

Design of Engineering Systems I

Rogowski Coil Precision Current Sensor

Team #2
Wei Loon Chim
Patrick Johnson

Haley Welch

Spring 2018

Table of Contents:

Requirements: 2

Rogowski coil requirements: 2
Instrument requirements: 2
Other: 2

Specifications: 3
Rogowski Coil: 3
Filter System: 4
Analog to Digital Conversion: 5
Instrument: 5

Design: 6
Filter System: 6
Instrument: 7
Equipment Enclosure: 9

Performance: 9
Rogowski Coil: 9
Filter System: 9
Microcontroller: 10

Calibration and Results: 10

Volume Production: 11
Instrument Cost: 11
Coil Cost: 11
Beta Cost: 11
Production Run Cost: 11

Conclusion: 11

Appendix A 13

Appendix B 14

Appendix C 15

Appendix D 16

Appendix E 17

Appendix F 21

1

I. Requirements:

A. Rogowski coil requirements:
● Measurement range: 10 mA to 10 A

rms
● Accuracy: ±1% of true or better
● Bandwidth: -3 dB bandwidth, 30

Hz to at least 3 kHz
(normalized to 60 Hz)

● Reference frequency: 60 Hz, all
measurements

● Self-resonance: 30 kHz or
higher

● Diameter: Outside diameter no
greater than 4” (102
mm)

● Attachment: Capable of
installation without
disturbing power
conductors

● Must be securely shut when in place
● Coils must be freely interchangeable,

at least three per instrument
● Coils will contain internal ID code
● Calibration parameters, if needed,

will be stored in the coil assembly

B. Instrument requirements:

● Battery type/number: To be selected
by design team

● Power consumption: Can operate
from a single USB 3.0 port

● Instrument capable of operating as
USB-connected laptop accessory

● Instrument connections will define
primary and secondary coil ID

● Instrument will calculate:

○ primary and secondary rms
current

○ turns ratio based on current
readings.

○ transformer operating
efficiency from 0% to 100%
load in 10% increments
(resistive load)

● Maximum transformer load will be
an input parameter

● Instrument will display primary and
secondary rms current at all times

● Instrument will plot/display
transformer turns ratio and efficiency
curve on command

● Instrument will sample both coils
simultaneously at 10 ksps for
transient studies when initiated by
remote trigger

● The instrument will store,
graphically display, and transfer 5
seconds of transient data centered on
the trigger to an external computer
(file format .csv)

C. Other:

● Measure each coil for gain and phase
performance (relative to 60 Hz) from
30 Hz to 50 kHz. This information
must be available as a unique file
stored in the instrument

● Each team will develop their own
coil calibration apparatus and
technique.

● Operating temperature range is room
temperature (23±10 ⁰C)

● Cost estimates must address
○ 10 instruments for beta test

2

○ 100 instruments total
production run

○ 30 Rogowski coil assemblies
for beta test

○ 600 Rogowski coil
assemblies for total
production run

II. Specifications:

A. Rogowski Coil: Haley

The Rogowski coils made use clear vinyl
tubing to keep the shape, and magnet wire is
wrapped around the tubing. The constants
used for the coil calculations are μ0 =
1.25664*10-6 H/m and wire diameter =
431.8*10-6 m. The equation for mutual
inductance for a circular cross-section is
M21= H where N2 is the(a)2

μ N0* 2 + b − 2√ab
amount of turns in the coil, a is the inner
radius of the coil, and b is the outer radius of
the coil. The equation for self inductance for
a circular cross-section is L2 =

H where all of the(a)2
μ N0*

2
2 + b − 2√ab

variables are the same as before. The
equation for the signal at I current and f
frequency is V= volts.2πfM I)(21

● The first coil made has 480 turns, an
outer radius of 38.1*10-3 m, an inner
radius of 31.75*10-3 m, a mutual
inductance of 87.231*10-9 H, a self
inductance of 41.871*10-6 H, and a

signal of 328.854*10-6 V at 10A and
60Hz. This coil was not used as one
of the final three coils because the
signal is too low, and the wire
around the coil is too loose. The
diameter of the tubing used in the
center of the coil was doubled for the
good coils.

● The first good coil made has 504
turns, an outer radius of 50.8*10-3 m,
an inner radius of 38.1*10-3 m, a
mutual inductance of 288.748*10-9
H, a self inductance of 145.528*10-6
H, and a signal of 1.089*10-3 V at
10A and 60Hz.

● The second good coil made has 468
turns, an outer radius of 50.8*10-3 m,
an inner radius of 38.1*10-3 m, a
mutual inductance of 268.123*10-9
H, a self inductance of 125.482*10-6
H, and a signal of 1.012*10-3 V at
10A and 60Hz.

● The third good coil made has 478
turns, an outer radius of 50.8*10-3 m,
an inner radius of 38.1*10-3 m, a
mutual inductance of 273.852*10-9
H, a self inductance of 130.901*10-6
H, and a signal of 1.032*10-3 V at
10A and 60Hz.

The coils had 3D printed hooks and loops
glued into the tubing to keep the coils
securely shut when in place. Three
increasingly better designs were used for
this. The first design was used to see if the
basic idea was plausible. The next two
designs each added more points of contact
for security. The final design is shown
below.

3

B. Filter System: Patrick

As seen in the diagram, the filter will be
receiving a differential term of the current
carried by the wire, scaled by some M value
supplied by the parameters of the coil. The
job of the filter is four-fold.

1. Band pass filter to eliminate DC
signal noise as well as high
frequency noise created through the
self inductance of the coil. For this
stage the cut off frequencies selected
were 30 and 4000 HZ to meet the
specifications supplied to us. The
gain at this stage was selected to be
3.25 V/V or 10.23 dB.

2. An integrator to turn the differential
current term into a regular term for
current. This can be modeled as a
low pass filter to set the gain at lower
frequencies to be more reasonable.
The cut off frequency was selected to
be at 32.88 HZ. The gain of the low
pass filter was selected to be 10 V/V
or 20 dB. The integration takes place

at the falling edge of the bode plot,
so our integrable range was
estimated to be between 40-450 HZ.
Because 60 HZ was the calibration
frequency, the gain through this
stage was less than the expected 20
dB, but this was taken care of in the
calibration process.

3. A gain stage to ensure the output
signal has a high enough amplitude
to be accurately sampled by the
analog to digital converter. The trick
here is selecting a high enough gain
to be accurate through the ADC, but
not too much to go over the VREF of
5V given by the ADC. We treated
these numbers as calibration
constants more than theoretical
values, and therefore they were
obtained through empirical studies.
The gain for the first channel was
selected to be 151 V/V or 43.52 dB.
The gain for the second channel was
selected to be 69.18 V/V or 36.67
dB.

4. A passive high pass filter on the
output of the system to ensure the
removal of any DC offset or noise
going into the analog to digital
converter. Ast his stage is passive, it
does not provide any gain to the
overall system and will not be
included in the gain calculations.
This stage came about as a result of
experimentation in order to fix the
DC offset seen by the ADC.

The total gain of this system for the first
channel at 30 HZ was 4,875 V/V or 73.76
dB. The total gain of this system for the

4

second channel at 30 HZ was 2215.9 V/V or
66.91 dB. The operational amplifier selected
for this design was the single channel
LM-741 chip which had a gain-bandwidth
product of 1 MHZ, but was cascaded
through four chips, so the GBP was
increased to allow for the gain we needed
over the entire range of 400 HZ.

C. Analog to Digital Conversion:
Patrick

The Arduino Uno used to collect and display
the data has an internal analog to digital
converter with a resolution of 10 bits. The
reference voltage supplied by the Arduino is
5V, giving us a bit resolution of 4.88 mV
per bit. Because the specifications stated the
instrument must measure the current within
1% accuracy, the minimum required voltage
coming from the filter system is 488 mV.
The expected minimum voltage coming
from the 1.098*10^-6 V, meaning the
minimum amount of gain required for
accuracy is 444,444.4 V/V. Because this is
too much for our op amps to handle, the
minimum measurable current was shifted
from 10 mA to 1 A. This brings the
minimum required gain down to 4,444.4
V/V which is below our gain stage amount.
Raising the minimum required measurable
current also means the necessity of a
variable gain stage is deprecated, as the
entire spectrum of possible frequencies will
be measurable through the system.

D. Instrument: Wei Loon

Arduino UNO R3 is an open-source
microcontroller board based on the
ATmega328P microcontroller and
developed by Arduino.cc. This board is
equipped with sets of digital and analog
input/output pins that can be interfaced to
various expansion boards and other circuits.
It is programmable with the Arduino
Integrated Development Environment via a
type-B USB cable. It can be powered by a
USB cable or by an external 9 volt battery,
though it accepts voltages between 7 and 20
volts. The ATmega328 on the Arduino UNO
R3 comes preprogrammed with a bootloader
that allows to upload new code to it without
the use of an external hardware programmer.
It communicates using the original STK500
protocol.

With the calibration constant determined,
both primary current and secondary current
can be determined by

VIprimary, f = c1, f primary, f + c2, f

VIsecondary, f = c3, f secondary, f + c4, f

Where is frequency, and are thef c1, f c2, f
determined calibration constants at different
frequency for primary coil calculation, and

 and are the determined calibrationc3, f c4, f
constants at different frequency for
secondary coil calculation.

To determine the maximum current of both
primary and secondary, the instrument is
capable to capture 5,000 samples and pick

5

the largest value among these 5,000 samples
before show any value on the LCD display.

The turns ratio can be calculated with the
following formula:

urns RatioT = Imax, primary

Imax, secondary

The efficiency can be calculated with the
following formula:

f f iciency(%) 00%E = Rload
V primary

× Iprimary

I2
secondary × 1

III. Design:

A. Filter System: Patrick

1.

2.

3.

6

4.

5.

For full system schematic, see appendix F.

B. Instrument: Wei Loon

The Arduino UNO R3 can interface with 16
by 2 LCD display with the following circuit
setup in schematic form:

Figure 1 shows schematic of Arduino UNO

R3 with 16 by 2 LCD display

The code along with its description, see
Appendix A.

For full codes for this project, see Appendix
E.

The Arduino UNO R3 can read analog value
from an analog signal circuit and convert it
into digital reading with the built-in Analog
to Digital Converter (ADC). The ADC has a
bit resolution of 4.9 mV per bit, as it is a
10-bit ADC, and the reading range is from 0
to 5 V. With that say, the Arduino UNO R3
can read analog signal from instrumental
amplifier and integrator circuit, and with
conversion and current calculation, the
maximum current value at certain period can
be determined.

7

The circuit setup in schematic form is shown
below:

Figure 2 shows schematic of Arduino UNO

R3 with instrumental amplifier and
integrator circuit

The code along with its description, see
Appendix B.

For full codes for this project, see Appendix
E.

To control the readings shown on display, a
circuit with buttons is required without
re-upload code with different variables
everytime. In this project, three buttons are
used to change calibration constants and
frequency, change screen content, and start
recording value and save it into file in Excel
format.

Each button performed the following
actions:

● Calibration constants and frequency
○ When frequency of the input

signal is given, toggle the
button and change the
frequency mode between 50
Hz, 60 Hz, and 400 Hz.

○ With the given frequency
mode, the calibration
constants will also change
accordingly with the
frequency mode, so that the
calculation would be
accurate.

● Switching screen content
○ When the Arduino UNO R3

boot up, the LCD display
would show the primary and
secondary current in ampere.

○ When the button is triggered,
the LCD display would show
coil turn ratio and efficiency
in percentage. When the
button is triggered again, the
LCD display would show the
primary and secondary
current in ampere again.

● Start recording value and save it into
file in Excel format

○ When the Arduino UNO R3
boot up, recording button is
disabled until any value
shows on the LCD screen.

○ When the button is triggered
at the first time, the Arduino
UNO R3 will send an
instruction to a program call

8

gobetwino, (see details in
Appendix C) which will open
an existing format Excel file
and ready to write value on it.

○ When the button is triggered
again, the Arduino UNO R3
will send analog values with
calculation result, along with
other constant (such as input
voltage, load resistor) to the
Excel file and save it.

○ The circuits is shown below:

○
Figure 3 shows schematic of

Arduino UNO R3 with
buttons circuit

○ The code along with its
descriptions, see Appendix
D.

○ For full codes for this project,
see Appendix E.

C. Equipment Enclosure: Haley

An enclosure was created to house the
equipment. It was made of cardboard and
hot glue. Its dimensions are 9in x 12in x 3in.

A picture of this is shown below. The
rectangular cutout on the top is for the LCD
display. The two square cutouts on the sides
are for the cord and wires to fit through.
This enclosure helps keep everything
together.

IV. Performance:

A. Rogowski Coil: Haley

Coil was constructed to be within 4”
diameter and had a self resonance of higher
than 30 kHz. Coils had their own ID code
given by the color of hooks attached on the
end to indicate different parameters.
Calibration parameters were stored in the
microcontroller, not the assembly. Coil
remained securely fastened throughout the
duration of the test.

B. Filter System: Patrick

Had a experimentally obtained bandwidth of
33-4020 Hz, only a small amount off of the
theoretical bandwidth in the schematic. This
could be attributed to many factors, most
notably the hardware tolerances. DC noise

9

was almost completely attenuated through
the use of the final high pass filter stage.
Two 9 V batteries were used to obtain ±9 V
as the rails for the system. Output voltages
ranged from 0 V to 3.83 V based on an input
of 500 mA to 8 A to be fed into the
microcontroller.

C. Microcontroller: Wei Loon

Able to be powered by 8 AA batteries held
together by a battery pack. Power
consumption did not exceed USB 3.0
interface. Instrument was able to calculate
primary and secondary rms current and be
within 5% true accuracy for a range of
500mA - 8A. Instrument was able to display
turns ratio and efficiency on command by
way of pressing an external button to switch
frames on the LCD module. Instrument was
able to sample at the required 10ksps by way
of scheduled interrupts through the adc.
Instrument was able to write data (efficiency
or transient) to excel file upon trigger via an
external button and plot the data as well.

V. Calibration and Results: Haley

In order to take precise measurements, each
coil had to be calibrated due to the slight
differences between the coils. First, each
coil’s readings at different voltages and
frequencies were compared to the actual
currents at those voltages and frequencies by
plotting them. This created nine graphs with
the actual currents at one frequency along
the x axis and the measured values along the
y axis. Then the trendline for each graph
was found. These equations were

programmed in so that the correct equation
is used for each coil for each frequency. For
each equation, x is the raw reading, and y is
the calibrated reading. The equations are
below.

Coil 1:

Frequency (Hz) Calibration Equation

50 y = 2.289x + 0.4144

60 y = 2.0201x + 0.4078

400 y = 1.4094x + 0.4491

Coil 2:

Frequency (Hz) Calibration Equation

50 y = 4.4448x + 0.7846

60 y = 4.0824x + 0.6871

400 y = 2.8814x + 0.733

Coil 3:

Frequency (Hz) Calibration Equation

50 y = 3.4108x + 0.6616

60 y = 3.046x + 0.6262

400 y = 2.173x + 0.5586

After this calibration, the competition was
completed. A table showing the results is
below.

10

Reference (A) Reading (A) Error (%)

6.65 6.74 1.35

3.57 3.67 2.80

5.45 5.66 3.85

2.67 2.7 1.12

4.18 4.31 3.11

1.844 1.94 5.21

VI. Volume Production: Patrick

A. Instrument Cost:

1x Arduino Uno - $22

1x USB cable - $3

1x 16 by 2 LCD Module - $10

4x Switch Buttons - $0.6

1x 10k Potentiometer - $1.11

10x LM741 Op-Amp - $6.02

6x Mini Breadboards - $10

2x 9v Battery - $5

8x AAA Battery - $3.20

Cardboard - $1.25

Wires - $2

Total : $64.18

B. Coil Cost:

Magnet Wire - $3

Tubing - $1.50

Plastic Hooks - $0.35

Super Glue - $0.20

Total - $5.05

C. Beta Cost:

10x Instruments - $641.80

30x Coils - $151.50

Total - $793.30

D. Production Run Cost:

100x Instruments - $6418.00

30x Coils - $3030.00

Total - $9448.00

VII. Conclusion:

The coil worked better than we had
anticipated at outputting the expected
voltages for the instrument to measure.
However, we encountered a large amount of
pesky DC noise that would not seem to go
away. If we had to do the project again, an
instrumentation amplifier would be a great
way to get rid of the common mode noise in
the system. Unfortunately in the beginning
the wrong instrumentation amplifier was
ordered and that was no longer an option.
This made things difficult when it came time
to send the signal over to the arduino’s built

11

in ADC because it was picking up the DC
offset that we could not see. Another thing
that went well was connecting the common
grounds, since nothing was destroyed in the
process. The microcontroller was a huge
success for us, but if we had to do the
project again we would be more inclined to
use a raspberry pi for the development kit as
it has more features that can be utilized by
the client. The arduino did everything we
needed it to, but the ability to remotely
graph data on a touch screen LCD module is
very enticing.

The cost calculations were made simply
with our raw design and no other
enhancements made outside. Some tweaks
that would bring down the cost would be to
use printed circuit boards as they are much
cheaper than mini breadboards, as well as
smaller op amp chips. Nothing can really be
done about the biggest costs in the system,
the arduino and LCD module. However,
reducing the costs of the other components
will greatly affect the production run cost.

12

Appendix A

This appendix describes the Arduino UNO
R3 with 16 by 2 LCD display. It requires a

 potentiometer and Arduino UNO R30 kΩ1
to complete the setup.

Here are the pin description of LCD display

❖ D4 to D7 pins
➢ Control content shows on 16

by 2 LCD display.
❖ Enable pin

➢ Enable features on LCD
display, so that the display
performed action (such as
read and write).

❖ VSS and VDD pins
➢ Power source for LCD

display
❖ V0 pin

➢ Connect with 0 kΩ1
potentiometer for adjusting
contrast of the LCD screen.

❖ RS pin
➢ Select registers between

instruction register and data
register

❖ R/W pin
➢ Read or write content from or

to LCD display, must be
work with enable pin.

❖ LED+/LED-
➢ Power for backlit screen.

Note: The LCD screen must be compatible
with Hitachi HD44780 controller.

Here is some of the code for LCD

#include <LiquidCrystal.h>
const int rs = 12, en = 11, d4 = 5, d5 = 4,
d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5 , d6 , d7);
…

void setup() {
 lcd.begin(16, 2);
}

void loop() {
 ...
}
...

13

Appendix B

This appendix describes how the Arduino
UNO R3 handle analog signal from
instrumental amplifier and integrator circuit.

Arduino UNO R3 features 6 channel 10 bit
ADC, however, in this project, only 2
channels are necessary.

Here are the pin required on Arduino UNO
R3:

❖ A0 pin
➢ The first analog pin for

reading primary coil voltage,
after process through
Arduino UNO R3 and
calculation, the maximum
current on primary coil can
be determined.

❖ A1 pin
➢ The second analog pin for

reading secondary coil
voltage, after process through
Arduino UNO R3 and
calculation, the maximum
current on secondary coil can
be determined.

❖ GND pin
➢ Connect the analog circuit

ground with Arduino UNO
R3 ground, so that they have
common ground.

Here is some of the code for analog reading

…
int analogValueZero = 0;
int analogValueOne = 0;
…

void loop() {
 …
 calculation();
 ...
}

void calculation() {
 …
 analogValueZero =
analogRead(pinAnalogZeroOutputSignal);
 analogValueOne =
analogRead(pinAnalogOneOutputSignal);
 …
}

14

Appendix C

This appendix describe an external program
gobetwino.

This program is kind of a “generic proxy”
for Arduino, which only run on Windows
operating system. It will act on behalf of
Arduino and do some of the things that
Arduino can’t do on its own.

It can listen on the serial port, for commands
coming from Arduino, and in response it
will perform action for Arduino and possibly
return action to Arduino.

It defines a set of command types that can
be used as templates to create actual
commands. Arduino can as gobetwino to
execute these commands, and return
something to Arduino.

Here is the list what gobetwino can do in
this project:

❖ Start Excel program on the PC.
❖ Send data to Excel from Arduino,

like it was typed on the keyboard.

Here is some of the code where gobetwino
takes place:

void efficiencyTableButton() {
 /* Start Excel for efficiency table */
 if(!flag) {
 Serial.println("#S|SPTXT|[]#");
 delay(1000);
 flag = true;
 }
 else {
 char buffer[15];

 Serial.print("#S|SENDK|[");

 Serial.print(itoa((pID), buffer, 10));
 Serial.print("&");
 Serial.print(itoa((trial + 1), buffer, 10));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((voltageP), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((loadR[trial]), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((currentP), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((currentS), 1, 3,
buffer));
 ...

15

Appendix D

This appendix describe the button circuits. It
requires resistor and button with Arduino
UNO R3 to complete the setup.

Here are the pins required from Arduino
UNO R3:

❖ Digital pin 6
➢ This pin is set to control

frequency mode with
associated calibration
constants when the button is
triggered.

❖ Digital pin 8
➢ This pin is set to control the

screen content when the
button is triggered.

❖ Digital pin 9
➢ This pin is set to control the

command is sent to program
gobetwino and perform data
record and save.

Here is some of the code of button circuit

…
if(digitalRead(pinEfficiencyTable) ==
LOW) {
 lcd.clear();
 lcd.setCursor(2, 0);
 lcd.print("Write data to");
 lcd.setCursor(5, 1);
 lcd.print("table");
 delay(500);
 lcd.clear();
 efficiencyTableButton();
 }
...
if(digitalRead(pinSwitchFrequency) ==
LOW) {

 delay(50); // software debounce
 frequency = (frequency + 1) % 3;

 lcd.clear();
 lcd.setCursor(3, 0);
 lcd.print("Frequency");
 lcd.setCursor(5, 1);
 if(frequency == 0) {
 lcd.print("50 Hz");
 }
...

16

Appendix E

This appendix shows all the source code for
Arduino UNO R3. Comments are attached
on necessary line for better understanding of
each function.

#include <LiquidCrystal.h>

const int rs = 12, en = 11, d4 = 5, d5 = 4,
d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5 , d6 , d7);

const int pinEfficiencyTable = 6; // write
all data to file in table form
const int pinDataRecordButton = 7; // start
or stop record transient data, directly write
to file
const int pinSwitchFrame = 8; // show
between turn ratio/efficiency and currents
const int pinSwitchFrequency = 9; //
toggle three constants between frequency
50Hz, 60Hz, and 400Hz
const int pinAnalogZeroOutputSignal = 0;
// A0
const int pinAnalogOneOutputSignal = 1;
// A1
const int arrayLength = 128;
const int pID = 0;
const float voltageP = 120.0;
const float loadR[11] = {5.0, 2.5, 1.667,
1.25, 1.0, 0.8333, 0.714, 0.625, 0.556, 0.5,
0.333};
const float constFrequencyP1[3] = {2.289,
2.0201, 1.4094};
const float constFrequencyP2[3] =
{0.4144, 0.4078, 0.4491};
const float constFrequencyS1[3] =
{4.4448, 4.0824, 2.8814};
const float constFrequencyS2[3] =
{0.7846, 0.6871, 0.733};

float currentP = 0.0;
float currentS = 0.0;
float turnsRatio = 0.0;
float efficiency = 0.0;
float dataCurrent[arrayLength];
int analogValueZero = 0;
int analogValueOne = 0;
int frequency = 0;
int frame = 0;
int trial = 0;
bool pushed = false;
bool flag = false;
bool flag2 = false;

void setup() {
 /* 57600 Serial for data transfer purpose
*/
 Serial.begin(57600);

 /* Initialize necessary I/O */
 pinMode(pinEfficiencyTable, INPUT);
 pinMode(pinDataRecordButton,
INPUT);
 pinMode(pinSwitchFrame, INPUT);
 lcd.begin(16, 2);

 /* Initialize array */
 for(int i = 0; i < arrayLength; i++) {
 dataCurrent[i] = 0.0;
 }
}

void loop() {
 calculation();

 if(digitalRead(pinEfficiencyTable) ==
LOW) {
 lcd.clear();
 lcd.setCursor(2, 0);
 lcd.print("Write data to");
 lcd.setCursor(5, 1);
 lcd.print("table");
 delay(500);

17

 lcd.clear();
 efficiencyTableButton();
 }

 // Start record once button is pushed, and
stop record once button is pushed again
 if(digitalRead(pinDataRecordButton) ==
LOW) {
 delay(10); //software debounce
 pushed = !pushed;
 lcd.clear();
 lcd.setCursor(5, 0);
 lcd.print("Record");
 delay(500);
 recordButton();
 }

 // Switch display from current to ratio &
eff
 if(frame == 0) {
 frameOne();
 if(digitalRead(pinSwitchFrame) ==
LOW) {
 delay(10); // software debounce
 frame = 1;
 lcd.clear();
 }
 }
 else if(frame == 1) {
 frameTwo();
 if(digitalRead(pinSwitchFrame) ==
LOW) {
 delay(10); // software debounce
 frame = 0;
 lcd.clear();
 }
 }

 // Toggle constant associated with
respective frequency
 if(digitalRead(pinSwitchFrequency) ==
LOW) {
 delay(50); // software debounce
 frequency = (frequency + 1) % 3;

 lcd.clear();
 lcd.setCursor(3, 0);
 lcd.print("Frequency");
 lcd.setCursor(5, 1);
 if(frequency == 0) {
 lcd.print("50 Hz");
 }
 else if(frequency == 1) {
 lcd.print("60 Hz");
 }
 else {
 lcd.print("400 Hz");
 }

 delay(500);
 lcd.clear();
 }
}

void frameOne() {
 // Display primary and secondary current
 lcd.setCursor(0, 0);
 lcd.print("Primary: ");
 lcd.print(currentP);
 lcd.setCursor(0, 1);
 lcd.print("Secondary: ");
 lcd.print(currentS);
 delay(250);
}

void frameTwo() {
 // Display turn ratio and efficiency
 lcd.setCursor(0, 0);
 lcd.print("Ratio: ");
 lcd.print(turnsRatio);
 lcd.setCursor(0, 1);
 lcd.print("Efficient: ");
 lcd.print(efficiency);
 lcd.print("%");
 delay(250);
}

void efficiencyTableButton() {

18

 /* Start Excel for efficiency table */
 if(!flag) {
 Serial.println("#S|SPTXT|[]#");
 delay(1000);
 flag = true;
 }
 else {
 char buffer[15];

 Serial.print("#S|SENDK|[");
 Serial.print(itoa((pID), buffer, 10));
 Serial.print("&");
 Serial.print(itoa((trial + 1), buffer, 10));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((voltageP), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((loadR[trial]), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((currentP), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((currentS), 1, 3,
buffer));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((efficiency), 1, 3,
buffer));
 Serial.print(" {DOWN} ");
 Serial.print(" {LEFT} {LEFT}
{LEFT} {LEFT} {LEFT} ");
 Serial.println("]#");
 delay(100);

 Serial.print("#S|SENDK|[");
 Serial.print(itoa((pID), buffer, 10));
 Serial.print("& ");
 Serial.print("%Fs");
 Serial.println("]#");
 delay(750);

 trial = trial + 1;
 }
}

void recordButton() {
 if(!flag2) {
 /* Start Excel for transcient data */
 Serial.println("#S|SPXL|[]#");
 delay(1000);
 flag2 = true;
 }
 else {
 char buffer[32];

 for(int i = 0; i < arrayLength; i++) {
 dataCurrent[i] =
(analogRead(pinAnalogOneOutputSignal)
* (5.0 / 1023.0)) *
constFrequencyS1[frequency] +
constFrequencyS2[frequency];
 }

 for(int i = 0; i < arrayLength; i++) {
 Serial.print("#S|SENDK|[");
 Serial.print(itoa((pID), buffer, 10));
 Serial.print("&");
 Serial.print(itoa((i), buffer, 10));
 Serial.print(" {TAB} ");
 Serial.print(dtostrf((dataCurrent[i]), 1,
3, buffer));
 Serial.print(" {DOWN} ");
 Serial.print(" {LEFT} ");
 Serial.println("]#");
 delay(10);
 }

 Serial.print("#S|SENDK|[");
 Serial.print(itoa((pID), buffer, 10));
 Serial.print("& ");
 Serial.print("%Fs");
 Serial.println("]#");
 delay(750);
 }
}

void calculation() {

19

 /* First sample 5000 of voltage value for
primary and secondary,
 then compare with previous value to
determine maximum value. */

 int count = 5000;
 float maximumCurrentZero = 0.0;
 float maximumCurrentOne = 0.0;

 while(count > 0) {
 /* Read data from circuit */
 analogValueZero =
analogRead(pinAnalogZeroOutputSignal);
 analogValueOne =
analogRead(pinAnalogOneOutputSignal);
 float sampleZero =
constFrequencyP1[frequency] *
(analogValueZero * (5.0 / 1023.0)) +
constFrequencyP2[frequency];
 float sampleOne =
constFrequencyS1[frequency] *
(analogValueOne * (5.0 / 1023.0)) +
constFrequencyS2[frequency];

 /* Compare current maximum value
with current analog value */
 if(sampleZero > maximumCurrentZero)
{
 maximumCurrentZero = sampleZero;
 }

 if(sampleOne > maximumCurrentOne)
{
 maximumCurrentOne = sampleOne;
 }

 /* Reduce count by 1 */
 count = count - 1;
 }

 /* Record the maximum current value
and reset count value */
 currentP = maximumCurrentZero;

 currentS = maximumCurrentOne;

 /* Calculate efficiency */
 efficiency = ((loadR[trial] / voltageP) *
((currentS * currentS) / currentP)) * 100;

 /* Calculate turn ratio */
 turnsRatio = currentS / currentP;
}

20

Appendix F

21

22

