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The Use of Markov Processes in
Estimating Land Use Change®

Lonnie R. Vandeveer and H. Evan Drummond**

Large scale public investments by the Corps of Engineers and similar
agencies invariably affect the land use pattern in the immediate vicinity
of the project. Changes that occur in land use patterns frequently produce
economic, environmental and aesthetic externalities. Consequently, the
land use impact of such projects is an important dimension in the overall
evaluation of the project.

The ex post evaluation of the net impact of large scale public in-
vestments on land use patterns is a complex problem. The researcher
must compare the land use pattern that is observed to exist following
the project with an estimate of what that land use pattern would have.
.been if the public investment had not been made, ceteris paribus. The
Markov process procedure described herein is an appropriate and effec-
Aive technique for handling this problem. Following a complete discus-
sion of the methodology and several variants thereof, an example of its
use in analyzing land use changes around Keystone Reservoir in Okla-
homa will be presented.

A PROCEDURE FOR ESTIMATING LAND USE CHANGE

Economists are frequently interested in measuring the change in
economic variables through time and in estimating what paths these
variables may take in future periods of time. The Markov process (or
chain) is a statistical procedure which may be used to generate such in-
formation. Although the basic concepts of Markov chains were introduced
in 1907, their use by economists is a relatively recent phenomenon.

™ *The research reported herein was ‘pértially suppofted by grant B-OSO;OKLA of the
Oklahoma Water Resources Institute and project #1571 of the Oklahoma Agri-

./ cultural Experiment Station. Useful comments by Dr. Milton Hallberg are

acknowledged.
**Graduate assistant and associate professor of the Department of Agricultural Eco-
nomics, Oklahoma State University.

Reports of Oklahoma Agricultural Experiment Station serve ‘people of all ages, 'socio-
economic levels, race, color, sex, religion and national origin.
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The Markov process has been used by several authors to project
farm numbers. Krenz in 1964 used the process to project farm numbers
in North Dakota for the years 1975 and 2000 [9]. He made use of several
different base periods for each projection and concluded that Markov
chains have important advantages over traditional procedures when used / ™
to project farm numbers: (1.) projections can be made more convemently i
for each size category of farms; and, (2.) the method provides additional -~
information which is not readily obtainable with traditional techniques.
Hallberg employed the technique to analyze the size distribution of
plants manufacturing frozen milk products in Pennsylvania during the
period 1944-1963 [3]. He suggested a method based on multiple regression
techniques of replacing the constant transition probabilities with prob-
abilities which are a function of various factors including structural
characteristics in the industry. ‘More recently, Burnham, has used the
Markovian framework to project future land use patterns in the Southern
Mississippi Alluvial Valley [1]. He concludes that the process can be:
adapted to project the future implications of observed land use trends
provided  appropriately specified data are available. In addition, the
model provides a framework for analyzing alternative institutional poli-
cies designed to attain specific land use futures.
L i

Theoretical Concepts of the Finite
Markov Chain Process

A stochastic process may be described as a sequence of experiments
or events in which the outcome of each individual experiment in the
sequence depends on some probability, P. A finite stochastic process exists
when the'frange of possible outcomes is finite. If the probability, P, does
not depend on the history of the system prior to the previous time period,
a special type of stochastic process called a Markov process exists. Ac-
cording to Kemeny:

A Markov chain process is determined by. specifying the following
information: There is given a set of states (S;, So,...S,). The process can
be in one and only one of these states at a given time and it moves suc-
cessively from one state to another. Each move is called a step. The prob-
ability that the process moves from S; to SJ depends only on the state S;
that it occupied before the step. The transition probability PU, which gives ,//-\)
the probability that the process will move from S; to S; is given for every \ )
ordered pair of states. Also an initial starting state is specified at which the —~
process is assumed to begin [6, p. 148].

Assume the variable of interest is land use. The finite Markov chain
process requires that r different land use categories be defined and that
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movements between these land use categories over time be summarized in

a land use flow matrix. Land use transitions must be regarded as a sto-

chastic process. Once the land use flow matrix is estimated, the prob-

ability (p;;) of moving from one land use category (S;) to another land
use category (S;) is computed as:

N4 Sij
Py—=_ 1
% Sy

Each Py; represents the fraction of land that started in land use cate-
gory S; in period t and moved to land use category S; in the following
period. Therefore, p;;, represents the proportion of land that started in S,
in time t and continued in S, in time t - 1. These transition probabilities
may be expressed in the form of a matrix such as:

S; S, ... S,
S, | Pi1 P12 - - - P1r
P=S2|P21 P22 - - - Par (2)

Sc | Pr1 Pr2 -« - P
" “Where P is a transition probability matrix.
| An important kind of Markov process is the regular Markov chain
~—/process. A Markov chain process is regular if the p;; elements of each
row sum to unity and are non-negative. These two assumptions are ap-
propriate for projecting land uses since they imply land is neither created
nor destroyed during the land use transition: process.

A Markov chain -process may be either stationary or dynamic. Sta-
tionarity in a Markov chain process means that the transition probabili-
ties in P do not change over time. In a land use analysis, this means that
factors influencing land use change over the time period in which the
transition matrix is constructed remain the same throughout future time
periods. A dynamic Markov process is one in which the transition prob-
abilities are assumed to change with time in some sort of regularly de-
scribed pattern. Both stationary and dynamic probability estimates are
considered in this report.

Static Land Use Change Model

The transition matrix given in (2) and an initial vector of land uses
completely defines the Markov chain process. With these data it is pos-
sible to project land uses in the nt® time period or step. If Q, represents

Estimating Land Use Changes 3



the initial land use vector (of length r), then the following procedure
may be used to project land use patterns in each future time period:

QP = Q,
QlP - Q2 /’\\\"
Qn-l P = Qn
or O, may be written as:
Qu = QJ[P]"

The static Markov chain process may also be used to project equilib-
rium land use distributions. If a Markov chain process is regular, then
as the transition matrix is raised to successively higher powers, all rows
converge to a unique row vector termed the equilibrium vector. The
equilibrium vector represents the unique organization of land uses in
which net movements from one land use category to another is zero, i.e.,
land use movements out of each state are exactly equal to movements
into that state. More specifically, if P is a regular transition matrix, there
exists a matrix T, consisting of identical rows, to which P» will converge _
as n approaches infinity. Each row of T is the same vector t, and aU
elements of t are non-negative. \

One method for calculating the equilibrium vector is to multiply
the P matrix times itself a large number of times until some power of P
reaches the equilibrium configuration; however, this would be a tedious
process. Judge and Swanson [5] propose another method for calculating
the equilibrium vector. They note that in equilibrium the distribution
vector must be invariant, so tP = t, or

(P —I) =0 (3)

where I is an identity matrix. The system in (3) contains n — 1 linearly
independent equations and n unknowns. Since t is a probability vector,

st =1 4)
J

When combined, (3) and (4) form a system of n linearly independent
equations and n unknowns from which it is possible to solve for the
unique values of t. FaN

{

{
|

‘\/“’
Estimating Actual Differential Land Use Change

Estimates of future land use patterns are determined by the transi-
tion probability matrix and the original state, or original distribution
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of the land among use categories. The initial state is designated as
vector Q, of length r, and the land use pattern at the end of the time
period (i.e., the period over which the r by r transition probability matrix
P is computed) is Q. Then it follows that:!

Qb =Qa . abP (5)

Assuming that land use change is a stochastic process in which any future
movement is independent of past movements and that ,,P is both regular
and stationary, then (5) can be generalized to predict land use patterns
inn,whereq > band n = 0 in a:

. aan == Qa - abP" (6)

»Qn denotes an estimated land use vector in time period n based on a
transition probability matrix constructed over the time period a,b. The
land use prediction model in (6) is valid only if the stability of P is as-
sumed between b and n. With this ceteris paribus requirement, it must
be assumed that the rate of change of economic and other factors in-
fluencing land use change patterns remains constant over the projection
period. This assumption is maintained throughout the remainder of this
study, unless explicitly stated otherwise.

Suppose that a large scale public investment such as the construc-
tion of a reservoir occurred in the study area in time period m; to m,
- where b > m,; > m, > n. Then the land use pattern predicted by (6) for
time period n (,,Q,) may deviate from the actual land use pattern ob-
served in n (Q,). The difference between the predicted land use pattern
that would have existed in n without the lake, and the actual observed
land use pattern in n with the lake is the differential land use change
caused by development of the lake. Thus the differential land use impact
(D) of the reservoir in time period n may be computed as:

D,= Qn - aan == Qu - Qa [abP]n (7)

Vector D, in (7) provides a more accurate estimate of the differential
land use impact of reservoir construction than “with and without” tech-
niques frequently used in project analysis. This is because the pattern of
land use change in the pre-investment time period a, b is projected
to time n, thereby accounting for land use changes that would have oc-
~curred, ceteris paribus, if the reservoir had never been constructed.

The computation in (7) may be represented graphically. Actual

___ differential land use change over time for a single land use category i is

1 In the notational conventions used in this study, all subscripts refer to either points in time
or time periods. A left subscript is the time period (base period) over which the variable is
estimated or measured, while the right subscript is the time at which the variable is estimated
or measured. Land use vectors (Q) for which there is no left subscript are observed. Those with
a left subscript are estimated by the Markov model. A superscript is the power to which the
variable is to be raised.
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illustrated in Figure 1. The actual quantity of land use i is'shown by
the solid line over time while the projected-land use had the reservoir
not been constructed follows the broken line. Actual differential land
use change associated with reservoir construction at any time from m,
to n is the vertical distance between these two lines. Figure 1 is a two,
dimensional representation of differential land use change for a smgle
land use. Estimates generated by a Markov model are multi-dimensional.
Each land use category is estimated simultaneously with the restriction
that the sum of all changes must be equal to zero.

Projecting Future Differential Land Use Change

The above model may be extended to project the future impacts
of land use change associated with reservoir construction. Projected dif-
ferential land use change impacts of reservoir construction are differential
land use changes at some future time period when it.is not possible to

Q)‘ .
3 Q,
o [r . '
-3 .
3 With Lake
s
= Q
= - ab¥n
S Qg - —[
-~ Without Lake
] | | | 1
a b m my n

Time

Figure 1. Illlustration of Actual Differential Change in Use i Associated
with Reservoir Construction
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observe actual land use patterns. In this case actual observations of Q,

in (7) are replaced by Markovian estimates of future land use patterns

based on a post-investment (a time period following reservoir construc-

tion) matrix of transition probabilities. The difference between esti-
~—mates of land use patterns at time n based on pre-investment and post-

investment transition probabilities is a measure of the projected dif-
-_ferential impact of the investment at time n.

More specifically, let ,,P (where a < b < m,) be the transition matrix
reflecting the land use transition patterns before the lake was initiated
and P (where m, < ¢ < d) be the transition probabilities derived over
a time period following completion of the project. If the presence of the
lake affects the land use transition process, then ,,P = 4P.

The estimated land use pattern in n (where n > d) that would have
occurred if the investment had not been made is estimated using pre-
investment transition probabilities.

aan - Qa [abP]I’l (8)

The land use pattern that is projected to exist in n with the reservoir
development is estimated using post-investment transition probabiliies
and a post-investment original state (Q,):

«aQu = Qe [cP]™® )

The difference between the estimated land use patterns in (9) and (8) is
 the projected differential land use impact (D,) of the investment at
time (n). :

Dn - chn - aan - ‘Qc [ch]n'c - Qa [abP]n (10)

The computation of the projected differential land use change for
one land use is illustrated in Figure 2. The actual quantity of land in
use i is shown by the solid line while the estimated land in use i had the
reservoir not been constructed follows the broken line. Projected dif-
ferential land use change for land use i associated with the reservoir
construction at time n is the vertical distance between ,4Q, and ,,Q,.

Since 4P and ,,P are regular transition matrices, (10) may be esti-
mated for any n > d including n at infinity. As n approaches infinity,
P and P approach equilibrium states in which net land use transi-
tions in each will be zero. The equilibrium projected differential land

“use change provides an estimate of the eventual, total land use impact
of the reservoir development in which all land use adjustments attribut-
~—able to the lake are considered. These estimates should be of special
interest in analyzing and evaluating the long-term impacts of reservoir
construction and are comparable to estimates of lifetime benefits usually
computed in benefit-cost analyses.

Estimating Land Use Changes 7
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Figure 2. lllustration of Projected Differential Change in Land Use i
Associated with Reservoir Construction

Dynamic Land Use Change Model

In the previous section a differential land use change model was
developed in which land use change is taken as the difference between
‘two éstimates of land use, each estimate being derived by a static Markov
model. As mentioned previously, a static Markov change model is one in
which all of the transition probabilities are assumed to be constant. In
a dynamic Markov model the transition probabilities are assumed to
change over time. Since the land use changes caused by the construction
of a water resource development project may initially be quite great but
diminish over time, dynamic transition probabilities are conceptually at-/"=
tractive. It may well be that the pattern of land use change after the
initial water resource development project impacts have dissipated will~—"
be no different than that which existed prior to the project.

The essential difference between a static transition probability ma-
trix such as (2), and a dynamic transition probability matrix is that in a
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dynamic matrix each element p;; is a function of time2. Each of the ele-
ments in a dynamic transition probability matrix must satisfy the basic
conditions for a Markovian transition probability matrix: each p;; must
_be greater than or equal to 0; and the sum of the p;; in each row must
be exactly equal to 1. Within a dynamic framework the second assump-
tion becomes very crucial since each p;; changes over time. This particular
o assumption requires that the sum of several independent. functional re-
lationships must be equal to 1 in each time period. With a static model
this assumption is not critical because the values of the p;; do not change.
However, within the dynamic framework the sum of the elements of each
row must be equal to one in each time period.

Previous studies utilizing dynamic Markov change probabilities have
followed either one of two techniques for generating dynamic transition
probabilities. The first technique was introduced by Hallberg in 1969
[3]. This technique calls for a linear regression of each element in each
row with time as an exogenous variable. The regression procedure used
ensures that the sum of the elements of each row is equal to 1. The dis-
advantages of this procedure are twofold. In the first place it must be
assumed that the rate of change of the estimated transition probabilities

~ in response to changes in the exogenous variables is constant over time.
“Thus, even though estimates are dynamic, they are relatively inflexible.
The second difficulty is that even though the procedure forces the sum

- of all elements of each row to be equal to 1, it does not prevent the
possibility of a given element in a row falling below zero or above 1. In
such cases it is necessary to adjust all estimates within the row by arbi-
trarily setting problem elements equal to zero or one and adjusting all
other elements such that the row elements sum to 1.

The second approach to estimating non-linear transition probabili-
ties is a geometric adjustment model developed by Salkin, Just, and

Cleveland [10]. In this approach it is assumed that each element of the .

transition matrix adjusts to the previous year’s change by a fixed pro-
portion as shown in equation (11).

Pis, t+1 = P, ¢ 1 0i (Pij, ¢ — Pij, t—1) (11)

Each p;; in each time period t -+ 1 is equal to the previous year’s transi-
tion matrix element (py ) plus a certain proportion of the difference
_ between the previous year’s and the next previous year’s transition matrix
elements. The proportion of adjustment in (11) is ¢;. This ¢; is the pro-

' portion of the previous years adjustment which occurs in the current year.

For instance, if 6; is equal to 509, then in each year 509, of the previous

* Non-stationary transition probabilities may be a function of time, or any other variable. The
dynamic transition probabilities discussed herein are related to time alone.
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year’s adjustment occurs. This geometric adjustment procedure causes the
transition probabilities to adjust rapidly in the first years following the
initial change and then to taper off as time increases. The dynamic ad-
justment model in (11) may be solved by converting (11) into a structural

in which the value of p;; in any time period is a function of a;; B;; 6; and
time. Since a;;. By; and 6; do not vary with time, there is a non-linear re-
lationship between the value of py; , and t which is determined by the
value of these three parameters. By means of a maximum likelihood esti-
mation procedure [4] it is possible to estimate the values of the para-
meters, aj;, B,J, and ¢; based on observed values of the transition prob-
abilities and time. The estimated values of the parameters may then be
used to generate a system of dynamic transition probability matrices for
each future time period. Since ¢; in (11) is assumed constant for each
row of the transition probability matrix, it is possible to estimate the p;;
such that the sum of all of the estimates is always equal to 1 using the con-
strained least squares technique mentioned above. As before there is a
problem that sometimes the estimated py; values will be less than zero or
greater than one. In these cases it is necessary to adjust all other elements
such that the total of the elements be equal to 1.

equation as shown in (12). M
let: a;; = py;, — 12—
~—— “and Bij = Pij, 0 — Pij, —1
then pij, 0o =— aij + Bij
Pij, 1= Py, o + 6:1By; = a;; + By; + 6;By;
Py, 2 = Pu, 1 + 6By = a; + By + 6:By; + 6:°By
t
Pij, ¢t = a; + By 4+ By = 6°
n=o
The general structural equation may be expressed as
1— gy o
Py, ¢ =2y + By — (13),
1 - 0i \//'

The use of dynamic transition probabilities for estimating land use \/

change parallels that described previously for static transition probability
matrices. The principle difference is that with dynamic transition prob-
ability matrices there will be a unique transition probablhty matrix for
each and every year
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Pi1, ¢t - ¢ - Pri, ¢t
P = . f ' (14)

pri, t o+ - - prr, t
, Matrix (14) may be compared to (2) in which all of the transition prob-

abilities were assumed static. The land use pattern for each year may be
computed using the dynamic transition probability matrix Py:

Dy = 4Qu = Qu[P1] (15)

where 4Q, is used to identify the vector of estimated land uses in n
generated by dynamic transition matrices. Equation (15) should be com-
pared with (6) in which a static transition probability matrix was used
to estimate land use change. In the static case the transition probability
matrix P is raised to the nt* power and then multiplied times the original
land use vector in order to obtain a land use projection for time period n.
In the dynamic case each element of P, is directly estimated for the nt
time period by (13).

The differential land use change in any time period n is the dif-
ference between the dynamic estimates for time period n, and the static
estimate based on the pre-lake transition probability matrix (,,p"):

an = dQn - aan - QoPu - Qo ath (16)

Differential land use change estimated by the dynamic transition prob-
ability matrix is nothing more than the difference between the- two
matrices, the dynamic and the initial static matrix. Equation (16) should
be compared to (10). Pre-lake land use vectors are estimated with static
transition probability matrices in both (10) and (16). In (10), the post lake
land use vector is estimated with a static transition probability matrix
while in (16) this vector is estimated by a dynamic transition probability
matrix.

A similar procedure may also be used to estimate actual land use
changes associated with the construction of a water resource development
project. To do this one simply needs to replace the second term of (16)
with observed land use change is time period n. When dynamic transition
probability matrices are used it usually is not poss1b1e to estimate an

. equilibrium land use vector.

Estimating Land Use Changes 1



USE OF THE PROCEDURE FOR ESTIMATING LAND USE
CHANGE AROUND KEYSTONE RESERVOIR

Keystone Reservoir is a large Corps of Engineers project which was

completed in 1965. Due to its location near Tulsa, Oklahoma, the lake !
has attracted substantial residential and commercial development. The !

extent of the differential impact of the project on land use patterns
around the lake may be computed using the procedures described above.?

Static Estimates of Land Use Change

Land uses in the study area for each of three use categories were
measured in two pre-project years (1948 and 1958) and two post-project
years (1964 and 1970). The land use flow matrices based on these data
are shown in Tables 1 and 2. To estimate the land use pattern that would
have existed in future time periods had the lake not been constructed,
transition probabilities for the pre-project time period which are derived
from the flow data in Table 1 are multiplied times the original land use
pattern of 1948. The estimated patterns for selected years are shown

3 For a complete description of the Keystone area and the data collection procedures, see Van-
deveer [11] and Drummond |21.

Table 1.—Pattern of LLand Use Change in Pre-Project Time Period: Key-
- stone Lake
‘ 1958 Uses—Acres
1948 Uses Agricultural Residential All Other Total
Agricultural 87,889 283 766 88,938
Residential 212 602 14 828
All Other 494 15 1,396 1,905
Total 88,596 899 2,175 91,670

Table 2.—Pattern of Land Use Change in Post-Project Time Period: Key-
stone Lake

1970 Uses—Acres
1964 Uses Agricultural Residential All Other Total
Agricultural 86,789 347 528 87,665
Residential 128 1,083 29 1,240
All Other 518 23 2,224 2,766
Total 87,434 1,454 2,781 91,670

12 Oklahoma Agricultural Experiment Station
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in Table 3.* The equilibrium estimate refers to the land use pattern that
will exist when the net rate of change of each class is zero.

The actual 1970 differential land use change associated with the
Keystone project is shown in Table 4. By 1970, the amount of land in
- agricultural uses was 876 acres less than what it is estimated it would have
been if the project had not been constructed. Residential and all other
~uses_experienced differential increases of comparable magnitudes, but
the relative increase in residential was much greater.

The differential change in land use patterns which can be expected
in future time periods is estimated by (10). The projected impact of
“Keystone is equal to the difference between: a) future land use patterns
estimated by pre-project transition probabilities (Table 3); and, (2) future
land use patterns estimated by post-project transition probabilities (Table
5). Any differences between the two estimates may be due to different
elements in the transition probabilities matrices.and/or different initial
land use vectors. Projected differential land use change estimates for
2000 and in equilibrium are shown in Tables 6 and 7.

4 Since . the transition probabilities matrix was estimated over a 10 year period -(1948-58);
future estimates are obtained for 1968, 1978, etc. The data presented in Table $ are extrapolated
from such estimates.

* Table 3.—Estimated Land Use: Keystone (Based on Static 1948-8 Transi-
"~ tion Matrix)

Year Agricultural Residential All Other
Observed Land Use acres: acres: ————acres—-—
1948 - 88,938 828 1,905
1958 - 88,596 899 2,175

Estimated Land Use
1964 . 88,446 930 2,291
1970 88,310 959 2,400
1980 88,138 996 2,535
2000 87,921 1,044 2,705
Equilibrium 87,674 . ) 1,102 2,894

Table 4.—Actual Differential Land Uée Change: Keystone, 1970

™ Land Use 1970 Acreage ° 1970
Estimated by ) Differential
1948-58 Static 1970 Acreage Land Use
Transition Matrix Observed " Change’
Agricultural 88,310 87,434 — 876
Residential - . 959 : 1,454 - + 495
All Other 2,400 2,781 + 381

Estimating Land Use Changes 13



Table 5.—Estimated Land Use: Keystone (Based on 1964-70 Static Transi-

tion Matrix)

Year Agricultural Residential All Other
Observed Land Use ——acres—— ——acres—— acres——
1964 87,664 1,240 2,766
1970 . 87,434 1,454 2,781

Estimated Land Use
1980 87,112 1,748 2,809
2000 86,635 2,175 2,859
Equilibrium 85,787 2,898 2,985

Table 6.—Projected Differential Land Use Change: Keystone, 2000

Land Use 2000 Acreage 2000 Acreage 2000
Estimated by Estimated by Differential
Pre-WRDP Static .Post-WRDP Static Land Use
Transition Matrix Transition Matrix Change
Agricultural 87,921 86,635 — 1,286
Residential 1,044 2,175 + 1,131
All Other 2,705 2,859 + 154

(M

_ . o/
Table 7.—Projected Differential Land Use Change: Keystone, Equilibrium e

Land Use Equilibrium Acreage Equilibrium Acreage Equilibrium
: Estimated by Estimated by Differential
Pre-WRDP Static Post-WRDP Static Land Use
Transition Matrix Transition Matrix Change .
Agricultural 87,674 85,787 — 1,887
Residential 1,102 2,898 + 1,796
All Other . 2,894 2,985 + 91

Two interesting trends are evident in the projected differential land
use changes. First, the differential impact on residential uses continues
to grow beyond 1970, finally reaching nearly 1800 acres by equilibrium.
Second, the differential impact on all other uses diminishes over time.
Since most of these latter uses are infrastructural (transportation, schools,

commercial, etc.), this finding is not unexpected since immediately after /™
completion of the project all infrastructure deemed necessary for future
demands was installed. Initially, this represented more infrastructure N

that would have been necessary with pre-project growth patterns. How-
ever, over time the pre-project growth in the all other uses category
“catches up” with the somewhat slower post-project growth rate. Such a
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pattern of land use change could be shown graphically by a figure similar
to Figure 2 but in which the growth patterns between time periods d and
n converge rather than diverge.

Dynamic Estimates of Land Use Change

Land use patterns in the Keystone study area may also be projected
using a system of dynamic transition probabilities described above. Future
land use patterns for the Keystone study area estimated by a system of
dynamic transition probabilities are shown in Table 8. These data were
obtained from (15) where the transition probabilities are estimated by
(18). The estimation procedure used is more fully described in the ap-
pendix.

As with static estimates of land use patterns, the dynamic estimates

indicate that agricultural uses will decline while residential and all other
uses increase. With dynamic transition probabilities it is impossible to
derive an equilibrium vector, therefore, these data are not shown in
Table 8. Note however that by 1980 residential land use has already
achieved an apparent steady state since there was little land use change
between 1980 and 2000. Estimates for further time periods not shown
_here indicate that the pattern estimated for 2000 is near an eventual
equilibrium.
) Actual 1970 and projected differential land use changes estimated
by dynamic transition probablhtles are shown in Table 9. The actual
differential land use change is simply the difference between the 1970
land use pattern estimated by the dynamic transition matrix and the land
use pattern observed in 1970. The actual change in 1970 estimated by
dynamic transition matrices is less than the static differential land use
change.

Projected differential land use change is the difference between
estimated land use based on dynamic transition probabilities shown in
Table 8 and land use patterns shown in Table 3 which were estimated

Table 8.—Estimated Land Use: Keystone (Based on dynamic transition

matrix)
Year Agricultural Residential All Other
Observed Land Use —acres— —acres— —acres—
‘ 1948 88,938 828 1,905
_“Estimated Land Use
1958 88,210 1,135 2,324
1964 88,101 1,186 2,382
1970 88,003 1,232 2,435
1980 87,895 1,263 2,511
2000 87,776 1,263 2,630
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Table 9.—Dynamic Differential Land Use Change: Keystone

Year Agricultural Residential All Other
Actual Change —acres— —acres— —acres—
1970 —569 +222 + 346 PN
Projected Change ( 1
1980 —243 + 267 — 24 { )
2000 —145 +219 — 75 NS

by the pre-project static transition probabilities. The differential land
use change estimated in this manner is shown for 1980 and 2000 in
Table 9. These results should be compared to those in Tables 6 and 7.
Several differences are evident.

Perhaps the most interesting characteristic of the dynamic land use
change estimates is that the amount of estimated change is much less
than that estimated by the static transiion probabiliy marices. This is
probably a consequence of the geometric adjustment which is used in
estimating the dynamic transition probabilities. As a consequence of this
adjustment mechanism the transition probabilities in the dynamic model
tend towards an equilibrium transition probability matrix not unlike

that of the pre-project time period. As a consequence, most of the landr R

use change estimated to occur within the dynamic model occurs soon;
after the completion of the project. By contrast, in the static estimates
the same rate of change is assumed to occur during all future time
periods.

Another interesting finding in Table 9 is that the all other land
use category is estimated to have a negative differential land use change
in 1980 and 2000. This means that as a consequencé of the construction
of the Keystone project the amount of land used in the study area in the
all other category is less than what would have been expected had the
project not been built. This finding is contrary to apriori expectations
and is difficult to sustain based on observed patterns of land use change
near Keystone and other water resource development projects. Although
the direction of change estimated for all other land use is negative, the
magnitude of the change is quite small.

Finally, the results for residential land use in the dynamic model
suggest that the initial impact of the Keystone project on residential land
use declines over time. The estimated increase in residential land use in

s

e

1970 is 273 acres but by 2000 it has declined to 219 acres. In other words,{\\/"

the rate of increase of residential land use estimated by the dynamic
model in future time periods is less rapid than that estimated by the
1948-58 static transition probabilities. Consequently, the magnitude of
the differential increase in residential land use tends to decline over time.
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CONCLUSIONS

The methodology used in this project and the illustrative results
__reported herein are primarily of an ex post nature. The estimated changes
in land use patterns based on pre-project transition matrices are deemed
to be consistent with a priori expectations. Since these estimates and
projections are not subject to validation, it is impossible to test the ac-
curacy of the estimates or the methodology. Nonetheless, the nature of
the results obtained suggests that the methodology is sensitive to the
particular characteristics of the study area.

The potential for using the methodology in an ex ante manner is
considered quite limited. If a priori expectations of future land use
changes associated with any contemplated project are obvious, then the
methodology may be feasible. However, the difficulty of quantifying ex
ante transition probability matrices would probably nullify any bene-
ficial attitudes the methodology may possess.

Attempts to use dynamic transition probability matrices to estimate
or project land use patterns were generally unsatisfactory. The problems
associated with this methodology are many. In the first place the data
requirements are much greater than for the estimation of a static transi-
" tion probability matrix. In the second place the geometric adjustment

'model used in this study requires the estimation of an equation with non-
" linear parameters. The techniques available to perform such estimates
are somewhat limited and appear to give results that are very sensitive
to changes in the data. Finally, the dynamic transition probability esti-
mation procedure averages changes over a number of time periods such
that the estimated pattern of change is not characteristic of any time
period but instead is characteristic of an average of all time periods. As
is always the case, an average often tends to obscure more than it reveals.

Ex post estimates of land use change using static transition probabili-
ties have been shown to be useful tools in evaluating the impact of water
projects. Most previous impact studies have focused on the changes in
economic patterns in the impacted area. The results in Vandeveer [11]
suggest that these analyses have failed to identify and evaluate the eco-
nomic changes associated with land use changes which have occurred.
Knight and Drummond [8] have demonstrated the efficacy of the method-
ology used in this study as a tool in impact analysis by evaluating the im.
pact of the Keystone project on the property tax base and the demand
for public services within the study area. A variety of other uses of the
ex post estimates of land use change may be envisioned.

Estimating Land Use Changes 17



APPENDIX

The elements of the matrix of dynamic transition probabilities were
estimated by equation (13) within a nonlinear ordinary least squares __
framework that forced the sum of the elements of each row to be equal to[ '
one. The regression procedure is taken from Hallberg [3]. N/

Equation (13) may be rewritten in the form used for estimating each
row i of a3 x 8 dynamic transition probability matrix based on three
static probability matrices:

(1465
(A1) Pije = 01Dy - boDy + byDy +b,D,
146,
(1 + 6 (1+ 6y
bp—) P - b6D3 ——
1+ 6 14 6;
forr j=1,...,38
t — 1, 5 3
where: py;; is the static transition probability of land use i in
time t — 1 moving into use j by time t;

Dy is a dummy variable equal to 1.0 when j—= and 0 m/’ G
all other cases;

6; geometric ad]ustment factor for row i, assumed to be \/
equal for all j elements of that row;

t time, measured in number of periods covered by data.

Equation (Al) is estimated without an intercept term. The estimated
coefficients (and t-values®) of (Al) for each of the three rows in the
dynamic transition probabilities matrix are shown in Table Al.

In all cases, the R2 statistics were very high but the t-values on some
coefficients were well below standard levels of acceptance. The value
of the geometric adjustment paramenter (§) is near 1.0 for the first two
rows (all other and residential land uses) suggesting that the adjustment
process for these land uses will be extended over a long period of time.

The justification for the dummy variable estimation procedure is
demonstrated by the values of the estimated coefficients. Note that for

3 6 ~
each row, 3 b;=1.0and 3 b, = 0.0. Since each of the first three /h
i—1 k=4 |

\J’
coefficients is multiplied times 1.0 once per row, the row total is equal

5The statistical properties of maximum likelihood estimates of nonlinear models is not well
stablished. The t-ratios presented are generated by the statistical package used to estimate (Al) [4].
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to 1.0; and, since each of the last three coefficients is multiplied once

times a common (to each row and each time) variable, the sum of the last

three terms is zero. Hence, the sum of the six terms is always equal to
1.0 for any given ¢; and for all t.

~ The value of the first element in row i is given by:

(I 4 6)
(A2) Pyye = by + by —
1+ 6
Since D; = 1 and D, = D; = 0, each element of the transition
probability matrix for each year t =1, . . ., n is computed as in equa-

tion (A2). Unfortunately, the estimation procedure does not preclude
the possibility of any py;; > 1.0 or py; < 0.0. In the first case, all other
row elements must equal 0.0 and the py; is fixed at 1.0. If py, < 0.0,
then the estimated value is arbitarily set 0.0 and all other row elements
are increased proportionately such that the row total of all elements
equals 1.0.

Table A1l.—Estimated Coefficients of Geometric Adjustment Model of
Dynamic Transition Probabilities

Coefficient Row 1 Row 2 Row 3

b 0.685347 0.016927 0.166880

(22.07) (0.48) (0.007)

b. i 0.007986 0.638396 0.093407

(0.26) (18.32) (0.004)

bs 0.307182 0.344676  1.357265

(9.89) (9.89) (0.06)

b,  0.037072 0.003355 3.027211

(4.02) (0.32) (0.22)

bs 0.000368 0.076293 7.449627

(0.04) (7.36) (0.54)

be —0.037544 —0.079648 —10.68164

(—4.07) (—7.69) (—0.77)

0 0.984615 0.984615 0.015385
R 0.99 0.99 0.99

Note: t-values are shown in parentheses directly below the coefficient estimates.
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