
1

Senior 2 Project: Group 2B

Speed Radar Gun
Spring 2017

Antonio Rodriguez, Project Leader

College of Electrical and Computer Engineering

Oklahoma State University

Stillwater, Oklahoma

antor@okstate.edu

Jingkun Liang

College of Electrical and Computer Engineering

Oklahoma State University

Stillwater, Oklahoma

jingkun.liang@okstate.edu

James Touthang

College of Electrical and Computer Engineering

Oklahoma State University

Stillwater, Oklahoma

james.touthang@okstate.edu

Rachel Campbell

College of Electrical and Computer Engineering

Oklahoma State University

Stillwater, Oklahoma

rachel.leigh.campbell@okstate.edu

Abstract—Our purpose was to create a Doppler radar gun within one semester using a budget of $250. Our radar gun

can be broken down into five subsystems, specifically the antenna and transceiver, amplifier and filter circuit,

microcontroller, power, and outer casing subsystems. We chose the MACOM transceiver joined to a coated horn antenna

to send and receive signals and produce our intermediate or Doppler frequency. Our amplifier and filter circuit used the

MAX414CPD operational amplifier for its high performance and low noise. Our bandpass filter has ideal cut off

frequencies at 700 Hz and 7300 Hz, which allows us to accurately measure speeds between 10 and 100 mph. The actual cut

off frequencies of out filter circuit were 884 Hz and 10.6 kHz, to compensate for a more gradual cutoff slope. The total

gain of our amplifier and filter circuit is approximately 7700. We chose the Arduino as the controller for our radar gun

and used the FHT library to determine the true Doppler frequency from a given intermediate frequency. The Arduino

also computes the speed from the Doppler frequency and displays the speed in mph and Km/hr on the LCD. The power

for the radar gun is supplied by two 9V batteries which allow for over 2 hours of continuous runtime. Finally, the outer

casing was created using Solidworks modeling and 3d printing. Our testing of our completed Doppler radar gun showed

that the gun can measure ball speeds from 10 - 46 mph (this is not the limit of the radar gun’s capabilities, only the limit of

our throwing speed) at a range of 0.5 - 50 feet with an accuracy of approximately plus or minus 1 mph. Our radar gun

meets all required specifications and performs admirably in real world conditions.

Keywords—Doppler; radar gun; Capstone; Group 2B; Oklahoma State University; ECEN Department;

I. INTRODUCTION

Our goal was to create a Doppler radar gun with a
professional, handheld appearance within the timeframe of one
semester and the budget of $250. A Doppler radar gun works
under the premise of transmitting a signal at a moving object,
receiving a signal back from that moving object and mixing
those two signals together to get an intermediate or Doppler
frequency. This Doppler frequency can then be used to
calculate the speed of the moving object. Doppler radar guns
are frequently used by the police force to measure the speed of
vehicles and by sports enthusiasts to measure the speed of
balls. Our radar gun will be used to measure the speed of
tennis balls and will most likely by used in sporting settings.

II. DESIGN PROBLEMS AND OBJECTIVES

A. Theoretical Foundation

 The Doppler effect is the increase in frequency of waves as

the observer and source move towards each other. The

Doppler effect can be observed in the changing of pitch in

police sirens as a police car approaches and drives away from

a stationary observer. Using a transceiver and microcontroller,

the Doppler effect can be used to determine the speed of

passing objects. To do so the transceiver sends out a radio

frequency of fixed bandwidth in a directed fashion, often using

an antenna of some kind. This frequency will hit all objects in

its path. These objects which are struck by the transmitted

frequency will produce a return frequency which is picked up

by the transceiver. If the object is stationary the difference

between the transmitted and returned frequencies will be zero.

However, if the object is in motion the difference between the

transmitted and returned frequencies will be proportional to

the speed at which the object is traveling and be termed the

intermediate or Doppler frequency. The Doppler frequency

relates to the speed of the object in the following manner:

mailto:antor@okstate.edu
mailto:jingkun.liang@okstate.edu
mailto:james.touthang@okstate.edu
mailto:rachel.leigh.campbell@okstate.edu

2

𝐹𝑑 = 2𝑉(
𝐹𝑡

𝑐
)𝑐𝑜𝑠𝜃

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1.

 Where Fd is the Doppler or intermediate frequency, Ft is

the transmitted frequency, V is the velocity of the object, and

𝜃is the angle between the object’s path of motion and the

transceiver’s position. Using the Doppler effect to measure

speed is most effective when the measurement device and

object’s motion occur parallel to each other, with the object

moving either directly toward or directly away from the

transceiver.

B. Design Problem

 We were tasked with creating a Doppler radar gun with the

ability to measure the speed of tennis or baseballs. This radar

gun needed to be able to accurately measure a broad range of

speeds from relatively large distances away. This gun also

needed to be handheld and have a professional appearance.

C. Specifications

 The Doppler radar gun we created needed to measure

speeds from a minimum of 10 mph to a maximum of 100 mph.

It needed to have an operational range from 0.5 feet to 50 feet

with an accuracy of plus or minus 1 mph at or below 25 feet

and an accuracy of plus or minus 3 mph at 50 feet. The power

supply of this radar gun needed to be sufficient for at least 2

hours of continuous runtime. Finally, in order for the radar gun

to be considered handheld it needed to be less than 12 inches

long, 9 inches high and 6 inches wide and have a weight less

than 3 pounds.

D. Subsystems and Team Responsibilities

Figure 1. The block diagram

 The figure above shows the layout of the radar gun and the

responsibilities of each team member. For a larger version of

the block diagram please refer to Appendix E. James worked

on the microcontroller, ADC, and LCD display. In other

words, he was responsible for converting the signal processed

by the filter and amplifier circuit to a digital signal, getting

the Doppler frequency the transceiver received through

Fourier transform, storing it to the microcontroller, calculating

the speed, and display the speed on the LCD display.

 Antonio was responsible for the hardware including the

transceiver, antenna, and filter/amplification circuit. Rachel

helped Antonio with the filter design and the amplification

circuit. Their main objective was to design the filter and OP

amp circuit which connected to the output of the transceiver.

As soon as the transceiver sends the signal and gets the return

or intermediate frequency, the filter circuit filters out most of

the noise to improve the accuracy of the measurement, and the

OP amp amplifies the signal in order to be readable by the

microcontroller.

 Jingkun Liang worked on the power subsystem and the

case design. He designed the case using Solidworks and

printed it with a 3D printer. After the printing, he need to

modified the detail over and over again to fit the size for every

parts. For the power subsystem, Jingkun designed a circuit

which can produce a stable voltage that can satisfy power

needs.

III. DETAILED DESIGN DOCUMENTATION

A. Transceiver

The transceiver is the heart of the radar gun. The MACOM

MA-7801-17 was implemented into the design. The

transceiver operates at 24.1 GHz, which fall into the K-Band

radio spectrum. It accepts a 5-Volt input and outputs the

intermediate or Doppler frequency in millivolts.

Figure 2. Transceiver module

It operates using a gunn diode and a schottky diode in the form

of a mixer circuit.

Figure 3. Block Diagram of the Transceiver

3

Since the transceiver we used was cannibalized from a

Bushnell radar gun, it came with a horn antenna that was

designed to work with the transceiver.

Figure 4. Horn Antenna

B. Filter/Amplifier Circuit

 An active band pass filter was designed to filter out

undesired frequencies and noise. A practical gain was chosen

for the filter stage to see the intermediate frequency on the

oscilloscope. Please refer to Appendix A. for the

Amplifier/Filter circuit.

 The component values were calculated using the frequent

cutoff equation:

𝑓 3𝑑𝐵 =
1

2 ∗ 𝜋 ∗ 𝑅 ∗ 𝐶

Formula 2.

R denotes the resistor component and R denotes the capacitor

component. 𝜋 is a mathematical constant of 3.14159.

For the high pass filter, a cutoff of 884 Hz has chosen.

High Pass Filter cutoff: 884 Hz =
1

2∗𝜋∗0.1𝑢𝐹∗1800𝛺

Formula 3.

For the low pass filter, a cut of 10.6 kHz has chosen.

Low Pass Filter cut off: 10.6 kHz =
1

2∗𝜋∗100𝑝𝐹∗150𝐾𝛺

Formula 4.

The theoretical frequency response of the final design can be

found in Appendix B.

The gain on the Filter stage is:

Gain:
𝑅𝑓

𝑅𝑖
=

150𝐾

1.8𝐾
 = 83.3

𝑉

𝑉

Formula 5.

R𝑓 denotes the feedback resistance of the filter and R𝑖
stands for the input resistance of the filter.

Because of the limited possible combinations of capacitors

and resistors, these cutoffs were chosen in order to set a gain
high enough to amplify the signal without saturating on the
oscilloscope. For the amplifier stage, an inverting amplifier
was configured with a gain of 83V/V. The feedback resistance
was set with a potentiometer for quick adjustments.

A 2.5 volt DC offset was incorporated into both stages via
the positive inputs of the amplifiers. This was done in order to
avoid amplifying only the positive half of the signal since the
transceivers output was centered at 0 Volts.

C. Spice Software

OrCAD Capture was used to layout the circuit in Spice.
This program allowed quick prototype testing and to observe
the frequencies that our filter circuit could hypothetically
operate.

D. Circuit Hardware

Maxim MAX414 amplifiers were chosen because of their
low noise characteristics and high gain bandwidth product.

Figure 5. Layout of the MAX414 28 MHz Precision
Amplifier [2]

Passive resistor and capacitor components from OSU
issued kits were used for this project to reduce the overall
costs.

E. Arduino C Programming

 Processing the amplified signal was done through C
language and used the FHT library from Open Music
Labs[5].The library uses the Fast Hartley Transform that
converts the time domain signals to the frequency domain.
This is exactly what the Fast Fourier Transform (FFT) does,
except the FHT is designed for real data and does not account
for complex data. This way, the FHT uses half as much
computation and half the memory compared to the FFT
Library.

 In the Arduino, pin A0 is used to input the signal coming
from the amplified transceiver signal. The signals goes
through the built in ADC and turns the voltage reading from a
voltage reading to a 10-bit signed number. The 10 bit signed
number is then turned into a 16 byte signed number where it is
put into an allocated array called fht_input[].

4

 The array is then computed with the fht_window() function
that increases the frequency resolution. After, the fht_reorder()
function is called which reorders the input data. The program
then finally calls fht_run() which process the real samples and
put it it into the same array. Lastly, fht_mag_log() is called to
take the magnitude of the fht_input and stores it into an array
called fht_log_out. This function squares the real and
imaginary values, sums them, takes square root, and finally the
log base 2 so that it is compressed in a logarithmic function
using a lookup table. Below is the final calculation:

 fht_log_out[i] = 16 ∗ 𝑙𝑜𝑔 2(√𝑟𝑒𝑎𝑙𝑖
2 + 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦𝑖

2)

Formula 6.

 The output is an 8 byte signed number. That is stored in
memory that will be used to find the frequency with the
highest magnitude. This is done by iterating through each
array in the fht_log_out and stores the number that has a set
threshold value. With the radar gun. It is set so that if it stored
above the threshold value, then the index of the array would be
stored so that the program can compute the frequency based
on the bin.

The FHT is set to compute 256 points so the total bin size
of the output is 128 (256/2). The frequency is calculated by
taking the index of the array, i and multiplying it by the
sample rate divided by the 256 samples points. Due to the
variation and unexpected computation time of the arduino, the
program has a variable called bin_multiplier which is set to
146.05, which means the index array at fht_log_out of 1 would
have a frequency of 146.05 Hz, and index of 3 would be
438.15 Hz and so on.

 That frequency would then be stored to a global variable
called highest_freq which will be used to calculate the speed
using the toMilesPerHour() function.

 The toMilesPerHour() function passes in the doppler
frequency, or the frequency calculated from the fht_log_out
iteration. The overall equation can be seen below:

 Speed in MPH =
𝑑𝑜𝑝𝑝𝑙𝑒𝑟𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑐 ∗ 3600

2 ∗ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 1609.34

Formula 7.

 Transmitting frequency is given by the bushell’s
transceiver where it operates at 24.125 Ghz multiplied by 2 to
because of the sending wave and returning. Lastly c is the
speed of light in meters per second and the 3600/ 1609.34 is
the number used to output the result in miles per hour, where
there is 3600 seconds in 1 hour and 1609.34 meters in 1
mile.[1] The equation is provided by the data sheet of the
HB100 transceiver. [10].

 The program utilizes a button that is connected to pin 9 in
the arduino. If the digital read on pin 9 is high, then the button
has been released and displays the current highest speed
computed by passing in the highest_freq global variable.
When the trigger has been pulled, the digital read is low, and
the highest_freq is set to 0 so that the program can run the
FHT and determine the highest_freq.

Speed is then displayed on a basic LCD 16x2 screen
connected to digital 6, 2, and 4 pins. This was done using a

backpack that essentially converts the 16 pins of the LCD into
5 pins, where 2 pins are left for VCC and GND. The LCD is
attached to the backpack pins where data pin is connected to
pin 6, clk pin is connected to pin 2, and latch pin is connected
to pin 4.

 In summary, the code is constantly running the FHT on the
analog signal regardless if the transceiver is on. Once the
trigger is pushed, the highest_freq determined by the code is
set to 0 so that once the trigger is released, it will display the
appropriate speed in both miles per hour and kilometers per
second.

F. Casing

For the primary objective, the outer case should

accommodate all of the parts in a satisfying volume. But most

importantly, it needs a professional appearance to make the

user measure the speed more conveniently.

Figure 6. Three-view drawing of the radar gun

 The figure above shows all the professional features of the

gun. Firstly, at the body of the radar gun, we increase the

radius of the case according to the part we need to place so

that we can get a 30% volume increase while the outer

appearance can be more stylish compared with the boxy look.

 Secondly, we designed different kinds of grooves to fit all

the parts. Like the figure shown below, Arduino Uno is fixed

by screws. At the same time, there are 4 holders to hold the

batteries and we remain a space to let the electrodes out of the

box so that it will be convenient to link to the circuit. Last, we

add a trigger in the speed gun in order to let users use the gun

easily and our speed gun can be more like the real gun and

have the same usage that users can know how to use it

quickly.

5

Figure 7. Inner structure

Figure 8. The overall appearance

E. Trigger

 The trigger from the cannibalized Bushnell gun was

modified to work in our radar. The momentary switch was

connected the 5 Volt rail of our circuit and the gates of two

2N2222 NPN transistors. One transistor signaled the Arduino

that the trigger was closed. The other transistor powered the

transceiver. Configuring the transceiver this way allowed us to

conserve battery power and meet our battery life specification.

Figure 9. shows how the trigger was implemented.

Figure 9. Trigger Layout

F. Power subsystem (Jingkun)

 The figure below shows the circuit of the 7805-power

model. The advantage of this circuit is the output power of the

circuit is 5W and it can provide a stable 5V voltage and 1A

current. So we do not worry about the varying of power. In

these days, we have done an experiment to measure the

efficiency of the 7805 circuit.

Figure 10. 7805 circuit

 By referencing the datasheet, the input voltage range of the

7805 is 7 - 24V, we used different values of input voltage and

recorded their output voltages.

The result is in below:

Input voltage / V Output voltage / V Efficiency

7.00 4.99 71.29%

11.00 5.03 45.73%

15.00 5.00 33.33%

19.00 5.03 26.47%

23.00 5.01 21.78%

Table 1. Table of the efficiency of the 7805 circuit

 Although the efficiency of this circuit is much lower than

the power bank, it can provide a stable voltage with a low

current while the output current of the power bank is usually

between 2.5 - 4A that may damage the components.

Noise is produced by 7805 circuit. To help with noise, a

capacitor was added in parallel to the output of the circuit.

IV. LABORATORY AND TEST PLANS AND RESULTS

A. Transceiver

 The HB100 transceiver was initially chosen. After

researching the transceiver more intensely, the team realized

6

that the transceiver has designed for short range motion

sensing. The sensitivity of the transceiver was uncertain, so

the MACOM transceiver was chosen instead. This transceiver

was chosen because it was already used to detect baseball-

sized objects from a distance of 90 feet in the Bushnell radar

gun. This option eliminated the transceiver of being a limiting

factor in the design.

 The team experienced issues reading a frequency from the

transceiver. It was discovered that the transceivers were being

damaged as they were being removed from the commercial

guns. This was acknowledged after another radar gun team

loaned us their transceiver to test. The team was able to move

ahead with a better filter and amplifier design after this issue

was corrected.

B. Filter/Amplifier Circuit

 This first filter design encompassed a second order high

pass filter cascaded with a second order low pass filter and

amplifier. This design was not able to function because the

output of the bandpass filter was always at the maximum

voltage. This issue was witnessed using other amplifiers.

Using a single stage band pass filter solved our problem and

allowed us to move forward.

 During the initial tests of the project, it could only detect

baseballs and aluminum foil coated tennis balls. This was

fixed when noise was removed from the circuit which allowed

us to increase the gain high enough to detect uncoated tennis

balls

C. LCD/Arduino

The initial steps to determine how the frequency will

respond was using the FreqCount library. This library works

by setting a time frame when the digital read is high and low.

This would result in calculating the time it takes for the pin to

be on and and would determine the sample of points per that

time, or the frequency. From the figure below shows a

graphical representation of the process.

Figure 11.: FreqCount Process

The problem with this implementation is that the rising

time must read in a voltage that has to be greater than 1.5V to

be considered a high. This means that the amplified circuit

must have an offset above that value. The reading must also be

periodic or else it will output a frequency that will be distorted

and incorrect since the signal will be consistently varied in

terms of frequency. Since the intermediate frequency varies in

amplitude and in frequency, using the FreqCount Library is

not suitable for this project.

Using the trigger to collect the data and output the

maximum frequency as it is pressed means that the button will

occur a bouncing effect. This can be seen by the figure 2

below [3]:

Figure 12. Oscope showing Bouncing Effect

 To account for the bouncing effect, the button needs to

incur a delay as it is about to be pushed. This means, that once

a change in state has occurred once the button is pressed, there

will be a 10ms delay and the a final correct digital read would

take place.

 The last thing to account for the displaying of the speed is

to output white space characters. This is known as white space

tracing and was used to overwrite previous characters that had

been shown on the LCD. This will allow the arduino to print

numbers that vary in length as well as print the units without

having to overwrite previous results. This also avoids using

the clear() function since the clear() function takes a huge

amount of delay.

C. Doppler Radar Gun

 Our primary testing apparatus was implemented using the

following tools: our Doppler radar gun, a commercial Doppler

radar gun, measuring tape, tennis balls, and a sheet netting

system for safety. One team member would throw a tennis ball

straight ahead into the sheet netting system placed a variable

distance from the start line. A second team member holds both

the commercial radar gun and our radar gun at the start line

and triggers them both simultaneously. The speeds displayed

by the two radar guns were recorded and the difference

between the two values calculated. This test was repeated at a

distance of 0.5, 1, 5, 10, 15, 20, 30, 40, and 50 feet. The same

team member used the same technique on every throw in order

to maintain a semi-constant speed at each distance. At no point

in our testing did the difference recorded exceed 3 mph.

 The maximum range of our gun was found using the

primary testing apparatus and a variation of the above testing

procedure. Rather than simply recording the difference

between measured speeds, the testing distance was extended

until our measurement accuracy fell below our specification

7

threshold. We accurately measured a speed of 14.2 mph from

50 feet away using our Doppler radar gun. It took several tries

to achieve this result, likely due to the difficulty of matching

the radar gun’s area of operation to the tennis ball’s path at

such a distance.

 The maximum speed of a tennis ball measured by our

Doppler radar gun was 46.3 mph. This was the fastest any of

our team could throw a tennis ball while keeping safety in

mind. We measured car speeds at an intersection at upwards of

49 mph. Theoretically our radar gun is capable of measuring

speeds up to 143 mph with the limiting factor being the

designed filter limitations.

 The final dimensions of our radar gun were 7.5 inches long,

2.94 inches wide and 6.69 inches tall, well within specification

limits. The final weight of the radar gun was 1.5 pounds, well

below the 3 pound limit. Our radar gun is both handheld and

portable.

 The total current draw of all systems in radar gun was 160

mA. The two 9V batteries used by the power subsystem each

supplied 175 mAh for a total of 350 mAh. Thus the total

continuous runtime of our radar gun was 2.1875 hours.

V. BILL OF MATERIALS

 The project was to be completed with a budget of $250

total. The table belows shows the bill of materials that were

used in the final product.

Quantity

Materials

Description
Unit

Price

Total

Price

1 Arduino Uno 22.69 22.69

2 Batteries 18.4 36.8

1 LCD 16x2 15.57 15.57

1 LCD Backpack 10.00 10.00

1
Quad 28MHz Low-V

OpAmp
0.6 0.6

1 Bushnell (Transceiver) 89.79 89.79

1 Battery Clip Pack 3.73 3.73

 Total 179.18

 Left 70.82

Table 2. Bill of Material

VI. GANTT CHART

 The general form of our groups Gantt chart can be seen in

the figure below.

Figure 13. The Gantt chart

A more detailed Gantt chart can be found in Appendix D.

VII. FUTURE IMPROVEMENTS

 Our Doppler radar gun could be improved through further

refinement of the amplifier/filter circuit in order to minimize

noise and maximize bandwidth and cutoff slope to form a

more ideal response. Our radar gun could also be improved

through the consolidation of our microcontroller on to a more

compact and personalized printed circuit board. This would

minimize wasted space within the casing and remove

extraneous components from the assembly. The outer casing

of our radar gun could also be improved upon, with minor

changes made to eliminate gapping and strengthen the areas

used for joining of the two halves.

 In the future, a Bluetooth module could be added to our

existing radar gun to allow for the transmission of speed data

to some kind of external storage device. This would allow for

monitoring and aggregation of data to improve sporting

practices. This Bluetooth module could for instance transmit

speeds to a mobile device that allows users to set goals and

view their progress as part of a tennis or baseball training

application.

 To improve the accuracy and range of the radar gun a

different transceiver could be implemented. The MACOM

transceiver cannot detect speeds under 10mph and has some

limitations in both the accuracy of its speed measurements and

its operational range. A different transceiver could eliminate

these problems and allow for enhanced functionality of the

radar gun.

VIII. RESULTS AND CONCLUSIONS

 Throughout the semester our team has utilized concepts

from electromagnetics, circuits theory, embedded systems,

signal analysis, physics and computer science to create a

functional Doppler radar gun. We have gained competence not

only in the application of various technical concepts but also

in areas such as project management, public speaking,
technical writing and teamwork. Our completed radar gun

meets all the specifications required of it. It can measure

speeds between 10 - 143 mph at a range of 0.5 - 50 feet with

an accuracy of plus or minus 2 mph. Our radar gun is powered

by two 9 V batteries and has a continuous runtime exceeding 2

8

hours. It was completed in one semester and cost $180 to

produce, $70 under the maximum budget.

ACKNOWLEDGMENT

This project acknowledges Dr. Rama Ramakumar for his
guidance and expertise in the preparation and execution of our
project. We also would like to thank, Dr. Krasinski, Dr.
Hutchens for their help in the design of the filter.

REFERENCES

[1] "Miles to Meters (m) - How many meters in a mile ?",

Asknumbers.com,2017.[Online].Available:http://www.as

knumbers.com/MilesToMeters.aspx. [Accessed: 29- Apr-

2017].

[2] MACS-007801-0M1RM0, 1st ed. MACOM, 2017, p. 1.

[3] "Crypto Shield Hookup Guide - learn.sparkfun.com",

Learn.sparkfun.com, 2017. [Online]. Available:

https://learn.sparkfun.com/tutorials/crypto-shield-hookup-

guide/maxim-integrated-ds3231m-real-time-clock.

[Accessed: 29- Apr- 2017].

[4] Single/Dual/Quad, 28Mhz, Low-Noise, Low-Voltage,

Precision Op Amps. 1st ed. 2009. Web. 4 May 2017.

[5] ARTICLES, TECHNICAL et al. "Teardown Tuesday:

Radar Gun". Allaboutcircuits.com. N.p., 2017. Web. 4

May 2017.

[6] "ArduinoFFT - Open Music Labs Wiki",

Wiki.openmusiclabs.com, 2017. [Online]. Available:

http://wiki.openmusiclabs.com/wiki/ArduinoFFT.

[Accessed: 04- May- 2017].

[7] Blog.arduino.cc. (2017). Arduino Blog » Nice drawings of

the Arduino UNO and Mega 2560. [online] Available at:

https://blog.arduino.cc/2011/01/05/nice-drawings-of-the-

arduino-uno-and-mega-2560/.

[8] 7805 Datasheet. (2004). 1st ed. [ebook] Texas Instruments

Incorporated. Available at:

https://www.sparkfun.com/datasheets/Components/LM78

05.pdf.

[9] Arduino Uno Drawing. (2013). 1st ed. [ebook] Available

at: http://www.krekr.nl/wp-

content/uploads/2013/08/Arduino-uno.pdf.

[10] 2017. [Online]. Available:

https://www.limpkin.fr/public/HB100/HB100_Microwave

_Sensor_Application_Note.pdf. [Accessed: 04- May-

2017].

APPENDIX

APPENDIX A.

 Filter/Amplifier Schematic

APPENDIX B.

9

Theoretical Frequency Response of the Filter/Amplifier Circuit

APPENDIX C..

Code_With_Button.ino

 1 /*

 2 * Runs FHT with real data. When button pressed, Records max freq bin.

 3 * Outputs the freq and speed when button is released

 4 * Author: James Touthang

 5 */

 6

 7 // Definitions

 8 #define LOG_OUT 1 // use the log output function

 9 #define FHT_N 256 // set to 256 point fht

 10

 11 // Libraries

 12 #include <FHT.h> // include the library

 13 #include "Wire.h"

 14 #include "Adafruit_LiquidCrystal.h"

 15

 16 Adafruit_LiquidCrystal lcd(6, 2, 4);

 17

 18 // Optimizing Variables for better reading

 19 int max_mag = 160; // magnitude of bin threshold, anything above gets stored as max

 20 int bin_multiplier = 146.05; // samplerate/fht. bin multiplier

 21 //--

 22

 23 double highest_freq = 0; // Storing the highest Frequency

 24 int buttonState = HIGH; // button state is initialized as "pressed"

 25

 26 // custom Character

 27 byte arrow1[8] = { 0B10000,0B11000,0B11100,0B11110,

 28 0B11100,0B11000,0B10000,0B00000 };

 29 byte theo[8] = { 0b00000,0b01110,0b10001,0b10001,

10

 30 0b01110,0b00000,0b11111,0b00000};

 31 byte theS[8] = { 0B01110,0B11011,0B10000,0B11100,

 32 0B00111,0B10001,0B11011,0B01110};

 33 byte theu[8] = { 0B00000,0B11111,0B00000,0B10001,

 34 0B10001,0B10001,0B01110,0B00000};

 35

 36 double toMilesPerHour(double dopplerFreq){

 37 /*Doppler Formula

 38 // Transmitting Frequency = 24.125 GHz

 39 // Speed of light = 299,792,458 m /s

 40 // 3600 sec in 1 hour

 41 // 1609.34 meters in 1 mile

 42 */

 43 return (dopplerFreq * 299792458.0 * 3600.0) / (2.0 * 24125000000.0 * 1609.34);

 44 }

 45

 46 double toKilometersPerHour(double dopplerFreq){

 47 return (dopplerFreq * 299792458.0 * 3600) / (2.0 * 24125000000.0 * 1000);

 48 }

 49

 50 // method to get max of two values.

 51 int maxValue(int x, int y){

 52 if(x >= y) return x;

 53 return y;

 54 }

 55

 56 // method to account for the bouncing during the button press.

 57 boolean debounceButton(boolean state){

 58 boolean stateNow = digitalRead(9);

 59 if(state!=stateNow){ // if buttonState and digitalRead is diff, it delays for 10ms

 60 delay(10); // waits 10 ms to to account for the bouncing

 61 stateNow = digitalRead(9);

 62 }

 63 return stateNow;

 64 }

 65

 66 void setup() {

 67 Serial.begin(115200); // use the serial port

 68 pinMode(9,INPUT); // Button

 69 lcd.begin(16, 2); // LCD Initialization

 70 lcd.setBacklight(HIGH); // LCD Backlight

 71 lcd.createChar(1, arrow1); // saves custom char to address 1

 72 lcd.createChar(2, theo); // saves custom char to address 2

 73 lcd.createChar(3, theS); // saves custom char to address 3

 74 lcd.createChar(4, theu); // saves custom char to address 4

 75 TIMSK0 = 0; // turn off timer0 for lower jitter

 76 ADCSRA = 0xe5; // set the adc to free running mode

 77 ADMUX = 0x40; // use adc0

 78 DIDR0 = 0x01; // turn off the digital input for adc0

 79 }

 80

 81 void loop() {

 82 while(1) { // reduces jitter

 83 cli(); // UDRE interrupt slows this way down on arduino1.0

 84 for (int i = 0 ; i < FHT_N ; i++) { // save 256 samples

 85 while(!(ADCSRA & 0x10)); // wait for adc to be ready

 86 ADCSRA = 0xf5; // restart adc

11

 87 byte m = ADCL; // fetch adc data

 88 byte j = ADCH;

 89 int k = (j << 8) | m; // form into an int

 90 k -= 0x0200; // form into a signed int

 91 k <<= 6; // form into a 16b signed int

 92 fht_input[i] = k; // put real data into bins

 93 }

 94

 95 fht_window(); // window the data for better frequency response

 96 fht_reorder(); // reorder the data before doing the fht

 97 fht_run(); // process the data in the fht

 98 fht_mag_log(); // take the output of the fht

 99 sei(); // sets back interrupt

 100

 101 // Writes to Serial to show graphic spectrum analyzer

 102 Serial.write(255); // send a start byte

 103 Serial.write(fht_log_out, FHT_N/2); // send out the data

 104

 105 /*

 106 * fht_log_out[i],

 107 * i is the frequency bin

 108 * fht_log_out[i] is the magnitied

 109 * frequency: f(i) = i * sample_rate / FHT_N

 110 * sample_rate = 16 Mhz / some prescaler

 111 */

 112 int largest_index = 0;

 113 int last = 0;

 114 for (byte i = 6; i < FHT_N/2; i++) { // iterates through each bin and if is the largest it stores it.

 115 if(fht_log_out[i] >= max_mag) {

 116 largest_index = i;

 117 }

 118 }

 119 last = largest_index; // sets the last largest_index

 120

 121 // takes the two values and gets max and multiplies by a multiplier to get freq

 122 double cur_freq = maxValue(last,largest_index) * bin_multiplier;

 123

 124 // sets the highest_freq during reading to get the maximum value

 125 if(cur_freq > highest_freq) {

 126 highest_freq = cur_freq;

 127 }

 128

 129 // Code for button pressed. Sets the highest_freq to 0 and display words

 130 if(debounceButton(buttonState)==HIGH && buttonState == LOW){

 131 highest_freq = 0;

 132 lcd.setCursor(0,0); lcd.print("Collecting.. ");

 133 lcd.setCursor(0,1); lcd.write(1);lcd.write(1);lcd.write(1);lcd.write(1);lcd.print(" ");

 134 lcd.write(2);lcd.write(3);lcd.write(4);lcd.print(" ");

 135 lcd.write(1);lcd.write(1);lcd.write(1);lcd.write(1);

 136

 137 buttonState = HIGH; // after exetuing all LoW states, set ButtonState to HGIH

 138 }

 139

 140 // Code for when button released. prints the data to lcd

 141 else if (debounceButton(buttonState)==LOW && buttonState == HIGH){

 142 //lcd.setCursor(0,0); lcd.print(highest_freq); lcd.print(" Hz ");

 143 lcd.setCursor(0,0); lcd.print(toMilesPerHour(highest_freq)); lcd.print(" MPH ");

12

 144 lcd.setCursor(0,1); lcd.print(toMilesPerHour(highest_freq)*1.61); lcd.print(" km/hr ");

 145 buttonState = LOW; // after executing all HGIH states, set ButtonState to LOW

 146 }

 147 }// end of while

 148 }

Source Code for Arduino Uno

13

APPENDIX D.

Gantt Chart

14

APPENDIX E.

Block Diagram

