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OPTIMAL PLANT LOCATION ON PLANAR AND 
SPHERICAL SURFACES 

by 
David A. Pyles* 

Introduction 

A common problem in economic location theory is the determination of the 
best site for a single plant when outputs and inputs of the plant must be shipped 
to or from certain predetermined locations. The purpose of this paper is to 
develop some of the mathematics pertaining to such problems. The analysis will 
treat problems satisfying the following conditions: 1) the location decision is 
based entirely upon transportation costs, 2) the per-unit costs of shipping each 

input and each output are constant and known, 3) the quantity to be shipped to or 
from each of the predetermined locations is fixed and known, 4) every point on 
the geographical surface contained within the convex hull formed by the 
predetermined locations is a candidate for plant location, ar1d 5) the relevant 
transportation distance from plant site to any of the predetermined locations is 
equal to the shortest geographical distance between the two points. In practical 
applications, one would seldom expect all of these assumptions to hold, but it is 
hoped that the assumptions describe a reasonable approximation to a significant 
class of location problems. Derivations are presented for optimal location on 
both planar and spherical surfaces, and an algorithm is suggested for solving both 
sorts of problems .as well. Finally, an APPLESOFT BASIC program is provided 
for solving both spherical and planar location problems. 

The Planar Location Problem 

When shipments to and from the plant are to be transported short distances, 

one may often ignore the spherical shape of the earth, and imagine, with a small 
degree of error, that the shipment space is situated on a plane. Since 

mathematical evaluation of planes is generally easier than the evaluation of 
spheres, the assumption of a planar surface may be well justified if the degree of 

error resulting from such assumption is not excessive. For short distances on the 
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earth's surface, the error of the planar approximation is indeed quite small. For 
example, if the spherical distance between two points on the surface of the earth 

is 1000 miles, then the planar distance is approximately 997.35 miles. The 
degree of error in this case is less than three-tenths of one percent. 

Suppose that the plant must ship outputs and inputs to and from a total of n 
predetermined locations, which shall henceforth be referred to as "input-output 
points" or "I-0 points." Let the rectangular coordinates of the ith I-0 point be 
denoted as (ai,bi), and denote the coordinates of the plant as (x,y). Also, let wi 
represent the per-mile costs of shipping total quantity to or from the ith I-0 
point. For example, suppose that the plant will ship input from the kth point and 
that it costs $1.50 to ship one unit of input from (ak,bk) for one mile. If 500 
units are to be shipped from this point, then wk = 750.00. Weights for output 

points are calculated in exactly the same manner. Of course some points could be 
both sources of inputs as well as destinations of outputs. 

If the objective is to situate the plant such that transportation costs are 
minimum, then the mathematical problem becomes one of minimizing a weighted 
sum of Euclidean distances. Specifically, the problem becomes: 

minimize(x,y): C(x,y) = 2.~=l wpi(x,y) 

where C(x,y) is total transportation costs, and Di(x,y) is the Euclidean distance 
between (ai,bi) and (x,y). Di(x,y) is calculated as: 

It may be concluded a-priori that the optimal plant site must fall within the 
convex hull formed by the I-0 points. The convex hull is the smallest convex set 
containing all of these points. Intuitively, the hull is formed by pulling a string 
around all of the I-0 points and pulling it tight. The convex hull is then the 
space contained within the string. At any point outside the convex hull, it is 
possible to approach the hull so as to reduce the distance to every l-0 point; 

consequently, the optimal plant site cannot occur outside the convex hull. 
Assuming that the optimal plant site does not fall exactly on one of the I-0 

points, the optimizing values of x and y must set the first derivatives of C(x,y) 

equal to zero. Thus, necessary conditions are: 

1 
Cx = L wiDx(x,y) = 0 

Cy = 2. wiD~(x,y) = 0 
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where: 

i . 
D (x,y) = (y - bi) I D1(x,y) 

y 

Since C(x,y) is convex 1 , a local minimum described by the above must also be a 

global minimum. Thus, the latter conditions are both necessary and sufficient for 

a global minimum provided that the optimum docs not occur at an I-0 point. 
A minimizing solution to the above problem is not necessarily unique. 

Consider any even number of equally weighted I-0 points that are situated on a 
line. In such cases, any point between the two central I-0 points represents a 

minimizing solution. Hence, in this case, there are an infinite number of optima. 
Since the partial derivatives of C(x,y) are undefined when (x,y) is equal to any 

of the (ai,bi), the above approach fails when the optimal plant site occurs exactly 
at an I-0 point. However, it will now be shown that a necessary and sufficient 
condition for a global minimum to occur at (ak,bk) is: 

where: 

k i . 
ai = -Dx(ak,bk) = (ai- ak)/D 1(ak,bk) 

k i . 
b i = -Dy<ak,bk) = (bi - ~)/D1 (ak,bk) 

where Di(ak,bk) is the Euclidean distance between the ith I-0 point and the kth 1-0 
point. In a polar coordinate system having (ak,bk) as the origin, a~ is the cosine 
and b~ is the sine of the angle corresponding to the ith I-0 point. 1 

I 
If a local minimum occurs at (ak, bk), then C is not reduced by small 

movements away from this point. Mathematically, this condition may be stated 
as: 

dC = wkDk(ak + dx,bk + dy) + [Liofok wiD~(ak,bk)]dx + [Liofok wjD~(ak,bk)]dy :?: 0 

Upon substituting the a~, the b~. and the explicit form of Dk into the above, one 
I 

1 · i i i i i I 
It may be confirmed that D <: 0, D <: 0, and that D D - D D = 0 for all x andy; 

XX yy XX yy xy y X 

thus, the oi are convex, and consequently, Cis convex. 
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obtains: 

Now, terms can be rearranged to produce: 

At this point, we convert to polar coordinates using the substitutions, 

dx = rcos(e) and dy = rsin(e). The latter expression then simplifies to 

If the relation holds where the right-hand side is maximized with respect to e, 
then it is known to hold elsewhere. It may be confirmed that functions of the 

form, c1 cos( e)+ c2sin(e), can be no greater than (ci + c;) 112.2 Hence, the latter 
relation is known to hold if: 

Squaring both sides of this relation will produce (1). 

If (1) does hold for a particular 1-0 point, then it may be concluded that no 
other (x,y) can yield a lower value for C. This follows since (1) can hold only in 
the case of a local minimum, and since a local minimum must also be a global 
minimum for a convex function. 

If the latter result holds, then it will not necessarily hold for the largest 
weight. This may be seen by considering a set of n 1-0 points and weights where 
the last point represents the optimal plant site when only the previous n - 1 
points are considered. It should be apparent that the optimal plant site for the n 
points will be this last I-0 point regardless of its weight. Thus, (1) could hold 
even for the smallest weight. 

An interesting special case of (1) follows from the fact that 
(a~)2 + (b~)2 = 1. Using this result, it may be confirmed that the right-hand side 

1 1 
of (1) is equal to: 

2since sin 2(e) +cos 2(e) = 1, this problem is equivalent to maximizing c 1 x 1 + c 2x2 subject 

2 2 
to x1 + x2 = 1. 
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But, it can be shown that a~a~ + b~b~ is at most equal to one,3 subsequently: 
1 J 1 J 

2 kk kk 2 
L.i,fok wi + Ljfi Ljfok (aiaj + bibj)wiwj ~ L.ifk wi + L.jfi L.ifk wiwj 

= (Li,fok wi)2 

Thus, (1) is known to hold if: 

or: 

(2) 

This result is intuitively apparent since the most that could be gained by moving 

one mile away form (ak,bk) would be Li,fok wi, but the loss would be at least as 
great as wk.4 Therefore, if (2) holds, then any movement away from (ak,bk) 

cannot reduce transportation costs. 

The Spherical Location Problem 

When the radius of the transportation region is large, a planar approximation 

to the surface of the earth might become unacceptably inaccurate. In these cases, 

the approach considered here should be taken. 
The only difference between the planar and spherical location problems is the 

calculation of distance. Since our objective is still the minimization of total 
transportation costs, the objective function remains: 

However, the distance function now measures spherical rather than Euclidean 
distance. The explicit representation of D1 is: 

oi(x,y) = cos-l[sin(bi)sin(y) + cos(bi)cos(y)cos(x - ai)] 

3Th' obi . I . b' 2 2 nd 2 2 IS pr em IS aqua to max1m1z1ng x1y 1 + X2Y2 su jeet to x2 + x2 = 1 a y 2 + y 2 = 1. 

4This situation occurs when the 1-0 points are situated on a line with (ak,b k) being an 

endpoint. 
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Here, the (ai,bi) are the longitude-latitude coordinates of the 1-0 points, while 
(x,y) is the longitude-latitude coordinates of the plant. This formula assumes a 
sphere of unit radius. Distances on a sphere of radius r are given by rDi. The 
formula also assumes that longitude coordinates for the eastern hemisphere and 

latitude coordinates for the southern hemisphere have been multiplied by -1. 
Also, note that cos-1 (.) is measured in radians, but the arguments of the other 
trigonometric function are measured in degrees. A derivation of the formula above 
is presented in Appendix A. 

Assuming that the optimal plant site does not fall on one of the 1-0 points, 
the minimizing solution can be found by setting the first derivatives of C(x,y) 
equal to zero, or: 

CX = L WiCOS(bi)Cos(y)sin(x - ai)/(1 - u7)l/2 = 0 

Cy = -I. wi[sin(bi)cos(y) - cos(bi)sin(y)cos(x - ai)J/(1 - uf)1' 2 = 0 

where: 

ui = cos(Di) = sin(bi)sin(y) + cos(bi)cos(y)cos(x - ~) 

Unfortunately, C(x,y) is not convex in the spherical case so that there is no 
apparent guarantee that (x,y) satisfying the above will aiways locate a global 
minimum. 

The latter approach fails when the minimum occurs at one of the 1-0 points 
since the partial derivatives of C(x,y) are undefined at such points. However, it 
will be shown that the necessary and sufficient condition for a local minimum to 
occur at (ak,bk) is: 

(3) 

Again, there is no apparent reason that 1-0 points satisfying this condition should 
be globally minimal. 

A local minimum occurs at (ak,bk) if and only if small departures from this 
point do not decrease C. Proceeding in similar fashion as in the planar case, this 

condition may be expressed as: 

Now,convert the latter expression to polar coordinates with the substitutions, 
dx = rcos(a) and dy = rsin(a). Upon rearrangement of terms, the 
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relation may then be written as: 

wkDk[ak + rcos(e),bk + rsin(e)]/r (4) 

~ -[Li;iok wjD!(ak,bk)]cos(e) -[Li;iok wiD~(ak,bk)]sin(e) 

where the inequality must hold for all e with sufficiently small r. In particular, 
the expression must hold in the limit as r approaches zero. Now, observe that: 

Dk[ak + rcos(e),bk + rsin(e)]/r = ok(r)/r =cos -1[uk(r)]/r 

where: 

uk(r) = sin(bk)sin[bk + rsin(e)] + cos(~)cos[bk + rsin(e)]cos[rcos(e)] 

Using L'Hospital's rule: 

L = lim Dk(r)/r = [lim - u.' /(1 - uk2)112]/(lim 1) 
r~O r~O K r~O 

A second application of !'Hospital's rule to the last result yields: 

' 2 L = lim- u /(1 - u )112 
r~O k k 

II l 2 
= (lim - ~/[lim - ukuk/(1 - u. )112] 

r~O r~O K 

= [lim - U:'J/[lim uk]L 
r~O K r~O 

which implies: 

or: 

L =±[(lim- U:')/(lim uk)] 112 
r~O K r~O 

However, since Dk(r) is always greater than or equal to zero, and since r 

approaches from the positive direction, the negative alternative for L may be 
disregarded. It may be confirmed that: 

lim uk = 1 
r~O 
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Consequently: 

Therefore, upon taking the limit of (4) as r approaches zero, one obtains: 

wk[sin2(a) + cos2(a)cos2(bk)]l!2 ~ 

- [Lifk wp~(ak,bk)]cos(a)- [Lifk wiD~(ak,bk)]sin(a) 

Actually, a stronger statement may be made; namely, the absolute value of the 
left-hand side is greater than or equal to the absolute value of the right-hand side. 
This follows since if we evaluate the relation at a + 1t as opposed to a, then the 
left hand side remains unchanged while the right-hand side reverses sign. This 
implies that both sides of the expression may be squared without invalidating the 
relation; subsequently: 

w~[sin2(a) + cos2(a)cos2(bk)] ~ (Lifk wp~)2cos2(a) 

+ 2(Lifk wiD~)(Lifk wp~)sin(a)cos(a) + (Lifk wp~)2sin2(a) 

Both sides of this expression can be divided by cos2(a), and terms can be 
rearranged to produce: 

Since tan(a) ranges from negative to positive infinity, the latter relation can hold 
for all a only if the discriminant of the left-hand side is less than or equal to zero. 
It may be confirmed that a nonpositive discriminant requires: 

which is the same with (3). 
With much algebra, it can be shown that: 
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Therefore, by the same reasoning used in the derivation of (2), it can be shown 
that a special case of (3) occurs when: 

An Algorithm for Solving Location Problems 

The Solution Procedure 
The APPLESOFT BASIC program in Appendix B may be used to solve either 

planar or spherical location problems. For both sorts of problems, the program 
utilizes the steepest descent method to minimize the transportation cost function. 
The steepest descent method proves to be a rather efficient algorithm for solving 
location problems. Here, the steepest descent algorithm is briefly outlined. 

To minimize the transportation cost function, C(x,y), the steepest descent 
algorithm begins at some initial point, (xo.Yo). and then proceeds iteratively 
toward the minimum, moving at each iteration in the direction of the steepest 
instantaneous descent. The direction of steepest instantaneous descent at the ith 
iteration is given by the negative of the gradient vector evaluated at the current 
values of x andy. Thus, if (xi-l.Yi-1) denotes the value of (x,y) going into the 
ith iteration, then the cost function descends at the greatest instantaneous rate in 
the direction of the vector: 

x and y are adjusted at each iteration according to the rule: 

Here, di determines the direction of movement, while A.i determines the step length 
or extent of adjustment. 

Various rules can be used for calculating A.i. The rule used in the BASIC 
program attempts to choose A.i which minimizes C in the direction of di. The 
algorithm sets A.o = 1 and then determines the A.i for subsequent iterations using 

the following procedure: First, Ai is set to 2A.i-1· This value is then repeatedly 
divided by two until such divisions produce A.i rendering a lower value of C than 

that obtained in the previous iteration. This value is then repeatedly divided by 
two as long as such divisions produce an even lower value of C. In several 
experiments, this procedure generally produced very rapid convergence. 

A primary advantage of the steepest descent algorithm is that it will find 

stationary minima as well as minima occurring at I-0 points. Also, the algorithm 
inherently tends to avoid saddle points (it "falls out of the saddle"). However, in 
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the spherical optimization problem, it is possible that the algorithm will 
converge at a local but not global minimum. Consequently, in spherical 
problems, the algorithm should be executed several times, using different starting 
values in each trial. 

Various stopping rules can be used in the steepest descent algorithm. In the 
case of the present problem, two sorts of optima must be considered, and 
therefore, two different stopping criteria must be used. In the BASIC program, it 
is assumed that a minimum is attained either if the norm of the gradient vector is 
less than some specified distance from zero, or if the algorithm produces two 
consecutive (x,y) that are less than some specified distance form an I-0 point. 
The first stopping criterion covers the possibility of an optimum occurring at a 
stationary point, while the second criterion covers the possibility of an optimum 
occurring at an I -0 point. 

Instructions for the BASIC Program 
The interactive prompts issued by the program should be largely self 

explanatory; however, there are a few points needing special attention. These 
points are discussed here. 

The first two inputs to the program are "TOLORENCE DIST. FOR 
GRADIENT," and "TOLERENCE DIST. FROM I-0 PT.". These tolerance levels are 
used to determine the stopping points in the minimization algorithm. The 
program will assume that it has attained a minimum if: 1) the norm of the gradient 
vector is less than the "TOLERENCE DIST. FOR GRADIENT," or 2) for two 
successive iterations the algorithm produces (x,y) that are less than the 
"TOLERENCE DIST. FROM I-0 PT.". Tolerance levels of .001 will probably be 

sufficient for both of these inputs. 
Next, the program will ask for the "# OF I-0 POINTS," and then provide the 

option of either accessing the data from disk or from the keyboard. If the data are 
to be taken from disk, but the user is not sure of the number of I-0 points that arc 
recorded in the disk file, then for "# OF 1-0 POINTS," type any number that is 
known to be less than the number of I-0 points in the file. If the user wishes to 

add more 1-0 points to the set contained in the file, then type the number of 
points that there will be after the additions are made. Later, the additions can be 

entered in the correction routine. 
If the data are to be retrieved from disk, then the program will allow the 

option to output the data to the printer in an echo print. However, this option is 
not provided when the data are entered at the keyboard. For echo prints in the 

latter case, the data should be punched in, saved to disk, and then reloaded. 
When data are to be keyed in, the program will ask for the coordinates and 

weight for each 1-0 point. The user should type the first coordinate, second 
coordinate, and then the weight, separating each by commas. Press return to elicit 

the prompt for the next 1-0 point. In the case of spherical location problems, the 
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coordinates should be measured in terms of degrees and not in terms of degrees, 
minutes, and seconds. Longitude coordinates for the eastern hemisphere and 
latitude coordinates for the southern hemisphere should be entered as negative 
numbers. 

After the data are retrieved either from disk or keyboard, the program will 
provide the option to check and correct the data. The correction routine will list 
the I-0 points and weights on the screen in groups of 15. It will then ask if 
corrections are to be made to the presented data. To make a correction, type in 
the location number (a location number is assigned by the program to each I-0 
point), the first coordinate, the second coordinate, and then the weight, separating 
each by commas. Press return to see the revised data and to elicit the prompt for 
the next correction. To delete an 1-0 point, change its weight to zero in this 
routine. Also, if the "# OF 1-0 PTS." supplied earlier is greater than the number 
of points found in the disk file, then the additional I-0 points will have 
coordinates and weights being equal to zero. These should be supplied with the 
correct values here. 

After corrections are made, the program will provide the option to save the 
data on disk. If this option is taken, then the data will be stored in a DOS 3.3 
sequential file. The order of the data in the file will be: 1) the number of 1-0 
points, 2) the first coordinate, second coordinate, and weight of the first 1-0 
point, 3) the first coordinate, second coordinate, and weight of the second 1-0 
point, and so on. 

The program will then allow the option to supply starting values for the 
plant coordinates. If this option is refused, then the program will use a weighted 
average of the I-0 coordinates for starting values. As mentioned before, spherical 
problems should probably be ran several times, using difference starting values in 
each trial. Planar problems must be executed only once, and the option to supply 
starting coordinates should probably be refused. 

The program will print summary statistics for each iteration. These include 
the current values of x and y, the current norm of the gradient vector (presented 
under "D"), and the current value of the cost function (presented under "OBJ."). 
When execution is completed, the program will present the final solution as well 
as the distance of the plant from each 1-0 point and the total costs of shipping to 
and/or from the point. 
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Appendix A 

Spherical Distance 

If (x 1, Y1) and (x2, Y2) are longitude-latitude coordinates for two locations on 
a unit sphere, then the spherical distance between the two locations is given by 

the formula: 

where the inverse consine function is measured in terms of radians, while all other 
trigonometric functions are for measurements in terms of degrees. In this 

appendix, we validate the above formula. 
If the planar or straight line distance between two points on the sphere is 

known, then the spherical distance can be calculated using the law of cosines. For 

example, consider the sphere below: 

D 

Here, the straight-line distance between the two points on the sphere is denoted 
by d, whereas the spherical distance is denoted by D. By the law of cosines, it is 
known that: 

(1) 

To determine d, drop an imaginary right angle into the sphere with (x 1 ,y 1) 

and (x2·Y2) being connected by the hypotenuse. The verticle leg of the right 
angle should be perpendicular to the equatorial plane. Obviously, the planar 

distance between the two points is equal to the distance of the hypotenuse. If the 

length of the verticle and horizontal legs can be determined, then the length of 

the hypotenuse can be calculated using Pythagorean's theorem. The length of the 
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verticle leg, v, can be measured as the absolute value of the difference between the 
distances of the two points from the equatorial plane: hence: 

This formula assumes that latitude coordinates as reported for the southern 
hemisphere have been multiplied by -1. The length of the horizontal leg, h, is 
the horizontal distance between the two points. To determine this distance, drop 
plumb lines from (xl•Yl) and (x2·Y2) and mark the points where these lines 
intersect the equatorial plane. If these marks are identified as Pl and P2· then the 
equatorial plane should appear: 

e 

where: 

These equations assume that longitude coordinates in the eastern hemisphere have 
been multiplied by -1. By the law of cosines: 

Using Pythagorean's theorem, the planar distance between the two points can be 
calculated as: 

14 



Since sin2(e) + cos2(e) = 1, the latter becomes: 

The substitution of this relation into (1) yields the spherical distance formula: 

For a sphere of radius r, the distance between (x1•Yl) and (x2·Y2) would be given 
by rD. 

15 



Appendix B 

APPLESOFT BASIC Program for Solving 
Location Problems 

10 DATA 0,1,2,3,4,5,6,7,8,9,".","00","-" 
20 READ NO,N1,N2,N3,N4,N5,N6,N7,N8,N9,P$,ZP$,D$ 
30 DIM A(100),B(100),W(100),SB(100),CB(100) 
40 CD$ = CHR$(N4) 
50 DR = .0174532 
60 HP = 1.5707963 
70 RE = 3963.34 
80 DEF FN DTR(X) =X* DR 
90 DEF FN RTD(X) =X/DR 
100 DEF FN ACS(X) = HP- ATN(X/SQR(N1 - X11N2)) 
110 HOME 
120 PRINT "ARE COORDINATES SPHERICAL? (YIN):"; 
130 GET C1$ 
140 IF C1$ <> "Y" AND C1$ <> "N" THEN 130 
150 PRINT 
160 PRINT 
170 IF C1$ = "Y" THEN SC = N1 
180 INPUT "TOLERENCE DIST. FOR GRADIENT: ? ";Tl 
190 IF T1 <=NO THEN 180 
200 PRINT 
210 INPUT "TOLEI~I::NCE DIST. FROM I-0 PT.: ? ";T2 
220 IF T2 <= NO THEN 210 
230 PRINT 
240 INPUT "# OF I-0 PTS.: ? ";N 
250 IF N <= NO THEN 240 
260 N = INT(N) 
270 PRINT 
280 PRINT "ARE DATA ON DISK? (Y/N): "; 
290 GET C1$ 
300 IF C1$ <> "N" AND C1$ <> "Y" THEN 290 
310 PRINT 
320 PRINT 
330 IF Cl$ = "N" ';·~eN 670 
340 INPUT "FILE NAME: ? ";C1$ 
350 PRINT 
360 PRINT "OUTPUT DATA TO PRINTER?~:/[<):"; 
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370 GET C2$ 
380 IF C2$ <> "Y" AND C2$ <> "N" THEN 370 
390 IF C2$ = "Y" THEN PP = N1 
400 PRINT 
410 PRINT 
420 PRINT "INSERT DISK IN DRIVE 1 AND PRESS RETURN"; 

430 GET C2$ 
440 PRINT 
450 HOME 
460 IF PP THEN PRINT CD$"PR#1" 
470 PRINT "LOCATION";SPC(N9);"A";SPC(N9);"B";SPC(N9);"W" 

480 GOSUB 3510 
490 PRINT CD$"0PEN";C1$,",Dl" 
500 PRINT CD$"READ";C1$ 

510 INPUT R1 
520 IF R1 > N THEN N = R1 
530 FOR I = N1 TO Rl 
540 INPUT A(l),B(l),W(l) 
550 C1$ = STR$(I) 
560 C2$ = STR$(A(l)) 
570 C3$ ,., STR$(B(I)) 

580 C4$ '"' STR$(W(I)) 
590 PRINT SPC(N8 - LEN(C1$));C1$;SPC(10 - LEN(C2$));C2$;SPC(10 -

LEN(C3$));C3$;SPC(10 - LEN(C4$));C4$ 
600NEXT 
610 PRINT CD$"CLOSE" 
620 PRINT 
630 PRINT 
640 PP =NO 
650 PRINT CD$"PR#O" 
660 GOTO 860 
670 HOME 
680 PRINT "LOCATION";SPC(N9);"A";SPC(N9);"B";SPC(N9);"W" 

690 GOSUB 3510 
700 VT AB 23 

710 PRINT "INPUT COORDINATES AND WEIGHT FOR EACH LOCATION" 

720 PRINT 

730 FOR I= Nl TON 
740 Cl$ = STR$(I) 
750 POKE 34,23 
760 PRINT SPC(N8 - LEN(Cl$));Cl$;" " 

770 INPUT "(A,B,W) = ";A(l),B(I),W(l) 
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780 PRINT 
790 C2$ = STR$(A(I)) 
800 C3$ = STR$(B(I)) 
810 C4$ = STR$(W(I)) 

820 PRINT SPC(N8 - LEN(C1$));C1$;SPC(10 - LEN(C2S);C2$;SPC(10-

LEN(C3$));C3$;SPC(10 - LEN(C4$));C4$; 

830 POKE 34,N2 
850NEXT 
860 PRINT 
870 PRINT "CHECK DATA? (Y/N): "; 
880 GET C1$ 
890 IF C1$ <> "Y" AND C1$ <> "N" THEN 880 
900 PRINT 
910 PRINT 
920 IF C1$ = "N" THEN 1240 
930 FOR I= N1 TO N STEP 15 
940 R1 =I+ 14 
950 IF R1 > N THEN R1 = N 
960 HOME 
970 FOR J =I TO R1 
980 C1$ = STR$(J) 
990 C2$ = STR$(A(J)) 
1000 C3$ = STR$(B(J)) 
1010 C4$ = STR$(W(J)) 
1020 PRINT SPC(N8 - LEN(C1$));C1$;SPC(10- LEN(C2$));C2$;SPC(10 -

LEN(C3$));C3$;SPC(10 - LEN(C4$));C4$ 
1030 NEXT 
1040 PRINT 
1050 PRINT "CORRECTIONS? (YIN): "; 
1060 GET C1$ 
1070 IF Cl$ <> "N" AND C1$ <> "Y" THEN 1060 

1080 PRINT 
1090 PRINT 

1100 IF C1$ = "N" THEN 1140 
1110 INPUT "(LOCATION,A,B,W) = ";L;A(L),B(L),W(L) 

1120 HOME 
1130 GOTO 970 
1140 NEXT 
1150 R1 =NO 
1160 FOR I= Nl TON 
1170 IF W(l) =NO THEN 1220 
1180 R1 = R1 + N1 
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1190 A(R1) = A(l) 
1200 B(R1) = B(l) 
1210 W(R1) = W(l) 
1220 NEXT 
1230 N = R1 
1240 TEXT 
1250 HOME 
1260 PRINT "STORE DATA ON DISK? (YIN):"; 
1270 GET C1$ 
1280 IF C1$ <> "Y" AND C1$ <> "N" THEN 1270 
1290 PRINT 
1300 PRINT 
1310 IF C1$ = "N" THEN 1470 
1320 INPUT "FILE NAME: ? ";C1$ 
1330 PRINT 
1340 PRINT "INSERT DISK IN DRIVE 1 AND PRESS RETURN"; 
1350 GET C2$ 
1360 PRINT 
1370 PRINT 
1380 PRINT CD$"0PEN";C1$;",D1" 
1390 PRINT CD$"WRITE";C1$ 
1400 PRINT N 
1410 FOR I= N1 TON 
1420 PRINT A(l) 
1430 PRINT B(l) 
1440 PRINT W(l) 
1450 NEXT 
1460 PRINT CD$"CLOSE" 
1470 IF NOT SC THEN 1520 
1480 FOR I= N1 TON 
1490 A(l) = FN DTR(A(I)) 
1500 B(l) = FN DTR(B(I)) 
1510 NEXT 
1520 PRINT "SUGGEST STARTING COORDINATES? (Y/N): "; 
1530 GET C1$ 
1540 IF C1$ <> "N" AND C1$ <> "Y" THEN 1530 
1550 PRINT 
1560 PRINT 
1570 IF C1$ = "N" THEN 1630 
1580 INPUT "(X,Y) = ";X,Y 
1590 PRINT 
1600 IF SC THEN X = FN DTR(X) 
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1610 IF SC THEN Y = FN DTR(Y) 
1620 GOTO 1710 
1630 R1 =NO 
1640 FOR I= N1 TON 
1650 X= X+ W(I)*A(I) 
1660 Y = Y + W(I)*B(I) 
1670 R1 = R1 + W(I) 
1680 NEXT 
1690 X= X/R1 
1700 Y = Y/R1 
1710 PRINT ''SEND OUTPUT TO PRINTER? (Y/N): "; 
1720 GET C1$ 
1730 IF C1$ <> "Y" AND C1$ <> "N" THEN 1720 
1740 PRINT 
1750 IF C1$ = "Y" THEN PP = N1 
1760 HOME 
1770 IF PP THEN PRINT CD$"PR#1" 
1780 PRINT "IT.";SPC(N7);"X";SPC(N7);"Y";SPC(N7);"D";SPC(N8); "OBJ." 
1790 GOSUB 3510 
1800 IF SC THEN 2180 
1810 F =NO 
1820 FX =NO 
1830 FY =NO 
1840 P2 =NO 
1850 FOR I = N1 TON 
1860 R1 = SQR((X- A(l))IIN2 + (Y- B(l))"N2) 
1870 IF R1 < T2 THEN P2 =I 
1880 F = F + W(I)*R1 
1890 FX = FX + W(I)*(X- A(I))/R1 
1900 FY = FY + W(I)*(Y- B(I))/R1 
1910 NEXT 
1920 D = SQR(FX"N2 + FY11N2) 
1930 GOSUB 3210 
1940 IF D < T1 THEN 2610 
1950 IF P2 <> P1 OR P1 = NO THEN 1990 
1960 X = A(P2) 
1970 Y = B(P2) 
1980 GOTO 2610 
1990 P1 = P2 
2000 IF IT =NO THEN T = F/(N2*(FX"N2 + FY"N2)) 
2010 T = T*N2 
2020 R1 = F 
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2030 R2 = X - T*FX 
2040 R3 = Y- T*FY 
2050 R4 =NO 
2060 FOR I= N1 TON 
2070 R4 = R4 + W(I)*SQR((R2- A(I))"N2 + (R3 - B(I))"N2) 
2080 NEXT 
2090 IF R4 < F AND R4 > R1 THEN 2130 
2100 R1 = R4 
2110 T = T/N2 
2120 GOTO 2030 
2130 T = T*N2 
2140 X = X - T*FX 
2150 Y = Y- T*FY 
2160 IT= IT + N1 
2170 GOTO 1810 
2180 FOR I= N1 TON 
2190 SB(I) = SIN(B(I)) 
2200 CB(I) = COS(B(I)) 
2210 NEXT 
2220 F =NO 
2230 FX =NO 
2240 FY =NO 
2250 P2 =NO 
2260 FOR I= N1 TON 
2270 R1 = SB(I)*SIN(Y) + CB(I)*COS(Y)*COS(X - A(I)) 
2280 R2 = FN ACS(R1) 
2290 IF RE*R2 < T2 THEN P2 = I 
2300 F = F + W(I)*R2 
2310 R2 = -W(I)/SQR(N1 - R1"N2) 
2320 FX = FX - R2*CB(I)*COS(Y)*SIN(X - A(l)) 
2330 FY = FY + R2*(SB(I)*COS(Y) - CB(I)*SIN(Y)*COS(X- A(l))) 
2340 NEXT 
2350 D = SQR(FX"N2 + FY"N2) 
2360 GOSUB 3210 
2370 IF D < T1 THEN 2610 
2380 IF P2 <> P1 OR P1 = NO THEN 2420 
2390 X = A(P2) 
2400 Y = B(P2) 
2410 GOTO 2610 
2420 P1 = P2 
2430 IF IT= NO THEN T = F/(N2*(FX"N2 + FY"N2)) 

2440 T = T*N2 
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2450 Rl = F 
2460 R2 = X - T*FX 

2470 R3 = Y - T*FY 

2480 R4 =NO 
2490 FOR I = Nl TO N 

2500 R4 = R4 + W(I)*FN ACS(SB(I)*SIN(R3) + CB(I)*COS(R3)*COS(R2 -

A(I))) 

2510 NEXT 
2520 IF R4 < F AND R4 > Rl THEN 2560 

2530 Rl = R4 
2540 T = T/N2 
2550 GOTO 2460 
2560 T = T*N2 
2570 X= X- T*FX 
2580 Y = Y - T*FY 

2590 IT = IT + Nl 
2600 GOTO 2220 

2610Rl=X 
2620 R2 = Y 
2630 IF NOT SC THEN 2670 

2640 Rl = FN RTD(Rl) 

2650 R2 = FN RTD(R2) 

2660 F = RE*F 
2670 PRINT 
2680 PRINT 
2690 PRINT "OPTIMAL SOLUTION" 

2700 PRINT "-----------------" 

2710 PRINT 
2720 PRINT "X: ";Rl 
2730 PRINT "Y: ";R2 

2740 PRINT "D: ";D 

2750 PRINT "OBJ.: ";F 

2760 PRINT 

2770 PRINT 
2780 PRINT CD$"PR#O" 

2790 PRINT ,;PRESS RETURN FOR MORE"; 

2800 GET Cl$ 

2810 PRINT 

2820 TEXT 
2830 HOME 
2840 IF PP THEN PRINT CD$"PR#l" 
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2850 PRINT "LOCATION";SPC(N5);"DIST.";SPC(N4);"WEIGHT";SPC(N6); 

"COST" 
2860 GOSUB 3510 
2870 R3 =NO 
2880 R4 =NO 
2890 FOR I = Nl TON 
2900 IF NOT SC THEN R1 = SQR((X- A(I))-"N2 + (Y- B(I))-"N2) 

2910 IF SC THEN R1 = RE*FN ACS(SB(I)*SIN(Y) + CB(I)*COS(Y)*COS(X 

A(I))) 

2920 R2 = R1 *W(I) 

2930 R3 = R3 + R1 

2940 R4 = R4 + R2 
2950 Cl$ = STR$(I) 
2960 R = R1 
2970 GOSUB 3390 

2980 C2$ = C$ 
2990 R = W(I) 
3000 GOSUB 3390 

3010 C3$ = C$ 
3020 R = R2 
3030 GOSUB 3390 

3040 C4$ = C$ 
3050 PRINT SPC(N8 - LEN(C1$));C1$;SPC(10 - LEN(C2$));C2$;SPC(10 -

LEN(C3$));C3$;SPC(10 - LEN(C4$));C4$ 

3060 NEXT 
3070 FOR I = N1 TO 40 
3080 PRINT D$; 
3090 NEXT 
3100 PRINT 
3110 R = R3 
3120 GOSUB 3390 

3130 C1$ = C$ 
3140 R = R4 
3150 GOSUB 3390 
3160 C2$ = C$ 

3170 PRINT SPC(18- LEN(C1$));C1$;SPC(20- LEN(C2$));C2$ 

3180 PRINT CD$"PR#O" 

3190TEXT 
3200 END 

3210 C1$ = STR$(IT) 

3220 R =X 

3230 IF SC THEN R = FN RTD(R) 
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3240 GOSUB 3390 
3250 C2$ = C$ 
3260 R = Y 
3270 IF SC THEN R = FN RTD(R) 
3280 GOSUB 3390 
3290 C3$ = C$ 
3300 R = D 
3310 GOSUB 3390 
3320 C4$ = C$ 
3330 R = F 
3340 IF SC THEN R = RE*R 
3350 GOSUB 3390 
3360 C5$ = C$ 
3370 PRINT SPC(N3 - LEN(C1$));C1$;SPC(N8 - LEN(C2$));C2$;SPC(N8 -

LEN(C3$));C3$;SPC(N8 - LEN(C4$));C4$;SPC(12 - LEN(C5$));C5$ 
3380 RETURN 
3390 IF ABS(R) < .01 THEN R = NO 
3400 C$ = STR$(R) 
3410 S1 = LEN(C1$) 
3420 S2 = N1 
3430 IF S2 > S1 THEN 3470 
3440 IF MID$(C$,S2,N1) = P$ THEN 3480 
3450 S2 = S2 + N1 
3460 GOTO 3430 
3470 C$ = C$ + P$ 
3480 C$ = C$ + ZP$ 
3490 C$ = LEFT$(C$,S2 + N2) 
3500 RETURN 
3510 FOR I= N1 TO 40 
3520 PRINT D$; 
3530 NEXT 
3540 PRINT 
3550 POKE 34,N2 
3560 RETURN 
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OKLAHOMA 

AGRICULTURAL EXPERIMENT STATION 
System Covers the State 

0 Main Station - Stillwater and Lake Carl Blackwell 
1. Panhandle Research Station - Goodwell 
2. Southern Great Plains Field Station - Woodward 
3. Sandyland Research Station - Mangum 
4. Irrigation Research Station - Altus 
5. Southwest Agronomy Research Station - Tipton 
6. Caddo Res&arch Station - Ft. Cobb 
7. North Central Research Station - Lahoma 
8. Forage and Livestock Research Laboratory - El Reno 
9. South Central Research Station - Chickasha 

10. Agronomy Research Station- Perkins 
Fruit Research Station - Perkins 

11. Pecan Research Station - Sparks 
12. Pawhuska Research Station - Pawhuska 
13. Vegetable Research Station - Bixby 
14. Eastern Research Station - Haskell 
15. Kiamichi Forestry Research Station - Idabel 
16. Wes Watkins Agricultural Research and Extension Center -

Lane 
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