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The Use of Markov Processes 1n 
Estimating Land Use Change* 

Lonnie R. Vandeveer and H. Evan Drummond** 

Large scale public investments by the Corps of Engineers and similar 
agencies invariably affect the land use pattern in the immediate vicinity 
of the project. Changes that occur in land use patterns frequently produce 
economic, environmental and aesthetic externalities. Consequently, the 
land use impact of such projects is an important dimension in the overall 
evaluation of the project. 

The ex post evaluation of the net impact of large scale public in
vestments on land use patterns is a complex problem. The researcher 
must compare the land use pattern that is observed to exist following 
the project with an estimate of what that land use pattern would have. 
been if the public investment had not been' made, ceteris paribus. The 
Markov process procedure described herein is an appropriate and effec-

, .Aive technique for handling this problem. Following a complete discus· 
sion of the methodology and several variants thereof, an example of its 
use in analyzing land use changes around Keystone Reservoir in Okla
homa will be presented. 

A PROCEDURE FOR ESTIMATING LAND USE CHANGE 

Economists are frequently interested in measuring the change in 
economic variables through time and in estimating what paths these 
variables may take in future periods of time. The Markov process (or 
chain) is a statistical procedure which may be used to generate such in
formation. Although the basic concepts of Markov chains were introduced 
in 1907, their use by economists is a relatively recent phenomenon. 

*The research reported her,ein was partially supported by grant B-030-0KLA of the 
Oklahoma Water Resources Institute and project #1571 of the Oklahoma Agri
cultural Experiment Station. Useful comments by Dr. Milton Hallberg arc 
acknowledged. 

**Graduate assistant and associate professor of the Department of Agricultural Eco
nomics, Oklahoma State University. 

Reports of Oklahoma Agricultural Experiment Station serve 'people of all ages, socio
economic levels, race, color, sex, religion and national origin. 
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The Markov process has been used by several authors to project 
farm numbers. Krenz in 1964 used the process to project farm numbers 
in North Dakota for the years 1975 and 2000 [9]. He made use of several 
different base periods for each projection and concluded that Markov 
chains have imp<?rtant advantages over traditional procedures when used(~\ 
to project farm numbers: (l.) projections can be made more conveniently • 
for each size category of farms; and, (2.) the method provides additional"'-/ 
information which is not readily obtainable with traditional techniques. 

Hallberg employed the technique to analyze the size distribution of 
plants manufacturing frozen milk products in Pennsylvania during the 
period 1944-1963 [3]. He suggested a method based on multiple regression 
techniques of replacing the constant transition probabilities with prob
abilities which are a function of various factors including structural 
characteristics in the industry. More recently, Burnham, has used the 
Markovian framework to project future land use patterns in the Southern 
Mississippi Alluvial Valley [l]. He concludes that the process can be 
adapted to project the future implications of observed land use trends 
provided appropriately specified data are available. In addition, the 
model provides a framework for analyzing alternative institutional poli
cies designed to attain specific land use futures. 

TheoJretical Concepts of the Finite 
Markov Chain Process 

A stochastic process may be described as a sequence of experiments 
or events in which the outcome of each individual experiment in the 
sequence depends on some probability, P. A finite stochastic process exists 
when the tange of possible outcomes is finite. If the probability, P, does 
not depend on the history of the system prior to the previous time period, 
a specl.al type of stochastic, process called a Markov process exists. Ac
cording to Kemeny: 

A Markov chain process is determined by specifying the following 
information: There is given a set of states (S1, S2,. ·•· Sr). The process can 
be in one and only one of these states at a given time and it moves suc
cessively from one state to another. Each move is called a step. The prob
ability that the prO<:ess moves from si to sj depends only on the state si 
that it occupied before the step. The transition probability Pii• which gives 
the probability, that the process will move from si to sj is given for every 
ordered p~ir of states. Also an initial starting state is specified at whiCh the 
process is assumed to begin [6, p. 148]. 

Assume the variable of interest is land use. The finite Markov chain 
process requires that r different land use categories be defined and that 
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movements between these land use categories over time be summarized in 
a land use flow matrix. Land use transitions must be regarded as a sto
chastic process. Once the land use flow matrix is estimated, the prob
ability (p1i) of moving from one land use category (Si) to another land 
use category (Si) is computed as: 

sij 
pij (1) 

~ sij 
i 

Each P1i represents the fraction of land that started in land use cate
gory si in period t and moved to land use category sj in the following 
period. Therefore, p 11 represents the proportion of land that started in S1 
in timet and continued in S1 in timet+ l. These transition probabilities 
may be expressed in the form of a matrix such as: 

sl Sz . s. 
sl I Pn P12 . Plr 

p S2 1 P21 P22 . P2r (2) 
....... 

s. I Pr1 p.2 · Prr 

.Where P is a transition probability matrix. 
An important kind of Markov process is the regular Markov chain 

process. A Markov chain process is regular if the p1i elements of each 
row sum to unity and are non-negative. These two assumptions are ap
propriate for projecting land uses since they imply land is neither created 
nor destroyed during the land use transition process. 

A Markov chain process may be either stationary or dynamic. Sta
tionarity in a Markov chain process means that the transition probabili
ties in P do not change over time. In a land use analysis, this means that 
factors influencing land use change over the time period in which the 
transition matrix is constructed remain the same throughout future time 
periods. A dynamic Markov process is one in which the transition prob
abilities are assumed to change with time in some sort of regularly de
scribed pattern. Both stationary and dynamic probability estimates are 
considered in this report. 

Static Land Use Change Model 

The transition matrix given in (2) and an initial vector of land uses 
completely defines the Markov chain process. With these data it is pos
sible to project land uses in the nth time period or step. If Q0 represents 
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the initial land use vector (of length r), then the following procedure 
may be used to project land use patterns in each future time period: 

or Qn may be written as: 

The static Markov chain process may also be used to project equilib
rium land use distributions. If a Markov chain process is regular, then 
as the transition matrix is raised to successively higher powers, all rows 
converge to a unique row vector termed the equilibrium vector. The 
equilibrium vector represents the unique organization of land uses in 
which net movements from one land use category to another is zero, i.e., 
land use movements out of each state are exactly equal to movements 
into that state. l\1Iore specifically, if P is a regular transition matrix, there 
exists a matrix T, consisting of identical rows, to which pn will converge 
as n approaches infinity. Each row of T is the same vector t, and al(~\ 
elements of t are non-negative. : : 

One method for calculating the equilibrium vector is to multiply~/ 
the P matrix times itself a large number of times until some power of P 
reaches the equilibrium configuration; however, this would be a tedious 
process. Judge and Swanson [5] propose another method for calculating 
the equilibrium vector. They note that in equilibrium the distribution 
vector must be invariant, so tP = t, or 

t(P- I) = 0 (3) 

where I is an identity matrix. The system in (3) contains n - linearly 
independent equations and n unknowns. Since t is a probability vector, 

(4) 

'When combined, (3) and (4) form a system of n linearly independent 
equations and n unknowns from which it is possible to solve for the 
unique values of t. 

Estimating Actual Differential Land Use Change 
Estimates of future land use patterns are determined by the transi

tion probability matrix and the original state, or original distribution 
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of the land among use categories. The initial state is designated as 
vector Qa of length r, and the land use pattern at the end of the time 
period (i.e., the period over which the r by r transition probability matrix 
abP is computed) is Qb· Then it follows that:1 

(5) 

Assuming that land use change is a stochastic process in which any future 
movement is independent of past movements and that abP is both regular 
and stationary, then (5) can be generalized to predict land use patterns 
in n, where q > b and n = 0 in a: 

(6) 

abQn denotes an estimated land use vector in time period n based on a 
transition probability matrix constructed over the time period a,b. The 
land use prediction model in (6) is valid only if the stability of P is as-
sumed between b and n. With this ceteris paribus requirement, it must 
be assumed that the rate of change of economic and other factors in
fluencing land use change patterns remains constant over the projection 
period. This assumption is maintained throughout the remainder of this 
study, unless explicitly stated otherwise. 

Suppose that a large scale public investment such as the construc
tion of a reservoir occurred in the study area in tjme period m 1 to m 2 

where b > m1 > m 2 > n. Then the land use pattern prediicted by (6) for 
time period n (abQn) may deviate from the actual land use pattern ob
served in n (Qn)· The differeQce between the predicted land use pattern 
that would have existed in n without the lake, and the actual observed 
land use pattern in n with the lake is the differential land use change 
caused by development of the lake. Thus the differential land use impact 
(Dn) of the reservoir in time period n may be computed as: 

(7) 

Vector Dn in (7) provides a more accurate estimate of the differential 
land use impact of reservoir construction than "with and without" tech
niques frequently used in project analysis. This is because the pattern of 
land use change in the pre-investment time period a, b is projected 
to time n, thereby accounting for land use changes that would have oc
curred, ceteris paribus, if the reservoir had never been constructed. 

The computation in (7) may be represented graphically. Actual 
_/ differential land use change over time for a single land use category i is 

1 In the notational conventions used in this study, all subscripts refer to either points in time 
or time periods. A lef1 subscript is the time period (base period) over which the variable is 
estimated or measured, while the right subscript is the time at which the variable is estimated 
or measured. Land use vectors (Q) for which there is no left subscript are observed. Those with 
a left subscript are estimated by the Markov model. A superscript is the power to which the 
variable is to be raised. 
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illustrated in Figure I. The actual quantity .of land use i is shown by 
the solid line over time while the projected land use had the reservoir 
not been constructed follows the broken line. Actual differential land 
use change associated with reservoir construction at any time from m 1 

to n is the vertical distance between these two lines. Figure I is a two{) 
dimensional representation of differential land use change for a single\.__/ 
land use. Estimates generated by a Markov model are multi-dimensional. 
Each land use category is estimated simultaneously with the restriction 
that the sum of all changes must he equal to zero. 

Projecting Future Differential Land Use Change 
The above model. may be extended to project the future impacts 

of land use. change associated with reservoir construction. Projected dif
ferential land use change impacts of reservoir construction are differential 
land use changes at some future time period when it .is not possible to 

CD 
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Figure 1. lllustratio111 of Actual Differential Change in Use i Associated 
with Reset~voir Construction 
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observe actual land use patterns. In this case actual observations of Qn 
in (7) are replaced by Markovian estimates of future land use patterns 
based on a post-investment (a time period following reservoir construc
tion) matrix of transition probabilities. The difference between esti-

---mates of land use patterns at time n based on pre-investment and post
investment transition probabilities is a measure of the projected dif

. _ _;ferential impact of the investment at time n. 
More specifically, let abP (where a < b < m 1) be the transition matrix 

reflecting the land use transition patterns before the lake was initiated 
and cctp (where m2 < c < d) be the transition probabilities derived over 
a time period following completion of the project. If the presence of the 
lake affects the land use transition process, then abP = edP. 

The estimated land use pattern in n (where n > d) that would have 
occurred if the investment had not been made is estimated using pre
investment transition probabilities. 

(8) 

The land use pattern that is projected to exist in n with the reservoir 
development is estimated using post-investment transition probabiliies 
and a post-investment original state (Qc): 

(9) 

/The difference between the estimated land use patterns in (9) and (8) is 
-the projected differential land use impact (Dn) of the investment at 

time (n). 

(10) 

The computation of the projected differential land use change for 
one land use is illustrated in Figure 2. The actual quantity of land in 
use i is shown by the solid line while the estimated land in use i had the 
reservoir not been constructed follows the broken line. Projected dif
ferential land use change for land use i associated with the reservoir 
construction at time n is the vertical distance between cdQu and abQn-

Since cdp and abP are regular transition matrices, (l 0) may be esti
mated for any n > d including n at infinity. As n approaches infinity, 
auP and cdp approach equilibrium states in which net land use transi
tions in each will be zero. The equilibrium projected differential land 

·-,use change provides an estimate of the eventual, total land use impact 
;>f the reservoir development in which all land use adjustments attribut-

'able to the lake are considered. These estimates should be of special 
interest in analyzing and evaluating the long-term impacts of reservoir 
construction and are comparable to estimates of lifetime benefits usually 
computed in benefit-cost analyses. 
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Figure 2. lllustratio1n of Projected Differential Change in land Use 
Associated with Reservoir Construction 

Dynatmic Land Use Change Model 

In the previous section a differential land use change model was 
developed in which land use change is taken as the difference between 
two eStimates of land use, each estimate being derived by a static Markov 
model. As mentioned previously, a static Markov change model is one in 
which all of the transition probabilities are assumed to be constant. In 
a dynamic Markov model the transition probabilities are assumed to 
change over time: Since the land use changes caused by the construction 
of a water resource development project may initially be quite great but 
diminish over time, dynamic transition probabilities are conceptually at-,r__.,'"'\ 
tractive. It may well be that the pattern of land use change after the! · 
initial water resource development project impacts have dissipated will\~j 
be no different than that which existed prior to the project. 

The essential difference between a static transition probability ma
trix such as (2), and a dynamic transition probability matrix is that in a 
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dynamic matrix each element Pii is a function of time2• Each of the ele
ments in a dynamic transition probability matrix must satisfy the basic 
conditions for a Markovian transition probability matrix: each p1i must 
be greater than or equal to 0; and the sum of the Pii in each row must 
be exactly equal to l. Within a dynamic framework the second assump-

_/tion becomes very crucial since each Pii changes over time. This particular 
assumption requires that the sum of several independent functional re
lationships must be equal to I in each time period. With a static model 
this assumption is not critical because the values of the p1i do not change. 
However, within the dynamic framework the sum of the elements of each 
row must be equal to one in each time period. 

Previous studies utilizing dynamic Markov change probabilities have 
followed either one of two techniques for generating dynamic transition 
probabilities. The first technique was introduced by Hallberg in 1969 
[3]. This technique calls for a linear regression of each element in each 
row with time as an exogenous variable. The regression procedure used 
ensures that the sum of the elements of each row is equal to I. The dis
advantages of this procedure arc twofold. In the first place it must be 
assumed that the rate of change of the estimated transition probabilities 
in response to changes in the exogenous variables is constant over time. 

-Thus, even though estimates are dynamic, they are relatively inflexibk. 
The second difficulty is that even though the procedure forces the sum 
of all elements of each row to be equal to l, it does not prevent the 
possibility of a given element in a row falling below zero or above I. In 
such cases it is necessary to ad just all estimates within the row by arbi
trarily setting problem elements equal to zero or one and adjusting all 
other elements such that the row elements sum to I. 

The second approach to estimating non-linear transition probabili
ties is a geometric adjustment model developed by Salkin, Just, and 
Cleveland [IO]. In this approach it is assumed that each clement of the 
transition matrix adjusts to the previous year's change by a fixed pro
portion as shown in equation (11). 

Pii. t+l = P1i, t + 0; (p;j, t - Pii. t-1> (11) 

Each Pii in each time period t + I is equal to the previous year's transi
tion matrix element (Pii. t) plus a certain proportion of the difference 
between the previous year's and the next previous year's transition matrix 
elements. The proportion of adjustment in (II) is 01• This 01 is the pro-

. /portion of the previous years adjustment which occurs in the current year. 
For instance, if 01 is equal to 50'/~. then in each year 50% of the previous 

:! Non-stationary trans.ilion probabilities may be a functiOn of time, or any other variable. The 
dynamic transition probabilities discussed herein arc related to time alone. 
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year's adjustment occurs. This geometric adjustment procedure causes the 
transition probabilities to ad just rapidly in the first years following the 
initial change and then to taper off as time increases. The dynamic ad
justment.model in (ll) may be solved by converting (ll) into a structural 
equation as shown in (12). 

let: ail = Pii, ·-1 

~arHi .Bii = Pii. 0 - Pii. -1 

then Pii, o = a 1i + B1i 
Pii. 1 = Pii. o + 81B1J = aii + B!J + 81Bii 
PiJ, 2 = PiJ. 1 + 812Bii = aii + Bii + 81 Bii + 812Bii 

t 

Pii, t = ail + Bii + Bii ~ 81n 

n=o 

The general stmctural equation may be expressed as 

1- o!t 

PiJ, t = aii + B1l ---
1-0i 

(12) 

(13) 

in which the value of Pii in any time period is a function of a1J, B1J, 81 and 
time. Since a1i. Bi.i, and 81 do not vary with time, there is a non-linear re
lationship between the value of PiJ, t• and t which is determined by the 
value of these three parameters. By means of a maximum likelihood esti
mation procedure [4] it is possible to estimate the values of the para
meters, a1J, B1i, and 81 based on observed values of the transition prob
abilities and 'time. The estimated values of the parameters may then be 
used to generate a system of dynamic transition probability matrices for 
each future time period. Since 81 in (11) is assumed constant for each 
row of the transition probability matrix, it is possible to estimate the Pii 
such that the sum of all of the estimates is always equal to l using the con
strained least squares technique mentioned above. As before there is a 
problem that sometimes the estimated p1J values will be less than zero or 
greater than one. In these cases it is necessary to adjust all other elements 
such that the total of the elements be equal to 1. 

The use of dynamic transition probabilities for estimating land use 
change parallels that described previously for static transition probability 
matrices. The principle difference is that with dynamic transition prob
ability matrices there will be a unique transition probability matrix for 
each and every ~ear. 

I 
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Pn. t Pri, t 

pt - (14) 

Pri, t Prr, t 

Matrix (14) may be compared to (2) in which all of the transition prob
abilities were assumed static. The land use pattern for each year may be 
computed using the dynamic transition probability matrix P n: 

(15) 

where dQn is used to identify the yector of estimated land uses in n 
generated by dynamic transition matrices. Equation (15) should be com
pared with (6) in which a static transition probability matrix was used 
to estimate land use change. In the static case the transition probability 
matrix Pis raised to the nth power and then multiplied times the original 
land use vector in order to obtain a land use projection for time period n. 
In the dynamic case each element of P n is directly estimated for the nth 
time period by (13). 

The differential land use change in any time period n is the dif
ference between the dynamic estimates for time period n, and the static 
estimate based on the pre-lake transition probability matrix Lhpn): 

(16) 

Differential land use change estimated by the dynamic transition prob
ability matrix is nothing more than the difference between the two 
matrices, the dynamic and the initial static matrix. Equation (16) should 
be compared to (10). Pre-lake land use vectors are estimated with static 
transition probability matrices in both (10) and (16). In (10), the post lake 
land use vector is estimated with a static transition probability matrix 
while in (16) this vector is estimated by a dynamic transition probability 
matrix. 

A similar procedure may also be used to estimate actual land use 
changes associated with the construction of a water resource development 
project. To do this one simply needs to replace the second term of (16) 
with observed land usc change is time period n. When dynamic transition 
probability matrices arc used it usually is not possible to estimate an 

, equilibrium land use vector. 
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USE OF THE PRC)CEDURE FOR ESTIMATING LAND USE 
CHANGE AROUND KEYSTONE RESERVOIR 

Keystone Reservoir is a large Corps of Engineers project which was 
completed in 1965. Due to its location near Tulsa, Oklahoma, the lake 
has attracted substantial residential and commercial development. The 
extent of the differential impact of the project on land use patterns 
around the lake may be computed using the procedures described above.~ 

Static E:stimates of Land Use Change 
Land uses in the study area for each of three use categories were 

measured in two pre-project years (1918 and 1958) and two post-project 
years (1964 and 1970). The land use flow matrices based on these data 
are shown in Tables I and 2. To estimate the land use pattern that would 
have existed in future time periods had the lake not been constructed, 
transition probabilities for the pre-project time period which are derived 
from the flow data in Table l are multiplied times the original land use 
pattern of 1948. The estimated patterns for selected years are shown 

:~For a complete description of the Keystone area and the data collection pr,occd.ures, see Van
deveer llll and Drummond l2]. 

Table 1.-Pattern of J.and Use Change in Pre-Project Time Period: Key
stone Lake 

1958 Uses--Acres 

1948 Uses Agricultural Residential All Other Total 

Agricultural 87,889 283 766 88,938 
Residential 212 602 14 828 
All Other 494 15 1,396 1,905 
Total 88,596 899 2,175 91,670 

Table 2.-Pattern of Land Use Change in Post-Project Time Period: Key
stone Lake 

1970 Uses--Acres 

1964 Uses Agricultural Residential All Other Total 

Agricultural 86,789 347 528 87,665 
Residential 128 1,083 29 1,240 
All Other 518 23 2,224 2,766 
Total 87,434 1,454 2,781 91,670 
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in Table 3.4 The equilibrium estimate refers to the land use pattern that 
will exist when the net rate of change of each class is zero. 

The actual 1970 differential land use change associated with the 
Keystone project is shown in Table 4. By 1970, the amount of land in 
agricultural uses was 876 acres less than what it is estimated it would have 
been if the project had not been constructed. Residential and all other 
uses experienced differential increases of comparable magnitudes, but 
the relative increase in residential was much greater. 

The differential change in land use patterns which can be expected 
in future time periods is estimated by (10). The projected impact of 
Keystone is equal to the difference between: a) future land use patterns 
estimated by pre-project transition probabilities (Table 3); and, (2) future 
land usepatterns estimated by post-project transition probabilities (Table 
sy.- Any differences between the two estimates may be due to different 
elements in. the transition probabilities matrices and for different initial 
land use vectors. Projected differential land use change estimates for 
2000 and in equilibrium are shown in Tables 6 and 7. 

4 Since the transition probabilities matrix was estimated over a l 0 year period (1948-58), 
fuLUrc estimates _are obtained for 1968, 1978, etc. The data presented in Table 3 are extrapOlated 
fTom such estimates. · 

/ Table 3.-Estimated Land Use; Keystone (Based on Static 1948-8 Transi-
tion Matrix) -

Year Agricultural Residential All Other 

Observed Land Use --acres-- --acres-- --acres--
1948 88,938 828 1,905 
1958 88,596 899 2,175 

Estimated Land Use 
1964 88,446 930 2,291 
1970 88,310 959 2,400 
1980 88,138 996 2,535 
2000 87,921 1,044 2,705 
Equilibrium 87,674 1,102 2,894 

Table 4.-Actual Differential Land Use Change: Keystone, 1970 

Land Use 

Agricultural 
Residential 
All Other 

1970 Acreage 
Estimated by 
1948-58 Static _ 
Transition ·Matrix 

88,310 
959 

2,400 

1970 Acreage 
Observed 

87,434 
1,454 
2,781 

1970 
Differential 
Land Use 
Change 

876 
+ 495 
+ 381 
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Table 5."""""Estimated Land Use: Keystone (Based on 1964-70 Static Transi
tion Matrix) 

Year Agricultural Residential All Other 

Observed Land Use --acres-- --acres-- --acres--
1964 87,664 1,240 2,766 
1970 87,434 1,454 2,781 

Estimated Land Use 
1980 87,112 1,748 2,809 
2000 86,635 2,175 2,859 
Equilibrium 85,787 2,898 2,985 

------

Table G.---Projected Differential Land Use Change: Keystone, 2000 

Land Use 

Agricultural 
Residential 
All Other 

:~000 Acreage 
!Estimated by 
IF're-WRDP Static 
Transition Matrix 

87,921 
1,044 
2,705 

2000 Acreage 
Estimated by 
Post-WRDP Static 
Transition Matrix 

86,635 
2,175 
2,859 

2000 
Differential 
Land Use 
Change 

1,286 
+ 1,131 
+ 154 

Table 7 • .;...;_Projected Differential Land Use Change: Keystone, Equilibrium 

Land Use 

Agricultural 
Residential 
All Other 

l:quilibrium Acreage 
Estimated by 
l»re-WRDP Static 
1rransition Matrix 

87,674 
1,102 
2,894 

Equilibrium Acreage 
Estimated by 
Post-WRDP Static 
Transition Matrix 

85,787 
2,898 
2,985 

Equilibrium 
Differential 
Land Use 
Change 

1,887 
+ 1,796 
+ 91 

Two interesting trends are evident in the projected differential land 
use changes. First, the differential impact on residential uses continues 
to grow beyond 1970, finally reaching nearly 1 800 acres by equilibrium. 
Second, the differential impact on all other uses diminishes over time. 
Since most of these latter uses are infrastructural (transportation, schools, 
commercial, etc.), this finding is not unexpected since immediately after 
completion of the pro.ject all infrastructure deemed necessary for future 
demands was installed. Initially, this represented more infrastructure 
that would have been necessary with pre-project growth patterns. How
ever, over time the pre-project growth in the all other uses category 
"catches up" with the somewhat slower post-project growth rate. Such a 
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pattern of land use change could be shown graphically by a figure similar 
to Figure 2 but in which the growth patterns between time periods d and 
n converge rather than diverge. 

Dynamic Estimates of Land Use Change 
Land use patterns in the Keystone study area may also be projected 

using a system of dynamic transition probabilities described above. Future 
land use patterns for the Keystone study area estimated by a system of 
dynamic transition probabilities are shown in Table 8. These data were 
obtained from (15) where the transition probabilities are estimated by 
(13). The estimation procedure used is more fully described in the ap
pendix. 

As with static estimates of land use patterns, the dynamic estimates 
indicate that agricultural uses will decline while residential and all other 
uses increase. With dynamic transition probabilities it is impossible to 
derive an equilibrium vector, therefore, these data are not shown in 
Table 8. Note however that by 1980 residential land use has already 
achieved an apparent steady state since there was little land use change 
between 1980 and 2000. Estimates for further time periods not shown 

, here indicate that the pattern estimated for 2000 is near an eventual 
\equilibrium. 

Actual 1970 and projected differential land use changes estimated 
by dynamic transition probabilities are shown in Table 9. The actual 
differential land use change is simply the difference between the 1970 
land use pattern estimated by the dynamic transition matrix and the land 
use pattern observed in 1970. The actual change in 1970 estimated by 
dynamic transition matrices is less than the static differential land use 
change. 

Projected differential land use change is the difference between 
estimated land use based on dynamic transition probabilities shown in 
Table 8 and land use patterns shown in Table 3 which were estimated 

Table B.-Estimated Land Use: Keystone (Based on dynamic transition 
matrix) 

Year 

Ob.served Land Use 
1948 

Estimated Land Use 
1958 
1964 
1970 
1980 
2000 

Agricultural 

-acres-
88,938 

88,210 
88,101 
88,003 
87,895 
87,776 

Residential 

-acres-
828 

1,135 
1,186 
1,232 
1,263 
1,263 

All Other 

-acres-
1,905 

2,324 
2,382 
2,435 
2,511 
2,630 
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Table 9.-Dynamic llifferential Land Use Change: Keystone 

Year Agricultural Residential All Other 

Actual Change -acres- -acres- -acres-
1970 -569 +222 +346 

Projected Change 
1980 -243 +267 -24 
2000 -145 +219 -75 

by the pre-project static transitiOn probabilities. The differential land 
use change estimated in this manner is shown for 1980 and 2000 in 
Table 9. These results should be compared to those in Tables 6 and 7. 
Several differences arc evident. 

Perhaps the most interesting characteristic of the dynamic land use 
change estimates is that the amount of estimated change is much less 
than that estimated by the static transiion probabiliy marices. This is 
probably a consequence of the geometric adjustment which is used in 
estimating the dynamic transition probabilities. As a consequence of this 
adjustment mechanism the transition probabilities in the dynamic model 
tend towards an equilibrium transition probability matrix not unlike 
that of the pre-project time period. As a consequence, most of the land( \ 
use change estimated to occur within the dynamic model occurs soont · 
after the completion of the project. By contrast, in the static estimates\___ · 
the same rate of change is assumed to occur during all future time 
periods. 

Another interesting finding in Table 9 is that the all other land 
use category is estimated to have a negative differential land use change 
in 1980 and 2000. This means that as a consequence of the construction 
of the Keystone project the amount of land used in the study area in the 
all other category is less than what would have been expected had the 
project not been built. This finding is contrary to apriod expectations 
and is difficult to sustain based on observed patterns of land use change 
near Keystone and other water resource development projects. Although 
the direction of change estimated for all other land use is negative, the 
magnitude of the change is quite small. 

Finally, the results for residential land use in the dynamic model 
suggest that the initial impact of the Keystone project on residential land(· . _ 
usc declines over time. The estimated increase in residential land use in 
1970 is 273 acres but by 2000 it has declined to 219 acres. In other words,0 
the rate of increase of residential land use estimated by the dynamic 
model in future time periods is less rapid than that estimated by the 
1948-58 static transition probabilities. Consequently, the magnitude of 
the differential increase in residential land use tends to decline over time. 
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CONCLUSIONS 

The methodology used in this project and the illustrative results 
reported herein are primarily of an ex post nature. The estimated changes 
in land use patterns based on pre-project transition matrices are deemed 
to be consistent with a priori expectations. Since these estimates and 
projections are not subject to validation, it is impossible to test the ac
curacy of the estimates or the methodology. Nonetheless, the nature of 
the results obtained suggests that the methodology is sensitive to the 
particular characteristics of the study area. 

The potential for using the methodology in an ex ante manner is 
considered quite limited. If a priori expectations of future land use 
changes associated with any contemplated project are obvious, then the 
methodology may be feasible. However, the difficulty of quantifying ex 
ante transition probability matrices would probably nullify any bene
ficial attitudes the methodology may possess. 

Attempts to use dynamic transition probability matrices to estimate 
or project land use patterns were generally unsatisfactory. The problems 
associated with this methodology are many. In the first place the data 

_ requirements are much greater than for the estimation of a static transi
" tion probability matrix. In the second place the geometric adjustment 

model used in this study requires the estimation of an equation with non-
_/ linear parameters. The techniques available to perform such estimates 

are somewhat limited and appear to give results that are very sensitive 
to changes in the data. Finally, the dynamic transition probability esti
mation procedure averages changes over a number of time periods such 
that the estimated pattern of change is not characteristic of any time 
period but instead is characteristic of an average of all time periods. As 
is always the case, an average often tends to obscure more than it reveals. 

Ex post estimates of land use change using static transition probabili
ties have been shown to be useful tools in evaluating the impact of water 
projects. Most previous impact studies have focused on the changes in 
economic patterns in the impacted area. The results in Vandeveer [11] 
suggest that these analyses have failed to identify and evaluate the eco
nomic changes associated with land use changes which have occurred. 
Knight and Drummond [8] have demonstrated the efficacy of the method
ology used in this study as a tool in impact analysis by evaluating the im. 
pact of the Keystone project on the property tax base and the demand 

/ for public services within the study area. A variety of other uses of the 
ex post estimates of land use change may be envisioned. 
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APPENDIX 

The elements of the matrix of dynamic transition probabilities were 
estimated by equation (13) within a nonlinear ordinary least squares .. · _ 
framework that forced the sum of the elements of each row to be equal to( · 
one. The regression procedure is taken from Hallberg [3]. ~) 

Equation (13) may be rewritten in the form used for estimating each 
row i of a 3 x 3 dynamic transition probability matrix based on three 
static probability matrices: 

(Al) 

(l+O;)t 

1 + 0; 

(1 + O;)t 

I+ 0; 

(1 + O;)t 

l + 0; 

+ 

for: 1, .. , 3 
1, .. ' 3 

where: Pijt is the static transitiOn probability of land use i in 
time t - l moving into use j by time t; 

D1, is a dummy variable equal to 1.0 when j = k and 0 in 
all other cases; 

0; geometric adjustment factor for row i, assumed to be 
equal for all j elements of that row; 
time, measured in number of periods covered by data. 

Equation (AI) is estimated without an intercept term. The estimated 
coefficients (and t-values5) of (A I) for each of the three rows in the 
dynamic transition probabilities matrix are shown in Table A I. 

In all cases, the R2 statistics were very high but the t-values on some 
coefficients were well below standard levels of acceptance. The value 
of the geometric adjustment paramenter (0) is near 1.0 for the first two 
rows (all other and residential land uses) suggesting that the adjustment 
process for these land uses will be extended over a long period of time. 

The justification for the dummy variable estimation procedure is 
demonstrated by the values of the estimated coefficients. Note that for 

3 6 
each row, ~ b; = 1.0 and ~ bk = 0.0. Since each of the first three 

i=l k=4 

coefficients is multiplied times 1.0 once per row, the row total IS equal 

5 The statistical properties of maximum likeJihood estimates of nonlinear n1odels is not well 
stablished. The t-ratios presen!ted arc generated by the statistical package used to estimate (AI) [4]. 
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to 1.0; and, since each of the last three coefficients is multiplied once 
times a common (to each row and each time) variable, the sum of the last 
three terms is zero. Hence, the sum of the six terms is always equal to 
1.0 for any given 8; and for all t. 

The value of the first element in row i is given by: 

(l + 8;)t 
(A2) Put = b1 + b4 ---

l + 8; 

Since D1 = l and D2 = D 3 = 0, each element of the transition 
probability matrix for each year t = I, ... , n is computed as in equa
tion (A2). Unfortunately, the estimation procedure does not preclude 
the possibility of any Piit > 1.0 or Piit < 0.0. In the first case, all other 
row elements must equal 0.0 and the P>it is fixed at 1.0. If Piit < 0.0, 
then the estimated value is arbitarily set 0.0 and all other row elements 
are increased proportionately such that the row total of all elements 
equals 1.0. 

Table A1.-Estimated Coefficients of Geometric Adjustment Model of 
Dynamic Transition Probabilities 

;oefficient Row 1 Row 2 Row 3 

bt 0.685347 0.016927 0.166880 
(22.07) (0.48) (0007) 

bz 0.007986 0.638396 0.093407 
(0.26) (18.32) (0.004) 

b, 0.307182 0.344676 1.357265 
(9.89) (9.89) (0.06) 

b. 0.037072 0.003355 3.027211 
(4.02) (0.32) (0.22) 

b5 0.000368 0.076293 7.449627 
(0.04) (7.36) (0.54) 

b. -0.037544 -0.079648 -10.68164 
(-4.07) (-7.69) (-0.77) 

8 0.984615 0.984615 0.015385 
R• 0.99 0.99 0.99 

Note: t-values are shown in parentheses directly below the coefficient estimates. 
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