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A reduced order framework for optimal control of nonlinear partial
differential equations

ROM-based Optimal Flow Control

Thesis by
Nicholas H. Nelsen
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for the Degree of

Bachelor of Science

Abstract

A variety of partial differential equations (PDE) can govern the spatial and time evolution of fluid
flows; however, direct numerical simulation (DNS) of the Euler or Navier–Stokes equation or other
traditional computational fluid dynamics (CFD) models can be computationally expensive and
intractable. An alternative is to use model order reduction techniques, e.g., reduced order models
(ROM) via proper orthogonal decomposition (POD) or dynamic mode decomposition (DMD), to
reduce the dimensionality of these nonlinear dynamical systems while still retaining the essential
physics. The objective of this work is to design a reduced order numerical framework for effective
simulation and control of complex flow phenomena. To build our computational method with this
philosophy, we first simulate the 1D Burgers’ equation ut + uux − νuxx = f(x, t), a well-known PDE
modeling nonlinear advection-diffusion flow physics and shock waves, as a full order high resolution
benchmark. We then apply canonical reduction approaches incorporating Fourier and POD modes
with a Galerkin projection to approximate the solution to the posed initial boundary value problem.
The control objective is simple: we seek the optimal (pointwise) input into the system that forces the
spatial evolution of the PDE solution to converge to a preselected target state uT (x) at some final
time T > 0. To implement an iterative control loop, we parametrize the unknown control function
as a truncated Fourier series defined via a set of finite parameters. The performance of the POD
ROM is compared to that of the Fourier ROM and full order model for six numerical experiments.
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Chapter 1

Introduction

Partial differential equations is one of the most diverse and ubiquitous fields of both pure and
applied mathematics. A partial differential equation (PDE) is an equation involving an unknown
function in two or variables and some order of partial derivatives of this function with respect to
these variables. Not entirely unlike ordinary differential equations (ODE), the vast majority of PDE
do not have explicit solutions or representations. However, in contrast to ODE, PDE do not have a
comprehensive framework for their analysis and solution. Strikingly similar PDE can have erratically
different behavior, and with different behavior comes the need to utilize an extensive repertoire of
methods. To solve a PDE in practice, we typically turn to a computer and write computer codes
using techniques from numerical analysis to obtain a numerical solution. Or if we desire to be solely
theoretical, we deduce results about the solutions to PDE, such as existence and uniqueness, without
actually writing down what the solution is. Here, mathematicians relax the classical sense of a
smooth, continuous solution in favor of generalized weak solutions that are easier to work with in
proofs. In either case, the study of PDE is one of the richest and most interdisciplinary fields of
mathematics that permeates deeply into areas of fundamental and applied science.

In describing the flow of fluids, PDE such as the Navier–Stokes equation have captured the
attention of mathematicians and the general science community alike. There is an outstanding
one-million dollar Hilbert Millennium Prize problem for proof or disproof of existence and global
regularity for the 3D Navier–Stokes equation [21]. Recently, progress has been made on the side of
disproof: Buckmaster and Vicol [12] have proven that a certain (wild) class of weak solutions
develop singularities in finite time, termed “finite time blow up”. These extremely esoteric results
were even communicated to a broader scientific audience via online news and magazine outlets such
as WIRED and Quanta. Clearly, the mathematical fluid dynamics community is quite active and
truly hard problems are still outstanding in this field.

Much of modern science, and in particular scientific computing, is devoted to solving PDE with
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2 Chapter 1 - Introduction

relevant initial and boundary conditions that model complex physical processes. However, multi-scale
nonlinear dynamical systems often emerge from spatial discretization of these equations that quickly
overwhelm even the most impressive computational resources. In the case of fluid dynamics, the
complexity of the Navier–Stokes equation calls for an approach to simplify or approximate the full
system for the purpose of understanding fundamental mechanisms that describe fluid flow evolution.
Since high resolution direct numerical simulations of PDE impose prohibitive computational overhead
for realistic governing laws, the field of reduced order modeling has emerged as a candidate solution.

1.1 Model Order Reduction

By simplifying the computational complexity of an underlying governing law, typically a PDE or
system of PDE, reduced order models (ROMs) display great promise in many prediction, identification,
design, optimization, and control applications. Model reduction approaches are especially effective in
settings where traditional methods require repeated model evaluations over a similar range of input
values. However, ROMs suffer from lack of robustness with respect to large parameter changes and
high upfront costs to construct them. Additionally, a truncation procedure inherent in the process
of reducing system dimensionality in effect tosses out high order information that may play a crucial
role in capturing the coupled nonlinear behavior of convection-dominant or turbulent flows [53, 54,
55].

The underlying concept of reduced order modeling is the reduction of the number of degrees
of freedom (modes) in a dynamical system (e.g., from D = O(106) to R = 50� D). This directly
translates into savings of computational cost, especially when the physical dimension of the system
is increased (i.e., from 1D to 2D or 3D). The degrees of freedom, or “dimension” here, can be loosely
thought of as how many ordinary differential equations are needed to fully describe the system of
interest. Approximating a complex dynamical system with very few degrees of freedom is especially
of relevance to feedback flow control laws and related applications.

Projection-based reduced order modeling offers a simple framework to accomplish this objective.
Here, low dimensional representations of the high dimensional governing law are constructed in a
subspace spanned by a carefully selected orthonormal basis. For example, these basis functions can
be the standard Fourier series or Chebyshev or Legendre polynomials. It is still an open challenge to
guarantee that the dynamics in this transformed space accurately reflect the behavior of the true
physical system governed by the PDE.

After a suitable basis is chosen, the Galerkin projection is one leading approach used to project
the dynamics of the equation onto the subspace spanned by a truncated set of basis functions. This
variational (weak form) approach yields a finite system of ODE from the original PDE; the number

ROM-based Optimal Flow Control Nicholas H. Nelsen



1.1 - Model Order Reduction 3

of ODE is equal to the number of basis functions selected to approximate the original function space
in which the PDE was posed. The accuracy of reduced order models will certainly improve with an
increased number of modes [see Figure 1.1]; this is due to the nature of the Galerkin method used to
construct the ROM. Yet, there is a threshold beyond which more modes fail to noticeably contribute
to accuracy. Further, it is not entirely understood how to choose the number of modes that will
guarantee a specified error bound for arbitrary dynamical systems; in practice, a few trial runs is
sufficient to determine an optimal number of modes for the problem at hand.

(a) R = 4 (b) R = 10

(c) R = 20 (d) R = 40

Figure 1.1: Improvement in a POD–G–ROM approximation of a PDE as R→∞.

Model reduction has been extremely successful in the field of fluid dynamics, where massive
experimental or numerical data sets are commonplace. Galerkin projections for linear systems are
trivial and their extension to simple nonlinear systems modeling incompressible flow has been well-

Nicholas H. Nelsen ROM-based Optimal Flow Control



4 Chapter 1 - Introduction

studied [47]. In more challenging dynamical systems, such as the fully compressible Navier–Stokes
equations, corresponding ROMs have also been derived and implemented [5, 48]. One of the most
popular approaches is Proper Orthogonal Decomposition (POD), which extracts the highest energy
structures or dominant statistical characteristics from a flow field to construct a basis. However,
it is known that low energy, high frequency modes can have a profound influence on the dynamics
[49]. Thus, some low-dimensional POD ROMs do not accurately represent the original PDE (e.g., in
fluid systems with high transient growth such as shear flows). Care must be taken when choosing to
use a POD, as it is not the optimal choice in all model reduction problems. Other techniques of
note include Balanced Truncation, Balanced Proper Orthogonal Decomposition, Goman-Khrabrov
Models, eigensystem realization algorithms, and Dynamic Mode Decomposition and its variants [49,
55].

Computation of reduced order models typically occur in what are known as the “offline”
and “online” stages. In the offline stage, the user provides input data taken from experimental
measurements or high fidelity numerical simulations. The goal of the offline stage is to set up the
reduced order model by decomposing the flow field, creating snapshot vectors, calculating expensive
coefficients that arise from the Galerkin projection, and computing basis functions for the specific
model reduction method used. The cost for this process is O(N3) where N is the number of modes;
this points to the fact that using reduced order models is actually prohibitive when N is larger than
say O(101) and certainly ill-advised when N3 = O(D) where D is the rank of the corresponding full
order problem or data set.

The online stage follows in a simple input/output manner. Since the basis and coefficients are
pre-computed, the dynamics can be temporally evolved in the modal space. For example, an initial
condition is prescribed and the reduced system of coupled ODE is then integrated in time to produce
the output solution. In this work, the online stage composes the not only the solution step to the
system of ODE, but also the iterative control loop (see Section 3.2) for state function matching.

1.2 Optimal Control

In this work, we design a reduced order computational framework for effective simulation and optimal
control of challenging flows. The use of reduced order models in control theoretic applications has
been surging recently [see, e.g.: 2, 8, 15, 16, 29, 40, 46]. A thorough discussion of computational flow
control is given in the reviews [9, 49, 71]. The field is also ever expanding in scope and original ideas.
Proctor, Brunton, and Kutz in [44] extend the linear theory of Dynamic Mode Decomposition
to the control of complex nonlinear systems with the aid of the Koopman operator. The novelty in
this example is the equation-free architecture of the method; that is, the data-driven approach can

ROM-based Optimal Flow Control Nicholas H. Nelsen



1.3 - Preface 5

predict future states of dynamical systems with only input data. Additionally, waves of popularity
in machine learning have spurred interest in flow prediction and points to future optimal control
frameworks [45, 55, 56, 57, 58].

The modern mathematical treatment of optimal control theory, which includes proving existence
and uniqueness of controllers and minimizing objective functionals with the calculus of variations,
has paved the way for now state-of-the-art computational approaches. An overview of some current
issues in ROM-based control can be found in [49, 51]. In particular, uncertainty quantification and
basis selection are open questions in this field. We intend to partially address the latter in this work.

1.3 Preface

We emphasize that this thesis was inspired by the desire to improve upon the results of Kucuk and
Sadek in [26] with a novel reduced order framework. While there is no claim that all results in
this document are wholly original, deliberate effort has been placed in carefully interpreting both
theoretical and computational studies, and all computer codes were written from scratch in the
software Matlab. When required, we made use of standard numerical packages for solving ODE
and eigenvalue problems. Additionally, the following notation is used throughout this work:

Notation 1.3.0.1. We use the acronym “PDE” to refer to both a single partial differential equation
and multiple partial differential equations. The meaning should be clear from the context, and this
notation is common practice in the mathematical sciences.

Notation 1.3.0.2. The variable “x” and other related symbols are used in the context of both 1-
dimensional (R) and d-dimensional (Rd) Euclidean spaces; we do not invoke bold face text to denote
vectors, save for a few exceptions. Instead, the meaning should be obvious from the context. When
appropriate, the dot symbol “·” is used to denote the standard Euclidean inner product.

Notation 1.3.0.3. To denote the standard partial derivatives, we mainly utilize the notation ∂
∂xi

and
∂
∂t in Leibniz form or the more short hand (·)x and (·)t. The notation ∂x and ∂t is seldom used here.
We denote the Laplacian operator as ∆ instead of the perhaps more common ∇2 seen in physics.

This thesis is organized as follows. In Chapter 2 we detail the motivation for studying Burgers’
equation and solve the initial value problem analytically, showcasing the challenges of dealing with
the deceptively simple quadratic nonlinearity. We also pose the initial boundary value problem that
is the test bed for our numerical treatment of reduced order models and their control. Chapter 3
discusses the relatively expensive full order model and its optimal control results. Two reduced order
models, Fourier–ROM and POD–G–ROM, are derived in Chapter 4 and performance is compared.
Finally, in Chapter 5 we provide some concluding remarks and address avenues for future research.

Nicholas H. Nelsen ROM-based Optimal Flow Control



Chapter 2

Burgers’ Equation

Burgers’ equation is the simplest nonlinear PDE one can study, and it comes in two standard
variants: inviscid and viscous. The inviscid Burgers’ equation is a hyperbolic conservation law (of
the form θt +∇F (θ) = 0, where F is a flux) exhibiting finite time singularities in its solution or
gradient, making this equation difficult to simulate numerically without shock-capturing methods:∂u

∂t +∇
(

1
2u

2
)

= 0, x ∈ Rd, t > 0

u(x, 0) = u0(x)
(2.1)

In particular, it can be proven that shocks form if the initial data satisfies ∇u0 < 0 on some interval;
specifically, the breaking time is tb = 1

min
x∈Rd{∇u0}

.

On the other hand, the viscous Burgers’ equation is of the parabolic-type, with a nice diffusion
term −ν∆u that dissipates high frequency, high gradient content:∂u

∂t + u · ∇u− ν∆u = f, x ∈ Rd, t > 0

u(x, 0) = u0(x)
(2.2)

where ν > 0. This version of the equation is well studied in the literature and is called the viscous
Burgers’ equation. In contrast to Eqn. (2.1), the IVP (2.2) is globally well-posed with smooth
solutions due to the presence of viscosity. The viscous term provides enough regularity to overcome
the nonlinear convection and prevent the formation of a singularity.

This prototypical PDE, though simple, exhibits fascinating behavior that translates well into
applications in science and engineering. For example, Burgers’ equation is the first standard model
problem to test new numerical methods for solving PDE, especially since there are exact solutions.
It exhibits the same type of quadratic nonlinearity, u · ∇u = ∇(1

2u
2), shared with the Euler and

6



2.1 - Analytical Solution 7

Navier–Stokes equations:
∂u
∂t + u · ∇u− ν∆u = −∇p, x ∈ Rd, t > 0

∇ · u = 0

u(x, 0) = u0(x)

(2.3)

where d = 2, 3 and ν ≥ 0. The Navier–Stokes equation simply enforces the conservation of mass and
momentum for an incompressible fluid, arising from Newton’s Second Law and energy principles.
The only difference between Burgers’ equation and the Navier–Stokes equation is the pressure term
and enforcement of incompressibility via the divergence-free condition, both in the latter.

It is clear why in some contexts, Burgers’ equation is termed the “1D Navier–Stokes equation”.
Indeed, many popular fluid dynamics solvers are designed for complex 3D flows governed by the
Navier–Stokes equation or its many coupled extensions (e.g.: radiative heat transfer, chemically
reacting flows, particle problems). However, engineers test their numerical methods on the Burgers’
equation first because if the code fails for this case, it will certainly fail for more challenging PDE
such as Eqn. (2.3). We first gleam some insight into the structure of solutions by solving Eqn. (2.1)
and Eqn. (2.2) analytically before turning to flow control applications with reduced order models.

2.1 Analytical Solution

We can solve the inviscid Burgers’ equation (2.1) analytically using the method of characteristics.
Shock front formation is a result of the characteristic curves intersecting; similarly, an expansion
or rarefaction wave is generated by the characteristics diverging from one another. Considering
the characteristic x = ξ + u(x, t)t with variable speed, we find an implicit solution for the inviscid
Burgers’ equation to be

u(x, t) = u0(x− u(x, t)t). (2.4)

There is no closed form solution in general, but using this relationship to plot the characteristics in
the x-t plane can provide insight on how the curves interact and intersect.

The viscous Burgers’ equation can also be solved exactly for the whole space Rd. We use
a powerful technique thats converts the nonlinear PDE into an easy linear PDE, the Cole-Hopf
transformation [19]. Many authors perform the ansatz setting w = e

−cu
ν and changing variables

in Eqn. (2.2) to obtain the heat equation. We will take this approach, but first justify where the
substitution came from. Consider the Cauchy problem for the parabolic PDE with a quadratic

Nicholas H. Nelsen ROM-based Optimal Flow Control



8 Chapter 2 - Burgers’ Equation

nonlinearity in Rd: ∂u
∂t − ν∆u+ c |∇u|2 = 0

u(x, 0) = u0(x)
(2.5)

where ν > 0. We assume that u has sufficient regularity and assign the unknown function

φ : R −→ R smooth

with w := φ(u). The goal here is to find a smooth function φ such that we force w to solve a linear
PDE. Computing derivatives with the chain rule, we obtain

∂w

∂t
= φ′(u)

∂u

∂t

for time and
∆w = φ′(u)∆u+ φ′′(u) |∇u|2

for space. But by our carefully selected system (2.5) above, we see that

∂w

∂t
= φ′(u)

∂u

∂t
= φ′(u)(ν∆u− c |∇u|2)

= νφ′(u)∆u− cφ′(u) |∇u|2

= ν(∆w − φ′′(u) |∇u|2)− cφ′(u) |∇u|2

= ν∆w − (νφ′′(u) + cφ′(u)) |∇u|2

Clearly we obtain the linear heat equation if φ solves the ODE νφ′′ + cφ′ = 0. Thus, set

φ(y) = e−
cy
ν (2.6)

as the Cole-Hopf transform. More specifically, if u solves the nonlinear equation (2.5), then w = e−
cu
ν

solves the diffusion equation IVP∂w
∂t − ν∆w = 0, x ∈ Rd, t > 0

w(x, 0) = e
−cu0(x)

ν , x ∈ Rd
(2.7)

The unique solution for this problem [see 19, for a complete mathematical treatment] is given by the
convolution with the heat kernel

w(x, t) =
1

(4πνt)
d
2

∫
Rd
e−
|x−y|2

4νt e−
cu0(x)
ν dy

ROM-based Optimal Flow Control Nicholas H. Nelsen



2.1 - Analytical Solution 9

and hence by the Cole-Hopf transform we may recover u by

u(x, t) = −ν
c

log(w(x, t)) = −ν
c

log

(
1

(4πνt)
d
2

∫
Rd
e−
|x−y|2

4νt e−
cu0(x)
ν dy

)
. (2.8)

We can now proceed to use the Cole-Hopf transform to solve the 1D viscous Burgers’ equation
on the whole real line. Our system of interest isut + uux − νuxx = 0, x ∈ R, t > 0

u(x, 0) = u0(x)
(2.9)

Our goal is to solve this equation using the above procedure. The first step is to rewrite equation (2.9)
into the form of the parabolic PDE (2.5). We begin with the not so obvious change of variables

h(x, t) :=

∫ x

−∞
u(y, t)dy. (2.10)

Applying this transformation is straightforward for the linear terms of Eqn. (2.9). For the nonlinear
term uux, we rewrite it in conservation form as ∂

∂x(u2/2) so that

∫ x

−∞

∂

∂x
(u(y, t)2/2)dy =

d

dx

∫ x

−∞
(u(y, t)2/2)dy = u(x, t)2/2 =

1

2

(
∂

∂x
h

)2

where u(x, t) = ∂
∂xh is obvious from Eqn. (2.10) and the fundamental theorem of calculus. Then,

the transformed PDE is ht + 1
2(hx)2 − νhxx = 0, x ∈ R, t > 0

h(x, 0) =
∫ x
−∞ u0(η) dη

(2.11)

which indeed is of the form (2.5) with c = 1/2. Using the formula (2.8), the solution for the auxiliary
variable h is

h(x, t) = −2ν log

(
1

(4πνt)
1
2

∫
R
e−
|x−y|2

4νt e−
∫ y
−∞ u0(η) dη

2ν dy

)
.

Finally, taking a spatial derivative and canceling terms yields the exact solution to Eqn. (2.9),

u(x, t) =

∫
R

x− y
t

e
−|x−y|2

4νt
−

∫ y
−∞ u0(η)dη

2ν dy∫
R
e
−|x−y|2

4νt
−

∫ y
−∞ u0(η)dη

2ν dy

∀x ∈ R, t > 0. (2.12)

Nicholas H. Nelsen ROM-based Optimal Flow Control



10 Chapter 2 - Burgers’ Equation

While it is advantageous that an exact solution can be derived, this solution only holds for the IVP
on the real line. For problems with boundary conditions, only a few exact solutions are known
and even then, computing all of the integrals may be inconvenient. Hence, if an exact solution is
not available to serve as a baseline result, we turn to standard direct numerical simulation (DNS)
techniques for partial differential equations to obtain fine resolution data for Burgers’ equation.

For example, prescribing the two mode sine wave u0(x) = sin(2πx) on [0, 1] in the Burgers’
system leads to the well known shock behavior at x = 0.5 (Fig. 2.1a, solved with finite differences).
The advection term causes u(x, t) to progressively steepen with time. The viscosity term provides
enough dissipation to prevent a singularity here, as we know that the solution is smooth for all time.

(a) Time evolution of u(x, t) into a shock (b) Contours of characteristic curves in x-t plane

Figure 2.1: Finite difference solution of Burgers’ equation with u0(x) = sin(2πx).

2.2 Initial Boundary Value Problem

The primary initial boundary value problem (IBVP) considered in this work is the 1D Burgers’
system 

PDE: ut + uux − νuxx = v(t)δ(x− a), (x, t) ∈ (0, 1)× (0, T ]

BC: ux(0, t) = u(1, t) = 0, t ∈ (0, T ]

IC: u(x, 0) = ψ1(x) =
√

2
3(1 + cos(πx)), x ∈ (0, 1)

(2.13)

where δ is the Dirac delta distribution, ν > 0 is the kinematic viscosity, a ∈ (0, 1) is the actuator
position, T is the final time, v(t) is a time-varying control input, and ψn(x) are the orthonormal

ROM-based Optimal Flow Control Nicholas H. Nelsen



2.2 - Initial Boundary Value Problem 11

Fourier basis functions [see 26] defined as

ψn(x) =

√
4n− 2

2n+ 1

(
(−1)n+1

2n− 1
+ cos(nπx) +

2

2n− 1

n−1∑
k=1

(−1)n+k+1 cos(kπx)

)
.

We denote the spatial domain as Ω = [0, 1]. The left endpoint boundary condition at x = 0 is
of the Neumann type, ∂u∂x |x=0 = 0 and the right endpoint admits a Dirichlet boundary condition
u(x, t)|x=1 = 0. The initial condition u(x, 0) = ψ1(x) satisfies these homogeneous boundary
conditions and is chosen to match that of [26].

The delta function, thought of as a unit “impulse” that assigns a single point unit mass and
being so crucial to our pointwise control approach, is now defined as follows.
The Dirac delta distribution is a type of “generalized function” with the informal definition of

δ(x− a) =

∞, x = a

0, x 6= a
(2.14)

for all x, a ∈ Rd. More precisely, δ : Rd −→ R is a linear functional acting on test functions f with
the fundamental properties that ∫

Rd
δ(x)dx = 1

and ∫
Rd
f(x)δ(x− a)dx = f(a).

Hence, the term v(t)δ(x − a) serves as a time-varying source or forcing (force density) that acts
locally on the point x = a. Physically, this could represent gravity, magnetism, or some other force
that is applied on a volume, and it is also analogous to a source or sink. This term is the mechanism
that distributes the control function v(t) to the PDE itself. The system (2.13) is called an external
distributed control problem with force actuator v(t). We interpret u(x, t) as the velocity of a fluid
particle constrained by the PDE to a trajectory along the interval [0, 1] ⊂ R.

The problem (2.13) has been well studied [8, 17, 26], and the solution develops a sharp front
(shock wave) moving toward the right boundary as time increases. This challenging nonlinear wave
behavior is a desirable trait on which to test the effectiveness of new numerical methods (as a first
pass) before moving on to higher dimensional fluid flow PDE such as the full Navier–Stokes or
Euler vorticity equations (2.3). We apply our proposed optimal control approach to this model
system (2.13) in the following chapters.
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Chapter 3

Full Order Model

The transient nonlinear dynamical systems of fluid dynamics and other fields of science display an
incredible range of spatial and temporal scales. To resolve these fine details via numerical simulation
would undoubtedly be cost prohibitive for all but the most state-of-the-art high performance
computing centers. However, in studying toy model problems such as the 1D Burgers’ equation, full
order direct numerical simulation (DNS) can be conducted with negligible downsides. High resolution
data from DNS is useful for performing modal decompositions from which to extract additional
information about the underlying flow fields or to serve as benchmark cases for later comparisons
to new models or methods. We undertake the latter in this work by using a second-order accurate
finite difference scheme to solve the Burgers’ system (2.13).

3.1 Numerical Methods

Today, the theory of finite difference schemes for solving partial differential equations is well developed.
There exist methods that are accurate up to arbitrary order and more so that exhibit desirable
properties such as suppression of numerical dissipation or dispersion. One of the most celebrated
family of high order methods is the compact finite difference scheme [33], used extensively in
simulations requiring enormous detail of the underlying physics. In this work, we opt to take a
simpler approach by implementing the (1,2) accurate forward-time central-space (FTCS) finite
difference scheme to solve the 1D viscous Burgers’ equation in divergence form,

ut + uux − νuxx = f(x, t).

This equation models the unidirectional propagation of a single wave and does not require high order
convergence to resolve fine features in the flow.

12



3.1 - Numerical Methods 13

The initial boundary value problem (2.13) for the 1D Burgers’ system is repeated here in
Leibniz notation for clarity:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= v(t)δ(x− a), (x, t) ∈ (0, 1)× (0, T ]

∂u

∂x
(0, t) = u(1, t) = 0, t ∈ (0, T ]

u(x, 0) = ψ1(x) =
√

2
3(1 + cos(πx)), x ∈ (0, 1)

We begin by discretizing the space-time domain [0, 1]× [0, T ] (with boundaries included) into a grid
of equally spaced points (xj , t

n), 0 = x0 < x1 < . . . < xNx−1 < xNx = 1 and 0 = t0 < t1 < . . . <

tNt−1 < tNt = T , where Nx is the number of points in space, Nt is the number of time steps, j is
the spatial index, and n is the temporal index (time level). This is the grid-centered approach.

It is well known from the von Neumann stability analysis that the time step for FTCS applied
to parabolic problems in d-dimensions is limited by the CFL-type stability condition [35]

ν
k

h2
≤ 1

2d
,

where k = ti+1 − ti is the time step and h = xi+1 − xi is the mesh size of the discretization. We
choose the time step

k = 0.8

(
h2

2ν

)
(3.1)

with a buffer factor of 0.8 to avoid numerical blow up of the computed approximation to the solution.
In the FTCS scheme, the time derivative is discretized in the Forward–Euler sense,

∂u

∂t
(xj , t

n) ≈ ∂V

∂t
(xj , t

n) =
V n+1
j − V n

j

k
, (3.2)

where V (xj , t
n) = V n

j ≈ u(xj , t
n) is the numerical solution to the discretized difference equations at

the grid point (xj , t
n). Forward–Euler converges as O(k) (first-order in time). Similarly,

∂u

∂x
(xj , t

n) ≈ ∂V

∂x
(xj , t

n) =
V n
j+1 − V n

j−1

2h
(3.3)

and
∂2u

∂x2
(xj , t

n) ≈ ∂2V

∂x2
(xj , t

n) =
V n
j+1 − 2V n

j + V n
j−1

h2
(3.4)

are the central difference approximations to the spatial derivatives and are both second-order accurate
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14 Chapter 3 - Full Order Model

(O(h2)) schemes [35, 62]. Plugging these differences into the PDE, we obtain

V n+1
j − V n

j

k
+ (V n

j )
V n
j+1 − V n

j−1

2h
− ν

V n
j+1 − 2V n

j + V n
j−1

h2
= fnj ,

where fnj = f(xj , t
n). We define the numbers λ = k

h and µ = k
h2

and rearrange to obtain the explicit
form

V n+1
j = V n

j −
λ

2
(V n
j )(V n

j+1 − V n
j−1) + νµ(V n

j+1 − 2V n
j + V n

j−1) + kfnj . (3.5)

To treat the two boundary conditions, a similar procedure is applied. The Dirichlet boundary is
simple: V (1, tn) = V n

Nx
= 0 for all n = 0, 1, 2, . . . , T/k. The Neumann condition ux(0, t) = 0 implies

V n1 −V n−1

2h = 0 or V n
1 = V n

−1. Substituting this relation into the FTCS scheme (3.5) yields

V n+1
0 = V n

0 + 2νµ(V n
1 − V n

0 ) (3.6)

for the left boundary. In summary, the full order DNS data can be obtained by solving (via explicit
time stepping) the linear system of difference equations (DE)

DE: V n+1
j = V n

j − λ
2 (V n

j )(V n
j+1 − V n

j−1) + νµ(V n
j+1 − 2V n

j + V n
j−1) + kfnj

BC: V n+1
0 = V n

0 + 2νµ(V n
1 − V n

0 )

V n+1
Nx

= 0

IC: V 0
j = ψ1(xj) =

√
2
3(1 + cos(πxj)).

(3.7)

The last step is to discretize the delta distribution in the control term f(x, t) = v(t)δ(x− a). Using
the previously developed notation, we set fnj = v(tn)δ(xj − a). Computation of accurate numerical
delta functions has been explored in [70]. We implement the smoothed 4-point cosine discrete delta
from [70] which satisfies the discrete version of Definition 2.14:

δD(r) =


1

4πh

(
π + 2 sin(π4 (2r + 1))− 2 sin(π4 (2r − 1))

)
, |r| ≤ 1.5

− 1
8πh

(
−5π + 2π |r|+ 4 sin(π4 (2 |r| − 1))

)
, 1.5 < |r| ≤ 2.5

0, 2.5 < |r|

(3.8)

where r = x−a
h . This smooth version has higher regularity and spreads the input forcing more

effectively than does a more standard sharp delta approximation.
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3.2 - Reference Solution 15

3.2 Reference Solution

The reference solution to Eqn. (2.13) with no control input (i.e., v(t) = 0) displays the formation of a
steep shock front that develops in time and approaches the right boundary (Fig. 3.1). This nonlinear
behavior can be interpreted from the transport equation. The inviscid Burgers’ equation (2.1) is in
fact a transport equation with nonlinear flux. The wave speed of the solution is the value of the
solution itself, u(x, t). Hence, higher amplitudes of the wave propagate to the right faster (if u is
positive) which leads to the observed steepening effect. We emphasize that the solution in Fig. 3.1

Figure 3.1: Full order reference solution without control, v(t) = 0.

corresponds to the uncontrolled flow, that is, v(t) = 0. This is in stark contrast to the forced systems
in the following sections with nonzero pointwise control inputs added to the PDE, in which the flow
is sharply disrupted at the actuator location (yet mathematically is still differentiable due to the
viscous term ν∆u).

3.3 Control Algorithm

The main objective in this work is to drive the nonlinear dynamical system governed by Burgers’
equation (2.13) as close as possible into a preselected target spatial profile uT (x) at the final time
T > 0. The system has a natural state that must be overwritten by the pointwise forcing v(t)δ(x−a)

in order to control the state variable u such that the state at time t = T , u(x, T ), closely tracks the
target function uT (x).
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16 Chapter 3 - Full Order Model

For example, the final state reached by the natural evolution of the Burgers’ system (2.13) is a
shock-like front seen in Fig. 3.2. This spatial profile is naturally reached by the state variable in the
absence of any control input (i.e., the homogeneous PDE). The goal now is to prescribe some other
target state for the solution to approach via a nonzero control input v(t). However, this problem

Figure 3.2: Natural final state u(x, T ) reached by u with v(t) = 0.

is infeasible without reducing the dimensionality of the control term itself, because the function
v resides in some suitable infinite dimensional function space, which of course is computationally
impractical to search within. Our approach follows closely that of [26] in that we parametrize
the control function in terms of a finite set of searchable parameters. The explicit control input
parametrization is a truncated Fourier series of the form

vM (t) =

M∑
k=1

(αk cos(µkt) + βk sin(µt)) ≈ v(t) (3.9)

where α = (α1, α2, . . . , αk), β = (β1, β2, . . . , βk), µ = (µ1, µ2, . . . , µk) are column vectors of unknown
parameters and M ∈ N. We write vM (t) = vM (α, β, µ, t) to emphasize the dependence of vM on the
expansion coefficients. Therefore, the original infinite dimensional optimization problem has now
been reduced to searching the finite dimensional vector space R3M (which has dimension 3M).

We choose the Fourier expansion because it is well known that sine or cosine are mutually
orthogonal and form a basis of the space L2(Ω), where Ω ⊆ R, which consists of the functions that
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3.3 - Control Algorithm 17

are square integrable and is thus a suitable space to contain the control function v:

f ∈ L2(Ω) if
∫

Ω
|f |2 dx <∞. (3.10)

The space L2(0, 1) is a Banach space and in particular a Hilbert space, equipped with the inner
product

(f, g) =

∫ 1

0
f(x)g(x)dx (3.11)

and norm

‖f‖L2(0,1) = (f, f)
1
2 =

(∫ 1

0
|f(x)|2 dx

) 1
2

(3.12)

for any f, g ∈ L2(0, 1). With these definitions, we can now make rigorous the measure of distance
between the final state and the target state in the form of a discrete cost functional

JN =
1

2
‖uN (x, T )− uT (x)‖2L2(0,1) +

γ

2
‖vM (α, β, µ, t)‖2L2(0,T ) , (3.13)

where γ > 0 is the control weight, uT (x) is the desired target state function at time T , and N

denotes the number of modes utilized if a reduced order model is used to compute the numerical
solution uN (x, t). The first term in Eqn. (3.13) represents the distance between actual and target
final states. A secondary consideration that is more practicable is embedded in the second term of
Eqn. (3.13). This term is a measure of the “energy” of the control input; by weighting the energy or
control effort with the small constant γ, we ensure that the control input does not grow too large.

By minimizing JN with an optimal control voptM , we will have obtained the best possible
numerical solution at the final state uN (x, T ) that best matches the target state uT (x). This, in
essence, is an exercise in nonlinear mathematical programming. Hence, the formal control problem
reads:

min
(α,β,µ)∈R3M

JN (vM (α, β, µ, t))

subject to


ut + uux − νuxx = vM (t)δ(x− a), (x, t) ∈ (0, 1)× (0, T ]

ux(0, t) = u(1, t) = 0, t ∈ (0, T ]

u(x, 0) = ψ1(x) =
√

2
3(1 + cos(πx)), x ∈ (0, 1)

(3.14)

We propose the control algorithm (Alg. 1) to solve the open loop PDE-constrained optimal
control problem (3.14). This algorithm is used for the full order model and both ROMs that are
introduced in Chapter 4. The Nelder-Mead simplex method [see 32] in the Matlab function
fminsearch is used to minimize the cost functional J in each loop of Alg. (1).
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18 Chapter 3 - Full Order Model

Algorithm 1 Optimal control loop: minimize the cost functional J
1: % INITIALIZE:
2: Define initial guess X0, M Fourier series terms, stopping criteria ε, max loops L
3: Define uT (x)
4: if ROM then
5: Define N modes
6: end if
7: C = 1
8: Jold = JN (X0)
9: Xold = fminsearch(JN (vM (X0)))

10: Jnew = JN (Xold)
11: % MAIN LOOP:
12: while

∣∣∣JnewJold
− 1
∣∣∣ > ε do

13: if C ≥ L then
14: break
15: else
16: Jold = Jnew
17: Xtemp = fminsearch(JN (vM (Xold)))
18: Jnew = JN (Xtemp)
19: Xold = Xtemp

20: C = C + 1
21: end if
22: end while
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3.4 Full Order Model Results

We first examine the sensitivity of our Burgers’ system (2.13) to changes in model input parameters.
Specifically, the effect of actuator location x = a is examined in comparison to a previous study.
Dean and Gubernatis [17] show that even with a full order model (FOM), it is hard to control
upstream flow with a pointwise (local) control input; this is exactly the behavior we observe in full
order finite difference simulations. Relatedly, Dean and Gubernatis perform an approach with two
control points. Using the same initial condition, boundary condition, and forcing term as in their
work [17], we observe the effect of the two control points spreading in time [Fig. 3.3]. If the control

Figure 3.3: Example of multiple control inputs (a1 = 0.2 and a2 = 0.6).

point is close enough to the boundary (in Fig. 3.4a it is a = 0.1), then the Neumann condition
does indeed allow for the solution to shift up or down at the left boundary. This behavior was not
observed when using the initial condition Ψ1 from [26] in our main system Eqn. (2.13) and supports
the claim that pointwise control has a strong local influence on the solution to PDE.

We now present the results for six different target state functions (test cases) in the FOM
control simulation. Of course for this FOM, it is meaningless to specify the number of modes N ;
the solution is hence denoted simply as u = u(x, t). We use h = ∆x = 1

500 , T = 0.6, a = 0.6, γ =

10−3, ε = 10−3, ν = 10−2,M = 2 terms, and an initial guess vector of X0 = 0. All of our optimization
routinesin this thesis use a stopping criteria∣∣∣∣Jn+1 − Jn

Jn

∣∣∣∣ < ε = 10−3

Nicholas H. Nelsen ROM-based Optimal Flow Control



20 Chapter 3 - Full Order Model

(a) Full flow field with changing boundary at x = 0 (b) Time evolution of the Neumann boundary

Figure 3.4: The Neumann left boundary adjusts u(x, t) when the control input location is nearby.

to approximate the continuous convergence condition
∣∣∣Jn+1−Jn

Jn

∣∣∣ as n→∞, where Jn+1 denotes the
current value of the cost functional and Jn the previous value.

FOM Experiment J(Xopt) Number of Loops

Case 1: uT = 1− x3 0.138854 3
Case 2: uT = 1 + cos(πx) 0.050898 2
Case 3: uT = sin(πx) 0.290653 2

Case 4: uT =
√

2
3(1 + cos(πx)) 0.076629 3

Case 5: uT = 2
√

2
3(1− x3) 0.004855 3

Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T )) 2.216697E-5 6

Table 3.1: FOM values of the cost functional at the optimal states for six different uT .

Table 3.1 shows the final decayed value of the cost function J = JN evaluated at the optimal
control input vector of parameters Xopt and the number of control loops required to achieve the
stopping criteria for each of these six test cases. In general, smaller values of J suggest better
performance of the numerical solution approaching the target state uT .

The optimally controlled FOM with actuator located at x = a = 0.6 performs as one would
expect. That is, the final state of the solution u(x, T ) quickly snaps to the prescribed target function
uT at x = 0.6 and closely matches uT up to the right boundary x = 1. This behavior has been
observed in other sources [see 17]. All six of the cases satisfy the boundary conditions of Eqn. (2.13)
except Case 3, uT (x) = sin(πx). However, the FOM in this case still follows the target profile well
for values of x after x = 0.6, even though the value of J is the highest of the six cases. Such a desired
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure 3.5: FOM comparison of final state u(x, T ) to target state uT (x).
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22 Chapter 3 - Full Order Model

target function may be more realistic in applications, so it is encouraging to see this successful
behavior. Full convergence histories and flow fields may be found in Appendix A, Figs. A.2–A.3.

In Case 4, the target function is equal to the initial condition, uT = ψ1. The optimal control
was not able to drive the dynamical system back into its initial state for our Burgers’ problem.
Further, the cubic target function in Case 5 matches the value of the initial condition at the point
x = 0, and performance is improved from the similar target state in Case 1 (Fig. 3.5a).

The Case 6 target function (Fig. 3.5f) requires some additional explanation. Instead of
prescribing an explicit target that may or may not even be reachable by the PDE in Eqn. (2.13),
we instead create an achievable target ureachT by explicitly inputting a known control function, here
vp(t) = 0.25(1 + sin(4πt/T )). The reachable target is computed numerically by solving the FOM for
the Burgers’ system Eqn. (2.13) with v = vp known and setting ureachT := u(x, T ). Then the control
algorithm is initiated as before in the other five cases to solve for the optimal vopt(t) that drives
u to the reachable state ureachT (see Fig. A.1 for a comparison of the prescribed control vp and the
optimal control vopt for Case 6). This process was conducted before in [40] and serves as a more
effective means of comparing FOM results with ROM results, as we shall see in Section 4.3. As
expected from the theory and existing literature, the FOM can exactly achieve the Case 6 target
state as evidenced in Fig. 3.5f; the plots are indistinguishable.
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Chapter 4

Reduced Order Models

With the full order model (FOM) at our disposal, we may now construct reduced order models
(ROMs) to solve the same optimal control problem. We define two ROMs, the Fourier–ROM and
the POD–G–ROM based on the Galerkin projection. The Fourier-type basis functions begin our
discussion.

4.1 Fourier Basis

The Fourier basis functions are a sequence of sinusoids that only depend on boundary conditions;
their construction did not involve any prior information about the dynamical system (Eqn. 2.13)
itself. We shall see how this contrasts with the Proper Orthogonal Decomposition in later sections.

We begin with the sequence of functions that arise from a modified Fourier series:

{Ψn(x)}∞n=1 = {cos(nπx)− (−1)n}∞n=1. (4.1)

Clearly, the Ψn satisfies the Neumann boundary condition ( ∂
∂xΨn)(0) = 0 on the left and the Dirichlet

boundary condition Ψn(1) = 0 on the right for the domain Ω = [0, 1] in Eqn. (2.13).

However, the functions Ψn are not orthonormal nor even orthogonal when equipped with the
standard L2 inner product

(f, g) =

∫ 1

0
f(x)g(x)dx (4.2)

and norm

‖f‖L2(0,1) =

(∫ 1

0
|f(x)|2 dx

) 1
2

(4.3)

for any f, g ∈ L2(0, 1). A sequence of elements ϕj in an inner product space are orthonormal if and
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24 Chapter 4 - Reduced Order Models

only if they satisfy

(ϕj , ϕk) =

1, if k = j

0, if k 6= j
= δjk (4.4)

for any j, k and where δjk is the Kronecker delta. Hence, we apply the well-known Gram-Schmidt
orthogonalization process from linear algebra to the functions {Ψn}∞n=1 to form an orthonormal basis
for the infinite dimensional inner product space L2(0, 1). The Fourier basis is then

ψn(x) =

√
4n− 2

2n+ 1

(
(−1)n+1

2n− 1
+ cos(nπx) +

2

2n− 1

n−1∑
k=1

(−1)n+k+1 cos(kπx)

)
, n = 1, 2, . . . (4.5)

For practical computation, we truncate this sequence of modes to a finite number N ∈ N. We will
apply this Fourier basis in a reduced order model using the Galerkin projection, detailed in the
forthcoming Section 4.2.1.

The first four Fourier basis functions for the problem (2.13) are plotted in Fig. 4.1. We indeed
observe that the boundary conditions are satisfied and that higher indices j in ψj correspond to
higher frequencies. It is clear that while the Fourier–ROM is easy to implement, it can be shown

Figure 4.1: The first four orthonormal basis functions used to construct the Fourier–ROM.

that this model requires a high number of modes for reasonable accuracy in approximating the true
solution to the PDE. This contrasts to the POD approach, detailed next.
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4.2 Proper Orthogonal Decomposition Basis

Proper Orthogonal Decomposition (POD) is a popular data analysis technique based on the
singular value decomposition (SVD) from numerical linear algebra that has recently arisen to
prominence in a variety of fields. In this section, we detail the POD approach for reduced order
modeling to capture unsteady, convective, and non-stationary dynamics of governing nonlinear PDE
in fluid dynamics. San and Iliescu in [54] provide a far more detailed discussion of this topic. For
clarity, POD is also known as the principle component analysis, Karhunen-Loéve decomposition, or
the empirical orthogonal functions [55].

The POD basis functions are pre-computed from DNS snapshots or experimental measurements
and are dependent on the parameters of the problem. This is the so-called method of snapshots [48]
and explains why POD is known as a data-driven method. In this way, the basis inherently captures
the dominant flow characteristics (e.g., coherent structures) that compose the flow field. We outline
the POD in the one-dimensional case.

Suppose we have a data set u(x, t). The spatial variable x ∈ Ω lives in a bounded subset
Ω ⊂ R and the time variable t is nonnegative and bounded, 0 ≤ t ≤ T . The POD procedure begins
by decomposing the high-dimensional flow field u into a mean part ū and a fluctuating part ũ,

u(x, t) = ū(x) + ũ(x, t), (4.6)

where the mean is constant in time and is given by

ū(x) =
1

N

N∑
i=1

u(x, ti), (4.7)

and N corresponds to a finite number of distinct snapshots at time ti used for time averaging. This
decomposition often arises when there is a need to model Reynold’s stresses in an incompressible
fluid flow.

The goal now is to then derive a set of N bases φk(x), k = 1, 2, . . . , N , which can reproduce
the fluctuating component of the above decomposition (4.6) by the modal expansion

ũ(x, t) =
N∑
k=1

ak(t)φk(x), (4.8)

where ak(t) are the time-dependent POD coefficients. A mapping to the subspace spanned by the
truncated set of basis functions {φk}Rk=1 with R ≤ N will lead to a reduced system of ODE that
aim to capture the spatial and temporal evolution of the original PDE.
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In this study, snapshots are sampled uniformly from the solution time interval [0, T ]. In general,
the number and location of the snapshots u(x, ti) are dependent on the dynamics of the system and
may vary depending on the situation. We note that the decomposition (4.6) unnecessarily complicates
our ROM (specifically, the coefficients in the ODE system) by inducing an affine projection instead
of a linear projection. While our code has the capability for this particular velocity decomposition,
we run all simulations without this feature active by artificially setting ū = 0 (which implies u = ũ).

4.2.1 Construction of POD basis

A POD can be constructed from the scalar field u(x, t) at different time points, or snapshots. These
snapshots are either obtained by solving the governing equations through a DNS, computing an
exact solution, or processing experimental data. In the following, we will utilize the superscript i to
indicate a particular snapshot in time. For the POD approach, we utilize a total of N snapshots for
the field variable, i.e., u(x, ti) = ui(x) for i = 1, 2, . . . , N . A correlation (or autocorrelation) matrix
C ∈ CN×N is constructed using the fluctuating components of the snapshots, ũ(x, ti) = ũi(x), and
is defined as

Cij =

∫
Ω
ũi(x)ũj(x)dx, (4.9)

where i, j ∈ {1, 2, . . . , N} refer to the ith and jth snapshots. The correlation matrix C is a non-
negative symmetric square matrix of size N and each entry may be expressed as the L2 inner product
Cij = (ũi, ũj). Clearly, this computation of N2 integrals is one indication that the offline stage of
ROM formation is computationally expensive.

In this study, we use a trapezoidal integration rule for the numerical computation of all
required L2 inner products. The optimal POD basis functions are obtained by performing an
eigendecomposition for the C matrix. This has been shown in detail in POD literature (see, e.g., [14])
and is closely related to the singular value decomposition [31]. The eigenvalue problem can be
expressed as

CW = WΛ , (4.10)

where Λ = diag[λ1, λ2, . . . , λN ] is a diagonal matrix containing the eigenvalues (singular values) of
this decomposition andW = [w1, w2, . . . , wN ] is an orthogonal matrix consisting of the corresponding
eigenvectors. The eigenvalues are stored from greatest to least magnitude, λ1 ≥ λ2 ≥ · · · ≥ λN , and
this, in a sense, ranks the “energy” of each POD mode. The orthogonal POD basis functions can
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then be obtained from the matrix of eigenvectors as the summation

φk(x) =
N∑
i=1

wki ũ(x, ti), k = 1, 2, . . . , N , (4.11)

where wki is the ith component of eigenvector wk. The eigenvectors must also be normalized in order
to satisfy the condition of orthonormality between bases given by Eqn. (4.4). For this relationship
hold for the POD basis, the eigenvector wj must satisfy

N∑
i=1

wjiw
j
i =

1

λj
. (4.12)

In practice, most modern packages for solving the eigensystem given by Eqn. (4.10) return the
eigenvector matrix W with each eigenvector column already normalized to unity (e.g., Matlab). In
this case, the orthonormal POD basis is given by

φj(x) =
1√
λj

N∑
i=1

wji ũ(x, ti), j = 1, 2, . . . , N , (4.13)

where φj(x) is the jth POD basis function.

The main motivation behind the construction of a ROM using the optimal POD basis is due
to the fact that modes with high magnitude eigenvalues retain a greater proportion of the “modal
energy” of the system. To reduce the computational expense of our system in the transformed
space, we truncate the number of modes in our system to a value R < N with the assumption that
these R modes capture a large fraction of the total energy of the system (ranked by the singular
values). Hence, it is possible to construct a lower degree of freedom approximation of our PDE in
the subspace spanned by the POD modes that include the most dominant characteristic dynamics.

We apply this procedure to Eqn. (2.13) to obtain the POD basis (4.13). In Fig. 4.2a, these
functions are plotted on Ω = [0, 1]. We observe how they are heavily weighted near the right boundary
x = 1, which is near the location of the high gradient shock front (recall Fig. 3.1). For our posed
problem, the first two singular values corresponding to the first two POD basis functions comprise
nearly 99% of the total modal energy in the system (Fig. 4.2b) . However, in contrast to a linear
system, the quadratic nonlinearity in Burgers’ equation ensures that a two-mode approximation will
most likely not be sufficient with respect to numerical and physical accuracy. The high index (e.g.,
R� 50) dissipative truncated modes have significant influence on the accuracy of the ROM, and
this is the motivation for a variety of new closure models [see, e.g., 54].
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(a) First four POD basis functions used to construct
the POD–G–ROM

(b) Cumulative modal energy of the first four dominant
singular values

Figure 4.2: The first four orthonormal POD basis functions and corresponding singular value energies.

4.3 Galerkin Projection

The Galerkin method uses a generalized Fourier series approach to recast a given PDE into a system
of ODE. Given an orthogonal basis {ϕn}∞n=1 of a function space, say the square integrable functions
L2(Ω), each element v ∈ L2(Ω) can be uniquely expanded in terms of this basis as

v =
∞∑
n=1

anϕn,

where the coefficients an can be obtained by the projection

an =
(v, ϕn)

(ϕn, ϕn)
=

∫
Ω
vϕndx∫

Ω
|ϕn|2 dx

, n = 1, 2, . . .

using the standard L2 inner product defined in Eqn. (4.2). If v = v(x, t) is a function of space
and time as in the case of fluid flow data, then the functions an = an(t) evolve in time (assuming
ϕn = ϕn(x) are spatial modes), analogous to a separation of variables.

With the Galerkin projection, we truncate the state variable expansion to a finite number of
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modes R <∞. Hence, we obtain a sequence of functions

vR(x, t) =
R∑
n=1

an(t)ϕn(x)

that reside in the new finite dimensional vector space UR that approximates the original infinite
dimensional function space L2(Ω); that is, UR → L2(Ω) and vR → v as R→∞.

Completion of the Galerkin procedure requires an elimination of the spatial dependence in the
underlying PDE. To do this, the PDE is cast into its weak (variational) form by multiplying both
sides by a test function ω ∈ L2(Ω) and integrating over the spatial domain Ω. This is equivalent
to taking the inner product on both sides of the equation with the test function ω. In particular,
since UR ⊂ L2(Ω), we choose ω := ϕk ∈ UR as the specific test function to take advantage of the
orthogonality of the functions ϕk. If the basis functions ϕk are finite elements (e.g., linear piecewise
functions), then an integration by parts is usually performed to shift derivatives to these modes.

For the Burgers’ equation (2.13), the Galerkin projection in one space dimension can be carried
out in the following manner. We first recall the Burgers’ system in its conservation form

∂u

∂t
+

∂

∂x

(
1

2
u2

)
− ν ∂

2u

∂x2
= v(t)δ(x− a), (x, t) ∈ (0, 1)× (0, T ]

∂u

∂x
(0, t) = u(1, t) = 0, t ∈ (0, T ]

u(x, 0) = ψ1(x) =
√

2
3(1 + cos(πx)), x ∈ (0, 1).

(4.14)

To derive the Galerkin projection as detailed above, we rewrite Burgers’ equation (4.14) as

∂u

∂t
= F + L[u] +N [u;u] , (4.15)

where F = F (x, t) = v(t)δ(x− a) is the control input, L is the linear diffusion operator

L[f ] = ν

(
∂2

∂x2
f

)
, (4.16)

and N is the bi-nonlinear operator

N [f ; g] = − ∂

∂x

(
1

2
fg

)
(4.17)

that represents the advection term in conservative form. By applying the Galerkin projection to
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Eqn. (4.15), we obtain the system of first-order ODE for each temporal coefficient ak(t) as our ROM:(
∂u

∂t
, φk

)
= (F, φk) + (L[u], φk) + (N [u;u], φk), for k = 1, 2, ..., R. (4.18)

Given the flow decomposition in Eqn. (4.6), we expand the fluctuating component of the field variable
u in terms of an orthonormal basis φn truncated to R modes,

u(x, t) ≈ uR(x, t) = ū(x) +
R∑
n=1

an(t)φn(x) , (4.19)

where an are time dependent modal coefficients. By using the properties of the orthonormal basis
(Eqn. 4.4), we simplify Eqn. (4.18) to obtain the final form of the ROM:

dak
dt

= vφk(a) +Bk +

R∑
i=1

Likai +

R∑
i=1

R∑
j=1

Nijkaiaj , for k = 1, 2, ..., R , (4.20)

where

Bk = (L[ū], φk) + (N [ū; ū], φk) , (4.21)

Lik = (L[φi], φk) + (N [ū;φi] +N [φi; ū], φk) , (4.22)

Nijk = (N [φi;φj ], φk) (4.23)

are constants that may be precomputed offline before evolving the ROM in time. The initial condition
for the k-th ODE is again given by projection:

ak(0) = (u(x, 0)− ū(x), φk) , (4.24)

where u(x, 0) = u0(x) is the initial condition of the problem (4.14). This system of R coupled
nonlinear ODE can be solved using any standard numerical method, such as Runge-Kutta (RK)
finite difference integrators. In this study, we use the fourth-order RK scheme ode45 in Matlab.

We denote Eqns. (4.20) and (4.24) as Fourier–ROM when using the Fourier basis {ψn}Nn=1

from Section 4.1 and POD–G–ROM when using the POD modes {φj}Rj=1 from Section 4.2. We
emphasize that the number of degrees of freedom in the Burgers’ system is now significantly lower
than the dimension of the original FOM. The vectors, matrices, and tensors in Eqns. (4.21)–(4.23) are
also precomputed quantities, which results in a dynamical system that can be solved very efficiently.
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4.4 Reduced Order Model Results

4.4.1 Fourier–ROM

We now proceed to show how the Fourier reduced order model (Fourier–ROM) performed for the
same six test cases of the target state uT (x) as in Section 3.3. We use h = ∆x = 1

1000 , N = 4 Fourier
modes, T = 0.6, a = 0.6, ε = 10−3, ν = 10−2,M = 2 terms for the control parametrization, and our
initial state vector (a guess) of X0 = 0.

Time integration is performed using the ode45 solver in Matlab and derivatives of the Fourier
basis functions are computed analytically in Eqns. (4.25)–(4.26) since the exact expression for ψn(x)

is known (Eqn. 4.5).

∂ψn
∂x

(x) =

√
4n− 2

2n+ 1

(
−nπ sin(nπx) +

2

2n− 1

n−1∑
k=1

(−1)n+k+2kπ sin(kπx)

)
, (4.25)

∂2ψn
∂x2

(x) =

√
4n− 2

2n+ 1

(
−(nπ)2 cos(nπx) +

2

2n− 1

n−1∑
k=1

(−1)n+k+2(kπ)2 cos(kπx)

)
. (4.26)

Fourier–ROM Experiment: N = 4 modes JN (Xopt) Number of Loops

Case 1: uT = 1− x3 0.002229 4
Case 2: uT = 1 + cos(πx) 0.000424 3
Case 3: uT = sin(πx) 0.002709 3

Case 4: uT =
√

2
3(1 + cos(πx)) 0.000722 5

Case 5: uT = 2
√

2
3(1− x3) 0.003681 3

Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T )) 0.171887 3

Table 4.1: Fourier–ROM values of the cost functional at the optimal states for six different uT .

Table 4.1 displays the minimum value of the discrete cost functional JN for each of the six
target functions. The rate of convergence to the optimal state is comparable to that of the FOM
(Table 3.1), at least in terms of the number of algorithm loops required. A full convergence history
may be found in Appendix A in Fig. A.5. In fact, the values of the cost function are indeed lower
than the corresponding results yielded by the FOM. This is not surprising when examining the plots
of the Fourier–ROM final states versus the target states in Fig. 4.3. In contrast to the FOM finals
states observed in Fig. 3.5, the final states of the Fourier–ROM are not constrained to the profile of
the natural state (Fig. 3.2) of the Burgers’ system (2.13) prior to control actuation at x = a = 0.6.
This is the reason why we observe lower values of JN for the Fourier-ROM. In these four-mode
reduced order models, the solution evolves dynamically on the whole domain Ω due to the control
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input and sinusoidal basis. This allows the final state to track the target function even for values of
x < a. The reader is referred to Fig. A.4 in Appendix A for a full picture of the ROM flow fields in
the x–t plane.

Cases 1–3 were originally presented in the work of Kucuk and Sadek in [26], and our
implementation of the Fourier–ROM framework reproduces the same results. To explore the
flexibility of the method, we additionally test the Fourier–ROM on Cases 4–6. Our results suggest
that while the model can accurately track the target state for more arbitrary, sinusoidal target
functions that may or may not satisfy the boundary conditions of the PDE, reachable target states
such as Case 6 are not resolvable (at least with the four Fourier mode approximation), see Fig. 4.3f.
Even an increase to ten modes did not improve the controllability to the level seen in Cases 1–5.
If this can be definitively confirmed in future studies, then this deficiency will certainly call into
question the effectiveness of the Fourier–ROM since any model should have the natural ability to
optimize to a reachable target function. In the next section, we will see that the POD–G–ROM is
superior in this respect.
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure 4.3: Fourier–ROM comparison of final state u(x, T ) to target state uT (x).
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4.4.2 POD–G–ROM

We now proceed to show how the Proper Orthogonal Decomposition reduced order model with
Galerkin projection (POD–G–ROM) performed for the same six test cases of the target state uT (x)

and will draw comparisons to the other two control approaches (FOM and Fourier–ROM). Our
numerical simulations use h = ∆x = 1

1000 to compute the DNS snapshot data for POD basis
construction, N = 1000 snapshots, R = 4 POD modes, T = 0.6, a = 0.6, γ = 10−3, ε = 10−3, ν =

10−2,M = 2 series terms for the control parametrization, and an initial guess vector X0 = 0.

Time integration is again performed using the RK ode45 integrator in Matlab, and derivatives
of the POD basis functions φk are computed using second-order accurate built-in Matlab central
difference schemes gradient and del2 for the gradient (first derivative in 1D) and Laplacian (second
derivative in 1D), respectively.

POD–G–ROM Experiment: R = 4 modes JR(Xopt) Number of Loops

Case 1: uT = 1− x3 0.007793 5
Case 2: uT = 1 + cos(πx) 0.024874 6
Case 3: uT = sin(πx) 0.016572 4

Case 4: uT =
√

2
3(1 + cos(πx)) 0.022411 6

Case 5: uT = 2
√

2
3(1− x3) 0.005019 6

Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T )) 0.022308 3

Table 4.2: POD–G–ROM values of the cost functional at the optimal states for six different uT .

The POD–G–ROM values of the discrete cost functional JR (Table 4.2) are comparable to that
of the FOM (Table 3.1) and are higher than the values produced by the Fourier–ROM (Table 4.1)
except for the cubic polynomial targets in Case 1 and 5. One explanation for why the cubics
performed better than the more general sinusoids of Case 2–4 is that the derivatives of the targets in
Case 1 and 5 are non-positive, ∂uT∂x ≤ 0. This contrasts with the targets in Cases 2–4 which exhibit
inflection points. The natural final state of the PDE satisfies

(
∂u
∂x

)
(x, T ) ≤ 0 (see Fig. 3.2) and this

similarity may explain why the data-driven POD approach performs better for target functions that
share this trait.

Table 4.2 also indicates the higher cost associated with the POD–G–ROM; most test cases
required one to three more loops than corresponding cases for the FOM or Fourier–ROM to meet the
same stopping criteria in Alg. (1), even though expensive set up calculations were precomputed offline
before running the simulations. A full convergence history for each of the six test cases may be found
in Appendix A, Fig. A.7. Perhaps future studies incorporating higher order differentiation schemes
or more modes would better address the issue of computational efficiency of the POD–G–ROM.
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure 4.4: POD–G–ROM comparison of final state u(x, T ) to target state uT (x).
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In terms of ability to track the target state, the controlled solutions uR(x, T ) in Fig. 4.4 display
a general tendency to approach uT and in fact do so excellently in Case 1 and 5, as mentioned
previously. The final state diverges slightly from the target in nearly all of the cases around the point
x = 0.9. This location is actually the location of the steep shock front that develops in the natural
final state of our initial boundary value problem Eqn. (2.13). Since the POD basis functions are
constructed from the DNS data of the natural uncontrolled solution, this high frequency structure is
likely built into the basis functions by design. Only by increasing the number of modes do we expect
this localized behavior to damp out.

In the reachable Case 6 target, the POD method better approximates the target state than
did the Fourier–ROM method (Fig. 4.4f). The data-driven construction of the POD basis again
appears to be the influence generating this result; that is, the natural physics of the Burgers’
system is inherently encoded into the POD–G–ROM model and would likely be amenable to small
perturbations like the prescribed control input in Case 6.

While overall the POD–G–ROM is not as successful at controlling the evolution of u as is the
Fourier–ROM, the ability to match reachable target states is promising. However, we do concede
that the full approximations uR(x, t) are more globally erratic than the counterparts uN (x, t) for
the Fourier–ROM; see Fig. A.6 for the full flow fields. Yet this seemingly poor accuracy is a well
known behavior in very low order POD ROMs with few modes, as in the present study.

We emphasize that all of the numerical experiments for the two ROMs presented thus far have
only incorporated four modes. To briefly address this point, we focus on the Case 6 target function.
By now increasing the number of modes for the POD–G–ROM method, we observe interesting
behavior in the controlled solution (Fig. 4.5). It appears that the approximation uR becomes better
as R increases; however, higher frequency oscillations before the steep shock at x ≈ 0.95 become
apparent with more modes. But in Fig. 4.5c, we observe that the amplitude of this undershoot
and overshoot artifacts have damped lower when compared to that of Fig. 4.5a and Fig. 4.5b. We
would expect this trend of improvement to continue as R is increased, but future investigations on
higher performance computing clusters with R = 40 modes or greater would provide more conclusive
evidence into this matter.
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(a) R = 4 (b) R = 10

(c) R = 20

Figure 4.5: POD–G–ROM approximation of target state Case 6 as number of modes R increases.
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Chapter 5

Conclusion

In summary, we have designed a numerical framework for cost effective simulation and optimal control
of nonlinear partial differential equations (PDE) that govern complex flow phenomena. An open
loop control problem for the one-dimensional viscous Burgers’ equation is solved by the optimization
of a parametrized control input function forcing the PDE. The control objective is to minimize
the distance between the final state of the PDE solution, u(x, T ), and a prescribed target state,
uT (x). Three approaches utilize our proposed control loop algorithm: a full order model (FOM)
for forward baseline simulation, and two reduced order models (ROMs), the Fourier–ROM and the
POD–G–ROM. Both ROMs are obtained from a Galerkin projection onto the corresponding Fourier
modes (from a Fourier series) or POD modes (from a Proper Orthogonal Decomposition obtained
via high fidelity direct numerical simulation snapshots).

We have demonstrated that this low order computational framework succeeds in controlling the
evolution of Burgers’ equation for a variety of target function test cases. However, controllability of
the ROMs is sensitive to the choice of target function. The POD–ROM–G performs more accurately
for target functions similar in spatial profile to the final state of the uncontrolled Burgers’ PDE, that
is, reachable target states. In contrast, the Fourier–ROM is generally more effective for arbitrary
target functions composed of linear combinations of sinusoids. Our code can replicate the results
of many canonical numerical experiments from the reduced order modeling and optimal control
literature [see 26, 40].

One limitation in this study is the slow optimization scheme used to decay the cost functional.
In forthcoming studies, we aspire to improve the optimization routine through gradient or adjoint-
based methods. Adjoint methods have been applied to chaotic dynamical systems effectively [39,
66], and, in particular, we would expect gradient-based methods to perform more efficiently with
our reduced order numerical framework than does the current Nelder–Mead simplex optimization
approach. Information about the gradient of the cost function (and hence the direction of steepest
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descent) will inherently reduce the number of expensive function evaluations during the iteration
procedure (Alg. 1), which each evaluation corresponding to one forward time evolution of all R
modal coefficients.

Further, a more comprehensive study of actuator location would be of use in determining the
effectiveness of the ROMs presented in this thesis. While we have shown evidence that the control of
Burgers’ equation is sensitive to the locality of the pointwise control, additional insight from 2D and
3D studies or variations of the posed 1D initial boundary value problem would improve understanding
of this phenomenon. Of relevance in real-world practice, the precise placement location of sensors or
actuators is a major factor contributing to the success or failure of flow control applications [49].

Many similar avenues of research could be explored, even for simple 1D toy problems. Boundary
control for Burgers’ equation has been studied in [27] with the same control parametrization approach.
Kucuk and Sadek suggest that boundary control is more effective than the similar pointwise control
method used in this work. Without the need to prescribe a discrete delta function in this type of
problem, an implementation of a POD ROM would be of obvious interest in the boundary control
case. Additionally, most modern state-of-the-art POD models incorporate some regularization or
closure terms that stabilize the approximations uN [4, 5]. For example, artificial viscosity has been
added to POD ROMs before [see 10]; however, to the best of this author’s knowledge, stabilization
and regularization routines have not been tested in an optimal flow control setting.

Since the POD is loosely a form of unsupervised learning, more traditional supervised learning
approaches are worthy of investigation and comparison. For example, Dynamic Mode Decomposition
(DMD) [44, 59] or radial basis function ROMs using an artificial neural network (ANN) approach are
two ideas with great potential. San and Maulik in [55, 56, 57, 58] have demonstrated the excellent
performance of ROMs augmented with ANN and extreme learning machine (ELM) procedures. For
the practical exploration of these ideas, the python library TensorFlow is an attractive package to
begin testing these approaches specifically for optimal flow control applications. Lastly, semi-online
or fully adaptive approaches for updating a ROM basis during the online stage could facilitate
enhanced model prediction for PDE and improved accuracy in flow control scenarios.

Modeling high-dimensional, complex physical or artificial systems with low-dimensional ap-
proximations is extremely valuable, especially in the impending era of exascale computing. While
computing hardware is evolving in anticipation of this paradigm shift, the software and algorithms
must also adapt to meet the unparalleled needs of these architectures. It is clear that the numerical
approach to PDE-constrained optimal flow control developed in this thesis serves as an early test bed
for future studies involving more challenging problems including the control of full three-dimensional
turbulent fluid flows. Our proposed reduced order framework will serve as one early, yet promising,
step in the development of next-generation techniques for optimal control applications.
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Appendix A

Additional Figures

(a) FOM (b) Fourier–ROM

(c) POD–G–ROM

Figure A.1: Case 6 computed optimal control compared to prescribed control.
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure A.2: FOM full flow field u(x, t) for each target state uT .
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure A.3: FOM convergence history of the discrete cost functional for each uT .
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure A.4: Fourier–ROM full flow field u(x, t) for each target state uT .
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure A.5: Fourier–ROM convergence history of the discrete cost functional for each uT .
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure A.6: POD–G–ROM full flow field u(x, t) for each target state uT .
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(a) Case 1: uT (x) = 1− x3 (b) Case 2: uT (x) = 1 + cos(πx)

(c) Case 3: uT (x) = sin(πx) (d) Case 4: uT (x) =
√

2
3 (1 + cos(πx))

(e) Case 5: uT (x) = 2
√

2
3 (1− x3) (f) Case 6: uT s.t. v(t) = 0.25(1 + sin(4πt/T ))

Figure A.7: POD–G–ROM convergence history of the discrete cost functional for each uT .
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