ENGAGE

Other Options Food Pantry • Midtown Community Center

ARCH 5226 – Comprehensive Studio – Architectural Engineering

Thesis Completed: May 10th, 2017

Submitted by: Eric Fleet

Course Abstract

I am designing a Food Pantry and Teen Community Center. The project design will be comprehensive, so I will be designing the overall building, mechanical systems, some technical details based on research and analysis, as well as an in-depth design and calculation of the structural system.

Personal Project Abstract

Historically, people with HIV/AIDS have felt disassociated with society, a stigma that is still very existent today. A strong interaction with the Oklahoma City community can provide this group of people with the acceptance and comfort that we all inherently desire. The opportunity to design a campus that integrates a food pantry with a community center provides a unique opportunity to chisel away at this stigma. Through creating architecturally separated, yet programmatically connected spaces, the building users experience a balance of both public and private spaces. Though the three primary users of this building are teens, staff, and the food pantry clients, it is the staff that ties the two polar building functions together and nurtures this overall connection to the community.

Engage is located on the corner of N. Robinson Avenue and N.W. 11th Street in Oklahoma City, a site with access to views toward the downtown and midtown areas. Users are invited inside through three main entrances, all located at strategic points across the site – one is more private and placed near the south bus stop for servicing primarily food pantry users, while the other two entrances pull people into the central lobby from the west and east sides of the site respectively. A central corridor accessed from the parking is utilized to help funnel staff and community center users into their respective spaces. The food pantry clients are symbolized through the use of precast concrete walls to express their resiliency and sense of reservation during this hard time. These clients have access to a more private set of spaces on the south side of the site, while the precast concrete walls continue throughout the building, interacting with spaces such as the teen lounge, the main lobby and the multipurpose classroom.

In contrast, teens will use the community center to the north, a more public and open set of spaces. This larger space is encapsulated by a planar wood façade with slots dispersed along its

surface for light access. The grand form serves to envelop the community center, engage the ground plane, and span across the building to interact with the food pantry and staff spaces. By moving up and interacting with the roof planes of both the gymnasium and the food pantry lobby, this large timber form begins to peel away pieces of the roof to reveal large skylights for allowing light penetration into the spaces below. Finally, by taking advantage of vertically aligned CMU walls, the loading and service spaces are clearly defined. As one moves around the building, these three contrasting materials begin to speak to one another and guide users throughout the building, highlighting the three primary users of the design.

The spaces may be separated by function, but various connections unify the building as a whole through the situation of the staff and the communication of differing materiality. The stigma against the HIV/AIDS community opposes what it means to even be a community. *Engage* promotes the entire community – all people – while still balancing the need for public and private spaces.

Pre-Design Phase

Project Research

Once the project parameters were introduced, I helped coordinate the entire comprehensive studio into a research endeavor to collect information on various aspects that would affect the overall design initiative. These areas of research were focused on the site given, the client's needs, the building codes of the area, the context of Oklahoma City, sustainability suggestions, effective loading scenarios, and the construction of a digital context model in Revit. After a week of intensive research collection and organization, a 175-page document was produced and dispersed amongst the class to help formulate some initial design proposals.

In addition to the strong focus on project research at the beginning of the semester, the class spent a day visiting the site in person, while also meeting our clients at Other Options Incorporated in Oklahoma City. This personal interaction helped to solidify the potential magnitude of our design on this facility that devotes everything to serving the community. As a requirement for the course, students were asked to volunteer one weekend at Other Options Inc. in order to experience the culture of the facility first hand. This experience also lent itself to allowing students to see any deficiencies in the current design so that solutions could begin to take shape early on in the design process.

Schematic Design Phase

Concept Search

The weeks following the pre-design phase were spent rigorously searching for an initial design concept that solved as many of the project challenges as possible. These concepts explored everything from site orientation and access of spaces, to massing and functionality of the loading dock. After several weeks of exploration and refinement, I honed in on a design concept that gave representation to the various user groups through the qualities of differing materials and how they can interact with one another. A general massing strategy was implemented that worked well programmatically with the spaces required and from there, the concept took over in making several important design decisions.

The initial schematic design process began with several inspiration pictures which led to a preliminary design concept. The idea of taking an important space and shifting it out of an overall, monolithic form provided a sense of hierarchy and intrigue. In addition, the use of contrasting materials around the façade allowed for flexibility in daylighting strategies while also creating an appealing exterior aesthetic.

Through the use of various conceptual communication methods such as sketching and Google Sketchup, the initial form of the design came into being. By altering the different mass configurations, scale was better understood and the relationships between masses was pinpointed. By looking into the programmatic relationships within each mass, the general plan was then able to function alongside the proposed 3D masses.

Once the main form was selected, ideas were explored that expressed the concept of community through exterior materiality. Finally, a scheme was chosen that symbolized the community center with a timber veneer, while the food pantry was represented by precast concrete walls.

SD HVAC

As the floor plans began to take shape, the location of the mechanical rooms and other service spaces had to be strategically placed in order to nurture a successful design. By placing the

service core of the building in the southeast corner near the loading dock, these spaces were kept away from the main spaces of the building and remain hidden from view. An initial duct layout was proposed which followed the central circulation of the design to a tee. This decision allowed for an extremely efficient selection of mechanical ductwork that provided the required amount of conditioned air to the spaces with the least amount of ducting material possible.

Intake and exhaust air vents were placed a minimum of 8 feet apart to avoid cross-contamination of these separate air streams. Three air handling units were chosen to service the building. Two of these units operate on a variable-air-volume system (VAV) and service the occupied spaces on the first and second floors. The third air handling unit services the gymnasium alone and runs on a constant-air-volume system (CAV) due to the large volume and height of this space. In addition, VAV boxes were modeled to indicate when a space would have its own thermostat for controlling the specific environmental conditions of that space.

The heating and cooling system chosen for this design was accomplished through the use of ground source heat pumps located at the southeast corner of the building. Typically, these pumps cannot be placed underneath the building in case the need for servicing these wells arises. However, after researching the successful implementation of this sub-building installation method, I chose to pursue this approach in order to save space on the limited size of our given site.

SD Structure

The structure was explored during the schematic design phase from a very general perspective. Different systems were implemented and various advantages and disadvantages were studied. First, a timber system was studied to check feasibility. Though this system would result in a more efficient use of materials and an overall lighter structure, the member sizes would have to be larger to accommodate for the weakness of the material itself. Next, a concrete design was chosen, utilizing a one-way concrete slab. This approach provided minimal column footprints due to the strength of the material; however, the system would have resulted in fewer views out of the building, less daylight exposure, and a heavy roof load. Finally, a complete steel system was chosen for this design due to its strength, flexibility in design, and simplicity in installation. By using steel vertical braces, all lateral forces could be transferred into the foundation directly

without the use of solid shear walls. A composite floor system was selected as well due to its strength and minimal thickness requirements.

Design Development Phase

Material Exploration

Before the design development phase, many of the major decisions that directed the form of the building had already been made. After the introduction to the design development phase, weeks were spent developing the interior experience of the design, as well as refining the interaction between both the interior and exterior materials. For my concept, the exterior materials represented the primary users of the building. However, during this phase, I integrated this concept throughout the spaces within, guiding the timber veneer drop-panels along a hallway while the precast concrete walls rose from the floor plane and began to enclose various volumes. In addition to expanding the use of the three main materials along the inner corridors, a stained concrete floor was utilized on the second floor to richen the community center areas and warm the gathering spaces. Also, acoustic drop panels were placed below the structure, the mechanical air ducts, and the fire protection system to provide noise control and scale to the community center.

Lighting design was also initiated during this phase. By utilizing the Lumen method, multiple lighting fixtures were researched and run through a trial and error process until one met the required lighting proficiencies. Once a fixture was selected after numerous calculations, the dimensions and spacing were included in a reflected ceiling plan to ensure complete coordination with the structural, fire protection, and HVAC systems for the building. To account for the effects of daylighting, a scale model was built and tested in our daylighting lab. Using eight sensors placed throughout the model, the typical light loads were recorded and analyzed. By checking for the predicted illuminance levels in the teen lounge during each of the four seasons, it was found that an internal shading device would be necessary during the summer months to help control the amount of daylight entering the space. Therefore, a mechanical roller blind system was placed in the detailed wall section and the interior rendering of the teen lounge.

DD HVAC

Before constructing an environmental performance model in the EnergyQuest program, the thermal resistance values had to be calculated for the roof, wall, and floor components. In addition, research was performed to find a glass type for the curtain wall that diffused the daylight sufficiently and provided thermal protection to the space within. Several values were recorded for the various thermal-resisting components such as the thermal conductance, thermal transmittance, glass shading coefficient, the solar heat gain coefficient, and the visible transmittance of the glass. By comparing my model with a 27% glass ratio to a baseline model with a 40% glass ratio, my design was found to be much more efficient and required a lower cooling load for the interior space. With these calculations, the main duct sizes were determined for each air handling unit, as well as the return duct sizes. Louver sizes were also found through calculations utilizing the air handling unit capacities and a 30% fresh air intake.

DD Structure

After proceeding through the schematic design phase of this project, my design was made possible by utilizing a structural steel framing system. With this material, overall depths of members were reduced when compared to the use of timber construction. In addition, visual connections between the interior space and the exterior environment were more readily available when compared to the use of concrete columns and slabs.

Upon reviewing the geotechnical report for our urban site in the heart of Oklahoma City, it was advised that a foundation system consisting of drilled piers and grade beams supporting a concrete slab for the ground floor would be the best option. This would result in the least amount of overall building movement when compared to slab-on-grade or subgrade wall systems. These drilled piers would also support a system of grade beams beneath the structure, which are located around the exterior walls of the building. They function by transferring gravity load directly from the columns above to the piers below.

Preliminarily, an 18-inch diameter pier would be drilled below all columns, with the exception of some localized areas across the site with an expected increase in gravity loading. Some instances of this occurring would be below the green roof since live and dead loads here will be higher when compared to other locations around the building. Piers located beneath the south side of the gymnasium, as well as in the middle of the Food Pantry space that extend upward to support

the staff spaces on the second floor, should be sized near 24 inches or 30 inches in diameter to accommodate higher dead loads and large roof loads above the gymnasium.

The main horizontal structural system for this project is a composite deck system supported by steel post and beam construction. Steel columns and vertical bracing throughout the building support horizontal composite steel beams, whose purpose is to tie together the poured concrete slab, the corrugated steel decking, and the steel beams beneath. Before a three-inch concrete slab is poured, shear studs are attached to the deck/beam interface so that the concrete slab engages the structure itself. Vertical bracing (in the form of diagonal braces) is located primarily around the large gym space, as well as along the mechanical cores in the building and along the south side of the second floor staff spaces. These walls act as the main lateral force resisting elements for the design.

Sizing of the members throughout this design remains relatively consistent within each space. The gym is sheltered above by open-web joist girders, approximately six feet deep. These in turn support one-foot deep open-web roof joists, spaced at approximately five feet on center. Most columns were preliminarily designed to be wide flange members with a nominal depth of eight to ten inches. For the food pantry component of the program, open-web joist girders reaching a depth of three feet were used to support the green roof above. In addition, fourteeninch deep steel roof beams comprise the exterior framing of the food pantry.

Design Documentation Phase

Construction Documents

As final documentation took place in the design process, numerous revisions were made to the structure to finalize the structural analysis model. In RISA, the structure was modeled and made stable after applying all the necessary seismic, wind, snow, and gravity loads to the building. Once the model ran successfully, various checks were performed to meet code and serviceability requirements such a lateral drift checks, member deflection checks, and interaction equation checks. Once the final member sizes were selected, the Revit model went through one final revision before construction documents were created.

Fleet 9

For the documentation process, an index was formed that lists the typical drawings included if the project were being built by professional architects and engineers. I only developed a specific selection of these drawings for documentation as a structural engineering undergraduate. A detailed architectural plan was created, showing the various room numbers, associated door numbers, interior partition labels, and several interior elevation markers. From here, the foundation and framing plans came to life, providing layouts and details on brace locations, column and pier placements, edge of slab boundaries, slab elevations, and member sizes. Details for some of the specific structural connections were drawn throughout the building, showing different framing scenarios, the elevator pit detail, and the expansion joint detail. In order to quantify members and their sizes for the building, the final sheet on the construction drawings was devoted to schedules. Numerous calculations were performed here and the sizes of the main structural members were organized in tables such as the piers, grade beams, columns, beams, girders, slabs, and vertical braces.

Conclusion

Overall, the Architectural Engineering Comprehensive Design Studio course was a culmination of the last five years of my architecture and engineering education. Though the course curriculum is nearly identical for the architects and the engineers in this class, the engineers focused more on the structural components of their design rather than the architectural details. Since our major has a strict focus on structures, I personally feel like the course could be even more attuned to the structural engineering aspect of the profession than it currently is. The course places a heavy emphasis on the HVAC building system, but our degree does not have a focus in this area. If we had even just a couple more weeks to develop our individual structures and explore the RISA modeling software more in depth, the experience of completing this comprehensive design studio would be even more worthwhile. Nevertheless, the design experience that I have received through the School of Architecture at Oklahoma State University will be a valuable asset in my professional career in the years to come.

ENGAGE

MIDTOWN COMMUNITY CENTER & OTHER OPTIONS FOOD PANTRY

ERIC FLEET

ARCH 5226 - HONORS

SP17

1	COVER
2	TABLE OF CONTENTS
3	PROJECT INTRODUCTION
4	CONTEXT
5	PROCESS
6	FLOOR PLANS
7	BUILDING CODE
8	EXTERIOR
9	EXTERIOR RENDERING
10	_INTERIOR
11	BUILDING SECTION
12	WALL SECTION
13	THERMAL
14	EFFICIENCY
15	HVAC PLANS

16	HVAC AXONOMETRIC	29
17	SERVICE	30
18	LIGHTING	31
19	DAYLIGHTING	32
20	PRELIMINARY STRUCTURE	33
21	STRUCTURAL CALCULATIONS	34
22.	FINAL STRUCTURE	35
23	CD COVER	
24.	PROJECT INDEX	

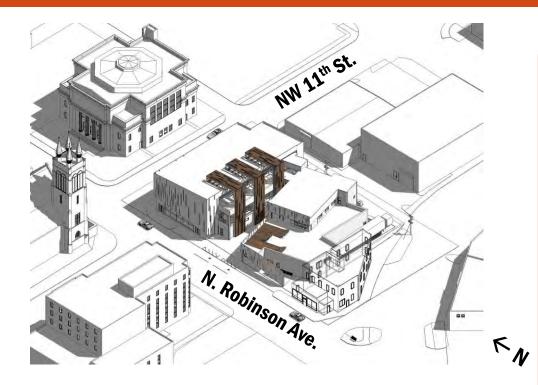
- 25.____GENERAL NOTES
- 26.____GROUND FLOOR PLAN
- 27.____WALL SECTION
- 28.____FOUNDATION PLAN

ARCH 5226 - HONORS

2ND FLOOR FRAMING PLAN 3RD FLOOR FRAMING PLAN ROOF FRAMING PLAN STRUCTURAL DETAILS BRACE FRAMES SCHEDULES

PROJECT STATEMENT / ABSTRACT:

HISTORICALLY, PEOPLE WITH HIV/AIDS HAVE FELT DISASSOCIATED WITH SOCIETY, A STIGMA THAT IS STILL VERY EXISTENT TODAY. A STRONG INTERACTION WITH THE OKLAHOMA CITY COMMUNITY CAN PROVIDE THIS GROUP OF PEOPLE WITH THE ACCEPTANCE AND COMFORT THAT WE ALL INHERENTLY DESIRE. THE OPPORTUNITY TO DESIGN A CAMPUS THAT INTEGRATES A FOOD PANTRY WITH A COMMUNITY CENTER PROVIDES A UNIQUE OPPORTUNITY TO CHISEL AWAY AT THIS STIGMA. THROUGH CREATING ARCHITECTURALLY SEPARATED, YET PROGRAMMATICALLY CONNECTED SPACES, THE BUILDING USERS EXPERIENCE A BALANCE OF BOTH PUBLIC AND PRIVATE SPACES. THOUGH THE THREE PRIMARY USERS OF THIS BUILDING ARE TEENS, STAFF, AND THE FOOD PANTRY CLIENTS, IT IS THE STAFF THAT TIES THE TWO POLAR BUILDING FUNCTIONS TOGETHER AND NURTURES THIS OVERALL CONNECTION TO THE COMMUNITY.


ENGAGE IS LOCATED ON THE CORNER OF N. ROBINSON AVENUE AND N.W. 11TH STREET IN OKLAHOMA CITY, A SITE WITH ACCESS TO VIEWS TOWARD THE DOWNTOWN AND MIDTOWN AREAS. USERS ARE INVITED INSIDE THROUGH THREE MAIN ENTRANCES, ALL LOCATED AT STRATEGIC POINTS ACROSS THE SITE – ONE IS MORE PRIVATE AND PLACED NEAR THE SOUTH BUS STOP FOR SERVICING PRIMARILY FOOD PANTRY USERS, WHILE THE OTHER TWO ENTRANCES PULL PEOPLE INTO THE CENTRAL LOBBY FROM THE WEST AND EAST SIDES OF THE SITE RESPECTIVELY. A CENTRAL CORRIDOR ACCESSED FROM THE PARKING IS UTILIZED TO HELP FUNNEL STAFF AND COMMUNITY CENTER USERS INTO THEIR RESPECTIVE SPACES. THE FOOD PANTRY CLIENTS ARE SYMBOLIZED THROUGH THE USE OF PRECAST CONCRETE WALLS TO EXPRESS THEIR RESILIENCY AND SENSE OF RESERVATION DURING THIS HARD TIME. THESE CLIENTS HAVE ACCESS TO A MORE PRIVATE SET OF SPACES ON THE SOUTH SIDE OF THE SITE, WHILE THE PRECAST CONCRETE WALLS CONTINUE THROUGHOUT THE BUILDING, INTERACTING WITH SPACES SUCH AS THE TEEN LOUNGE, THE MAIN LOBBY AND THE MULTIPURPOSE CLASSROOM.

IN CONTRAST, TEENS WILL USE THE COMMUNITY CENTER TO THE NORTH, A MORE PUBLIC AND OPEN SET OF SPACES. THIS LARGER SPACE IS ENCAPSULATED BY A PLANAR WOOD FAÇADE WITH SLOTS DISPERSED ALONG ITS LENGTH FOR LIGHT ACCESS. THE GRAND FORM SERVES TO ENVELOP THE COMMUNITY CENTER, ENGAGE THE GROUND PLANE, AND SPAN ACROSS THE BUILDING TO INTERACT WITH THE FOOD PANTRY AND STAFF SPACES. BY MOVING UP AND INTERACTING WITH THE ROOF PLANES OF BOTH THE GYMNASIUM AND THE FOOD PANTRY LOBBY, THIS LARGE TIMBER FORM BEGINS TO PEEL AWAY PIECES OF THE ROOF TO REVEAL LARGE SKYLIGHTS FOR ALLOWING LIGHT PENETRATION INTO THE SPACES BELOW. FINALLY, BY TAKING ADVANTAGE OF VERTICALLY ALIGNED CMU WALLS, THE LOADING AND SERVICE SPACES ARE CLEARLY DEFINED. AS ONE MOVES AROUND THE BUILDING, THESE THREE CONTRASTING MATERIALS BEGIN TO SPEAK TO ONE ANOTHER AND GUIDE USERS THROUGHOUT THE BUILDING, HIGHLIGHTING THE THREE PRIMARY USERS OF THE DESIGN.

THE SPACES MAY BE SEPARATED BY FUNCTION, BUT VARIOUS CONNECTIONS UNIFY THE BUILDING AS A WHOLE THROUGH THE SITUATION OF THE STAFF AND THE COMMUNICATION OF DIFFERING MATERIALITY. THE STIGMA AGAINST THE HIV/AIDS COMMUNITY OPPOSES WHAT IT MEANS TO EVEN BE A COMMUNITY. *ENGAGE* PROMOTES THE ENTIRE COMMUNITY – ALL PEOPLE – WHILE STILL BALANCING THE NEED FOR PUBLIC AND PRIVATE SPACES.

THIS SEMESTER, THE ARCH 5226 ARCHITECTURAL COMPREHENSIVE ENGINEERING DESIGN STUDIO WAS TASKED WITH DESIGNING A FOOD PANTRY AND TEEN COMMUNITY CENTER LOCATED IN THE HEART OF DOWNTOWN OKLAHOMA CITY. OUR CLIENT, OTHER OPTIONS INC., PROVIDES BASIC FOOD ESSENTIALS TO HIV-POSITIVE MEMBERS OF THE METRO THIS GROUP OF PEOPLE AREA. CREATED A DESIGN CHALLENGE SINCE THE IDEA OF PRIVACY NEEDED STRONG CONSIDERATION. IN ADDITION, IT WAS REQUESTED THE THAT TEEN COMMUNITY CENTER BE A SAFE HAVEN FOR TEENS, BUT SPECIFICALLY FOR LGBT YOUTH. THIS MARGINALIZED GROUP OF YOUNG PEOPLE IS AT HIGH RISK FOR HOMELESSNESS. TOGETHER, THIS CAMPUS NEEDED TO TIE INTO THE URBAN COMMUNITY, AS WELL AS EXPRESS A BALANCE BETWEEN THE PUBLIC AND PRIVATE.

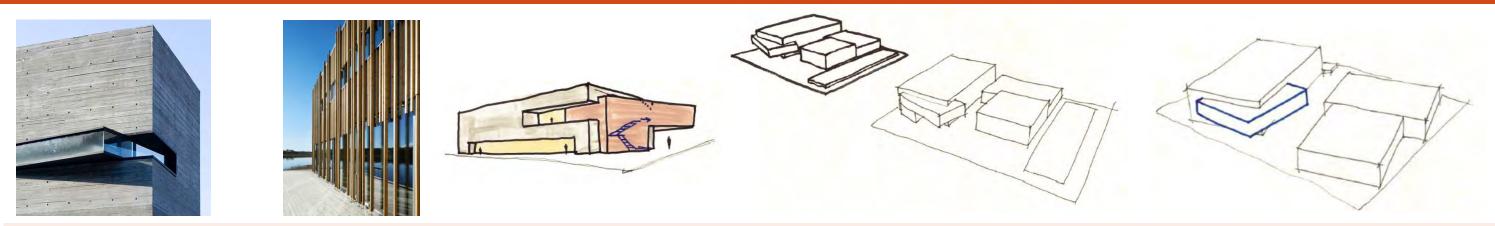
AERIAL PLAN SHOWING CONTEXT, SCALE, AND THE VERTICALITY OF THE TIMBER SKIN DESIGN

OVERALL CONTEXT AND SITE LOCATION. OKLAHOMA CITY, OKLAHOMA – MIDTOWN DISTRICT

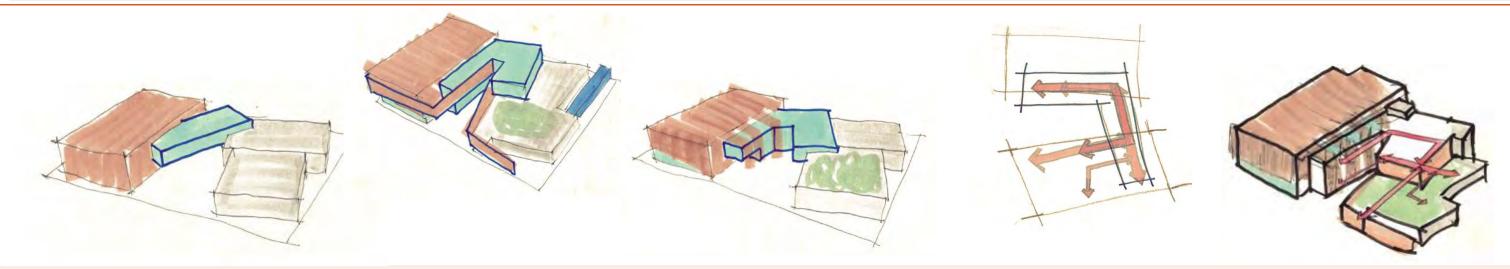
OUR SITE WAS LOCATED AT THE INTERSECTION OF NW 11TH STREET AND NORTH ROBINSON AVENUE. TO THE NORTH, AN ABANDONED CHURCH BUILDING OBSTRUCTED MOST VIEWS IN THAT DIRECTION. SIMILARLY, AN AUTOMOTIVE WORKSHOP RESTS TO THE EAST ACROSS FROM A UTILITY SERVICE ALLEY.

ALONG THE CURVED ROAD TO THE SOUTH LIE SEVERAL WAREHOUSES, USED PRIMARILY FOR FLOWER DISTRIBUTION. THIS STREET SEES A LARGE NUMBER OF SEMITRUCKS EVERY DAY, SO THE CONNECTION TO THE SERVICE ALLEY HERE IS VERY USEFUL FOR THIS DESIGN.

TOWARD THE WEST, THE STRYKER OFFICE BUILDING RISES SEVERAL STORIES, IMPEDING MOST VIEWS IN DIRECTION. THAT ADDITIONALLY, THE FIRST BAPTIST CHURCH ON THE NORTHWEST CORNER OF INTERSECTION IS THE AESTHETICALLY APPEALING, BUT RISES FAR ABOVE MOST OTHER BUILDINGS IN THE SURROUNDING AREA.


SITE PLAN, SHOWING DRAINAGE PLAN, CONTEXT, AND MATERIALITY

ERIC FLEET


ARCH 5226 - HONORS

C O N T E X T

4

THE INITIAL SCHEMATIC DESIGN PROCESS BEGAN WITH SEVERAL INSPIRATION PICTURES WHICH LED TO A PRELIMINARY DESIGN CONCEPT. THE IDEA OF TAKING AN IMPORTANT SPACE AND SHIFTING IT OUT OF AN OVERALL, MONOLITHIC FORM PROVIDES A SENSE OF HIERARCHY AND INTRIGUE. IN ADDITION, THE USE OF CONTRASTING MATERIALS AROUND THE FAÇADE ALLOWS FOR FLEXIBILITY IN DAYLIGHTING STRATEGIES WHILE ALSO CREATING AN APPEALING EXTERIOR AESTHETIC.

THROUGH THE USE OF VARIOUS CONCEPTUAL COMMUNICATION METHODS SUCH AS SKETCHING AND GOOGLE SKETCHUP, THE INITIAL FORM OF THE DESIGN CAME INTO BEING. BY ALTERING THE DIFFERENT MASS CONFIGURATIONS, SCALE WAS BETTER UNDERSTOOD AND THE RELATIONSHIPS BETWEEN MASSES WAS PINPOINTED. BY LOOKING INTO THE PROGRAMMATIC RELATIONSHIPS WITHIN EACH MASS, THE GENERAL PLAN WAS THEN ABLE TO FUNCTION ALONGSIDE THE PROPOSED 3D MASSES.

ONCE THE MAIN FORM WAS SELECTED, IDEAS WERE EXPLORED THAT EXPRESSED THE CONCEPT OF COMMUNITY THROUGH EXTERIOR MATERIALITY. FINALLY, A SCHEME WAS CHOSEN THAT SYMBOLIZES THE COMMUNITY CENTER WITH A TIMBER VENEER, WHILE THE FOOD PANTRY IS REPRESENTED BY PRECAST CONCRETE. THESE RENDERINGS SHOW THE FINAL STAGES OF THE SCHEMATIC DESIGN PHASE.

ERIC FLEET

ARCH 5226 - HONORS

5

ARCH 5226 - HONORS

6

	Occupa	int Loads	- 1st Floor			Floor Total:	1041
Space Area		rea (sf) Type	Load (sf/occ)	# of Occupants		Totals	# of Exits
Multipurpose Lobby	1040	Net	15	69.33	70	Pantry	2
Multipurpose Storage	233	Gross	300	0.78	1	111	1
Store	736	Gross	60	12.27	13		1
Fresh Distribution	213	Gross	300	0.71	1		1
Mens Restroom	333	Gross	100	3.33	4		1
Womens Restroom	235	Gross	100	2.35	3		1
Janitors Closet - Pantry	21	Gross	300	0.07	1		1
1 Staff Office	129	Gross	100	1.29	2		1
Volunteer Room	186	Gross	50	3.72	4		1
Mechanical - Fan room 1	521	Gross	300	1.74	2		1
GSHP Room	421	Gross	300	1.40	2		1
Receiving	200	Gross	300	0.67	1		1
Sorting	328	Gross	300	1.09	2		1
Dry Storage	357	Gross	300	1.19	2		1
Dry Food Storage	506	Gross	300	1.69	2		1
Cooler Storage	160	Gross	300	0.53	1		1
Teen Community Lobby	359	Net	15	23.93	24	Center	1
Community Center - M RR	260	Gross	100	2.60	3	930	1
Community Center - W RR	281	Gross	100	2.81	3		1
Family RR	96	Gross	100	0.96	1		1
Director's Office	149	Gross	100	1.49	2	i	1
Gym	6240	Net	7	891.43	892		3
Mailboxes	100	Gross	300	0.33	1	1.2	1
Janitor's Closet - Gym	16	Gross	300	0.05	1		1
Storage	83	Gross	300	0.28	1		1
Electrical Satellite Room	59	Gross	300	0.20	1		1
Electrical Satellite Room	14	Gross	300	0.05	1		1

Occupant Loads - 2nd Floor Floor Total:						
Space	Area (sf)	Туре	Load (sf/occ)	# of Occupants		# of Exits
Teen Lounge	375	Net	15	25.00	25	1
Multipurpose Classroom	362	Net	20	18.10	19	1
Electrical Satellite Room	16	Gross	300	0.05	1	1
Computer Area	100	Gross	100	1.00	1	1
Staff office 1	188	Gross	100	1.88	2	1
Staff office 2	179	Gross	100	1.79	2	1
Laundry	215	Gross	50	4.30	5	1
Kitchenette/Break Room	221	Gross	200	1.11	2	1
Staff work area	299	Gross	100	2.99	3	1
Staff RR	103	Gross	100	1.03	2	1
Janitors Closet - Staff	39	Gross	300	0.13	1	1
Counselors Office 1	152	Gross	100	1.52	2	1
Counselors Office 2	162	Gross	100	1.62	2	1
Counselors Office 3	164	Gross	100	1.64	2	1
Conference Room	264	Gross	100	2.64	3	1
Mechanical - Fan room 2	279	Gross	300	0.93	1	1
Mechanical - Fan room 3	366	Gross	300	1.22	2	1

	¢γ	Occupant
Cor	A-3	Community Center Gym Teen Lounge
Cor		Exterior Space
C	M	Food Pantry - Clients
	S-2	Food Pantry - BOH
	В	Offices Classroom
	MIXED USE	*Building is:
Doors	Ш	Construction Type:

			idths of Egress Elements	W
)	USE: (in)	Width (in)	Number of Occupants	Element
Table 1011.2	44	5	75	Stairs
	44	16.65	111	Corridors - 1st (Pantry)
*No gym include	44	5.7	38	Corridors - 1st (Center)
Table 1020.2	44	10.95	73	Corridors - 2nd Floor
1010.1.1	32	22.35	149	Doors - 1st
1010.1.1	32	3.65	73	Doors - 2nd
1010.1.1	32	3.65	73	Egress Doors - 2nd
ft (1/2 Capacity)	5.58	66.9	446	Doors - Gym (Main)
ft (1/3 capacity)	3.72	44.6	297.3333333	Doors - Gym (other exits)

r			
Floors	Occupant Load	# of Exits	*Table 1006.3.1
1st	1041	4	
2nd	75	2	

De	ead End Corridors	
Remote Locations	Distance (ft)	<50 ft?
Fan Room 3	21	Yes

Remoteness of Exits						
Space	Max Diagonal / 3 (ft)	Distance (ft)	Meets 1007.1.1 Ex. 2			
1st Floor	62	65	Yes			
2nd Floor	37	42	Yes			
Multipurpose Lobby	15	16	Yes			
Gym	39	50	Yes			

	Common Path o	f Travel	
*Code requirements s	atisfied	· · · · · · · · · · · · · · · · · · ·	
	Exit Access Travel	Distance	
Remote Locations	Distance (ft)	<250 ft?	*Table 1017.2
Middle of Gym	110	Yes	
Family RR	48	Yes	
Store	99	Yes	
Conference Room	60	Yes	

ARCH 5226 - HONORS

AS THE DESIGN PROGRESSED, BUILDING CODES HAD TO BE MAINTAINED. NUMEROUS CHECKS WERE PERFORMED ACCORDING TO THE INTERNATIONAL BUILDING CODE 2012 (IBC). OCCUPANCY LOADS WERE CALCULATED, WHICH ALLOWED FOR FURTHER CALCULATIONS TO DETERMINE THE WIDTH OF EGRESS ELEMENTS, THE NUMBER OF EXITS REQUIRED, AND ALL EXIT TRAVEL DISTANCES.

STRATIFIED TIMBER PANELING

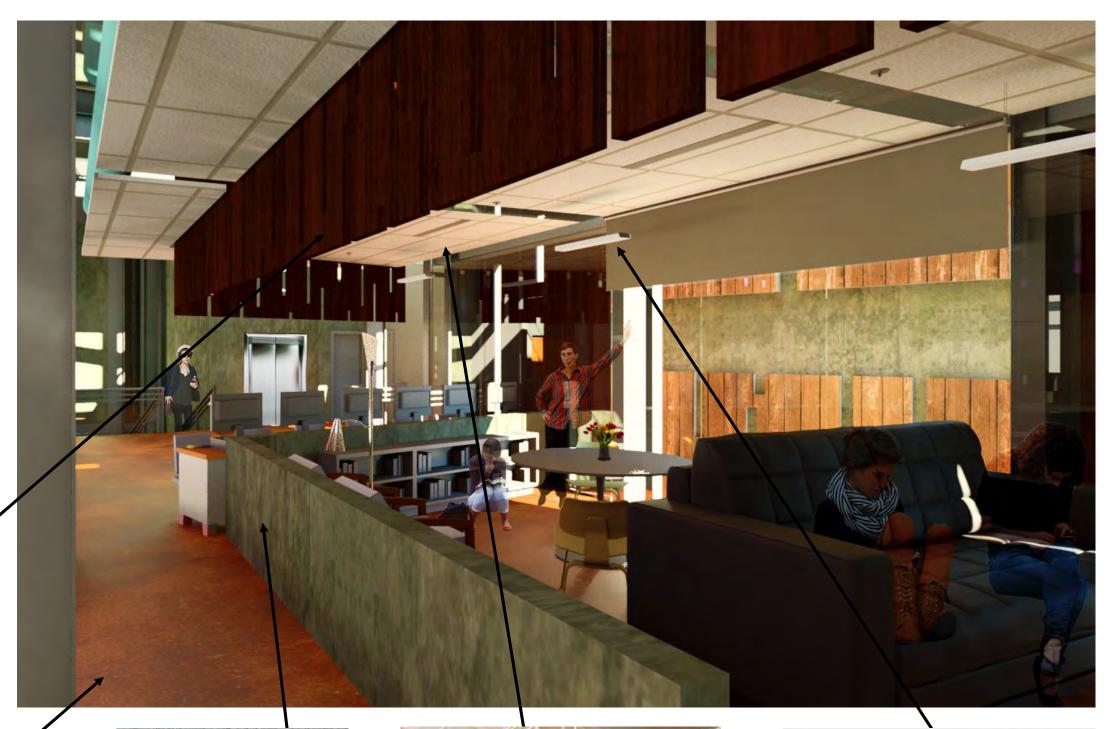
PRECAST ARCHITECTURAL CONCRETE PANEL WALLS

CONCRETE MASONRY UNIT WALL SYSTEM

ERIC FLEET

ARCH 5226 - HONORS

THE EXTERIOR EXPRESSION OF THE DESIGN DIRECTLY RELATES TO THE DESIGN CONCEPT OF OUR THREE PRIMARY SPACES AND USERS. MASONRY CONCRETE UNITS ENCASE THE SERVICE AND LOADING ZONES IN THE SOUTHEAST CORNER OF THE BUILDING NEAR THE LOADING DOCK. THE FOOD PANTRY IS REPRESENTED BY PRECAST CONCRETE WALLS AND SYMBOLIZES THE **CLIENTS' RESILIENCE AND RESERVATION. AS** THIS MATERIAL MOVES NORTH INTO THE COMMUNITY CENTER, THE TIMBER PANELING FACADE **BEGINS TO EMBRACE AND ENGAGE OPPOSING** DURABLE THIS MATERIAL. AS THE WOOD ENCOMPASSES PORTIONS OF THE **BUILDING, IT EXPOSES NUMEROUS** SKYLIGHTS ON THE ROOF PLANES, AS WELL AS ENFORCES THE CONCEPT OF ENCOURAGING A COMMUNITY THAT EMBRACES ALL.



ARCH 5226 - HONORS

A FOCUS SPACE WAS SELECTED IN ORDER TO EXPLORE THE ROLE OF THE INTERIOR QUALITY OF THE SPACE. THE TEEN LOUNGE WAS CHOSEN DUE TO ITS STRATEGIC LOCATION FOR DAYLIGHTING, AND BECAUSE IT STRONGLY EXHIBITS HOW THE DIFFERENT MATERIALS INTERACT. AS SHOWN, THE PRE-CAST CONCRETE SEPARATES THE SPACE FROM THE COMPUTER LOUNGE, WHILE THE TIMBER DROP PANEL WALL TIES THE LOUNGE BACK INTO THE OVERALL FLOW OF THROUGHOUT THE TRAFFIC BUILDING. A STAINED CONCRETE FLOOR WAS CHOSEN TO AID THE WOOD IN WARMING THE INSIDE SPACE AND ACOUSTIC DROP CEILING PANELS SCALE THE LOUNGE DOWN WHILE HIDING THE FIRE PROTECTION AND HVAC SYSTEMS ABOVE.

ERIC FLEET

ARCH 5226 - HONORS

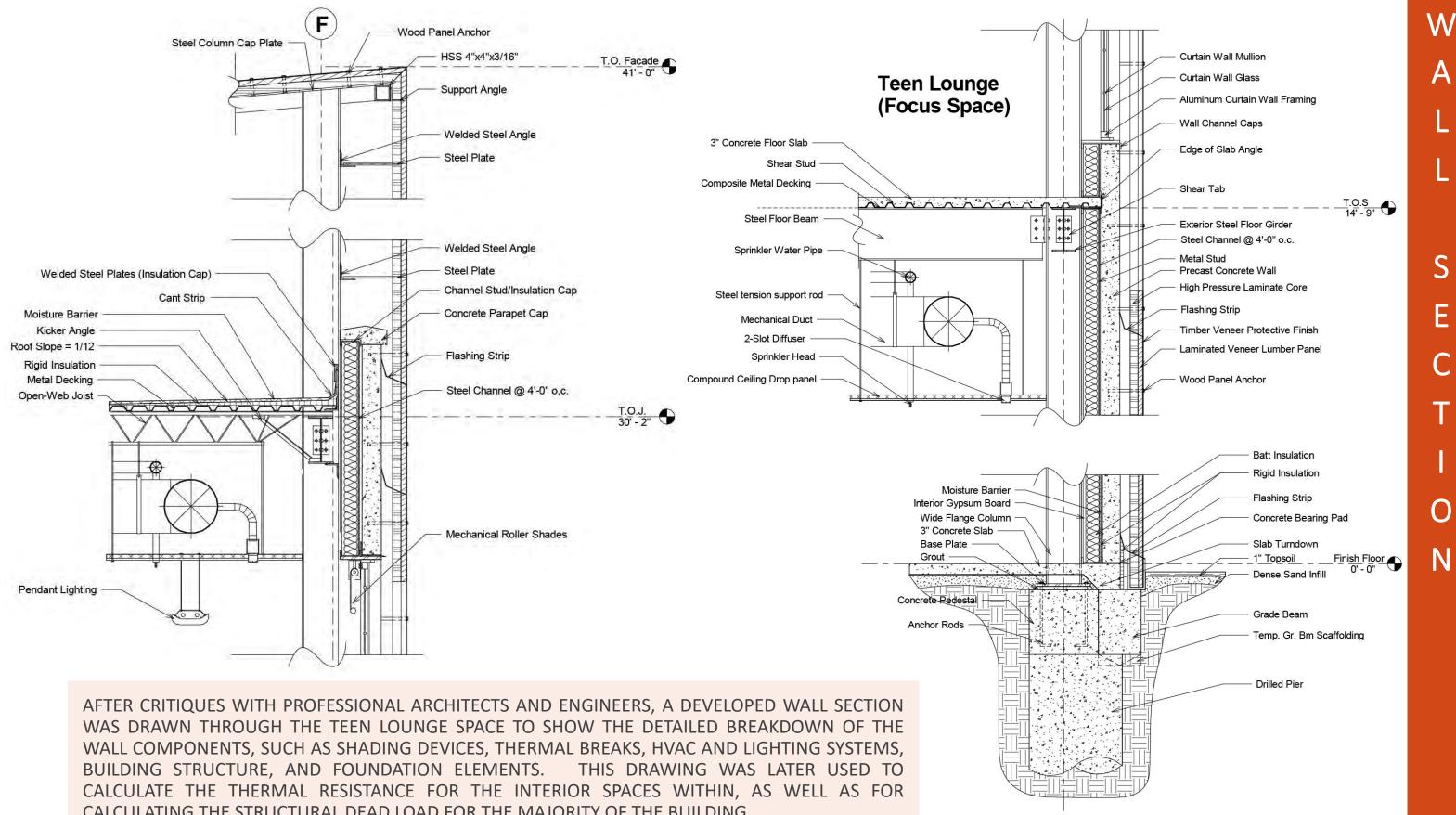
I N T E R I O R

Solaris

10

IN SECTION, DAYLIGHTING AND SHADOWS ARE BETTER UNDERSTOOD. BY CUTTING THROUGH THE GYMNASIUM, EXTERIOR ENTRANCE SPACE, AND THE FOOD PANTRY LOBBY, BOTH SKYLIGHT SYSTEMS CAN BE STUDIED. SCALE FIGURES ARE INCLUDED TO GIVE A SENSE OF THE OVERALL SCALE OF THE INDIVIDUAL SPACE HEIGHTS. ELEVATIONS ARE LISTED TO GIVE AN INDICATION OF THE VARIOUS STORY HEIGHTS.

TO SEE HOW THE VARIOUS BUILDING SYSTEMS RELATE TO ONE ANOTHER, THE BAY MODEL 3D SECTION CUT TO THE RIGHT SHOWS THE HVAC, STRUCTURAL, ARCHITECTURAL, LIGHTING, AND FAÇADE SYSTEMS. CURTAIN WALLS ARE PLACED THROUGHOUT THE ENTIRE BUILDING TO MAXIMIZE LIGHT FLOW AND VIEWS ACROSS THE DESIGN.



ERIC FLEET

ARCH 5226 - HONORS

B U D Ν G S Ε С \mathbf{O} Ν

CALCULATING THE STRUCTURAL DEAD LOAD FOR THE MAJORITY OF THE BUILDING.

ERIC FLEET

ARCH 5226 - HONORS

12

BY CONSULTING REFERENCE DOCUMENTS FROM ASHRAE (AMERICAN SOCIETY OF HEATING, REFRIGERATING, AND AIR-CONDITIONING ENGINEERS), THE THERMAL **RESISTANCE VALUES WERE FOUND FOR EACH** MATERIAL PRESENT ALONG THE PERIMETER OF THE TEEN LOUNGE SPACE, SUCH AS THE FLOOR, THE WALL, AND THE ROOF ABOVE. U-VALUE, OR THE THERMAL CAN THEN TRANSMITTANCE, BE DETERMINED BY DIVIDING 1 BY THE SUM OF THE RESISTANCE VALUES FOR THAT ELEMENT. THE TABLE TO THE RIGHT SHOWS THE VARIOUS COMPONENTS OF THESE THREE MAIN ELEMENTS, AS WELL AS THEIR DISTINCT R-VALUES FROM ASHRAE. IN ORDER TO DETERMINE THE THERMAL EFFICIENCY OF THE GLASS CHOSEN AND THE SYSTEMS UTILIZED, THESE VALUES WERE THEN PLUGGED INTO THE COMPUTER MODELING PROGRAM EQUEST AND AN ANALYSIS WAS PERFORMED.

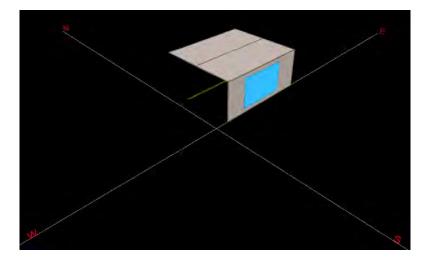
	Roof		
Materials	R-Value	U-Value	Reference
Outside Air Film	0.25		Pg. 22.1, Table 1, "Moving
Moisture Membrane Barrier	0.12		Pg. 22.6, Building Membra
Rigid Insulation, 4.5"	28.125		Pg. 22.7, Board and Slab In
Metal Decking	0		*Negligible Thermal Resist
Inside Air Film	0.92		Pg. 22.1, Table 1, "Still Air"
SUM	: 29.415	0.0340	ft^2 x °F/ Btuh

Vall		the statements
R-Value	U-Value	Reference
0.25		Pg. 22.1, Table 1, "Moving
1.48		Pg. 22.9, Woods, Softwoo
3.12		Pg. 22.8, Concretes, Lightv
0.12		Pg. 22.6, Building Membra
12.5		Pg. 22.7, Board and Slab I
17.325		Pg. 22.7, Spray Applied Ins
-7.20		IECC Table C402.1.4.1, los
0.56		Pg. 22.6, 0.625" Gypsum E
0.68		Pg. 22.1, Table 1, "Still Air
28.835	0.0347	ft^2 x °F/ Btuh
	R-Value 0.25 1.48 3.12 0.12 12.5 17.325 -7.20 0.56 0.68	R-Value U-Value 0.25 1.48 3.12 1.48 0.12 1.45 12.5 17.325 -7.20 0.56 0.68 0.68

	Flo	oor		
Materials	ा	R-Value	U-Value	Reference
Stained Concrete Finish		0.05		Pg. 22.6, Finish Flooring M
Concrete Slab, 3.5"		2.73		Pg. 22.8, Concretes, Lightv
Inside Air Film		0.92		Pg. 22.1, Table 1, "Still Air'
	SUM:	3.7	0.2703	ft^2 x °F/ Btuh

ARCH 5226 - HONORS

g Air", 15 mph wind/winter ane nsulation, Cellular Polyurethane (6.25/in) stance


", Horizontal, Upward, Non-reflective

ng Air", 15 mph wind/winter ods, Cedars tweight Aggregate Concretes (0.78/in) rane Insulation, Cellular Polyurethane (6.25/in) nsulation, Glass Fiber (3.85/in) ose 48% of resistance Board

r", Vertical, Horizontal, Non-reflective

Vaterials weight Aggregate Concretes (0.78/in) r", Horizontal, Downward, Non-reflective

3

ARCH 4216/5226 & 4263

CHECK OF "ENVIRONMENTAL PERFORMANCE", DD. worksheet (Focus Space)

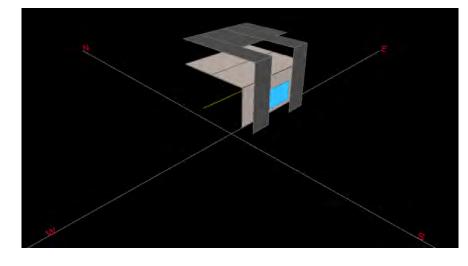
PLEASE, use this worksheet to document the environmental perfor- during the DD phase (First due for review on Tuesday March 21 st ,		ope design BASELINE
1. Description of the Envelope Design		\$.
• Wall type and materials (according to IECC code)	Meta	l Framed
Floor-to-floor height		
• Glass Ratio (% of glass to overall area of wall)	40 %	6
• Thermal conductance (U-factor) of the opaque wall	0.064	BTU/(h-ft^2-F)
• Thermal conductance (U-factor) of roof	0.039	BTU/(h-ft^2-F)
• Thermal conductance (U-factor) of slab on grade	0.074	BTU/(h-ft^2-F)
Glass type (model number and manufacturer)	IECC 2015- CZ	23 - SOUTH
Glass thermal conductance (U-factor)		!-F)
Glass Shading Coefficient (SC)		
		ance =
• External shading for glass (describe, if any)	101 10 10 <u>1</u> 00	
[Note 1] Initial U-values in the computer model are the max of energy simulation (baseline), you should create and use y is typically provided by the glass manufacturer. [Note 2] SH	cimum allowed by IE your selection of glass	
9 Arientation		

2. Orier

According to your selected focus space, this space is facing: (North), (East), (South), (West)

3. Results of Energy Simulation

Perimeter Thermai Zone:


- September 4th, 4:00 pm • Time of the maximum cooling load (day and hour)
- Maximum Cooling load per Square Foot = (7.927)*1000 / 300 = ((.....26.423.....)) Btuh/sq.ft.

- N/A • What is the energy saving (%), compared to baseline: 0/

Interior Thermal Zone:

- Time of the maximum cooling load (day and hour) _____ July 16th, 3:00 pm
-) KBtuh
- Maximum Cooling load per Square Foot = (4.488)*1000 / 300 = ((......11.22.....)) Btuh/sq.ft.
- Required air supply per square foot = $((... 11.22)) / 21.6^{a} =0.519$ CFM/sq.ft. ^a Assuming Supply Air temperature equals 55°F to room temperature of 75°F

Remember, for complete documentation, you must attach a copy of your **envelope design** (wall section), peak cooling results from eQuest (two tables), and glass performance data to this form.

ARCH 4216/5226 & 4263 **CHECK OF "ENVIRONMENTAL PERFORMANCE"**, DD. worksheet (Focus Space)

PLEASE, use this worksheet to document the environmental performance of your envelope design during the DD phase (First due for review on Tuesday March 21st, 2017, 1:30 p.m.)

1. Description of the Envelope Design

• Wall type and materials (according to IECC code)	Metal	Framed
Wan type and materials (according to HECC code) Floor-to-floor height		••••••••••••••••
Glass Ratio (% of glass to overall area of wall)		
• Thermal conductance (U-factor) of the opaque wall	0.0247	BTU/(h-ft^2-F)
Thermal conductance (U-factor) of roof	0.034	BTU/(h-ft^2-F)
• Thermal conductance (U-factor) of slab on grade	0.2703	BTU/(h-ft^2-F)
Glass type (model number and manufacturer)		20 Min. Glass, PPG
Glass thermal conductance (U-factor)	BTU/(h-ft^2-	F)
Glass Shading Coefficient (SC)		0.27
Glass Visible Transmittance (VT)0.297		nce =
• External shading for glass (describe, if any)	Timber Veneer S	hading Panels
[Note 1] Initial U-values in the computer model are the ma of energy simulation (baseline), you should create and use is typically provided by the glass manufacturer. [Note 2] SF	your selection of glass	
rientation		

2. Orie

According to your selected focus space, this space is facing: (North), (East), (South), (West)

3. Results of Energy Simulation Perimeter Thermal Zone:

August 27th, 4:00 pm • Time of the maximum cooling load (day and hour)

- Compare the cooling load (CFM/sq.ft) to your reference design (baseline) :1.223.
- What is the energy saving (%), compared to baseline: 24.03

Interior Thermal Zone:

- July 16th, 3:00 pm • Time of the maximum cooling load (day and hour)
- Maximum Cooling load per Square Foot = (4.488)*1000 / 300 = ((.....11.22)) Btuh/sq.ft.
- ^a Assuming Supply Air temperature equals 55°F to room temperature of 75°F

Remember, for complete documentation, you must attach a copy of your envelope design (wall section), peak cooling results from eQuest (two tables), and glass performance data to this form.

A BASELINE MODEL WAS MADE IN EQUEST WITH A 40% GLASS RATIO ON THE EXTERIOR WALL. THE ANALYSIS WAS RUN AND FOUND THE SPECIFIC COOLING LOADS REQUIRED TO KEEP THE INTERIOR AND EXTERIOR THERMAL ZONES AT A COMFORTABLE TEMPERATURE. TO COMPARE, MY DESIGN UTILIZED A SMALLER GLASS RATIO OF 27% WHILE ALSO EXHIBITING VERTICAL TIMBER SHADING DEVICES. THIS PROVED TO BE AN EFFICIENT THERMAL SYSTEM, REQUIRING LESS ENERGY TO PUMP COOL AIR INTO THE LOUNGE. FROM HERE, THE SIZE OF THE AIR HANDLING UNITS, SUPPLY AND RETURN DUCTS, AND FRESH AIR LOUVERS WAS DETERMINED BY USING A DUCTILATOR AND SIMPLE CALCULATIONS.

ARCH 4216/5226 & 4263 **HVAC REVIEW CHECKLIST. DD.**

BUILDING SYSTEMS COORDINATION in THE DESIGN DEVELOPMENT PHASE Due Date: Friday, March 31st, 2017, 5:00 p.m. (for review only).

To help you being organized during the design development phase, and keep track of your project's **PROGRESS**, please fill in this worksheet. Refer to the list of required tasks, read it carefully, and feel free to ask questions. A mandatory final review of your building's energy efficiency, the coordination of building systems with architecture, and the ductwork layout will take place during the week of March 20th. Everyone is expected to be prepared for this mandatory review (sign up in the sign-up sheet).

1. Envelope Requirements for Energy Efficiency (Focus Space):

• IECC 2015:	Roofs:	Min. $R = R-25ci$	Max. U = U-0.039
(Baseline design)	Walls (above grade):	Min. R =	Max. U = U-0.064
Tables: C402.1.3 C402.1.4 C402.4	Walls (below grade): Floors (above UC): Floors (slab-on-grade): Fenestration/windows: Fenestration/skylights:	Min. R =	Max. U =
Your values:	Roofs:	R = 28.13/29.03	U = 0.034
*Exterior shading devices have input transmittance values of 0.30	Walls (above grade): Walls (below grade): Floors (above UC): Floors (slab-on-grade):	R = R = R = R =	U = U = U = U = 0.2703
values of 0.30	Fenestration/windows: Fenestration/skylights:	U = U =	

Exterior shading	Walls (a Walls (l
levices have input	Floors (
ransmittance values of 0.30	Floors (
alues of 0.50	Fenestra Fenestra

2. Environmental Performance - Cooling Load (Focus Space): Baseline:

Glass ratio	40.00 %	%
Cooling load (interior zone)	0.519	CEMICE
Cooling load (perimeter zone)		CFM/SF
Glass ratio	27.43 %	%
Cooling load (interior zone)	0.519	CFM/SF
Cooling load (perimeter zone)	0.929	CFM/SF
Power allowance in IECC =	0.730	Watt/SF
Y and the strate of the strate	0.646	W wor

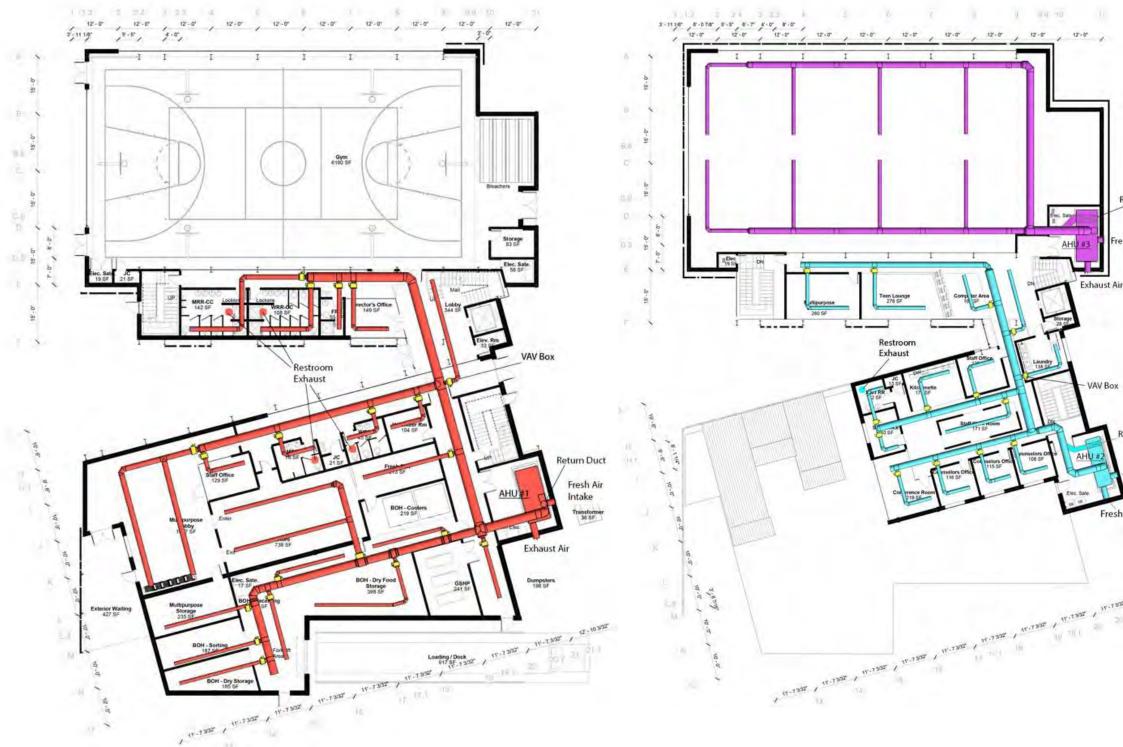
 Your values: 	Glass ratio
	Cooling load (interi
	Cooling load (perin

· Light Load Your calculated light load =

 Air Handling Units (Ent • Capacities (CFM): 	0/	6,871.0	AHU # 5:
• Capacities (CI M).	AHU # 2:	2,774.1	AHU # 6:
	AHU # 3:	6,283.0	AHU # 7:
	AHU # 4:		AHU # 8:

4. Main Supply & Return Ducts (Entire Build • Dimensions (ft): AHU # 1: SA: AHU # 2: SA: ... AHU # 3: SA:2 AHU # 4: SA:

ng): J (for sizing louvers) AHU # 1: Intake: .4'x3' AHU # 2: Intake: .3'x2'	& Exh:3'x3'	(typically not lower than 30%) AHU # 5: Intake: & Exh: AHU # 6: Intake: & Exh:
AHU # 3 : Intake:	& Exh: 3'x3'	AHU # 7: Intake:


ERIC FLEET

ARCH 5226 - HONORS

DESIL

ding):			
2'-6"	& RA: 2'-9"	AHU # 5: SA: & RA:	
'-9"	& RA:2'-0"	AHU # 6: SA: & RA:	
2'-4"	& RA:2'-8"	AHU # 7: SA: & RA:	
		AHU # 8: SA: & RA:	

.....

1ST FLOOR DUCT PLAN

2ND FLOOR DUCT PLAN

ERIC FLEET

ARCH 5226 - HONORS

Return Duct

sh Air Intake

Return Duct

Exhaust Air

resh Air Intake

r / 12-10337 /

THE RED AND BLUE DUCT LAYOUT PLANS ARE VAV (VARIABLE AIR VOLUME) SYSTEMS, WHERE EACH ROOM HAS AT LEAST ONE THERMOSTAT TO CONTROL SPECIFIC THERMAL ITS ENVIRONMENT. THE VAV BOXES ARE SHOWN IN YELLOW FOR EACH SPACE. IN ADDITION, THE THREE FAN ROOMS IN THIS DESIGN HOLD THE BUILDING'S AIR HANDLING UNITS, AS WELL AS PROVIDE A SPACE FOR THE SUPPY AND RETURN DUCTS, FRESH AIR INTAKE, AND EXHAUST AIR.

THE GYMNASIUM IN PURPLE IS RUN ON A CAV (CONSTANT AIR VOLUME) SYSTEM. THIS STRATEGY WAS CHOSEN SINCE THE SPACE IS LARGE AND THE DUCT WORK MUST SERVICE SUCH A TALL ROOM. LUCKILY, THE SIZE OF DUCTS IN THIS ROOM WAS ABLE TO BE LOWERED SINCE THE AIR HANDLING UNIT ONLY SERVICES THIS ONE SPACE.

AH	U #1 Capacity					
		Rest of Floor				
Area		6871				
CFM/SF		1	*Assumed			
Capacity		6871				
Total Capacity:	6871			Louvers	- AHU #1	
			In	take	E	xhaust
			CFM	6871	CFM	6871
			% Fresh	30%	% Fresh	30%
			Air Flow	2061.3	Air Flow	2061.3
			Face Vel.	400	Face Vel.	500
			A(net)	5.15325	A(net)	4.1226

A(gross)

*Assumed

2332

Dimensions

(ft)

AHU #2 - Capacity, services focus space			
Interior	Perimeter	Rest of Floor	

525

525

0.282

148.05

Area CFM/SF

Capacity

Total Capacity:

0.56	1	*Assumed			
294 2774.05	2332		Louvers	- AHU #2	
2774.05		Inta	ake	Exh	aust
		CFM	2774.05	CFM	2774.05
		% Fresh	30%	% Fresh	30%
		Air Flow	832.215	Air Flow	832.215
		Face Vel.	400	Face Vel.	500
		A(net)	2.0805375	A(net)	1.66443
		A(gross)	4.161075	A(gross)	3.32886
		Dimensions	3	Dimensions	2
		(ft)	2	(ft)	2

10.3065

4

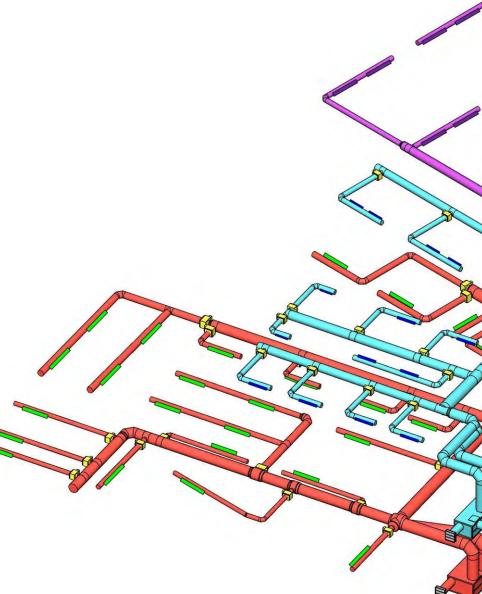
3

A(gross)

Dimensions

(ft)

8.2452


3

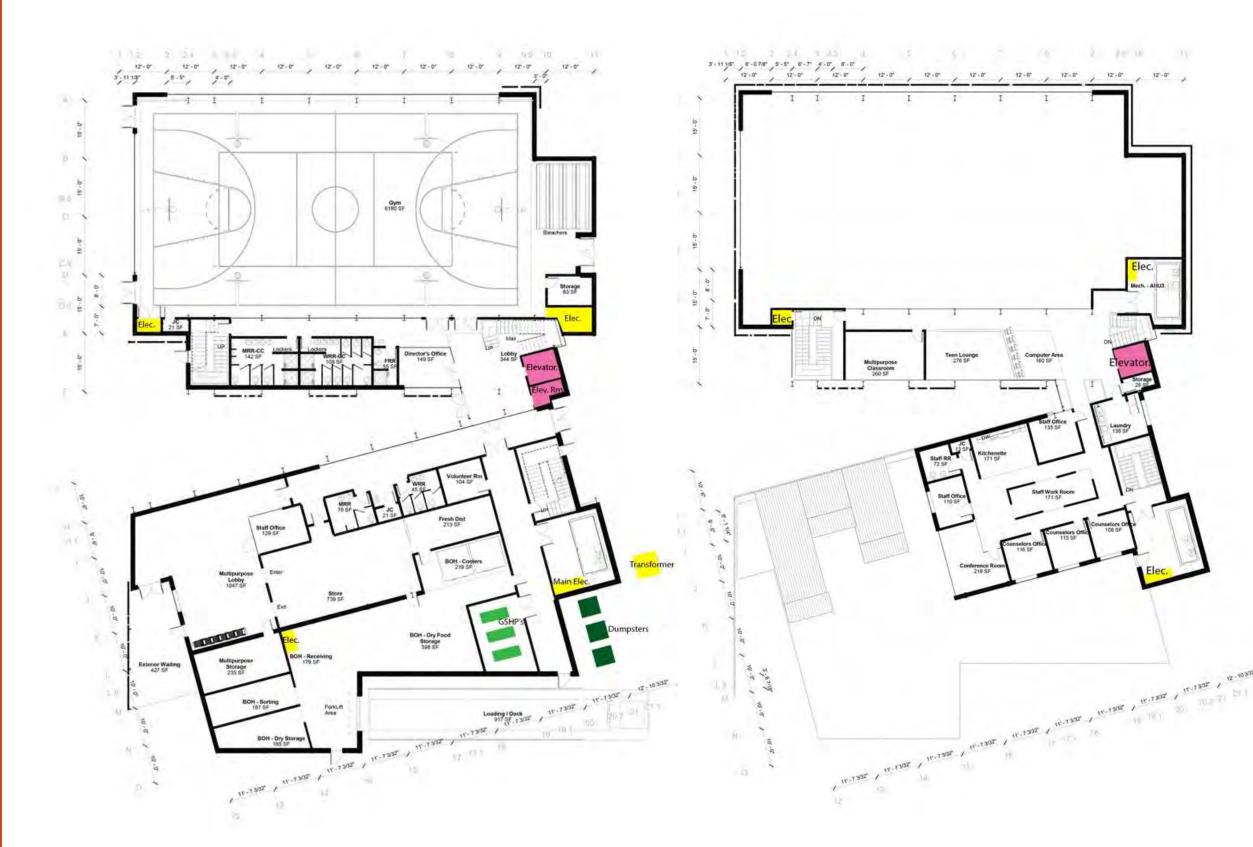
3

Rest of Floor
6283
1
6283

	Louvers - AHU #3								
Inta	ake	Exh	aust						
CFM	6283	CFM	6283						
% Fresh	30%	% Fresh	30%						
Air Flow	1884.9	Air Flow	1884.9						
Face Vel.	400	Face Vel.	500						
A(net)	4.71225	A(net)	3.7698						
A(gross)	9.4245	A(gross)	7.5396						
Dimensions	3	Dimensions	3						
(ft)	4	(ft)	3						

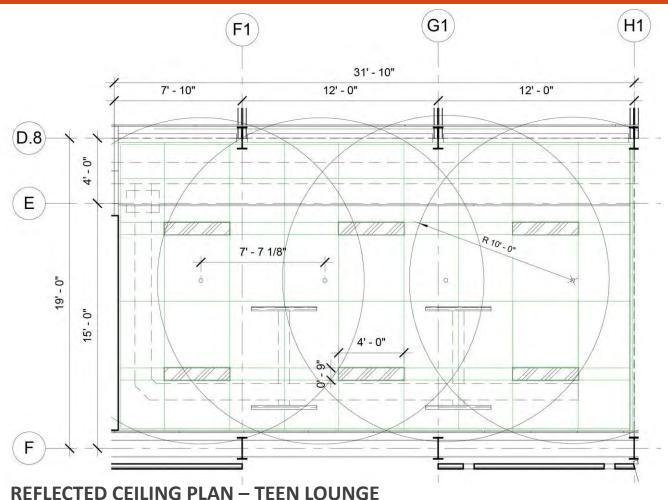
CALCULATIONS FOR THE LOUVER SIZES WERE PERFORMED IN EXCEL AND WERE BASED ON THE CAPACITY REQUIRED OF THAT SPECIFIC AIR HANDLING UNIT. SINCE THESE LOUVERS MUST BE LOCATED A MINIMUM OF 8 FEET APART TO AVOID EXHAUST AND FRESH AIR CONTAMINATION, THE LOUVERS WERE PLACED AROUND A CORNER TO DECREASE THIS SPACING. THE 3D HVAC AXONOMETRIC HERE SHOWS THE TYPICAL LOCATION OF DIFFUSERS ALONG EACH DUCT SYSTEM. A 2 INCH, 2 SLOT DIFFUSER WAS SELECTED FOR MOST INTERIOR SPACES DUE TO ITS AESTHETIC APPEAL AND PERFORMANCE CRITERIA FROM TITUS.

ERIC FLEET

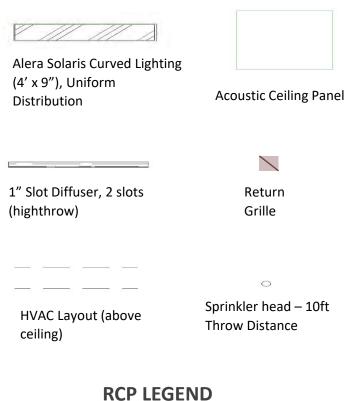

ARCH 5226 - HONORS

3D AXONOMETRIC DUCT/AHU LAYOUT

ARCH 5226 - HONORS


1ST FLOOR SERVICE PLAN

2ND FLOOR SERVICE PLAN



17

BUILDING CODE PUTS MANY RESTRICTIONS ON THE SERVICE SPACES OF A BUILDING, INCLUDING MECHANICAL ROOMS, ELECTRICAL CLOSETS, AND ELEVATOR ROOMS. THE ELECTRICAL CLOSETS MUST BE WITHIN 100 FEET OF EACHOTHER TO AVOID EXTENSIVE BRANCH CIRCUIT CABLE LENGTHS. GROUND SOURCE HEAT PROVIDE PUMPS THE BUILDING WITH HEATING AND COOLING, AND ARE LOCATED NEAR THE FIRST FLOOR MAIN MECHANICAL FAN ROOM. THE EXTERIOR TRANSFORMER IS ALSO LOCATED NEAR THE MAIN ELECTRICAL CLOSET ON THE FIRST FLOOR NEAR THE PARKING. FINALLY, DUMPSTERS WERE PLACED NEAR THE LOADING ZONE FOR AN EFFICIENT SERVICE TRUCK SYSTEM.

IN ORDER TO MEET BUILDING CODE AND PROVIDE AN ADEQUATE AMOUNT OF ARTIFICIAL LIGHT IN THE TEEN LOUNGE, CALCULATIONS WERE PERFORMED TO TEST VARIOUS LIGHTING TYPES. AFTER MULTIPLE ATTEMPTS AT FINDING A DESIGN THAT WORKED, THE ALERA SOLARIS CURVED LIGHTING LUMINAIRE WAS CHOSEN DUE TO ITS SLEEK FORM AND STRONG LUMEN OUTPUT. THIS WAS INTEGRATED WITH THE HVAC, FIRE PROTECTION, STRUCTURAL, AND ACOUSTIC SYSTEMS IN THE TEEN LOUNGE TO PROVIDE LIGHT COVERAGE TO THE ENTIRE AREA OF THE SPACE. THIS SYSTEMS INTEGRATION CAN BE SEEN IN THE REFLECTED CEILING PLAN ABOVE.

		ulations											
Photom	etric Data												
	2010.000	Imended illuminanc	e									Ì	Г
	Lamp												
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ Luminaire											
	100 C 100	g Ratio (0 deg.)											
		g Ratio (90 deg.)											
		/ Luminaire											
		Efficiency											
		output from one lu	minai	re									
Room D	and the second second	routput nom one lu		i e									-
neeni e	Length											1	
	Width												
	Height												
	CCR	*Ceiling	Cavity	Po	floct	nco	PC						
	RCR	Centrig	cavity	Ne	necu	ance,	ne						
	FCR												
	hCC	*Ceiling	to Five	ure									
	hRC	*Space in											
	hFC	*ground											
Sizing of	the Syste			IK	Jane							1	_
Sizing O	Wsq											1	
А	RCR	*Wall Re	flocta	nce	P\A/								
<u>^</u>	CU	*May ha											
	leo	iviay na	vetu	inte	i pola	ale						4	-
В	LLF	*Good=0	.65, A	vg.	=0.55	5, Poo	or=0.	45				1	
с	Useful	lumens from one lu	minai	re									2
D	Total I	umens needed											
	I.e.		-	7									
		er of luminaires (Rou		p)									10
		er of Fixtures to USE										6	
Е	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I Efficiency											00 00
	Light L												1
	and the second second	Maximum *from IE	CC Tal	ole	C405	.4.2(2	2) ->	Loun	ge, Ot	herv	vise		
	Area C	overed per fixture											
			*[200	S DE	SIGN	WOR	KS					
													*
P	HOTOM	ETRIC DATA											
		E DATA Test 12479		in	11114		ICE	Canada la	/Sq. M.)	~~			
	uminaire	SLS-2T8-LD-EB8	A	G.	0.0		45.0			cu	RC		E
		Solaris Architectural	7	0	5711	5711	5711	5711	5711		RW	70	
		Curve 9" × 48" 2 LAMP WITH		30 40	5322 4907	5852 5467	5932 5706	5994 5786	5994 5876		1 2	89 81	85
		1 × 11 CELL SEMI- SPECULAR LOUVER		45	4526	5078	5435	6085	6334		3	74	66
	allast	RCN-2P32-SC	Angle	50 55	4026 3390	4562 3884	5300 5152	6622 8209	7718 9503	RCR	45	68 62	52
	allast Factor amo	0.88 F32T8	And	60	2480	2970	5374	7503	8590	RC	6 7	57 53	46
	ument per lam			65	1359	1884	4311	5127	5090		1	33	44

8 49 38 9 45 34 10 42 31 RCR = Room Cavity Ratio

Zone	Lumens	% Lamp	% Fixt.	Total Luminaire Eff
0-30	611	10.5	11.3	Luminaire Efficacy
0-40	995	17.2	18.5	ANSI/IESNA RP-1-2
0-60	1774	30.6	32.9	Comparative Yearl
0-90	2005	34.6	37.2	Energy Cost per 10
90-120	1161	20.0	21.5	
90-130	1754	30.2	32.5	
90-150	2745	47.3	50.9	
90-180	3385	58.4	62.8	
0-180	5390	92.9	100.0	

70 269 694 1947 1724 1500

75 177 296 503 769 828

80 132 220 353 485 573

85 176 176 264 439 439

Lumens per Lamp 2900

62 Pendant

Shielding Angle 0° = 21 90° = 24

Opening in Feet Width: 0.37

Spacing Criterion 0° = 1.20 90° = 1.31

Length: 3.80

Height: 0.00

Watts

Mounting

iminous

20	fc	
F32-T8	1	
62		
1.2		
1.31		
2		_
92.9	%	_
5390	Im	1.0

32	ft	
18	ft	
15	ft	
80	%	
50	%	
20	%	
3.5	ft	
9	ft	
2.5	ft	

22.667 3.971	ft	
58.24%		
0.65	1	_

40.4384	lm
11,520	lm
6458455	Luminaires

	Luminaires
.168224	
6458333	W/ft ²
0.73	W/ft ²
96	ft ² /fxtr

YES

See spacing on RCP

INTS OF UTILIZATION (%)

10		70			1	0			
30	10	70	50	30	10	50	30	10	0
82	79	80	77	74	72	63	61	59	30
69	65	73	68	63	60	55	52	49	26
59	54	67	60	54	50	49	45	42	22
51	46	61	53	47	42	43	39	36	19
44	39	56	47	41	36	39	34	31	16
39	34	52	42	36	31	35	30	27	14
34	29	48	38	32	27	32	27	23	13
31	26	44	35	28	24	29	24	21	11
27	23	41	31	25	21	26	22	18	10
25	20	38	29	23	19	24	19	16	9

RC = Effective Ceiling Cavity Reflectance RW = Wall Reflectance

IERGY DATA

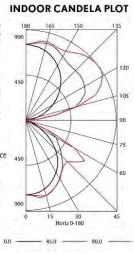
fficiency	92.9%
y Rating (LER)	76
2004 Compliance	Yes-VDT Normal Use
ly Lighting 000 Lumens	\$3.16 based on 3000 hrs. and \$0.08 per KWH

FEATURES

· Optional distribution covers allow the designer to maintain a single look throughout a facility while varying the light distribution • Direct/Indirect distribution

Solaris

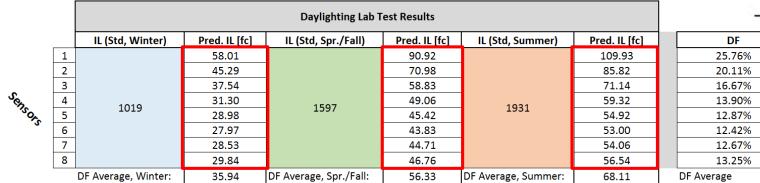
EXPRESS


- . TB, T5, or T5HO lamps
- · Heavy 20-gauge steel construction provides excellent housing rigidity
- · Controls compatible
- Adjustable 48" (CM48) aircraft cable yoke hanger with vertical and horizontal balancing · Patented die cast couplers and end caps ensure
- straight rows with no light leak
- · Fixed louver stays in housing, even if fixture is struck or damaged Popular for educational and general office
- commercial facilities, also excellent for retail

SHAPE AND DIMENSIONS

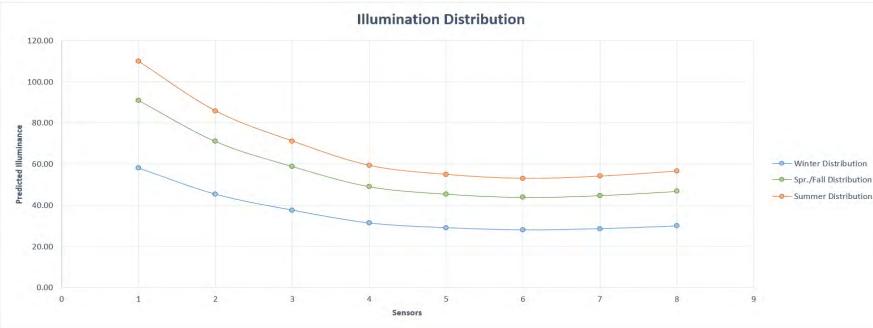
merpoid	tion tubic
RCR	CU
3	66.00%
3.971	58.24%
4	58.00%

LIGHTING DESIGN



SP17

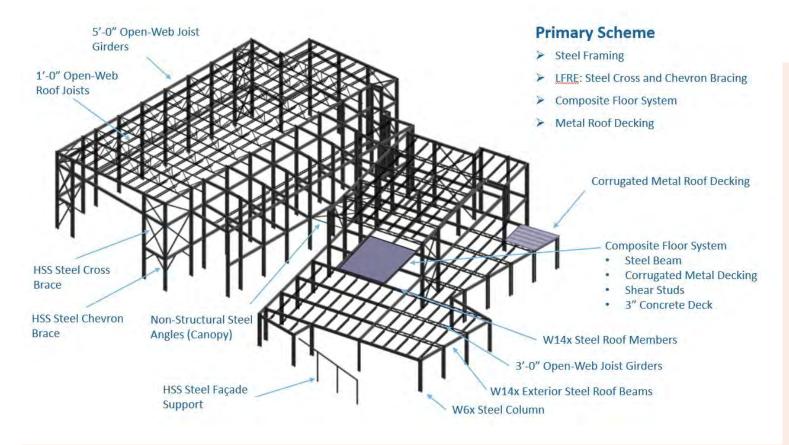
Test Date 4/4/2000


				illumination level und	er artificial sky dome	sensor's
Light	Sensor #	Multiplier	Meter's Reading	lux	fc	serial numbe
	1	3.025	55.0	166 lux	72.1 fc	PH 8355
	2	2.906	44.7	130 lux	72.1 fc	PH 8356
	3	2.886	37.3	108 lux	10.0 fc	PH 8357
	4	3.003	29.9	90 lux	8.3 fc	PH 8358
	5	3.022	27.5	83 lux	7.7 fc	PH 8359
in the second	6	2.825	28.4	80 lux	7.5 fc	PH 8360
	7	3.000	27.3	82 lux	7.6 fc	PH 8361
and the second	8	2.971	28.8	86 lux	8.0 fc	PH 8362
(single s	ensor) 9	2.840	248.5	706 lux	65 6 Ic	PH 8369
utside (unde		2.840 side illuminance = Day	60.0 fc	dome in the lab, and not t	60.0 fc de horizontal illuminance une the standard illuminance at t Daylight	the location of your
utside (unde	Measured outs	ide illuminance = Day	60.0 fc	[NOTE]: This is the outsid dome in the lab, and not the second se	de horizontal illuminance un	der the artificial sky the location of your Factor
utside (unde	Measured outs	ide illuminance = Day	60.0 fc light Factor for V	[NOTE]: This is the outsid dome in the lab, and not the second se	de horizontal illuminance un the standard illuminance at t Daylight	der the artificial sky the location of your Factor
utside (unde	Measured outs	ide illuminance = Day	60.0 fc light Factor for V	[NOTE]: This is the outsid dome in the lab, and not the second se	de horizontal illuminance und the standard illuminance at t Daylight excluding effe	der the artificial sky the location of your Factor
VT (glass)	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace	[NOTE]: This is the outsid dome in the lab, and not the	de horizontal illuminance und the standard illuminance at t Daylight excluding effe	der the artificial sky the location of your Factor ect of glass V
VT (glass)	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace 1 2 3	[NOTE]: This is the outsid dome in the lab, and not the formula of the lab, and not the la	the standard illuminance un the standard illuminance at t Daylight excluding effe	the location of your Factor ect of glass V 25.76% 20.11% 16.67%
VT (glass)	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace 1 2 3 4	[NOTE]: This is the outsid dome in the lab, and not the lab, and the lab, and not the lab, and not the lab, and not the lab,	the standard illuminance un the standard illuminance at t Daylight excluding effe	Factor 5.76% 20.11% 13.90%
VT (glass)	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace 1 2 3 4 5	[NOTE]: This is the outsid dome in the lab, and not the lab, and the la	de horizontal illuminance und the standard illuminance at the Daylight excluding effe	the location of your Factor Ect of glass V 25.76% 20.11% 16.67% 13.90% 12.87%
VT (glass) 0.26	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace 1 2 3 4 5 6	[NOTE]: This is the outsid dome in the lab, and not the lab, and lab, and not the lab, and not the lab, and not the lab, and	de horizontal illuminance und the standard illuminance at the Daylight excluding effe	der the artificial sky the location of your Factor ect of glass V 25.76% 20.11% 16.67% 13.90% 12.87% 12.42%
VT (glass) 0.26 15.96%	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace 1 2 3 4 5 6 7	[NOTE]: This is the outsid dome in the lab, and not the	de horizontal illuminance un the standard illuminance at t Daylight excluding effe	der the artificial sky the location of your Factor ect of glass V 25.76% 20.11% 16.67% 13.90% 12.87% 12.42% 12.68%
VT (glass) 0.26 15.96%	Measured outs	ide illuminance = Day	60.0 fc light Factor for V odels tested with glass or trace 1 2 3 4 5 6	[NOTE]: This is the outsid dome in the lab, and not the lab, and lab, and not the lab, and not the lab, and not the lab, and	de horizontal illuminance un the standard illuminance at t Daylight excluding effe	der the artificial sky the location of your Factor ect of glass V 25.76% 20.11% 16.67% 13.90% 12.87% 12.42%

DF	VT (glass)	M (glass)
25.76%		
20.11%		
16.67%		
13.90%	0.26	0.85
12.87%	0.26	0.85
12.42%		
12.67%		
13.25%		
DF Average	15.96%	
Corrected DF Average	3.53%	

	-	illumination level unde	er artificial sky dome	sensor's
lier Me	ter's Reading	lux	fc	serial numbe
025	55.0	166 lux	72.1 fc	PH 8355
906	44.7	130 lux	72.1 fc	PH 8356
386	37.3	108 lux	10.0 fc	PH 8357
003	29.9	90 lux	8.3 fc	PH 8358
022	27.5	83 lux	7.7 fc	PH 8359
325	28.4	80 lux	7.5 fc	PH 8360
000 971	27.3 28.8	82 lux 86 lux	7.6 fc 8.0 fc	PH 8361 PH 8362
340	248.5	706 lux	65.6 Jc	PH 8369
340	227.4	646 lux	60.0 fc	PH 8364
nce =	60.0 fc	[NOTE]: This is the outsid dome in the lab, and not the lab area an	ne standard illuminance	at the location of your
nce = Dayligh	t Factor for VI	dome in the lab, and not the lab, and and not the lab, and	Daylig	ht Factor
nce = Dayligh		dome in the lab, and not the lab, and and not the lab, and	Daylig	at the location of your
nce = Dayligh	t Factor for VI	dome in the lab, and not the lab, and and the lab, and not the lab, and and the lab, an	Daylig	ht Factor effect of glass V1 25.76%
nce = Dayligh	t Factor for VI	dome in the lab, and not the lab, and	Daylig	ht Factor
nce = Dayligh	t Factor for VI tested with glass or trace	dome in the lab, and not the lab, and and the lab, and not the lab, and and the lab, an	Daylig	ht Factor effect of glass V1 25.76%
Dayligh	t Factor for VI tested with glass or trace 1 2	dome in the lab, and not the lab, and and the lab, an	Daylig	ht Factor effect of glass VT 25.76% 20.11%
nce = Dayligh	t Factor for VI tested with glass or trace 1 2 3	dome in the lab, and not the lab, and no	Daylig	ht Factor effect of glass VT 25.76% 20.11% 16.67%
nce = Dayligh	t Factor for VI tested with glass or trace 1 2 3 4	dome in the lab, and not the lab, and and not the lab, an	Daylig	a at the location of your ht Factor effect of glass ∨1 25.76% 20.11% 16.67% 13.90%
nce = Dayligh	t Factor for VI tested with glass or trace 1 2 3 4 5	dome in the lab, and not the lab, and no	Daylig	At the location of your ht Factor effect of glass VT 25.76% 20.11% 16.67% 13.90% 12.87%
Dayligh	t Factor for VI tested with glass or trace 1 2 3 4 5 6	dome in the lab, and not the lab, and and the lab, and th	Daylig	At the location of your ht Factor effect of glass VT 25.76% 20.11% 16.67% 13.90% 12.87% 12.42%

AN ANALYSIS WAS PERFORMED IN THE ARCHITECTURE DAYLIGHTING LAB IN ORDER TO DETERMINE THE DAYLIGHT QUALITIES OF A TEEN LOUNGE SCALE MODEL. FOR CERTAIN ILLUMINATION LEVELS THROUGHOUT THE YEAR (SUMMER, WINTER, AND SPRING/FALL), 3 ILLUMINANCE CURVES WERE GRAPHED AND COMPARED. WITH THIS DATA OBTAINED FROM THE 8 SENSORS USED, IT WAS DETERMINED THAT THE ILLUMINATION LEVEL IN THE TEEN LOUNGE DURING THE SUMMER MAY BE SLIGHTLY TOO HARSH, SO MECHANICAL ROLLER BLINDS WERE INSTALLED IN THE DESIGN TO RESOLVE THIS PROBLEM.


ERIC FLEET

ARCH 5226 - HONORS

D A Y G Η

Ν

G

AFTER THE SCHEMATIC DESIGN PHASE, A STRUCTURAL STEEL FRAMING SYSTEM WAS CHOSEN FOR THE DESIGN. WITH THIS MATERIAL, OVERALL DEPTHS OF MEMBERS WOULD BE REDUCED. IN ADDITION, VISUAL CONNECTIONS BETWEEN THE INTERIOR AND THE EXTERIOR REMAIN UNIMPEDED.

UPON REVIEWING THE GEOTECHNICAL REPORT FOR THE OKLAHOMA CITY SITE, IT WAS ADVISED THAT A FOUNDATION SYSTEM CONSISTING OF DRILLED PIERS AND GRADE BEAMS SUPPORTING A CONCRETE SLAB FOR THE GROUND FLOOR WOULD BE THE BEST OPTION. THIS WOULD RESULT IN THE LEAST AMOUNT OF OVERALL BUILDING DRIFT. THESE DRILLED PIERS ALSO SUPPORT A SYSTEM OF GRADE BEAMS BENEATH THE STRUCTURE, WHICH ARE LOCATED AROUND THE EXTERIOR WALLS OF THE BUILDING.

PRELIMINARILY, AN 18 INCH DIAMETER PIER WOULD BE DRILLED BELOW ALL COLUMNS, WITH THE EXCEPTION OF SOME LOCALIZED AREAS WITH AN EXPECTED INCREASE IN GRAVITY LOADING, SUCH AS BELOW THE GREEN ROOF, BENEATH THE SOUTH SIDE OF THE GYMNASIUM, AND IN THE MIDDLE OF THE FOOD PANTRY SPACE THAT EXTENDS UPWARD TO SUPPORT THE STAFF SPACES ON THE SECOND FLOOR. THESE PIERS WERE EXPECTED TO BE SIZED NEAR 24 INCHES IN DIAMETER.

THE MAIN HORIZONTAL STRUCTURAL SYSTEM WAS A COMPOSITE DECK SYSTEM SUPPORTED BY STEEL POST AND BEAM CONSTRUCTION. STEEL COLUMNS AND VERTICAL BRACING THROUGHOUT THE BUILDING SUPPORT HORIZONTAL COMPOSITE STEEL BEAMS, WHOSE PURPOSE IS TO TIE TOGETHER THE POURED CONCRETE SLAB, THE CORRUGATED STEEL DECKING, AND THE STEEL BEAMS BENEATH. BEFORE A THREE INCH CONCRETE SLAB IS POURED, SHEAR STUDS ARE ATTACHED TO THE DECK/BEAM INTERFACE SO THAT THE CONCRETE SLAB ENGAGES THE STRUCTURE ITSELF. VERTICAL BRACING (IN THE FORM OF DIAGONAL BRACES) WAS LOCATED PRIMARILY AROUND THE LARGE GYM SPACE, AS WELL AS ALONG MECHANICAL CORES IN THE BUILDING AND ALONG THE SOUTH SIDE OF THE SECOND FLOOR STAFF SPACES. THESE WALLS ACT AS THE MAIN LATERAL FORCE RESISTING ELEMENTS FOR THE DESIGN.

SIZING OF MEMBERS THROUGHOUT THIS DESIGN REMAINS RELATIVELY CONSISTENT WITHIN EACH SPACE. THE GYM IS SHELTERED ABOVE BY OPEN-WEB JOIST GIRDERS, APPROXIMATELY SIX FEET DEEP. THESE IN TURN SUPPORT ONE-FOOT DEEP OPEN-WEB ROOF JOISTS, SPACED AT APPROXIMATELY FIVE FEET ON CENTER. MOST COLUMNS WERE PRELIMINARILY DESIGNED TO BE WIDE FLANGE MEMBERS WITH A NOMINAL DEPTH OF SIX INCHES, HOWEVER, THIS SIZING WAS EXPECTED TO INCREASE AS THE DESIGN DEVELOPED. FOR THE FOOD PANTRY COMPONENT OF THE PROGRAM, OPEN-WEB JOIST GIRDERS REACHING A DEPTH OF THREE FEET WERE USED TO SUPPORT THE GREEN ROOF ABOVE. IN ADDITION, FOURTEEN-INCH DEEP STEEL ROOF BEAMS COMPRISE THE EXTERIOR FRAMING OF THE FOOD PANTRY.

Roof Dead					
Components	Load (psf)				
Structure	4.0				
Galvanized Steel Decking (18 gage)	2.4				
Rigid fiber glass insulation	4.5				
Roofing System	6.0				
Finish Ceiling - Acoustic Panels	3.0				
Mech, Elec, Plumb	4.0				
Sprinklers	3.0				
Collateral	1.0				
Total:	27.9				

Roof Live	
Reference	Load (psf)
IBC 1607.1	20

Floor Dead	
Components	Load (psf)
Concrete Slab	50.0
Corrugated Metal Decking	2.4
Steel Structure	7.0
Stained Concrete Finish (1/2")	6.0
Finish Ceiling - Acoustic Panels	3.0
Mech, Elec, Plumb	4.0
Sprinklers	3.0
Collateral	3.0
Total:	78.4
Floor Live	
Reference	Load (psf)

IBC 1607.1 (Lobby, moveable seats)

Loading:	osite Design		
	0.76	1.16	
wd wl	0.76 1	klf klf	= (Beam Spacing)*(Slab + Self Weight + Miscella = [(Beam Spacing)*(Live Non-Reducible Compos
WI	1	KI	- [(beam spacing) (live non-neutrible compos
Combinations:			
1.4*(Pd)	1.064	klf	
1.2*(Pd) + 1.6*(Pl)	2.512	klf	
Controlling Load (Pu)	2.512	klf	
P(Dead)	17.632	kips	= (0.5*(wd)*(L1))+(0.5*(wd)*(L2))
P(Live)	23.2	kips	= (0.5*(wl)*(L1))+(0.5*(wl)*(L2))
Pu	58.2784	kips	= (0.5*(wu)*(L1))+(0.5*(wu)*(L2))
Moment:			*Table 3-22a
Mu	1165.568	k-ft	= a*Pu*L; a = 0.5
			2 7 3 7 9 9 9 8 8
Effective Flange Width:		2	
1.) (ft)	10	ft	= L/4
2.) (ft)	11.6	ft	= 1/2 dist. to adj. beam on each side
3.) (ft)	12.6	ft	= (1/2 dist. to adj. beam) + (dist. to edge of slab
Controlling:	10	ft	*Min. of above 3 cases
Concrete Analysis:		-	
a(trial)	1.372549	in	= [0.5*(A)*(Fy)]/[0.85*(f'c)*(bef)*12]
Y2	5.3137255	in	= (Y1) - (a(trial)/2)
PNA to use	5		*5 = Conservative
*Take to Table 3-19			
For:	W24x76		
φMn	1180	k-ft	*Table 3-19
ΣQn	509	kips	*Table 3-19
Moment Check:	2		
	4405 500		
Mu (k-ft)	1165.568		= a*Pu*L; a = 0.5
Mu (k-ft) фMn (k-ft)	1165.568		= a*Pu*L; a = 0.5 *Table 3-19
φMn (k-ft) Good? Shear Check:	1180 YES	_	*Table 3-19 *Mu < фМр
φMn (k-ft) Good? Shear Check: Vu (kips)	1180 YES 37.7232		*Table 3-19 *Mu < \$\$Mp = c*P; c = 1.5
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip)	1180 YES		*Table 3-19 *Mu < \$\phiMp = c*P; c = 1.5 *Assumed greater than precomposite
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good?	1180 YES 37.7232		*Table 3-19 *Mu < \$\$Mp = c*P; c = 1.5
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good?	1180 YES 37.7232 315	•	*Table 3-19 *Mu < \$\phiMp = c*P; c = 1.5 *Assumed greater than precomposite
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check)	1180 YES 37.7232 315 YES	•	*Table 3-19 *Mu < φMp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < φVn
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check:	1180 YES 37.7232 315 YES 1.24754	9 GOOD	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12]
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB)	1180 YES 37.7232 315 YES 1.24754 4110	9 GOOD	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212	9 GOOD in^4 ! in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (TL)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253	9 GOOD lin^4 in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) [Defl. (LL) Defl. (LL) Defl. (TL) Limit (LL)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333	9 GOOD in^4 in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (TL)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253	9 GOOD lin^4 in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) [Defl. (LL) Defl. (LL) Defl. (TL) Limit (LL)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333	9 GOOD in^4 in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (LL) Limit (LL) Limit (LL) Limit (TL)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333 2.00 No	9 GOOD in^4 in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*P!*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360 = (L)*12/240 *Only if Defl. (LL) > Limit (LL)
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (LL) Defl. (TL) Limit (LL) Limit (LL) Limit (TL) Redesign for Live? Redesign for Total?	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333 2.00 No No	9 GOOD in^4 in in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360 = (L)*12/240
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (LL) Defl. (TL) Limit (LL) Limit (LL) Limit (TL) Redesign for Live? Redesign for Total? DESIGN I	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333 2.00 No	9 GOOD in^4 in in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360 = (L)*12/240 *Only if Defl. (LL) > Limit (LL) *Only if Defl. (TL) > Limit (TL)
¢Mn (k-ft) Good? Shear Check: Vu (kips) ¢Vn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (LL) Defl. (LL) Limit (LL) Limit (LL) Limit (TL) Redesign for Live? Redesign for Total? DESIGN I Ix (live)	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333 2.00 No No	9 GOOD in^4 in in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360 = (L)*12/240 *Only if Defl. (LL) > Limit (LL) *Only if Defl. (TL) > Limit (TL) *Take to 3-20 and 3-2, select new beam size
φMn (k-ft) Good? Shear Check: Vu (kips) φVn (kip) Good? "a" Check: a(check) Deflection Check: *Table 3-20 for I(LB) Defl. (LL) Defl. (LL) Defl. (TL) Limit (LL) Limit (LL) Limit (TL) Redesign for Live? Redesign for Total? DESIGN I	1180 YES 37.7232 315 YES 1.24754 4110 1.0763212 1.8943253 1.3333333 2.00 No No	9 GOOD in^4 in in in in in	*Table 3-19 *Mu < ϕ Mp = c*P; c = 1.5 *Assumed greater than precomposite *Vu < ϕ Vn = (Σ Qn)/[0.85*(f'c)*(bef)*12] *Table 3-20 = (e*PI*L^3)/(E*I); e = 0.05 = (e*(Pd+PI)*L^3)/(E*I); e = 0.05 = (L)*12/360 = (L)*12/240 *Only if Defl. (LL) > Limit (LL)

Gym Roof **Column Design** - Miscellaneous))/1000 Dead Load (D) 27.9 psf Trib. Length Composite load)]/1000 Live Load (L) 20 psf Trib. Width Trib. Area (At) Inputs Dead Load (Pd) 9.3744 kips = (At)*D/1000 = (At)*L/1000 6.72 kips Live Load (PI) Combinations 1 13.12416 kips = 1.4*(Pd) 2 22.00128 kips = 1.2*(Pd) + 1.6*(Pl) Controlling Load (Pu) 22.00128 kips *Max. of combinations Column Height 35 ft Max Unbraced Length 35 ft **Top Support** Base Supp Strong Axis Pin Strong Axis х X Available Strength *Table C-A-7.1 Kx 1 Ку Lx (Strong) 35 ft Ly (KL *Table 4.1 w/ KL= 35 φPn> 22.00128 Shape Options lb/ft φPn W8x 112 Lightest Shape W10x 49 W12x 53 116 **Check Weak Direction** rx/ry 1.71 *Table 4.1 KxLx/(rx/ry) 20.46783626 ft 21 ft *Round up φPn 294 kips GOOD IN WEAK DIRECTION **USE: W10x49 ASD STANDARD LOAD TABLE FOR OPEN WEB STE Based on a 50 ksi Maximum Yield Strength - Loads Shown Joist 10K1 12K1 12K3 12K5 14K1 14K3 14K4 14K6 Designation Depth (in.) Approx. Wt (lbs./ft.) Span (ft.) 12 12 12 14 14 14 14 10 5.0 5.0 5.7 7.1 5.2 6.0 6.7 7.7 10 550 550 11 542 550
 550
 550

 550
 550

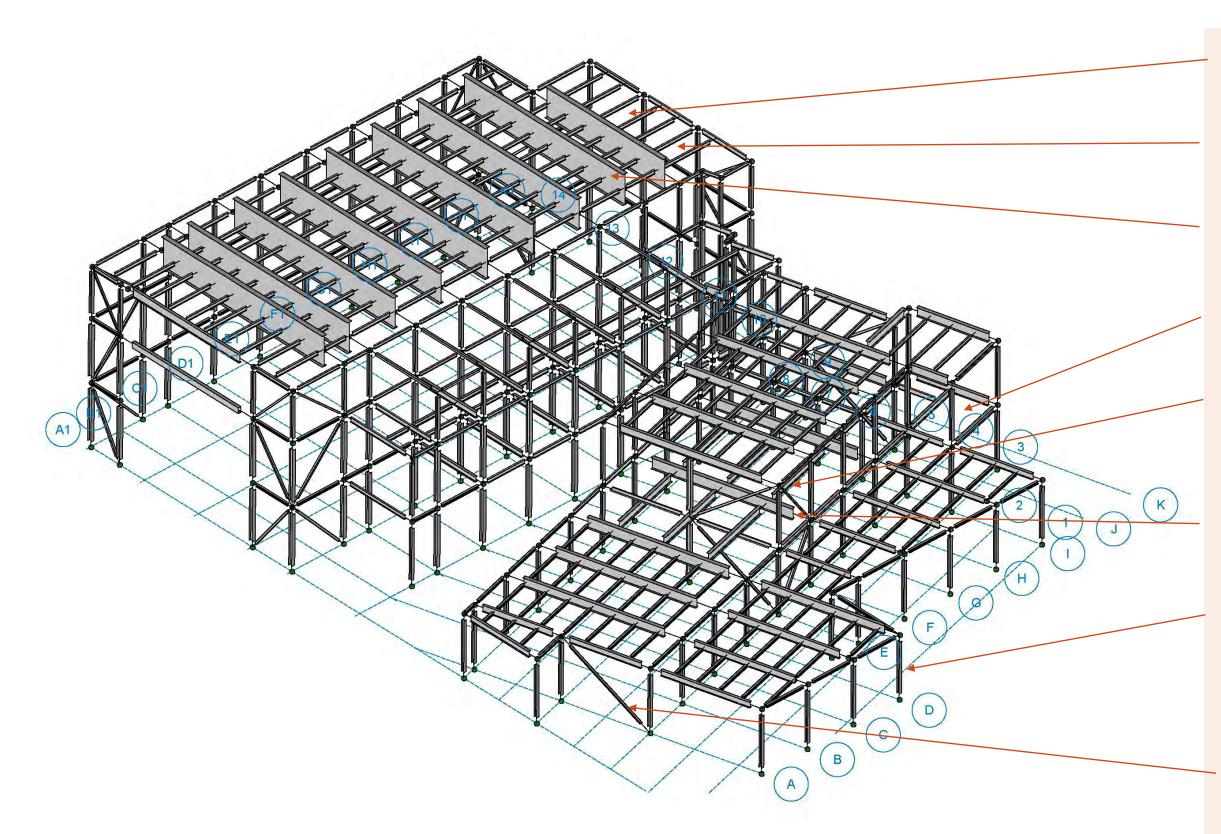
 550
 550
 550 550 550 12 455 479 13 48 54 60 25 25 29 26 19 20 20 30 5N@ 11.00 48 54 60 18 23 24 19 22 24 27 47 60 58 6N@ 9.17 56 19 48 21 19 7N@ 7.86 60 55 92 101 84 102 79 87 79 83 70 77 48 54 60 25 25 24 28 28 28 39 38 37 43 42 40 9N@ 6.11

48 54 60 29 28 26

66 14N@ 54 3.93 60

11N@ 5.00

ERIC FLEET


100

ARCH 5226 - HONORS

28	ft	
12	ft	
336	ft^2	
port		
port	Pin	
port	Pin	-
port	Pin S'	*Table C-A-7.1
oort (Weak)	2	*Table C-A-7.1 ft

AS THE DESIGN DEVELOPMENT PHASE PROGRESSED, PRELIMINARY MEMBER SIZES WERE CALCULATED BY HAND AND PLACED IN THE **RISA STRUCTURAL** ANALYSIS MODEL. THIS INCLUDED ALL DESIGN DEAD AND LIVE LOADS, ALL COMPOSITE STEEL BEAMS AND GIRDERS, FLOOR AND ROOF DECKING, AND ROOF JOIST SELECTION.

10K1	126	1	12K3	12K	5	14K1	14	(3	14K4	14	6	16K2	16	(3	16K4	16K	5	16K6	16K	7	16K9
10	12		12	12		14	14		14	14		16	16	1	16	16		16	16	-	16
	5.0	-		7.1						7.7		5.5									
5.0	5.0		5.7	7.1		5.2	6.0	,	6.7	1.1		5.5	6.3	3	7.0	7.5		8.1	8.6		10.0
550		-	-	_		-		-	-		-	_	-	-	_		-	_		-	_
550		_				_	_	_		_	-	_	_	_	_		-	_	-	-	_
550 542			-																		
550	550		550	550					-	-				-						-	
455	550		550	550					_			-			_					-	
479 363	550		550 510	550 510																	
	11 214		213	310	- 11								-	-							
19	22	25	27	30	32	35	38	43	49	54	61	66	85	95	111		153	180	219		
19	21	24 23	25 25	29 26	30 29	33 31	36 34	39 36	45 44	50 46	58 52	62 60	75 67	91 88	106 94		153	177 158	205		265
20	22	23	25	26	29	31	34	36	39	46	52	53	64	77	94	108		137	182		
21	22	23	24	26	28	29	32	33	37	42	46	49	62	71	80	93	112	133	164		
18	23	26	29	33	37	40	46	47	54	62	70	77	100	114	131	151	188	226	261		
18	23 22	24 24	29 27	31 30	34 33	37 35	42 39	46 41	52 47	59 56	66 60	71 65	92 80	106 95	116 109	143 119	177	205 181	246		
19	20	24	25	30	33	35	39	40	41	50	58	61	77	95	109	112		174	197		279
20	20	23	26	29	32	32	35	37	41	49	52	59	72	84	99	110	130	156	187		
22	25	28	33	36	41	46	51	54	62	71	78	91	105	131	153			263	1.001		
21	24 24	28 26	31 29	34 32	39 36	45 39	46 43	52 48	59 57	68 64	77 69	79	106 95	117 109	143	158			291	201	
20	24	25	29	32	36	39	43	48	50	59	67	78 70	84	406	129 113		182 166		259 235		
20	23	25	29	32	33	37	38	43	50	54	60	68		100	114		157		219		317
25	30	35	41	46	54	58	63	70	78	92	101	110	143		195		282				
25	28	33	39	43	49	55	60	64	72	84	102	108	134		182	205					
25	28	33	38 37	42 40	46	51 48	57	58 58	69 67	79	87	97 89	114		164 154				000		
24 24	28 27	33 31	37	39	43 42	48	50 50	58	61	79 70	83 77	89	108 101	124	154	174 159	202 194	264 242	309 286	310	
31	37	46	52	58	66	70	78	91	101	107	131	142	179	205	253	297	134	646	200	513	-
29	34	41	47	55	63	67	72	79	93	106	116	113	158	195	231	269					
28	33	39	46	49	57	62	69	73	81	96	109		150		199	241	302				
26	32	37 36	41	48 46	51 50	59 55	64 62	68 65	80 74	84 84	98 100	112	140		189	214		000			
39	31	55	63	71	79	55 92	102	107	121	144	157	102	124 218	147	170	194	261	293	-		-
36	43	50	63	71	77	80	94	104		134	148	172		254	302						
34	41	49	57	66	71	75	83	97	107		138	152	187	215	263	307					
31	39	46	52	61	68	77	78	85		114	123	142	168		241	284					
32	38	44	50	57	63	71	75	80	96	113	119	130	163	197	223	262	321				

ARCH 5226 - HONORS

Roof Decking

• 1.5F22

Roof Joist

• 10K1, 12K1

Gym Joist Girder

• 66G11N14K

Floor Decking

• 3VLI22

Composite Beam

- W14x34
- W18x60

Composite Girder

• W30x124

Columns

- W8x31
- W10x12
- W10x45

Vertical Bracing

- HSS4x4x1/4
- HSS5x5x3/16

22

ENGAGE

OTHER OPTIONS, INC.

ARCHITECT

LEGO SYSTEMS, INC. 555 TAYLOR RD. ENFIELD, CT 06082

P: +1 (860) 749-2291

CIVIL ENGINEER

BOB THE BUILDER, LLC. 3032 NICKELODEON RD. HOLLYWOOD, CA 85421

P: +1 (533) 858-9600

STRUCTURAL ENGINEER

K'NEX INDUSTRIES INC. 754 CHILDHOOD LN. HATFIELD, PA 32084

P: +1 (852) 941-8531

LANDSCAPE CONSULTANT

LIL' SEBASTIAN GREENWORKS 6354 CITY HALL CT. PAWNEE, IN 96831

P: +1 (652) 633-5284

FIRE PROTECTION CONSULTANT

ROWE YOUR BOAT, INC.

021 PLUMB PLACE

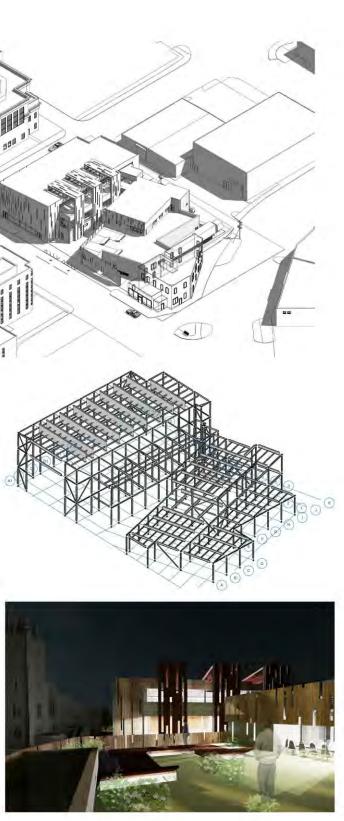
P: +1 (663) 131-1313

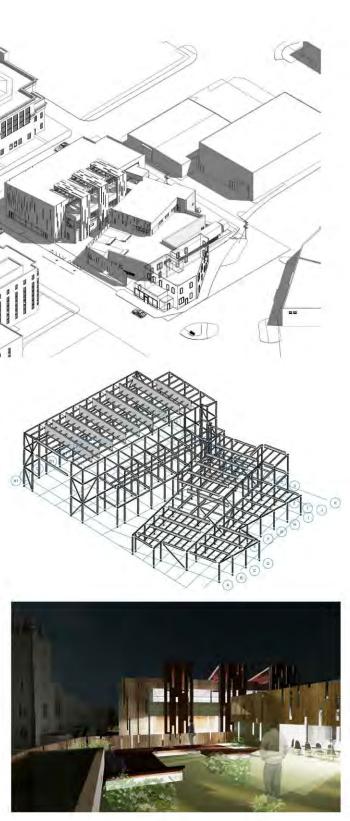
OAR, OK 11203

MEP ENGINEER

NORTHERN WATER TRIBE AND ASSOCIATES **1 POLAR POINT** AANG, GREENLAND 63635

P: +65 (299) 803-7548


LORI FLEET INTERIORS, LLC.


3094 ASHLYNNE DR.

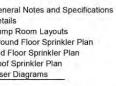
EDMOND, OK 73034

P: +1 (405) 551-8003

INTERIOR DESIGNER

ERIC FLEET

ARCH 5226 - HONORS



SP17

		SHEET INDEX
		General
NW 13mlst	NE 13th St	G 1.0 Cover
· · · · · · · · · · · · · · · · · · ·		G 2.0 Project Index G 3.0 General Notes
	OU Medication	G 4.0 Abbreviations
		Civil
		C 1.0 General Notes and Specificatio
NW 10th St	AUTOMOBILE	C 2.0 Site Plan
own-	AIVLEYSI NETOINSI	C 2.1 Street Plan C 2.2 Utility Plan
THE THE TOWN		C 2.2 Utility Plan C 2.3 Grading Plan
Jose LRC MI IN		C 3.0 Utility Details
		C 3.1 Pavement Details
		Structural
NW/6th/St	💉 RESEARCHIPARK	S 1.0 General Notes and Specificatio
Oklahoma City National		S 1.1 Loading Diagrams S 2.0 Foundation Plan
Memorial & Museum		S 3.0 2nd Floor Framing Plan
NW/4m-St	NE 400 St	S 4.0 3rd Floor Framing Plan
		S 5.0 Roof Framing Plan
비한 위에 온 관 관	ISINESS	S 6.0 Details S 6.1 Details
	STRICT	S 7.0 Braced Frame Elevations
	Google DOWNTOWN OKLAHOMA CITY	S 7.1 Braced Frame Details
		S 8.0 Schedules
		Architectural A 1.0 Site Plan
EVIATIONS	MECH MECHANICAL	A 1.1 Site Details
REVIATIONS	MIN MINIMUM	A 2.0 Ground Floor Plan
AT	N NORTH	A 2.1 2nd Floor Plan
DIAMETER	NO NUMBER OC ON CENTER	A 2.2 3rd Floor plan A 3.0 Roof Plan
ANCHOR BOLTS		
	OPP OPPOSITE	A 4.0 Enlarged Floor Plans
AMERICAN CONCRETE	OPP OPPOSITE P/C PRECAST CONCRETE	A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF	OPP OPPOSITE	A 4.0 Enlarged Floor PlansA 4.1 Enlarged Floor PlansA 4.2 Enlarged Floor Plans
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED	A 4.0 Enlarged Floor PlansA 4.1 Enlarged Floor PlansA 4.2 Enlarged Floor Plans
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.0 Enlarged Elevations A 5.0 Enlarged Floor Plans
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE TOB TOP OF BEAM	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE TOB TOP OF BEAM TOF TOP OF BEAM TOF TOP OF PIER	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.2 Building Sections
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN COMPRESSION CONCRETE	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE TOB TOP OF BEAM TOF TOP OF FOOTING TOJ TOP OF PIER TOS TOP OF STEEL	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 7.0 Building Sections A 7.2 Building Sections A 7.3 Wall Sections
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN COMPRESSION CONCRETE CONNECTION	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINF REINFORCEDREQDREQUIREDSECT SECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFENERSTLSTEELSTRSTRUCTURALSUPSUPPORTTEMPTOP OF CONCRETETOSTOP OF BEAMTOFTOP OF JOISTTOPTOP OF PIERTOSTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICAL	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.2 Building Sections
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN COMPRESSION CONPRESSION CONNECTION	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE TOB TOP OF BEAM TOF TOP OF FOOTING TOJ TOP OF PIER TOS TOP OF STEEL TOW TOP OF WALL TYP TYPICAL UNO UNLESS NOTED	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.3 Wall Sections A 7.4 Wall Sections A 8.0 Exterior Details
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN P COMPRESSION C CONCRETE N CONNECTION T CONTINUOUS DIMENSION EXPANSION JOINT	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINF REINFORCEDREQDREQUIREDSECT SECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFENERSTLSTEELSTRSTRUCTURALSUPSUPPORTTEMPTOP OF CONCRETETOSTOP OF BEAMTOFTOP OF JOISTTOPTOP OF PIERTOSTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICAL	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.4 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN CONCRETE MASONRY UNIT COLUMN CONCRETE CONRECTION CONCRETE CONRECTION CONTINUOUS DIMENSION EXPANSION JOINT T ELECTRICAL	OPP OPPOSITE P/C PRECAST CONCRETE RAD RADIUS REF REFERENCE REINF REINFORCED REQD REQUIRED SECT SECTION SJ STEEL JOIST STD STANDARD STIFF STIFFENER STL STEEL STR STRUCTURAL SUP SUPPORT TEMP TEMPERATURE TOC TOP OF CONCRETE TOB TOP OF BEAM TOF TOP OF FOOTING TOJ TOP OF JOIST TOP TOP OF PIER TOS TOP OF STEEL TOW TOP OF WALL TYP TYPICAL UNO UNLESS NOTED OTHERWISE	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.3 Wall Sections A 7.4 Wall Sections A 7.5 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.2 Exterior Details
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN CONPRESSION CONTRUCTION CONTRUCTION CONTINUOUS DIMENSION EXPANSION JOINT T ELECTRICAL ELEVATOR	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details A 9.0 Schedules A 10.0 Wall Partition Types
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN CONCRETE MASONRY UNIT COLUMN CONCRETE CONPRESSION CONCRETE CONTECTION CONTINUOUS DIMENSION DIMENSION EXPANSION JOINT ELECTRICAL ELEVATOR ENGINEER EXPANSION	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details A 8.2 Exterior Details A 9.0 Schedules A 10.0 Wall Partition Types A 10.1 Wall Partition Types
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN P COMPRESSION C CONCRETE N CONNECTION CONTENT CONTINUOUS DIMENSION EXPANSION JOINT T ELECTRICAL ELEVATOR R ENGINEER	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.3 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.1 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.4 Wall Sections A 7.5 Wall Sections A 8.1 Exterior Details A 8.2 Exterior Details A 8.2 Exterior Details A 9.0 Schedules A 10.0 Wall Partition Types A 10.2 Wall Partition Types
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR H ARCHITECTURAL W AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN IP COMPRESSION C CONCRETE N CONNECTION T CONTINUOUS DIMENSION EXPANSION JOINT CT ELECTRICAL / ELEVATOR R ENGINEER EXPANSION FINISHED FLOOR FLOOR FLOOR	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details A 8.2 Exterior Details A 9.0 Schedules A 10.0 Wall Partition Types A 10.1 Wall Partition Types
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN P COMPRESSION C CONCRETE MASONRY UNIT COLUMN P COMPRESSION C CONCRETE N CONNECTION T CONTINUOUS DIMENSION DOINT T ELECTRICAL Z ELEVATOR R ENGINEER EXPANSION FINISHED FLOOR FLOOR FLOOR	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details A 9.0 Schedules A 10.0 Wall Partition Types A 10.1 Wall Partition Types A 11.1 Interior Elevations A 11.2 Interior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN P COMPRESSION CONCRETE N CONNECTION T CONTINUOUS DIMENSION EXPANSION JOINT TELECTRICAL CELECATOR R ENGINEER EXPANSION FINISHED FLOOR FLOOR FEET FOOTING GAUGE (GALVANIZED	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.4 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details A 8.2 Exterior Details A 9.0 Schedules A 10.1 Wall Partition Types A 10.1 Wall Partition Types A 11.1 Interior Elevations A 11.2 Interior Elevations
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL ARCHITECTURAL ARCHITECTURAL ARCHITECTURAL ARCHITECTURAL ARCHITECTURAL BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONTROL OR CONTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN CONDRESSION CONCRETE CONTINUOUS DIMENSION EXPANSION JOINT TELECTRICAL ELEVATOR EXPANSION FINISHED FLOOR FLOOR FLOOR FLOOR FLOOR FLOOR GALVANIZED GENERAL	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Building Sections A 7.5 Wall Sections A 7.5 Wall Sections A 8.0 Exterior Details A 8.2 Exterior Details A 8.2 Exterior Details A 8.0 Exterior Details A 10.0 Wall Partition Types A 10.1 Wall Partition Types A 11.1 Interior Elevations A 11.2 Interior Details A 12.0 Interior Details A 12.1 Interior Details
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN COMPRESSION CONCRETE CONNECTION CONTINUOUS DIMENSION EXPANSION JOINT ELECTRICAL ELEVATOR ENGINEER EXPANSION FINISHED FLOOR FLOOR FEET FOOTING GAUGE GALVANIZED	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.1 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.4 Wall Sections A 8.0 Exterior Details A 8.1 Exterior Details A 8.2 Exterior Details A 9.0 Schedules A 10.1 Wall Partition Types A 11.0 Interior Elevations A 11.2 Interior Elevations A 12.0 Interior Details
AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANCHOR ARCHITECTURAL AMERICAN SOCIETY FOR TESTING AND MATERIALS BEAM BOTTOM BASE PLATE CENTER OF GRAVITY CONTROL OR CONSTRUCTION JOINT CLEAR CONCRETE MASONRY UNIT COLUMN COMPRESSION CONCRETE CONNECTION CONTINUOUS DIMENSION EXPANSION JOINT ELECTRICAL ELEVATOR ENGINEER EXPANSION FINISHED FLOOR FLOOR FEET FOOTING GAUGE GALVANIZED GENERAL GRADE	OPPOPPOSITEP/CPRECAST CONCRETERADRADIUSREFREFERENCEREINFREINFORCEDREQDREQUIREDSECTSECTIONSJSTEEL JOISTSTDSTANDARDSTIFFSTIFFENERSTRSTRUCTURALSUPSUPPORTTEMPTEMPERATURETOCTOP OF DEAMTOFTOP OF DISTTOPTOP OF JOISTTOPTOP OF STEELTOWTOP OF STEELTOWTOP OF WALLTYPTYPICALUNOUNLESS NOTEDOTHERWISEVSHEAR	 A 4.0 Enlarged Floor Plans A 4.1 Enlarged Floor Plans A 4.2 Enlarged Floor Plans A 4.3 Enlarged Floor Plans A 4.4 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 4.5 Enlarged Floor Plans A 5.0 Exterior Elevations A 5.1 Exterior Elevations A 5.2 Exterior Elevations A 5.3 Exterior Elevations A 6.0 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 6.1 Enlarged Exterior Elevations A 6.2 Enlarged Exterior Elevations A 6.3 Enlarged Exterior Elevations A 7.0 Building Sections A 7.1 Building Sections A 7.2 Building Sections A 7.3 Wall Sections A 7.5 Wall Sections A 7.5 Wall Sections A 8.1 Exterior Details A 8.1 Exterior Details A 8.2 Exterior Details A 8.0 Schedules A 10.0 Wall Partition Types A 10.1 Wall Partition Types A 11.1 Interior Elevations A 12.0 Interior Details A 12.1 Interior Details A 12.2 Interior Details

	Fire P	rotection	
	FP	1.0	Gen
	FP	2.0	
	FP		Deta
		3.0	Pum
	FP	4.0	Grou
	FP	4.1	2nd
	FP	4.2	Root
	FP	5.0	Rise
	Plumb	ing	
	P	1.0	Gen
	P	2.0	Grou
	Р	2.1	2nd
	P	3.0	Rise
	P	4.0	Plun
-	Mecha	anical	
	М	1.0	Gen
	M	2.0	HVA
	M	2.1	HVA
	M	3.0	Duct
	M		
		4.0	Grou
	м	4.1	2nd
	м	4.2	Root
	M	5.1	Enla
	M	5.2	Enla
	M	5.3	Enla
	м	5.4	Enla
	M	5.5	Enla
- 1 - 12	M	5.6	Enla
	Electr	ical	
	E	1.0	Gen
		2.0	
	E		Site
	E	3.0	Rise
	E	4.0	Pane
	E	4.1	Lum
	E	5.0	Grou
	E	5.1	2nd
	E	6.0	Grou
	E	6.1	2nd
	Ē	7.0	Elec
	Fire A	larm and §	Security
	FA	1.0	Gen
	FA	2.0	Grou
	FA	2.1	2nd
	-		
		cape	
-	Lands	10	land
-	L	1.0	Land
		1.0 2.0 2.1	Land Plan Plan
-	L L L	2.0 2.1	Plan
-	L L L Furnit	2.0 2.1 ure	Plan Plan
-	L L Furnit	2.0 2.1 ure 1.0	Plan Plan Grou
-	L L L Furnit	2.0 2.1 ure	Plan Plan

ARCH 5226 - HONORS

eneral Notes and Specifications ound Floor Plumbing Plan d Floor Plumbing Plan ser Diagrams umbing Details

Areral Notes and Specifications /AC Diagrams /AC Details ictwork Riser Diagrams ound Floor Duct Plan d Floor Duct Plan bof Duct Plan larged HVAC Plans larged HVAC Plans

eneral Notes and Specifications te Plan ser Diagrams and Details inel Schedules minaire Schedule/Load Schedule ound Floor Electrical Plan d Floor Lighting Plan d Floor Lighting Plan ectrical Equipment Room

ty

eneral Notes and Specifications ound Floor Alarm plan d Floor Alarm Plan

ndscape plan anting Details ant Schedule

ound Floor Furniture Plan d Floor Furniture Plan rniture Schedule

SP17

Ρ R 0 Ε С Ν D Ε X

SECTION 1: GENERAL INFORMATION AND DESIGN CRITERIA

SECTION 1.1 - DOCUMENTS

1.1.1 Structural Construction Documents consist of Project Specifications and Structural Drawings. Structural drawings include General Notes and Typical details in addition to plans, sections and detail

1.1.2 General Notes and Typical Details describe general criteria that apply to all similar conditions throughout the project regardless of whether or not they are specifically referenced in the plans. nced in the plans or details.

1.1.3 Do not scale plans, details and sections for quantity, length or fit of materials.

1.1.4 The structural documents are protected by U.S.A. Copyright Laws. They shall not be used for any purpose other than construction of the structure shown on the site indicated on the Architectural Drawings. 1.1.5 The design represented by these documents is valid only for the building site and the purposes shown on the Architectural Drawings.

11.6 The GEOTECHNICAL REPORT is a separate document (not part of contract documents) furnished by the project owner. The contractor is urged to obtain a copy of the report for reference as it describes sub-surface conditions that may be encountered during installation of foundations and contains other information pertinent to construction of the project.

1.1.7 The contractor must coordinate Structural Documents with other trades and disciplines including, architectural, mechanical, electrical, HVAC and fire protection. Every attempt is made to coordinate drawings prior to issue, however, some requirements are not known prior to issue, and change may occur during construction as layout and fabrication drawings are developed.

1.1.8 Promptly report deviations and interferences with structural components for resolution by the Enginee

1.1.9 Verify dimensional location and depth of slab recesses and offsets with Architectural Drawings.

Verify weights, location and details of structurally supported mechanical equipment prior to on of the supporting structure. Report deviations from assumed conditions to the Engineer vicenting methods. 1.1.10 construction of the supportin prior to fabricating materials.

1 Verify the location, size and detail of roof openings and curbs for mechanical equipment prior to ating materials. Report deviations from assumed conditions to the Engineer before proceeding with

Verify location and size of floor and roof penetrations and sleeves for mechanical and omponents. Openings in beams, girders, columns and slabs must be submitted for approval. 1112

1.1.13 Heights of floor and roof decks and various framing components are given on the drawings relative to a reference elevation of 100-0". This reference elevation is equivalent to a Mean Sea Level Elevation of 594 00.

SECTION 1.2 - CODES AND STANDARDS

1.2.1 Building Code of jurisdiction: 2015 International Building Code

1.2.2 Structural Concrete Code - American Concrete Institute (ACI) 318-08

1.2.3 Structural Steel Code - American Institute of Steel Construction 14th Edition

1.2.4 Structural Design Code - American Society of Civil Engineers (ASCE) 7-10

SECTION 1.3 - DESIGN LOADS

1.3.1 Live Loads:

Public Stairs		100	psf	
Assembly, Lobbies		100	psi	
Automobile Parking	50	psf		
Corridors	100	psf		
Kitchen		100	psf	
Light Storage		125	psf	
Mechanical Room		150	psf	
Offices, Typical Floors	50	psf		
Roof, All Slopes		20	psf	
Terraces, Pedestrian		100	pst	
Gymnasium	100	psf	191	
Classrooms	40	psf		

(1) Plus partition loading (see Dead Loads) (2) Minimum load, or weight of equipment (t num load, or weight of equipment (the heavier)

1.3.2 Dead Loads:

3 1/2" Composite Floor	Syster	n 50	psf	
Flooring	6	psf	10.00	
Typical Ceilings		3	psf	
Ceilings Below Roof Tru	sses	6	psf	
Floor Collateral		8	psf	
Floor Framing		7	psf	
Floor Sprinklers		3	psf	
Partition Loading	20	psf		
Roof Collateral		5	psf	
Roof Insulation		5	psf	
Roof Sprinklers		3	psf	
Roofing System		6	psf	

(1) Collateral loads include: lighting, ductwork. Collateral loads include: lighting, ductwork, miscellaneous framing.
 Roofing system weight is the maximum unit weight of roofing materials and balast (where applicable) for which the roof structure is designed.
 Sprinkler loadings are for distribution lines and heads, exclusive of mains, which are included Separately as concentrated dead loads.
 Applied where noted under "Live Loads".

1.3.3 Wind Loads:

Base Mean Wind Velocity 115 mph Wind Exposure Classification B Wind Importance Factor 1.0

SECTION 2: FOUNDATIONS AND RELATED EARTHWORK GEOTECHNICAL REPORT

2.1 Design of foundations and structural components in contact with soil is based on the endations given in the following:

Report by TERRACON (Oklahoma City, OK) Date of Report May 29, 1998 Report Reference 03985191

LAPPED SPLICE LENGTHS

3 2.7 Lap reinforcing 30 bar diameters at splices unless noted or detailed otherwise CONCRETE COVER TO REINFORCING

3.2.8 Clearance from face of concrete to face of reinforcing:

Piers 3" Formed Grade Beams 1-1/2" top, 2" sides, 3" bottom Columns 1-1/2" interior, 2" exterior exposure Walls 1" interior, 2" exterior exposure Slabs 3/4"

Slabs 3/4" Beams 1-1/2" interior, 2" exterior exposure Basement Walls 1" inside face, 2" outside face 2. Refer to the geotechnical report for subsol conditions that may be encountered in the installation of foundations, and other information relevant to foundations and site preparation

2.3 Design of soil-supported building slabs is based on a range of soil movement of less than 1/2 inch, based on the recommendations of Geotechnical Report.

EARTH RETENTION SYSTEMS

2.5 The design of earth retention systems is not included in Structural Documents. Refer to the Technical Specifications for requirements.

STRAIGHT SHAFT PIERS

Bearing S	ratum:	Weathered Sillstone: 19 ft to 20 ft below grade
Top of Str	atum Elevation:	77 ft to 79 ft
(For Biddu	g Purposes Only)	
Allowable	End Bearing:	20,000 psf
Positive S	de Friction.	2,000 psf
Upheaval	Side Friction:	2,000 psf
Upheaval	Design Depth: 3 ft	into weathered siltstone
Negative S	ide Friction:	2,000 psf
Minimum I	enetration of Strata	a. 3 ft

2.7 Pier depths indicated are for bidding purposes only. Actual pier depths may vary depending on depth to bearing stratum

2.8 Steel dowels at tops of piers or footings shall extend 30 bar diameters above and below top of pier unless noted otherwise (noted as "LAP" on Typical Details).

2.9 Top of pier elevations given are relative to reference elevation 100'-0"

2.10 Over-pour at tops of piers ("mushrooms") shall be removed to the required pier diameter

BELLED PIERS

2.6

Bearing Stratum: Top of Stratum Elevation: Weathered Siltstone, 19 ft to 20 ft below grade 77 ft to 79 ft (For Bidding Purposes Only) Allowable End Bearing: 2,000 psf Minimum Penetration of Strata: 3 ft

2.7 Pier depths indicated are for bidding purposes only Actual pier depths may vary depending

on depth to bearing stratur

2.8 Steel dowels at tops of piers or footings shall extend 30 bar diameters above and below top of pier unless noted otherwise (noted as "LAP" on Typical Details).

2.9 Top of pier elevations given are relative to reference elevation 100'-0" 2.10 Over-pour at tops of piers ("mushrooms") shall be removed to the required pier diameter

SECTION 3: STRUCTURAL CONCRETE

3.0.4 Composite deck system shall be shored in accordance with manufacturer's requirements. Shoring is to remain in place until concrete has reached 75% of specified compressive streng In addition, shoring is to remain in place until all levels have been placed and have reached 75% of specified compressive strength.

3.0.5 At support points and edge of deck locations, composite deck shall be attached to load bearing walls and structural steel support beams with Hilt Flex Screws, Type 12-14x7/8 HWH #3, at 12° o.c. (JNO.

 $3\,0.6\,$ Deck shall span between supports. No midspan splicing of the deck is permitted. Provide # 10 tek screw side fasteners at 24" o.c.

SECTION 3.1 - CONCRETE FORMS

3.1.1 Formed Voids - Provide retained void spaces between bottom of structural members and sub grade as follows Grade Beams

6 inches 10 inches Structural Slabs 10 in Basement Walls 6 inches

3.1.2 Grade Beams - shall be formed both sides unless specifically shown or noted otherwise in the details

SECTION 32 - STEEL REINFORCING

STEEL REINFORCING 3.2.1 All bars shall be deformed in accordance with ASTM A615 Reinforcing indicated to be welded shall conform to ASTM A796.

3.2.2 Strength of bars shall be as follows All Bars Grade 60

SPLICING OF REINFORCING BARS

3.2.3 Top bars in beams, slabs or joists shall be spliced at midspan between supports, unless

3.2.4 Bottom bars in beams, slabs or joists shall be spliced at supports, unless noted otherwise

3.2.5 Vertical bars in walls shall be spliced at top of concrete above floors, unless noted

3.2.6 Column reinforcing shall be spliced at top of concrete above floors, unless noted otherwise

PLACEMENT OF REINFORCING 3.2.9 Offsets in reinforcing bars shall be bent at a ratio of 1 (normal to bar axis) to 6 (parallel to 3.2.10 Provide corner bars at intersections of beams and walls in accordance with Typical 3.2.11 Provide dowels from grade beams or foundation equal in size and spacing to vertical bars in walls or pilasters and extend one splice length above and below joint line, unless noted otherwise 3.2.12 Start stirrup spacing in beams 2 inches outside of face of supports. 3.2.13 Place first bar of slab reinforcing parallel to side 2 inches from a free edge or half of required bar spacing from face of edge beam. 3.2.14 Single layer reinforcing in walls shall be placed at center of walls unless noted 3.2.15 Place welded wire reinforcing in slabs in toppings, or in slabs poured on metal deck at center of slab unless noted otherwise. SECTION 3.3 - CONCRETE MIX DESIGNS 3.3.1 Concrete Mix Schedule: a) "HRC" refers to hardrock concrete having air dry unit weight of approximately 145 PCF b) "LWC" refers to sand lightweight concrete having dry unit weight not to exceed 120 PCF c) Where wir/ ratio is not indicated in the Concrete Mix Schedule, it shall be as necessary to meet strength requirer strength requirements. d) Where the wic ratio is shown, it shall be adhered to regardless of strength requirements. e) "Strength" is required compressive cylinder strength at an age of 28 days. Conc. Strength Agg. Agg. SlumpMax Class psi Type Size Inchesw/c Notes A 3000 HRC 1-1/2" 5-7 B 3000 HRC 1" 3-5 C 3500 HRC 1" 2-4 D 4500 HRC 1" 3-5 E 3000 HRC 3" 3-5 F 4000 HRC 1" 3-5 3-5 --3.3.2 Mix Usage Schedule: Concrete Air Description of Use Class Content 2.5-4% 5-6.5% 4.5-6% Drilled Piers Drited Piers A Footings A Grade Beams B Intenor Sila-bon-Grade C Basement Slab D Basement Walls D Retaining Walts D Elevator Pit Walls B Slab on Composite Metal Deck E Structural Beams and SlabD 4-5% 3.5-5% 2.5-4% 4.5-6% 5-6.5% 3.5-5% 5-6.5% 2.5-4%

4.5-6%

SECTION 3.4 - CONCRETE SLABS

3.4.1 Slabs Placed on Grade

Structural Columns D PCN Walls, Columns & Slabs F

Location Thickness Reinforcing

All 5 inches #3 @ 18 EW

a) Reinforcement shall be placed 2 inches from top of slab, unless detailed

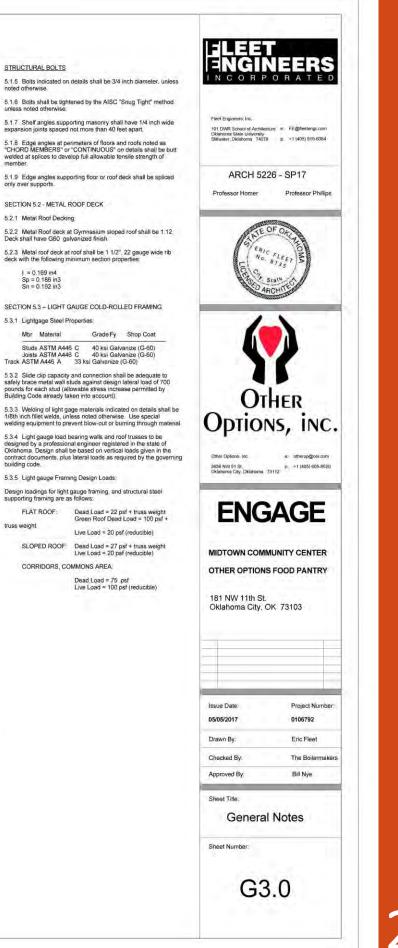
rwise. b) Provide construction joints in slabs where indicated on Plans. Allow minimum of 4 days interval between placing adjacent sections of slab.

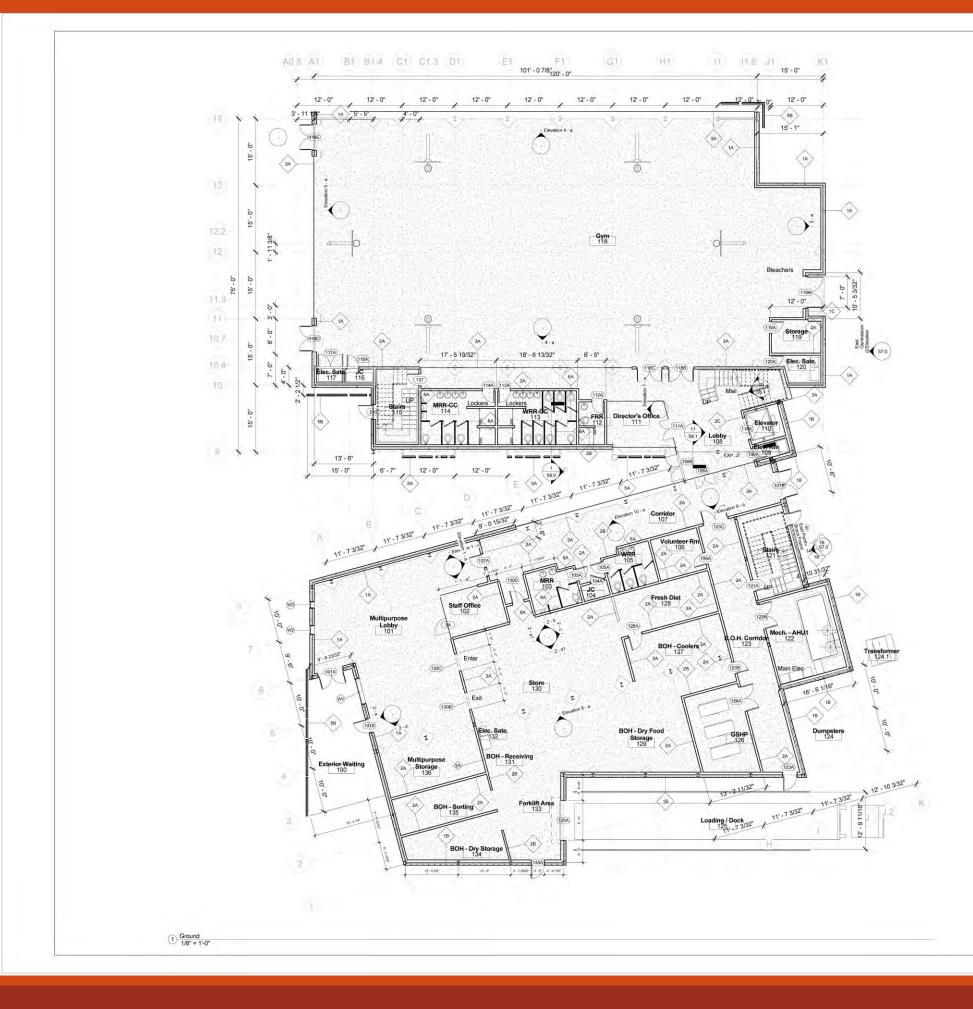
SECTION 5: STRUCTURAL STEEL

SECTION 5.1 - STRUCTURAL FRAME

5.1.1 Structural Steel Properties:

High Strength Steel ASTM A572 Grade 50 (Use High Strength Steel for W Shapes & Tees, uno) Angles, Channels, Plates, uno ASTM A53 Pipe Columns Experiments, Plates, and ASTM A53 Grade B Tooluir Columns ASTM A530, Grade B Tooluir Columns ASTM A500, Grade B High Strength Bolls ASTM A335 or A307 High Steel Astmosphere Back and ASTM A57M A57M ASTM ASTM A530 or A307 Anchor Bolts ASTM A320N High Strength Anchor BoltsASTM A193 Grade B7

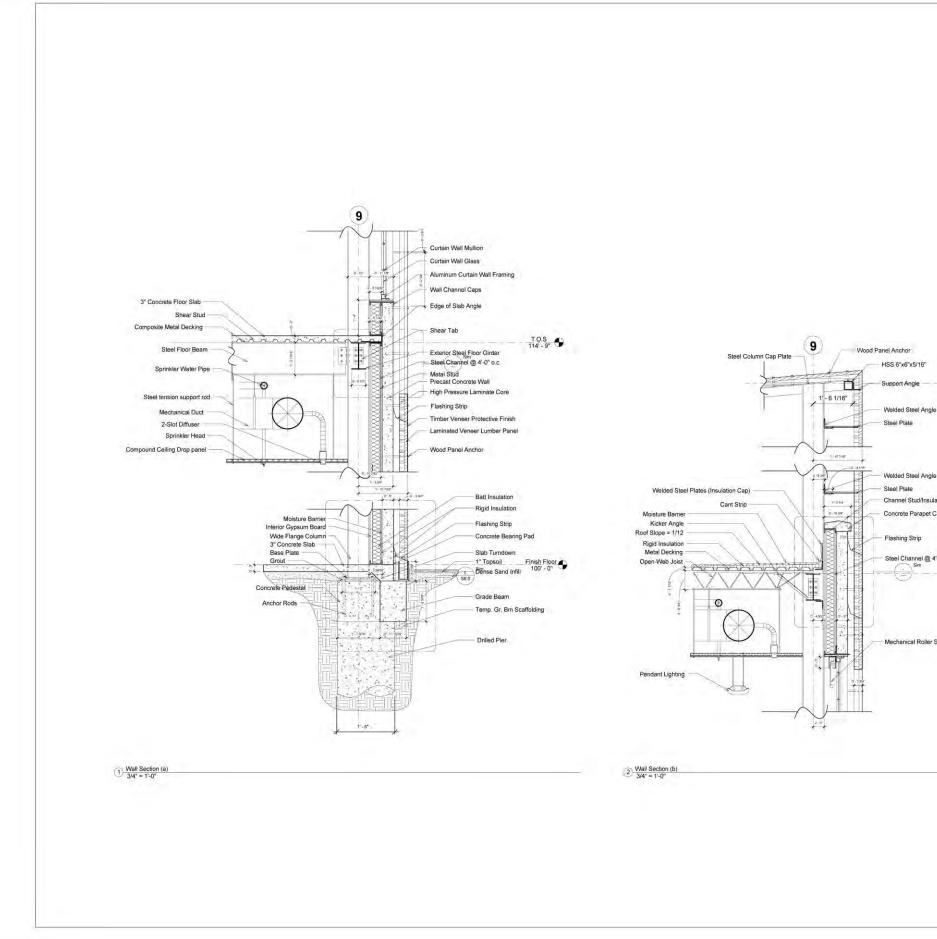

WELDING


5.1.2 Unless otherwise noted, angles, plates, rods, and miscellaneous framing shall be welded at contact joints and supports. Weld sizes shall conform to AWS D1.1 minimums, except where noted otherwise.

 $5.1.3\,$ Where fillet weld sizes are not indicated on weld symbols, fillet size shall be 1/16th inch smaller than thickness of thinner of materials being joined.

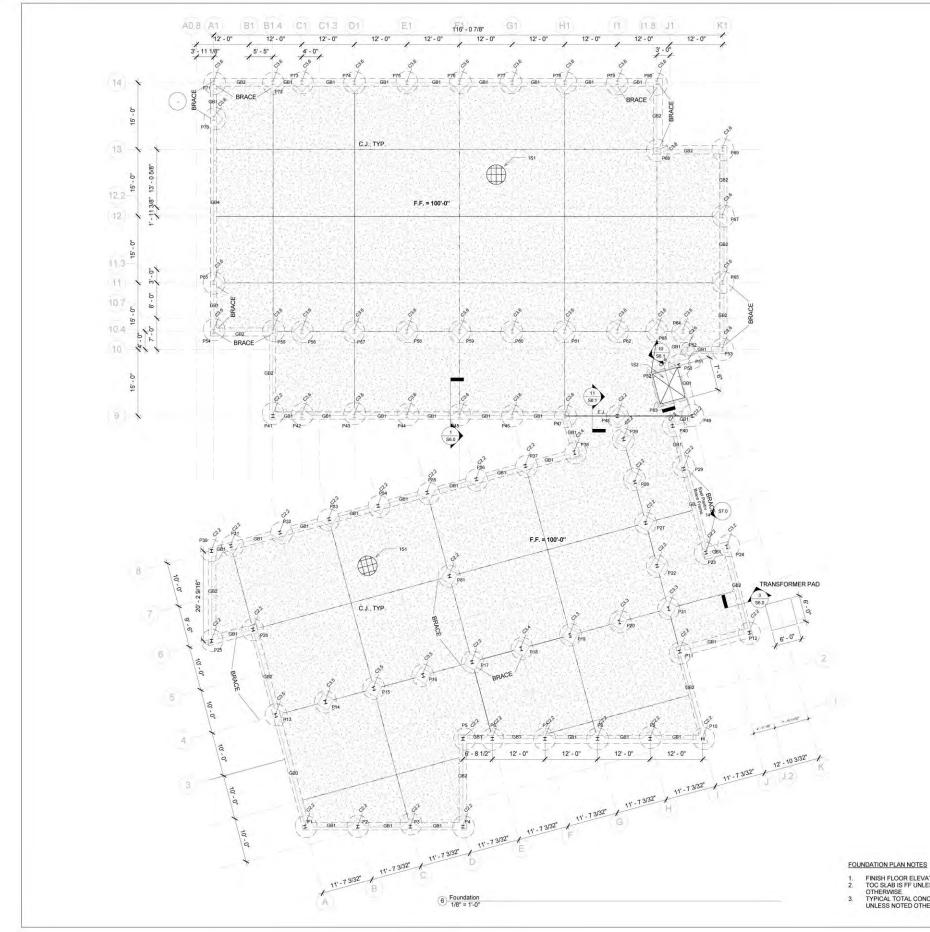
5.1.4 Complete penetration welds are indicated by notation "CP" on weld symbols, partial

ARCH 5226 - HONORS



ARCH 5226 - HONORS

G R 0 U Ν D F 0 0 R Ρ A Ν 26

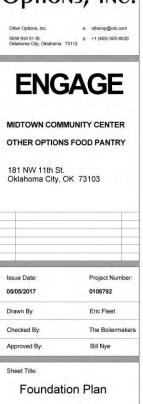


ARCH 5226 - HONORS

Support Angle T.O. COLUMN 41'-0' 41'-

SP17

ARCH 5226 - HONORS


V

N

Sheet Number:

S2.0

FINISH FLOOR ELEVATION IS 100'-0". TOC SLAB IS FF UNLESS SHOWN OTHERWISE. TYPICAL TOTAL CONC SLAB THICKNESS IS 4", UNLESS NOTED OTHERWISE.

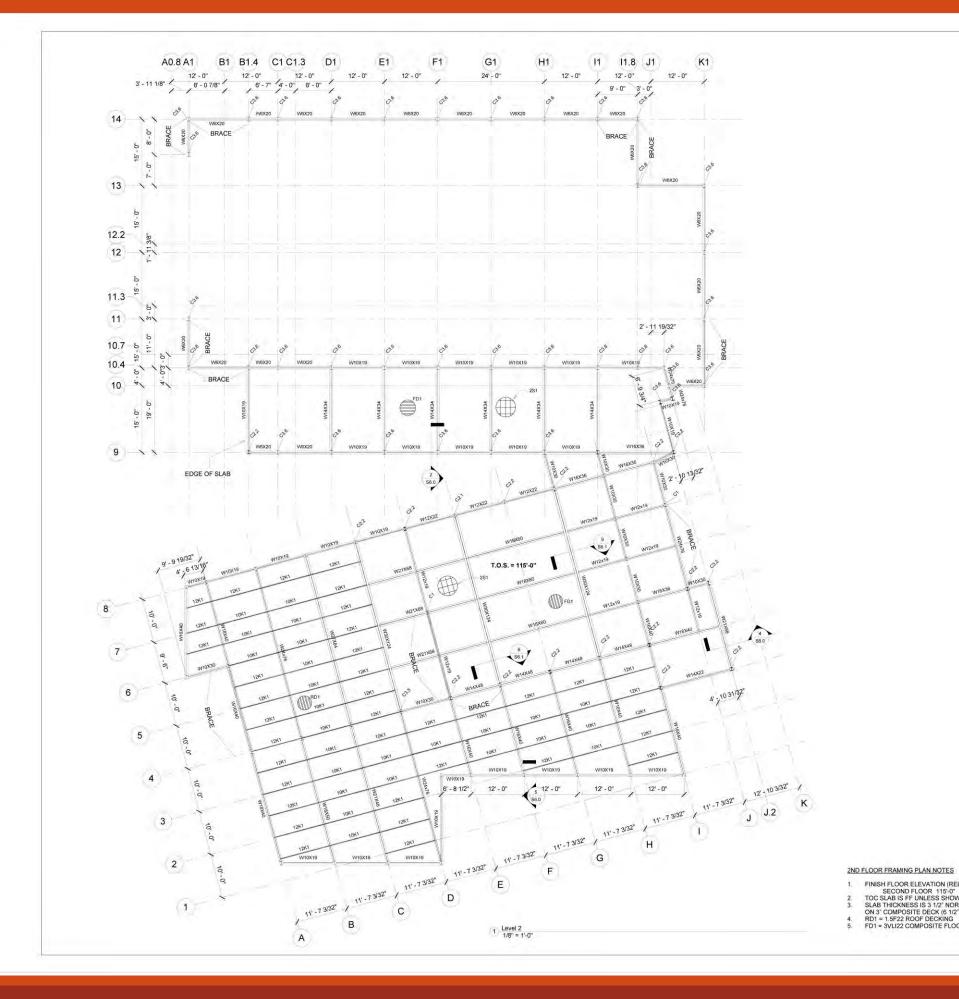
ILEET INGINEERS

101 DWR School of Architecture e: FE@feetengr.com Oklahoma State University Stillwater, Oklahoma 74078 p: +1 (405) 919-6384

ARCH 5226 - SP17

Professor Phillips

Fleet Engineers, Inc.

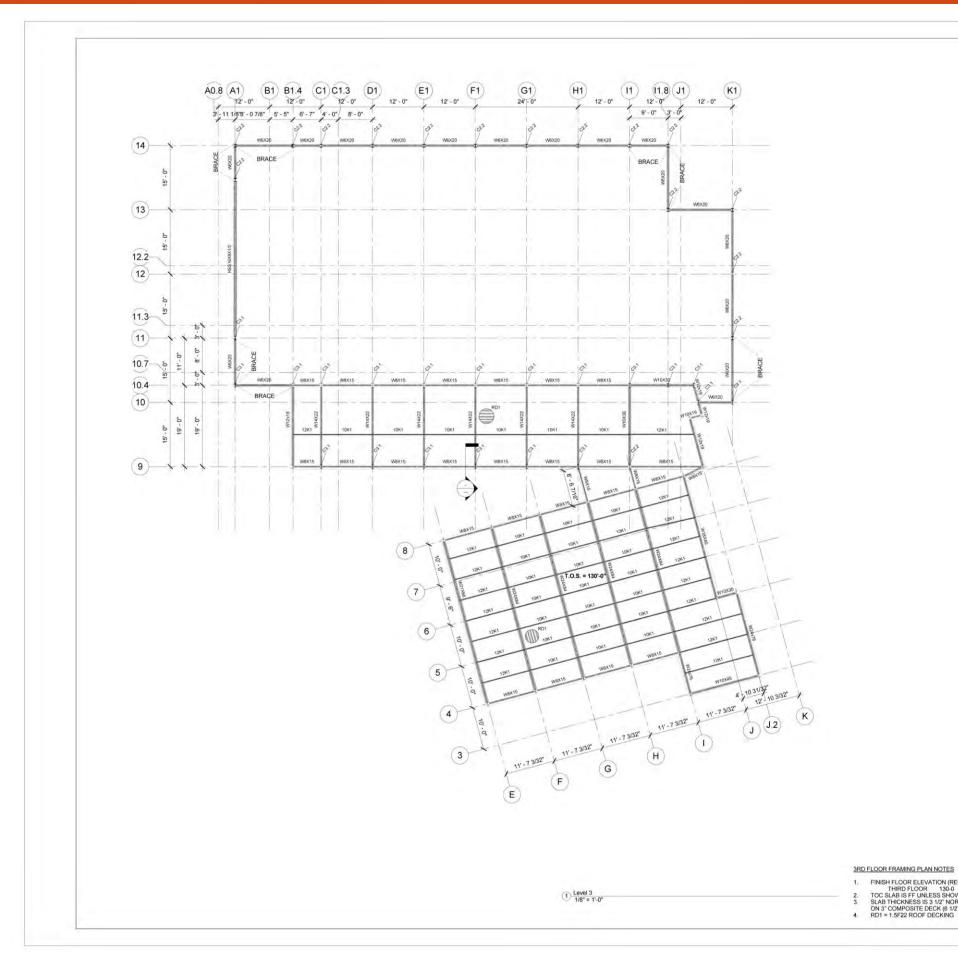

Professor Homer

28

A

Ν

ARCH 5226 - HONORS

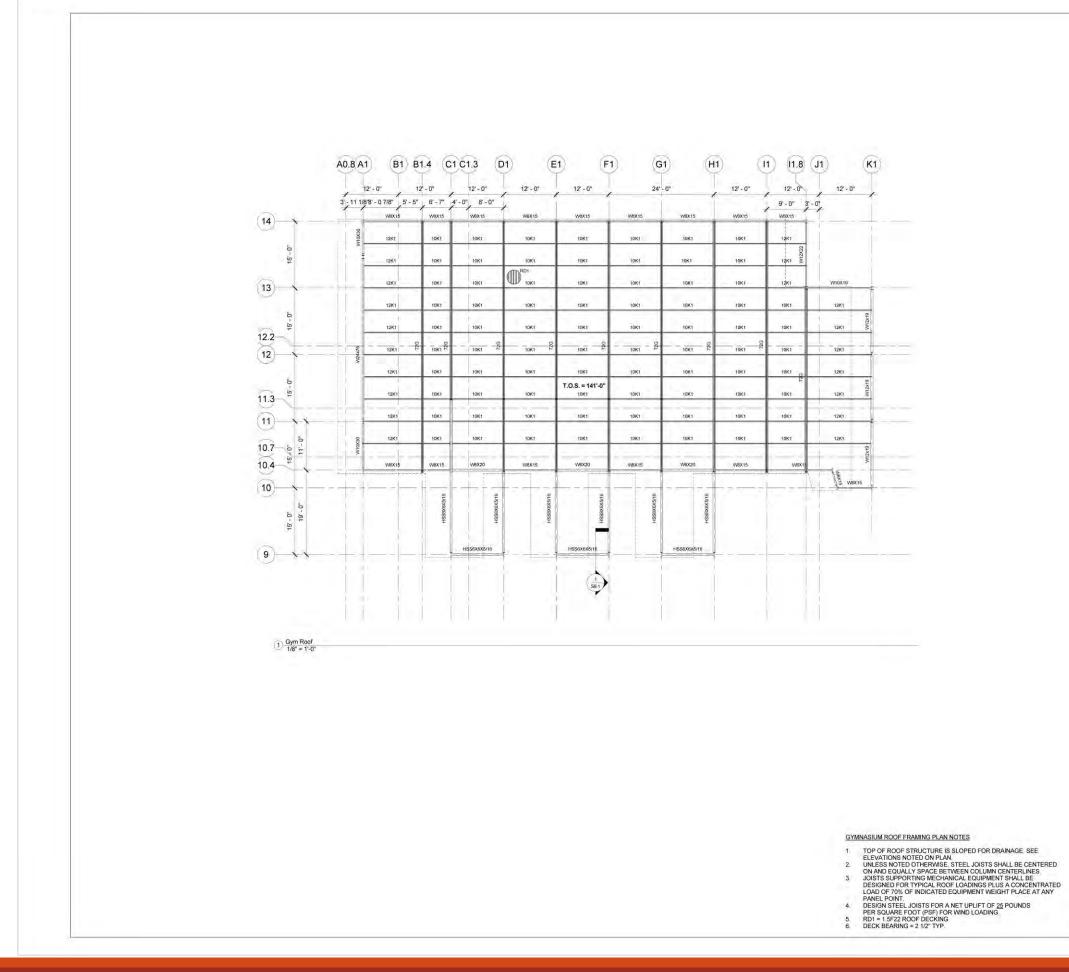


29

FINISH FLOOR ELEVATION (RELATIVE TO DATUM 100-0) IS: SECOND FLOOR 115:0" TOC SLAB IS FF UNLESS SHOWN OR NOTED OTHERWISE. SLAB THICKNESS IS 31/2" NORMAL WEIGHT CONCRETE ON 3" COMPOSITE DECK (6 1/2" TOTAL THICKNESS) RD1 = 1.5F22 ROOF DECKING FD1 = 3VU22 COMPOSITE FLOOR DECKING

SP17

N

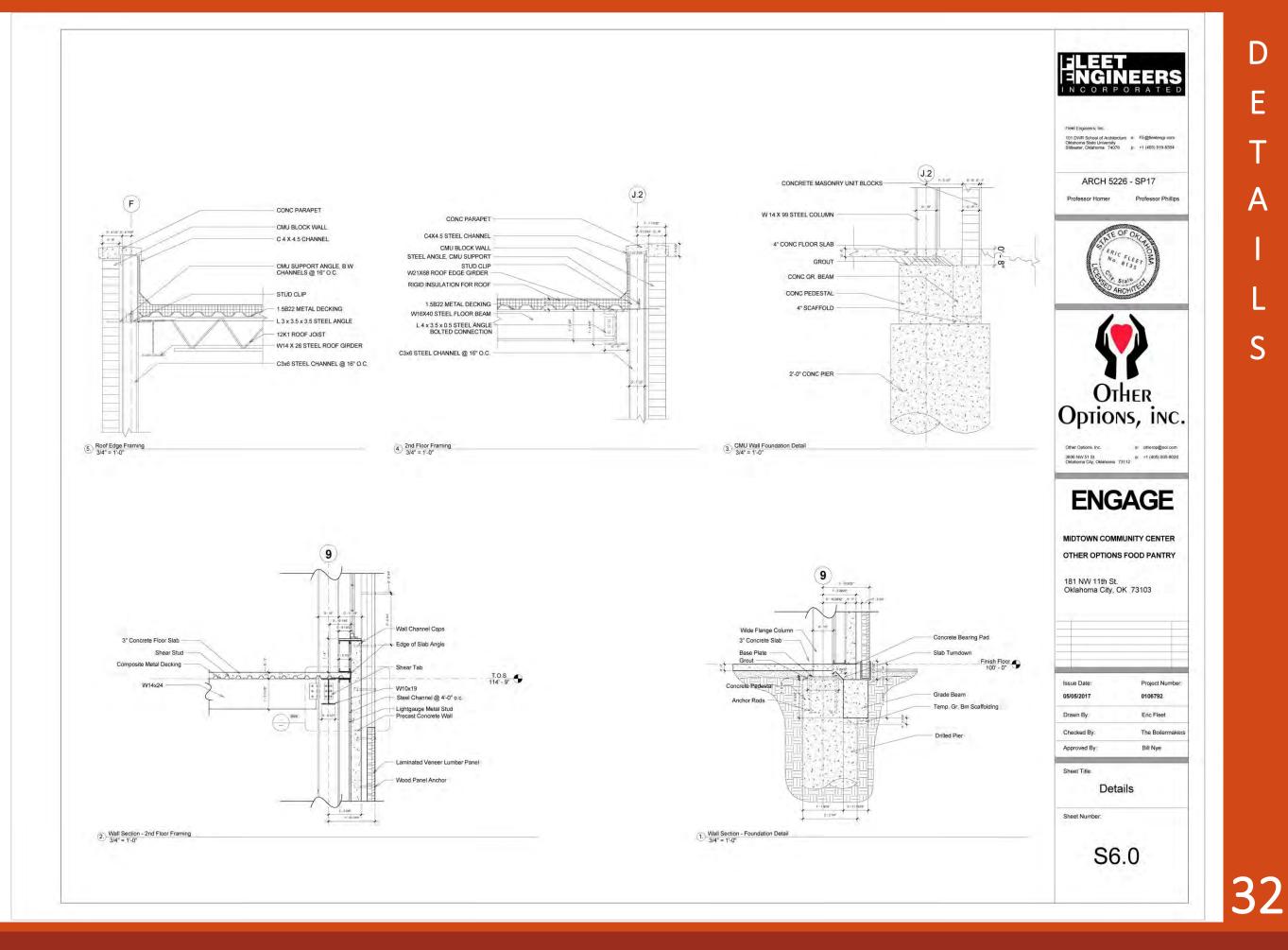

ARCH 5226 - HONORS

3 R D F 0 0 R F R A Μ Ν G

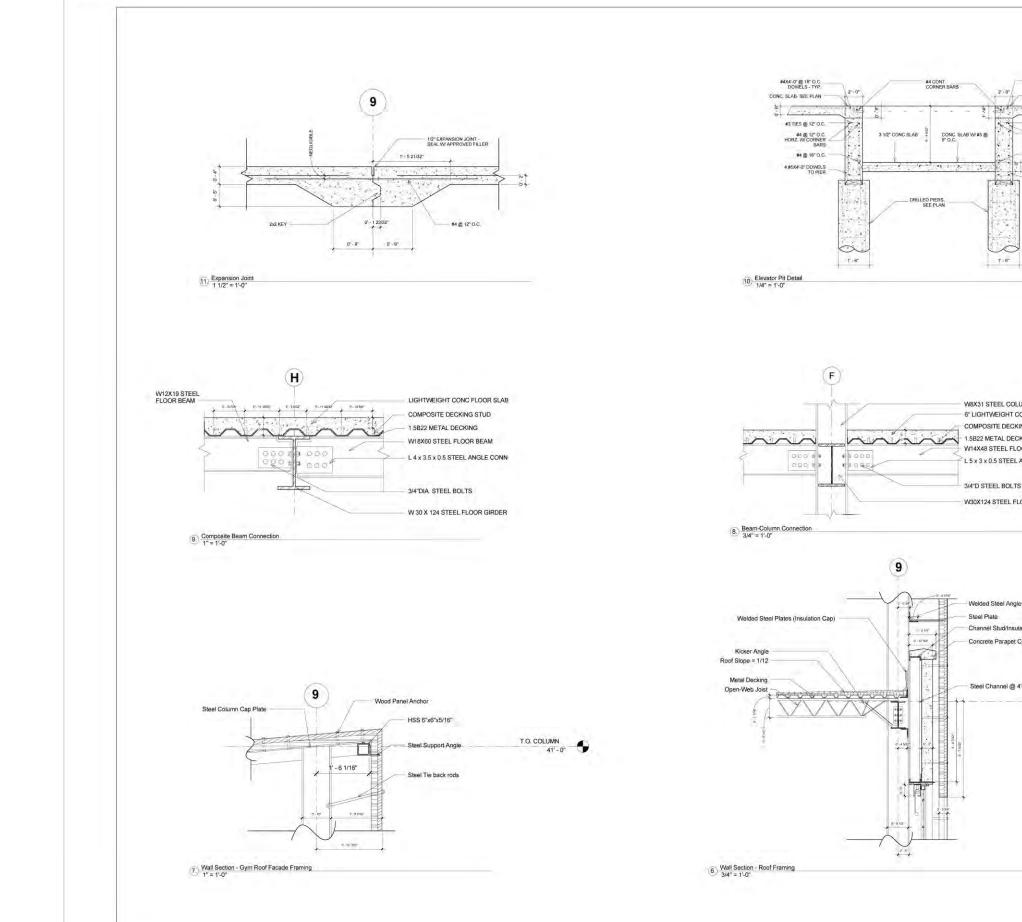
30

FINISH FLOOR ELEVATION (RELATIVE TO DATUM 100-0) IS: THIRD FLOOR 130-0
 TOCS LAB IS FF UNLESS SHOWN OR NOTED OTHERWISE.
 SLAB THICKNESS IS 3.12" NORMAL WEIGHT CONCRETE ON 3" COMPOSITE DECK (6 1/2" TOTAL THICKNESS)
 RD1 = 1.5F22 ROOF DECKING

ARCH 5226 - HONORS

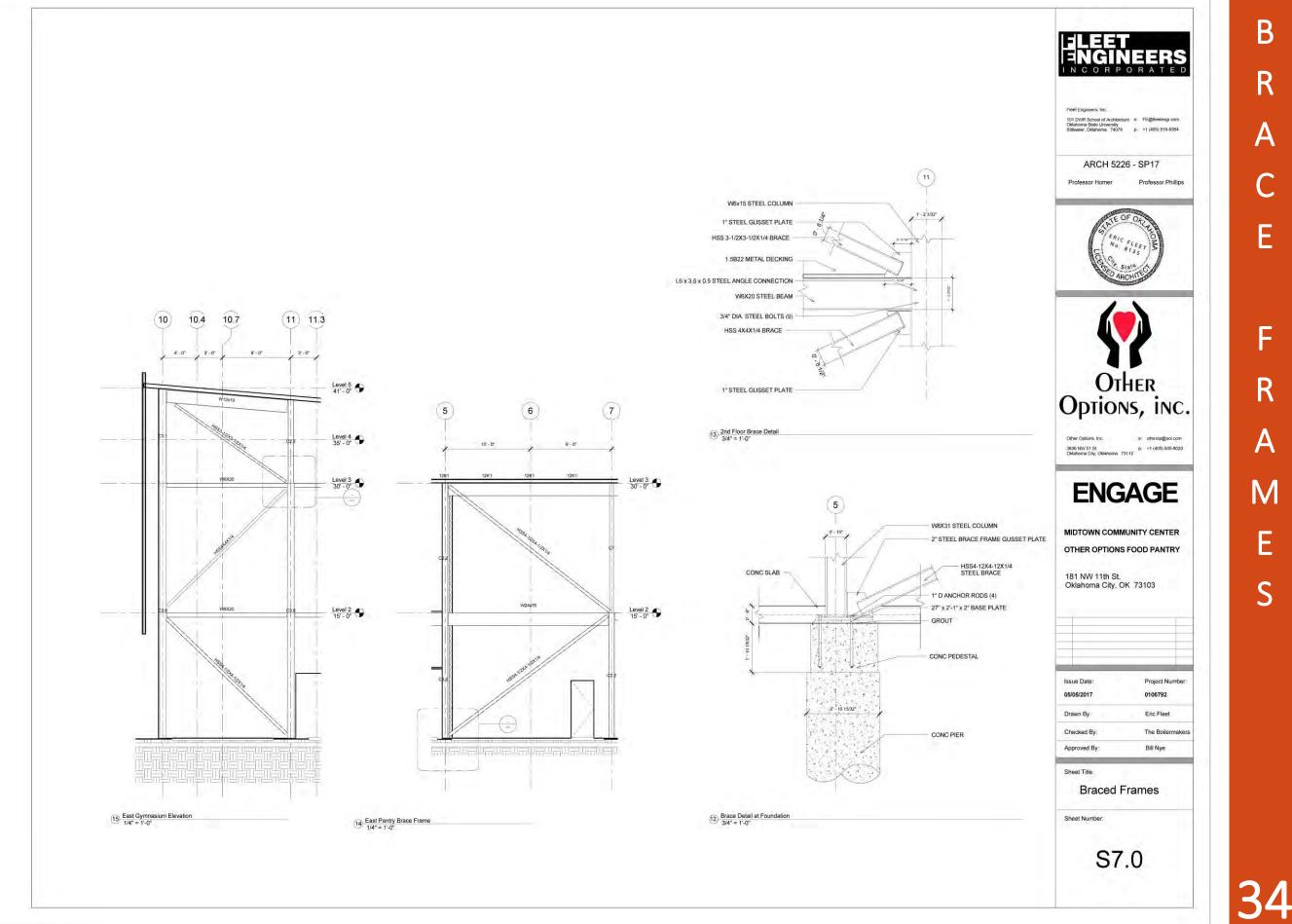

SP17

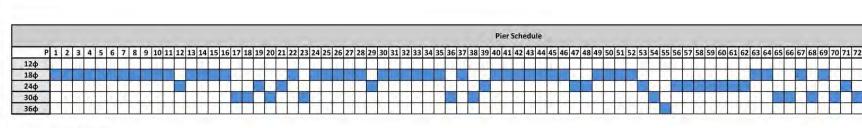
V


N

	EERS
Fleel Engineers; Inc. 101 DVRR School of Architecture Oklahoma State University Stillwater, Oklahoma 74078	s e: FE@fleetengr.com p: +1 (405) 919-6384
ARCH 5226	5 - SP17 Professor Phillips
Lice	ALLER THOMA
OT- Option	C
Other Options: Inc. 3636 NW 51 St. Oklahoma City, Oklahoma 731	e: otherop@ooi.com p. =1 (405) 605-8020 12
MIDTOWN COMMU OTHER OPTIONS I 181 NW 11th St. Oklahoma City, Ok	JNITY CENTER FOOD PANTRY
Issue Date: 05/05/2017	Project Number:
05/05/2017 Drawn By:	0106792 Eric Fleet
Checked By:	The Boilermakers
Approved By:	Bill Nye
Sheet Title. Roof Frami	ng Plan
Sheet Number:	
S5.	0

R 0 0 F F R A Μ Ν G


ARCH 5226 - HONORS


ARCH 5226 - HONORS

ILEET INGINEERS #4X4'.0" @ 18" O.C. DOWELS - TYP CONC. SLAB-SEE PLAN Fleel Engineers, Inc. 101 DWR School of Architecture e: FE@feetengr.com Oklahoma State University Stillwater, Oklahoma 74078 p: *1 (405) 919-6384 #3 TIES @ 12" O.C. #4 @ 12" O C HORZ W/ CORNER BARS #4 @ 18" O.C. ARCH 5226 - SP17 CAN 4 #5X4'-0" DOWELS TO PIER Professor Homer Professor Phillips 1'-6" Other Options, inc. W8X31 STEEL COLUMN 6" LIGHTWEIGHT CONC FLOOR SLAB COMPOSITE DECKING STUD 1.5B22 METAL DECKING W14X48 STEEL FLOOR Other Options, Inc. e: otherop@ooi.com L 5 x 3 x 0.5 STEEL ANGLE CONNECTION 3636 NW 51 St. p. +1 (405) 605-8020 Oklahoma City, Oklahoma 73112 3/4"D STEEL BOLTS (10) ENGAGE W30X124 STEEL FLOOR BEAM MIDTOWN COMMUNITY CENTER OTHER OPTIONS FOOD PANTRY 181 NW 11th St. Oklahoma City, OK 73103 Channel Stud/Insulation Cap Concrete Parapet Cap Steel Channel @ 4'-0" o.c. T.O.S. 129' - 10" Project Number Issue Date: 05/05/2017 0106792 Drawn By: Eric Fleet Checked By: The Boilen Approved By: Bill Nye Sheet Title: Details Sheet Number: S6.1 33

D Ε Т A S

ARCH 5226 - HONORS

From Geotechnical Report:

q (psf)	20000
Skin friction value (psf)	2000
Total depth of pier (ft)	22
Depth to Embedment (ft)	19
Height of friction interface (ft)	3
Weight of Concrete (pcf)	150

		"Bearing	*Friction (Uplift)	*Friction (Uplift)		Vertical Ba	rs	÷	Ties
Designation	Pier Diameter (in)	qA (kips)	Friction Resistance (kips)	Weight of Pier (kips)	Uplift Resistance (kips)	Quantity	#	#	Spacing (in)
18 φ	18	35.34	28.27	5.83	34.IL	6	5	3	10
24φ	24	62.83	37.70	10.37	48.07	6	6	3	12
30¢	30	98.17	47.12	15.20	63.32	6	7	3	14
36ф	36	141.87	56.55	23.33	79.87	7	8	3	16
42¢	42	192.42	65.97	31.75	97.72	7	9	3	18
48¢	48	251.33	75.40	41.47	116.87	7	10	4	18
54 φ	54	318.09	84.82	52.48	137,31	9	10	4	18
60 b	60.	392.70	94.25	64,80	159.04	- 9	11	4	18

								Reinforcin	Reinforcing Bar		
Designation	Span (ft)	Height of Wall (ft)	Facade Load (ksf)	Facade Load (klf)	Clear Cover (in)	h (in)	b (in)	Quantity	#		
GB1	12	15	0.06	0.9	2.5	24	12	2	6		
GB2	20	15	0.06	0.9	2.5	24	12	2	6		
GB3	26	15	0.06	0.9	2.5	32	16	4	6		
GB4	40	30	0.06	1.8	2.5	48	24	3	10		

		FROMR				FROM RISA		
P	ier	Bearing Force	Uplift?	Pier Designation	Pier	Bearing Force	Uplift?	Pier Designation
	1	4.865	0	18ф	41	7.079	0	18ф
	z	8.831	0	18ф	42	22.712	0	18ф
	3	9.267	0	18ф	43	28.535	0	18ф
	4	6.644	0	18ф	44	28.535	0	18ф
	5	1.085	0	18ф	45	28.535	0	18ф
	6	5.802	0	18ф	46	28.535	0	18ф
	7	6.685	0	18ф	47	40.125	0	24ф
	8	7.211	0	18ф	48	40.019	0	24φ
	9	7.882	0	18ф	49	21.264	0	18ф
	10	2.816	0	18ф	50	2.334	0	18ф
	11	25.36	0	18 φ	51	3.19	0	18ф
	12	35.11	0	24ф	52	5.336	0	18ф
	13	10.184	2,879	18ф	53	52.907	26.256	24φ
	14	18.869	0	18ф	54	66,786	37.252	30ф
	15	19.565	0	18ф	55	103.587	60.046	36ф
	16	30.819	O	18ф	56	35.184	0	24ф
	17	71.687	31.643	30ф	57	44.643	0	24φ
	18	92.503	24.166	30ф	58	44.643	0	24ф
	19	38,506	0	24ф	59	44.643	0	24φ
	20	85.03	Ø	30ф	60	44.643	0	24ф
	21	41,501	0	24ф	61	44,643	0	24ф
	22	20.413	0	18ф	62	37.219	0	24φ
	23	63.522	6.923	30ф	63	25.889	0	18ф
	24	12.544	0	18ф	64	7.812	0	18ф
	25	1.677	0	18ф	65	71.749	32.507	30ф
	26	9.96	3.188	180	66	66.646	18.021	30ф
	27	20.678	0	18ф	67	30.675	0	18ф
	28	20.157	0	18ф	68	62.23	14,781	30ф
	29	52.345	14.1	24ф	69	28.168	0	18ф
	30	1.211	0	18ф	70	67.839	30.313	30ф
	31	3.925	0	18ф	71	60.72	32.398	24ф
	32	10.988	0	18ф	72	72.86	32.047	30ф
	33	10.988	0	18ф	73	27.54	0	18ф
	34	22.164	0	18Φ	74	35.567	0	24ф
	35	17.382	D	180	75	35.567	0	24ф
	36	73.613	0	30ф	76	35.567	0	24ф
	37	31.237	0	180	77	35.567	0	24ф
	38	89.178	0	30ф	78	35.567	0	24Φ
	39	37.544	0	240	79	59,976	18.96	24φ
	40	18.497	a	18ф	80	58.832	22.504	24ф
			10111		81	78.644	Ō	30ф

		Slab Sched	ule	
Destau attau	Thistoper	Reinf	orcing	Nutre
Designation	Thickness	Flexural Bars	Temp. Bars	Notes
151	4.0"	#4 @ 12" o.c.	#4 @ 18" o.c.	*Slab on Grade
152	3.5"	#5 @ 9" o.c.	#4 @ 18" o.c.	*Elevator Pit Slab
251	6.5"	#4 @ 12" o.c.	#4 @ 18" o.c.	*2nd Floor Framing

Grade Beam Schedule			
Designation Quantity			
GB1	41		
GB2	14		
GB3	1		
GB4	1		

Column Schedule					
Designation	Size	Quantity			
C1	W6x15	2			
C2.1	W8x24	1			
C2.2	W8x31	65			
C3.1	W10x12	20			
C3.2	W10x22	2			
C3.3	W10x26	3			
C3.4	W10x30	3			
C3.5	W10x33	5			
C3.6	W10x45	74			

Vert	ical Brace S		
Size	Qu	antity / Flo	or
Size	1st	2nd	3rd
HSS5x5x3/16	6	7	0
HSS5x5x5/16	2	0	0
HSS6x6x5/16	3	0	0
HSS4x4x1/4	0	3	7

ERIC FLEET

ARCH 5226 - HONORS

S Η Ε D U Ε S

2	73	74	75	76	77	78	79	80	81	82	83	Total
												2
l		1								11		44
										11,	1111	23
	11		10								11	13
1					111				1			1

Cine	Quantity / Floor							
Size	2nd	3rd	Roof					
W6x20	22	18	3					
W8x15	0	27	16					
W10x19	28	1	1					
W10x30	11	2	2					
W10x45	0	1	0					
W12x19	7	4	3					
W12x22	3	0	1					
W14x22	1	6	0					
W14x34	0	6	0					
W14x48	4	0	0					
W16x36	4	1	0					
W16x40	8	0	0					
W18x40	1	1	0					
W18x50	1	0	0					
W18x60	3	0	0					
W21x48	1	0	0					
W21x68	1	1	0					
W24x76	6	2	1					
W24x84	0	4	0					
W27x84	1	0	0					
W30x124	3	0	0					
ISS16x8x1/2	0	1	0					
ISS6x6x5/16	0	0	3					
ISS8x6x5/16	0	0	6					
72G J.G.	0	0	9					
10K1	26	27	77					
12K1	36	18	20					

35