step 1. 

(2) If no, set ZSUBT = ZOF, and go to 

step 28. 

28. Check if n = 2. 

a. If yes 1 .go to step 4~ 

b. If no, set b; = b 1 for i = 1, 2, ••• , m, 

and go to step 4. 



APPENDIX B 

MAIN TEST PROGRAM 

A-·· 
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IJ08 12217,it4l-38-2562 ,R.EGIONaitOK,T IHE•30 JAMES Ho SHIRLEY 

C ••••••••••••••••••••••·•••••••••••••••••••••••••••••••••••••••••••••• OfROOOl 
C • • OFR0002 
C • THE OBJECTIVE FUN CT ION • OFR 0003 
C • REDUCTION ALGORITHM • OFR0004 
C * • OFR0005 
C * • OFR 0006 
C * JAMES Mo SHIRLEY • OFR0007 

· C * • OFROOOB 
C • SCHOOL OF INDUSTRIAL ENGINEERING * OFR0009 
C • .ANO MANAGEMENT • OFROOlO 
C * OKLAHOMA STATE UNIVERSITV * OFROOll 
C * MAY 14,1972 * OFR0012 
C * * OFROOll 
C * * OFR0014 
C • * OFR0015 
C * * OFR0016 
C * THIS PROGRAM IS THE HAIN DRIVER TEST PROGRAM TO CALL * OFR0017 
C • INTEGER LINEAR PROGRAH SUBROUTINES. THE SUBROUTINES USE AN * OFR0018 
C * CBJECTIVE FUNCTION REDUCTION ALGORITHM DEVELOPED DURING RESEARCH • OFR0019 
C * INTO INTEGER LINEAR PROGRAMMING. FOR FURTHER INFORMATION SEE * OFR0020 
C * THE DOCTORAL THESIS 11 AN OBJECTIVE FUNCTION REOUCTJ.ON ALGORITHM * OFR002l 
C * FOR INTEGER LINEAR PROGRAMMING.• * OFR0022 
C • * OFR0023 
C * * OFR0024 
C * THE USER HUST SU.PPLY THE FOLLOW ING INFORMATION ON CONTROL * OFR 0025 
C • CARDS AS INPUT DATA: * OFR0026 
C * ORDER CONSTRAINTS SO ALL GKEATER-THAN-OR-EQUAL TO * OfR0027 
C * CONSTRAINTS APPEAR LAST• * DFR0028 
C * * OFR0029 
C * CAROl-LM,KM,LN,MAX: FORMATC415l *OFR0030 
C * * OFR0031 

. C * LM • THE NUMUER Of LESS-THAN-OR-EQ'lJAL-TO • OFR0032 
C * CONSTRAINTS • OFR0033 
C * KM • THE NU148ER OF GREATER-THAN-OR-EQUAL-TD * OFR0034 
C * CONSTRAINTS • OFR0035 
C * LN • THI:: NUMBER OF REAL PROBLEM VARIABLES * OFR0036 
C * MAX • SET H1UAL l FOR MAXllilllATION • OFR0037 
C * SET EQUAL O FOR MINIMIZATlON • Off\0038 
C * * OFR0039 
C * CARD 2 - Z.SIM: FORHA Tlfl0.2.1 * OFR0040 
C * * OFR0041 
C * ZSIM = OBJECT IVE FUNCTION VALUE fOR CONTINUOUS * OFR0042 
C * VAR IA ti LE SOLUTION * OFR0043 
C * • OFR0044 
C * CARD 3 - ANO SUCCESIVE CARDS REQUIRED TO DEFINE THE * OFR0045 
C * CONSTRAINT COEFFICIENTS,ACl,JI. ONE COEFFICIENT * OFR0046 
C * PER CARD,KEAD BY THE R0111S: FORMATU0.2) * OfR0047 
C * * OFR0048 
C • AII,JI = CONSTRAINT COEFFICIENT Of THE I TH ROW * OFR0049 
C • A1'40 J TH COLUMN * OFR0050 
C * * OFR0051 
C • CARD J - AND SUCCESSIVE CARDS REQUIRED TO DEFINE THE * OFR0052 
C * RIGHT-HANO SIDE CONSTRAINT 8-VALUES. ONE VALUE * OFR0053 
C * PER CARO: FORMAflfl0.2.1 * OFR0054 
C * * OFR0055 
C • BC I) = CONSTRAINT RIGHT-HAND SIDE VALUES * OFROOS6 
C * * OFR0057 
C * CARD K - ANO SUCCESS I VE CARDS RE QUI RED TO DEFlNE THE * OfR0058 
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C • OBJECTIVE FUNCTION COEFFICIENTS. ONE VALUE PER • OFR0059 
C • CARO a FORMA Tl I 10) • OFR0060 
C • • OFR0061 
C • CIJ) • OBJECTIVE FUNC.TION COEFFICIENTS • OfR0062 
C • • OFR0063 
C • CAROL - ANO SUCCESSIVE CARDS REQUIRED TO DEFINE THE • OFR0064 
C • UPPER INTEGER LIMIT ON EACH VARIABLE. ONE VALUE • OFR0065 
C • PER CARO: FORMAT I UO> . • OFROOo6 
C • • OFR 0067 
C • XU( J) "' UPPER INTEGER LI MIT .ON VARIABLE X (J) * OFR00b8 
C • * OFROOb9 
C • CAROM - ANO SUCCESSIVE CARDS REQUIRED TO DEFINE THE * OFR0070 
C • LOWER INTEGER LHU T ON EACH VARIABLE. ONE V·ALUE * OfR0071 
C *' PER CARO: FORHATUlO> * OFR00,72 
C * • OFR0073 
C • XL(J.) = LOWER INTEGER LIMIT ON VARIABLE XIJI * OfR0074 
C * * OfR0075 
C • * OFR0076 
.C • * OFR0077 
C • * OFR 0078 
C * PARAMETERS .FOR PROGRAM: * OFR0079 
C • * 'OFR0080 
C • * OFR008l 
C * Kl = INPUT DEVICE NUMBER ASSOC IA TEO WITH READ STATE HE NT * OfR0082 
C * KO= OUTPUT DEVICE NUMBER ASSOCIATED WITl1 WRITE STATEMENT * OFROOB3 
C * HCOUNT = A COUNTER KEEPING TRACK Of THE NUMBER OF ITERATIONS * OfR0084 
C * REQUIRED * OfR0085 
C • NCOUNT = A COUNTER LI HIT SET ON THE UPPER LIMIT ON THE NUMBER OF • OFR0086 
C • ITERATIONS * OFR0087 
C * NOFLAG = A COUNTER TO RECORD THE NUMBER OF TIMES lfLAG TRUNCATES* OFR0088 
C * THE SEA-CH * OFR0089 
C *NITER= NUMBER OF ITERATIONS ALLO~ED * OFR0090 
C * NCNTl ,. A FL.AG EQUALING l WHEN NUMBER Of ITERATIONS EXCEEDED; * OfR0091 
c; * OTHERWISE, IT E'-!UALS ZERO • OFR0092 
C * ERRl • AN INDICATOR WHIGH EQUALS l WHEN AN OBJECTIVE FUNCTION • OFR0093 
C * COEFFICIENT E'-JUAL:. ZERO; OTHERWISE, IT EQUALS ZERO * OFR0094 
C * ERR2 • AN INOICATOH. WHICH EQUALS l WHEN AN ERROR IN THE * OFR0095 
C * EUCLI0 1 S ALGORITHM CAUSED A NEGATIVE REMAINDER • OFR009o 
C * EPS • ERROR TEST LIMIT * OFR0097 
C * LM"" THE NUMBER OF LESS THAN OR EQUAL TO CCNSTRAINTS * OFR0098 
C * KM z THE NUMBER OF GREATER THAN OR EQUAL TO CONSTRAINTS * OFR0099 
C * LN = THE NUMBER OF REAL VARIABLE~ IN THE PROl:ILEM . * OFROlOO 
C *MAX= AN INDICATOR WHICH EQUALS 1 WHEN OBJECTIVE FUNCTION JS TO * OfROlOl 
C * BE MAX IM IZED, EQUALS ZERO fOR MINIMllATION · * OFR0102 
C *A= MATRIX Of CONSTRAINT COEFFICIENTS * OfR0103 
C * B = COLUMN VECTOR Of CONSTRAINT RIGHT-HAND SIDE VALUES • OFR0104 
C * C = THE COEFFICIENT VECTOR FOR THE OBJECTIVE FUNCTION * OFR0105 
C *XU= COLUMN VECTOR GIVING THE UPPER LIMIT ON EACH REAL VARIABLE * OFR0106 
C *XL= COLUMN VECTOR GIVING THE LOWER LIMIT ON EACH REAL VARIABLE * OFR0107 
C * X = SOLUTION VECTOR Of INTEGER VALUES * OFROlO.S 
C * KY = THE CONSTRAINT ROW WHERE THE GREATER-THAN-OR-EQUAL-TO * OFR0109 
C * CONSTRAINTS BEGIN * OFROllO 
C * KZ = THE TOTAL NUMBER OF CONSTRAINT ROWS * OFROlll 
C * ZSJM~ THE VALUE Of THE OBJECTIVE FUNCTION AT THE CONTINUOUS • OfROll2 
C * VARIABLE SOLUTION * OFR0113 
C * ZOF = THE FIRST INTEGER OBJECTIVE FUNCTION VALUE SEARCHED * OFROll4 
C * G = THE GREATEST COMMON DIVISOR OF THE OBJECTIVE ·FUNCTION • OFR0115 
C • COEFFICIENTS * OFROll6 
C * IFLAG = INDICATES ALL RANKED OBJECTIVE FU"4CTION C06FFICIENTS * OFROll.t 
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C • SUBSCRIPT FROM SUBSCIUPT IFLAG TO N ARE EVEN * 0fROll8 
C • Y • COLUMN VECTOR INDICATING THE RANKING OF THE REAL VARIABLES BY• OFR0119 
C • RECORDING THE SUBSCRIPTS Of THE VARIABLES * OFR0120 
C. • RX • A VECTOR DESCRIB lNG THE NUMBER OF .INTEGER VALUES THE J TH * OFROl2l 
C • ELEMENT CAN TAKE ON . * OFROl22 
C • * OFR0123 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•• OFR0124 
C . OFR0125 
C OFROUl6 

INTEGER CCl01 1 XL(l01 1 XUll0) 1 Yll0) 1 XC10) 1 ZOF,G,ERRl,ERR2,RX(l0l OFR0127 
DIMENSION A(l0,10),BClOI OfR0128 

C OFR0129 
C OfROi90 
C OFR0131 

Kl :: 5 OFROl32 
KO = 6 OFR0133 
MCOIJNT = 0 OfR0134 
NCOUNT = 0 OFR0135 
t.OFLAG = 0 OfR0136 
NCNTl = 0 OFR0137 
N IT ER . • 4 OF RO 13 8 
ERRl = 0 OFR0139 
ERR2 = 0 UFR0140 
EPS s OolE-04 OFR0141 

C OFROl't2 
C READ IN REQUIRED INPUT INFORMATION OFROl43 
C OFROl44 

READIKltlOl LM,KH,Lt.,MAX OFR0145 
10 FORMA Tl 4151 OFRO 146 

KY• LH + 1 OFR0147 
KZ • LM t KH OFR0148 

C OFR0149 
C OFR0150 
c; OFR0151 

READ CK I, lH ZSIM OFR0152 
J5 fORMATIFl0.21 OFR0153 

ReADIKI ,ZOll lACLX,LYI ,LY•l ,LNI ,LX•l ,KZI OFR0154 
20 FORMAT(flO.Zt . OFR0155 

REAO(KI1201CB(LZl,LZ•l,Kll OFR0156 
READ(Kl ,30) ICC LVI ,Lllal,Lt.l OFR0157 

30 FORMAT C 110 I OfROl 58 
READ(KJ,301(XUCLUl,LU~l,LNI OfROl59 
REAOCKJ,30)(XLILT),LT;l,LN) OfR0160 

C OfROl61 
C hRlTE .OUT THE INPUT OAT A OFR0162 
C OFR0163 

lf(MAX.EQ.11 GO TO 50 OFR0164 
WRITE(K0,40) OFR0165 

40 FORMATC1Hl,10X,21H MINIMIZATION PROBLEHI OFR016o 
GO lO 65 OfROl67 

SC WRI TECK0,601 OfROl68 
60 FORMATC1Hl,10X,21H MAXIMIZATION PROBLEM) OfROl69 
65 hRITElK0,701 OfR0170 
10 FORMAJllHO,lOX,37H OBJECTIVE FUNCTION COEFFICIENTS: ) OFR0171 

WRJTECK0,801CCILVl,LV=l,LNI OfR0172 
80 FORMATC1H0,19X,10171 OFR0173 

IflLM.EQ.O) GO TO 120 OFR0174 
WRITE(K0,901 OFR0175 

90 FORMATC1H0,10X,47H LESS-THAN-OR-EQUAL-TO CONSTRAINT, Gf.lfffJClENTS:l lliR0176 
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CO 110 JA•l,LM OFR0177 
WRITEIKO~lOOIIAIJA,JBl,JB•l,LNI OFROl78 

100 FORMATllH0,20X,10F7.21 OFR0179 
110 CONTINUE OFROlSO 

JFIKM,EQ,01 GO TO 150 . OFROlSl 
120 WRITEIX0,1301 OFROla2 
130 FORMATllHO,lOX,SOH GREATER-THAN•OR-EQUAL-TO CONSTRAINT COEFFICIENT OFR0183 

IIIS: j OFR0184 
CO 140 JC•KV,KZ OFROl85 

WRl TE I KO, 1001 CA t JC ,JOf, JD•l I LNI UFRO l Sb 
140 CONTINUE OFR0187 
150 ~RITEIK0,1551 OFR0188 
155 FlJRMATI lHO,lOX,41H RIGrlT-HAND SlOE 8-IIALUES OF CONStRAlNTS:J OFR0189 

DO 170 J E• l I KZ OFROl.90 
BJsB(JEI OFR0l91 
WRI TEIKO, 1601 JE ,BJ OFR0192 

160 FORMATl1H0,22X,3H Bt I Il,3HJ •,F7.21 OFR0l93 
l 7C CONTINUE OFROl94 

WRITEIK0,1751 OFR0195 
175 FORMATllH0,10X,23H 1/ARIABLE LOW.ER BOUNDS: I OFR0196 

DO 185 JF = l,LN OFR0197 
MXL = XLIJFI OFR019d 
WRlTEIK0 1 l801JF,MXL OFROl99 

180 FORMATllH0,22X,4H XU,ll,3HI =,151 OFR0200 
185 CONTINUE DFR0201 

WRITEIK0,1901 Ofll.0202 
190 FORMAT( lHO,lOX 1 23H VARIABLE UPPER BOUNDS:) OFR0203 

DO 200 JG= l,LN OFR0204 
MXU = XUCJG) OFR0205 
WRITEIK0,1951JG,MXU OFR0206 

195 FORMATUH0,22X,4H XUl,Il,JHJ ==,15) OFR0207 
200 CONTINUE OFR0208 

C OFR0209 
C CALCULATE THE GREATEST COMMON DIVISOR AND ZOF WITH SUBROUTINE. GCO OFR0210 
C OFR0211 

CALL GCOIC,G,LN,ZSIM,ZOF,MAX,ERR1,ERR2) OFR02l2 
IFIERRl.EQ.OJ GO TO 210 ' OFR02l3 
WRITEIK0,2051 OFR0214 

205 FORMAT UHl, 50H * AN OBJECT IVE FUNCTION COEFFICIENT EQUALS ZERO *I OFR0215 
GO TO 1000 OFR0216 

210 1FIERR2.EQ.OI GO TO 220 OFR0217 
WR IT E (KO, 21 5 l OF R 02 18 

215 FORMATl1Hl,59H** A REMAINDER wAS FORCED NEGATIVE IN EUCLID'S ALGOR OFR0219 
IJ 1Tl1M ** I OFR0220 

GC TO 1000 OFR0221 
220 wRITE(K0,2251 G OFR0222 
225 FORl1ATtlH0,10X,27H GREATEST Cul'tl10N DIVISOR: ,3HG =,15) OFR0223 

i.RlTEIK0,2301. ZOF OFR0224 
230 FORMATllHO,lOX,44H INITIAL INTEGER OBJECTIVE FUNCTION 1/ALUE: 1 5HZ OFR0225 

#CF =, 151 OFR0226 
C OFR0227 
C RANK THE VARIABLES iii TH SUBROUTINE RANK OFR0228 
C OFR0229 

CALL RANKIC,XL,XU,LN,Y,IFLAG,RXI OFR0230 
WRITE(K0,235) OFR0236 

235 FORMATl1H0,10X,22H VARIABLE RANGE SIZES: J OFR0237 
DO 245 JH = 1,LN OFR0238 

MRX = RX(JHl OFR0239 
WRITECK0,2401 JH,MRX OFR0240 



c 
c 
c 

c 
c 
c 

240 FCRMATClH0,22X,4H RXC,1i,3Hl •,151 
245 CONTINUE 

WRITECK0, 2501 
250 FORMATl1H0,10X,36H COLUMN I/ECTOR OF RANKED SUBSCRIPTS:) 

00 260 JK •1,LN ,.y • YIJKI 
WRl TEIK0,2551 JK,MY 

255 FORMATC 1H0,22X,3H YI ,11 1 3Hl •,151 
260 CtJNTlNU E 

WRITEIK0,2651 lfLAG 
265 FORMATI lHO, lOX,46H IIALUE OF El/EN COEFFICIENT lNOlCATOR: lfLAG • 1 1 

345 

520 
525 

505 
510 

515 

500 

501 
899 
900 

1000 

i115J 

BEGIN EXAMINING SOLUTION SPACE WITH SUBROUTINE SEARCH 

CALL SEARCH I A ,B ,C, Y, X lJ, XL ,X ,EPS, I FLAG, G, LM, KM, LN, MAX, NCOUNT; ZOF, NC 
#NT1,N1TER,MCOUNT 1 NOFLAGI . 

lFINCNTl.E~.Ol GO TO 520 
WRI TEI K0,3451 
FORMATllH0, 1 *** NUMBER OF ITERATIONS EXCEEDED***') 
GO TO 899 

WR IT E SOL UT ION INFORMAi ION 

WRlTE(KO, 5251 
FORMATUHll 
00 510 JC = l,LN 

JX"' X(JCI 
WR1TE(K0,505lJC,JX 
FORMATllH ,40X,'***"'* X(',ll, 1 1 1 ,151 

CONTINUE 
WRITEIK0,5151 ZOF 
FORMATllH0,40X,'***** l = ',151 
WRITEiK0,5001 MCOUNT 
FORMA Tl lH- ,40X,' Y(NI kAS CALCULATED', 15,3X, 1 TIMES• l 
WRJTEIK0,5011 NOFLAG 
FORMAT(lH-,40X, 1 IFLAG WAS USED ',I5,3X,'TlMES TO TRUNCATE SEARCH') 
i.iRlTEIK0,9001 
FORMAT I lHl l 
STOP 
ENO 
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OFR0241 
OFR 0242 
OfR0243 
OFR0244 
OfR0245 
UFR0246 
IJFfl.0247 
Ufk024tl 
OFR0249 
OFR0250 
OFR0.251 
OFR0252 
OFR0253 
OFR0264 
OFR02 55 
OFR0256 
OFR0257 
OFR0258 
OFR0259 
OFR02b0 
UFR026l 
UFR0,62 
OFR0.263 
Ofk02b4 
OFR0265 
OFR026o 
OFR02b7 
OFR026B 
OFR0269 
OFR0270 
OFR027l 
OFR0272 
OFR02 73 
OFR0274 
OFR0275 
OFR0.27 b 

OFR02 77 
OfR0278 
OFR0279 
OFR0280 
OFR0281 
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SUBROUTINE GCDC C ,G ,LN ,z SI M,ZOf, MAX ,ERRl ,ERRZJ GCDOOO 1 
C ****•*************************************************************** GCDOOOZ 
C * · * GCD0003 
C • SUBROUTINE GCO * GCD0004 
C • • GCD0005 
C * • GCD0006 
C • JAMES M. SHIRLEY • GCD0007 
C . ·* * GCD 0008 
C * SCHOOL OF INDUSTRIAL ENGINEERING * GCD0009 
C . * ANO MANAGEMENT * GCOOOlO 
C · * OKLAHOMA STATE UNI\/ERSITY • GCDOOll 
C *, HAY l't,1972 • GCD0012 
C · . * * GCD0013 
C * • GCD00.14 
C • • GCD0015 
C * * GCD0016 
C * THIS SUBROUTINE CALCULATES THE GREATEST COMMON DIVISOR .FOR • GCD0017 
C * A SET OF OBJECTIVE FUNCTION CIJEFflCIENTS. IT ALSO DETERMINES • GCD0018 
C • THE FIRST OBJECTIVE FUNCTION VALUE USED IN SUBROUTINE SEARCH. • GCD0019 
C * FOR FURTHER INFORMATION SEE THE DOCTORAL THESIS "AN OBJECTIVE * GC00020 
C * FUNCTJON REDUCTION ALGORITHH FOR INTEGER LlNEM PROGRAMMING.• * GC00021 
C • * GCD0022 
C • * GCD0023 
C * * GC00024 
C • * GCD0025 
C • PARAMETERS FOR PROGRAM: · • GC00026 
C * * GCD0027 
C * • GCD0028 
C * C'"' THE COEFHC.IENT VECTOR FOR THE OBJECTIVE FUNCTION • GC00029 
C • G = THE GREATEST COMMON DIV !SOR Of THE OBJECTIVE FUNCTION • GC00030 
C * COEFFICIENTS . * GCD0031 
C • LN = THE NUMBER Of REAL VARIABLES IN THE PROBLEM • GC00032 
C * ZSl M:s THE VALUE Of THE OBJECT IVE FUNCTION AT THE CONHNUOUS • GCD0033 
C * VARIABLE S.OLUHON • GC00034 
,C * ZOF = THE FIRST JNTEGER,OBJECTIVE FUNCTION VALUE SEARCHED * GC00035 
C * MAX = AN INDICATOR WHICH EQUALS l WHEN OBJECT.IVE FUNCTION IS TO • GCD0036 
C • BE MAXIMIZED i l T EQUALS ZERO. FOR Ml NI HIZATI ON . * GC00037 
C * ERRl :a AN INDICATOR WHICH EQUALS 1 WHEN AN OBJECTIVE FUNCTION * GC00038 
C * COEFFICIENT EQUALS ZEROi OTHERWISE, IT EQUALS ZERO * GC00039 
C * ERRZ = AN IND IC ATOR WHICH EQUALS 1 W.HEN AN ERROR 1 N THE * GC00040 
C * CALCULATION Of EUCLID'S ALGOR ITHH CAUSED A NEGATIVE • GCD004l 
C * REMAINDER TO BE FORMED.; OTHERWISE, IT EQUALS ZERO * GC00042 
C * GC: A MODIFIED COEFFICIENT VECTOR WHERE All VALUES ARE POSITIVE• GCD0043 
C * • GCD0044 
C ******************************************************************** GCD0045 
C GCD0046 
C GC00047 

c 
c 
c 

20 

30 

INTEGER CllO),GC(lOl,D,E,Q,R,lEHP,ZOF,ERRl,ERRZ,G 
EPS = O.lE-04 

.ESTABLISH THE VECTOR GC WHICH HAS ALL POSITIVE ELEMENTS 

DO 50 JA =1,LN 
lf(C(JAl120,30,40 
NCJA = CC JAi 
GC(JAJ = ABS(NCJAJ 
GO TO 5.0 
ERRl = 1 
GO TO 300 

GC0004B 
GCD0049 
GC00050 
GC00051 
GCD0052 
GCD0053 
GCDOO 54 
GCD0055 
GCD0056 
GC00057 
GC00058 
GC00059 



c 
c 
c 

c 
c 
c 

40 GCtJAl • CCJAI 
SO COt\TINUE 

DETERMINE GREATEST COMHON DIVISOR, G, USING EUCLID'S ALGORITHM 

TEMP • GCCll 
DO 145 L • 1,LN 

IFCTEHP - GC{Lll70,140,90 
10 0 • GCC LI 

E a TEMP 
GO TO 100 

90 0 = TEMP 
E = GCILI 

100' Q .,.. D/E 
R • D ... CQ•E I 
IFCRUlO, 120, 130 

110 ERR2 • l 
GO TO 30.0 

120 TEMP• E 
GO TO 140 

130 D • E 
E = R 
GO TO 100 

140 lflTEMP.EQ.1) GO TO 150 
IF IL, EQ. Ud GO TO 150 

1'15 CONTINUE 

CALCULATE fll~ST OBJE~TI VE FUNCTION VALUE 

150 G a TEMP 
ZOF .,;. Z SIM 
TEMPG • G 
TMPZDF • ZOF 160 

170 
180 
l'iO 
200 

21C 

300 

TEMPl • TMPZOF/TEMPG 
NTEMP 1 • TEMP 1 . 
TE~P2 '" NT EMPl 
Dlff = TEM~l ... TEMP2 
ASDIFf = ABS(Olffl 
IF(ABDIFF ... EPS)300,300,170 
lflZSlHllS0,190,190 
lFIMAX ... 11210,200;200 
IFIHAX.EQ.11 GO TO 210 
ZOF = ZOF + 1 
GO TO 160 
ZOF = ZOF ... l 
GO TO 160 
RETURN 
END 
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1',c;~.Q061 
GCD0062 
GC00063 
GCD0064 
GCD0065 
GC000b6 
GCD0067 
GCD0068 
GC00069 
GCD0070 
GCD0071 
GC00072 
GCOOOH 
GC00074 
GC00075 
GC00076 
GCD0077 
GCD0078 
GC00079 
GCDOOBO 
GCD 0081 
GCD0082 
GC00083 
GCD0084 
GCD0085 
GC00086 
GC00087 
GCD0088 
GCD0089 
GC00090 
GCD009 l 
GCD0092 
GCD0093 
GCD0094 
GC00095 
GC00096 
GCD0097 
GC00098 
GC00099 
GCDOlOO 
GCOOlOl 
GCD0102 
GCD0103 
GCD0104 
GCD0105 
GCD0106 
GC00l07 
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SUBROUTINE RANKCC,XL,XU,LN,Y,IFLAG,RXI RNKOOOl 
C ******************************************************************** RNK0002 
C * * RNK0003 
C * SUBROUTINE RANK * RNKOOOlt 
C • • RNKOOOS 
C * • RNKOOOb 
C * JAMESM •. Sl'IIRLEY *RNK0007 
C • • RNK0008 
C * SCHOOL OF INDUSTRIAL ENGINEERING * RNK0009 
C * AND MANAGE ME NT * RNKOO 10 
c * OKLAHOMA ·sure UNIVERS ITV • RNKOOll 
C * HAY l't,1972 * RNK0012 
C * * RNK0013 
C •· * RNK00.14 
C * * RNK0015 
C * * RNK.0016 
C * THIS SUBROUTINE RANKS THE VARIABLES IN THE 06JECTIVE * RNK0017 
C * FUNCTION ACCORDING TO THEIR RANGE Of POSSIBLE VALUES. THE * RNK0018 
C * VARUBLE WITH THE SMALLEST RANGE IS RANKED FIRST. FOR FURTHER * RNK0019 
C * INFORMATION SEE THE DOCTORAL THESIS "AN OBJECT IVE FUNCTION * RNK0020 
C ·• REDUCTION ALGORITHM FOR INTEGER LINEAR PROGRAMMING." * RNK0021 
C * * RNK0022 
C * * RNKQ023 
C * * RNK0024 
C *' * RNK0025 
C * PARAH·ETERS FO.R. PROGRAM: * RNK002b 
C . * * RNK0027 
C * * RNK0028 
C * C • THE COEFFICIENT VECTOR FOR THI: OBJECTIVE FUNCTION * RNK0029 
C * XU • COLUMN VECTOR GIVING THE UPPER LIMIT ON EACH REAL VARIABLE * RNK0030 
C * ,XL • COLUMN VECTOR .GI VI.NG THE LOW'.IER LIMIT ON EACH REAL VARIABLE * RNK0031 
C •·JfLAG • INDICATES ALL RANKED OBJcCTIVE FUNCTION COEFFICIENT * Rl'.K0032 
C * . SUBSCRIPTS FROM SUBSCRlPT !FLAG TO N ARE EVEN SUBSCRIPTS * RNK0033 
C * LN .., THE NUMBER OF REAL VARI ABLES lN THE PROBLEM * RNK0034 
C * Y "' COLUMN VECTOR INDICATING THE RANKING OF THE REAL VARIABLES av• RNK0035 
C + RECORDING THE SUBSCRIPTS OF THE VARIABLES * RNK0036 
C * RX -= A VECTOR DESCRIBING THE NUMBER OF INTEGER VALUES THE J .TH * RNKOOH 
C * EL EHENT CAN TAKE ON . . . * RNK0038 
C • EPS = ERROR TEST LIMIT • RNK0039 
C * RXT = TEMPORARY RX VALUES * RNKOOltO 
C * INDEX A VECTOR Of THE SUBSCRIPTS .OF THE RANKED VARIABLES * RNK0041 
C * JFLAG = AN INDICATOR WHICH CHECKS TO BE SURE ALL POS.SIBLE EQUAL * RNK0042 
C * RANGE SIZES HAVE BEEN CONSIDERED * RNK0043 
C * • RNK0044 
C ******************************************************************** RNK0045 
C RNK0046 
C RNK0047 

INTEGER CllOl ,XLClOI ,XUllOI ,RXllO) ,YllOl ,INOEXUO),RXTClOl,CJA,CJA RNK0048 
#Pl,CJE RNK0049 

C RNK0050 
C RNK0051 

EPS = O.lE-04 RNK0052 
LNMl = LN - l RNK0053 

C RNK0054 
C ~NK0055 

DO 30 JA • 1,LN RNK0056 
RXCJAI = XU(JAI - XLCJAI + l il,/'-IK0057 
RXTCJA) = RXIJAI QNK0058 
INDEX IJA) = JA RNK0059 



c 
YCJAI • 0 

30 CONTINUE 

C SORT RANGE SIZES WITH SHELL SORT 
c 

c 

H • LN 
40/"•H/2 

lf(H.LE.EPSI GO TO 75 
K s LN - H 
J .. l 

5C L "' J 
60 lf(RXTCLJ.LE.RXT(L+MII GO TO 70 

TEMP = RXT CL I 
RXHLI = RXHL+Ml 
RX T IL +MI = TEMP 
ITEMP = INDEX(Ll 
INDEX( LI = INDEX(L+M) 
INOEX(L+MI = ITEHP 
l = L - M 
IFCL.GT.OI GO TO 60 

70 J = J + l 
lf(J-Kl50,50,40 

C ~OOIFY RANKING FOR ·EQUAL RANGE SIZES 
c 

c 

75 JFLAG = 0 
80 DO 100 JA = l,LNMl 

JAPl = JA + l 
lFCRXTCJAJ.NE.RXTCJAPlll GO TO 100 
CJA • CllNDEXIJAII 
CJAPl ""CllNDEX(JAPlll 
If I CJA - CJAP l l 90, 100, 100 

90 lTEMP • INDEXIJAI 
INDEXI JA I • I NDE XI JAPll 
lNOEX(JAPll • lTEMP 
JFLAG • l 

100 CONTINUE 
IFIJFLAG.EQ.lJ GO TO 75 
DO 105 JB = l,LN 

Y(JB) .. lNDEX(JBI 
105 CONTINUE 

C CHECK FOR EVEN INTEGER SEQUENCE AND SET lfLAG 
c 

lfLAG = LN + l 
DO 110 JD= 1,LN 

JE = LN - JD+ l 
CJE = CIINDEX(JE)I 
TCJE = CJE 
DIV = TCJE/2.0 
NDIV = DIV 
TNDIV = NOIV 
TMUL = TNDIV * 2,0 
Dlff = TCJE - TMUL 
IFCDIFF.GT .EPS) GO TO 120 
lfLAG = JE 

110 CUNT lNU E 
120 RETURN 

END 
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SUBROUTINE SEARCH(A,B,C,Y,XU,XL,X,EPS,IFLAG,G,LH,KM,LN,MAX,NCOUNT, SEAOOOl 
#ZOF,NCNTl,NITER,MCOUNT,NOFLAG) . SEA0002 

C ******************************************************************** SEA0003 
C * * SEA0004 
C * SUBROUTINE SEARCH * SEAOOO, 
C * * SEAOOOb 
C * * S EA0007 
C * JAMES M. SHIRLEY * SEA0008 
C * * SEA0009 
C * SCHOOL Of INDUSTRIAL ENGINEERING • SEAOOlO 
C * ANO MANAGEMENT * SEAOOll 
C * OKLAHOMA STATE UNI\IERSITY * SEA00i2 
C * MAY 14,1972 * SEA0013 
C * * SEA 0014 
C * * S EA0015 
C * • SEAOOlb 
C * • SEA0017 
C * THIS SUBROUTINE SEARCHES FOR A FEASIBLE SOLUTION FOR A FIXED* SEA0018 
C * \IAlUE Of THE OBJECTIIIE FUNCTION IN AN INTEGER LINEAR PROGRAMMING* SEA0019 
C * PROBLEM. IT ACCEPTS THE RANKING DETERNIN~O IN.SUBROUTINE RANK. * SEA0020 
C * IT BEGINS A COHBlNATORl AL SEARCH BY HOLDING THE LOWEST RANKED • SEA0021 
C * IIARIABLE AT ITS UPPER LIMIT THEN EXPLICITLY OR IMPLICITLY • SEA0022 
C * EXAMINES THE POSSIBLE RANGE Of ALL OTHER \IARIASLES. FOR FURTHER• SEA002J 
C * INFORMATION SEE THE DOCTORAL THESIS "AN OBJECTIVE FUNCTION * SEA0024 
C * REDUCTION ALGORITHM FGR INTEGER LINEAR PROG~AMMING." * SEA0025 
C • * SEA002b 
C * * SEA0027 
C * * SEA0028 
C * • SEA0029 
C * PARAMETERS FOR PROGRAM: * SEA0030 
C * • SEA003l 
C * • SEA0032 
C * A = MATRIX OF CONSTRAINT COEFFICIENTS * SEA0033 
C * B • COLUMN \/ECTOR Of CONSTRAINT RIGHT-HAND SIDE VALUES • SEA0034 
C * BT -= COLUMN \/ECTOR OF TEMPORARILY MODIFIED RIGHT-HAND SIDE IIALUES* SEA0035 
C * C = THE COEFFICIENT VECTGR FOR THE Ot!JECTIVE FUNCTION * SEA003b 
C * ZSUBT = THE TEMPORARY 1/ALUE OF THE OBJECTIIIE FUNCTION * SEA0037 
C * Y = COLUMN VECTOR INDICATING THE RANKING Of THE REAL VARIABLES av• SEA0038 
C * RECORDING THE SUBSCRIPTS OF THE IIARlABLES * SEA0039 
C *XU= CCLUMN \/ECTON GIVING THE UPPER LIMIT ON EACH REAL VARIABLE * SEAOOIO 
C * XL : COLUMN \/ECTOR Gii/ING THE LOWER LIMIT ON EACH REAL VARIABLE * SEA0041 
C * XUT = COLUMN VECTOR Of TEMPORARY UPPER LIMITS ON A VARIABLE * SEA0042 
C * XLT-= COLUMN VECTOR OF TEMPOMARY LOWER LIMITS ON A VARIABLE • SEA0043 
C * X = SOLUTION VECTOR Of INTEGER VALUES * SEA0044 
C * XTEMP = COLUMN VECTOR OF TEMPORARY INTEGER VALUES Of VARIABLES * SEA0045 
C * WHICH ARE AT A Hl::LD VALUE DURING THE COMBINATORIAL SEARCH• SEA0046 
C * EPS = ERROR TEST LIMIT * Sl::A0047 
C * IFLAG = INDICATES ALL kANKED OBJECTJVE FUNCTION COEFFICIENTS * SEA0048 
C • SUBSCRIPT FROM SU.BSCRIPT IFLAG TO N ARE EVEN * SEA0049 
C •G=GREATESTCOMMONDlVISOR *SEA0050 
C * NOTEl AN INDICATOR WHICH EQUALS l WHEN B-VALUES HAVE BEEN * SEA0051 
C * CALCULATl:D FOK Ht:LD 1/ALUE Of Y SUB l, ZERO OTHERWISE * SEA0052 
C * NOTE2 AN INDICATOR IIHICH EQUALS l WHEN TIGHTER BOUNDS HAVE BEEN* SEA0053 
C * FOUND ON VARIABLE¥ SUB L+l,ZERO OTHERWISE * SEA0054 
C * NOTE3 AN INDICATOR WHICH Ef.lUALS l WHEN ZSUBT HAS BEEN * SEA0055 
C * NOTE4 AN INDICATOR WHICH EQUALS ZERO WHILE ALL RIGHT-HAND SIDE* SEA005b 
C * CALCULAT EO THE FIRST T HiE US ING Y SUB 1, ZERO OTHERWISE • SEA0057 
C * VALUES ARE POSI Tl VE OR ZEROi IT EQUALS ONE WHEN A * S EA0058 
C * RIGHT-HAND SIDE IIALUE HAS BEEN FORCED TO A ,NEGATIVE VALUE• SEA0059 
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C • LM • THE NUMBER OF LESS THAN OR EQUAL TO CCNSTRAINTS * SEAOObO 
C *KM• THE NUMBER OF GREATER THAN OR EQUAL TO CONSTRAINTS * SEAOObl 
C • LN • THE NU,.,8ER OF REAL VARIABLES IN THE PROBLEM • ScAOOl:t2 
C *MAX• AN INDICATOR WHICH EQUALS 1 WHEN·OBJECTIVE FUNCTION JS TO * SEA00b3 
C * BE MAXIMIZED; EQUALS ZERO FOR MINIMUATJON * SEAOOb4 
C • NCOUNT • A COUNTER LI loll T SET ON THE UPPER LIMIT ON THE NUMBER OF • SEA00o5 
C • ITERATIONS • ScAOObb 
C • NITER • NUMBER OF ITERATIONS ALLOWl:O • Sl:A00&7 
C • NCNTl • A FLAG EQUALING 1 WHEN NUMBER Of ITERATIONS EXCEEDED; • SEAOOo8 
C • OT HERW IS E, IT EQUALS ZERO . • SEA 00&9 
C • ZOF • AN INTEGER OBJECTIVE FUNCTION VALUE BEING· SEARCHED * SEA0070 
C • MCOUNT • A COUNTER KEEP ING TRACK OF THE NUMBER OF ITERATIONS • SEA007l 
C * REQUIRED * SEA0012 
C • NOFi.AG = A COUNTER TO RECORD THE NUMBER OF TIMES IFLAG TRUNCATED * SEA00,73 
C * THE SEARCH * SEA0074 
C *ROW= AN INDICATOR VECTOR IOENTlFYlNG CONSTRAINT ROWS-WITH * SEA0075 
C * NEGATIVE COEFFICIENTS; ZERO EQUALS ALL POSITIVE, ONE EQUALS* SEA007b 
C * CNE OR MORE NEGATIVE . * SEA0077 
C * * SEA0078 
C •*•****************-************************************************* S EAOO 79 
C SEAOOBO 
C SEAOOIH 

INTEGER C(lOl,XLllOl,XUllOl~YllOJ,X(lOJ,XTEMP(lOJ,XLTllOJ,XUTllOJ, SEA0082 
#ZOF, ZSUST ,G,Vl ,YLP1,YN,Y2,ROW llOI Sl:A0083 

DIMENSION Afl0,101,BllOJ,BT(lOI SEA0084 
C SEA0085 
C SEAOOB& 

DO 1 KA = 1, LN S EAOO 8 7 
XUTIKAI = XUIKAI SEA0088 
XLTIKAI = XL1KAJ SEA0089 

1 CONTINUE S EAOO 90 
KV = LM + 1 SEA0091 
KZ = LM + KM i SEA0092 
00 3 NA = 1,KZ SEA0093 

CO 2 NB = l,LN SEA0094 
ROWINAI = 0 SEA0095 
lf(AINA,NB).GE.0.01 GU TU 2 SEA0096 
ROWtNAl • 1 SEA0097 
GO TO 3 SEA0098 

2 CONTINUE SEA0099 
3 CONTINUE SEA 0100 

C SEAOlOl 
C STEP NUMBER 1 SEA0102 
C SEA0103 
C INITIALIZATION TO BEGIN RECURSION SEA0104 
C SEA0105 

4 L = 1 SEAOlOb 
C SEA0107 
C CHECK If NUMBER OF ITEMATIUNS EXCEEDED SEAOlOB 
C SEA0109 

NCOUNT = NCOUNT + l SEAOllO 
lf(NCOUNT.LE.NITERI GO TO 5 SEAOlll 
NCNTl = l SEA0ll2 
GO TO 1000 SEA0113 

5 NOTE 1 = 0 SEA 0114 
NOTE2 = 0 SEA0115 
00& KB= 1,LN SEAOllb 

~TEMPIKBI = 0 SEA0117 
b CONT lNUE SEA0118 



c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

l 

a 
9 

10 

11 

12 

'·& 

STEP NUMBER 2 

SET HIGHEST RANKED VARIABLE AT ITS .BOUND 

Yl • Vlll 
lFIMAX.EQ,11 GO TO 8 
XTEMPIVll • X(lYl) 
GO TO 9 
.XTEMP&Vl I • XUIYU 
t.OTE3 "' 0 

STEP NUMBER 3 

INITIALIZE ZSUBT ANO BT VECTOR 

ZSliB T "' ZOF 
00 ll KA "' l,KZ 

BT IKAI "' BIKAI 
cot. Tl NUE 
NOTE4 = 0 

STEP NUMBER 4 

FIND NEW MODIFIED OBJECTIVE FUNCTION VALUE, ZSUBT 

Yl = Y{l) 
YLPl = \'IL+ll 
IFINOTE3,EQ.ll GO TO 14 
ZSUBT = ZSUBT - Ch'lJ*XTEMP(Yl) 
hOTE3 = l 
lflZSUBTll3il5•15 

13 IFIC(YLPllll5,75,75 
14 ZSliBT • ZSUBT - CIYLPll•XTEMPIYLPll 

IFIZSUBTl13,15,15 

STEP NUMBER 5 

CHECK TO SEE IF ZSUBT IS AN ODO INTEGER 

15 YLPl -= Y IL+ll 
LPl = L+l 
TEMP= ZSUBT 
ALPhA = TEMP/2,0 
NALPHA = ALPHA 
BETA =- NALPHA 
DIFF = ALPHA - BETA 
ABDIFF = ABSIDIFFI 
If(ABDIFF-EPSl20,20,l6 

STEP NUMBER 6 

CHECK TO SEE IF ALL SUCCEEDING OBJECTIVE FUNCTION COEFFIEICNTS ARE 

16 IFC lfLAG.EIJ. ll GO TO 350 
If ( LPl. NE, IF LAG I GO TO 20 

NOFLAG KEEPS A RECORD OF THE NUMBER OF TIMES lfLAG IS USED TO 
TRUNCATE THE SEARCH 
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SEA0ll9 
SEA0120 
SEA0121 
S EA0122 
SEA0123 
SEA 0124 
SHOl25 
SEA 0126 
SEA0127 
SEA0l28 
SEA0129 
SEAOL30 
SEA0l3l 
SEAOl:32 
SEA0133 
· SEAOl34 
SEA0l35 
SEA0l36 
SEA0137 
SEAOl38 
SEAOl39 
SEAOL40 
SEA014l 
SEA0142 
SEA0143 
S EA0144 
SEA0l45 
SEA 0146 
S EA014 7 
SEA0148 
SEA0149 
S EAO 150 
SEAOl 51 
SEA01!>2 
SE:A0l53 
SEA 0154 
SEA015, 
SEA0156 
SEA0157 
S EAO 158 
SEAOl59 
SEA 0160 
S EAOlol 
SEA0l62 
SEA0lo3 
Sl:A0164 
SEA0165 
SEAOl66 
SEA0l67 
SEA0l68 
SEAOl69 
SEAOl 70 
SEAOl 71 
S EAOl 72 
SEAOl 73 
SEA0174 
SEA0175 
SEAOl 76 
SEA0177 



c 

c 

NUFLAG • NOFLAG + 1 
IFIL.EQ.1) GO TO 350 
ZSUBT • ZSUBT + CIYLPll*XTEMPCYLPll 
lFIMAX.EQ .11 GO TO 18 
XTEMPtVLPll "'XTEMPIVLPll + 1 
GU TO 340 

18 XTEMPIYLPll ... XTEMPIYLPll - l 
GO TO 340 

C STEP NUMBER 1 
c 
C CETERMJNE IF FINAL VARIABLE IS TO BE CALCULATED 
c 

c 

2C LPl = L+l 
YL Pl = YI L + 11 
IFILN.E,.21 GO TO 22 
IFILN-1.NE.LPll GO TO 80 
IFINOTEl.EQ.01 GO TO 80 

C STEP NUMBER 8 
c 
C CHECK XTEMl'IY IN) I I NT EGER 
c 

22 YI\= YILNI 
c 
C MCOUNT KEEPS A RECORD OF THE N0MBER UF TIMES YINl IS CALCULATED 
c 

c 

MCOLNT = MCOLINT + l 
RZSUBT = ZSUBT 
RCYN = CIYNJ 
RXTPYN = RZSUBT/RCYN 
l\U/11 = RXTPVN 
DEL TA = fl.UM 
GAMMA= ~XTPYN - DELTA 
JF(GAMMA - EPSl30,J0,75 

C STEP NUMBER 9 
c 
C CHECK TO SEE IF XTEMP IV ( 1\1 l IS GREAT.ER THAN ITS UPPER BOUND 
c 

c 

30 XTEIIP(YNJ = RXTPYN 
IFIXTEMP(YNll75,31,31 

31 XTl = XTEMPIYNI 
XT2 = Xlll YNI 
lF(XTl - XT2150,50,40 

C STEP NUMBER 10 
c 

40 IFILN - 21350,350,75 
c 
C STEP NUMBER 11 
c 
C TEST SOLUTION FEASIBILITY IN FUNCTIONAL CONSTRAINTS 
c 

50 00 55 JB = l,LM 
VALUE = 0 .O 
00 54 JA 1,LN 

VALUE= VALUE+ A(JB,YIJA)I * XTEMPIYIJAII 

11±0 

SEAOl78 
SEA0179 
SEA0l80 
SEA 0181 
S EA0182 
SEA O 183 
SEAOl84 
SEA0l85 
SEA 01 86 
SEA0187 
SEAOll:18 
SE:A 0189 
SEA0.190 
SEAOl9l 
SEAOl92 
S EA0193 
SEA0194 
SEA0195 
SEAOl96 
SEA 0197 
S EAOl98 
SEA0l99 
SEA0200 
S EAOlOl 
SEA0202 
SEA 0203 
S EA0204 
SEA0205 
SEA0206 
SEA0207 
SEA0208 
S EA0209 
SEA02 l O 
SEA02ll 
SEA0212 
SEA02l3 
SEA 0214 
S f:A02l5 
SEA02l6 
SEA0.217 
S EA0218 
SEA02l9 
S EA0220 
SEA0221 
SEA0222 
S EA0223 
SEA0224 
SEA0225 
SEA0226 
SEA0227 
SEA0228 
SEA0229 
SEA 0230 
SEA0231 
S EA0232 
SEA 0233 
SEA0234 
SEA0235 
SEA0236 



c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 

54 CCNTINUE 
TESr= BIJBI - VALUE 
IFITEST 175,55,55 

55 CONT.I NUE . 
56 IFIKM.LE.01 GO TO ~3 

57 

60 
63 

65 

15 
11 

78 

80 

00 60 KX = KY,KZ 
AMOUNT"' O.O 
DD ?7 KW = 1,LN 

AMOUNT= AMOUNT+ AIKX,YIKWII * XTEMPIVIKWII 
CONHNUE 
CHECK= BIKXI - AMOUNT 
IFICHECK160,b0175 

CONTINUE 
DO 65 JC= l,LN 

XIJCI = XTEMPIJCl 
CONT lNUE 
GO TC 1000 

STEP NUMBER 12 

SOLUTION INFEASUILE; INCREMENT XTEMPIYILPlll ONE INTEGER 

lFILN - 21350,350,77 
ZSUdT = ZSUtlT + CIYLPll*XTEMPIYLPll 
lFIMAX ,EQ.11 GO TO 78 
XTEMPI YLPl I • XUHYLPll + l 
GO TU 340 
XTEMP(YLPll ~ XTEMP(YLPll - l 
GO W 340 

STEP NUMBER 13 

CALCULATE NEW RIGHT-HAND SlDt tl-VALUES 

LP l = L+ l 
YLPl = YIL+ll 
lFINOTEl,EQ,11 GO TU 90 
LJO 85 Jl) = 1,KZ 

BT(JDI = BTIJDI - A(JD,Yllll*XTEMPIYllll 
IF(BT!JO)l84,85,85 

84 NLlTE4 = l 
85 CU/\T INUE 

NO TE l = l 
GO TD 9b 

90 RXTEMP = XTEMPIYLPll 
DO 95 JE = l,KZ 

ET(JE} = BT(JEI - AIJE,YLPll*RXTEMP 
1FlBT(JEll94,95,9~ 

94 NOTE4 = l 
95 COI-.T INUE 

C STEP NUMtlER 14 
c 
C DETERMINE IF L SHOULD oE 1 NCREMENTED 
c 

96 lFIL.Ei..11 GO TU 98 
'i7 L = L+l 

GO TO 99 
SS 1FINOTE2 - 1199,97,97 
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SEA0240 
S EA024 l 
SEA0242 
SEA 0243 
S EA02 4'+ 
SEA0245 
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SEA0247 
SEA0241:1 
S EA0249 
SEA0250 
SEA 0251 
SEA0252 
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S EA02 55 
SEA C2 56 
SEA02':i7 
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SEA0292 
SEA0293 
5EA0294 
SEA 0295 



c 
C FINO NEW BOUND ON NEXT VARIABLE IN RANKING 
c 

c 

99 LPl = L+l 
YLPl = YIL+ll 
Y2 = Yl21 

C STEP NUMBER 15 
c 

IF(LPl.NE.21 GO TO 124 
c 
C STEP NUMBER 16 
c 

IflNOTE4 - lllOZ,100,100 
c 
C STEP NUMBER 17 
c 

100 lf(MAX.EQ~ll GO TO 101 
XL Tl V21 = XLI Y2l 
GO TO 330 

101 XUTl¥21 = .XUl¥21 
GO TO 330 

c 
C STEP NUMBER. 18 
c 

. _102 NOT E2 = l 
RZ. Sl.lBT a ZSUBT 
·RC Y 2 "' CI Y 2 I 
Yl : Y C lJ 
lflMAX.EQ .•. 01 GO TO .107 

. XUHV21 .. RZSUBT/RC.¥2 
DO lOb, Jf = 1,LM 

lFIAIJf,Y21.LE.EPSI GO TO 106 
lflROWIJF).EQ.Ol GO TO 104 
SliM = O.O 
DO 103 NC = l,LN 

IFIA(Jf,NC).GE.0.01 GO TO 103 
SUM= SUM+ AIJF,t-.CI * XUINC) 

l 03 CONT lNUE 
BTIJF) = BTIJFl - :.UM 

lC4 MTEMP = BT(JFI/AIJF,Y2l 
lFIROWIJfl.EU.Ol GO TO 105 
lHIJF) = BT!Jfl + SUM 

105 lFIMTEMP.GE.XUTIVZll GO TO 106 
XUTl¥2 I = MTEMP 

lC6 CONT!NUE 
IFIXUTIY21.LE.XU(Y2ll GO TU 330 
XUTl¥2l = XUIY2l 
GO TO 330 

107 XLTY2 = RZSUBT/RCY2 
I\UM2 = XLTY2 
DELTAl = NUM2 
GA~MAl = XLT¥2 - DELTAl 
IFIGAMMAl - EPSll08,108,l09 

lOll XLTI Y2l = XL TY2 
GO TO 110 

lC9 XLTY2T = XLTY2 + 1.0 
XLTIY2) = XLTVZT 

110 DO 123 JK = KY,KZ 
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c 

IFIAIJK,V2).LE.EPSI GO TO 123 
lf{RO~IJKI.EQ.01 GO ro 112 
SUM= O.O 
DO 111 NO= l,LN 

IflAIJK,NOI.GE.0.01 GO TO lll 
SU.M = SUM . + .A I JK, NDI * XU NDI 

l ll CONTINUE 
BTIJK) = BTCJKI - SUM 

112 TEMPl = BTIJKJ/AIJK 1 Y21 
IF(ROW(JKI. EQ.01 GO TO 113 
BTIJKI = BTIJKI + SUM 

113 I\UM3 = T EM Pl 
DELTA3 .. NUM3 
GAMMA 3 "' TEMP 1 - DELTA3 
.IflGAMMA3 - EPSH20,120.,l21 

12C NlEMP • TEMPl 
GO TO 122 

121 TEMPZ = TEMPl + loO 
N TE MP = Tli·MPZ 

122 IF(NTEMP.LE.XLT(Y2)1 GO ro 123 
.l!L Tl ¥21 - NTEMP 

123 CONT lNUE 
1FIXLTIY2).GE.XLl¥2ll GO TO 330 
.Xlll'tZl = XLl'l'21 
GO TO 330 

C STEP NUMBER 19 
c 

124 IFl~AX.EQ.Ol GO TO 200 
c 
C STEP NUMBER 20 
c 

c 

125 IFINOH4 - lil27,l26,l2b 
126 XUTIYLPll = XUIYLPll 

GO TO 330 

C STEP NUMBER 21 
c 

127 RlSUBT = ZSUBT 
RC 'tL Pl = C I Y LP l l 
XUT(~lPll = RlSU~T/RCVLPl 
00 145 JG= l,LM 

lF{AIJG,YlPll.LE.EPSl GO TO 145 
IF!ROWIJGl,EQ.01 GO TU 135 
SUM"' O.O 
00 130 NE= 1,LN 

lf(A(JG,NEI.GE.O.Ol GU TO 130 
SUM= SUM+ A(JG,NEI * XU{Y(NE}J 

l3C CONTINUE 
BTIJGl = BT(.JGI - SUM 

135 MTEMP = BTtJGl/A{JG,YLPll 
IF(ROWIJGl.EQ.Ol bU TO 140 
BTIJG) = BTIJGl + SUM 

140 IfCMTEMP.GE.XUT(YLPlll GO TO 145 
XUTIYLPll = MTEMP 

145 CONTINUE 
IFIXUT(YLPll.LE.XUIYLPl)l GO TU, 330 
XUTIYLPll = XUIYLPU 
GO TO 330 
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c 
C STEP NUMBER 22 
c 

t 

200 IF&NOTE4 - 11210,220,230 
210 XLJCYLPll = XLlYLPll 

GO TO 330 
220 RZSUBJ • ZSUBT 

RC ~LPl = Cl YLPll 
XLYLPl = R2SUBJ/RCYLP1 
NUM4 = XLYLPl 
OELJA4 = NUH4 
GAMMA4 = XLYLPl - OELTA4 
IFIGAMMA4 - EPSl225,225,230 

225 XLT I YLP 11. = XL YL Pl 
GO JO 235 

23C JEMXLJ = XLYLPl + l.O 
XL JI YLP 11 = TEMXLJ 

235 DO 245 JL = KY,KZ 
lflA(JL,Y21.LE.EPSJ GO TO 245 
lflROWlJLI.EQ.01 GO JO 237 
SUM= O.O 
00 236 NF= 1,LN 

lf(AIJL,Nfl.GE.O.Ol GO JO 2lb 
SUM= SUM+ AIJL,Nfl * XLIYINFJI 

236 CONTINUE 
BHJU = BJCJLJ - SUM 

237 TEMPS= BT(JL)/ACJL,YLPll 
lf(ROW(JL).EQ.Ol GO TO 238. 
BT(Jll = BJ(Jll + SUM 

23S NuM5 = TEMPS 
CELJA5 • NUMS 
GAMMAS a TEMP5 ~DELTAS 
IFIGAMMA~ - EPSlZ40,240,i4l 

240 MEMP5 • TEMPS 
GO TO 242 

2~1 JEMPY • TEMPS + l, 0 
~TEMPS • TEMP\' 

242 lFlNTEMPSoLE.XLTIYLPlll GO TO 245 
XLTI YLPll = NTEMP5 

245 CONTINUE 
lFCXLTIYLPU.GE.XLlYLPlll l>O TO 330 
XLTIYLPll = XLIYLPll 

C STEP NUMBER 23 
c 
C SET NEXT VARIABLE IN RANKlNG AT ITS NEW BOUND 
c 

33 0 l f CM AX • E Q .1 I GU TO H l 
XTEMPIYLP11 XLT(YLPll 
GO TO 340 

331 XTEMP(YLPl I = XUHYLPU 
c 
C STEP NUMBER 24 
c 
C CHECK TO SEE IF A VAIUABLE HAS BEEN 1 NCREMENTEO BEYOND' ITS BOUND 
c 

34C LPl "'L+l 
YL Pl = Y ( L + ll 
IF(MAX.EQ,11 GO TO 341 
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c 
c 
c 

c 
c 
c 
c 
c 

c. 
c 
c 
c 
c 

c 
c 
c 

.341 

342 

345 

346 

350 

351 
352 

355 

3H 

365 
3 75 
316 

380 

1000 

lFIXTEHPIYLPl I .LE .XUTIYLPU I GO TO 12 
llTEHPI YLPl I • XUTI YI.Pl I 
GO TO 3'12 
lFIXTEHPIYLPll.GE.XLTIYLPlll GO TO 12 
XTE~PCYLPll • XLTCYLPl) 

STEP NUMBER 25 

IFIL.EQ.11 GO TO 350 
L "' L-1 
'tLPl = YIL•ll 
ZSUBT = ZSUBT + CIYLPU*XTEMPIY!,.Pll 
RXTEMP = XTEMPCYLPll 
DO 345 JH 1,LM 

BTIJH) = BTIJHI + AIJH,YLPll*RXTEMP 
COl';ll NUE 
NOTE4 = 0 
LPl =· L+l 
IFIMAX.EQ.11 GO TO 346 
XTEMP(YLPll XTEMPIYLPll + l 
GO lO 340 
XTEMPIYLPll = XTEMPIYLPll - l 
GO TO 340 

STEP NLIMBEK 26 

INCREMENT FIRST VARIABLE IN RANKING ONE INTEGER 

IFIMAX.EQ.11 GO TO 351 
XTEMPI YI 111 a XTEMPI Y ll l I t- l 
GO TO 352 
XTEt4PCYllll • XTEMPIYllll - l 
NO Tl: l • 0 
IICT E2 • 0 

STEP NUMBER 27 

CHECK TO SEE IF ALL SCLUTIONS HAVE BEEN EXAMINED 

IF(MAX.EQ.Ol GO TO 3b5 
IF I XTEMPI YI ll) - XL.Tl YI 11 l 1355 ,3b0 ,3b0 
ZOF = ZOF - G 
GU TO 4 
ZSUB T = lOF 
NOTE3 = 0 

ST El' NUMBER 2 d 

IF I Ll\-2112 ,12 ,10 
IFIXTEMP(Yllll - XUTIY(llll380,3d0,37" 
IFIZOFl355,355,376 
lOF = ZOF t- G 
GO TO 4 
lSliBT = lOF 
NO TE3 = 0 
IF IL N- 2 ) l 2, 12, l O 
RETURN 
ENO 
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APPENDIX F 

TEST PROBLEMS AND SOLUTIONS 

A I. r 
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1. maximize z = 15 Xl + 6 X2 + 9 X3 + 2• X4 (F-1) 

subject to 2 X1 + 1 X2 + 5 X3 + o.6 X4 < 12.5 (F-2) 

J Xl + 1 X2 + J X3 + o.25x4 < 12.6 (F-J) 

7 Xl + 0 X2 + 0 X3 + 1 X4 < 35 (F-4) 

Xj > 0 for j = 1' 2, J, 4 (F-5) 

Xj INTEGER for j = 1, 2, 3, 4 (F-6) 

x* = ( 1 ' 9, o, 2) (F-7) 

z* = 73. (F-8) 

2. From Wagner (JO): 

maximize z = 3 Xl + J X2 + 1J X3 (F-9) 

subject to - J X1 + 6 X2 + 7 X3 < 8 (F-10) 

6 X1 - 3 X2 + 7 X3 < 8 (F-11) 

Xj > 0 for j - = 1 ' 2, J (F-12) 

Xj INTEGER for j = 1' 2, J (F-13) 

x* = ( 0' o, 1) (F-14) 

z* = 13. (F-15) 

3. From Gomory ( 11) : 

maximize z = 4 X1 + 5 X2 + X3 (F-16) 

3 X1 + 2 X2 + 0 X3 < 10 (F-17) 

1 Xl + 2 X2 + 0 X3 < 11 (F-18) -
3 Xl + J X2 + 1 X3 < 13 (F-19) 
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X3 > 0 for j = 1, 2, J (F-20) 

x., INTEGER for j = 1' 2, J (F-21) 

x* = (2, 2, 1) (F-22) 

z* = 19. (F-2J) 

4. From Young ( 31) : 

maximize z = Xl + Xa + Xs (F-24) 

subject to - 4 Xl + 5 Xa + 2 X3 < 4 (F-25) -
- 2 Xl + 5 Xa + 0 X3 < 5 (F-26) -

J Xl - 2 X2 + 2 X3 < - 6 (F-27) 

2 Xl - 5 xa + 0 X3 < 1 (F-28) -
X3 > 0 - for j = 1' 2, J (F-29) 

Xj INTEGER for j = 1, 2, J (F-JO) 

x* = ( 3' 2, O) (F-J1) 

z* = 5. (F-J2) 

5. minimize z = 10 Xl + 14 xa + 21 X3 (F-JJ) 

subject to 4 Xl + 4 Xa + 7 X3 < 28 (F-J4) -
8 Xl + 11 Xa + 9 X3 > 12 (F-35) 

2 Xl + 2 xa + 7 X3 > 14 (F-J6) 

9 X1 + 6 Xa + 3 X3 > 10 (F-37) 

x* = ( 1 ' o, 2) (F-J8) 

z* = 52. (F-39) 
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6. From Cook ( 5) : 

maximize z = 1 Xl - J xa + J X3 (F-40) 

subject to 2 Xl + 1 Xa - 1 X3 < 4 (F-41) -

4 Xl - J xa + 0 X3 < 2 (F-42) 

- J Xl + 2 xa + 1 X3 < J (F-4.3) 

Xj > 0 f'or j = 1, 2, J (F-44) 

Xj INTEGER for j = 1' 2, J (F-45) 

x* = ( 2 ' 2, 5) (F-46) 

z* = 11. (F-47) 

7. From Cook ( 5) : 

maximize z = 1 X1 + 2 xa + J X3 + 1 X4 + 1 X5 (F-48) 

subject to 1 X1 + 0 xa + 4 X3 + 2 X4 + 1 XS < 41 

(F-49) 

4 Xl + J Xa + 1 X3 + 0 X4 - 1 X6 < 147 

(F-50) 

Xj > 0 for j = 1' 2, J, 4, 5 

(F-51) 

Xj INTEGER for j = 1' 2, .3 ' 4, 5 

(F-52) 

x* = (0' 42, o, 19, J) (F-5J) 

z* = 106. (F-54) 
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8. From Trauth and Woolsey (28): 

maximize Z = 20 Xl + 18 Xa + 17 X3 + 15 X4 + 15 X5 

+ 10 Xe + 5 X7 + 3 Xe + X9 + Xl O 

(F-55) 

subject to JO X1 + 25 Xa + 20 Xs + 18 X4 + 17 Xs 

+ 11 Xe + 5 X7 + 2 Xe + X9 + X1 0 

< 55 (F-56) 

X3 < 1 for j = 1' 2, .... ' 10 

(F-57) 

X3 > 0 for j = 1' 2, ... ' 10 

(F-58) 

Xj INTEGER for j = 1, 2, . . . ' 10 

(F-59) 

x* = ( 0' o, o, 1, 1, 1' 1, 1 ' 1' 1) 

or (F-60) 

x* = ( 0' o, 1' o, 1' 1' '1 ' 1, o, 0) 

(F-61) 

z* = 50. (F-62) 
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