
1

LOW VOLUMETRIC FLOW RATE INJECTION SYSTEM

Sponsored by:

National Science Foundation

Dr. Brian Elbing
Mechanical and Aerospace Engineering

Oklahoma State University

Prepared by:

Sarah Bonk, Team Lead
Erin Peterson

Melissa Duncan
Alec Barker

May 10, 2017

ii

CONTACT INFO

Dr. Brian Elbing (Project Sponsor)
Phone: 405-744-5900
Email: elbing@okstate.edu

Sarah Bonk (Team Lead)
Phone: 918-408-7321
Email: sbonk@okstate.edu

Alec Barker
Phone: 405-401-0724
Email: alecsb@ostatemail.okstate.edu

Melissa Duncan
Phone: 405-760-8519
Email: melissa.duncan@okstate.edu

Erin Peterson
Phone: 918-978-0516
Email: erin.peterson@okstate.edu

mailto:elbing@okstate.edu
mailto:sbonk@okstate.edu
mailto:alecsb@ostatemail.okstate.edu
mailto:melissa.duncan@okstate.edu
mailto:erin.peterson@okstate.edu

iii

ABSTRACT
Current research is being studied in polymer drag reduction within a turbulent boundary
layer. This research requires precise control of the volumetric flux of solution injected into a
developing boundary layer. Because of significant uncertainty in the current system, a critical
need exists for an improved injection system that is both mobile and has a wide range of
operation. This project includes the design and construction of a mobile syringe pump system
that has a mobile platform, digital control of the injection rate, ability to operate over a wide
range of volumetric injection fluxes, and can be used with water and polymer solutions. The
system design consisted of fluid flow analysis, sizing a motor, design of the system
components, and digital controls. The system was tested to verify the flow rates that could be
achieved. This calibration found the maximum achievable flow rate to be 8𝑄𝑠. Additional
calibration will be done to the system once the system construction is finalized.

iv

TABLE OF CONTENTS
Contact Info …………………………………………………………………………………...… ii

Abstract …………………………………………………………………………………………. iii

Table of Contents ……………………………………………………………………………….. iv

Nomenclature ………………………………………………………………………………….… v

Acknowledgements …………………………………………………………………………...… vi

1 Introduction ……………………………………………………………………………………. 1

2 Fluid Flow Analysis …………………………………………………………………………… 2

3 Motor ………………………………………………………………………………………...… 5

4 Digital Controls ……………………………………………………………………………...… 8

5 Machining …………………………………………………………………………………..... 16

6 Assembly ……………………………………………………………………………………... 25

7 Calibration ……………………………………………………………………………………. 26

8 Management Plan …………………………………………………………………………….. 27

9 Conclusions ………………………………………………………………………………...… 28

References ……………………………………………………………………………………… 29

Appendix A: Itemized Budget …………………………………………………………………. 30

Appendix B: Purchase Order ………………………………………………………………...… 31

Appendix C: Tolerances ……………………………………………………………………….. 32

Appendix D: Fluid Flow Calculations …………………………………………………………. 33

Appendix E: Motor Calculations ………………………………………………………………. 35

Appendix F: Syringe Calculations …………………………………………………………...… 36

Appendix G: Digital Controls Code – GUI ……………………………………………………. 37

Appendix H: Digital Controls Code – Program ………………………………………………... 40

v

NOMENCLATURE
𝐴 cross-sectional area of pipe

𝐴𝑟 seal area

𝑑 nominal major diameter

𝑑𝑚 mean diameter

𝐷 pipe diameter

𝐷𝑝 diameter of plunging rod

𝜀 roughness factor

𝐸 modulus of elasticity

𝑓 coefficient of friction

𝑓𝑐 friction from O-ring compression

𝑓ℎ friction from fluid pressure

𝑓∗ Fanning friction factor

𝐹 compressive force

𝐹𝑇 thrust force

𝐹𝐹 frictional force for O-ring

𝐹𝐶 seal compression force

𝐹𝐻 seal hydraulic compression friction

𝛾𝐷 shear rate

ℎ height

𝐼𝑦 moment of inertia about the y-axis

𝐾 loss coefficient

𝑙 lead

𝑙𝑝 length of plunging rod

𝐿 length of tube

𝐿𝑟 length of seal rubbing surface

𝑀𝑊 molecular weight of polymer

𝑁 threads per inch

𝑃 pressure

𝑝 pitch

𝜌 density

𝑄𝑚𝑎𝑥 maximum volumetric flow rate

𝑄𝑠 discharge per unit width

𝑟𝑖 syringe tube inner radius

𝑟𝑜 syringe tube outer radius

𝑟𝑝 radius of the plunging rod

𝑅𝑒 Reynolds number

𝜎𝑡 tangential stress

𝜎𝑟 radial stress

𝑡 syringe tube thickness

𝜏𝐷 shear stress at onset of degradation

𝑈 velocity

𝑈𝑚𝑎𝑥 maximum velocity

𝜈 kinematic viscosity

𝑉 velocity

vi

ACKNOWLEDGMENTS
This project was supported by the National Science Foundation. We thank Dr. Elbing for
giving us the opportunity to be a part of his research and for always providing his insight and
expertise.

We thank Dr. Taylor, Dr. Kidd, Dr. Conner, and Dr. Delahoussaye for their support of our
project, specifically with the digital controls, motor, and Solidworks. We also want to extend
a huge amount of gratitude to John Gage, if it weren’t for him the system would literally have
not been made.

1

1 INTRODUCTION
1.1 PROBLEM STATEMENT

Current research is being studied in polymer drag reduction within a turbulent boundary
layer. This requires precise control of the volumetric flux of solution injected into a
developing boundary layer. At this time, the rate is controlled and measured using a scale-
stopwatch-bucket system and pressure control to achieve the desired injection condition. This
introduces significant uncertainty in the injection rate and makes it nearly impossible to
repeat a desired condition. Because of this, there is a critical need for an improved injection
system that is both mobile as well as flexible in the range of operation.

1.2 DELIVERABLES
x Design and build a mobile injection system that includes

- Mobile platform
- Digital control of the injection rate
- Operation over a wide range of volumetric injection fluxes
- Use with water and polymer solutions

Figure 1 Mobile injection system created by the team.

2

2 FLUID FLOW ANALYSIS
The maximum volumetric flow rate that can be injected into the water tunnel without
degradation of the polymer solution was determined using a series of equations and assuming
the use of polymer WSR308 (worst case scenario). The molecular weight (𝑀𝑊) of polymer
WSR308 is 8*106 grams per mole. The shear rate (𝛾𝐷) was found using the equation

𝛾𝐷 = (3.23 ∗ 1018) ∗ 𝑀𝑊−2.2 (Winkel, 2009).

The resulting shear rate was calculated to be 2100 liters per second. The density (𝜌) and the
kinematic viscosity (𝜈) were based on the average conditions found in the Experimental Flow
Physics Laboratory and valued at 998 kg/m3 and 1.01*10-6 m2/s. The shear stress at onset of
degradation (𝜏𝐷) was found using the equation

𝜏𝐷 = 𝛾𝐷𝜌𝜈 (Elbing, 2009).

The Prandtl-von Karman equation is a function of the Reynolds number (𝑅𝑒) and the
Fanning Friction factor (𝑓∗). The Reynolds number was found using the pipe diameter (𝐷),
the velocity (𝑈), and the kinematic viscosity.

𝑅𝑒 = 𝑈𝐷
𝜈

 (Munson et al., 2013)

The Fanning Friction factor was found using the shear stress at the onset of drag reduction,
the density, and the velocity.

𝑓∗ = 2𝜏𝐷
𝜌𝑈2 (Elbing, 2009)

These equations were then plugged into the equation
1

√𝑓∗ = 4 log10(𝑅𝑒√𝑓∗) − 0.4 (Elbing, 2009).

By evaluating each side of this equation at increasing velocities, a convergence was found.
The velocity at which the two sides of the equation converge is the maximum velocity before
degradation will occur for the polymer solution.

The volumetric flow rate was found by using the maximum velocity (𝑈𝑚𝑎𝑥) and the tube’s
cross-sectional area (𝐴) in the continuity equation

𝑄𝑚𝑎𝑥 = 𝑈𝑚𝑎𝑥𝐴 (Munson et al., 2013).

The system was required to be able to inject fluid at the minimum and maximum injection
rates of 2𝑄𝑠 and 10𝑄𝑠, respectively. The discharge per unit width (𝑄𝑠) was found using the
equation

𝑄𝑠 = 67.3𝜈 (Wu, 1970).

To size the motor for the system, the force to overcome the initial pressure was needed. This
was found by first calculating the major losses using the equation

Δ𝑃 = 𝑓 𝐿
𝐷

𝜌𝑈2

2
 (Munson et al., 2013).

3

This pressure drop (Δ𝑃) equation used the length of the tube (𝐿), the friction factor (𝑓) found
in the Moody Chart at the roughness factor 𝜀/𝐷, and the Reynolds number. The equation
assumes that the syringe and flexible tubes are straight pipes. The minor losses for the system
were calculated using the equation

Δ𝑃 = 𝐾 𝜌𝑈2

2
 (Munson, 2013).

where 𝐾 is the loss coefficient for components in the system. For each syringe tube there is a
valve (𝐾 = 20), fittings (𝐾 = 0), and a carving (𝐾 = 1.7) (Munson, 2013). The total fluid
pressure (𝑃) acting on the brass stopper in the syringe was then determined by summing the
major and minor losses. For the fluid system pressure, 5 feet head of pressure was added due
to the height of the tubing feeding the fluid into the water tunnel. This sum was multiplied by
a magnitude of 4 to account for any pressure losses not considered and to provide a safety
factor.

The thrust force (𝐹𝑇) to overcome this pressure was found using the equation

𝐹𝑇 = 𝑃𝐴 (Munson, 2013).

The overall force to overcome the initial pressure was the sum of the thrust force and the
friction force caused by the O-rings on each stopper. The O-rings frictional force was
determined using equations

𝐹𝐶 = 𝑓𝑐𝐿𝑟

𝐹𝐻 = 𝑓ℎ𝐴𝑟

𝐹𝐹 = 𝐹𝐶 + 𝐹𝐻 (Parker)

In these equations the frictional force (𝐹𝐹) for a single O-ring is a function of the seal
compression force (𝐹𝐶), friction due to O-ring compression (𝑓𝑐), length of seal rubbing
surface (𝐿𝑟), seal hydraulic compression friction (𝐹𝐻), friction due to fluid pressure (𝑓ℎ), and
seal area (𝐴𝑟). Each of the components of the frictional force equation were found assuming
a 10% compression design, 0.5 O-ring material hardness, 20 psi fluid pressure, and O-ring
dash classification 330. The system will use a total of 8 O-rings. The resulting frictional force
for the 8 O-rings was added to the linear force to calculate the total force needed to overcome
the fluid pressure. The result was the force the motor needed to generate in order to
overcome the pressure acting on the system.

The calculated values can be seen in Table 1 and a detailed run through of the calculations
can be seen in Appendix D. The values in the table provided the basis for sizing the system.
Based on the calculations, the inner diameter of the syringe tubes was determined to be 2.5
inches. These calculations were only done with the assumption that the polymer solution
being used would consist of WSR308 at 1000 parts per million. Because of this, calculations
would need to be done for additional polymer solutions of different concentrations to check
that the force from the motor could still overcome pressure in the syringe tubes.

4

Table 1 Results from fluid flow calculations. All calculations based on the assumption that the polymer
solution used would be WSR308 at 1000 ppm.

5

3 MOTOR
3.1 MOTOR SIZING AND SELECTION

The torque required to push forward or pull back the four syringes determined the size of the
stepper motor needed. From the fluid flow approximations (§2, Table 1), the thrust force and
plunger friction force were used as the total compressive force needed to calculate the torque.
The thrust force for all four syringes is 282 pound-force and the plunger friction force for 8
O-rings is 157.2 pound-force. Adding the thrust force for the syringes to the friction force for
the O-rings determined the overall system force to be approximately 439 pound-force (values
based on a syringe with internal diameter of 2.5 inches). Power Screw Equations from
Shigley’s Mechanical Engineering Design were used to determine the raising and lowering
torque required. The raising torque was found using the equation

𝑇𝑅 =
𝐹𝑑𝑚

2
(

𝑙 + 𝜋𝑓𝑑𝑚

𝜋𝑑𝑚 − 𝑓𝑙
)

and lowering torque was found using the equation

𝑇𝐿 =
𝐹𝑑𝑚

2
(

𝜋𝑓𝑑𝑚 − 𝑙
𝜋𝑑𝑚 + 𝑓𝑙

)

These equations use thrust force (𝐹), mean diameter (𝑑𝑚), lead (𝑙), and the coefficient of
friction (𝑓). The mean diameter was determined using the nominal major diameter (𝑑) and
pitch (𝑝) of the lead screw.

𝑑𝑚 = 𝑑 −
𝑝
2

The pitch was calculated using the threads per inch (𝑁) in the following equation

𝑝 =
1
𝑁

Several iterations were done using a range of lead screw sizes to determine the best-fit lead
screw for the lowest raising torque required by the motor. A lead screw with a standard 5/8-
inch nominal major diameter and a total compressive force of approximately 440 pound-
force must receive a minimum torque of 40.3 pound-inches (645 ounce-inches) from the
stepper motor. With oversizing and a factor of safety used, the stepper linear actuator needed
was a NEMA 34. (An iteration of the calculations can be found in Appendix E).

A NEMA 34 Hybrid Linear Actuator was ordered from Anaheim Automation. The NEMA
34 provides a maximum force of 528 pounds. This force is 89 pounds greater than the
calculated thrust force (439 pounds) needed to move the four syringe systems. A lead screw
with a length of 18 inches and a diameter of 5/8 inches is included with the motor. Because
the motor had an estimated time of arrival of 30 days after purchase a NEMA 17 motor was
used as a stand-in. This stand-in motor allowed testing of the digital controls setup and
configuration until the NEMA 34 arrived.

6

3.2 LINEAR ACTUATION SYSTEM

Figure 3 shows the linear actuator configuration that was used with the NEMA 34 linear
actuator. In the configuration an aluminum bar is attached to two pillow block linear
bearings. These bearings are placed on linear mount shafts that are secured to the mobile cart

with shaft supports. The aluminum bar is connected to the syringe plunging rods and the
motor lead screw via a coupling. This configuration allows for smooth linear movement of
the syringe push and pull system.

The NEMA 34 Linear Actuator is a Non-Captive motor. Because of this, the lead screw must
be pinned to provide the appropriate force resulting in forward or backward motion. To
compensate for this the coupling rod will be pinned to the push bar using a ¼-inch bolt.
Because of the amount of force provided by the motor, it has to be secured to the mobile cart
for the system to operate correctly.

3.3 KEY DECISIONS

- To reduce the torque required by the stepper motor, a 5/8”-10 threads per inch 18-
inch long lead screw was selected.

- The NEMA 34 stepper motor provides more force than the system is calculated to
need, but it was chosen because the oversizing allows for a factor of safety to be
included.

Figure 3 Linear actuator configuration.

Figure 2 NEMA 34 Non-Captive Linear Actuator purchased from Anaheim Automation.

7

- The linear actuation system was designed to mate the motor with the syringe system.
- The lead screw of 18-inches in length was not long enough for the design of the

system so a couple was designed to give extra length.
- The NEMA 34 stepper motor chosen is a non-captive stepper motor. Because of this

the lead screw must be pinned to allow for actuation. This was done by pinning the
couple to the push bar.

- The NEMA 34 did not come with a motor mount so one was designed to secure the
motor to the mobile cart.

8

4 DIGITAL CONTROLS
The design of the digital controls component of the syringe pump system was largely
dependent on the limitations and requirements of the mechanical system. The execution of
the digital controls was a three-phase process.

4.1 PHASE I

The first phase included the selection of the controller, display interface, and basic
peripherals along with developing a basic design for the graphical user interface (GUI). The
microcontroller chosen was a Raspberry Pi. This microcontroller is a commonly used, user-
friendly device that is compatible with a small-scale stepper motor. It is a series of small
single-board computers that operates primarily Linux via Python 2 or Python 3. Because the
team had experience with Python as a programming language and Linux is compatible with
the Macintosh operating systems (the primary operating system used by the team) the
Raspberry Pi was the optimal choice for the microcontroller. To minimize the need for
updates and maintenance, a Raspberry Pi 3 Model B with corresponding 2.5 A Micro USB
power adapter was purchased.

A small touchscreen was selected in favor of a standard HDMI display, mouse, and keyboard
combination because it allowed for the minimization of cost while maximizing functionality.
The GUI was designed around the touchscreen capability, thereby eliminating the need for
additional peripherals. For development purposes, a mouse and keyboard were used.

For the GUI draft iterations, a Macbook Pro laptop computer was used in combination with
PyQt4 Designer and Spyder software. PyQt4 is a drag-and-drop widget design environment
that allows an operator to design a GUI visually rather than via the programming language.
Spyder is an integrated development environment (IDE) designed for use with the Anaconda
open-source distribution of the Python programming language. Several preliminary drafts of
the GUI were developed and modified based on feedback from Dr. Elbing. Draft revisions
included: repositioning the system “Exit” button so that it could not be accidentally clicked
by the user while adjusting the flow rate, rephrasing the names of the plunger preset positions
to clarify their functionality for the user, and resizing and rearranging all GUI components to
accommodate for the resolution of the selected hardware.

The touchscreen selected was a 7-inch Touchscreen Display designed by Raspberry Pi. A
black case was selected to allow for the Raspberry Pi to be affixed to the back of the selected
touchscreen display while neatly containing the display adapter board, jumper wires, and
ribbons. Power for the screen is supplied via jumper wires from the Raspberry Pi general-
purpose input/output (GPIO) pins to the GPIO pins on the display adapter board. The adapter
board converts the signals from the touch inputs received on the display to the display serial
interface (DSI) port on the Raspberry Pi via a DSI ribbon cable.

To boot an operating system (OS) on the Raspberry Pi, a 16 GB Micro SD card was selected
with the New Out Of Box Software (NOOBS) operating system manager pre-loaded. This
manager includes the operating system Raspbian for installation that can provide for the
basic programs and utilities for the Raspberry Pi. Raspbian was installed via NOOBS onto
the purchased MicroSD card.

9

Additional advances during this phase included: the use of Bash scripting to install an on-
screen keyboard, the use of Nano (the Linux command line text editor) to change the
orientation of the display output when booting up, and the development of the initialization
code necessary to add functionality to the GUI buttons, spin boxes, and displays.

4.2 PHASE II

The NEMA 34 stepper motor has specific requirements for the digital control system (Table
2). The manufacturer of the motor (Anaheim Automation) recommended the MBC12101
Stepper Driver (see Table 3 for specifications) to complement the NEMA 34 stepper motor.
This stepper driver receives pulses that will be generated by the Raspberry Pi to control the
magnitude and direction of the current flow to the motor. This current will dictate the speed
and direction at which the motor will turn the lead screw resulting in a specific flow rate
from the syringe pump.

The power for the motor is routed through and modulated by the driver. Because the
Raspberry Pi has a maximum voltage output of 5 volts, the DC voltage source for the motor
must be externally supplied rather than sourced from the Raspberry Pi. An external power
source was selected for the motor (PSA40V4A-1 Unregulated Open Frame Power Supply)
based on the recommendations of the manufacturer. This single-phase power supply receives
an alternating current at 60 hertz from a standard wall socket and can be set to output up to
40 volts.

Table 2 Specifications of the Anaheim Automation Hybrid Linear Actuator.

Table 3 Specifications for the Anaheim Automation Stepper Driver.

Table 4 Specification of the Anaheim Automation Power Supply.

10

A 10-key keyboard and lever actuating limit switches were purchased. The 10-key keyboard
resolves earlier concern of the practicality of implementing and debugging a full on-screen
keyboard while still providing a simple, user-friendly control interface. The lever-actuating
limit switches were selected instead of push-button switches because the functionality allows
for the switch to be placed out of the plane of motion (Figure 4). Because it is difficult to
determine the stopping rate of the motor for various stepping frequencies, it is simplest to
remove the limit switches from the plane of motion so that the moving plates of the syringe
pump system do not break the switches as the motor decelerates to a stop.

The finalized schematic for the circuit prototype can be seen in Figure 5. The power supply is
routed into the driver board instead of to the motor directly because it allows the driver to
modulate the power that the stepper motor receives based on the digital signals received by
the driver from the Raspberry Pi.

Figure 4 Shows a comparison of the switch configurations for lever-actuating (top) and push-button
(bottom) switches to show the positional freedoms of the lever-actuating limit switches.

11

When developing the circuit schematic, the allotment of the general-purpose input/output
(GPIO) pins on the Raspberry Pi was the first step. The Raspberry Pi 3 Model B has 40
GPIO pins that can be utilized as lines of digital control. These pins generally have no
predefined purpose and are set by the user to have either input or output functionality. For the
design of the system, it was advantageous to give consideration to some of the special
functions of particular pins because they could prove useful for interfacing with certain
components. For example, pin 12 on the pin-out of the Raspberry Pi 3 Model B is known as
GPIO 18 and was designed to have special output functionality that designates this pin as
ideal for pulse width modulation (PWM) applications.

PWM is a digital control technique that utilizes pulses of square waves to get analog results
out of a digital signal. The high end of the square wave effectively signifies “on” and the low
end signifies “off.” By varying the amounts of time that the signal spends in each position,
the square wave pattern can simulate voltages in between the high and low positions. The
“pulse width” is typically defined as the length of time that the signal spends in the “on”
position. This pin is ideal for sending the step pulses required to drive the motor. Other pins
provide specific voltage outputs (at 3.3 or 5 volts) or serve as grounds for the circuit design.

Figure 5 Finalized circuit schematic for the digital controls system. The schematic illustrates how the inputs and outputs of each
component interface with the other components in the system.

12

See Table 5 for a summarization of the allotment of pins from the Raspberry Pi to the various
components.

The motor driver requires three major input signals from the Raspberry Pi to provide control
of the stepper motor. These three inputs are referred to as “Clock,” “On/Off,” and
“Direction.” Each of these three inputs have a corresponding output that needs to be
grounded by one of the ground pins on the Raspberry Pi. The “Clock” input on the motor
driver will receive the PWM signal that will tell the motor the frequency of rotation. For
example, a signal with frequency of 1000 hertz corresponds to a motor output of 1000 steps
per second (a single step will result in a step angle of 1.8 degrees).

For the other two inputs, standard GPIO pins will be used to modulate the signals. The
“On/Off” input enables the motor or disables the motor depending on the presence of an
input signal. The “Direction” input tells the motor which direction to turn based on the input
signal i.e. if the presence of a signal tells the motor to turn the lead screw clockwise the
absence of a signal would result in a counter-clockwise rotation. See Figure 6 for an
illustration of the input signals for the “On/Off” and “Direction” inputs represented as square
waves being received from the GPIO pins

Table 5 Raspberry Pi pin-out allotments by function and component.

13

The configuration of the limit switch circuit was such that a 3.3 V source is applied to two
switches in parallel. Each switch then proceeds to a GPIO pin on the Raspberry Pi. As can be
seen in Figure 4, each line is routed through a resistor before proceeding to ground. These
resistors serve as pull-down resistors to keep the logic signal near zero when the switch is
open. When the switch is closed, the input voltage is able to send a signal (in the form of a
non-zero voltage “high” of approximately 3.3 V) to the GPIO pins. This indicates that the
moving plates affixed to the lead screw have reached a boundary and the motor can then be
disabled to stop the motion of the linear push bar. In the design of the Python code, the limit
switches circuit would have to be checked for a non-zero voltage signal iteratively as the
system was in operation.

They Python code written to serve the digital controls system runs an infinite while-loop that
continuously evaluates the circuit for alterations that would require a change in the system
behavior. A Python code with all system functions can be found in one script, while the
layout for the GUI is called in from another. For the GUI to work properly, both scripts have
to be located in the same folder. Figure 7 depicts a preview of the GUI that deploys on the
Raspberry Pi to provide the user with a simple interface by which to direct to actuation of the
syringe pump system. The GUI has a text input box that allows the user to specify the flow
rate in milliliters per second, a scroll box that can be used to designate the number of active
syringes, two radio buttons that define the direction of actuation, a “Run” button to activate
the system based on the inputs, a “Stop” button to deactivate the system, two present position
options that will automatically set the plungers to system extremes at a low displacement
rate, and an “Exit” button to terminate the program and cleanup the GPIO pin assignment.
The two Python scripts can be found in Appendices G and H.

Figure 6 Shows a square wave representation of the input signals for "On/Off" (top) and "Direction" (bottom).

14

4.3 PHASE III

The 8-lead wiring configuration needed to be shorted appropriately to accommodate for the
4-lead configuration of the motor driver terminal. Figure 8 depicts the wiring diagram for the
NEMA 34 hybrid linear actuator selected for the system. To short the wires to achieve the 4-
lead configuration, the White/Black wire was connected to the White/Orange wire and the
White/Red wire was connected to the White/Yellow wire. The black wire then corresponded
to the “A”-phase terminal on the motor driver while the orange wire corresponded to the
“A\”-phase terminal, the red wire corresponded to the “B”-phase terminal, and the yellow
wire corresponded to the “B\”-phase terminal.

Figure 7 The GUI design that displays via the Raspberry Pi.

Figure 8 The 8-lead wiring diagram for the Anaheim Automation Non-Captive
Hybrid Linear Actuator.

15

The motor was connected to the digital controls circuit assembly as indicated in Figure 5 and
tested independently of the syringe pump mechanical system to ensure that all wiring was
done correctly. While it appeared that the directional polarity of this motor behaved inversely
to that of the stand-in motor, the NEMA 34 operated as directed otherwise. The directional
polarity was resolved by switching the relationship between the high and low voltage signals
and corresponding output directions within the Python code. Further calibration will be
performed to define the relationship between a given input pulse frequency and the output
flow rate.

4.4 KEY DECISIONS

- The Raspberry Pi was selected as the control device for this project because the team
had previous experience with the programming language Python 2 and Linux is
highly compatible with the Macintosh operating system.

- A touchscreen was selected in place of a HDMI display, mouse, and keyboard
combination.

- A 10-key keyboard was selected to provide a simple, user-friendly control interface.
- Lever-actuating switches were selected instead of push-button limit switches because

their functionality allows them to be placed outside of the plane of motion.
- The allotment of GPIO pins on the Raspberry Pi was developed base on the

input/output signal requirements of each component’s terminals and their functions.
- An infinite while-loop structure was employed via the GUI to evaluate the system for

changes in the inputs to the controls while executing previous commands from the
user.

16

5 MACHINING
Parts that were machined include the syringe tubes, compression rods, brass stoppers, PVC
front/back blocks, linear push bar, and switch mounts. Prior to machining, tolerances were
calculated to ensure there would be enough clearance between parts for assembly. Because
the syringe tube, compression rods, and bolts diameters did not change, the tolerances for the
brass stoppers and PVC blocks were calculated based on the need to fit around or inside of
those diameters. Tolerances, nominal sizes, basic sizes, and actual sizes for each part
machined can be found in Appendix C.

5.1 SYRINGE TUBES

The syringe tubes were purchased as 2 clear cast acrylic tubes of 3 feet in length. Using a
DeWalt Single Bevel Sliding Compound Miter Saw with a standard carbide circular saw
blade, the 2 tubes were cut into 4 tubes of 15 inches in length.

5.2 BRASS STOPPERS

The brass stoppers were purchased as a foot-long piece of brass stock with a starting
diameter of 2.5 inches. This brass stock was cut into approximately 1.8-inch-long pieces
using a DoALL Horizontal Band Saw. The brass stoppers were faced down to have a final
width and diameter of 1.5 and 2.4 inches, respectively. This was done using a South Bend
14” Engine Lathe with a Single Point Brazed Carbide Tipped Tool Bit. Each side of the
stopper was faced off approximately 0.10 inches to give it a smooth finish, and then the
remaining length was taken off one side until the 1.5-inch width was reached. The diameter
was faced off using the same tool.

Each stopper has two grooves for O-rings to sit in. To create these grooves, a Retaining Ring
Grooving Tool was used. This tool had to be grinded down to fit the needed groove
dimensions for depth (radius of 0.15 inches) and width (0.21 inches).

Figure 9 Dimensions of syringe tubes.

17

A hole was drilled into the front face of the stopper to allow it to connect to a plunging rod.
The plunging rod is a 3/8 – 16 thread per inch stainless rod. To correctly drill a hole for the
3/8 – 16 thread per inch tap, a drill bit with a diameter of 5/16-inch was used to drill a hole

Figure 10 Outer dimensions of the brass stopper after machining.

Figure 11 Dimensions of the threaded hole cut in the center of the front face of the brass stopper.

18

with a diameter of 0.3125 inches and a depth of 0.5 inches. A 3/8 – 16 thread per inch tap
was used to create the threads in the hole. The tap was inserted into the hole while the
stopper was secured to the lathe in neutral gear. Then the stopper was placed in a vice and the
remaining threads were created by manual rotation.

5.3 PVC BLOCK FRONT/BACK

The PVC was purchased as one block with dimensions of 12x24x3 inches. It was cut into
two blocks with dimensions of 5x24x3 inches using a table saw. Each block was placed on
the work table of a Birmingham Milling Machine parallel to its x-axis. Using an edge finder,
the x and y axes were zeroed out from the top and left of the blocks. The block was then
moved into the correct (x,y) position and a 3/8-inch drill bit was used in the z-direction to cut
8 holes on each PVC block. These holes allowed for bolts to attach the PVC block to the
mobile cart.

Figure 10 Dimensions of the Front and Back PVC Blocks.

Figure 13 Dimensions of the 3/8 inch holes cut out from top to bottom on the PVC blocks.

Figure 126 Finished brass stoppers.

19

The same method and drill bit were used to make 6 holes of diameter 0.375 inches from front
to back. These holes were for the compression rods that were fixed with a nut on the front
side of the front block and the back side of the back block causing the PVC blocks to
compress and secure the syringe tubes.

Holes with a diameter of approximately 2.77 inches and depth of 1.5 inches were cut into the
back side of the front block and the front side of the back block to hold the syringe tubes. The
holes were started by using a ¾ inch end mill to drill down in the z-direction (at the correct
(x,y) location) to a depth of 1.5 inches. A boring bar was then used to widen the diameter of
each hole. Each pass of the boring bar widened the diameter by 0.01 inches. The (x,y)
location for the center point of each syringe hole was found by zeroing out the x and y axes
from the top and left of the block.

On the Front block, 4 holes were cut out to allow for the plunging rods to easily slide through
when pushing and pulling the brass stoppers. The same method was used to find the correct
(x,y) location and a 5/8-inch end mill was used to cut the hole through all material from front
to back.

Figure 7 Dimensions of the 3/8 inch holes cut from front to back on the PVC blocks.

Figure 15 Dimensions of the holes cut to fit the syringe tubes.

20

Holes were cut out on the Back PVC block to allow for the attachment of ¼ NPT Valves.
This was done by drilling through the block on the front face using a 7/16-inch drill bit and
tapping them using a ¼ NPT threaded tap to the depth of approximately 2/5-inch. On the
front opening of the valve holes, a ½-inch drill bit was used to smooth the edges allowing for
a smoother transition of the fluid from the syringe into the valve openings.

Figure 106 Dimensions for the holes cut on the Front PVC block to allow for the back and forth movement of the plunging rods.

Figure 87 Dimensions for the tapped holes for valve attachment on the Back PVC block.

Figure 98 Finished Front and Back PVC blocks.

21

5.4 LINEAR PUSH BAR

A push-bar for the linear actuation system was created from a bar stock of aluminum of the
size 3x24x3 inches. This was cut down first using a 1-inch end mill rougher to get it close to
the correct dimensions and then each side was finished off with a fly cutter. The fly cutter
was more precise in how much material it would shave off each pass giving each face a
smooth finish.

The push-bar was designed to sit on top of linear ball bearings that would allow it to move
forward and backward with little to no impedance. A ½-inch end mill was used to carve out
the ends of the bar to the correct x and z dimensions that would allow the bar to sit
appropriately on the bearings. Four ¼-inch holes were drilled on each end to secure the
bearings to the bar.

The linear push-bar connects the motor’s lead screw with the plunging rods of the syringes.
Holes for the lead screw and four syringe plungers were drilled from front to back using a
7/16-inch and ¾-inch drill bit, respectively.

Figure 119 Dimensions for the height, width, and length of the push bar.

Figure 13 Dimensions for ball bearing cutouts.

Figure 131 Dimensions for ball bearing attachment.

22

5.5 SWITCH MOUNTS

Mounts for the switches were made out of PVC. Using a saw each mount was cut to the
dimensions of approximately 1.5x2.5x1.5 inches. An end mill was used to carve out part of
the PVC to allow for clearance of the linear push bar and a 3/8-inch drill bit was used to drill
a hole into the platform to allow for attachment to the cart.

Figure 162 Dimension for syringe holes.

Figure 153 Dimension for lead screw hole.

Figure 144 Finished linear push bar.

23

5.6 COUPLING

To elongate the lead-screw a coupling was made. This coupling consisted of three parts: the
back coupling, front coupling, and coupling rod. The front and back coupling were made
from aluminum bar stock with an original length and diameter of 6 inches and 1 inch,
respectively. This was cut into two pieces using a band saw. The front couple was cut to the
dimensions of 3 inches and the back was cut to 0.5 inches. Using a lathe each was faced
down to the exact length.

To allow for the coupling rod to fit inside of the front and back couple, a 21/32-inch drill bit
was used to hollow the inside to an internal diameter slightly larger than the diameter of the
coupling rod. The coupling rod was cut to 5 inches in length using the band saw. All parts of

Figure 175 Front and Side views of the dimensions of the switch mounts.

Figure 197 Finished coupling. (Front piece on the left and Back piece on the right).

Figure 186 The coupling consisting of the back couple, coupling rod, and front couple (from left to right).

24

the coupling had holes drilled using a 9/32-inch drill bit in the vertical direction. These holes
lined up so that the coupling pieces could be connected.

5.7 COMPRESSION RODS

The rods used to compress the front and back PVC blocks together were originally 3/8-inch –
16 threads per inch by 2 feet long threaded rods. Using a single bevel sliding compound
miter saw with a high performance aluminum oxide blade, they were cut down to 20 inches
in length.

5.8 ADDITIONAL MACHINING

Additional machining needs to be completed to allow the system to be fully operational for
future use. This machining includes:

x Mount to secure the motor.
x Update linear push bar to allow for the couple to be pinned internally to it.
x Mount to hold the digital controls under the top shelf of the mobile cart.

Figure 20 Newly designed motor mount.

Figure 29 The updated pinning design for the push bar.

25

6 ASSEMBLY
All assembly took place in the Experimental Fluids Physics Laboratory at Oklahoma State
University (ATRC 150). The assembly occurred in four steps: syringes, linear actuation
system, motor, and digital controls.

Once components for each system were completed, securing them to the cart occurred. Holes
were drilled throughout the cart based on where each component needed to be placed through
the use of a DeWalt hand drill.

The first portion to be assembled was the syringe system. Gasket material was cut out and
placed on the interior syringe tube-hole sections in the PVC blocks, allowing for sealing of
the syringes. The front PVC block was secured to the cart initially, allowing for placement of
the syringe tubes. Stoppers with O-rings placed into their trenches were set at an equal
position into the tube so fluid would evenly be injected. A thin layer of Silicon grease was
placed on the stopper in between the two O-rings to provide assistance in the stopper’s ability
to move throughout the syringe. Plunger rods were secured into their threaded holes. Syringe
tubes with inserted plungers and plunger rods were placed into their perspective holes,
allowing for securing of the back PVC block. Valves were sealed using threaded seal tape
along each male and female sections, and secured into their threaded holes in the front PVC
block.

The second portion assembled was the linear actuating system. Supports for the rod the ball
bearings move linearly through were secured so that the motion paralleled the syringe tubes.
These were placed in a position close to the PVC block so that the motor would have room to
be mounted, as well as be able to achieve the full discharge of fluid from the syringe tubes.
Once the push-bar and ball bearings were placed into position, the coupling system for the
linear actuator was secured using nuts, bolts, and washers.

The next two sections assembled were the motor and digital controls. The motor mount was
secured to the motor and cart, allowing for testing to begin. Digital controls were previously
assembled, but were paired with the secured motor. Once all sections were assembled, initial
testing could begin.

Note: A user manual for the system will be created, in which will be detailed instructions on
how to assemble and disassemble the system.

26

7 CALIBRATION
An initial calibration of the system was done to evaluate the limits of the motor and verify
that the relationship between motor input frequency and plunging velocity was linear. The
calibration was done using a stopwatch and tape measure to measure the amount of time it
would take the plungers to move a distance of 1-inch. No fluid was used during this
calibration.

The cylindrical volume per inch was found to be 0.3217 liters using the equation

𝑉 = 𝜋𝑟𝑖
2ℎ.

This volume per inch was then divided by the time it took the plunger to move an inch to get
the injection rate in liters per second. Table 6 shows the resulting injection rates based on
various input motor frequencies and Figure 30 illustrates the relationship between the two.

Tests run with motor frequencies over 15,000 hertz caused the motor to stall and not actuate
the lead screw. Based on the results, the maximum attainable injection rate is 8𝑄𝑠. Possible
changes to the system will be implemented to allow the maximum injection rate to meet the
10𝑄𝑠 requirement.

Table 5 Calibration results from the testing of different motor input frequencies.

Figure 3021 Graphical representation of the relationship between input motor frequency and the resulting injection rate.

27

8 MANAGEMENT PLAN
8.1 COST

The budget for this project increased from $1500 to approximately $2600. This increase was
approved by Dr. Elbing. A summarized budget can be seen in Table 7 and a more detailed
itemized budget can be found in Appendix A.

8.2 SCHEDULE

The revised schedule can be seen in Figure 31. All tasks with the exception of calibrating the
system were complete by the deadline of May 10, 2017. The green light was given by Dr.
Elbing to calibrate the system after the overall due date for project completion. The
calibration is scheduled to be finished by May 17, 2017.

Table 6 Summarized budget for the major components of the system.

23-Jan 12-Feb 4-Mar 24-Mar 13-Apr 3-May
Project overview with Dr. Elbing

Research project
Syringe research (availibility, pricing, materials)

Develop Budget for 6 Syringe System
Sketch system componenets

Size Motor Based on Fluid Approximations
Prepare proposal presentation

Present proposal
Turn in the project propsal (final draft)

Revise Budget for 6 Syringe vs 4 Syringe
Revise Fluid Loss Approximations

SolidWorks System Design
Motor Sizing Approximations

Finalize Digital Controls Order
Digital Controls Parts Order

Revise All Calculations for 4 Syringe System
Assemble Digital Controller with Peripherals

O-ring/Plunger Force Approximations
GUI Development

Revise System for 2.5" Syringe Diameter
Progress report preparation

Present progress report #1
Submit progress report #1

Finalize Parts for 2.5" Syringe System
Finalize Motor Selection

Parts Order
Finalize Solidworks Designs
Manufacture Components

Stress Analysis
Design of Digital Controls Interface Components

Progress report preparation
Present progress report #2
Submit progress report #2

Hardware Assembly
Interface Hardware with Digital Controls

GUI Development
Revision Assembly

Create poster for MAE meeting presentation
MAE Industry Advisory Board Meeting Presentation

Final report and presentation preparation
Final presentation

Submit final report and logbooks
Calibrate and test the system

Figure 31 Schedule for the entirety of the project.

28

9 CONCLUSIONS
- The system was placed on a mobile cart to allow for mobility.
- The digital controls run through the Raspberry Pi were able to actuate the motor

correctly.
- The system was assembled and an initial calibration was done to see the relationship

between the input frequency and injection rate. Further testing needs to be done to
better define this relationship.

- Through the calibration the maximum injection rate was found to be 8𝑄𝑠.
- Changes will be made to the assembly and digital controls to complete the system.
- A user manual will be created to allow for ease of use for future users.

29

REFERENCES
Budynas, Richard G., J. Keith. Nisbett, and Joseph Edward. Shigley’s Mechanical Engineering

Design. 10th ed. New York: McGraw-Hill, 2011.

Elbing, et al. “Degradation of Homogeneous Polymer Solutions in High Shear Turbulent Pipe
Flow”. Experiments in Fluids. Pgs. 1033-1041. 2009.

http://www.americanfastener.com/tap-and-drill-size-chart/

Munson, Okiishi, Huebsch, Rothmayer. Fundamentals of Fluid Mechanics 7th Ed. Pgs. 200-
728. John Wiley & Sons Inc. 2013.

Parker Engineering. “Friction Estimate”. https://www.parker.com/literature/O-
Ring%20Division%20Literature/Static%20Files/frictionestimation.pdf (Accessed March
3, 2017).

Virk, P.S., and H. Baher. “The Effect of Polymer Concentration on Drag Reduction.” Chemcial
Engineerin Science, 25(7): 1183-1189.

Winkel, et al. “High-Reynolds Number Turbulent Boundary Layer Friction Drag Reduction from
Wall-Injected Polymer Solutions”. Journal of Fluid Mechanics. Pgs. 259-273. 2009.

Wu & Tulin. “Drag Reduction by Ejecting Additive Solutions into a Pure-Water Boundary
Layer. Hydronautics Inc. Pg. 8. 1970.

http://www.americanfastener.com/tap-and-drill-size-chart/

30

APPENDIX A: ITEMIZED BUDGET

Table 7 Itemized budget for each system component.

31

APPENDIX B: PURCHASE ORDER

Table 9 Purchase order for system.

32

APPENDIX C: TOLERANCES

Table 10 Tolerances for machined parts.

33

APPENDIX D: FLUID FLOW CALCULATIONS
Onset of drag reduction was found using the equation

𝛾𝐷 = (3.23 ∗ 1018) ∗ 𝑀𝑊−2.2

The molecular weight of WSR308 is 8,000,000 grams per mole.

𝛾𝐷 = (3.23 ∗ 1018) ∗ (8 ∗ 106)−2.2 = 2100 𝑙𝑖𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝜏𝐷 = 𝛾𝐷𝜌𝜈 = 2100(998)(1.01 ∗ 10−6) = 2.1 𝑃𝑎

Multiple iterations for the velocity were done by examining at which velocity the Prandtl-Von
Karman equation would converge.

1
√𝑓∗

= 4 log10(𝑅𝑒√𝑓∗) − 0.4

𝑅𝑒 =
𝑈𝐷
𝜈

=
0.73(0.0127)
1.01 ∗ 10−6 = 9.18 ∗ 103

𝑓∗ =
2τ𝐷

𝜌𝑈2 =
2(2.1)

998(0.73)2 = 0.00796

The maximum injection rate for the polymer was found by

𝑄𝑚𝑎𝑥 = 𝐴𝑈𝑚𝑎𝑥 = (1.267 ∗ 10−4)(0.73) = 0.0925 𝑙𝑖𝑡𝑒𝑟 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

The minimum and maximum injection rates desired were as follows

𝑄𝑠 = 67.3𝜈 = (67.3)(1.01 ∗ 10−6)(0.1524) = 0.0104 𝑙𝑖𝑡𝑒𝑟 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 2𝑄𝑠 = 0.0208 𝑙𝑖𝑡𝑒𝑟 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 10𝑄𝑠 = 0.104 𝑙𝑖𝑡𝑒𝑟 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

The force to overcome the fluid pressure loss was solved by

Δ𝑃 = 𝑓 (
𝐿
𝐷

)
𝜌𝑈2

2

For syringe tube major losses at maximum injection rate 10Qs, volumetric flow rate is 1.04x10-4 m3/s,
diameter is 2.5 in or 0.06235 m, length is 0.3048 m, area is 0.00317 m2, viscosity is 1.01x10-6 m2/s, and
density is 998 kg/m3

→ 𝑉 = 𝑄
𝐴

= 1.04𝑥10−4

0.00317
 = 0.033 m/s

→ 𝑅𝑒 = 0.033∗0.0635
1.01𝑥10−6 = 2077

→ 𝑓 = 64
𝑅𝑒

= 64
2077

= 0.0308

→ ∆𝑃 = 𝑓 (𝐿
𝐷

) 𝜌𝑈2

2
= 0.0308 ∗ (0.3048

0.0635
) ∗ 998∗0.0332

2
= 0.079 Pa

34

For flexible tube major losses at maximum injection rate 10Qs, diameter is 0.5 in or 0.0127m, length is 3m,
area is 0.00013 m2, and absolute roughness of 0.07mm

→ 𝑉 = 𝑄
𝐴

= 1.04𝑥10−4

0.00013
 = 0.82 m/s

→ 𝑅𝑒 = 0.82∗0.0127
1.01𝑥10−6 = 10386

→ 𝜀
𝐷

= 0.07
12.7

= 0.0055

→ From Moody Chart at Reynolds number and roughness ratio: f = 0.031

→ ∆𝑃 = 𝑓 (𝐿
𝐷

) 𝜌𝑈2

2
= 0.031 ∗ (3

0.0127
) ∗ 998∗0.822

2
 = 2444 𝑃𝑎

(2990𝑃𝑎
𝑓𝑡)

= 0.817 ft

Δ𝑃 = 𝐾
𝜌𝑈2

2

For minor losses in the system at the maximum injection rate 10Qs, K=20 for valves, K=1.7 for carving,
and K=0 for fittings

→ ∆𝑃 = 𝐾 𝜌𝑈2

2
= (20 + 1.7) ∗ 998∗0.822

2
 = 7575 Pa = 7575 𝑃𝑎

(2990𝑃𝑎
𝑓𝑡)

= 2.533 ft

𝐹 = 𝑃𝐴

For total pressure in the system, total pressure drop due to major and minor losses is 3.35 ft, pressure drop
due to elevation change is 5 ft, sum of these two is 3.59 psi, and the safety factor included multiplied 3.59
psi by 4, resulting in 14.36 psi; cross-sectional area is 4.91 in2

→ 𝐹 = 14.36 ∗ 4.91 = 70.5 lbf

For four syringes 𝐹 = 282 lbf.

Solving for force required to overcome O-ring friction

𝐹𝐶 = 𝑓𝑐𝐿𝑟

From Parker Engineering for 10% compression and 50-hardness, friction due to O-ring compression is 0.5;
for 2.5” OD and 2.125” ID Dash 330 O-rings, length of seal rubbing surface is 6.67

 → 𝐹𝐶 = 𝑓𝑐𝐿𝑟 = 0.5 ∗ 6.67 = 3.335 lbf

𝐹𝐻 = 𝑓ℎ𝐴𝑟

From Parker Engineering for 20psi fluid pressure, friction due to fluid pressure is 12; for 2.5” OD and
2.125” ID Dash 330 O-rings, seal area is 1.36

→ 𝐹𝐻 = 12 ∗ 1.36 = 16.32 lbf

𝐹𝐹 = 𝐹𝐶 + 𝐹𝐻

 → 𝐹𝐹 = 3.335 + 16.32 = 19.655 lbf

For 2 O-rings per syringe or 8 O-rings for the entire system 𝐹𝐹 = 157.24 lbf.

35

APPENDIX E: MOTOR CALCULATIONS

The raising torque used to size the motor for the system was found using the equation

𝑇𝑅 =
𝐹𝑑𝑚

2
(
𝑙 + 𝜋𝑓𝑑𝑚

𝜋𝑑𝑚 − 𝑓𝑙
)

For the NEMA 34 Hybrid Linear Actuator, the lead and friction variables were based off
dimensions listed on the Anaheim Automation’s website. The lead (𝑙) was given as 0.1 inches
per revolution. The lead screw is made out of stainless steel and has a coefficient of friction (𝑓)
of approximately 0.25. The nominal diameter for the lead screw is 15.88 millimeters or 0.625
inches.

The threads per inch (𝑁) was calculated by counting the number of threads per inch of the lead
screw, it was approximately 10 threads per inch. Pitch was then calculated using the equation

𝑝 =
1
𝑁

=
1

10
= 0.1

𝑖𝑛𝑐ℎ𝑒𝑠
𝑡ℎ𝑟𝑒𝑎𝑑

Using the nominal major diameter and the pitch, the minor and mean diameters could be
calculated.

𝐷𝑚𝑖𝑛𝑜𝑟 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑚𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 𝑝𝑖𝑡𝑐ℎ = 0.625 − 0.1 = 0.525 𝑖𝑛𝑐ℎ𝑒𝑠

𝐷𝑚𝑒𝑎𝑛 = 𝑑𝑚 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑚𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 −
𝑝
2

= 0.625 −
0.1
2

= 0.575 𝑖𝑛𝑐ℎ𝑒𝑠

The total thrust force (𝐹) calculated in the fluid flow approximations was used to calculate the
raising and lowering torques.

𝑇𝑅 =
439.2(0.575)

2
(

𝑙 + 𝜋(0.25)(0.575)
𝜋(0.575) − (0.25)(0.1)) = 39.10 𝑙𝑏 𝑖𝑛 = 626 𝑜𝑧 𝑖𝑛

𝑇𝐿 =
𝐹𝑑𝑚

2
(

𝜋𝑓𝑑𝑚 − 1
𝜋𝑑𝑚 + 𝑓𝑙

) =
439.2(0.575)

2
(

𝜋(0.25)(0.575) − 1
𝜋(0.575) + 0.25(0.1)) = 24.24 𝑙𝑏 𝑖𝑛 = 388 𝑜𝑧 𝑖𝑛

The raising and lowering torques were converted into ounce-inches and were used with the total
thrust force to size a motor for the system.

36

APPENDIX F: SYRINGE CALCULATIONS
Calculating syringe tube thickness:

𝑃 = 14.4 𝑝𝑠𝑖

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
𝑟𝑎𝑑𝑖𝑢𝑠𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

=
𝑡
𝑟𝑖

=
0.25
1.25

= 0.2

(𝜎𝑡) = 𝑃 (
𝑟𝑜

2 + 𝑟𝑖
2

𝑟0
2 − 𝑟𝑖

2) = 14.4 (
1.3752 + 1.252

1.3752 − 1.252) = 151.54 psi

(𝜎𝑟) = −𝑃 = −14.4 𝑝𝑠𝑖

The chosen material was clear cast acrylic plastic. It has an outer diameter of 2.75 inches, an
inner diameter of 2.5 inches, and a tensile strength of 8,000 psi.

8,000 𝑝𝑠𝑖 > 151.54 𝑝𝑠𝑖

Because of this the 0.25-inch thickness tube satisfied the design requirements.

Calculating diameter of syringe plunging rods:

𝐹 = 439.2 𝑙𝑏𝑓

𝑙𝑝 = 24 𝑖𝑛

𝐸𝑠𝑡𝑎𝑖𝑛𝑙𝑒𝑠𝑠 𝑠𝑡𝑒𝑒𝑙 = 28𝑒6

𝐷𝑝 =
3
8

 𝑖𝑛

Using the equation

𝐹 =
𝑛𝜋2𝐸𝐼𝑦

𝑙𝑝
2 = 439.2 =

4𝜋2(28 ∗ 106) (
𝜋𝑟𝑝

4

4)

242

Where

𝐼𝑦 =
𝜋𝑟𝑝

4

4

𝑟𝑝 = 0.1306 𝑖𝑛

𝐷𝑝𝑚𝑖𝑛
= 2𝑟𝑝 = 0.2613 𝑖𝑛

Because 0.375 inches is greater than 0.2613 inches, the 3/8-inch diameter threaded rod of 18-8
Stainless Steel satisfied the design requirements.

37

APPENDIX G: DIGITAL CONTROLS CODE – GUI
-*- coding: utf-8 -*-

Form implementation generated from reading ui file 'GUI_Draft05.ui'

Created by: PyQt4 UI code generator 4.11.4

WARNING! All changes made in this file will be lost!

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 def _fromUtf8(s):
 return s

try:
 _encoding = QtGui.QApplication.UnicodeUTF8
 def _translate(context, text, disambig):
 return QtGui.QApplication.translate(context, text, disambig, _encoding)
except AttributeError:
 def _translate(context, text, disambig):
 return QtGui.QApplication.translate(context, text, disambig)

class Ui_Form(object):
 def setupUi(self, Form):
 Form.setObjectName(_fromUtf8("Form"))
 Form.resize(583, 361)
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 Form.setFont(font)
 self.DepressButton = QtGui.QPushButton(Form)
 self.DepressButton.setGeometry(QtCore.QRect(420, 10, 141, 61))
 self.DepressButton.setObjectName(_fromUtf8("DepressButton"))
 self.DrawBackButon = QtGui.QPushButton(Form)
 self.DrawBackButon.setGeometry(QtCore.QRect(260, 10, 141, 61))
 self.DrawBackButon.setObjectName(_fromUtf8("DrawBackButon"))
 self.label_2 = QtGui.QLabel(Form)
 self.label_2.setGeometry(QtCore.QRect(30, 30, 241, 21))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.label_3 = QtGui.QLabel(Form)
 self.label_3.setGeometry(QtCore.QRect(30, 90, 241, 16))
 self.label_3.setObjectName(_fromUtf8("label_3"))
 self.syringe_spinBox = QtGui.QSpinBox(Form)
 self.syringe_spinBox.setGeometry(QtCore.QRect(430, 80, 131, 31))

self.syringe_spinBox.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.
AlignVCenter)
 self.syringe_spinBox.setMinimum(1)
 self.syringe_spinBox.setMaximum(4)
 self.syringe_spinBox.setProperty("value", 4)
 self.syringe_spinBox.setObjectName(_fromUtf8("syringe_spinBox"))
 self.label_4 = QtGui.QLabel(Form)

38

 self.label_4.setGeometry(QtCore.QRect(30, 130, 241, 16))
 self.label_4.setObjectName(_fromUtf8("label_4"))
 self.RunButton = QtGui.QPushButton(Form)
 self.RunButton.setGeometry(QtCore.QRect(20, 230, 261, 61))
 self.RunButton.setObjectName(_fromUtf8("RunButton"))
 self.StopButton = QtGui.QPushButton(Form)
 self.StopButton.setGeometry(QtCore.QRect(300, 230, 261, 61))
 self.StopButton.setObjectName(_fromUtf8("StopButton"))
 self.ExitButton = QtGui.QPushButton(Form)
 self.ExitButton.setGeometry(QtCore.QRect(20, 310, 541, 41))
 self.ExitButton.setObjectName(_fromUtf8("ExitButton"))
 self.line = QtGui.QFrame(Form)
 self.line.setGeometry(QtCore.QRect(30, 290, 521, 16))
 self.line.setFrameShape(QtGui.QFrame.HLine)
 self.line.setFrameShadow(QtGui.QFrame.Sunken)
 self.line.setObjectName(_fromUtf8("line"))
 self.doubleSpinBox = QtGui.QDoubleSpinBox(Form)
 self.doubleSpinBox.setGeometry(QtCore.QRect(430, 120, 131, 31))

self.doubleSpinBox.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.Al
ignVCenter)

self.doubleSpinBox.setCorrectionMode(QtGui.QAbstractSpinBox.CorrectToNearestValue)
 self.doubleSpinBox.setMinimum(00.01)
 self.doubleSpinBox.setMaximum(20000.0)
 self.doubleSpinBox.setSingleStep(0.01)
 self.doubleSpinBox.setObjectName(_fromUtf8("doubleSpinBox"))
 self.Fill_radioButton = QtGui.QRadioButton(Form)
 self.Fill_radioButton.setGeometry(QtCore.QRect(260, 180, 121, 20))
 font = QtGui.QFont()
 font.setPointSize(14)
 font.setBold(True)
 font.setWeight(75)
 self.Fill_radioButton.setFont(font)
 self.Fill_radioButton.setObjectName(_fromUtf8("Fill_radioButton"))
 self.Fill_radioButton.setChecked(True)
 self.Empty_radioButton = QtGui.QRadioButton(Form)
 self.Empty_radioButton.setGeometry(QtCore.QRect(430, 180, 121, 21))
 font = QtGui.QFont()
 font.setPointSize(14)
 font.setBold(True)
 font.setWeight(75)
 self.Empty_radioButton.setFont(font)
 self.Empty_radioButton.setObjectName(_fromUtf8("Empty_radioButton"))
 self.label_5 = QtGui.QLabel(Form)
 self.label_5.setGeometry(QtCore.QRect(30, 180, 241, 21))
 self.label_5.setObjectName(_fromUtf8("label_5"))

 self.retranslateUi(Form)
 QtCore.QMetaObject.connectSlotsByName(Form)

 def retranslateUi(self, Form):
 Form.setWindowTitle(_translate("Form", "Syringe Pump Controls", None))
 self.DepressButton.setText(_translate("Form", "Emptied", None))
 self.DrawBackButon.setText(_translate("Form", "Filled", None))
 self.label_2.setText(_translate("Form", "Plunger position presets:", None))
 self.label_3.setText(_translate("Form", "Number of syringes:", None))

39

 self.label_4.setText(_translate("Form", "Desired flow rate per syringe (mL/s):",
None))
 self.RunButton.setText(_translate("Form", "Run", None))
 self.StopButton.setText(_translate("Form", "Stop", None))
 self.ExitButton.setText(_translate("Form", "Exit", None))
 self.Fill_radioButton.setText(_translate("Form", "Fill", None))
 self.Empty_radioButton.setText(_translate("Form", "Empty", None))
 self.label_5.setText(_translate("Form", "Direction to plunge:", None))

if __name__ == "__main__":
 import sys
 app = QtGui.QApplication(sys.argv)
 Form = QtGui.QWidget()
 ui = Ui_Form()
 ui.setupUi(Form)
 Form.show()
 sys.exit(app.exec_())

40

APPENDIX H: DIGITAL CONTROLS CODE – PROGRAM
-*- coding: utf-8 -*-
"""
Created on Mon Mar 6 15:45:48 2017

@author: erinpeterson
"""

"""
import modules
"""

import sys
import RPi.GPIO as GPIO
import time
from PyQt4.QtGui import QDialog, QApplication
from PyQt4 import QtGui, QtCore
from GUI_Draft06 import Ui_Form
#import numpy as np

"""
import I/O pin masks
"""
global flow, syringes, direction, clock, directionPin, enable, limitA, limitB

#all pin numbers based on setmode = BCM (not board)

clock = 18 #step signal to driver - "clock+"
directionPin = 23 #direction signal to driver - "direction+"
enable = 24 #enable signal for driver - "on/off+"
limitA = 17 #limit A GPIO hookup
limitB = 27 #limit B GPIO hookup

"""
Set up general purpose input/output
"""

GPIO.setmode(GPIO.BCM) #configure pin layout as BCM not board (personal preference)
GPIO.setwarnings(False) #ignore warnings and proceed with the program

GPIO.setup(clock, GPIO.OUT)
GPIO.output(clock, GPIO.LOW) #GPIO.LOW sets the present output to 0V
 #will later need to initialize this pin as PWM

GPIO.setup(directionPin, GPIO.OUT)
GPIO.output(directionPin, GPIO.LOW) #GPIO.LOW sets the present output to 0V

GPIO.setup(enable, GPIO.OUT)
GPIO.output(enable, GPIO.LOW) #GPIO.LOW sets the present output to 0V
 #the motor is now enabled (on)

GPIO.setup(limitA, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #GPIO.PUD_DOWN pulls the voltage
down if no signal

41

GPIO.setup(limitB, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #GPIO.PUD_DOWN pulls the voltage
down if no signal
 #GPIO.PUD_DOWN is a redundancy on
the pull-down resistors in the circuit

"""
Call up GUI for inputs
"""

class main_window(QDialog):

 #initialize the variables for the GUI
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB, freq,
pwm

 #set BCM pin numbers within class
 clock = 18 #step signal to driver - "clock+"
 directionPin = 23 #direction signal to driver - "direction+"
 enable = 24 #enable signal for driver - "on/off+"
 limitA = 17
 limitB = 27

 #initialize variables based on GUI default design settings
 flow = 0.01 #initial flow from GUI design (max is 200 for now)
 syringes = 4 #initial number of syringes from GUI design
 freq = flow #initialize a relationship between frequency and flow
 direction = GPIO.HIGH #set default direction to match default checked radio button
 pwm = GPIO.PWM(clock, freq) #initialize the pwm variable for reference

 def __init__(self):
 super(main_window,self).__init__()
 self.ui = Ui_Form()
 self.ui.setupUi(self)
 self.assign_widgets()
 self.show()

 def assign_widgets(self):
 self.ui.ExitButton.clicked.connect(self.close_application)
 self.ui.RunButton.clicked.connect(self.run)
 self.ui.StopButton.clicked.connect(self.stop)
 self.ui.DrawBackButon.clicked.connect(self.fill)
 self.ui.DepressButton.clicked.connect(self.empty)
 self.ui.doubleSpinBox.valueChanged.connect(self.flowset)
 self.ui.syringe_spinBox.valueChanged.connect(self.syringe_num)
 self.ui.Fill_radioButton.clicked.connect(self.CCW)
 self.ui.Empty_radioButton.clicked.connect(self.CW)

 def close_application(self):
 GPIO.cleanup()
 sys.exit()

 def flowset(self):
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 flow = self.ui.doubleSpinBox.value()
 #***need to define relationship between output flow and frequency setting***

42

 print(flow)

 def syringe_num(self):
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 #***can later calibrate this based off of flow rates from NEMA 34***
 syringes = self.ui.syringe_spinBox.value()
 print(syringes)

 def CW(self): #CW rotation corresponds to draw-back plunger motion
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 direction = GPIO.HIGH
 print("CW")

 def CCW(self): #CCW rotation corresponds to forward plunger motion
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 direction = GPIO.LOW
 print("CCW")

 def run(self):
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 print("run")

 #disable all "Run"-function buttons
 self.ui.RunButton.setEnabled(False)
 self.ui.DrawBackButon.setEnabled(False)
 self.ui.DepressButton.setEnabled(False)

 if (GPIO.input(limitA) == GPIO.LOW and direction == GPIO.HIGH):
 #if not already fully drawn back, and intended motion is to draw back (CW)
 GPIO.output(enable, GPIO.LOW) #enable the motor
 GPIO.output(directionPin, direction) #set the direction
 freq = flow #set the frequency as it corresponds to the flow given
 dutycycle = 50 #leave duty cycle at 50%
 pwm = GPIO.PWM(clock, freq) #redefine pwm output with set freq
 pwm.start(dutycycle) #start the pwm output
 print(freq)

 elif (GPIO.input(limitB) == GPIO.LOW and direction == GPIO.LOW):
 #if not already fully depressed, and intended motion is to plunge forward
(CCW)
 GPIO.output(enable, GPIO.LOW) #enable the motor
 GPIO.output(directionPin, direction) #set the direction
 freq = flow #set the frequency as it corresponds to the flow given
 dutycycle = 50 #leave duty cycle at 50%
 pwm = GPIO.PWM(clock, freq) #redefine pwm output with set freq
 pwm.start(dutycycle) #start the pwm output
 print(freq)

 else:
 print("Error: Improper input configuration.")
 self.stop

 #check to see if limit switches have been tripped

43

GPIO.add_event_detect(limitA, GPIO.RISING, callback = self.limA, bouncetime =
300)
GPIO.add_event_detect(limitB, GPIO.RISING, callback = self.limB, bouncetime =
300)

 def limA(self, event, names=None):
 print("Limit A tripped.")
 self.stop()

 def limB(self, event, names=None):
 print("Limit B tripped.")
 self.stop()

 def stop(self):
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 print("stop")

 #reactivate all "Run"-function buttons
 self.ui.RunButton.setEnabled(True)
 self.ui.DrawBackButon.setEnabled(True)
 self.ui.DepressButton.setEnabled(True)

 pwm.stop()

 def fill(self):
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 print("Fill")

 #disable other "Run"-function buttons
 self.ui.RunButton.setEnabled(False)
 self.ui.DrawBackButon.setEnabled(False)
 self.ui.DepressButton.setEnabled(False)

 if (GPIO.input(limitA) == GPIO.LOW): #if not already fully drawn back
 direction = GPIO.HIGH #set rotation to CW to draw back plungers
 GPIO.output(enable, GPIO.LOW) #enable the motor
 freq = flow
 dutycycle = 50 #leave duty cycle at 50%
 pwm = GPIO.PWM(clock, freq)
 pwm.start(dutycycle)

 else:
 print("Error: Limit A already tripped.")
 self.stop

 #check to see if limit switches have been tripped
 GPIO.add_event_detect(limitA, GPIO.RISING, callback = self.limA, bouncetime =
300)
 GPIO.add_event_detect(limitB, GPIO.RISING, callback = self.limB, bouncetime =
300)

 def empty(self):
 global flow, syringes, direction, clock, directionPin, enable, limitA, limitB,
freq, pwm
 print("Empty")

44

 #disable other "Run"-function buttons
 self.ui.RunButton.setEnabled(False)
 self.ui.DrawBackButon.setEnabled(False)
 self.ui.DepressButton.setEnabled(False)

 if (GPIO.input(limitB) == GPIO.LOW): #check if already in fully depressed
position
 direction = GPIO.LOW #set direction to CCW to drive plungers forward further
 GPIO.output(enable, GPIO.LOW) #enable the motor
 dutycycle = 50 #leave duty cycle at 50%
 pwm = GPIO.PWM(clock, 20) #push plunger forward at constant 20 Hz
 pwm.start(dutycycle)

 else:
 print("Error: Limit B already tripped.")
 self.stop

 #check to see if limit switches have been tripped
 GPIO.add_event_detect(limitA, GPIO.RISING, callback = self.limA, bouncetime =
300)
 GPIO.add_event_detect(limitB, GPIO.RISING, callback = self.limB, bouncetime =
300)

if __name__ == "__main__":
 app = QApplication.instance()
 if not app:
 app = QApplication(sys.argv)
 app.aboutToQuit.connect(app.deleteLater)
 main_win = main_window()
 app.exec_()

