
MEMORANDUM 

DATE: 
 
TO: 

November 30, 2017 
 

Mr. Refinery Person, Plant Manager, Zontec Refining Corp. 

 

Josh Ramsey, Manager of Process Design Group, Oklahoma State University 

Ken Dickson, Manager of Process Design Group, Oklahoma State University 

FROM: Marley Macaluso 

Kevin Moseni 

Quentin Price 

SUBJECT: 

 

Successful Preliminary Design Study of Lavender Parish Propylene 

Fractionation System Modification 

As desired, a propylene splitter with a heat pump system was designed to produce 

both polymer-grade propylene and propane HD-5 at a rate of 5,501 and 576 barrels/day, 

respectively. The process was modeled, simulated, and optimized using Aspen HYSYS. 

Hand calculations were used to validate these results. 

Economic analyses were conducted based on 10-year MACRS depreciation over a 

10-year evaluation life starting in the year 2020. The estimated net present value is 

$80,400,000 with discounted cash flow rate of return 85%. Based on both NPV and 

DCFROR analyses, the fractionation system modification was determined to be 

economically attractive.  

  A detailed report of the preliminary design study is attached to this memo.  
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Executive Summary 

The objective of the proposed design was to add to the Lavender Parish Refinery’s existing 

fractionation system. The system currently runs a Liquefied Petroleum Gasoline (LPG) feed 

stream through an alkylation unit to produce propane and high-octane gasoline. In order to meet 

the US Gulf Coasts’ increasing demand for Polymer Grade Propylene, Zontec Refining 

Corporation has commissioned a design to split the existing LPG feed stream between the 

current alkylation unit and an additional propylene splitter. The propylene splitter could be 

designed using either a high pressure system or a heat pump system.  The propylene splitter 

model in this report operates using a heat pump system.  Other groups were assigned to model 

the high pressure system. The proposed design will produce both Polymer Grade Propylene 

(99.5vol% propylene) and Propane HD-5 (95vol% propane and 5vol% propylene). 

 Polymer Grade Propylene is of high economic value to the company, and has a sales value of 

$75/barrel. The proposed design will produce 5501 barrels of Polymer Grade Propylene daily, 

resulting in an estimated annual revenue of $150,600,000. The company is also expected to 

profit off of the sales of Propane HD-5, with a sales value of $42/barrel. This system produces 

576 barrels of Propane HD-5 daily, resulting in an estimated annual revenue of $8,800,000. 

Taking into account a service factor of 95%, the total estimated revenue of the proposed design 

is $151,430,000 annually. The DCFROR of the proposed design was estimated to be 85%, with 

an NPV of $80,400,000. 
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Introduction 

Zontec Refining Corporation determined that there was an existing need to increase current 

production of Polymer Grade Propylene in order to meet the US Gulf Coasts’ increasing 

demand. It was decided that this need would be met by expanding on the Lavender Parish’s 

existing fractionation system. The existing process utilized mixed hydrocarbons to produce 

gasoline. The proposed change entailed the addition of two distillation columns to the existing 

process. One column would separate a propylene/propane mixture from the liquefied petroleum 

gas feed stream, and the second would separate propylene and propane. The main focus of this 

design was the propylene/propane splitter. The preliminary design of this process will include a 

simulation of the process, an equipment list, design specifications, and an economic analysis.  

Polymer Grade Propylene is of high economic value to the company. The intent of the proposed 

process was to produce propylene with a purity of 99.5vol%. Propylene with this purity is valued 

at $75/barrel. It was anticipated that the production of Propane HD-5 would also bring economic 

value to the company. Propane HD-5 is valued at $42/barrel. The production of both of these 

components was expected to increase the company’s annual revenue.  

 

Design Basis 

It was the intent of Zontec Refining Company to expand upon the Lavender Parish Refinery’s 

existing fractionation system to increase the production of Polymer Grade Propylene in order to 

meet increasing demand. In the past, the refinery has produced a light hydrocarbon stream from 

the use of a Fluidized Catalytic Cracking Unit (FCC). The FCC unit utilized a specific catalyst 

combined with high temperatures to break apart large molecules into smaller molecules. This 

resulted in a production of diesel, gasoline, and Liquefied Petroleum Gas (LPG) streams. 

Normally, the LPG stream has been processed entirely through an alkylation unit and produced 

products such as propane and high-octane gasoline.  The proposed design would split the LPG 

mix between the existing alkylation unit and a propylene splitter. The focus of this design was on 

the propylene splitter. The purpose of this splitter was to intake a propylene/propane mixture and 

produce Polymer Grade Propylene (99.5% propylene by volume) and Propane HD-5 (95% 

propane, 5% propylene).  
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Historically, propylene splitters have been designed in one of two ways. These splitters have 

either utilized a high-pressure system or a heat pump system. The proposed design utilized a heat 

pump system to produce the desired product. A heat pump system can operate at lower pressures 

(close to 180 psia) than high pressure systems (which can operate at 300 psia). The lower 

required pressure decreases the cost of the column itself. It is possible for the column to operate 

at lower pressures because the heat pump system utilizes heat integration to condense overhead 

vapors with bottoms product, and vaporizes bottoms product with compressed overhead vapors. 

This heat integration also lowers required utility costs by avoiding the use of cooling water to 

condense overhead vapors and steam to vaporize bottoms product. These costs were analyzed in 

detail in an economic analysis.  

The propylene splitter would intake a known feed stream at 6000 barrels per day, 95oF, and 225 

psia. The composition of the feed stream was known and is displayed in the following table.  

Table 1: PP mix feed composition 

Component Feed (mol%) 

Ethane 0.22 

Propylene 90.65 

Propane 9.13 

 

There was sufficient existing onsite storage for both the propane and propylene products. These 

products needed to be stored at 20 psi above there bubble point at 100oF. In order to properly 

account for any pressure drop through the line to storage, the product streams were designed to 

be delivered at 50 psi above their bubble point at 100oF. The process was modeled using the 

Peng-Robinson equation of state. The proposed design was modeled and simulated using Aspen 

HYSYS.  

Tentatively, the project was set to begin construction in 3Q 2018. Startup for the project was set 

for March 31, 2020. The following capital expenditure profile was utilized when analyzing total 

installed cost of the process.  
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Table 2: Capital expenditure profile 

Year 2017 2018 2019 2020 

% of total installed cost 5 35 45 15 

 

A detailed economic analysis was performed on the recommended process design. This analysis 

utilized a hurdle rate (internal ROR) or 15%. The project was evaluated on a 10-year project life 

starting in 2020, the year the project is scheduled to start up. The economic analysis also utilized 

an effective tax rate of 40%.  

The following table displays the known prices of each component utilized and produced in the 

proposed design. Note that the process intakes a feed of mixed propylene/propane, so the 

displayed number for “Mixed PP Feed” would be a cost to the company. The values displayed 

for Propane HD-5 and Polymer Grade Propylene would result in revenue for the company. 

Table 3: Feed and product prices 

Component Price (2017), $/barrel 

Mixed PP Feed $46  

Propane HD-5 $42  

Polymer Grade Propylene $75  

 

Note that because there was existing storage on site for both Propane HD-5 and Polymer Grade 

Propylene, there was no cost incurred due to distributing and selling these products. The 

following table displays the specifications for all available utilities at the Lavender Parish 

Refinery.  
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Table 4: Utility specifications 

Utility Specification 

Maximum Ambient Temperature 117oF 

Minimum Ambient Temperature -22oF 

Process Design Dry Bulb (Cooling Towers) 97oF 

Process Design Dry Bulb (Air Coolers) 105oF 

Process Design Wet Bulb (Cooling Towers) 76oF 

Equipment Minimum Design Temperature -11oF 

Absolute Atmospheric Pressure 14.13 psia 

Cooling Water Supply Temperature 87oF 

Cooling Water Return Temperature 120oF 

Cooling Water Supply Pressure 50 psig 

Cooling Water Return Pressure 35 psig 

Cooling Water Fouling Resistance 0.002 hr-oF-ft2 

Instrument Air Pressure 85 psig 

Instrument Air Dew Point -10oF 

Elevation Above Sea Level 992.33 ft 

 

The following table displays the utility costs utilized when costing the proposed design. 

Table 5: Utility costs 

Utility Cost  

Electricity $0.07/kilowatt hour 

High pressure steam (sat) $4.75/thousand pounds 

Med pressure steam (sat) $3.30/thousand pounds 

Low pressure steam (sat) $1.60/thousand pounds 

Boiler feed water $0.12/thousand pounds (at 180 psig and 275oF) 

Fuel gas $3.80/million Btu (higher heating value) 

Cooling water $120/annual gpm 

 

Note that because the proposed design utilized a heat pump system, the team was able to bypass 

using many of the available utilities. This reduced annual operating costs. The proposed design 

utilized both electricity and cooling water, and both of these costs were included in the economic 

analysis of the project. 

 

 



Page | 6 
 

Technical Discussion  

Design Philosophy 

 Column 

The column was designed to optimize both outlet purities and DCFROR. Plain carbon steel was 

the preferred material for the column because it was the cheapest, non-reactive material 

available. The following column aspects were specified in Aspen HYSYS: column efficiency, 

tray spacing, tray type, number of stages, column pressures, inlet feed temperature, inlet feed 

pressure, and inlet feed composition. These characteristics were altered with economic feasibility 

in mind in order to effectively optimize the process. Note that feed stream characteristics were 

set values and therefore could not be altered when simulating the process. 

Traditionally, a range of tray efficiencies of 70-90% is expected for a propylene splitter using a 

heat pump system. Using this expected range, a tray efficiency value of 85% was specified when 

simulating the process.  

A tray spacing of 1.677 feet (20 inches) was stipulated for the Aspen HYSYS simulation of the 

process. A range of 20 to 24 inches was specified in the heuristics in chapter 8 of the Turton 

textbook (1). 20-inch tray spacing was selected because it lowered the height of the column 

while still producing the desired outlet purities of both propane and propylene.  

Four-pass sieve trays were selected in the column design. Sieve trays are commonly used in the 

refining industry and are capable of handling large liquid flowrates. A four-pass design was 

selected in order to effectively handle the large liquid flowrate through the column.  

The recommended column design has 140 actual stages (140 four-pass sieve trays). The number 

of stages was altered on the Aspen HYSYS simulation and product purities were analyzed. The 

purpose of these adjustments was to balance capital and operating costs while still achieving the 

desired outlet compositions and flowrates.  

The column pressures were specified based off of a recommended pressure drop of 0.1 psi per 

tray. The pressure at the top of the column was known to be 180 psia, so the pressure at the 

bottom was calculated by adding (140 trays)*(0.1 psia) to achieve a pressure of 194 psia. 
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 Kettle Reboiler 

When designing the heat integration system in the process, it was necessary to choose a type of 

heat exchanger. It was decided that a reboiler would be utilized in the process to ensure that it 

would act as an equilibrium stage in the column. A kettle reboiler was selected because it is the 

most common type of reboiler used in the refining industry (2). The kettle reboiler utilized 

superheated propylene vapor to vaporize the Propane HD-5 bottoms product, while the bottoms 

product condensed the superheated propylene vapor. The kettle reboiler has 3 “outlet” streams: a 

liquid bottoms stream of Propane HD-5, a vaporized propane stream that is fed back to the 

column, and a condensed propylene stream. It is important to note that the vaporized propane 

and the liquid Propane HD-5 differed in concentration. This difference in concentration allowed 

the column to run at equilibrium. Note that high flux tubing was used in the design of the kettle 

reboilers to reduce the area and cost of the equipment.  

 Knock-out drum 

Before compressing the overhead vapors, it was necessary to design a knock-out drum to ensure 

that no liquid was run through the compressor. A vertical knock-out drum was selected for this 

process based off of recommended design for vapor-liquid separation in the oil and gas industry 

(3). When sizing this compressor, the team considered optimal height to diameter ratios based on 

recommended heuristics in the Turton textbook (1). 

 Compressor 

A centrifugal compressor was selected for the proposed process. Centrifugal compressors are 

commonly used for vapor compression in the oil and gas industry (4). Additionally, centrifugal 

compressors are known to be more reliable and require less maintenance than reciprocating 

compressors (5). 

 Compressor driver 

An explosion-proof electric driver was selected for the compressor in the design. An electric 

driver was chosen over a driver that required fuel gas or steam in an effort to lower required 

utility costs. Electric drivers are capable of powering compressors with ratings up to 20,000 

horsepower (1). Due to the high power of this driver (4133 horsepower), safety was a serious 
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concern when designing the compressor. At high power, arcing and explosions become a large 

concern. The team decided to recommend an explosion-proof driver over a totally enclosed 

driver to create the safest environment possible. It was determined that the safer design was 

worth the added cost of the explosion-proof driver.  

 Cooler 

The purpose of the cooler in the proposed design was to further cool the condensed propylene 

stream leaving the kettle reboiler. The stream needed to be cooled to an appropriate temperature 

prior to being both delivered to storage and returned to the column as recycle. Cooling water was 

utilized in a shell-and-tube heat exchanger to achieve the desired result because it was readily 

available and significantly cheaper than any other available utility (such as a refrigerant or 

chilled water). The heat exchanger was designed using plain carbon steel because it was the 

cheapest material available and there was no concern of corrosion. In an effort to reduce costs, 

high flux tubing was used to design and cost the heat exchanger. 

A shell-and-tube heat exchanger was selected for this design. The cooling water was run on the 

tube side, because it was known that this water contained impurities and that the equipment 

would needed to be cleaned. The shell-and-tube design was chosen to aid in cleaning and 

servicing of the equipment. It was also a cheaper option than a plate heat exchanger. 

 Pump  

The purpose of the pump in the proposed design was to increase the pressure of the propane 

delivery stream to storage. The delivery stream was required to be 240 psia (50 psia above the 

bubble point of propane at 100oF) (6). The pump increased the pressure of the propane product 

stream by 46 psia. It was desired that the propane product stream be delivered to storage at a 

constant flowrate, so a centrifugal pump was selected for the design. The team considered both a 

centrifugal and a reciprocating pump, but a centrifugal pump was recommended due to its design 

and cost benefits (7). Using a reciprocating pump of this power would have doubled the cost of 

the pump, which needed to be spared (bringing the total cost of the pumps from $40,000 to 

$80,000). 
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Description of the Process 

Overall, the intention of this design was to explore the economic viability of propane and propylene 

separation using a heat pump cycle to lower operating pressure.  

The PP mix was fed at a rate of 6,000 actual barrels/day to column T-100 operating with a top and 

bottom pressure of 180 and 194 psia, respectively. The vapor product leaving the column was 

propylene with a purity of 99.6vol%. Any liquid in the overhead product was immediately 

separated via a knock-out drum and C-100 compressed the purified propylene vapors from 180 

psia to 320 psia. The heat of compression resulted in a temperature increase in the process stream 

from 84oF to 148oF. The high energy propylene stream was passed through the kettle reboilers at 

the base of the column and cooled down to 122oF.  

The purified propylene was cooled further via E-102, an additional heat exchanger, before being 

split into reflux and product streams. Considerably more Polymer-Grade Propylene was returned 

to the column as reflux than was sent to product storage (83,000 barrels/day returned as reflux and 

5501 barrels/day sent to storage). The propylene designated as product encountered a series of 

three valves that decreased the pressure of the liquid propylene to 270 psi (50 psia above its bubble 

point at 100oF). The rest of the liquid propylene was throttled to just above the column top stage 

pressure before re-entering as reflux. This high-purity propylene reflux increased the internal 

reflux which aided in separation. Simultaneously, liquid Propane HD-5 exited the bottom of the 

column. Three kettle reboilers at the bottom of the column utilized heat integration to vaporize 

bottoms product while condensing superheated overhead vapor. The majority of the bottoms 

product was vaporized and returned to the column as boilup, and 576 barrels/day of liquid propane 

exited the reboiler and were sent to storage. The product stream (composed of 95vol% propane 

and 5vol% propylene) encountered a pump to increase the pressure to 240 psia (50 psia above its 

bubble point at 100oF). The remaining 88,000 barrels/day of purified propane was returned to the 

tower just above the reboiler stage as vapor to increase internal reflux. 

In whole, this process consumed 6,000 barrels/day of low-purity propylene and returned 5,501 

barrels/day of polymer-grade propylene along with 576 barrels/day of Propane HD-5. The Process 

Flow Diagram (PFD) and stream table summary can be found on the following pages.  
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Figure 1: Process flow diagram (PFD)
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Table 6: Stream table(1)

Stream Name Feed 
OVHD 

vapors 

Compressed OVHD 

vapor 

Vaporized 

propane 

Cooled 

Propylene 

Stream Number 1 2 3 4 5 

 Temperature (°F) 95.0 83.8 147.5 122.2 101.8 

 Pressure (psia) 225.0 180.0 319.5 317.5 315.5 

 Vapor fraction   0.0 1.0 1.0 0.0 0.0 

 Mass flow rate (thousand lb/hr) 42.7 66.9 66.9 66.9 66.9 

 Mole flow rate (thousand lbmol/hr) 1.0 15.9 15.9 15.9 15.9 

 Volumetric flow (thousand barrel/day) 5.6 88.0 88.0 88.0 88.0 

 Molar enthalpy  (thousand Btu/lbmol) -2.4 8.1 8.7 3.2 2.5 

 Component mole frac.             

Ethane   0.0 0.0 0.0 0.0 0.0 

Propane   0.1 0.0 0.0 0.0 0.0 

Propylene   0.9 1.0 1.0 1.0 1.0 

Component Mole Flow (lbmol/hr)           

Ethane   2.2 26.2 26.3 26.3 26.3 

Propane   92.4 43.8 43.8 43.8 43.8 

Propylene   917.8 15841.9 15841.9 15841.9 15841.9 
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Table 7: Stream table(2)

Stream Name 
Propylene for 

product 

Propylene to 

storage 
Propylene for reflux 

Reflux (after 

throttle) 

Stream Number 6 7 8 9 

 Temperature (°F) 101.8 101.5 101.8 83.0 

 Pressure (psia) 315.5 270.0 315.5 237.4 

 Vapor fraction   0.0 0.0 0.0 0.0 

 Mass flow rate (thousand lb/hr) 38.8 38.8 630.5 630.5 

 Mole flow rate (thousand lbmol/hr) 0.9 0.9 15.0 15.0 

 Volumetric flow (thousand barrel/day) 5.1 5.1 82.9 82.9 

 Molar enthalpy  (thousand Btu/lbmol) 2.5 2.5 2.5 2.5 

 Component mole frac.           

    Ethane   0.0 0.0 0.0 0.0 

    Propane   0.0 0.0 0.0 0.0 

    Propylene   1.0 1.0 1.0 1.0 

Component Mole Flow (lbmol/hr)         

Ethane   1.5 1.5 24.7 24.7 

Propane   2.5 2.5 41.3 41.3 

Propylene   918.8 918.8 14923.1 14923.1 
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Table 8: Stream table(3)

Stream Name Bottoms liquid Boilup Liquid propane product Propane to storage 

Stream Number 10 11 12 13 

 Temperature (°F) 100.8 101.0 101.0 101.8 

 Pressure (psia) 194.0 194.0 194.0 240.0 

 Vapor fraction   0.0 1.0 0.0 0.0 

 Mass flow rate (thousand lb/hr) 660.7 656.7 4.0 4.0 

 Mole flow rate (thousand lbmol/hr) 15.0 14.9 0.1 0.1 

 Volumetric flow (thousand barrel/day) 89.2 88.6 0.5 0.5 

 Molar enthalpy  (thousand Btu/lbmol) -47.7 -48.2 -48.2 -48.2 

 Component mole frac.           

    Ethane   0.0 0.0 0.0 0.0 

    Propane   0.9 0.9 1.0 1.0 

    Propylene   0.1 0.1 0.1 0.1 

Component Mole Flow (lbmol/hr)         

Ethane   0.0 0.0 0.0 0.0 

Propane   14138.7 14053.0 85.7 85.7 

Propylene   884.3 879.8 4.5 4.5 
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Technical Issues and Design Practices 

Column 

The proposed design of the propylene splitter utilized a heat pump system over a high pressure 

system. The heat pump utilized a heat integration system that used compressed overhead vapors 

(superheated propylene vapor) to vaporize the bottoms product (Propane HD-5) in three kettle 

reboilers. This process also condensed the overhead vapors which would be further cooled before 

being sent to storage. The use of heat integration reduced operating costs by removing the 

excessive need for cooling water and any need for steam in the design. The use of a heat pump 

system was also desirable because it significantly reduced the operating pressure of the column. 

This lower operating pressure improved the relative volatilities of the components in the mixed PP 

feed. Additionally, the number of trays within the column could be reduced because the improved 

relative volatilities allowed for easier separation.  

A feed of 90.65 mole% propylene, 9.13 mole% propane, and 0.22 mole% ethane entered the 

column at 6000 actual barrels per day from an LPG stream. The feed was at a known pressure of 

225 psia and a known temperature of 95oF. This feed mixture was purchased at $46/barrel to be 

converted into polymer-grade propylene and propane HD-5 which would be sold free on board at 

$75/barrel and $42/barrel respectively. 

A bottom operating pressure of 194 psia and a top tray pressure of 180 psia were designated for 

the column. It should be apparent that the 14 psia pressure drop is the driving force of the column. 

The reboiler that is attached to this column bears a heat duty for creating this pressure drop. This 

top pressure was much less than alternative top pressures of 250-300 psia, which benefited the 

relative volatilities. Overhead vapors were met by a vapor-liquid separator or knock-out drum 

before being compressed.  

Internally, 140 actual four-pass, sieve trays were used, resulting in a 0.1 psi/tray pressure drop 

from the first equilibrium stage to the reboiler equilibrium stage at the bottom of the tower. Four-

pass trays were used over three-, two-, or one-pass trays in order to optimize the liquid handling 

capacity, which was achieved by reducing both the flow path length as well as the weir crest (6). 

In addition, sieve or perforated trays are simpler and less expensive than either bubble cap or valve 

trays, thus sieve trays were used.  
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Trays were spaced at 1.667 ft in accordance to heuristics outlined in chapter 11 of Turton (1). 

Using this spacing and the number of trays, a tower height of 243 ft was calculated using the 

equation below.  

Column Height (ft) = (# of trays)(tray spacing)  +  7 +  (1 + tray spacing) 

The rationale behind the 7 feet added in the equation was to take into account the space at the 

bottom of the column below the last stage. Similarly, the last term incorporates the additional space 

above the first stage at the top of the column.  

A column diameter of 13 ft allowed for the appropriate vapor and liquid flow rates to achieve the 

desired separation. The column diameter determines the tray diameter, which is why tower 

diameter is designed around the desired surface area for liquid flow, i.e. tray diameter.  

The intended material of construction for the column was plain carbon steel, the cheapest option 

available.  

In order to assess actual, rather than theoretical, number of trays, a realistic tray efficiency (ε) of 

85% was assumed. The equation below shows how to determine actual from theoretical trays. 

Number of actual trays =  
Number of theoretical trays

ε
    

By studying the simulated column component fractions tray-by-tray, it was determined that the 

optimal feed stage was at stage 73. Recycle streams for the reflux and boil-up were fed at the top 

and bottom stage respectively. The use of recycles within a process can help increase purity of the 

end-product downstream, but does decrease the distillate flowrate.  

The tops product, purified propylene, was 99.6vol% propylene flowing at 88,000 barrels/day. The 

entirety of the ethane from the feed was in the vapor product. This high purity propylene was re-

fed to the tower as reflux at a flow rate of roughly 83,000 barrels/day at the top stage. The reflux 

rate was calculated in Aspen HYSYS to be 0.87.  

The bottoms product was liquid propane with a purity of 95vol% at 88,500 barrels/day. The liquid 

propane that left the tower from the bottoms was passed through a reboiler and vaporized before 

being returned as boilup at a flow rate of 88,000 barrels/day. This resulted in a boilup ratio of 166. 
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Kettle Reboiler 

The main heat exchanger for this system consisted of a combination of three kettle reboilers. The 

overall heat transfer coefficient for these heat exchangers (Uo) was calculated using the following 

equation. 

𝑈𝑜 =
1

𝑑2

ℎ𝑖𝑑1
+ 𝑅𝑓𝑖

𝑑2

𝑑1
+

𝑑2ln (
𝑑2

𝑑1
⁄ )

2𝑘𝑤
+ 𝑅𝑓𝑜 +

1
ℎ𝑜

 

 

Values of 1.6 inches and 1.7 inches were estimated for the inner and outer diameter of the tubes 

(8). The values for hi, ho, Rfi, Rfo, and kw are displayed in the following table.  

 

Table 9: Constant values used in heat transfer calculation 

hi 

(Btu/ft2*hr*oF) 

ho 

(Btu/ft2*hr*oF) 

Rfi 

(ft2*hr*oF/Btu) 

Rfo 

(ft2*hr*oF/Btu) 

kw 

(Btu/ft*hr*oF) 

352.2 616.4 0.001 0.001 29.5 

 

The calculated value of the overall heat transfer coefficient was multiplied by a factor of 2 to 

account for the use of high flux tubing, resulting in a value of Uo = 307 Btu/ft2*hr*oF. The heat 

exchanger was modeled as counter-current, so ΔTLMTD was calculated using the following 

equation.  

∆𝑇𝐿𝑀𝑇𝐷,𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  
(𝑇ℎ,𝑖 − 𝑇𝑐,𝑜) − (𝑇ℎ,𝑜 − 𝑇𝑐,𝑖)

𝑙𝑛 (
𝑇ℎ,𝑖 − 𝑇𝑐,𝑜

𝑇ℎ,𝑜 − 𝑇𝑐,𝑖
)

 

This value was calculated to be 18.1. The following equation was used to calculate the area of each 

heat exchanger (8).  

𝑈𝑜 = 𝑞𝐴𝐹∆𝑇𝐿𝑀𝑇𝐷 

 

A correction factor (F) of 0.9 was selected based off of recommended heuristics (1). Note that the 

heat duty value (q) given in Aspen HYSYS was 88 million Btu/hr. This heat duty was divided by 

three to calculate the area for each kettle reboiler. The area of each kettle reboiler was estimated 

to be 3100 ft2.  
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 The streams flowing through the reboiler were the superheated propylene stream and the propane 

stream acting as the boilup.  The excess heat from the superheated propylene stream was being 

used to heat the propane stream.  Doing so allowed the propylene stream to condense and the 

propane stream to vaporize.  By using the excess heat generated from compressing the propylene 

stream to heat the propane stream, the kettle reboilers were able to operate while minimizing the 

use of excess utilities. 

 

The superheated propylene stream entered the kettle reboilers as a vapor at a pressure of 319.5 psia 

and a temperature of 147.5°F.  The propane stream entered the kettle reboilers as a liquid at a 

pressure of 194 psia and a temperature of 100.8°F. Exchanging heat between the two streams 

allowed the propane stream to vaporize and the propylene stream to condense.  Exiting the kettle 

reboilers as a vapor at a pressure of 194 psia and a temperature of 101°F, the vaporized propane is 

fed back into the column.  Exiting the kettle reboilers as a liquid at a pressure of 317.5 psia and a 

temperature of 122.2°F, the condensed propylene stream was fed to another cooling unit to further 

lower its temperature.  This allowed the propylene to reach appropriate storage conditions.  

 

 Knock-out drum 

The knock-out drum for this system was designed to prevent the flow of liquid into the compressor.  

In Aspen HYSYS, the stream entering the compressor was modeled as a completely vapor stream.  

This was done because if any liquid was allowed to enter the compressor it would damage it.  

In the simulation if any liquid was entering the compressor the simulation would not run.  

However, the simulation is running under ideal conditions with no real atmospheric variations 

accounted for.  In reality there are a number of external issues that could cause a portion of the 

compressor inlet stream to have partially condensed.  Examples of these external circumstances 

are lower-than-average atmospheric temperatures, or higher-than-normal humidity levels.  Both of 

these issues can draw heat from the pipes causing part of the fluid flowing through them to leave 

the vapor phase.  To prevent this liquid from flowing into the compressor a knock-out drum had 

to be placed before it to return the liquid to a vapor phase. This knock out drum was sized using 

heuristics from (1). The remainder of this section will detail the process for sizing the knock-out 

drum. 
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The process began by assuming a liquid flow rate for the line entering the knock-out drum.  It was 

assumed that the liquid flow would only account for one percent of the actual flow in the line.  

Aspen HYSYS listed the actual gas flow of the line as 6851 ACFM.  This meant that an actual 

liquid flow rate of 68.51 ACFM would be used when sizing the drum.  The drum was sized as a 

vertical separator since rule three states that is what is normally used for gas-liquid phase 

separators (1). According to rule number seven “knock-out drums placed ahead of compressors 

should hold no less than 10 times the liquid volume passing per minute” (1). Based on this rule the 

knock-out drum was initially estimated as having a volume of 685.1 cubic feet (19.4 cubic meters) 

ten times the liquid flow rate that was assumed.  Rule four states that the optimum height to 

diameter ratio is 3 (1). The volume of the knock-out drum was estimated using the equation for 

the volume of a cylinder. 

𝑉 = 𝜋 ∗ (
𝐷

2
)2 ∗ ℎ 

By using the optimal ratio for the height to diameter and the initial estimated volume the equation 

for the volume of a cylinder can be reduced to a single variable.  By inputting the initial volume 

estimate and substituting 3D for h the needed diameter can be solved for.  This resulted in a 

diameter of 6.62 feet.  To allow for the use of standard parts the diameter needs to be rounded up 

to the nearest 3 inches which causes the diameter to become 6.75 feet.  This diameter is technically 

the diameter of the mist de-entrainer pad; therefore, the diameter of the actual drum still needs to 

be larger than this.  This is accounted for by rounding the diameter of the knock-out drum up 

another 3 inches to an even 7 feet.  

  

Maintaining the optimal height to diameter ratio of 3 results in a vessel height of 21 feet.  The 

optimal height to diameter ratio was maintained in lieu of the vessels initial volume estimate.  Due 

to this the volume of the knock-out drum has to be recalculated.  Plugging a diameter of 7 feet and 

a height of 21 feet into the equation for the volume of a cylinder results in the vessel having a 

volume of 808.2 cubic feet (22.9 cubic meters).  This volume is greater than the minimum volume 

required by rule seven of the heuristics of process vessels for drums.  This means the dimensions 

of the knock-out drum meet the necessary specification for keeping liquid from flowing into the 

compressor (1).  
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Compressor 

The compressor was needed in this design to increase the temperature and pressure of the stream 

leaving the top of the column.  By increasing these two parameters, the stream was able to perform 

the two functions the system needed it to.  First, the stream was able to impart heat energy to other 

parts of the system.  Second, the stream was able to maintain a pressure necessary for the reflux 

stream to reenter the top of the column.  

 

Before entering the compressor, the stream passed through the knock-out drum to ensure that no 

liquid entrainment entered the compressor.  After passing through the knock-out drum, the stream 

entered the compressor at 83.8°F and 180 psia.  The stream, flowing at a rate of 6581 ACFM, had 

a mole fraction composition of 0.0016 ethane, 0.0028 propane, and 0.9956 propylene.  This was 

within the desired specifications.  The heat duty of the compressor inlet stream was 128,090,000 

Btu/hr.  The compressor itself was run at 4100 hp with an adiabatic efficiency of 75% and a 

polytropic efficiency of 76%.  This power allowed the compressor outlet stream to leave at 147.5°F 

and 319.5 psia.  This superheated compressed vapor stream was then fed to the cooler. 

 

Compressor Driver 

When designing the driver for the compressor in the proposed design, it was necessary to also 

design a driver. In order to design the driver, the shaft power of the compressor was calculated 

using the following equation. 

 

Shaft power (hp) = fluid power + (fluid power)0.4 

 

Recall that the required fluid power of the compressor was determined utilizing Aspen HYSYS at 

a value of 4100 horsepower. With this fluid power, a shaft power of 4133 horsepower was 

calculated. In order to avoid the costs associated with fuel gas or steam, an electric driver was 

selected to power the compressor. It was known that electric drivers are designed for services up 

to 20,000 horsepower (1). An explosion-proof electric motor was selected over a totally enclosed 

electric motor. At a high shaft power of 4133 horsepower, safety becomes a large concern with 

this driver. In order to create the safest working environment, the team sacrificed a higher cost to 

go with what was determined to be the safest design.   
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 Cooler 

After the propylene passed through the main heat exchanger, it was further cooled in order to be 

split into reflux and product streams. To achieve this, a heat exchanger referred to as a cooler 

was incorporated into the process taking the process stream from 122oF to 102oF using available 

cooling water. A minimal pressure drop of 2 psi occured across the cooler, changing the pressure 

from 318 to 316 psia.  

This heat exchanger is considerably smaller than the kettle reboilers, at a volume of 3.5ft3. This 

was not surprising considering the heat duty of each heat exchanger. The cooler had a duty of 

10,000,000 Btu/hr, a small fraction of the heat duty of the main heat exchanger.  

The cooler wa exchanging heat between the process stream and cooling water available at the 

plant. Using heat duty values from the Aspen HYSYS simulation, hand calculations were carried 

out to determine the required cooling water flow rate. The required cooling flowrate was 

calculated to be 1900 gallons/minute or 9.9 billion annual gallons/minute. The cooling water that 

had been heated by the process stream returned at 112.3oF, which was below the maximum 

cooling water return temperature specified.  

In order to size and appropriately cost the heat exchanger, a surface area for conduction was 

determined from the duty calculated by HYSYS. These calculations yielded an area of 2800 ft2 

and overall heat transfer coefficient of 345 Btu/hr*ft2*oF. High flux tubes were used in the cooler 

in an effort to decrease both the area and cost of the heat exchanger.  

 

Pump 

Purified propane was to be delivered to a storage tank at 50 psi above the bubble point at 100oF. 

With the help of the GPSA handbook and the pressure-enthalpy diagrams for propane (found in 

Appendix III), the bubble point was determined to be 190 psia for propane (6). In order to 

determine the required pressure, it was assumed that the liquefied propane was pure. The purified 

Propane HD-5 left the reboiler at 194 psia, so a pump was used in order to increase the pressure 

to 240 psia.  The pump inlet stream entered as liquid propane at 194 psia and 101oF at a flow of 

530 barrels/day. The outlet stream was fully liquid at 102oF, so the change in temperature was 

insignificant.  
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In determining the type of pump to use, Figure 12-3 GPSA handbook provided insights (6). With 

a typical operating capacity of 530 barrels/day and a liquid pressure head of 225 ft, determined 

using Aspen HYSYS, the use of a single-stage, centrifugal pump was preferred.  

This relatively small pump is powered by electricity through a motor that was simulated in 

HYSYS with an assumed 45 percent adiabatic efficiency. Taking this efficiency into account, 

this pump required a power of 1.34 horsepower. Pumps with this low of power and capacity 

typically operate at lower efficiencies (1).  Similar to other units, the pump will not be 

encountering any corrosive species under normal operation, so plain carbon steel is used. With 

such a low rating, due to the small duty required, the cost this pump is very low relative to other 

units in this process. As a result of the overall low cost of building and operating, this pump is 

spared. 
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Economic Analysis 

Capital Cost Estimates 

This project was evaluated on a 10-year time frame starting in the year 2020. Note that 

construction was expected to start in the third quarter of 2018 and the process was set to start up 

on May 31, 2020. The total capital costs of this project were divided between the years 2017 and 

2020 with the following expenditure profile: 5% in 2017, 35% in 2018, 45% in 2019, and 15% in 

2020. All dollar values expressed in the economic evaluation of the proposed process are in 2017 

dollars.  

In order to calculate the capital cost of each piece of equipment, the team began by calculating 

the “vanilla” purchased cost of the equipment. This cost did not account for factors such as 

mechanical design pressure, material of construction, or size/power of the equipment. These 

factors were taken into account to calculate the installed cost of each piece of equipment. These 

dollar amounts were then escalated to 2017 dollars using CECPI constants. Each piece of 

necessary equipment was then costed with a contingency rate of 15% and added fees of 3% to 

allow for any unforeseen costs. These percentages were chosen based off of specified heuristics 

in the Turton textbook. The following table displays calculated values for the capital cost of each 

key piece of equipment in the process. These values are in 2017 dollars and include the added 

cost of contingency and fees (1).  

Table 10: Capital costs summary 

Equipment Capital cost 

Column $ 18,300,000.00 

Kettle reboiler  $   1,000,000.00  

Knock-out drum  $      300,000.00  

Compressor  $   2,900,000.00  

Electric driver  $      500,000.00  

Cooler   $      300,000.00  

Pump  $        40,000.00  
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Column cost calculation 

The column was costed as a vertical process vessel using column height, diameter, and 

mechanical design pressure (allowing for 50 psi above actual operating pressure). The material 

of construction for this column was plain carbon steel, so it was not necessary to escalate the cost 

due to the material selected. The cost of the trays in the column are accounted for in the dollar 

amount displayed in the table above ($18,300,000.00). The trays were costed as 4-pass sieve 

trays made of plain carbon steel.  

Kettle reboiler cost calculation 

The kettle reboiler was costed using total heat transfer area, mechanical design pressure, and 

material of construction (plain carbon steel). Recall that because the total heat transfer area was 

9300 ft2, there are 3 kettle reboilers in this design. The cost displayed in the table above reflects 

the total cost of the 3 kettle reboilers in the recommended design. 

Knock-out drum cost calculation 

The knock-out drum was costed as a vertical process vessel using total volume, mechanical 

design pressure, and material of construction (plain carbon steel). The total capital cost of the 

knock-out drum was calculated to be $300,000.  

Compressor and electric driver cost calculation 

The compressor utilized in this design was costed using its fluid power in kilowatts and material 

of construction (plain carbon steel). Recall that an electric driver was selected for this 

compressor. The driver was costed using shaft power (fluid power + fluid power0.4) in kilowatts.  

Cooler cost calculation 

The cooler was costed using total heat transfer area, mechanical design pressure, and material of 

construction. Note that this cooler is considerably smaller than the kettle reboiler, and is 

therefore considerably cheaper.  

Pump cost calculation 

The pump was costed using shaft power (in kilowatts), mechanical design pressure, and material 

of construction (plain carbon steel). Due to the relatively low capital cost associated with this 



Page | 24 
 

pump ($20,000), the pump was spared. The cost in the table above accounts for both the pump in 

use and the spared pump.  

Revenue and Operating Expense Estimates 

 Revenue Estimates 

The annual revenue for this project was calculated using the daily flowrate of Propane HD-5 and 

Polymer Grade Propylene. The daily flowrate of Propane HD-5 was approximately 576 

barrels/day. This value was converted into an annual flowrate of 210,240 barrels/year. Using the 

known sales value of $42/barrel for Propane HD-5, the team calculated an annual revenue of 

$8,800,000. The same process was used to calculate the annual revenue from Polymer Grade 

Propylene at a known sales value of $75/barrel. The team observed a daily flowrate of 

approximately 5501 barrels/day of Polymer Grade Propylene, resulting in an annual flowrate of 

2,007,865 barrels/year and an annual revenue of $150,600,000.  The total calculated revenue was 

$159,400,000. Note that this is total calculated revenue, not actual revenue. Taking into account 

a service factor of 95%, the actual estimated revenue of the proposed process is $151,430,000.  

 Operating Expense Estimates 

Operating expenses in this process design included utility costs (such as electricity and cooling 

water) as well as local taxes and insurance. 

There was a utility cost associated with the required electric power to operate the compressor in 

this design. A shaft power of 4133 horsepower was used to cost this utility. This was converted 

into an annual electricity requirement, then costed with a known electricity cost of $0.07/kilowatt 

hour. This resulted in an annual cost of $1,900,000 to operate the compressor. The same process 

was utilized to cost the pump in the process. This pump required a shaft power of 1.34 

horsepower, resulting in an annual cost of electricity of $1,000 to operate the pump. Cooling 

water was required to further cool the propylene stream leaving the kettle reboiler. This cooling 

water was costed by utilizing the calculated annual volumetric flowrate along with the known 

cost of $120/annual gpm. This calculation resulted in an annual cooling water cost of $176,000.  

In order to estimate the annual cost of local taxes and insurance, the team utilized a relationship 

of 3.2% of the total capital costs of the proposed design. This relationship was chosen from a 
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recommendation in Chapter 8 of the Turton textbook. It was determined through further analysis 

that this relationship predicted a reasonable dollar amount for local taxes and insurance of 

$740,000 annually (1). The predicted operating expenses of the proposed design are summarized 

in the following table. 

Table 11: Operating costs summary 

Operating expense Cost 

Electricity  $   2,000,000.00  

Cooling water  $      200,000.00  

Local taxes and insurance  $      740,000.00  

Total  $   2,940,000.00  

 

 It was determined that it was not necessary to account for waste treatment costs in the economic 

analysis of this project. It was assumed that because cooling water was available in the facility, 

that there was already a waste treatment system in place and it would therefore not be of any 

additional cost. Operating labor and direct supervisory/clerical labor were also not included in 

this analysis. It was assumed that this project would not require any additional personnel at the 

refinery. Maintenance and repairs were accounted for in capital cost calculations with an added 

contingency rate of 15%. This percentage was chosen to ensure the economic cost estimate 

would accurately account for any unforeseen incurred charges. Note that there was not a need to 

account for laboratory charges, patents and royalties, or research and development costs in this 

design process, because these charges were not relevant in the addition of a propylene splitter to 

an existing refinery. Additionally, that there is sufficient storage on-site for the products 

produced in this process, so there was no need to estimate the cost of selling and distribution.  

DCFROR Analysis 

 A Discounted Flow Rate of Return (DCFROR) analysis was utilized to determine the economic 

feasibility of the proposed process design. In order to calculate the DCFROR, a cash flow table 

was utilized. The detailed cash flow table can be found in Appendix I. This cash flow table took 

into account total sales revenue, raw material costs, and all operating costs highlighted in the 

previous section. Note that all costs and revenues in the year 2020 were multiplied by 0.75, to 
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account for the expected startup date of March 31. A tax rate of 40% was taken into account, and 

the total capital costs were depreciated using a 10-year MACRS rate (9). Note that any 

undepreciated capital costs in 2029 were written off. In order to take into account working 

capital, a value of 8% of total capital costs was used annually starting in 2020 (the startup year). 

A working capital value of 15% of total capital costs was found in chapter 9 of the Turton 

textbook (1). This value represented working capital to start up a plant, so it was concluded that 

only half this value was necessary for the addition of a process to an existing refinery.  

The cash flow analysis resulted in a DCFROR of 85%, showing that the proposed process is very 

economically attractive. It was requested that the team analyze this project with a hurdle rate of 

15%. Using this hurdle rate, the project has a Net Present Value of $80,400,000.  

The break-even selling cost of this project was calculated to be $28,500,000. This is the highest 

cost the project can incur while remaining profitable. This cost was calculated by subtracting the 

Net Present Value (NPV) at i* (15%) from the sum of the present worth revenue. 

Please see Appendix I for the detailed cash flow chart.  

Sensitivity Analysis 

A sensitivity analysis was performed to analyze the economic feasibility of the proposed design. 

In order to perform this analysis, values for higher/lower sales revenue, capital costs, raw 

material costs, and utilities costs were analyzed. The results of this analysis are displayed in the 

charts below. 
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Figure 2: DCFROR tornado chart (sensitivity analysis) 

 

Figure 3: NPV tornado chart (sensitivity analysis) 

 

 Sales Revenue Analysis 

(FIGUREM1) shows that the sales revenue has a significant impact on the DCFROR. In order to 

perform this analysis, a literature search was conducted to find historical high and low selling 

values of both Polymer Grade Propylene and Propane HD-5 (10,11).  For Polymer Grade 

Propylene, a low value of $54/barrel was used and a high value of $88/barrel was used. For 

Propane HD-5, a low value of $36/barrel was used and a high value of $155/barrel was used. 
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Recall that the current known selling price of these products is $75/barrel of Polymer Grade 

Propylene and $42/barrel of Propane HD-5. At the lowest selling value of both Propane HD-5 

and Polymer Grade Propylene, the proposed process maintained a DCFROR of 26%, which was 

still well above the chosen hurdle rate of 15%. This low range produced an NPV of $7,000,000. 

At the highest selling value of both products, the DCFROR was raised to 139%, and NPV was 

raised to $182,700,000. Both of the product selling values were varied significantly in this 

analysis, but the project remained very attractive from an economic standpoint. 

 Capital Costs Analysis 

The total capital costs of the proposed process were analyzed in order to determine the projects 

economic feasibility at higher and lower capital costs. In order to alter these values, CECPI 

constants were used to determine a feasible percent change. The CECPI value in 2001 was 397 

and in 2017 was 566.6. The team analyzed the percent difference between these values, which 

was calculated to be approximately 30%. It was concluded that ±30% would be a reasonable 

variance when analyzing these costs. At -30% of actual capital costs, the DCFROR was raised to 

110% and the NPV was raised to $87,000,000. At +30% of actual capital costs, the DCFROR 

was lowered to 69% and NPV was lowered to $73,900,000. Both of the DCFROR values were 

well above the hurdle rate of 15% and the project maintained a positive and high Net Present 

Value.  

 Raw Material Costs Analysis 

In order to analyze the raw material costs of this project, the team used ±30% of the specified 

raw material cost. This percentage was chosen based on the rationale described in the capital 

costs analysis above. Recall that the annual cost of raw materials was calculated using a specified 

value of $46/barrel at 6000 actual barrels per day. This analysis showed a significant impact on 

the DCFROR. At -30% of actual raw material costs, the DCFROR was raised to 116% and NPV 

was raised to $136,000,000. At +30% of actual raw material costs, the DCFROR was lowered to 

44% and the NPV was lowered to $24,800,000. Note that the NPV remained positive in both 

scenarios and the DCFROR remained above the hurdle rate of 15%. 
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Utilities Cost Analysis 

Figures 2 and 3 show that changing the cost of utilities (electricity and cooling water) did not 

significantly alter the DCFROR of this project. Through a literature search, historical values of 

electricity cost and cooling water costs were found and utilized in this sensitivity analysis 

(12,13). Electricity was costed at a low value of $.068/kilowatt hour and a high value of 

$0.125/kilowatt hour, and cooling water was costed at a low value of $75/annual gpm and a high 

value of $134/annual gpm. The low range of these utility costs did not affect the DCFROR by a 

percentage, meaning that it remained at 85%. The NPV in this scenario raised slightly to 

$80,800,000. The high range of utility costs lowered the calculated DCFROR by 2% (to 83%) 

and lowered the NPV to $77,700,000.  
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Safety 

 

Employers must ensure that employees are working in a safe, healthy environment.  This can be 

accomplished by following the rules and regulations set forth by the Occupational Health and 

Safety Administration (14). Training and education are an essential part of making this a successful 

process.   

 

Employers are required to provide a safe environment, but employees are expected to positively 

contribute to workplace safety.  A major way this is done is by not taking any egregious risks at 

work due to ignorance or incompetence.  Workers need to be attentive to their surroundings so as 

to be able to notice any safety issues that may arise.  In order to properly respond to these issues 

employees need to be able to satisfactorily execute the safety training they had to undergo to work 

in this environment.  The ability to quickly locate necessary equipment such as fire extinguishers 

or emergency shut off valves, promptly execute evacuation plans, or carry out other contingencies 

is essential to the continuation of healthy workplace conditions.  Dangers specific to the heat pump 

based propylene splitter system and the chemicals ethane, propane, and propylene used in it will 

be laid forth in this section of the report. More information regarding these chemicals can be found 

on the material safety data sheets supplied by the company. 

 

Two safety aspect that need to be addressed about the system are directly related to the 

environment that the process is contained in.  The first aspect is that it is crucial that a closed 

system is maintained for the process.  Any leaks or spills of the chemicals used will effect 

production and endanger workers.  Through a large portion of this process the chemicals in it are 

in a liquid form.  Exposure to these chemicals in their liquid form can result in frostbite.  This is 

caused by them they quickly sucking heat from their surrounds due to their rapid evaporation 

(15,16,17).  The second aspect is the need to ensure the area in which the process is operating is 

properly ventilated.  In the chance that a loss of containment occurs or internal repairs are needed 

the use of proper ventilation can prevent suffocation.  All three of the components in this process 

can easily displace the air in an area and lead to oxygen deprivation.   
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While running this process, care needs to be taken to monitor the pressure and temperature levels 

throughout the system.  The pressures are lower due to running the system with a heat pump; 

however, the system is still operating well above atmospheric conditions.  Pressure systems and 

relief valves need to be monitored to ensure the process stays within its bounds, and that the system 

does not rupture. 

 

This portion will provide specific information regarding the handling and interaction with the 

compounds used during the propylene splitter process laid out in this report.  The three chemicals 

present during the separating process are ethane, propane, and propylene.  All three of the 

chemicals are identified by the National Institute for Occupational Safety and Health as extremely 

flammable and highly explosive (15,16,17).  Due to this classification enormous caution must be 

taken to prevent them from being exposed to any sort of ignition source.  One such source would 

be the buildup of electrostatic charges in the system which can be prevented through various 

methods.  One method is by regularly cleaning the system to prevent fouling in it from generating 

electrostatic charges.  Another method is by properly grounding the system so that any errant 

charges can be safely dispersed.  Should the system catch fire, operating crews must act prudently, 

and quickly shut off any feeds to the portion in flames.  If possible the fire should be allowed to 

burn itself out.  However, if the fire poses an immediate danger to the surrounding areas then 

actions need to be taken to combat the fire from a sheltered position.  In order to combat the fire, 

the vessels containing the chemicals may be cooled with a water spray, but due to the presence of 

propylene in the mixture the actuals flames must be extinguished by means of a powder or carbon 

dioxide. 
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Environmental 

 

The cooling water system needs to be properly cared for.  The system needs to be regularly cleaned 

to prevent corrosion in the pipes and to prevent fouling from generating electrostatic charges.  

Chemicals can be added to the water to delay both of these effects, but they also require the water 

to undergo specific disposal processes.  This is to prevent any negative effects on the environment, 

and to ensure that the company continues to meet Environmental Protection Agency (EPA) 

regulations.  The system also needs to be regularly tested for microbial activity to prevent the 

growth of harmful bacteria in the water.  Cooling water can be a breeding ground for dangerous 

bacteria like Legionella which causes Legionnaires’ disease (18). Maintaining a disease free 

environment is an essential part of running the plant. 

 

The specifications which the plants cooling water intake structures were designed for are regulated 

by the EPA according to the Clean Water Act.  Screens had to be placed at the inlets to prevent 

large numbers of fish and other wildlife from being dragged into the cooling water system.  The 

suction produced from these inlets though can still trap wildlife against the screens potentially 

injuring or killing them.  Precautions such as frequent inspections need to be taken to limit this as 

much as possible.  That way the plant can limit the impact its cooling water inlets have on the 

surrounding ecosystem.  The impact the plants cooling water outlets have on the environment also 

needs to be monitored.  The chemicals alongside the heat that gets added to the cooling water as it 

travels through the facility can have adverse effects on the environment.  These factors can place 

undue stress on the area around the plant, and have other father reaching consequences (19). Due 

to the propylene splitter being added onto an existing facility cooling water and the equipment 

necessary for its disposal are already present on site.  The existing equipment when also used to 

run cooling water for the propylene splitter still meets EPA regulations; therefore no major changes 

will need to be addressed when obtaining new or revised permits through the National Pollutant 

Discharge Elimination System (20). 
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Conclusions 

The team was able to effectively model the propylene splitter using a column made of carbon 

steel with the following specifications. 

Table 12: Column design specifications 

Diameter (ft) Tray spacing (ft) Column height (ft) Tray type # of trays Volume(ft3) 

13 1.667 143 4-pass sieve tray 140 32,000 

 

Recall that a tray efficiency of 85% was assumed in the design of this column. This efficiency 

was chosen from a given range of 70-90% expected efficiency with a propylene splitter using a 

heat pump system. An electric explosion-proof driver was selected to run the compressor in the 

design. This compressor driver had a shaft power of 4133 horsepower, inquiring an annual cost 

of electricity of $1,900,000. The process was designed using 3 kettle reboilers, each with an area 

of 850 ft2. The total cost of the kettle reboilers was $1,000,000. There was no operating cost 

associated with the kettle reboilers due to the utilization of heat integration. The use of 

steam/cooling water in these reboilers was avoided because the superheated propylene vapor was 

used to vaporize the bottoms product, while the bottoms product condensed the superheated 

propylene. A cooler was used to cool the condensed propylene to an appropriate temperature to 

be delivered to storage and recycled as reflux to the column. This cooler was modeled as a 

relatively small shell-and-tube heat exchanger, resulting in a total capital cost of $300,000 and an 

annual operating cost of $200,000 to pay for the required cooling water.  The proposed design 

included a pump to raise the pressure of the propane delivery stream to 50 psi above the bubble 

point at 100oF (240 psia). Accounting for an efficiency of 45%, this pump had a shaft power of 

1.34 horsepower. This pump was spared, resulting in a total cost of $40,000. There was also an 

annual operating cost of $1,000.  

Based on the models developed for this project it was determined that it is a technically feasible 

process. Based off of the economic analysis conducted, it was determined that the project is 

economically attractive based on the DCFROR of 85% and NPV value of $80,400,000. 
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Recommendations 

After both technical and economic analyses it was determined that this project should be pursued.  

During the process of compiling this report, further improvements to the design were realized but 

not implemented. First, it would have been logical to throttle the purified propylene stream prior 

to splitting it to reduce the pressure. This would have reduced the number of valves which would 

reduce total capital costs. Second, it would be logical to consider tray efficiencies of lower than 

85% (this is the efficiency that was utilized in the proposed design). Tray efficiencies of as low as 

70% could be analyzed in order to propose a more conservative column design. When 

implementing the proposed design, it is also recommended to analyze the potential need of extra 

pumps. This could become necessary when pumping the recycled reflux to the top stage of the 

column. 
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Appendix I – Cash Flow Chart (2017-2029) 

 

 

 

 

 

 

 

Please see next page(s) for Cash Flow Chart. 
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END OF YEAR 2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028 2029 

Propane production 0 0 0 210240 210240 210240 210240 210240 210240 210240 210240 210240 210240 

     x Sales price, 

$/"unit" 42  42  42  42  42  42  42  42  42  42  42  42 42 

Propylene 

production 0 0 0 2007865 2007865 2007865 2007865 2007865 2007865 2007865 2007865 2007865 2007865 

     x Sales price, 

$/"unit" 72  72  72  75  75  75  75  75  75  75  75 75 75 

Net Revenue 

 $                                   

-    

 $                            

-    

 $                            

-    

 $ 

113,572,500 

 $ 

151,430,000  

 $  

151,430,000 

 $  

151,430,000  

 $  

151,430,000  

 $  

151,430,000  

 $  

151,430,000 

 $  

151,430,000  

 $ 

151,430,000  

 $ 

151,430,000  

     - Raw material 

costs 0 0 0  

     

(71,800,000) 

     

(95,700,000) 

      

(95,700,000) 

      

(95,700,000) 

      

(95,700,000) 

      

(95,700,000) 

      

(95,700,000) 

      

(95,700,000) 

     

(95,700,000) 

     

(95,700,000) 

     - Other op Costs 0  0  0  

        

(1,700,000) 

        

(2,200,000) 

         

(2,200,000) 

         

(2,200,000) 

         

(2,200,000) 

         

(2,200,000) 

         

(2,200,000) 

         

(2,200,000) 

       

(2,200,000) 

       

(2,200,000) 

     - Depreciation 0  0  0  0  

        

(2,330,000) 

         

(4,194,000) 

         

(3,355,200) 

         

(2,684,160) 

         

(2,148,260) 

         

(1,717,210) 

         

(1,526,150) 

       

(1,526,150) 

       

(1,528,480) 

     - Manufacturing 

costs 0  0  0  

           

(555,000) 

           

(740,000) 

            

(740,000) 

            

(740,000) 

            

(740,000) 

            

(740,000) 

            

(740,000) 

            

(740,000) 

           

(740,000) 

           

(740,000) 

     - Loss forward                           

     - Writeoff                         (764240) 

Taxable Income 0  0  0  39517500  50460000  48596000  49434800  50105840  50641740  51072790  51263850  51263850  50497280  

     - Tax @ 40% 0  0  0  (15807000) (20184000) (19438400) (19773920) (20042336) (20256696) (20429116) (20505540) (20505540) (20198912) 

Net Income 0  0  0  23710500  30276000  29157600  29660880  30063504  30385044  30643674  30758310  30758310  30298368  

     + Depreciation 0  0  0  0  2330000  4194000  3355200  2684160  2148260  1717210  1526150  1526150  1528480  

     + Loss forward 0  0  0  0  0  0  0  0  0  0  0  0  0  

     + Writeoff 0  0  0  0  0  0  0  0  0  0  0  0  764240  

     - Working 

capital 0  0  0  (1864000) (1864000) (1864000) (1864000) (1864000) (1864000) (1864000) (1864000) (1864000) (1864000) 

   - Fixed capital 

               

(1,165,000) (8155000) (10485000) (3495000)                   

Cash Flow (1165000) (8155000) (10485000) 

 $    

18,351,500  

 $    

30,742,000 

 $     

31,487,600 

 $     

31,152,080 

 $     

30,883,664  

 $     

30,669,304 

 $     

30,496,884 

 $     

30,420,460 

 $   

30,420,460 

 $   

30,727,088 

Discount factor 

(P/Fi*, n) 1.00  0.87  0.76  0.66  0.57  0.50  0.43  0.38  0.33  0.28  0.25  0.21  0.19  

Discounted Cash 

Flow (1165000) (7091304) (7928166) 

 $    

12,066,409 

 $    

17,576,838 

 $     

15,654,902 

 $     

13,467,903 

 $     

11,610,313 

 $     

10,025,849 

 $       

8,669,117  

 $       

7,519,472 

 $      

6,538,671  

 $      

5,743,112  
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Appendix II 

 

 

 

 

 

 

Please see next page(s) for detailed costing sheets. 
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Column costing sheet 

Volume (m^3) 913.33   

D (m) 3.96 20 in spacing, 140 trays, 

1 ft above 7 ft below Height (m) 74.07 

For 

tower 

K1 3.4974 Cp^0 $ 584,300 

ID # Table 

A.3 18 

K2 0.4485 CECPI (old) 397 P (barg) 15.8 

K3 0.1074 CECPI (new) 566.6 Fp, vessel 6.79 

  Table A.1 - values for 

vertical Process Vessel 

Cp^0 (escalated) $ 833,915 B1 2.25 

     B2 1.82 

          FM 1 

    Note that this CBM is the Installed cost of the tower (NOT 

including trays) 

FBM 14.61 

    CBM  $ 12,186,410  
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Kettle reboiler(s) costing sheet  

 

 

Capital Cost Calculation 

          (Found in fig 7.4)           

  
Finding Purchased Cost (Cp^0) 

Heat Transfer Area (m^2) a b n Cp^0     

  431.9 29000 400 0.9  $         123,168.64      

                      

  
Finding bare module cost (CBM) 

B1 B2 Fp FM CBM (2001)     

  1.63 1.66 1.104 1  $ 426,582     

        (found in Table A.4)^^^           

  
Pressure factor calculation 

C1 C2 C3 P (barg)       

  0.03881 -0.11272 0.08183 26       

        (found in table A.2)^^^           

  
Calculating actual cost 

CTM(2001)(15% cont 3% fees) CECPI 2001 CECPI 2017 CTM (2017) CTM (2017) (2 HEX's)     

   $ 503,367 539.2 566.6  $       528,946   $ 1,057,893      
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Cooler costing sheet (capital cost) 

 

 

Capital Cost Calculation 

          (Found in fig 7.4)       

  
Finding Purchased Cost (Cp^0) 

Heat Transfer Area (m^2) Purchased cost/unit area Purchased cost (Cp^0)     

  280.1 190  $ 53,217      

                  

  
Finding bare module cost (CBM) 

B1 B2 Fp FM CBM (2001) 

  1.63 1.66 1.096 1  $ 183,546  

        (found in Table A.4)^^^       

  
Pressure factor calculation 

C1 C2 C3 P   

  0.03881 -0.11272 0.08183 24.3   

        (found in table A.2)^^^       

  
Calculating actual cost 

CTM(2001)(15% cont 3% fees) CECPI 2001 CECPI 2017 CTM (2017)   

   $ 216,585 397 566.6  $ 309,111    
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Cooler costing sheet (operating cost) 

 

 

Cooling water cost 

calculation 

Duty (kJ/h) T(hot, in)degF T(hot, out)degF 

T(cold, 

in)degF 

T(cold, 

out)degF 

                  

10,840,000.00  323.24 311.94 303.75 317.75 

      Cc (Btu/lbm*degF) Duty (btu/hr) 

mass flow 

(lbm/h) 

mass flow 

(gpm) annual gpm 

      
0.997 

      

10,200,000.00  

             

730,763.72  1461.53 

   

768,178,822.18  

      Annual cost of CW         

       $ 175,383         
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Compressor/compressor driver costing sheet (capital cost) 

 

 

Compressor cost calculation 

Capital Cost Calculation 

  
Finding 

purchase 

cost Cp^0 

K1 K2 K3 

A (fluid power in 

KW) Cp^0         

  2.2897 1.3604 -0.1027 3057  $  607,532          

                          

  
Finding 

bare 

module 

cost (CBM) 

FBM CBM CTM CECPI 2001 

CECPI 

2017 CTM (2017)       

  2.78 

 $ 

1,688,941  

 $                 

1,992,951 397 566.6 
 $  

2,844,347       

        

Fig 

A.19                 

  
Costing 

compresse

r driver 

(steam) 

K1 K2 K3 

A (shaft power in 

KW) Cp^0 FBM CBM CTM CTM(2017) 

  2.4604 1.4191 -0.1798 3081.78  $  167,062  1.5 

 $  

250,594 

 $  

295,701 
 $ 

422,026 
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Compressor/compressor driver costing sheet (operating cost) 

 

 

 

Operating Cost Calculation 

                

  
Cost of electricity 

$/ KW hour Shaft Power in KW Annual Electricity cost   

  0.07 3081.78  $ 1,889,748   
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Pump costing sheet (capital cost) 

 

 

Pump cost analysis 

Capital cost calculations 

        (Values for centrifugal pump)           

  Finding 
purchase cost 

(Cp^0) 

K1 K2 K3 A (Shaft Power, hp) A (Shaft Power, KW) Cp^0     

  3.3892 0.0536 0.1538 1.34 1.00  $        2,450.19      

                        

  Finding bare & 
total module 
cost (CBM and 

CTM) 

B1 B2 FM FP C1 C2 C3 P 

  1.89 1.35 1.55 1.20 -0.3935 0.3957 -0.00226 15.8 

        CBM CTM CECPI 2001 CECPI 2017 CTM (2017) Spare pump Total CTM(2017)   

         $  10,760   $ 12,697 397 566.6  $ 18,121  $ 18,121  $ 36,243   

                        

 

 

 

 



Page | 47 
 

 

Pump costing sheet (operating cost) 

 

 

 

Operating cost calculations 

                

  
Cost of electricity 

$/ KW hour Shaft Power in KW Annual Electricity cost   

  0.07 1.00  $                           613.20    

                

 

 

 

 

 

 

 



Page | 48 
 

 

Knock-out drum costing sheet  

 

 

Knock out drum cost analysis 

Capital cost calculations 

        
(Values for centrifugal 

pump)           

  
Finding purchase cost (Cp^0) 

K1 K2 K3 D (m) Height (m) A (volume m^3) Cp^0   

  3.4974 0.4485 0.1074 2.13 6.40 22.9  $  20,215    

                        

  Finding bare & total module cost (CBM and 
CTM) 

P (barg) P+1 Fp B1 B2 FBM CBM CTM 

  14.9 15.90 3.48 2.25 1.82 8.6  $ 181,796   $ 214,519 

                      CTM(2017) 

                       $ 306,162  
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Appendix III 
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Appendix IV 
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