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CHAPTER I
INTRODUCTION

The concept of a p-adic number was introduced by Hensel as
early as 1908, but ideas related to p-adic fields and their generaliza-
tions are still being explored, In spite of the active research that has
taken place in the past decade there are still many unanswered ques-
tions. The following statement by A, F. Monna (8) illustrates this

research:

At first a theory of non-archimedean normed spaces was
attempted. In more recent years a theory of locally con-
vex spaces over non-archimedean valued fields followed.

Both parts of the theory are now in development.
Several problems, which have found solution in spaces
over the reals, still wait solution in our case, Neverthe-
less, as a general conclusion it may be said, that many
parts of the classical theory remain valid, Itis remark-
able that this is also true of parts for which one would
expectthe ordering of the reals to be essential, I mention,
for instance, the separation theorems for convex sets;
without using an ordering of the fields--even if ordering
should be possible--one can define convexity of sets and
prove separationtheorems for convex sets, In many cases
the proofs which are valid for the real spaces, cannot be
given in the same way for spaces over a non-archimedean
valued field K.

The purpose of this study is to provide an expository develop-
ment of Riemann integration over the p-adic field by the use of
Riemann sums. The structure is planned in such a manner that it will
be accessible to the senior mathematics major. The role of the field

in determining the properties of the integral will he probed. The major



references for this study are papers by Francisco Tomds (13) and
Francois Bruhat (4).

There is a great amount of substructure that is necessary in
preparation for the definition of the Riemann integral. The necessary
facts about p-adic numbers, algebraic systems, topology, and measure
theory will be presented in this chapter. A standard notation will be
established to be used with these concepts throughout the paper, The
second chapter will use these properties to establish a basis for inte-
gration. The remainder of the paper will be devoted to Riemann inte~

gration over the p-adic field and its properties,
Sets

There are certain sets which are used frequently. These sets
will be designated as follows: Z is the set of integers; zt is the set
of positive integers; Z' is the set of nonnegative integers; Zp is the
set of p~adic integers; Qp is the set of p-adic numbers; and R!' is
the set of nonnegative real numbers.

If A and B are arbitrary sets, then the set
A xB={(a,b):aecA, be B}

is the cartesian product of A and B. The elements of A X B are
ordered pairs. A partition of a set'A is a representation of A as the

union of nonempty mutually disjoint subsets of A.

Definition 1.1, A distance function (or a metric) for a set A

is a function d:A x A - R' such that forall x,y,ze¢A

(1) d{x,y) =0 if and only if x=vy,



(2) d(x,y) = d(y,x), and

(3) d(x,2) < d(x,y) +d(y, z).

Given a set A and an element x of the universe. The charac-

teristic function ¥ is defined as follows:

x(x)=11if xe A

x(x) =0 if x{A.

Algebraic Systems

The algebraic systems that will be of concern are groups and

fields.

Theorem 1.1. Let G be a group. For each a,be¢G there

exists uniquely xe¢ G such that a+x=b where + is the group opera-

tion,

The set H is a subgroup of a group G if H is a subset of G

and H is a group with respect to the operation in G.

Theorem 1.2. A subset H of a group G is a subgroup of G if

and only if a-beH for each a,beH.

Let H be a subgroup of G. Then for each xe¢ G, x+H is a

leift coset of H in G.

Theorem 1.3, If H is a subgroup of G, the left cosets of H

in G form a partition of G.

Let H be a subgroup of G. Then the number of cosets of H

contained in G is ‘called the index of H in G and is denoted by [G:H].



Topology

Definition 1.2, A set G is said to be a topological group if:

(1) G is a group;
(2) G is a topological space; and

(3) The group operations in G are continuous in the
topological space G. In other words, the function
-x 1is continuous on G, and x+y is continuous on

GxG.

Theorem 1.4. Let {Ua} be a basis for the open sets of the

identity e of the topological group G. Then the open sets of G are
unions of the sets of the form x+ Ua where xe¢ G, and the topology of

G is completely determined by the basis at e,

Theorem 1.5. If G is a topological group, and H is a subgroup

which is open, then H is also closed.

The cartesian product A x B of two topological spaces A and
B is a topological space with the product topology. The family B of
all cartesian products U x V where U is an open subset of A and V
is an open subset of B is a basis for the product topology. A topolog-
ical space B is compact if every open covering of B has a finite sub-
covering. A topological space B is locally compact if each point of B

has at least one compact neighborhood.

Theorem 1, 6. The cartesian product of two compact topological

spaces is a compact topological space.



Theorem 1,7. The cartesian product of two locally compact

topological spaces is a locally compact topological space.

Theorem 1.8, The cartesian product of two topological groups

is a topological group.

Theorem 1.9. Every closed subset of a compact space is com-

pact.

Theorem 1.10. The family of all spherical neighborhoods of

points in a set A with metric d forms a basis for a topology for A.
p-Adic Numbers

The set Qp of p-adic numbers is a field, and Zp the set of
p-adic integers is a sybset of Qp. The set Zp is a commutative
ring with unity. Both Qp and Zp are abelian groups with respect to
addition. Any element a € Zp has a unique representation
a = a.0+ a;p + a2p2+ ... where 0 < a; < p-1, ieZ'. This form is
called the canonical form, and will be used throughout the paper
assuming that the coefficients are thus restricted without specific note.
Every o€ Zp’ a # 0, has a unique representation in the form a = pme

where meZ' and £ is a unit of Zp. Each nonzero «a ¢ Qp is

uniquely expressed in the form o = pn_ls where meZ and ¢ is a unit

of Z ,
P
Definition 1.3. The function ¢ :Qp—> R' is defined as follows:
¢l@) = - if a=p'e, ¢ aunitof Z,, keZ;and ¢(0)=0.
P

Theorem 1.11. Let «,fe Qp. The function ¢ has the

following properties:



(1) ¢la) > 0 with equality only if « =0}
(2) ¢aB) = ola)o®);
(3) ¢latP) < max(p(a),e®)); and

(4) ¢latPB) < ola) +oB) .

Property (3) is referred to as the non-Archimedean property of ¢,
The function dp; Qp X Qp - R' defined by dp(a,ﬁ) = g{a - B) is a metric
on Qp. The p-adic numbers with metric induced by ¢ is a totally
disconnected and locally compact metric space. The p-adic integers
form a compact subspace of the metric space Qp. All discussion of
Qp and Zp as topological spaces will be with respect to the metric
induced by ¢ . Both topological spaces Qp and Zp are topological
groups.

The cartesian product Qp X Qp denoted by Qi is a locally
compact topological group. The cartesian product Zi is a compact

topological group.

Theorem 1,12, The subsets per , reZ, of the topological

r r
space Qp are open, closed and compact. Also, p 1Zp ) ZZ

p

when rllrzeZ and r, >r

1 2’

Theorem 1,13, The subsets per, reZ', of the topological

space Zp are open, closed and compact.

Theorem 1., 14. The set per, re Z, is a subgroup of Qp

r . r r r
Proof: The set p Zp is a subset of Qp. TLet p €gr P ep€P Zp

where €€ € Zp , The theorem will be proved if it can be shown that

r r r r r r
Pey-Pejep Zp' But pso-psl—p(eo—sl). Also so—eleZp as



. . r r r r r
Zp is a ring. Thus p (eo-sl)ep Zp. Then p Eg-P €y €P Zp.
Therefore per ‘is a subgroup of Qp.

Theorem 1. 15. The set per,, Te Z+, is a subgroup of Zp

r r r v
Proof: Let p Eg» P € €D Zp where €g€1 € Zp' But
r r _ T, _ : : . .
Pey-Pe =P (eo sl). And g~ € € Zp as Zp is a ring. So
r r r r r r .
P (so- el)ep Zp. Thus p g~ P EjEP Zp. Therefore p Zp is a

subgroup of Zp

The cosets of a subgroup K of a group G constitute a partition
of the group G. This partition will be used in the same manner as the
partition of an interval is used in the development of Riemann integra-
tion over the field of real numbers. It will be of value to know the

number of distinct cosets in a particular partition.

Theorem 1.16. If G=Zp, and K=p1Zp where ie Z' then

Z:K:i.
[p l=p

Proof: Let xe¢ Zp, then x+K = x+pIZp. Let x be of the form

_ i-1
x—a0+ a.lp+...+ra.i_1p where aJ.eZ, 0_<_aJ.._<_ p-1 for each

0 < j <i-1. These choices for x will give the distinct cosets of K
in Zp, There are p choices for each aJ. and i choices for each j.

So there are a total of pl choices for x. Therefore [Zp:K] = 151 .

Theorem 1.17. If G = ZIZ) , and K = pIZp X pJZp where

i, je Z' then [ZIZD:K]=p1+J.
Proof: ILet erIZD, then x+K=x+p1prpJZp. Let x be of the

form



x = (a +a1p+...+a

i-1 j-1
0 (P . bgtbipt...tb. P

¢ jF"l

where a_e¢Z, 0<a <p-1 for 0 <n<i-1 and b_eZ,

0 <b_<p-l for 0 <m<j-1. These choices for x will give the
distinct cosets of K in ZIZD. There are p choices for each an and i
choices for n. There are p choices for each bm and. j choices for
m. So there are pl- P’ = p1+3 choices for x, Therefore

[zi:K] = pitl,

7

Example 1.1. Let G Zp, and K =p Zp' By Theorem 1,16,

7

Il

7
Z :p 2 |=
[pp p]p

Example 1.2. Let G = z; , and K = p'3zp X p5Zp. By
Theorem 1.17, [G:K] =p T2 = p°.

Haar Measure

Let G be a disconnected and locally compact topological group
with its topology originating from a metric d(a,b). Haar proved the

existence of a left invariant LLebesque measure in G,

Definition 1.4. A function m(H) is a left invariant Haar

measure if it satisfies the following properties:

(1) The function m(H) is defined for all sets HC G,
and its values are real numbers such that

0 < m(H) < +a,

(2) For every nonempty open set K # {e}, m(K)>0;

for every compact set K, m(K) < +wo,



(3) If H),H,,...

then m(H1)+m(H2)+..._>_m(H1U HZU o)

is a finite or infinite sequence of sets,

(4) If H,K are two sets with D(H,K) > 0
(D(H,K) = inf{D(x,y):xe¢H, ye K}) ,

then m(H) + m(K) = m(H U K).
(5) The function m(H) = inf {m(K):K is an open set, K ) H}.
(6) The function m(H) = m(a+H) forall aeG,H(CG,

(7) The function m(H) = m(-H).

The only disconnected and locally compact groups G of concern in this
paper are those which are subsets of Qp or subsets of QIZD.

A normalized Haar measure will be given for Qp' Let

. .r : r -1 _ _-r
p]reZ' = p , define m(p Zp) -I-Dr =p

By the left invariant property (6), m(a +per) = p—r for all ae QP.

m(Z_) = 1. Then as [Zp:prZ

Similarly, as [p ' Z ]r ezt = p' , define m(p‘—'er) =p . By the

: Z
P P
left invariant property (6), mi(a +p'er) = pr . This definition will
lead to a left invariant Haar measure, but all that will be needed in this
paper is the measure of the sets that have been given.

A normalized Haar measure for QIZD is derived from the
measure on Qp as follows: m(A x B) = m(A)- m(B) for each
2
Ax B . Forexample: m(Z., xZ )=m(Z ) m(Z )=1; and
€ Qp p ( b p) ( p) ( p)

r ]

T s - F, -
m(p Z xp Z) mp Z). 7z mP2) 2P P =P :

P pr,seZ=

2 r s -r-s
Foreach ¢ Q  , mloe+p Z xp Z ) =
b (@+p p* P p) p



CHAPTER 1II

PRELIMINARY CONCEPTS

Functions

The functions that will be of interest in developing Riemann

p-adic integration are mappings from G to Q

Definition 2, 1. A function f is a constant function on a set

SC G if f(x)=c forall xeS.

Example 2. 1. Let f(x) =3 forall x¢ G, then f is a constant

function on G.

Definition 2.2, A function f is a locally constant function if
for each x¢G there exists a neighborhood N of x such that f is a

constant function on N,

Example 2.2, Let G = Zp’ and

0 if xe pZZ - p5Z
f(x) = P P
1 otherwise .
. 5 . 5 .
Since p Zp .is an open set any element of p Zp has a neighborhood,
p5Zp, over which the function is constant, Also, Zp—-pZZp is an open

set as pZZp is a closed set. Thus for each element of Zp-—pZZp,

Zp-— pZZp is a neighborhopd over which f is a constant,

TN
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Similarly pZZp—— p5Zp is an open set, so for each element of

pZZp—p5Z , pZZ —p5Zp is a neighborhood over which f is a constant,

p p
Thus f is a locally constant function.

[es) .
Example 2.3. Let G = ZIZ), and f= = po X(K,) where
. . i=0
Ki= pIZp X pZIZp, ieZ', and ¥ ‘is the characteristic function. Let
X = (p4,p2). Then xce KO, Xe€ K1 and xeKZ. But de.l for i >3,

So x(KO) =1, X(Kl) =1, x(KZ) =1 and x(K.l) =0 for &> 3,
Therefore f(p4, pz) = p0 + p3 + p6
Let N be any neighborhood of (0,0). Then there exists a
jeZ+ such that pJpr ijZpC N as M{K|KeC} = {0}. Also,
j+1Z 2(j+1)Z jZ 2j jtl 2(j+1)
X Z , Let xe¢ Z X Z. , and
X P p CPZyxP 2 PZoxp P

P “p
j+1 j+1)

. 21 .
v e (szpx p sz) — (P "Z_x pZ(J“)zp, So f(x) - f(y) = po " and

p
x and ye N. Therefore f is not locally constant,

Limit of a Function

In the present setting the limit of a function is defined in the

usual way, making use of the metric in G and in Qp.

Definition 2.3. Let x,aeG, Pe Qp, and f be a function,
£:G~> Qp. The limit of the function f as x approaches a is B,
denoted by lim f(x) =B, if for each real number e > 0 there exists

X
a real number &> 0 such that ¢(f(x)-f) <e¢ whenever ¢(x-a) <5,

Example 2.4. Let G = Zp, and

0 if xe pZZ -—p5Z
f(x) = P P
1 otherwise.

Show lim2 f(x) = 0.
X—>p
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In order to satisfy the definition it must be shown that for each

€ >0 there exists 6> 0 such thaf o(f(x) -0) < ¢ whenever

o(x-p2) < 6. Let 6=p 2, If o(x-p°)<p? then

X = p2+ a'op3+ 31P4 + ... . Thus f(x) =0 so (P(f(X)) = (P(O) =0<¢€.

Therefore lim_f1£(x) = 0.
x—>p2

In order to be able to apply the definition of limit to a function
whose domain is a subset of QIZD, it will be necessary to define a

function- ¢ 'that induceés & metric for the product .spa.ce.

Definition 2.4, Let (a,b)EQi, then ¢((2,b)) = max {p(a),¢(b)}.

The fact that fp((a,,b)) induce s-.:f;a.-Emé—-bi'ic.."f,e’llft*)wsz;frﬁ;‘f-‘méidié’.tealy.

from the properties fof ¢ ‘in the space Qp .

Theorem 2.1. The functian ¢ for Qi space is non- .

Archimedean.

2 .
Proof; Let (xl,yl),(xz,yz)er. Then

1l

e((x) Yl) + (xz, Yo)) = elx +x,,y,+y,)

1t

max [p(x, +%,), o(y, +,)]

by definition, This implies that

ol(x,y)) + (x5, y,)] < max [max{rp(xl),fp(yl)], max [p(x,) ,¢(Y2)]]

Il

cmax[e(x,y,).0(x,,7,)]

as

oy = maxlo(x))o(y)] and  o(xy,y,) = maxlexy),elyy)].
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Therefore the metric for Qi is non-Archimedean.

31 X(Ki) where

«Q
Example 2.5, Let G = Zi, and f= Z p
i i
K.=pZ xpZ_ . Show
i~ P p P p

lim 5 flx,y) = 1+ p3 and lim f(x,y) = p?"i .
(%, y)= (P, P) (x, y)= (0, 0) i=0

Foreach ¢ >0, a 6>0 must be found such that

o(f(x,y) - (14p°)) < ¢ whenever ¢((x,y) - (p>,p) < 6. Let 6=p .

But ¢((x,y) - (pZ,p)) = ¢(X-p2,y-p). So
2 2
o((x,y) - (p7,p)) = max{e(x-p ),e(y-p)}.

Thus qo(x-pz) < p—l and ¢(y-p) < p-l . This implies that

3 2 3+...

y = p+aop2+ ap +... and x = bop + blp Therefore

(x,y) ¢ KIC Ko and (x, y)g(Ki for i > 2. Consequently

f(x,vy) = p0 + p3, Thus ¢(f{x, y) - (1 +p3)) = 0-< e, Therefore

lim 2 flx,y) = 1+p3.

(x,7)=>(p ,p)

In order to prove that

lim f(x, y) = 31

(%, Y)"’(O, 0) i

i}
OMB
o

[oe) .
for each € >0, a 6> 0 must be found such that ga(f(x,y) - 2 p31><€
i=0
whenever ¢((x,y)) < 6. There existsan reZ' such that

pT<e<p ™. Let 6=p". But ¢llx,y) = max(p(x),e(y).

Since ¢(x) < p " and ol(y) < p T,

_ r+l1 r+2
x—ar_Hp +ar+2p + ...



and

v =b pr+1 + r+2

r+1 a42P  te.

Then f(x,y)=p0+p3+...+p3r+R where R =

aeZ', a>r+l. So

[e 8]
qa(f(X. y) - Z p31) < p~3(r*2) o
1=0
Therefore
lim flx,y) = = p~".
(x,y)-(0,0) i=0

Continuity of a Function

Continuity plays a surprising role in the s

functions,

14

a -
= p31 and
i=r+l

pace of integrable

Definition ‘2. 5. A function f: G—»Qp is continuous at a if

lim f(x) = f(a). A function f is continuous on G
X—>a

each point of G,

Example 2.6. Let GzZp, and

0 if xe pZZ - pSZ
f(x) = P
1 otherwise .

By Example 2.4, the lim, f(x) = 0. Also f(pz)

X=>p .
lim f(x) = f(pz) . Therefore f is continuous at
X=>p

if it is continuous at

p

= 0. Thus

p2 . It can easily be

shown that this function is continuous on Zp . If X € pZZp——- pSZp

lim f(x) = 0. If xodpzz —p°Z  lim f(x) = 1.

X—’XO p X»XO
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o0} .
-Example 2.7. Let G = Z;, and f= X p31 X(Ki) where
. ) i=0
K.= p'Z xp'Z_ . By Example 2.5, lim f(x,y) = 1+p° . Also
; o . p ) P .
(x, y)- (p%, p)

f(PZ, p) = 1+p3 . Thus f is continuous at (p2, p).

Also by Example 2.5,

. 2 31
lim Do f(x,y) = 2 pTT,
(x, y)—(0, 0) _i=0
31 . .
But £(0,0)= Z p° . So f is continuous at (0,0).
i=0 .

Derivative of a Function

The definition of a derivative will be the same as for real
numbers. The non~Archimedean metric will cause some results to

vary from that which was expected in the real numbers.

Definition. 2,6, Let f:G - Qp. The derivative of f at b

denoted by f'(b) is

Example 2. 8. Let G=Zp, and f(x) =p. Let ye Zp' Then

fily) = lim 2B = 1im 0 = 0.
X -y X-Yy X >y

Therefore 1f'(y)

1

0 for all € Z
Y P

Example 2. 9. Let G = Zp’

p21 if xe p1+ p3lz
f.(x) = p
0 otherwise ,
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(<]

and f be defined by f= Z f
i=1

Now f'(y) = 0 if and only if

i Show f'(y) =0 for all ye Zp

lim 2=~ o ang nim S _
X-y x-y
X=y X =y

if and only if for each ¢ > 0 there exists &> 0 such that

qD(fx)—f ))<e whenever ¢(x-y)<¥5&. Let vye Zp' Either there

*y | i, 3i .3
exists uniquely io such that yep "+ p Zp or yi¢p +p Zp for
all iez™,

Consider the case where there exists uniquely '1o such that
io 3io io 3'1o 3io+1
yep +p Zp. Then y =p +agp +alp +... . Let
-3i -31
§=p C. Then o¢(x-y)<p ° which implies that
) i 3i 31O+1 31O+2
X=p +aop +bop +b1p +... .
2'10 2'10
This means that f(y) =p and f(x)=1p . So
21 2i
10 -50) (2 2= %) gy -0 <
Ty ) Ty = ¢(0) = .
i, 3io
Therefore f'(y) =0 when yep +p Zp for some io.
31 +

; i
Consider the case where y¢p1+ o) Zp for all ie¢Z . This

implies y=0 or vy = pm(a0+ a1p+ a2p2+ ...) where one of the

following occur:

(1) m=0, and 1 <a < p-1;

0

(2) meZ+, and 2 < a,< p-l1; or

0

+ .
(3) meZ , a.=1, and there exists an i such that

0
m < i< 3m and a;#0.
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If y=0 let 6=p ° where p—r§e< p_r+1. Then

p(x-~-y) < p_r which implies that x = pke where k > r+1 and ¢

0
is aunit of Z . Either f(x)=0 or f(x) = p2%, and f(y)=0. If

0

f(x)=0 then
¢(ﬂ-x;{—-§,—(ﬂ> =¢(0) =0<e
2k

Ty p pk
Thus ¢<—-§z{£—§;(ﬂ> s p—k <p ¥ <e since k > r+1l. Therefore
£100) = 0.
If

. m 1 2
y=p (a0+a1p +a.2p +...)

-1 -1

where m=0 and 1 <a,<p-1 let 8=p °, Then ¢(x-y) <p

0
which implies that

o 1 2 3
-x—a0+a.1p +b0p +b1p + ...

Thus f(x) =0 “ahd fly) =0. So (p(f(x) - £ )> =0 <e¢. Therefore

x-y

f'(y) = 0 when y=a.0+a1p1+a,2p2+... and liaOSp-—l.
If‘y=pm(a0+ a1p+a2p2+...) where me Z+ and

2 < 2y < p-1 thenlet 6=p ™, Then o¢(x-y) < p ™ which implies

that x = p™(ay+ byp + b1p2+ ...). Thus f£(x)=0 and £(y)=0. So

q)( f(x) - £ )) =0 <e. Therefore f'(y) =0 when

a +31P+3-2P2+.,.), meZ+ and 2 < a,<p-l.

0
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1 and

-3m

_.m 2 + _
If y=p (a.0+a.lp+azp +...) where meZ , ay =

there exists i such that m < i < 3m and ai# 0 thenlet d=p

-3m

Then ¢(x-y) <p which implies that

_.m 3m 3m+1 3m+2

X=p (a0+a1p+...+a3mp +b0p +bp +..00) .
Thus f(y) =0 and f(x)=0. Again, (p(f(x}l:i};( )>=o <e¢. There-
fore f'(y) = 0 when yzpm(a0+a1p+a2p2+...), meZ+, aozl

and there exists i such that m < i < 3m and ai# 0.

Therefore f'(y) =0 forall vye Z'p
A Family C
Let C represent a family of open compact subgroups of the

group G with the properties:

(1) N"{K:KeC}={e} where e is the identity element

of G, and
(2) AeC and BeC implies that A () BeC.

Since such a family plays a central role in Riemann p-adig integration

it is advantageous to exhibit such a family.

Example 2. 10, Let G = Qp" then

D= {perp: reZ and k is a constant, ke Z+}

is a family C,
By Theorem 1. 14, perp is a subgroup of Qp for each r.

Also, perp is an open compact subset of Qp for each kreZ. Let

kl'l krz
p Zp, p ZPGE where ry<r,. Then
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kr
and p ZZPEE. The identity of Qp is 0.

Finally it must be shown that (M {D:De®} = {0}. Itis clear
that {0} C M {D:De®}. Assume () {D:DeD} (Z {0}. Then there
exists ae Qp ,a#0, such that ael {D:D D}. But a = plgo where

£eZ and £y is a unit of Zp. There exists r)e Z, such that

kr
kr, < £. So adp IZp. This implies that a ¢ {D:De®D}. Thus

M {D:De®} C {0}. Therefore D is a family C.

Example 2,11. Let G = Zp’ then
D= {perp: reZ', k is a constant, ke Z+}

is a family C. The demonstration is similar to the demonstration for

Example 2. 10,

Example 2,12. Let G = lea , then

Is

fD:{perpxp Zp:r,seZ and k,{ constants,k,le_Z+}

is a family C.

Qp is a locally compact topological group. Then QIZ) is a

locally compact topological group. By Theorem 1. 14, perp and

Is ISZ -is a
P

compact subgroup of pr Qp. Also as perp and plsZp are open

Zp are compact subgroups of Qp. Thus perpx P

. kr Is . .
Q _, th Z_x Z e Q xQ . Let
in b en p b ) o is open in px b
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be elements of ©. Then

kmax {1
= p ‘

1’ rz} lmax{sl, SZ}
X p €eD.

Show M {D:De®} = {0}. Itisclear that {0} C M {D:DeD}.
Assume that M {D:De D} ¢ {0} . Then there exists aeQIZD, a#0,

such that ae( {D:De®}. Thus a=anpx mep where n,meZ+

k
as ae€p pr pIZp. There exists rleZ and sleZ such that

rlk slﬂ
rik>n and s;4 >m, Therefore adp prp Zp. So
af¢M{D:De®}. So M{D:DeD}={0}. Therefore P is a family C.

Example 2,13, Let G = z‘; , then

k £

D ={ erxp SZp:r,seZ’, k, 4 constants,k,.leZ+}

is a family C. The demonstration is similar to the demonstration for

Example 2. 12.

The families C will be restricted to subfamilies of

{per: reZ} or {per X pSZp: r,seZ}.

Riemann Sums
Riemann sums will be developed with respect to the family C.

Definition 2.7. Let G be a compact group with ¢(m(G)) = vy,

and f be a function from G to Qp. The Riemann sum of f relative to

s
K and {gl} is the sum X m(K)f(gi) where KeC, s = [G:K], and
i=1
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{gi} ig a set consisting of one and only one element from each of the
cosets of K with respect to G. The notation S(f,K,£) is used to

represent this sum. (Note m(K) = m(x+K) for all xeG.)

2r
Example 2, 14. Let G:Zp, C ={Kr:Kr=p Zp, reZ'} ,
and f(x)=p forall xe Zp . Consider KO ¢ C. By Theorem 1, 14,
0 _
1. So S(f,Ko,g) = m(KO)f(gl) where §1 € Zp. Or

1

[Zp:KO] =p

S(fiKo!g):‘ l'p:p?

Consider KleC. By Theorem 1. 14, [Zp:K1]=p2. So
2 2
P P 5
S(f,K.,€) = T m(K,)f(E.) = Z p "-p
1 . 1 i .
i=1 i=1
2 -2 . .
Thus S(f,Kl,g)zp -p +«p. Finally S(f,Kl,g)zp.
Consider KZGC. By Theorem 1. 14, [Zp:K2]=p4. So
4
_ P 4 -4
S(f,K,,§) = T m(K,)f(E.) =p *p P
2 i=1 2 i
Thus S(f,Kz, E) =p.
Consider KreC. Then [Zp:Kr]=p2r, and
2r
p
S(EK_,8) = = m(K_)E,)
i=1
2r -2r .
Or S(f,Kr,g) =p P *p. Thus S(f,Kr, £) = p. In this case

S(f,Kr, £) =p for every r and for every admissible {gl} .

Example 2. 15, Let G = ZIZ) ,

— . — r r 1
C —{Kr.Kr—p prp Zp, reZ} ,
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and
3r
P X (K)).

n
1]

1

O[\ﬂ8

r

Consider Kje¢C. By Theorem 1.17, [zg.:K0]= 1. Thus

S(£,K, €) = m(K,) £(,) where §16Z1§. Either £, =(0,0) or

k k
- 1 2 ' _ .
§1—(p €1, P ez) where kl,kzeZ and el,iz ariumts of Zp.
@
If £ =(0,0) then f(£.)= = p>%. If £ =(p ‘e.,p %,| then
1 | R —" 1 1 2
min{kl,kz} i
£(§,) = = P .
r=0

So
[cc]
p° T p°' if & =(0,0)
r=
S(f,K,,§) = -
0 mln{kl,kz} K K
0 = r o £ = )
p p 1 1' p EI»P 92
r=0 :
= p +R0
where
0
R0=
or a = o.

2 3r
Zp where aeZ,a>1

Consider Klec. So [ZIZD:KI]=p . Then

2
p

P
S(LK).8) = 2 m(K))H(E)

1]
g
N
™
Hh
e

For all cosets of K1 except K, itself any element chosen from the
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\

coset will have a function value of p0 . Let glk be the element chosen
k

from K,. Then §1=(0,0) or §1=<p lel,pzez) where ‘€;,€, are

units of Zp and kl,kzeZ, kl,kzz_l. Thus

— -
2 3r
Zp if §1=(0,0)
=0
_ -2 0,2 r
SEK,¢) = p pp-1)+ min {k,, k,}
1’72 k k
3r . _ 1 2
Z P if §1—(p €, P ez)
| r=0 _
- 2 0 0 3
=p "[p"-p +p +p +R ]
where
0
RI: a 3.
Zp where ae¢Z,a>2 or a=o,
r=2

So S(5,K,&) =p’+p'+p PR .
Consider K, e C. Then [ZIZ):KZ] = 1:94 . Thus
4 4
p 4 P
S(f,K,,§) = Z m(K,)f(§.,) or S(f,K,,§)=p X f(§).
2 i=1 2 i 2 -1 i

The distinct cosets of K2 can be represented by x+K2 where

. 2, 2
x:(a0+a1p,b0+blp). If ao;éO and b0;£0 there are p (p--1)

cosets and the function value of any element in these cosets is p . If
ag= 0, b0 =0 and ay ,b1 not both zero there are pz- 1 cosets and
the function value for any element in these cosets is p~ + p3 . If

a,,a,,b,,b. =0 the cosetis K,. Let §, be the element chosen
071’7071 2 K 1 Kk
- _ 1 2

from KZ' Then .§l- (0,0) or f;'l— P ey,P & where €)s€, are
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kzeZ, k,kzzz. So

units of Z_ and k.,
p 1
S(f,K,, §)
3 -
® 3
=0
4| 2,2 .0, ,2 0, 3 )" '
=p | p (P -1)p + (P -1)(p +p°) + min{k., k,}
1 %2 k k
3r ., 1 2
= P if glz(p e P ez>
B r=0 -
=p [P -pP +p -p +p -p +p +p +p +R,]
-4 5
where

Zpr where aeZ,a>3 or a=ow,

Thus S(f,K,,§) = p0+ pt pz + p_4R2-
By the use of mathematical induction it can be shown that

0

S(f,Kn,§)=p +p1+...+pn+ p_Zan where ne Z' and

= p3r where aeZ,a >n+l or a=o,
r=n+1

Pseudo Distance

In order to discuss the relétionship of Riemann integrability and
continuity, it is necessary to have a function with special properties

that is related to the family C.



25

Definition 2.8. The function w, associated with the family C

C
is defined as W (%) = inf {m(K) : Ke Cx} where

Cx= {K:KeC and xeK}.

This function e will be used to induce a function p such that
p(x, y) = Ve (x-y). The function p fails to satisfy property (1) of a

distance function, and is called a pseudo distance function.

Example 2.16., Let G = Zp’ C = {per, reZ'}t, and x = p3eo

where

. . _s.To :
ey is a unit of ZP. Then C_-= {p Zp.reZ, 0<r<3}. So

Q
a
i

inf{m(per):reZ, 0<r<3}

H

inf{p irez, 0<r<3}

Therefore W (%) = p"3 .

Note that the function W is p ¥, where per is the

smallest disc in C that contains x.

Example 2,17. Let G = Qi , C= {perP.x per: reZ} , and

x = (p e‘O’pgl) whe?e €y are units of Zp' Then

2r r
C = Z X Z :relZ, r<-2}.
=P 2, xp Z < -2}

So

&
¥
i

inf{m(pzrzp X per) ireZ, r < -2}

n

inf{p_3r: reZ, r < -2}

Thus Vo (x)=p
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Theorem 2.2. The function W has the following

properties:

(1) The function wc(e) = 0 where e is the identity of

G.

(2) The function pix,y) = W (x~-y) 1is not a distance function,

(3) If ¢ and (' are two appropriate families such that

¢ C ¢' then wc(x)_>_wc,(x) for all xeG.

(4) Zero is the greatest lower bound of Wa (x).

5) if G=Q , C-= 'Z ireZ then w,{x) = ¢(x
(5) . {p'2 ire2) ) = oo
for all xeQ . A

p \

\
Praoof: (1) Assume G (C Qp. Then since 0€¢K fo‘i; every KeC,

Wa(0) = inf{m(K) :Ke C}. Suppose inf{m(K);Ke C}:# 0, then
inf{m(K):KeC} =e¢ >0, as m(K) >0 for each KeC, There exists
ke Z such that p“k <e< p_k-i-1 . The family C is a subfamily of

{per:reZ}. Let r>k,reZ. If pre K forall KeC then
M{K:KeC} # {0} which is a contradiction, Therefore there exists

KeC such that pri K. This implies that m(K) sp-r< P k < ¢ which

is a contradiction. Thus it follows that inf{m(K):Ke C} = 0, and that

Assume G (C Q}Z) . Then C is a subfamily of
r s
Z X Z :r,seZ} .
{pz,xp2, }

Since (0,0)e K for every KeC, (0,0) = inf{m(K):KeC} .

e
Suppose the inf{m(K):KeC} # 0, then inf{m(K):KeC} =¢ >0, as

m(K) >0 for each KeC. There exists keZ such that
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~k k+1

p <e<p . Let t>k,teZ. There exists K'eC such that

(pt, 0) ¢ K' for if not (pt, 0) e {K:KeC} which is a contradiction,
r

Thus K!'=p Opr psZp where ro,seZ,ro>t. Let u>k,ue2,

There exists K'¢ C such that (0,p )¢ K" for if not

(0, pu) e M {K:KeC} which is a contradiction, Thus
s

R 0
K'=rp prp Zp where r,ser,so>u, But
max{ro,r} ma.x{so,s}
K'MK'" = 4 Z eC
F P Pxp P
It follows that
-m {r,, r}-max{s,, s} ~T -8
mEK'MK") =p’ 0 0 <p 0. .70

Which contradicts that inf{m(K):KeC} =¢. Therefore

inf{m(K):KeC} =0, and WC(O,O) =0,

(2) Let G:Zé, C = {p"2 xp°Z ir,s¢2'}, and x=(1,0).
Then C_={Z xp°Z :seZ'}. So
x = 12X P 2, }

W (%) = inf {(m(Z_x p°Z ):s¢Z'} =inf{p ":5¢Z} = 0.

But (1,0) # (0,0) so w

e fails to satisfy property (1) of a distance

function,

. 1
(3) Let x¢eG. For each Ker,KeC;{ as CxC Cx. So

w (x). = inf {m(K):Ke Cx} . But

c

inf{m(X):K ECX} > inf {m(K):Ke C}'{} £ w

cl(x) .

Therefore Wc (x) > Wc,(x) for all xe¢G.
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(4) For each KeC, m(K) > 0. This implies the wc(x) >0

for each xe¢G. But wc(e) = 0, Therefore the greatest lower bound

of Wc(x) is 0,

(5) Let xe Qp. Then x =0 or x= Pkeo for some ke Z
and ¢, aunitin Z_, If x=0 then C_ =C, So
0 P b<

W,

c(0)=inf{p”r:rez}=o. Also ¢(0) = 0.

If x=pke then Cx={per:r_<_k}. So

0

k

r:r_<_k} = inf{p-r:rf_k} =p .

k . -
Wc(p eo) = inf {p
k -k
Also ¢(p eo) =p . Therefore Wc(x) = p(x) forall xeGQG.
.In a similar manner it can be shown that if G = Zp ,

C = {per:re Z'} then Wc(x) = p(x).

Example 2. 18. Let G = Zi , Cl= {perx psZp: r,seZ'},

3

and C = {perp Xp er: reZ'}. Thus C(C C', So by property .(2)

of Theorem 2.2 WC

2 .3 -5 _ 2 3

wc(p ,P ) =p -Wc,(p ' P

2 2
So W (p,pP ) > Wa,(p, P ).

(x) zwc,(x) for each xe G. In particular,

2 2 -3
Also Wc(p:,p )=1 but Wc,(P,P )=p .

Example 2.19. Let G=2Z, and C = {per: reZ'}. Then

Wa (x) = ¢(x) {for each xe Zp. But ¢(x) <1 for each xe Zp. There -
fore We (x) £ 1. So for this particular situation e (x) is bounded

above.

Example 2.20., Let G = Qp’ and C = {per: reZ}. Then
W (x) = ¢(x) for each xe Qp. But ¢(x) is not bounded above for

X € Qp. Therefore e (x) is not bounded above for this situation.
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The two previous examples illustrate that W

may or may not

be bounded above.

Theorem 2.3, Let G(C Qp, and C (C {per: reZ}. Then

p(x,y) = W (x-vy) is a non-Archimedean distance function.

Proof: By Theorem 2.2, WC(O) =0, and Wc(x-y)zO. Suppose x#vy.

Then x-y # 0, and x—yzpms where meZ and is a unit of

0 €0
Zp. There exists a K'e C such that pmgodK' for if not

pmsoe (' K which contradicts () K={e}. Therefore
KeC KeC

W, (x-y) = inf{m(K):Ke Cx-y} >m(K) > 0. Thus p has property 1 of

C
a distance function.

Also, p has property 2 of a distance function. For each KeC
such that x-yeK, it follows that y-xeK as K is a subgroup of G.
Therefore We (x-y) = WC(Y-X) .

Consider W (@+p) < W (@) + W (B) where «a,peG. Either
¢la) > o) or e¢(a) <¢eP). Without loss of generality assume that

el@) >eP). If ¢l@) >¢P) then ¢(at+P)=e¢pla) as

¢la+B) <max{g(a), ¢@)} with equality when ¢(a) # ¢(). This

implies that ca+[3 = 'Ca , and the latter implies that Wc(a +B) = Wc(a) .
Since o¢la@) > @), Ca C CB , and Wc(a) zwc(ﬁ). Thus

Wc(a +B) = max {Wc(a) , WC(B)}. If ¢(a)=¢(@) then ¢lat+P) <egla) . This

(@ +B) < wyla)

(@ +B) < max {Wc(a) , Wc(ﬁ)} as Wc(a') = WC(B) , Let a=x-y,

implies that ca+ﬁ53 Ca , and the latter implies that e

Thus w

C
and B=y-z. Then Wc(a + B) < max {Wc(a) , WC(B)} becomes
Wc(x—z) < max{wc(x—y), wc(y—z)} . This implies that

W (x-z) < W (x-vy) + W (y-z). Therefore p is a non-Archimedean

—_—

distance function.



CHAPTER II
RIEMANN p-ADIC INTEGRATION
General Riemann p-Adic Integration

The general Riemann p-adic integration of a function will depend
upon the existence of the limit of the Riemann sums in much the same
way as it does in Riemann integration over the real numbers. This
limit must be independent of the choices of an element in each of the
cosets, and is thus rather complicated, The Riemann sums in this
case are derived .from the partition of G by the left cosets of a sub-
group of G and will be similar to what is called a regular partition in
the study of integration over the real numbers,

Definition 3. 1. The" Iélrré S(f,K,£) = A if for each ¢ >0

€

there exists a KO € C such that ¢(A-S(f,K,£)) <e for each

KC Ky KeC, and for each choice of {gl}

Definition 3.2, A function f:G »Qp is R-C integrable if

lim S(f,K,£) exists. The space of R -C integrable functions is

KeC :
represented by LR’C(G) . If fe LR’C(G) , then denote lim S(f, K, £)

R:c KGC
by f f.

— — . —_ Zr 1
Example 3.1. Let G—Zp, C—{Kr.Kr.—p Zp,rgZ}, and

f(x) = p forall xe Zp. By Example 2. 14, S(f, Kr’ g) =p for all

reZ' and all choices of {£ i}. So
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R,C
f f = limp.

r~>wm

R,C

Thusf f=p.

Example 3.2. Let G =‘z§, c={K_K_= pr‘szprzp, rez'},
[} .
and f= X p3r x(K_ ). By Example 2.15,
r=0 r
S(f,K_,§) = pltple.. +pT+ p'err
where
0
R =
r a 3r
Z p where an',aZr+1 or a = o,
isr+l
Thus
R,C ©
f f=lim (pP+pit...+p +p TR )= = p.
r>o =0

- 'Example 3.3, Let G'—'ZIZ)’ K;_zprZ szer, reZ',

p

2r r ® 4r
C={K :K_= Z xp Z ,reZ'}, and f= Z K!).
{K K =p"Z xp Z } Z P XK

R,C

Show f¢L (zlz)).

Consider the Riemann sums formed by using different sets

{gri} . Let

s
S1 = = m(Kr)f{gri} , and S2 =

]
i=1 i=

K )L

where £ =(0,0), £.,= (0,p") and §.,= &L, for all i suchthat
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i# 1. Then

S,-5,= {§_)m(K ) - f(§;,1)m(Kr) = [f(ﬁrl)_ - fE L) Im(K ).

Thus

-3 4i 4i| -3
S, - 5,=[£0,0) - £(0,p")]p""" = [z p - Zp 1} po 7t
1-

where [%] is the greatest integer less than % . Now

«© . o .
Sl _ Sz - p-3r = p41= > P41--31'
[T rr
i=[5]+1 i=[5]+1
Thus
[s9] - T
4i-3 3r-4[=]-4
¢<s1-s2)=¢( n  pit3r). pir-dlzle
i=[§]+1

When [%] is removed, this becomes

pPE-tk-4 e ok, kezZt.

I

pOkt3-4k=4 o oK+l keZ'.

ka’-‘L if r=2k.

p2k e rz2ktl.

As r-o, k—~o also, and as k~ow, <p(Sl-Sz)->oo. Therefore

R,C

lim S(f,K,£) does not exist. Thus f¢ L'C(z?).
Ke C P

Some properties of LR’C(G) will be developed.
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Theorem 3.1. Let f,ge LR’c
‘ R,C

(G), and aeQ , Then

rR,c P Rr,c
f+ge LXC(q), areL®C(q, f (f+g) =.f f+f g, and

fR,C R,C '

(af) = a.f f.
Proof: Let f,gelL”’~ . Consider f+g. First by the definition it can

R,C

be shown that lim S(f+g,K,§) exists as follows:

KeC
s s '
S(f+g,K,£) = Z m(K) (f+g)(€i) = Z m(K)[f(éi) + g(ﬁi)]
i=1 i=1
s
= [m(K) £(6,) + m(K) g¢,)]
i=
s 5
= = m(K)f(E,) + = mEK)gl,).
i=1 i=1 ‘
Consequently
] s
lim S(f+g,K,€) = lim = m(K)f(§.) + lim Z m(K)g(&i),
KeC KeC i=1 YOKeC i=1

since both of the limits on the right exist, It follows that

lim S(f+g,K,§) exists. Therefore f+geLR’c

KeC
fR,C f+g=fR’cf+fR’cg,

(GQ), and

Let fe LR’C(G) and a.er. Consider af, Then
S S
lim 2 m(K)(af) (§,) = lim |a Z m(K){(§;)
KeC i=1 ' KeC i=1
S
=a lim Z m(K){(£.).
KeC i=1 !

This last limit exists as fe LR’C(G); Therefore
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R,C R,C
afe LC(G), and f (af)z‘af £.

R,C

The previous theorem leads to the conclusion that L (G) is

a vector space.

Theorem 3,2, If f,geLR’c(G) and a;ber then

fR’c (af+bg) = afR’c f+be’cg .

Proof; By Theorem 3.1,

[ ttbg = f
2

Example 3.4, Let G=2Z°, ¢ ={Kr:Kr=perx per., reZt},

R,C

2 & 3r pR'c
and f=p P x(Kr). Find/ f.

r=0
s 2 = 3r
Note:that . f = p f1 where f1 = Zp x(Kr) . By Example 3.2
R,C © . r=0
f f. = p . Then
1 .7
i=0
R,c R,c 2 2 R”c
f f =f P f1 = p f f1 by Theorem 3. 2,

R,C ) @ . [oe) .
Thus f f= pz b pl = = p1+2 .
i=0 i=0

TheQrem 3.3, Let o be the left translation of a function

R.C R,C R,C
feL7(G), that is, o_f(k) = f(x+k), then f o 1 =f £,
R,C s
Proof: By definition f f=lim = m(K)f(£,) and the limit
: KeC f=1 L
. R,C
existsas felL 7' (G), Also,

R,C s 8
f 0'xf = Il{n;ré E‘,l 1rn(K)<J'x f(gi) = lim f) m(K) f(x+§i)



35

if this limit exists. These two integrals will be shown equal by showing

that each Riemann sum of one is also a Riemann sum of the other one.

S
R.Cq). Now = m(K)f(x+£,) isa
i=1

Riemann sum of the type S(f,K,§) if and only if {x+§i} is a collec-

This will also show that O'XfE L

tion of one and only one element from each coset of K, Suppose this is
not the case, that is, §j , gke {gl} such that x+§k,x+§j belong to

the same coset for some yeG. Then there exists kl . kZ e K such

and x+§k= y+k2 . Thus

that x+§j = y+k1

1 2

kl-kZ e K. So there exists k3 e K such that k3 = kl-kz = gj-vgk.

Then &= ¢ +k

which implies that gj -'§k= k. - k,. But K is a subgroup of G so

3

Thus gj and §k are elements of the same coset of K, This is a

which implies that gj € §k+ K. But § e§ +K.

contradiction. Thus {x+§i} is a collection of one and only one

s
element from each coset of K, Therefore z

m(K)f(x+§.) is a
_ i=1 t
Riemann sum of the type S({,K,§).

s
Now it will be shown that Z m(K) f(gl)
£=1

the type S(o £, K, £). For each gme {gl} there exists uniquely

is a Riemann sum of
o €¢G suchthat § =x+a . Therefore
m m m

s s
= ZmK)ix+a )= Z mK)oc fla ).

1 £=1 M y= x om

This will be a Riemann sum of the type S(e £, K, g) if {am} is a
collection of one and only one element from each coset of K. Again

assume that ai,aj € {am}_ such that ai,aj ey+K, ye G. There exist
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k., ,k, e K such that ai=y+k Therefore

1’72
§i-x=y+k

1 and aJ.: y+k

and gj—x=y+k

2° .
1 2" Thus gi-»gj = kl. - kz .

the argument follows as before. So {am} is a collection of one and

From here

S
only one element from each coset of K. Therefore Elm(K)f(gz) is
. =
a Riemann sum of the type S(O‘xf,K, g£). Consequently lim S(O‘Xf,K,g)
KeC
exists if and only if lim S(f,XK,§) exists, and
KeC

R,C R,C
f o f=f f,
X

1
Theorem 3.4. If C C C' then LR’C CLR’C and
R,C! R,C

f f:f £,

Proof: Let fel.

a1l
R,C . Then for each € > 0 there exists K(')e c!

such that

R,C!
¢(S(f,K',§) -f f) <

whenever K'(C K!, K¢ C', There exists KyeC such that KOC K(')
as M{K|KeC} ={e} and ¢C €. Thus for each K K, it follows

that K KOC Ké) and Ke C( C'. Therefare

R,C!
¢<S(f, K6 -f f)< ‘

R R,C' R,C
for each K(CK,. So feL™ andf f:f £

The largest family C that is possible would be composed of all
6pen compact subgroups of G. This family would give the smallest

space of integrable functions. The question may arise as to whether

R,C’ R,C

L is a proper subset of L when C is a proper subset of C'.
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Two appropriate families and a special function are chosen in the next

example to show that the subspace is a proper subspace.

_ 52 _ ) _.r T .
Example 3.5. Let G—Zp, C-,{Kr.Kr—p prp Zp,reZ},
r s ’ 2 3r
C'={K_:K_ =pZ xpZ ,reZ',se¢eZ'}, and f= Z p° x(K_.).
rs’rs o) P r=0 r
1
R,C R,C (Zg) as will now be

By Example 3.2, feL (zg). But f¢L
demonstrated,

The demonstration will be complete if it can be shown that
lim S(f,K,£) does not exist. That is, there exists e > 0 with the
Ipfreo(;)erty that for each K (C C there exists K',K"( K such that
¢ S(f,K',§) - S(f,K",E) > e¢. These elements of C must be found, and
the right choices for the element in each coset must be made.

Let N be any positive integer, There exists ke Z such that
pk > N. There also exists r,seZ' suchthat r+s > k. So
¢<m(Krs)) =o(p %) = p™0 > P> N Let y= (0!, p™), 2= (o), p™)
where £ and m are constants, {,meZ', m > s, and’

4 > max{r,m+3}. Thus y and z are in the same coset of Krs
namely Krs itself,

Two Riemann sums, S; and SZ’ of f with respect to 'Kr

1

will be exhibited., Let the choices of the elements in each coset be the

S

same except for the choices in the coset Krs . Choose ye Krs for

S,, and choose zeK for S,. Thus
1 rs 2

0(,-5,) = o [ty - f(Z))m(Krs):] = oftty) - f<z>)<p(m<1<rs>)

Then

mt3 5, Mmoo og reB

o(S,-S,)=¢| Z p - P |elp

1772 a <
i=0 i=0

Az
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11

3m+3 3m+6 3m+9\ r+s
<p(p +tp tp )p

-3ml_—3 r+s
P

i}

r+s-3m-3

Let r increase without bound. Then y and z remain in the same coset

of Krs as they have the same first coordinate and s is fixed. Thus

c. 2
’ Z .
( p)

<p(Sl- SZ) increases without bound. Therefore f¢ LR
Note that in the example above C(C C'. Thus

1
LR’c (le)) C LR’C(ZIZD) by Theorem 3.4. But fe LR’c

R,C! R,C!

(ZIZ))’ and
R,C

fé¢L (leg) . Therefore L (Zf)) is a proper subset of L (ZIZ;) .

The following theorem is a generalization of the previous

example,

.Theorem 3.5. Let G = ZIZ) , and

. - r 5 H 1
rs.Krs--p prp Zp,reZ,seZ}.
Then fe LR’c if and only if there exists Ke C such that f is a con-

stant function on each coset of K.

Proof: The 'only if'' statement will be pi‘oved first. This will be
proved by contradiction, Suppose that fe¢ LR’c and no such K exists,
Then for each Ke C there exists x,y,ZeG suchthat y,zex+K
and f(y) # f(z). Also for each positive integer N there exists K'eC
such that ¢(m(K!')) > N as there exists a ke Z such that pk >N.

Now choose K!' = Krs such that r+s > k, and then

‘/’(m(Krs)) _ (P(p-r—s): pr+s > pk SN,
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Consequently there exists x,y,zeG suchthat yex+K' and
zex+K' and f{(y) # f(z) where y = (yl,yz) and z = (zl,zz). This
y and z could be chosen such that they have a coordinate in common,
For suppose a y and a z were 9hosen such that V1 # z, and y2¢ z, .
Consider u = (Yl’ZZ)' Then uex+K and f(u) # f(y) or f(u) # f(z).
For suppose f(u) = f(y) and f£(u) = f(z) then 1{(y) = f(z) which is a
contradiction. Thus a pair has been found satisfying the given condi-
tions and having a.coordinate in common, Let y and z be such a pair,
Without loss of generality it can be assumed that the first coerdinate is
the common one, that is, Y= 2.

Let Sl and S2 be two Riemann sums of f with respect to K'.
Let the choices of the elements in each coset be the same except for the

choices in the coset K'. Choose ye¢K' for S1 and choose zeK!'

for S,. Now Sl-SZ=[f(y)—f(z)]m(K'). Then

9(S,-5,) = o{lf(y) - £(z) Im(X")} = o[f(y) - £(z)Jo(m(K")) .

Let r increase without bound. Then ¢(m(K')) increases without
bound, Also, y and z remain in the same coset of K' = Krs as they
have the same first coordinate. So gp[f(y) -f(z)] is a nonzero constant,
Thus gp(Sl- SZ) ingcreases without bound. Therefore f¢ LR’c .

The '"if'' statement will now be proved., Assume there exists
KeC such that f is a constant on each coset of K. The value of

S(f,K',§) is independent of the choice of {gl} , and independent of

the subset K' of K, Therefore

R,C
fe LR’C and f f=S(,K,§).
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Strong Riemann p-Adic Integration

Strong Riemann p-adic integration allows more types of parti-
tions than the general Riemann p-adic integration. The general
Riemann p-adic integration was compared to regular partitions, and
strong Riemann p-adic integration could be compared to a general
partition in the study of the integration over the real numbers, The
same type of limit will be used here as was used in general Riemann
integration but there will be more potential Riemann sums.

Definition 3.3. Let G be compact. A partition, denoted by 6,
is a decomposition of G with G = LtJ x, + Ki Where‘

i=1
xj+Kj M x£+K£ =9 if j#k, kieC for all i and where there exists

Ke C such that KiC K for all i. The smallest set Ke C that con-
tains all Ki is called the norm of the partition and is represented by

N(98).

Definition 3.4. The Riemann sums corresponding to the parti-
t

tion & are defined as S(f, §,£) = m(Ki)f(gi) where f;ie xi+ Ki'

i=1

Example 3.6. Let G=2Z_ , C={K_ K =pZ_,re Z'}, and
P r o r P

f be a function.

Then {x+pr} where xe{a Z', 0 Saoﬁp-l} is a

020 ¢
partition of G. The set is just the distinct cosets of pr so they are

pairwise disjoint and their union is G. In this case K.1= pr for all

i, Thus N(9) =pr and

P
S(f,8,€) = Z m(pZ
i=1

)i, = S, pZ_,6) .

P P

Similar results could be obtained for any Ke C.
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An example of a partition that does not result in a Riemann sum
of the form S(f,K,, £) is as follows. Consider {x+p Zp} W, {y+pZZp}

where

xe{aolaer', lﬁaoﬁp-l} and ye{a1p|aleZ', 0<a, <p-1}

as a partition of G. The {y+p2Zp} are the distinet cosets of pZZp

in pr, and thus U {y+pZZp} = pr. . which are pairwise disjoint.
The {x+p Zp} are all of the distinct cosets of pr except pr.
So the union of all of these sets is G, and they are pairwise disjoint.

Then N(6) = pr, and

pt(p-1)
z mK)f(E,) .

1

S(f, 6,€) =

i=1

The latter is not a Riemann sum of the form

1

Mo

S(f,pr,f:.) = m(pzp)f(f:.-) .

i=1

Definition 3,5, A function f is strong R -C integrable if

lim S(f, 6,£) exists. A strong R -C integrable function is said to
N(6) ¢C
be R'-C integrable. The space of the R'-C -integrable functions

1
will be denoted by LX'C

R',C

(G).

The space L (G) will be probed in the following theorems.

Theorem . 3.6. Let G be compact. If f is a locally constant
R',C

function then fe L (G).

Proof: Let f be locally constant. Then there exists {xi+ Ki}lf_if_n

such that xj+Kj M x£+K£ =9 , U{xi+Ki}l§i_<_n= G and f is
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constant in each x, + Ki' The value of the Riemann sums correspond-

n
ing to partitions & such that N(&8) C M Ki is always the same. There-

i1
R',C !

fore fel (G).

Example 3.7. Let G=2Z , C={K :K =p'Z_, reZ'}, and
- P ror p

0 if xe¢p’Z —p°Z
‘- p p

1 otherwise .
Consider the partition
5 2 3 4
{x+p Zp,x =agtapta,p tazp +a,p }

of Z ., If a,=0 for ieZ', 0<i<r, then x+pSZ =pSZ . For
p 1 - - p p

each « epSZp, fla) =1, If ag= 0, a;= 0, and there exists ie¢Z',
2 <i<4 such that a; # 0, then x+p5Zp C pZZp—— pSZp. There are
p3 - 1 of these sets, and for any element chosen in anf one of them
the function value is 0, If a, #0 or a, #0 thén
x+p5Zp C Zp’—pSZp. There are p3(p2-1) of these sets, and for any
element chosen in any of these sets the function value is 1. For this
partition N(§) = pSZp. Thus

S(£,6,8) = [(p°-1)-0+p(p>-1)+1]p™> = (p°-p>+ 1)p = 1-p~24p™>

regardless of the choices of the element in each set of the partition,

Thus if N(8) C .p..SZp- then the Riemann sum would be

2

equal to 1—p—2+ p~5, Therefore lim  S(f,6,8)=1-p +p"5 and

N(d)eC
fe LR”C(ZP).
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Recall that f(x) =1 for all xe Zp—pZZp, Xe pSZp, and

f(x) = 0 for all other x. Note that

It

2 5 2 5
Z —-p-z2 U Z Z —p"Z )+ 4
m ( p P %, p p) m( p P p) m(p p)

R,C

1-p2+p-5=f f.

So the integral of a function whose range is 1 on some set and 0 else-

where is equal to the measure of the set.

Theorem 3.7. The space LR"CC LR C .

R',C

Proof: Let fel. , Thus lim S({f, 6,§) = A, This implies that
N(6)eC
for each € > 0 there exists K0 e C such that ¢(S(f, 6,§)-A) <¢ for

each N(8) C K0 .

R,C . Therefore lim S({,K,£) # A, So there
KeC

exists € > 0 such that for any K1 e C there exists K ( K1 , KeC

Assume f¢L

and ¢@(S(f,K,£)-A) > ¢. But for each KeC the cosets of K form a

partition for G and N(8) = K. Thus S(f,K,£) is of the form

)
S(f, 6,&) where N(6) = K, Therefore f¢ LR ,C' This is a contradic-

1
R,C LR~ RC

tion so it must be concluded that fe L So

R',C

It will be shown later that L = LR’c

for certain families

1
C. An example will also be given to show that in certain cases LR ,C

is a proper subset of LR’C .



CHAPTER IV

SOME SPECIAL PROPERTIES OF THE SPACES

OF INTEGRABLE FUNCTIONS

The discussions in this chapter will be limited to G as a subset
of Qp. This eliminates the use of producgt spaces and makes wc(x‘-y)
greater than 0 if x#y,

It has been shown that LRa’cC LR’c for each family C. Each
of these spaces is dependent on the specific family ¢ that is chosen,

In particular, Theorem 3.4 showed that if C C ¢' then

(ot
LR.C C LRC ) Isat possible to choose a family C such that

R,Cz. R',C

L

L ? If so what are the characteristics of the family C ?

Is it possible to choose a family C such that a function f exists where

RYLC

fe LR’c and f¢L ? These questions will be answered, and as

they are, other interesting questions will arise, The requirement that
fe LR’c places some limitations on the behavior of f relative to the

family € . A reasonable starting point for this inquiry is a study of

these limitations.
Riemann Integration and Derivative

The first tool that is needed is a relationship between an - °
R,C

element of L7~ and a special limit.

Theorem 4. 1. If fe LR’C(G) then lim (‘i’(x()x“ f() ) _ 0
- Xy c\ XY
uniformly.
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Proof: Let fe LR’C(G). Then lim S(f,K,§) exists. This implies

that for each € > 0 there existsKlzse C such that

<p[S(f,K, £) - S(f,K, n)] < ¢ where K is any element of C that is also a
subset of K,, and {gl} and {ni} are arbitrary sets of representa-
tives from each coset of K. Let x-yeK KO , which implies that x

and y are in the same coset of K. Choose a particular pair of sets,

{gi},{ni}, where gizni for 2<i<s, §1=x, and n;=y. Then

(K) £(x) - m(K) £(y)]

i
<
—_—
B

q)[S(f, K’ g) - S(f) Ka TI)]

ol(£(x) - £(y)) m(K)] .
The properties of ¢ make
o[S(f, K, &) - S(£, K, m)] = ¢(f(x) - £(y)) ¢(m(K)) < ¢

for each Ke cx-y , KC KO . It now follows that

plf(x) - £y)) < —r=rzyy = € m(K)

as ¢o(m(K)) >0 and ¢(m(K)) = E%RT . Take the inf’;mum of each side

of the inequality, Then

e (f(x) - f(y)) < einf{m(K):Ke cx-y’ KC KO} .

Therefore ¢(f(x)-1£(y)) < e w,(x-y) Wh‘ilch implies elflx) - f(y))
- C W (X-7)

as in the present setting W (x-y) >0 for all x,yeG suchthat x#y.

Corollary 4. 1. If fe LR’C(G) then f is continuous.

Proof: Let fe LR’C(G) . Then by Theorem 4.1, lim ¢(vf,(x()}{'_f) ) - 0
x—-y e

uniformly. Remembering that W (x~y) = inf{m(K):Ke Cx-y}’ then



wc(x-y) <m(K), Ke Cx v Consequently wg,(x-y) <m(G) as K(C G

C

and m(K) < m(G), Now it follows that lim f(::l)(é;f( ) - 0. But
X=>y
as m(G) 1is a constant —rn_(la.) }&’n;.' o (f(x) - f(y)) = 0. Thus

lim ¢(f(x) -f(y)) = 0 which implies that lim f(x) = f(y). Therefore
X~y Xy
f is continuous,.

This is interesting in its contrast to the situation of the Riemann
integral over the real numbers. A function may be discontinuous and
still be Riemann integrable over the real numbers. Recall, however,
that locally constant functions are continuous in this setting but not in
the Euclidean spaces. Although a function must be continuous to be

integrable in the p-adic setting, not all continuous functions are inte-

grable as is illustrated in the following example.

- - . _ r t
Example 4. 1. Let G—Zp, C-{Kr.Kr—p Zp.,reZ},

and f(x) =x for all xe Zp' The function f is continuous on Zp’ and

£4 LR.,C )

The function f is continuous on Z_if lim x=y for each
p x-—yy
ye Zp' That is, for each ¢ > 0 there exists & > 0 such that

¢(x-y) < e whenever ¢(x-y) < 6., In this case, all that is needed is

tolet 6 =¢. Therefore f is continuous on Zp'

R,C

The function f¢L if lim S(f,K,£) does not exist. That

KeC
is, there exists € > 0 with the property that for all KeC there
exists KrC K, K_e¢C, suchthat o(S(f,K_,£)-S(f,K_,m) > ¢, Let

co - _.r _
§.1—'qi if 1#1,§l—p , and nl-O. Then

(£(p") -f(onm<przp) =p ep =1,

H

S(f: Kr ’ g) - S(f, Kr ’ n)



47

.Consider € = % For any Ke C there exists reZ' such

that KrC K, and

N —

p(SEK_,E)-S(EK_,m) = o(1) >

Therefore deR’c .

Also,note that

fi(y) = lim 2= E0) _ oy Xo¥ Lo 12

x>y FTY x>y x>y

for all €« Z
4 P

Theorem 4.2, Let G = Zp’ and C = {per:re Z'}. If

fe LR’C(G) then f'=0.

Proof: Let fe LR’C(Zp). Then

lim ¢(£E);fiﬁ> C i QUG -£)) | elfx) - fy)) |,

x>y X-y Xy p(x-y) x>y Ve (x-y)

as ¢(x-y) = Wc(x-y) by Theorem 2.2 (5). Since lim ¢(f(x) - £( )) =0

X-y
X~y
implies lim fx)-fy) . 0, it is seen that f'(y) =0 for all yeZ
Xy X~y p

The converse of Theorem 4.2 is not true as the following

example shows.,

Example 4.2, Let G = Zp’ C = {Kr:K = per, re Z'}, and

21

P if xepi+p3

iZ
f.(x) = P
0 otherwise ,

[a0]
Let f be defined by f= Z f.l. By Example 2.9, f'(y) =0 for all
i=1

ye Zp' But f¢ LR’C(Zp) as will be shown,
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This can be shown by finding two sets of elements {F,l} and
{'q.l} such that the difference of the corresponding Riemann sums

remains large., Let

s s
S. = T mtltz)fE), and S, = = m@p Ttz )m) .
1 .7 p 71 2 .7 P i
i=1 i=1
Choose F,i:ni for each 2<i<s, §l=p£ and 'q1=p£.+ p31-'1. Note
that F,l and m; belong to pl + p31-1Zp. Then

g i 32-1 32-1 21 1- 1-
Sl-Szz [f(p )-f(p +p )]m(p Zp>=,(p -0>p 31:p 1,

Thus <p(Sl-Sz) =p1"1, and cp(Sl-Sz) increases as { increases. The

limit of S(f,K,£) cannot exist., Therefore fs{LR’c(Zp) .

By the previous example it is seen that the fact that the deriva-

tive of a function is the zero function does not imply that the function is

R,C . It is reasonable therefore to turn our attention

1
to the properties of C which might ensure that LR’C = R ,C.

an element of L

Ample Families

Definition 4.1, The family C is ample if there exists a real

number P> 0 possessing the property: given any K and K' elements
of C with K' ( K, there exists {Ki:Kie C,ieZ, 0<i<n} such

‘ - - . “[3
that K'=K CK_ ,C...CK,C K,= K and <p[KJ..KJ.+1] > p

where 0<j<n-l.

To emphasize what this definition implies, an ample family and

a family that is not ample will be exhibited,



Example 4. 3.

(a) Let C = {Kr:Kr= perp, reZ}. C is an ample family

with B =2. To see this consider any .~ r)e Z . Then

2(r1+1) 2r
r1+1=p Zp, and Kr1=p Zp.

_ .2 | K 1=
Krl]—p Thus <p[Kr1 .Krl]-—p > p

r .
(b) Let C = {Kr:Kr= p2 Zp, re Z}. Assume there exists B

Therefore [Krl_l_l:
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that satisfies the conditions of the definition of an ample family. Thus

for each reZ, <p[Kr:Kr+1] > pvﬁ. Now there exists r,eZ such
rl—l rl
that 2 < p<2 . Since
2r1 2r1+1
Kr = p Zp and Kr 41 - P Zp s
1 1
then
r.+1 r r r T
K K ]_.21-21 z.2l2t 2t
r. Tr,tl p - =P :
1 1
r
1 rl rl"']'

1=

r +l But -2 "< -p< -2 . So

Consequently q;[Kr 'K

<p[Kr :Krl_l_l] < p-&. This implies that C is not an ample family.
1

The ample family C is proposed as the family that will cause

R',C

R,C to be equal to L .

L

t
Theorem 4,3. Let C be ample, Then LR’c = LR € , and

fe LR’C if and only if lim p(£(x) - £( )) = 0 uniformly,
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Proof: The 'only if" part of the proof follows directly from

Theorem 4.1, The "if'" part of the proof will be established if

1
feLR"C, Forif £eLR"C then feLRC a5 LBR"C( LRC

R.C then lim 22U -fly)) _, uniformly.
Xy Wc (X-Y) .

= 0 wuniformly implies that fe LR .C

’ " |

LR,C - LR ,C-

t

hé,s been shown that if fe L,

. f(x) - £(y))
If lim

Xy ;;c; (X'Y)
pLR.C C L G . The conclusion is that

So assuming that lim (f(x) - £(y))
X~> W ()
R'.C Yy Cc
'Y, As C is an ample family there exists P satis-

then

= 0 wuniformly, it will be
shown that fe L
fying the conditions of an ample family. Then for each € > 0 there
exists KO e C such that

(4.1) (‘f,gx()x'_ir() ) < 5P for each KCK, and x-ycK.

Let S(f,6,&) and S(f,5',£'") be any two Riemann sums such that

R',C

N(8) C KO and N(&') C KO. Then feL if and only if

s
o(S(f, 5,£) -S(f,6',€') <e¢ p—s. Let & be the partition G = U (xi+K.1),
t i=1
and &' be the partition G = U (x!l+Ki). Let
i=1

s t
K=< K.).m(m K)
i=1 L i=1 !

It follows that

¢(S(f, 8,8) - S(f, 8", £"))
= ¢(5(£, 6,€) - S(f, K, n) + S(f,K, n) - S(£, 8", "))

< sup {¢(S({, 8, §) - S(f,K,n)), ¢(S(f,K,n) - S({f, &', £"))}.

It is seen that
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S(f, 6, &) - S(£, 6',£") < ep™ P

if
sup {¢(S(f, 8,€) - S(f,K,n)), ¢(S(f,K,n) - S(£, 8',£"))} < cpP

Without loss of generality assume that the maximum is represented by

¢ (S(f, 8, 8) - S(f,K,n)) ; then it is sufficient to show that
¢(S(f1 6:&) = S(f'K’ 11)) < € p—B.

Consider the terms of S f,6,€) - S(f,K,m) which involve xi+ Ki'

They are f(gi)m(Ki) - Z f(n )m( ) where {nij} is a complete col-
j=1

lection of representatives of the cosets of K contained in x.l+ Ki and

§i is any element of x +K.. If

: -p

=1 J

foreach 1 < i< s then ¢(S(f8,€) - S(,K,n) < ep P. The

problem is equivalent to the following statement: if K C K'(C KO then

PHE)mK") - B fn )m(K) < ¢ pP
j=1

where {nj} is a complete collection of representatives of the cosets

of K contained in §+K'. As C is an ample family there exists {Ki}

such that K = K'CK'IC CK'ZCK'ICszK' and

cp[K' 1+1] > P P . Let {ys’i} be a complete set of representatives

'of the cosets of Ks contained in §+K'. There is only one represen-

P R -
tative in K0 as KO K' so Yo § Thus
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1
= flyg)m(Kp) - = fly; )mK})
= 1

’

' t
ofte) m(<) - 2

f(n-)m(K)> - <p<
j=1

1

+ Z f(y, )m(K)) - Z £y, )m(K;)
i ! i !

+ Z) f(y2 i) m(K'z) - e = 2 f(yn_1 i)m(Kll’l-].)
1 H i H

+EHly, g Jm) ) - B Ly, JmiK))
i ’ i !

< sup <p(z_: fly, Jm(K ) - S1(y_, i)m(]&<s+1))
1 2 i 2

Thus it will be sufficient if it is proved that

¢(? f(ys'l

. . _B
" y)m(K) - zi;f(ys+1,i)m(Ks+1)) < ep

for each 0 < s < n-l. This can be reduced as before by just consider-

ing the terms of

1 1

s+1,i)m(Ks

that involve a particular coset of KS , say y+kS . They are

t
i Y - P oan ;
where ys,1€y+Ks’ [Ks'Ks+1]_tip , and {Ys+1,j} is a
complete collection of representatives of the cosets of Ks+1 contained

in y+KS . If

t
<p(f(ys’1)m<Ks) - j:Slf(ysﬂ,j)m(KSﬂ)) <epP



for each possible coset of Ks then

3

<p(? fly, )m(K)) - ? Hygr1,i

Let

Ks+1) , it follows that

t

¢(tm(Ks+1)f(Ys’1) - m(Ks+l) Jfl f(y5+1*’j))

bS]
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By equation 4.1,

Consequently
-B : .
ple) < ep "o m(Ks+1) S,U-P{ch(ys’l) - f(ys+1,j :

As WC(f(ys,l) - f(ys+1,j)> < m(KS), it follows that
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o) <P i) ofmik ).

. 1
Remembering that (p(m(K )) 2 ———
s+l m(Ks+1)
(K ) tm (K )
BT s ~-B +17 B
pla) <ep'” —g—— = €p =€ep "t
m(KS+1) m(KS+1)

But t=[K :KS+1] < pp as cp[KS:KS+1] > p-"3 . Therefore
- 1
¢l@) <ep "p" = e, This implies that fe LR ,C R

R,C

!
The previous theorem gives the conditions for L = LR € .

If these conditions are not satisfied it is passible to find a function f

1
such that fe LR’C and f(LR ,C .

Example 4.4. Let G = Zp ,

r
C = {Kr:Krz p[r]Zp, reZ' and p[r] represents p2 1,
pli-1]-1
£.=plil x| U (G+elilz) |,
s P
j=0
and
a0}
f=2f,
i=1 *

By Example 4.3, it is known that C is not an ample family, The inves-
tigation will be conducted in four parts. (a) The fi and f will be

explored. (b) Evaluation of Riemann sums of f for R -C integration

will be discussed. (c) It will be shown that fe LR’c .

shown that f¢ LR"C .

(d) It will be



-1
2 (BT ., 2
fi=p X G+p Z)

j=0 P

pzx((O-l-pzZ )y U (1+pZZ y U ... U ((P-1)+pZZ ))
P P P
= pzx(a0+ pZZp)

where 0 < ag < p-l. Thus it is seen that

p2 if xea +pZZ
- 0 p
fl(x) = . 2
0 if x¢a0+p Zp .
For i=2,
p2 1
4 T, 4
L =p x| U (G+p2Z2)) = p4x(a +ap+p4z )
where 0 < a, < p-1 and 0 < a; < p-1. It follows that
p4 if xea, t+a p+p4Z
- 0 1 p
fZ(X) -
0 otherwise .
For i=3,
pt-1
- L8 0., 8 _ .8 2 3
f3 =p X jkz)o G+p ZO) = p X(a0+ a;pta,p +ap +p

where a, e z', 0 < a, < p-1. The evaluation of f3 gives

p8 if xea,ta,pta p2+a p3+pBZ
_ 0 1 2 3 P
f3(x) =

0 otherwise ,

8

Zp)
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For i=n,

2n~l
on ) n
£ =P X G+p" Z)
j=0 P
~1 n
20 22" 1 2
= p x(a.o+a.lp+ +a'n—'l P +p Zp
2 ~1
Consequently,
@ i @ i © i
2 2 2
f0) = = p , ()= Z p , flp)= Zp ,
i=1 i=1 i=2
2 @ Zi 3 2 © i
flp)=p + Zp , fp)=p + Z p ,
i=3 . 1=3
and
4 o2t
flp7y=p +p + ZT p .
i=4

(b) The general Riemann sum will be approached by splitting

the sum into two sums using

This gives

s, pli)z_, &) = s(

j=1 P
1 @
=S(2f+ z.f,p[i]z,g)
- p'-i
j=1 j=i+1
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Each of these terms will now be examined.
It is desired to show that
i-1

S<j§1 fj,p[i]zp,§i> = jfo plj]

which will be accomplished by mathematical induction, Let
M = {i:the previous statement is valid} ,

and show that M = Z+ . Is 1 an element of M ? It is-if

2
F;z lz £(E. ) 2z 1 = 02 5] =

2

where [Zp:p Zp] = p2 . Evaluation of the left hand side yields

2 2
P L 2 P -2 2. -2
T ZLE )mEPZ )| = Z£(E,)p " =p)p =P
2=1 [ \j=1J P =1
as there are only p of the cosets of pZZp that are subsets of a set of

the form a,+ pZZP and the rest of the cosets have an empty inter-

0
section with the sets of that form. Thus l1eM. It will be assumed
that the statement is true for i=k .and be shown true for i=k+1.

From the induction hypothesis it follows that
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EZ . Zk ]— pzk [Zkz .p2k+lz ]: p2k+l_2k.— Zk(Z-vl)_ pzk
p-p p) Y D’ P p ’

and {gkih} is a collection of one representative of each coset of
k+1 k
pZ Z_  contained in the coset of pZ Z_ of which § is a represen-
P K P kit

tative, Note that each coset of p?‘ Zp is either contained in a set of

the form

a0v+a1p+..,+ak_l p +p Z

or it is disjoint from any such set. Therefore

2k+1
k-1 P k oktl
2 el s B met z)
j=0 g=1 j=17 % P
where
’:z ' 2k+lz ]: 2k+1— ?_lg.2 ) Zk+2k _ ok Lk
p-P p p p p p P
Sktl
and {gkg} is a collection of representatives of the cosets of p zZ

contained in Zp' (The set {gkg} is simply the set {gkih} indexed

in a different way.) Add

k+1l

pZ 2k+l
gfl fk+1(§k+1,g>m<?p Zp)

to each side of the equation, and

2k+1
p

2k+ 1
f (g )m(p
o1 KH1\7k+lg
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2k+1
P k+1 2k+1
= Z = f(g )m(p Z ) .
g=1 =1 J\"ktlLeg P
k+1
Note that the number of cosets of p Zp contained.in a set of the
form
k k+1
27-1 2
a.o,+ a1p+,..+a.2k-1p +p Zp
2k
is p -, and all other cosets are disjoint from a set of this form. This
implies that
k+1 21<:+1 214: Zk+1 Zk+1 k-1
S( z f,p Z ,§k+1) =p P P + Z pljl
j=0 ! P j=0
k k-1 k (k+1)-1
=p~ + Z pljl= Z plj]= plj] .
j=0 j=0 j=0
: +
Thus k+leM, and M=27Z
@0
Now S( = f.,plilz ,&.) will be considered. Firstlet i=1;
j=itl J Pt
it is necegsary to evaluate Z f(gu) where {gu} is a complete
j=2
collection of representatives of the cosets of pZZp contained in Z
[cs) r m
_ 41 , _ 1 .
For every set {gu}, jngj(gu) =P a, where r, = 2 ,» My >i+l

and @€ Zp' Note that if an appropriate choice of {gu} is made,

then a = 0. Such a choice is, for example, if gu € a.0+ a;p + pZZp

then choose §M=ao+ a1p+p2+p3+,,.+pn+_”

@
Next let i=2; it is necessary to evaluate X f(gu) where
j=3
{gu} is a complete collection of representatives of the cosets of
4 . . © _f2
P Zp contam:j in Zp. For every set {gu}, j§3 fj(§21) =p ",
2

where r, = 2 -, m, > i+1 and a, e Zp' Note that if an appropriate
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choice of {gu} is made, then a,= 0. Such a choice is, for example,
if

€ca_.+ta p+a.2p2+ a.3p3+ p4Z

ng 0 1 P

then choose

2 3 4 5 n
gzz—a0+alp+a2p +azp tptp t...tp t... .
By mathematical induction it can be showh that
© r, m,
zZ f(.)=p a, where r,= 2
jeie1 i i it
is a complete collection of the representatlves of the cosets of p Z

, my >1+1,ozeZp and {g }

contained in Zp' Choosing {gu} such that

i i
guza0+alp+...+a2.1 1p2 '1+p2 oo tp L.,
a
then z f(§.,)=0.
jrit1 I

It now follows that

i

2 .
[pz<; £, ) mip 7 ))]

(€. ,)m(p
PLesi\ydip 11 P

( ® X Zi 2t
< sup <o( z f.(gu))~¢<m(p Z )>¢15_-1_<.P <P
- j=itl P
as
oo i+1 i i
-2 2 2
of = 5e) e o(me’ 2)) < o
j=it+l J P
and
© i i i+l iitl i i
2" -2 22 2M1-2 -2
¢(E f-(gi-)> ((p Z)><p P =P =pt 182,
j=itl I 7Y »
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The two terms have now be investigated. It has been found that

S(5,pli1Z,8) = = plil+a

.2i
where q)(ai) <p

- (¢) In order to show that fe LR’c , it must be shown that

-
lim S(f,K,£) exists. It will be shown that lim S(f,K,£) = Z p[j].
KeC KeC j=0

That is, for each ¢ > 0 there exists K'e¢ C such that

¢<S(f.K,§) - Z plj ]) <e
j=0

whenever K (C K'. Letany 0 < € <1 be given. There exists fe Z'

1+1

such that p—‘e < e<p . Choose K'= p[h]Zp where 2> g , Then

for any K(CK!', K= p[i]Zp where i>h. This implies

© i-1 ©
¢(S<f,Ki.§> -z p[j])= ¢(2 plil+e, - = p[J])
j=0 j=0 j=0
[«¢] K
= ¢(a1 -z P[J]) < max ¢(ai).¢( z P[J])
j=i - =i
-Zi
=P
- i+1 ® -Zi
as <p(afi) <p and q)( = p[ﬂ) = p Thus
j=i
s 2P -1
¢ S(£,K,,8) - = plj] <p™" <p <
j=0
h

R,C
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1
(d) In order to show that f;(LR C , it will be necessary to

show: that lim S(f, 6,m1) does not exist. That is, there exists an
N(6) eC

€ > 0 with the property that for each K'¢ C there exists N(6') (C X!

and N(8") C K' such that ¢(S(f, &',7n) - S(f,8",n)) > e. Two such

-Riemann sums will now be found.,

The sum S(f,p[i]Zp,gi) = S(f, 8/,€,) where N(8!) = plilz_. 1t

P
has been shown in part (b) that with a suitable choice of {§1J} this
-l
sum is equal to X p[j]. Let 6%’ be the partition formed by the
j=0

cosets of p[i]Zp ‘with the exception of p[i]Zp itself and the cosets of

p[i+1]Zp contained in p[i]Zp, By the appropriate choice of {ni}, it
i-1

can be shown that S(f, 6{', ni) =1+ = p[j] for each:i, where
j=0

N(8}) = p[i]Zp . This will be illustrated for i=1, In this case

S(f, 8),my) = X f(nlj)m(Ki)

where [Zp:pzzp] = p2 , [pZZ :p4Zp] = p2 , and {nij} is a complete

p
collection of representatives of the sets of the partition. The appro-

priate cosets of pZZp are a +a.1p+p2.Zp ‘where a0¢ 0 or aqu 0.

0
Consider the cosets of this collection of the form ao
Choose the element in this case as « = a.0+ p2+ p3 +.,..+ prl +... 0,

2
+p Zp" a.o¢ 0.

and f(a) = fl(a) = p2 . There are p-1 of these cosets, Next consider

the cosets of the form a,+a.p+ pzZp where ay # 0. Choose the

0 1
. . 2, 3 n
element in this case to be a=a.o+a.1p+p +p +...+tp +... , and
f(e) = 0. The appropriate cosets of p4Zp are a2p2+ a3p3+ p4zp. If

2, and a, are not both equal to zero, then choose the element of these
sets as a = a2p2+ a.3p3+ p4+ p5+ A pn'+ .+, - Consequently

fle) = fl(a) = pz, and there are pz-l of these cosets. If a, = 0 and
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ag= 0, then choose the element of p4Zp as

n

4
p +P5+P6+---+p ...

It follows that
4 5 4 5 4 5 2 4
flpr+p +...) = filpr+tp +t..)thL(p tp +...)=p +tp .
Therefore

S(6 84, my) = metZ)(e-10p% + m(%2,) (671" + 7+ 5%

-2 2 -4, 4 4
=p (p-l)p +p (p +p)

i-1
= p-l+2=p+1=1+ % p[j], i=1,
j=0
It could be proven that
i-1
S(f,8/,n,) =1+ X plj] for all i.
j=0

Consequently S(f, Gi,gi) - S(f, 6{',111) =1 for all i,

Let € = and K' be any element of C . There exists

1
2 | 1
icZ' suchthat K, C K'. But o(S(f,8!,£) - S(£6/,n))=e(l)=1> 3.

| Integration of Products

Theorem 4.4. Let G be compact, and C be an ample family.
R,C R,C

If f,gel then fgelL

Proof: According to Theorem 4.3 fgeLR’c if lim fex)-fely) . 0

uniformly, That is,if for each € > 0 there exists Koe C such‘ that
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f - f
¢(i§§2x_5)(y)) < ¢ whenever KCKo and KeC__ . The following

computation gives the appropriate inequality:

o (f(x) g(x) - £(y) g(y)) = o(f(x) g(x) - £(x) g(y) +£(x) g(y) - £(y) g(y))
= <P(f.(x) (g(x) - g(y)) + (f(x) - f(y)) g(Y))
< sup {o(f(x) (g(x) - g(y))), ¢(g(y) (f(x) - £(y)))}

sup {o(f(x)) @(g(x) - g(y)) , (g(y)) @(f(x) - £(y))}

< sup {o(f(x)), ¢(f(y))} sup {¢(g(x)-g(y)), o(f(x)-£(y))}.

The hypothesis that f and g belong tc LR’C implies that

of(x) = £(y)) .. ,.q e -8 ..

W (x-Y) W (x-y)

That is, p(£(x) - £(y)) < ¢ Wa(x-y), and @(g(x)-g(y)) < ¢ Wy (x-y). Then
¢ £(x) g(x) - £(y) g(y) < sup{e(f(x)), o(f(y))}e wy(x-y) .

Thus

¢(f(x>§é:z£_f}g)y>g<v>> < sup {pli(x), o(f(y))} ¢ ,

and sup {¢{f(x)), (p-(f(y))} is a constant. Therefore fge LR’c .

The basic ideas of Riemann integration have now been developed.
Comparisons have been made between integration over the real number
field and integration over the p-adic number field. The investigation
has shown how the cosets of an element of a family C partition the
group and play a role c§mparab1e to that of subintervals for Riemann

integration over the real numbers, The reader who is interested in



integration over the p-adic field will find an area of active research.

The bibliography will give him an introduction to this research,
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