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Preface 

This paper describes two algorithms for determining least­
cost transportation systems where more than one mode of 
transpo,rtation •is considered. 

The problem confronted here differs from the classical 
transpo,rtation problem in two respects. First, more than one 
activity may exist for transporting commodities between any 
two given shipment points, and second, non-negative transfer 
costs may be incurred whenever commodities are shifted be­
tween modes of transportation while in route. 

Since many sophisticated linear programming packages 
are already available, (which can possibly be used to solve 
transportation problems) only the application of the other 
pa,rts of the algorithms is discussed in detail. 

lnfo,rmation pertaining to computer programs designed to 
carry out the dynamic programming phases of some of the 
algorithms is available from the autho,r. 

Research reported herein was conducted under Ok.lahoma Station Project No·. 1024. 
Reports of Oklahoma Agricultural Experiment Station serve people of all ages, socio-economic 
levels, race, color, sex, religion and national origin. 



Algorithms for Developing 
Least-Cost Transportation Systems 

With Multiple Transportation Modes 

Richard E. Just 
Department of Agricultural Economics 

INTRODUCTION 

Transportation programming has found many applications in economic 

marketing research. However, the assumptions of the classical transporta-

tion model prevent the direct analysis of a transportation system with 

multiple modes of transportation where transfer costs are incurred when 

the mode of transportation is shifted. For example, the transportation 

model generally requires input data specifying the cost per unit of 

transporting goods from, say, any origination point A to any destination 

point B. However, the determination of the cost of transportation from 

A to B alone may involve a considerable problem in the selection of modes 

between various pairs of intermediate points. In addition, where transfer 

costs are involved, the possibility of applying the generalized transporta-

tion model (where origins are not computationally distinguished from 

destinations) is prevented since the transporting of goods from point A to 

some point C through point B may or may not involve transfer costs depend-

ing on the transportation modes selected. 

In this paper, two general approaches are outlined for the solution 

of a generalized transportation problem with multiple modes and associated 

tran.,fer costs. The first rather obvious approach involves conversion of 

the entire problem into a larger linear programming problem which can then 

be solved by any of the various existing simplex procedures. The second 
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approach involves splitting the problem into two steps. In the first 

step, a dynamic programming procedure is used to determine the least-cost 

mode-routes between all points of origination and all points of destina­

tion. Here, a mode-route specifies not only the route but also which modes 

of transportation are to be used on the various segments of the route. In 

the second step, the costs corresponding to the least-cost mode-routes are 

then used in a generalized transportation program to complete the solution 

of the problem. Again, any of the various existing simplex procedures 

for linear programming or transportation problems can be used for the 

second step of the procedure. 

Although the simplex procedures involved in either of these approaches 

arc not discussed in any detail here since many very efficient and highly 

adaptable computer programs in this area already exist, several dyanmic 

programming procedures which can be used for the second algorithm are pre­

sented in some detail. 

The algorithms presented here should help permit study of a wide 

variety of economic marketing problems. The procedures are, of course, 

of obvious applicability in marketing problems where truck, rail, and 

possibly barge or air transportation must be considered and where transfer 

costs must be incurred when commodities are shifted from truck to rail, 

truck to barge, etc. Another important area of applicability, however, lies 

in areas such as determining an efficient pick-up or delivery system for 

a specific commodity where various sizes of trucks, etc. are available. For 

example, a least-cost system might involve service of many very small demand 

(supply) points with small trucks, but also the use of larger trucks to trans­

port the commodity between the central firm or market and some point of 
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transfer to (from) the smaller trucks. Finally, a third area of applica-

tion lies in problems of deciding where to locate processing plants. 

Defining the modes of transportation as (1) transport of raw goods, and 

(2) transport of processed goods, the unloading, processing, and loading 

cost can be considered as a transfer cost. If there are several independent 

steps involved in processing, then more than two modes of transportation 

could be considered. Perhaps then the least expensive transportation solu-

tion for some commodities might suggest transporting goods in some semi-

processed state. 

Solution by the Simplex Procedure 

As described by Dantzig [3, pp. 299-322], the classical transportation 

problem involves determining the optimal schedule of shipments when 

(i) fixed stockpiles exist at various supply points, 

(ii) shipments are sent directly to various demand points which 

have fixed requirements, 

(iii) total demand equals total supply, 

and 

(iv) costs satisfy a linear objective function. 

This problem can be simply described in equational form as 

min 
X > 0 
ij -

subject to 

z: X •• a. v. 
1J 1 1 

z: x .. b. v. i 1J J 
J 
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where 

xij amount of shipment from point ito point j, 

cost per unit ·of shipment from point i to point j, 

fixed supply at point i, and 

bj =fixed demand at point j. 

For the problem at hand, however, it will be more convenient to 

relate our discussion to the generalized transhipment problem [3, pp. 335-342] 

which assumes more generally in place of (i) and (ii) that 

(i') fixed production and/or consumption takes place at various 

shipment points, and 

(ii 1 ) shipments can possibly pass through various intermediate points 

which might also be production and/or consumption points. 

Since this generalized transportation model does not computationally dis-

tinguish origins from destinations, it may be simply represented as 

(1) min I c .. xij 
X •• > 0 ~J 

~J i,j 

subject to 

I I * (2) xij - xki a~ - b. 
jH k4i J ~ 

where 

a~ production at point i, 

b~ consumption at point i. 

vi 

Consider then the variables and constraints which must be added to the 

problem in (1) and (2) to provide the appropriate generalizations for 

multiple modes. If transfer costs are not incurred, then multiple modes 

are simply included by adding variables corresponding to the various modes. 
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Let 

xijk 

cijk 

amount of shipment from point i to point j by mode k, 

cost per unit of shipment from point i to point j by mode k. 

The problem then becomes 

(3) min 

subject to 

(4) 

xijk .::_ 0 

I 
jH 

k 

I cijk xijk 
i,j ,k 

- I 
j;!i 
k 

a* 
i 

b* 
i 

Vi. 

Of course, in this simple case where no transfer costs are involved, many of 

the xijk can be eliminated from the problem by inspection. Clearly, all 

xijk such that cijk* < cijk for some k* will never be greater than zero in 

a minimum cost solution because another identical ~ctivity (corresponding to 

k*) exists with a smaller cost. For this reason, the problem in (3) and (4) 

can always be reduced to a problem of the same size as that in (1) and (2) 

and, furthermore, any standard transportation problem algorithm can be used 

to determine a least-cost transportation system in a rather obvious manner. 

The problems created by the addition of transfer costs, however, cannot 

be so easily handled. For each shipment point we must include not only 

several variables representing the transfer of commodities from one mode to 

another, but also several constraints to insure that the transfer costs 

are correctly imposed in the model. Suppose additional variables are defined 

as follows: 

amount of commodities transferred from mode j to mode k at 
shipment point i, 

cost per unit of transferring commodities from mode 
k at shipment point i, 

to mode 
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c xij excess consumption at point i inshipped by mode j, 

xi3 =excess production at point i outshipped by mode j. 

The objective function would then becom~/ 

(5) min T I 
xijk' xijk > 0 i,j,k 

cijk xijk + L 
i,j ,k 

The supply-demand constraints in (4) can be replaced by 

(6) a~ 
~ 

Vi. 

The additional constraints needed to balance shipments by each mode at each 

shipment point are then 

0 

v i, h. 

The additional constraints in (7) which must be imposed, basically force 

the transfers to mode h at point i less the transfers from mode h at point i 

to be equal to inshipments on mode h less outshipments on mode h aside from 

the production (consumption) shipped out (in) on mode h. 

Where J is the total number of shipment points and K is the number of 

possible modes of transportation, the addition of transfer costs can then 

possibly lead to the addition of J x K! transfer variables (when all trans-

fers are possible at all points), J x K production/consumption variables 

(if a~- bf > 0 then x~j can be dropped for all j; if a~- b~ < 0 then xij 

can be dropped for all j), and J x K constraints (assuming all J points are 

serviced by all K modes). Furthermore, the problem in (5) with constraints (6) 

and (7) can no longer be cast as a classical transportation model or generalized 

l/of course loading or unloading costs could also be attached to 
production or consumption, but for the purposes of this paper, such costs 
are ignored. 
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transhipment problem. Hence, transportation algorithms can no longer be 

used to solve the problem; computationally more involved linear programming 

procedures must be employed.l/ 

Solution by Dynamic Programming/Simplex Procedures 

Obviously, the size of the linear programming problem in (5), (6), and 

(7) quickly get out of hand as J, the number of shipment points, or K, the 

number of modes, increase. A problem with 200 shipment points and only 3 modes 

requires consideration of over one-hundred thousand variables. In this sec-

tion a dynamic programming procedure is outlined which allows us to determine 

a large number of activities in the problem which are clearly dominated 

(cost-wise) and can thus be discarded from the problem. After this ~ro-

cedure is carried out, the remaining problem can be simply solved as a classi­

cal transportation problem of at most, size M by N where M + N ; J.l/ 

Several dynamic programming algotithms have been developed for the 

purpose of finding the shortest path (or least-cost) between specified 

ll Actually it is possible, but not often practical, to solve this pro­
blem with a transportation algorithm directly if the loading docks for the 
various modes of transportation at each shipment point in the problem are 
considered as distinct shipment points with the transfer costs becoming the 
associated transportation costs from one loading dock to another. With this 
approach, however, it becomes necessary to consider, in effect, J x (K + 1) 
shipment points (when all points are serviced by all modes). This essentially 
amounts to solving a linear programming problem with J x (K + 1) constraints 
and J2 x (K + 1)2 - J x (K + 1) variables by a compact and computationally 
efficient transportation algorithm. Alternatively solving the problem in (5), 
(6), and (7) by a standard linear programming algorithm involves J x (K + 1) 
constraints but only J2K + JK! variables. The problem in (5), (6), and (7) 
then involves considerably fewer variables when J is reasonably large and K 
is reasonably small (again assuming all points are serviced by all modes) . 

1/Note that this is even smaller than the corresponding generalized 
transhipment problem in (3) and (4) which does not include multiple modes 
and transfer costs. 
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------~--· ~-·---- ~------ ------··---- ----- ------

pairs of nodes or shipment points (see, e.g., Dreyfus [5] for an appraisal 

of available methods). With a slight variation of these algorithms which 

account for transfer costs we can find least-cost mode-routes between all 

pairs of nodes which specify not only the route but also which modes are 

to be used between all pairs of intermediate points on the route. Since 

any flow of commodities between any two nodes in a least-cost transportation 

system must take place on a least-cost mode-route between those two nodes, 

no more than (J-1) x min (M,N) least-cost mode-routes between the M sur-

plus (N deficit nodes) and all other nodes need be considered in solving 

the problem in (5), (6), and (7).i/ 

Consider the problem of finding the least-cost mode-route between 

given pairs of points where '"e know (as above) the (least-) cost cijk of 

transporting goods between all pairs of nodes (i, j) by a given mode k. 

Without loss of generality (since the problem is linear), we will assume 

only one unit of fue commodity must be transported. The major dynamic 

programming procedures (see, e.g., Dreyfus [5]) proposed for solving this 

least-cost route problem when only one mode of transportation is possible are 

those of Dijkstra [4], Bellman [1] and Ford [7], Floyd [6], and Dantzig [2]. 

Of these, the Dijkstra and Bellman-Ford procedures solve the problem for a 

given pair of nodes whereas the Floyd and Dantzig procedures solve the 

problem for all pairs of nodes simutaneously (and more efficiently than the 

application of the former procedures to all pairs of nodes). 

if Actually, only theN x M mode-routes between surplus and deficit 
nodes must be used in the transportation procedure. However, all nodes must 
be considered as intermediate points and thus in the procedure proposed 
here, all nodes must be considered as destinations except in the last 
iteration. 
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~ Generalized Bellman-Ford Procedure 

Unfortunately, of the procedures dealing with a given pair of nodes, 

only the Bellman-Ford algorithm can seemingly be easily generalized for 

the K mode problem where transfer costs are involved. For the single-mode 

problem, the Bellman-Ford procedure involves defining 

k 
fij least-cost route connecting nodes i and j with k or fewer 

intermediate nodes (k+l or fewer arcs) 

and solving the problem for routes between node m and all other nodes by 

computing in iterations k 

min 
1 < i < 

0, 1, 2 

1, ... ' J; f:. m 

where initial or boundary conditions are given by 

f 0 • = c . 
mJ m] 

j = 1, ... , J; j f m. 

The procedure tnminates when fk+l = l. for j = l, ... , J (j * m) which 
mj mJ 

always occurs in J-2 or fewer iterations when negative cycles do not exist. 

The all-pairs problem can, of course, be solved by executing the procedure 

J times form= 1, ••. , J. For a proof of the optimality of this algorithm, 

the reader is referred to Bellman [1]. 

Here a very simple generalization of this procedure for the K-mode case 

is proposed. Let 

k 
gijpq least-cost mode-route connecting nodes i and j beginning on 

mode p and terminating on mode q with k or fewer transfers, and 

f~. = least-cost mode-route connecting nodes i and j. 
~J 

The K-mode problem of least-cost routes between node m and all other nodes can 

then be solved by finding in iterations k = 0, 1, 2, ... , 

(8) 
k+l 

min ( k + 
T 

) 
gmjpq 

= + c. 0 cihq j 1, ... ' J; f m 
1 < h < K 

gmiph ~]q 
p 1, ... , K 

h * q q 1, ... ' K 
1 < i < J 

ito m 

Algorithms for Developing least-Cost Transportation Systems 9 



where 

then 

initial conditions are 

0 

gmjpp = 

0 

gmjpq 

c 
mjp 

min 
1 .::_ p < K 
1 .::_ q .::_ K 

j 
p 

p 
q 

k+l 
gmjpq 

1, ... ' J; + m 
1, ... ' K. 

1, 0. 0' J• , + m 
1, ... ' K 
1, ... ' K; q + p 

1, ... , J; f. m. 

As in the single-mode case, this procedure terminates when gk+l 
mjpq 

j 1, ..• , J; p = 1, •.. , K; q = 1, ••• , K; and j f. m. If all c .. 
1Jq 

k 
gmjpq for 

T 
and cihq 

are nonnegative, the procedure will always terminate in J-2 or fewer iterations 

since all nodes could possibly be considered as intermediate nodes in that 

iteration. Again, the all-pairs problem is solved by repeating the algorithm 

J times form= 1, ... , J. 

That this algorithm results in optimality is obvious after a little 

thought and, since the proof is similar to that for the single-mode Bellman-

Ford procedure, only a brief motivation will be given. That is, assuming 

optimal gk. have been found for j = 1, ... , J (j f. m); p = 1, .•• , K; and 
m]pq 

q = 1, ••. , K the gk:l computed in (8) must be optimal when negative loops 
m]pq 

do not exist because (i) the optimal mode-route with k+l transfers must reach 

the last transfer point in an optimal way with k or fewer transfers and (ii) 

all such possibilities originating at node mare considered in (8). Obviously, 

the algorithm can terminate in any iteration where all gk+l - gk since 
mjpq- mjpq 

only mode-routes with k or fewer transfers need be considered in attempting to 

add an additional transfer possibility in the k+2 (and succeeding) iteration(s); 

but this possibility is already considered in iteration k+l. 
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A Pseudo Bellman-Ford Procedure 

A slight modification of the above procedure will also prove to be 

interesting for some of the particular kinds of problems this paper 

addresses. Suppose rather than solving all mode combinations simultaneously 

as in (8), we solve (8) within each iteration for each mode combination 

separately. That is, suppose we define 

least-cost mode-route connecting nodes i and j with 

k transfers and using in order modes p1 , p2 , .•• , Pk+l' 

and compute in iterations k = 0, 1, 2, ..• , 

(9) 

where 

Finally, 

fk+l 
mj 

c . 
m]p 

min 

pl,p2'" .. ' pk+2 

1, .. 0' J; .J m 

pl 1, ... ' K, 
5/ 

Pz 1, ... ' K; p2 + pl,-

Pk l, ... , K; Pk+l f pk 

q 1'. •. ' K; q f pk+l' 

1, ... , m; + m, 
p 1, ... , K. 

1, ... , J; + m. 

2/Here we explicitly assume that the input costs cijp represent the 
least-costs between all pairs of nodes i and j by mode p. Hence, we do not 
have to consider consecutive linking of two segments or areas of the same 
mode. 
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The optimality offuis procedure is readily apparent since it theoretically 

involves evaluation of all the possibilities considered in (8) as well as 

others. Of course, the procedure in (8) will, for the same reason, be more 

efficient in the general case of the problem, but as indicated below, the 

procedure in (9) may be preferable in certain applications. 

A Generalized Floyd Procedure 

For the algorithms solving the all-pairs single-mode problem simul-

taneously, similar generalizations are made possible by considering all 

possibilities for originating and terminating modes of transportation in 

each iteration. In the single-mode problem, the Floyd procedure defines 

k 
tij least-cost route from node i to node j when only nodes 

1, ... , k are considered as intermediate points 

and solves the problem by computing in iterations k = 0, •.• , J-1 

f~:l k k k = min (f ij, fk,k+l + fk+l,j) i 1'. 0.' J 
1] 

1, ... ' J• j j i , 

where initial conditions are 

0 
1,. 0.' fij c .. i J 

1] 
j 1, ... , J. 

We might generalize this procedure by defining 

k 
gijpq = least-cost mode-route from node i to node j originating 

on mode p and terminating on mode q when only nodes 

1, ... , k are considered as possible transfer points 

and then computing in iterations k = 0, ••• , J-1 

(10) k+l . { k 
gijpq = m1n gijpq' min (gk + gk + cT ) } 

i,k+l,p,h k+l,j,n,q k+l,h,n 1 
1 

< h < K 
n K 

i 1, 0. 0' 
j 1, ... , 
p 1,. 0 0' 

q 1, ... , 
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beginning with initial conditions 

0 
= i 1, ... ' J gijpp c .. 

1JP j 1, ... ' J· j + i, ' p 1, ... ' K. 

Finally, one could find 

f~:l min 
k+l i 1' ... ' J 

gijpq 1' ... ' J• j ¥ i. lJ 1 :5_ p < K ' 
1 ::_q::_ K 

The optimality of the cprocedure in (10) is also not difficult to verify. 

Where we have optimal g~j fori= 1, ..• , J; j = 1, ... , J (j + i); p = 1, •.• , K; 
1 pq 

and q 1, .•• , K, and negative loops do not exist, the optimality of g~:l is 
lJpq 

evident since (i) any optimal mode-route from node i to node j with nodes 

1, ••. , k+l as possible intermediate points must reach node k+l from node i in 

an optimal way and move from node k+l to node j in an optimal way using only 

nodes 1, ..• , k as intermediate nodes in both cases, or must move from node i 

to node j in an optimal way using only nodes 1, •.• , k (not through node k+l), 

and (ii) all such possibilities are considered in (10). Unfortunately, this 

algorithm will never terminate until all J-1 iterations are completed (all J 

nodes are considered as intermediate nodes). Variations in the Floyd 

c_/ algorithm similar to those in (9) are seemingly not possible. 

A Generalized Dantzig Procedure 

The single-mode Dantzig procedure defines 

f~. least-cost route connecting nodes i and j where only 
lJ 

nodes 1, ..• , k are considered as initial, intermediate 

or terminal nodes 

and computes in iterations k 1, ... ' J-1 

Algorithms for Developing least-Cost Transportation Systems 13 



k+l k 
cj ,k+l) i 1' ... ' k 

fi,k+l min (fij + 
1 ~j ~ k 

k+l 
(ck+l ,j 

k k 
fk+l,i min + fj i) i 1' 0. 0' 

1 ~j ~ k 

fk+l (f~. k k+l k min fi,k+l + fk+l,i) i 1' ... ' 
~] ~], 1, 0 0.' k· j. i , 

from initial condition 

This procedure might also be generalized by defining 

k 
gkjpq = least-cost mode-route from node i to node j originating 

on mode p and terminating on mode q where only nodes 

1, ... , k are considered as initial, intermediate, or 

terminal nodes 

and computing in iterations k = 1, ... , J-1 

(11) 
k+l k T 

gi,k+l,p,q min (gij ph + cj,k+l,q + cjhq) 
1 ~j < k 

j # i 
1 < h < K i l, ... ' k, 

h# q p 1, ... ' K, 
q 1, ... ' K, 

k+l 
(ck+l,j ,p + 

k T 
gk+l,i,p,q min fjihq + cjph) 

1 ~j < K 
j # i 

1 < h < K 
h# p i 1' ... ' k, 

p 1, .. 0' K, 
q 1' ... ' K, 

k+l k ( k+l k+l T 
gijpq min {gijpq, min + gk+l,j,n,q + ck+l,h,n)} 

1 < h < K 
gi,k+l,p,h 

1 < n < K 
i 1,. 0 0' k 

1,. 0 0' k; # i 
p 1, ... ' K, 
q 1' ... ' K, 

where initial conditions are 

p 1, ... , K. 
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Here, 

k+l 
min gijpq 

1 < p < K 
1 .s_ q .s_ K 

i 1, ... , k 
1, ... , k; 

To verify the optimality of this procedure when negative loops do not 

k exist, assume optimal gijpq have been found fori= 1, .•. , k; j = 1, ..• , k; 

p = 1, ... , K; and q = 1, .•• , K. 
k+l The optimality of gijpq must then follow 

because (i) any optimal mode-route from node k+l to node (1 .s_ j .s_ k) must 

move from the first transfer point to node j in an optimal way where only 

nodes 1, •.. , k are possible intermediate points, (iii) any optimal mode-route 

from node i (1 < i .s_ k) to node j (1 .s_ i .s_ k) must move from node i to node 

k+l in an optimal way and from node k+l to node j in an optimal way, or 

must move from node ito node j in an optimal way where only nodes 1, ..• , k 

are possible intermediate nodes, and (iv) since all such possibilities are 

considered in (11). Like the Floyd algorithm, the Dantzig algorithm can 

never terminate short of J-1 iterations (until all nodes are considered 

as part of the system). 

Comparison and Selection of Procedure 

Consider the efficiency of the various algorithms indicated above. 

The maximum number of computations (additions and comparisons) required by 

the single-mode algorithms referenced here are discussed in Dreyfus [5] and 

are given in Table 1. We can similarly deduce the number of computations 

required for the K-mode algorithms in (8), (10), and (11) since in each 

h b f . . d f . d fk+l h . 1 b . step t e num er o compar1sons requ1re to 1n ijpq as s1mp y een ln-

creased by a power of K and K-1 and the number of additions is additionally 

doubled by considering transfer costs. For each iteration (8) one can 

easily verify that 2(J-1) 2K2 (K-l) additions and (J-1) 2K2 (K-l) comparisons 
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must be made in each iteration.~/ Hence, if all J-2 iterations are re-

quired, the entries in Table 2 pertaining to the generalized Bellman-Ford 

procedure are obtained. For each iteration (10) we find 2(J-l)(J-2)K4 

additions and (J-l)(J-2)K4 comparisons must be made. Thus, since J 

iterations are always required, the information in Table 2 pertaining to 

the generalized Floyd procedure is obtained. For each iteration (11) we 

find the first and second equations require 3k(k-l)K3 computations (additions 

plus comparisons) each and the third requires 3k(k-l)K4 computations. Where 

k iterates from 1 to J-1 we then find 

J-1 
I 3k(k-l)(K3 + K3 + K4 ) = J(J-l)(J-2)K3 (K+2) 

k=l 

computations are required by the generalized Dantzig procedure. For the 

procedure in (9) one can quickly verify that at most (if J-2 iterations are 

required) 

J-2 
2 I (J-1) 2K(K-l)k+l 

k=O 

additions and 

J-2 
I (J-1)2K(K-l)k+l 

k=O 

comparisons are required. 

2(J-1) 2K(K-l) [(K-l)J-l -1]/(K-2) (if K > 2) 

2 J-1 
(J-1) K(K-1) [(K-1) -1]/(K-2) (if K > 2) 

Hence, the results in Table 2 are obtained. 

~/Here we assume, as we will in the following cases, that all possible 
single-mode routes are used as data so that linking segments of the same 
mode need not be considered. Of course, finding all possible single-mode 
routes may involve a considerable problem in and of itself. The algorithms 
here could be used to solve both problems simultaneously if all K modes 
were always considered in each loop. If the algorithms presented here 
were so modified, then all K-1 terms in the formulas for number of computa­
tions should be replaced by K's. 
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Table 1. Maximum Number of Computations Involved in Single-Mode Procedures 

Procedure Dijkstra7 Bellman-Ford Floyd Dan! zig 

From node m to Additions J(J.l)/2 (J-2)(J. 1 )2 

all other nodes Comparisons J(J-1) (J-2)(J-1)2 

For all pairs Additions J2(J-1)/2 J(J-2)(J-1 )2 J(J-1)(J-2) J(J-1)(J-2) 
of nodes Comparisons J·(J-1) J(J-1)(J-2) J(J ·1 )(J-2) J(J-1)(J-2) 

7As Dreyfus [5] indicates, computer application of the Dijkstra algorithm actually requires about P/2 additions and 2]2 comparisons 
in the node-m-to-all-other-nodes problem and, hence, ] 3 /2 additions and 2]' comparisons for the all-pairs problem . 
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Table 2. Maximum Number of Computations Involved in K-Mode Procedures 

Procedure Generalized 
Bellman-Ford' 

Recursion Equations (8) 

2 2 
From node m to Additions 2(J-2)(J-1) K (K-1) 

2 2 
all other nodes Comparisons (J-2)(J-1) K (K-1) 

2 2 
For all pairs Additions 2J(J-2){J-1) K (K-1) 

2 2 
of nodes Comparisons J(J-2)(J-2) K (K-1) 

Pseudo 
Bellman-Ford 

(9) 

2 J-1 
2(J-1) K(K-1)[(K-1) 

2 J-1 
(J-1) K(K-1)[(K-1) 

2 J-1 
2(J-1) K(K-1)[(K-1) 

2 J-1 
J(J-1) K(K-1)[{K-1) 

-1]/(K-2) 

-1]/(K-2) 

-1]/(K-2) 

-1]/(K-2) 

Generalized 
Floyd' 

(10) 

4 
2J(J-1)(J-2)K 

4 
J(J-1){J-2)K 

Generalized 
Dantzig 

(11) 

3 
2J(J-1 )(J-2)K (K+2)/3 

3 
J(J-1 )(J-2)K (K+2)/3 

8For problems requiring few iterations, it is worthy to note that 2(J-J)2K(K-1)2 additions and (J-J)•K(K-1)2 comparisons can be avoided 
in the first iteration for each m since the incoming mode to the intermediate point must be the mode of origination. Also 2(J-1)2K(K-l) 
additions and (J-l)2K(K-l) comparisons can be avoided in the second iteration since we need not examine the possibility where the incoming 
mode to the intermediate node is the same as the mode of origination. In the second iteration these two modes would be used consecutively. 
Hence, if they are the same, the two segments form a single-mode segment such as is considered already in the first iteration. 

9Here also -some calculations can be omitted in the first iteration because the incoming mode to the intermediate point must be the mode 
of origination but savings will always be negligible since the Floyd procedure can never stop short of J-1 iterations. 



One can quickly note that efficiency of the various methods may not 

be the same in the K-mode case as in the single-mode case. Both the 

Floyd and Dantzig procedures involve a K4 factor of computations so that 

the Bellman-Ford procedures become more efficient for large K and small 

J. Of course, the common case, however, would probably involve small K 

and large J. In this case, Table 2 may be somewhat misleading since both 

of the Bellman-Ford procedures can terminate after only a few iterations, 

while the Floyd and Dantzig procedures must complete all iterations. In­

deed, when transfer costs are of significance, this would likely be the 

case. Another factor of considerable importance is that for the transporta­

tion problem considered here, we are not interested in least-cost mode-routes 

between all pairs of nodes--only those mode-routes between deficit and 

surplus nodes. Hence, where M is the number of surplus nodes and N is 

the number of deficit nodes, we need to carry out the calculations in the 

first two lines of Table 2 only M times rather than J times as indicated 

for the all-pairs problem. Of course, the Floyd and Dantzig procedures 

must always be performed for the entire all-pairs problem. Finally, by 

noting that the problem could be solved in reverse order, it is apparent 

that we could alternatively make the calculations in the first two lines 

of Table 2 only N times if N < M. Hence, since M + N ~ J, we must repeat 

the calculations in the first part of Table 2 at most J/2 times even if 

the algorithm does not terminate until the full J-2 iterations have been 

made. 

To investigate the possibilities when accumulation of transfer costs 

prohibits many transfers in any mode-route, Table 3 has been constructed 

for several values of J and K assuming the Bellman-Ford procedures terminate 

in 2, 4, or 6 iterations. In each case, the number of calculations is 

Algorithms for Developing Least-Cost Transportation Systems 19 
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Table 3. Number of Computations (Additions plus Comparisons) Required to Develop a Transportation 
Matrix with Various K-Mode Dynamic Programming Procedures10 

Number of Number of Number of Generalized Pseudo Generalized Generalized 
Iterations" Nodes(J) Modes(K) Bellman-Ford12 Bellman-Ford Floyd Dantzig 

(100,000's) 
2 100 2 12* 12* 47 31 

3 53* 53* 236 131 
4 141* 141* 745 373 

1000 2 11,976* 11,976* 47,856 31,904 
3 53,892* 53,892* 242,271 134,595 
4 143,712* 143,712* 765,698 382,849 

3 100 2 24* 24* 47 31 
3 105* 123 236 131 
4 283* 459 745 373 

1000 2 23,952* 23,952* 47,856 31,904 
3 107,784* 125,748 242,271 134,595 
4 287,424* 467,064 765,698 382,849 

4 100 2 35 35 47 31* 
3 158 265 236 131* 
4 424 1,411 745 373* 

1000 2 35,928 35,928 47,856 31,904* 
3 161,676 269,460 242,271 134,595* 
4 431,136 1,437,121 765,698 382,849* 

10Efficient algorithms are marked by an asterick ( •) in each case. 
11Here the number of iterations which applies only to the Bellman-Ford procedures, is the final value of k plus one. 
12Entries for the Generalized Bellman-Ford procedure are computed assuming that all unnecessary computations in the first two iterations 

are not made. 



determined by assuming M = N = J/2 (the situation which makes the Bellman­

Ford procedures relatively as inefficient as possible). 

As indicated in Table 3, any of the generalized algorithms except the 

generalized Floyd procedure can possibly become efficient depending on the 

number of nodes, modes, and iterations required by the Bellman-Ford pro­

cedures. Apparently, the generalized Dantzig procedure quickly becomes 

the more efficient procedure as the number of required iterations increases 

when the number of modes remains relativeLy small. When the number of 

iterations becomes small, then both the Bellman-Ford procedures tend to 

become efficient. As indicated above, this would also be the case when 

the number of modes increases. 

Conclusions 

Several other points may be of interest in the selection of a K-mode 

procedure. Perhaps the most important consideration may be the signifi­

cance of economic information contained in the results. In many economic 

applications of the K-mode transportation problem, the major goal may be 

an evaluation of the use of a particular mode along a particular route 

segment. Such information would be of major interest in determining the 

feasibility of building a new highway or barge canal, or of closing a cer­

tain rail route. In this case, one might be concerned with not only 

determining least cost mode-routes between all pairs of points, but also 

with determining shaddow prices for non-optimal mode-routes which use the 

mode-segment of interest. One can easily see that the pseudo Bellman-Ford 

procedure is the only generalized procedure presented here that will auto­

matically provide additional shaddow price information. 

Algorithms for Developing Least-Cost Transportation Systems 21 
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Another factor which may be important in the practical application of 

these procedures is the size of the problem relative to the size of the 

computer which is to be used to obtain the results, As the number of nodes 

becomes large, the size of the cost matrix connecting all pairs of nodes 

by even a single mode can quickly approach the upper limit for core 

storage available on most large computers. When core storage is exceeded 

and auxiliary storage must be used, the cost of obtaining computer results 

begins to depend greatly on the frequency of reference to auxiliary units. 

In that respect, the Bellman-Ford procedures appear to be somewhat easier 

to handle. 

For example, with the pseudo Bellman-Ford procedure, each iteration 

can be broken into steps so that only gk. , c .. , and cT for 
ml.plp2'' ·Pk+l l.Jq ipk+l q 

fori; 1, ... , J must be held in core at one time. In each iteration, this 

material would be obtained only once from auxiliary storage (in a large 

problem situation) for each j ; 1, ••• , J; p1 = 1, •.. , K; .•• ; Pk 1, ... , K; 

and q; 1, ••• , K. The generalized Bellman-Ford procedure would apparently 

require K times as much core storage unless an additional vector were set 

up to save partial minimums. By saving minimums over i 1, .•. , J for 

h; 1, •.• , Kit is a simple matter to find the minimum specified in (8) by 

finding the minimum if the K values saved for h = 1, ..• , K. This suggests 

a simple way in which a single computer program could be used for either 

the generalized or pseudo Bellman-Ford procedure. The minimization over h 

at each iteration is the only difference in the two procedures. If one 

desires shaddow prices on specific mode-segments then one need not minimize 

over h in each iteration, but if shaddow prices are not needed then consider-

able savings result (if more than a few iterations are required) when one 

minimizes over h in each iteration according to the generalized Bellman-Ford 

procedure. f~ 
( _- ' 
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Apparently, the Floyd and Dantzig procedures cannot be handled quite 

so easily in the large problem case. Either much more core storage must 

be used to store the entire matrix f~. at each iteration or more 
lJpq 

auxiliary unit references must be made (due to the varying order of refer­

k 
ence to fijpq). 
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