

FPGA NES

Alex Underwood

Brandon Wong

Clay Patterson

Daniel Bothwell

Oklahoma State University

College of Electrical and Computer Engineering

Capstone Design

Abstract (Alex)
The Nintendo Entertainment System (NES) is Nintendo’s 1980-era console that paved the
way for the gaming industry over the following decades. The FPGA NES is a senior project
that aims to seamlessly recreate the original NES using SystemVerilog while updating the
audio and video outputs to a modern interface. The system’s functionality was broken out
into 3 major subsystems (the CPU, the APU, and the PPU) and put on a development board.
In the end, the system was recreated to meet all initial specifications we set for ourselves
while also implementing additional mappers to allow more than 500 games to be played.

1

Abstract (Alex) 1

Introduction (Clay) 3

Project Specifications (Daniel) 4

CPU (Daniel) 5

APU (Clay) 8

PPU & VGA (Brandon & Alex) 10

Controllers (Alex, Brandon, & Clay) 12

Cartridge and Mappers (Alex) 13

Potential Improvements (Clay) 16

Conclusion (Daniel) 16

Acknowledgements (All) 17

References (All) 18

Appendix I - Code 19

Appendix II - Pictures 19

2

Introduction (Clay)

In 1985 Nintendo released a revolutionary gaming console called the NES (Nintendo
Entertainment System). The NES was the first true color console to be released, and
featured a 6-bit color scheme. This, coupled with other state of the art features, led the
console to sell millions of units and become one of the most emulated consoles in history.

The FPGA NES aims to recreate the original feel of the NES while also improving the
outputs to modern interfaces. Using Xilinx’s Vivado, SystemVerilog instructs the compiler
on how to synthesize the design. The program then creates the digital logic gates and
places/routes them to make an actionable circuit.

For the project we selected Digilent’s Zybo Zynq-7010 Development board due to the
onboard FPGA’s capabilities as well as the peripheral connections it had available. The
Zynq-7010 integrates a dual-core ARM processor with a Xilinx -7 FPGA which allowed for
in-depth debugging of the design’s operation.

The project was divided into three major subsystems with two additional sections that
were worked on in unison. These components are the Central Processing Unit (CPU), Audio
Processing Unit (APU), and the Picture Processing Unit (PPU) along with the minor sections
being the Controllers and the Memory Mappers. The CPU takes the data from the cartridges
and converts it into actionable instructions that are passed through to the APU and PPU.
The APU takes these instructions and uses its four channels to produce 8-bit audio and the
PPU uses them to create the sprites and background to be outputted as a video signal.

3

Project Specifications (Daniel)

Figure(1) project specifications

4

CPU (Daniel)
The original CPU for the NES was based off of the MOS 6502. A child company called Ricoh
developed a modified version of the 6502 for use by Nintendo. The original 6502 has 256
opcodes; however, the Ricoh implementation for Nintendo only had 56, and of those 56, not
every one was used.

For this project, design of the CPU was crucial for further development of other key
systems. The CPU needed to have nearly perfect timing in order to properly interact the the
PPU, or else the system would fail. Therefore, it was key in the design of the CPU that the
original Ricoh 6502 design is followed. The block diagram used for the initial planning of
the development of the CPU is below in Figure().

Figure(2) Block diagram from Ricoh

 The first major implementation issue to address is the timing of the CPU. The original Mos
and Ricoh chips ran at 1.79 Mhz, which is not a native clock speed for our FPGA. Therefore,
a clock divider must be used. By taking a 100Mhz clock signal and dividing it by 56 (the
dividing factor used), a 1.785 Mhz signal can be reached. This speed, while not exactly
perfect, allows for a perfect timing implementation of the Ricoh 6502 on the FPGA. Now
that the timing of the CPU has been addressed, the logical components of the CPU can be
laid out.

5

A major step in completing the CPU involves defining all necessary inputs and outputs. The
major signals coming into the CPU are the Clock, Reset, Ready, NMI, NRES, NIRQ, and Data
signals. The Clock signal is exactly as it sounds, a 100Mhz system clock generated by the
FPGA is passed into the CPU to be divided by the internal clock divider designed. This can
be seen in the Verilog code listed in the Appendix. The reset signal is dictated by a button
located on the FPGA. When the button is pressed, a signal is sent into the CPU which resets
the state and cycle back to their initial ready states. The Ready signal is passed in to denote
when the CPU should begin its logic. For the CPU, the NMI signal, non-masking interrupt, is
a passive low signal used by the PPU. While for the PPU, the NMI is an output signal. The
PPU will send this signal when it needs to communicate with the CPU. The NRES signal,
reset interrupt signal, is an active low signal used similarly to the reset signal. The Data
signal is an 8 bit signal that brings in any incoming data the CPU needs. This can include
information from the cartridges, and other sources.

The major signals coming out of the CPU are Data, Address, and Read/Write signals. As the
most important signal of the CPU, the Data output bus is an 8 bit signal that sends the
calculations done by the CPU to all supporting components. Without this signal, the CPU
would do nothing. The Address bus signal dictates which registers the data is saved to. It is
a 16 bit signal due to all of the registers it must address. Lastly, the Read/Write signal is a
flag that denotes what state the CPU is in. It is a 1 bit signal.

Now that all of the input and output signals have been declared and defined for the CPU the
bulk of the CPU can be designed. Utilizing the block diagram, the CPU can be broken up into
a 7-stage pipeline, an ALU, registers, control logic, wire declarations, and opcode
declarations. The wire and opcode declarations need to be discussed first, as they are the
most numerous parts.

For the CPU, roughly 500 various wires and opcodes were declared. All registers must have
a Q and D wire in order to hold the data, which alone accounts for a large amount. The
opcodes used 139 wire declarations. While it was stated above that there are only 56
opcodes, each individual opcode can have a different addressing type. The addressing types
are absolute, immediate, zero page, and indirect. Once this is done the registers can be
created.

For the Ricoh and MOS 6502, there are three general purpose registers, along with
countless other registers for timing. Register A, the accumulator register, is used for
overflow detection. This register takes in the a signal from the adder, and outputs to both
the Status bus and Data bus if they buses are enabled. The X index register and Y index
register define the addressing type for the Status Bus. Outside of these three registers are a

6

grab bag of other registers used for data holding and timing. By following the datapath of
the block diagram in Figure(), all the wires defined d_name are the input wires for a
register, and all wires defined q_name are the output wires. Vivado synthesizes these wires
into registers automatically, therefore, register modules are not needed to be individually
created. Instead, by using logic blocks in the code Vivado will optimize the registers as seen
fit.

After the registers are done, the control logic and pipeline needs to be implemented. When
the cartridge or PPU sends a certain signal/instruction, the CPU will take that instruction
and determine the output signal based off of the control logic. Now that all parts of the CPU
have been discussed, the code can be written, synthesized, and tested.

Simulation and testing for the CPU was done via brute force methods. Initially, there was no
testing until the entire file had been written. From a top down approach, it seemed easiest
to get the entire CPU coded before testing. This caused a few issues due to mislabeled
wires; however, in the long run, it allowed for sanity to remain in check. Once the file had
no wire issues and was able to be simulated by ModelSim, the initial stages of testing could
begin. By simulating input logic of various possible instructions the CPU would receive, it
was possible to tell if the control logic was correct. Once manual ModelSim simulations had
been done, full scale testing using test ROMs needed to be done. The test ROM simulated
every aspect of the CPU, and tested for every possible instruction and opcode. The first trial
of this was a success, and allowed for the project to move forward.

7

APU (Clay)
The NES APU produces the sound for the system through a combination of the two pulse
channels, the triangle channel, and the noise channel. Through variable-rate timers and
modulators driven by the frame counter, each channel’s sound is fed to a mixer and then
output. The APU operates at the half the frequency of the CPU clock which is accomplished
through a simple counter to divide the CPU clock.

The top-level APU file is called by the CPU and takes the CPU clock, a reset, channel mute,
address in, data in, and a read/write control as inputs. In return, the CPU is given the
output of the pulse width modulation of the mixed signals, and a data out signal that
denotes which channels are active. Signals from the CPU instantiate each of the signals as
well as the frame counter which is used to drive the envelope, sweep, and length counters
in order to control the overall sound.

The pulse channel uses the envelope generator, a sweep-controlled timer and sequencer,
and then the length counter to send its sound to the mixer. The triangle channel takes a
timer output created through divisions of the CPU clock, modified by the linear and length
counters and sends it to the sequencer before the sound reaches the mixer. This
implementation had the triangle channel’s timer as a division of the CPU clock instead of
the APU clock. The noise channel takes a period input and produces the pseudo-random
noise through a look-up table which clocks a shift register.

Each channel is combined in the mixer which combines a division on the sums of the pulse
channels and a separate division on the triangle and noise channels and then uses pulse
code modulation (PCM) to create analog audio that is output to the 3.5mm jack.

Simulation and testing for the APU took place iteratively as each channel was written,
compiled and synthesized. The first channel created was the pulse channel, which is
stimulated through writes to 2 registers in memory. To test its functionality, Modelsim was
used to view the waveform after forcing the values it reads and then stepping through.
After verification, the other channels went through a similar process before the higher level
modules were constructed.

With the channels individually functioning, the higher level modules were written to
decode CPU instructions and control the overall pitch, length, and variation of the 4
channels’ sound. Successful simulation on Modelsim led to implementation on Vivado to
verify correctness audibly. Additionally, each channel’s 8-bit audio output was attached to

8

mute switches on the development board to allow for individual channel hearing tests.

To verify overall correctness of the APU, a combination test ROMs and aural tests were
utilized. The test ROMs allowed individual channel stimulation but side-by-side
comparison with Mesen proved to be the most valuable test because it allowed us to listen
to the differences and identify which portions of the signals were not correct. Once the APU
passed the aural comparison with Mesen, the section was deemed complete and work
transitioned to the controller and mappers.

9

PPU & VGA (Brandon & Alex)
The NES PPU, the Picture Processing Unit, was a chip developed in-house at Nintendo to
take the data from the CPU and use it to display video on an NTSC TV. The NES PPU creates
the images through a combination of different tables: nametables for the background and
sprites, and the attribute tables. The nametable for the background is responsible for
holding the data for the background of a frame and similarly the nametable for the sprites
holds the data for the sprites in a frame. The attribute tables holds the position of each
sprite and any data associated with the sprite like whether to render the sprite or the
background first. The PPU uses a multiplexer to determine which table should be outputted
to each pixel and then shifts this value out one bit at a time. The final output of the PPU is 6
bits which represent the colors that should be displayed on the screen.

The PPU interfaces with the CPU through two registers, the PPUADDR and the PPUDATA.
Due to this design, the CPU must output all data serially to the PPU, one byte at a time.
Furthermore, data is usually only be written during a period known as VBLANK, a period
of about 2250 clock cycles. The reason for this is so the data writes don’t mess up the
picture displayed on the screen. The period called VBLANK happens on pixels that are
outside the viewable area of the screen. While it is possible to write to the PPU during the
rendering of the frame, most games didn’t do this. For the couple of games that did
implement writing to the PPU during the rendering of the frame, it was up to the game
developers to solve the problem of the messed up pixels during the write.

One problem in designing the PPU was that it is hard to test standalone. In order to verify
that all the tables are being updated correctly and that the timing is correct, it needs to be
fed correct data from the CPU. Initially, a basic testbench was created that would test a
couple inputs to see if all the internal and outputted signals were correct, but this wasn’t
able to test the full module of the PPU. In order for full testing, the PPU had to be hooked up
to the CPU to properly test if the timing was correct and if everything was recreated
properly.

Once the CPU was completed, it was hooked up to the PPU to verify that both of those
modules were working as expected. We were able to take a NES ROM and use the binary
values as the input for the CPU like it would normally expect as a test vector in the
testbench. We were then able to compare the output of the PPU to the values of the PPU in
what is considered the best emulator, Mesen.

Once we were able to verify that the PPU was working correctly, we then focused on a way
to display those outputs on a screen. After reading a lot about the VGA interface, we were

10

able to create basic hardware that would take 6-bit values and upscale it to 16-bit color
before outputting each pixel to the screen. In order to display on monitors, the VGA
interface needs 25.175 MHz. The only clock value we could get was 25 MHz; although, the
VGA interface tends to be a little lax and our clock did work.

One key difference between the original NES PPU and our implemented version is the clock
speed. Our implementation runs at 100 MHz while the original ran at 5.37 MHz. The PPU
was intentionally clocked faster to allow for a better resolution of 512 x 480 over the
original of 256 x 240. Since reading the value from a register was not destructive, the VGA
module was able to read each value twice to double the resolution; this would double each
pixel and double each scanline.

11

Controllers (Alex, Brandon, & Clay)
The controllers for the FPGA NES use the original NES’s ports and interface with our
system through the PMOD pins. The output of the controller’s onboard shift register was
initially passed to the FPGA and then executed, however, after many revisions the
implementation was changed.

Initially, the controller’s data was passed straight into the joypad module which then fed
into a register for the CPU to see. This design passed simulation in Xilinx’s Vivado but failed
upon deployment presumably due to minute issues in timing. The result was that the end of
the shift register’s value was duplicated to the beginning, meaning that individual buttons
interfered with others when pressed. In our case, the A button would be triggered
whenever the right button was pressed.

To resolve this issue, as well as account for potential differences in third-party
manufacturer’s controllers, the onboard ARM processor is handed the controller’s data.
The value of the controller shift register would be clocked into the ARM processor through
GPIO pins. In the C program, each bit would have bitwise logic associated with it to ensure
that the shift register was outputting each button in the correct sequence, then the C
program would output a byte value with each bit representing the status of a different
button. This value was then fed into the register for the CPU to see.

12

Cartridge and Mappers (Alex)
NES Cartridges are what contained the games that the NES played. In terms of hardware, a
cartridge is essentially a large memory bank (usually Read-Only Memory, but this was not
always the case) divided into two parts: the Program ROM (PRG-ROM) and the Character
ROM (CHR-ROM). PRG-ROM stores data that the CPU will access such as the actual
instructions to execute the game as well as data the game will call on during runtime.
CHR-ROM stores commonly used graphic elements and is directly accessible by the PPU,
enabling this memory bank to hold commonly used backgrounds for quick reference
without requiring CPU intervention.

To emulate these memory banks in this project, the cartridge module uses the FPGA’s Block
RAM (BRAM) modules, which allow for the creation of highly scalable and resizable general
purpose memory chunks. When hard coding a game into the system, such as what was
done with Super Mario Bros for ease of both testing and demonstration purposes, the
values of locations in BRAM were preset to the data as would be found on the Super Mario
Bros game cartridge so the system initialized with the game loaded and ready to play. For
the microSD game-loading feature, the memory is initialized without a value and thus
generally contains all zero data values, which are quickly overwritten with the contents of
the microSD that contains the actual game cartridge data.

One major issue with the NES and its cartridges is the amount of available address space.
The NES CPU uses 16-bit memory addresses, giving the CPU access to 64KB of memory.
The first 32KB of the CPU address space is used for working space RAM for the CPU, PPU
register references, and control registers for using the APU and controllers. This leaves
only 32KB of memory space left for the PRG-ROM half of the cartridge, which acts as an
extension of the CPU’s memory by taking over the upper half of the CPU’s memory address
space. Games like Super Mario Bros, Donkey Kong, and Galaga use 32KB of PRG-ROM or
less work fine, but game developers at the time wanted to push the system further and get
even more complex games working.

To get around this memory limitation, the NES uses what are called “mappers”. A mapper
is a way putting a game with more than 32KB of PRG-ROM on a cartridge and then allowing
the CPU to interface with that larger memory by switching which 32KB of PRG-ROM is
visible by the CPU’s addressable memory space throughout the runtime of the game.
Mappers were added not by hardware in the NES itself, but by additional hardware located
in the cartridges. By instructing the CPU to write to the usually Read-Only Memory of the
cartridge, additional ICs on the cartridge such as shift registers could store address prefixes
that would be appended to the next memory read the CPU performs on the cartridge,

13

essentially allowing the CPU to construct addresses larger than 16 bits and therefore work
with even more memory than the system originally was intended to.

A similar situation exists with the CHR-ROM of the PPU. The PPU only allows for 8KB of
CHR-ROM so games that wanted more would have to use mappers as described above, only
this time the faster PPU was accessing the memory being swapped despite the slower CPU
issuing the swapping cartridge writes, requiring developers to carefully manage their
instruction timing when making games. To solve this, as well as make the CHR-ROM space
even more versatile, many mappers opted to replace all 8KB of the CHR-ROM with
CHR-RAM, meaning it was capable of holding whatever graphics information was
important at that moment during game runtime, rather than a static set of information held
constant throughout the game or bank-swappable at the CPU’s leasure.

One major issue of implementing these mappers on the FPGA stems from where the
mapper hardware was on the original NES: the cartridges themselves. Because this system
loads games off of a microSD, the microSD is incapable of containing the same
bank-switching hardware that an NES cartridge would. Thus, the implementation of the
NES running on the FPGA must contain the hardware for all possible mappers and switch
to the correct one at boot by reading additional data located in the header of the iNES ROM
files loaded off of the microSD card. From the user’s perspective this means nothing
noticeable, but within the FPGA is a large amount of mapper hardware that gets disabled
every time a game boots because the FPGA contains all possible supported mappers and
switches which one is active.

14

For this NES implementation, 3 major mappers are supported:
● NROM (Mapper #0)

○ Essentially “no mapper” mode, this is the mapper used when a game’s PRG-ROM
does not exceed 32KB in size and its CHR-ROM does not exceed 8KB in size nor use
a RAM module. With this setup, all of the game’s data fits in the default space the
CPU and PPU address spaces can handle and no bank-swapping is required.

● UxROM (Mapper #2)
○ This mapper used a single register that stored a 3-bit address prefix for use on every

read from the CPU to the PRG-ROM, allowing for up to 256KB of PRG-ROM data. By
writing data to the PRG-ROM, the value in the address prefix register would be
overwritten with the 3 least significant bits of the data being written, thereby
switching with 32KB bank the CPU could see. This mapper also used CHR-RAM
instead of ROM.

● AxROM (Mapper #7)
○ This mapper used a similar system to UxROM, but used the 4th bit of the 8-bit data

being written to the address prefix register to change the PPU mirroring settings.
Changing this setting on the fly, which is usually hardware-defined by the cartridge
connections, gave games that used this mapper to the ability to drastically change
their playstyles in between levels or segments of the game without using complex
and generally slow programming tricks.

With the mappers this system supports, the FPGA NES is capable of running over 500
officially licensed games.

15

Potential Improvements (Clay)
Future iterations of this project could include:

● More mappers to allow full support of the official NES game library
● Output to the HDMI video and audio standard
● Better resolution with a frame buffer
● Addition of on-system volume control
● More integration with the development board to allow selection of ROMs from

memory
○ This would require ARM code to allow for selection of which NES ROM to

load on boot.
● Video color palette options - to have the original color or more bright color
● Custom PCBs that do not rely on development boards for the peripherals

○ Would require rework of the SystemVerilog code as well as intensive
soldering for the FPGA

Conclusion (Daniel)
The final design implemented is a nearly identical recreation of the original NES. The CPU,
PPU, and APU all exactly portray the original hardware used on the NES, even down to the
glitches in the original system. Our implementation has virtually the same clock speed,
same controller input, and same game capabilities as the original NES. The only differences
are that our system outputs on modern output signals, and our system comes in a 3D
printed case.

In terms of design specifications, we met, if not exceeded, all expectations set for ourselves.
We have the functionality to play over 500 NES games through the swappable SD cards.
Our system outputs video over VGA, upscaling from 256x240 pixels to 512x480 pixels. We
have audio out over a 3.5mm headphone jack, which can output sound to any modern
speakers or headphones. All of these specifications were achieved through the design
process using Vivado and ModelSim, which checks off the last of our design specifications.

16

Acknowledgements (All)
The FPGA NES team would like to acknowledge Dr. Stine for being all-knowledgeable and a
deity to us throughout the project conception and design process.

Additionally the team would like to acknowledge Nintendo for creating a system and
allowing educational recreations of the hardware.

17

References (All)
Nesdev (wiki.nesdev.com)
Digilent Forums (forum.digilentinc.com)
Xilinx Forums (forums.xilinx.com)

18

Appendix I - Code
For code please refer to the Github repository located at https://github.com/BW0ng/FPGA-NES.

Appendix II - Pictures

19

https://github.com/BW0ng/FPGA-NES

