

Table of Contents

	- 1
Soils Developed in Permian Formations in Central and Western Oklahoma	-4
Soils Developed in Pennsylvanian Formations in Eastern Oklahoma	-4
Soils Developed in Cretaceous Formations in Southeastern Oklahoma	- 8
Soils Developed in Tertiary Materials	-8
Soils Developed in Quaternary Deposits	-8
Summary and Conclusions	- 8
References	- 9

Reports of Oklahoma Agricultural Experiment Station serve people of all ages, socio-economic levels, race, color, sex, religion and national origin. This publication is printed and issued by Oklahoma State University as authorized by the Dean of the Division of Agriculture and has been prepared and distributed at a cost of \$446.75 for 1,700 copies.

Clay Mineralogy of Oklahoma Soils

M. H. Roozitalab and Fenton Gray¹

Determination of the relative amounts and kinds of clay minerals present in soils is essential. Clay minerals influence (1) physical qualities of soils such as water holding capacity, permeability, shrink-swell potential and plasticity; (2) cation exchange capacity; (3) K and NH_4 fixation potential; (4) K reserve and release rates; and (5) fertility and tillage. Clay minerals also react with natural organic compounds as well as applied herbicides and pesticides.

Clay minerals do not all influence the agricultural and engineering uses of soils in the same way. Montmorillonite is responsible for a large portion of soil cation exchange capacity. The high cation exchange capacity of montmorillonite is available to hold fertilizer cations such as K and NH_4 , macronutrients such as Ca and Mg and micronutrients such as Cu and Zn.

Montmorillonite is also responsible for most shrinking and swelling which causes many difficulties in engineering uses of soils, and it has a high adhesive property which prevents soil erosion. However, montmorillonite absorbs large quantities of water, thereby decreasing the strength and stability of the soil, causing destructive landslides and soil creeps. Although montmorillonite increases natural soil fertility, in large

nounts it may produce an unfavorable hydraulic condition and restriction of root growth.

Illite has a low cation exchange capacity compared to that of montmorillonite and vermiculite. Through weathering, illite is a potential supplier of K, and it usually contains small amounts of various minor elements, such as Zn and Fe, which may be made available to plants. Micas are known to be nonconductors of heat and electricity; therefore, they are used commercially as insulator materials, particularly muscovite.

Kaolinite has a very low cation exchange capacity; however, it has high reactivity with anions such as phosphate. Soils containing large amounts of kaolinite are naturally acidic and infertile and need to be limed and fertilized more than other soils.

Vermiculite has much less expansion or shrink-swell properties than montmorillonite. It has, however, high capacity to fix K and NH_4 from fertilizers, and the cation exchange capacity is higher than that of montmorillonite.

Clay minerals in soils can originate by different mechanisms: (a) inheritance from soil parent materials; (b) alteration and degradation of soil primary minerals such as biotite and feldspars; and (c) synthesis. These mechanisms, working under different environmental conditions accompanied with the process of translocation in soils, make composition of clay minerals also a function of soil depth. Likewise, weathering with its resulting alteration and synthesis is higher at the soil surface and decreases in intensity with soil depth. Because of the importance of parent materials in the clay mineral composition of soils, soils in Oklahoma can be grouped into five major areas based on the origin of their parent materials (Figure 1). Clay minerals of 49 soils developed in

¹Former graduate research assistant and professor of Soil Science, Agronomy Dept., Oklahoma State University. Research here was conducted under Oklahoma Station Project 1383 in cooperation with Soil Conservation Service, USDA from unpublished ⁵⁵,D thesis.

Figure 1. General geology Galloway, 1959). and physiographic areas of Oklahoma (Gray and

Figure 2. General distribution pattern of clay minerals in Oklahoma: M - montorillonite, I - illite, K - kaolinite, V - vermiculite, C - chlorite, 1 - >35%, 2 - 20-35%, 3 - 10-20%, 4 - <10%.

Clay Mineralogy 3

these major areas are presented in Tables 1 through 5. The generalized clay minicomposition of soils from each group and changes which have occurred because of influences of soil-forming factors have been discussed. Figure 2 shows the generalized distribution of clay minerals in Oklahoma soils. This work is based mainly on the study of clay minerals by the authors and other workers (Culver and Gray, 1968; Dawud, 1978; Fanning and Gray, 1959; Gray et al., 1963; Samin, 1971; Stahnke, 1968; Voss, 1974; Wilkinson and Gray, 1954).

Soils Developed in Permian Formations in Central and Western Oklahoma

Most soils in central and western Oklahoma originated from shales, clay redbeds, siltstone or sandstones of Permian age.

Study of soil clay minerals in central Oklahoma suggests montmorillonite and illite are the major components. They are usually the principal components of the coarse clay fraction (2-0.2 micron), but montmorillonite alone dominates the fine clay fraction (less than 0.2 micron).

Shales and clay beds usually contain large amounts of illite. However, strongly developed soils such as Kirkland, Bethany, Grainola and Aydelotte, which have developed in shales and claybeds, contain large amounts of montmorillonite in their solums. Montmorillonite appears to be stable in these soils because of limited leaching and neutral to alkaline pH. Some weathered shales contain mixed layers of illite and montmorillonite which are mostly transformed to montmorillonite in the soil solum.

Small amounts of chlorite have been identified in sub-horizons of several soils: however, cholorite has usually undergone weathering in the soil surface layer. V miculite is not usually found as a discrete compound, but as mixed layers with montmorillonite and illite, particularly in the coarse clay fraction. Small amounts of kaolinite are usually present in coarse clays.

Clay mineralogy of soils in southwestern Oklahoma is similar to that in the central part; however, larger amounts of soil chlorite are often identified. Soils such as Foard contain large amounts of montmorillonite. Soils developed in siltstone and sandstone of Permain age in western Oklahoma also show a similar composition to the soils in the central part. Unconsolidated sandstones underlying Dill and Quinlan soils contain large amounts of montmorillonite. This may reflect the relative abundance of volcanic products found in the sedimentary rocks of this area. Vermiculite and chlorite are usually present in relatively larger amounts in the coarse clay fractions of these soils.

Soils Developed in Pennsylvanian Formations In Eastern Oklahoma

Study of soils developed in shales, claybeds and sandstones of Pennsylvanian age in eastern Oklahoma indicates that illite, kaolinite and montmorillonite are the main types of clays. Kaolinite and illite are abundant in the coarse clay fractions while montmorillonite composes large portions of the fine clays. Large amounts of illite are present in the shales in which Enders and Dennis soils developed (Table 2). However, illite has partially weathered to montmorillonite or interstratified illite and montmorillonite in the surface. The presence of hydroxy-Al interlayers is common in 2:1 expansible clays, especially in the coarse clay fractions, in the A and B horizons of these soils.

4 Agricultural Experiment Station

$\overline{}$				X-ray Diffraction+	
Call	Country	Desent Materiale	Horizon	Coarse Clay	Fine Clay
Zaneis	Payne	stratified	A1	(2-0.20)	M-V(IK)
Zunolo	1 uyilo	sandstone and	B2t	IKV(Q)	M-V(IK)
Zaneje	Oklahoma	shale	C ▲		M-V(IK)
Zalleis	Okianoma	sandstone and	B2t	IKV-C(Q)	M-V(IK)
Kinafishar	Kingfisher	shale	C	IKV-C(Q)	M-V(IK)
Kinglisher	Kinglisher	Slidle	B2t	IV-CK(Q)	M-VI(K)
			C	IV-CK(Q)	M-VI(K)
Kirkland	Canadian	claybed	B22t	IM(Q)	M(IQ)
Bethany	Canadian	shale and	A11	MI(KQV)	M(IQ)
Powbucka	00000	claybed	B22t	MI(KQV)	M(Q)
like	Usage	sandstone	B23t		VI(KQ)
			B3	IV(KQ)	VI(KQ)
Avdelotte	Cleveland	shale and	A1	IM(KVQ)	M(IKQ)
		siltstone	B21t		M(IKCQ)
Grainola	Noble	shale and	A1	M(IKQ)±	
		siltstone	IICr	IM(KQ)	
Waurika	Kay	post-Permain sediment	AP	IK(Q)†	
			B21t	MI(KQ)‡	
Waurika	Cotton	reworked Permain	C2		MIKOC
Vaulika	Collon	shale	B21	MI(KVCQ)	M(IKQC)
Alin data anat	Destates	hard conditions	C3		M(IKQC)
windthorst	Pontotoc	and shale	DZJI	W-VI(KQ)+	
Dill	Washita	sandstone	A12	MI(KQ)	M(IK)
			IIC	MI(KQ)	M(IK) M(I)
Woodward	Harper	soft sandy and	A1	I(Q)	MI(Q)
		silty redbed	B2 B3	MI(KQ) IK(Q)	MI(Q)
			C	l(Q)	MI(Q)
Woodward	Washita	stratified	A1 B2	IM-V(KCQ)	M-V(IKC)
		and siltstone	C	IM-V(KCQ)	M-VI(KC)
Quinlan	Washita	stratified	A B2		MI(K)
		and siltstone	C	MI(KQ)	M(IK)
Cordell	Washita	siltstone	A1 B21		M(I)
			R	IM(CKQ)	M(I)
Carey	Custer	siltstone	AP		
			C2	IVC(KQ)	MVC(IQ)
St. Paul	Woodward	silty aeolian and/or	A12	IMV(KQ)	M(I)
		alluvial mantle over Permian redbed	621 C	IV(MKQ)	M(I)
Foard	Cotton	calcareous fine	AP	IMV(KCQ)	M
		texture redbed	B22 C	MVI(KCQ) MV	M
Foard	Comanche	calcerous fine	A12	MI(KCVQ)	M(KQ)
		texture redbed	B3Ca C2	MI(KVQ) MI(KVCQ)	M(KQ) M(KQ)

Table 1. Clay mineralogy of the soils developed in Permian formations in central and western Oklahoma.

[†] Mineral Code: M - montmorillonite, I - illite, K - kaolinite, V - vermiculite, C - chlorite, Q - quartz M/V mixed layer M and V. Dominant minerals are outside parentheses. ‡ Total clay - less than 2 micron

Clay Mineralogy 5

				X-ray Diffraction†	
Soil	County	Parent Materials	Horizon	Coarse Clay (2-0.2u)	Fine Clay (<0.2 <i>u</i>)
Parsons	Mayes	shale	A1 B21t C2	IK(MQ) IK(MQ) KI(MQ)	M(IK) M(IK) M(IK)
Dennis	Rogers	shale	A1 B21 IICr	IKM(VQ) IKM(VQ) IKV(Q)	M(IKVQ) M(IKQ) I-M(KVQ)
Dennis	Wagoner	shale	A1 B2t C	IK(MQ) IK(MQ) IK(MQ)	M(IKQ) M(IVK) M(KI)
Enders	Atoka	shale	A2 B22t Cr	MIK(Q)‡ MK(IQ) MK(IQ)	. ,
Enders	Muskogee	shale	A12 B21t Cr	M-IK(Q)‡ M-IK(Q) I(MKQ)	
Niotaze	Osage	shale and sandstone	A2 B22t C	IM(KQ) IM(KQ) IM-V(Q)	M(VQ) M(VQ) IM(Q)
Tamaha	Haskell	shale	A12	M-VI(K)‡	. ,
Carnasaw	Pushmataha	shale	A1	MIK(Q)‡	
Collinsville	Haskell	sandstone	B2	M-VIK(Q)‡	

Table 2. Clay mineralogy of the soils developed in Pennsylvanian formations in eastern Oklahoma.

† Mineral Code: M - montmorillonite, I - Illite, K - kaolinite, V - vermiculite, C - chlorite, Q - quartz, M-V mixed layer M and V. Dominant minerals are outside parentheses. ‡ Total clay - less than 2 micron

Table 3. Clay mineralogy of the soils developed in Cretaceous formations in southeastern Oklahoma.

				X-ray Diffraction [†]	
Soil	County	Parent Materials	Horizon	Coarse Clay (2-0.2u)	Fine Clay (<0.2u)
San Saba	Carter	limestone and limey clay	AP A1 AC	M(KQ) M(KQ) M(Q)	M(Q) M(Q) M(Q)
Burleson	Marshall	calcareous clayey material	AP AC C	M(IKQ)‡ M(IKQ) M(IKQ)	
Durant	Marshall	calcareous clay bed	A1 B21t B23t	M(IKQ)‡ M(IKQ) M(IKQ)	
Ferris	Marshall	calcareous clayey sediment	A1 AC2	M(IKQ)‡ M(IKQ)	
Gasil	Marshall	loamy material and interbedded sand-stone	A2 B22t Cr	IMK(Q)‡ MI(KQ) M(IKQ)	
Bernow	Pushmataha	loamy materials and interbedded sandstone	A1 B22t	KIM-V(IQ) KIM-V(IQ)	MKI(VQ) MKI(VQ)

†Mineral Code: M - montmorillonite, I - illite, K - kaolinite, V - vermiculite, C - chlorite Q - quartz, M-V mixed layer M and V. Dominant minerals are outside parentheses. ‡ Total clay - less than 2 micron

6 Agricultural Experiment Station

ି ୍କble 4.

e 4. Clay mineralogy of the soils developed in Tertiary sediments in the Oklahoma panhandle.

	County	Parent Materials	Horizon	X-ray Diffraction	
Soil				Coarse Clay (2-0.2u)	Fine Clay (<0.2u)
Ulysses	Texas	calcareous loamy loess	AP B2 C1	IM(KQ) IM(KQ) IM(KQ)	M(IK) M(IK) M(IK)
Richfield	Texas	calcareous loamy loess	AP B2t C	IM(KQ) IM-V(KQ) IM-V(KQ)	M(IK) M(IK) M(IK)

† Mineral Code: M - montmorillonite, I - illite, K - kaolinite, V - vermiculite, C - chlorite, Q - quartz, M-V mixed layer M and V. Dominant minerals are outside parentheses.

Table 5. Clay mineralogy of the soils developed in Quaternary sediments in Oklahoma.

Coarse Clay Fine Clay on (2-0.2u) (< 0.2u)
IKM(VQ) MI(KQ) IKM(VQ) MI(KQ) IKM(VQ) MI(KQ)
MI(KQ)‡ M(IKQ) M(IKQ)
IM(KQC) M(IK) IM(KQC) M(IK) IM(KQC) M(IK)
IVKM(CQ) MV(IC) IVK(MCQ) MV(IC) IVK(MCQ) MV(IC)
M(IKQ)‡ M(IKQ)
M(IKQ)‡ M(IKQ)
MI(KQ)‡
M-VI(KQ)‡
MI(KQ)‡
M-VI(KQ) M(IQ) M-VI(KQ) M(IQ)
IM(KQ)‡ MI(KQ)
MI(KQ)‡

† Mineral Code: M - montmorillonite, I - illite, K - kaolinite, V - vermiculite. C - chlorite, Q - quartz M-V -mixed layer M and V. Dominant minerals are outside parentheses. ‡ Total clay - less than 2 micron

In Ultisols and highly leached Alfisols of eastern Oklahoma, illite is usually degraded and has weathered to 2:1 expansible clays which are partially chloritized by hydroxy-Al. Kaolinite is also abundant in these soils. Amorphous clays of the siliceous or montmorillonitic-type alumino-silicates are usually present in larger amounts than $\dot{}$ soils developed in central Oklahoma.

Clay Mineralogy 7

Soils Developed in Cretaceous Formations in Southeastern Oklahoma

Soils developed in limestone and calcareous clayey materials of Cretaceous age in southeastern Oklahoma are dominated by montmorillonite. The presence of large amounts of cations such as Ca and Na, low leaching, neutral to alkaline pH, and slow permeability favor the formation and stability of montmorillonite in soils such as Burleson, Durant, Ferris and San Saba of this area. Illite is the next most abundant clay mineral in these soils.

Study of clay minerals of highly leached and weathered soils, such as Bernow, that developed in sandstone and sandy loams of Cretaceous age in southeastern Oklahoma suggests that montmorillonite and kaolinite are the most abundant clay minerals. Kaolinite is the primary clay mineral in the coarse clay fraction, while hydroxy-Al interlayered montmorillonite composes large portions of the fine clay fraction. Illite is usually present in small amounts.

Soils Developed in Tertiary Materials

Study of soils such as Richfield and Ulysses, that developed in calcareous loamy to clayey material of Tertiary age in the Oklahoma Panhandle, indicates that montmorillonite and illite are the major components of their clay minerals. The coarse clay fraction is composed of large amounts of illite and montmorillonite, while the fine clay is dominated by montmorillonite. Lesser amounts of vermiculite, kaolinite and soil chlorite are identified in these soils. Vermiculite is present mainly in mixed layers with montmorillonite in the coarse clay fraction.

Soils Developed in Quaternary Deposits

Soils developed in alluvial deposits throughout the state contain a varying mixture of montmorillonite, illite, kaolinite and vermiculite. Montmorillonite and illite are usually the most abundant clay minerals in these soils while a lesser amount of kaolinite is usually present.

In central and western Oklahoma, soils such as Norge, Vanoss and Grandfield contain large amounts of montmorillonite in the clay fractions. Montmorillonite is usually interlayered or interstratified with illite or vermiculite. Illite is the second most dominant clay mineral in these soils.

Slowly to very slowly permeable and alkaline soils, such as Kaufman and Asher, which have developed in recent alluvial deposits, are highly montmorillonitic. Illite and kaolinite are present in small amounts in these soils.

Summary and Conclusions

Montmorillonite and illite are the major clay minerals in soils developed in the Permian-aged materials of central and western Oklahoma. Both montmorillonite and illite are usually the principal components of the coarse clay fraction, while montmorillonite alone dominates the fine clay. Vermiculite is not found in large amounts or as a discrete compound, but mainly as mixed layers with montmorillonite and illite in the coarse clay fraction. Small amounts of kaolinite are usually present, mostly in the coarse clays. Chlorite is present in small amounts in the subsurface horizons of some soils; however, chlorite has usually undergone weathering in the surface layers.

Kaolinite and illite are abundant in the coarse clay fractions of soils originated from the Pennsylvanian materials in eastern Oklahoma. Montmorillonite composes a large portion of the fine clay. Hydroxy-Al interlayers are usually present in p

8 Agricultural Experiment Station

terlayer spaces of 2:1 expansible clay minerals, particularly in the coarse clay ctions. Illite is usually degraded in these soils.

Montmorillonite dominates the clay-size fraction of soils developed in limestone or calcareous clayey materials of Cretaceous period in southeastern Oklahoma. Clay minerals of highly leached and weathered soils developed in weakly consolidated sandstones and sandy loam deposits of this region are composed mainly of interlayered 2:1 expansible clay minerals and kaolinite. Illite is present mainly in the coarse clay fraction.

Study of clay minerals of soils developed in calcareous loamy to clayey materials of Tertiary period in the Oklahoma Panhandle suggested that montmorillonite and illite are the major clay minerals in the coarse clays, while montmorillonite dominates the fine clays. Kaolinite is present in small amounts.

Soils derived from alluvial sediments throughout the state contain varying mixtures of montmorillonite, illite, kaolinite and vermiculite. Montmorillonite and illite are usually the most abundant clay minerals. Montmorillonite is usually interlayered and/or interstratified with illite or vermiculite.

References

- Culver, J. R. and F. Gray. 1968. Morphology and genesis of some grayish claypan soils of Oklahoma. II. Mineralogy and genesis. Soil Sci. Soc. Am. Proc. 32:851-857.
- Dawud, A. Y. 1978. Unpublished data by personal communication (Proj. 1383). Oklahoma State Univ., Stillwater, Okla.
- Fanning, C. D. and F. Gray. 1959. Characterization and genetic study of a Dennis and a Parsons soil. Soil Sci. Soc. Am. Proc. 23:321-324.
- Gray, F., L. W. Reed and H. D. Molthan. 1963. Clay formation and accumulation in selected Oklahoma soils. Clays and Clay Minerals 11:211-224.
- Samin, A. Q. 1971. Phosphorous fractionation of some calcareous soils of Afghanistan and Oklahoma. Ph.D. Dissertation, Oklahoma State Univ., Stillwater, Okla.
- Stahnke, C. R. 1968. The genesis of a chrono-climo-sequence of mollisols in west central Oklahoma. Ph.D. Dissertation, Oklahoma State Univ., Stillwater, Okla.

OKLAHOMA Agricultural Experiment Station

System Covers the State

Main Station --- Stillwater, Perkins and Lake Carl Blackwell

- 1. Panhandle Research Station Goodwell
- 2. Southern Great Plains Field Station Woodward
- 3. Sandyland Research Station --- Mangum
- 4. Irrigation Research Station Altus
- 5. Southwest Agronomy Research Station Tipton
- 6. Caddo Research Station Ft. Cobb
- 7. North Central Research Station Lahoma
- 8. Southwestern Livestock and Forage Research Station — El Reno
- 9. South Central Research Station Chickasha
- 10. Agronomy Research Station Stratford
- 11. Pecan Research Station Sparks
- 12. Veterinary Research Station Pawhuska
- 13. Vegetable Research Station Bixby
- 14. Eastern Research Station Haskell
- 15. Kiamichi Field Station Idabel
- 16. Sarkeys Research and Demonstration Project Lamar