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CHAPTER I 

INTRODUCTION 

The concept of a p-adic number was introduced by Hensel as 

early as 1908, but ideas related to p-adic fields and their generaJiza-

tions are still being explored. In spite of the active re search that has 

taken place in the past decade there are still many unanswered que s-

tions. The following statement by A. F. Monna (8) illustrates this 

research: 

At first a theory of non-archimedean normed spaces was 
attempted. In more recent years a theory of lo<;ally con
vex spaces over non-archimedean valued fields followed. 

Both parts of the theory are now in development. 
Several problems, which have found solution in spaces 
over the reals, still wait solution in our case. Neverthe.,. 
less, as a general conclusion it may be said, that many 
parts of the classical theory remain valid, It is remark
able that this is also true of parts for whi<.:h one would 
expect the ordering of the reals to be es senfial, I mention, 
for instance, the separation theorems for convex sets; 
without using an ordering of the fields - -even if ordering 
should be possible--one can define convexity of sets and 
prove· separation theorems for convex sets. In many caaes 
the proofs which are valid for the real spa<.:es, cannot be 
given in the same way for spaces over a ncm-archimedean 
valued field K. 

The purpose of this study is to provide an expository develop-

ment of Riemann integration over the p-adic field by the use of 

Riemann sums. The structure is planned in such a manner t}:tat it will 

be accessible to the senior mathematics major. The role of the field 

in determining the properties of the integral will be probed. The major 
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references for this study are papers by Francisco Toma'.s (13) and 

Francois Bruhat (4). 

There is a great amount of substructure that is necessary in 

preparation for the definition of the Riemann integral. The necessary 

facts about p-adic numbers, algebraic systems, topology, and :measure 

theory will be presented in this chapter. A standard notation will be 

established to be used with these concepts thrqughout the paper. The 

second chapter will use the.se properties to establish a basis for inte-

gration. The remainder of the paper will be devoted to Riemann inte .. 

gration over the p-adic field and its properties, 

Sets 

There are certain sets which are used frequently. These sets 

will be designated as follows: Z is the set of integers; z+ is the set 

of positive integers; Z I is the set of nonnegative integers; Z is the 
p 

set of p-adic integers; Q is the set of p-adic numbers; and R' is 
p 

the set of nonnegative real numbers. 

If A and B are arbitrary sets, then the set 

A X B = { (a, b): a e A, be B} 

is the carte sian product of A and B. The elements of A X B are 

ordered pairs. A partition of a set'A is a representation of A as the 

union of nonempty mutually disjoint. subsets of A. 

Definition 1. l. A distance function (or a metric) for a set A 

is a function d, A x A - R' such that for all x, y, z e A 

(1) d(x,y) = 0 if and only if x=y, 



(2) d(x, y) = d(y, x), and 

(3) d(x, z) _::: d(x, y) + d(y1 z), 

Given a set A and an element x of the untverse. The charac

teristic function X is defined as follows: 

fields. 

X (x) = 1 if x e A 

x (x) = 0 H x t A . 

Algebraic Systems 

The algebraic systems that will be of concern are groups and 
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Theorem l. 1. Let G be a group, For each a, b ~· G there 

exists uniquely xe G such that a+x = b where + is the group opera

tion, 

The set H is a subgroup of a group G if H is a subset of G 

and H is a group with respect to the operation in G. 

Theorem 1. 2. A subset H of a group G is a subgroup of G if 

and only if a - be H for e.ach a, be H. 

Let H be a subgroup of G, Then for each xeG,x+H isa 

left coset of H in G. 

Theorem 1. 3. If H is a subgroup of G, the left cosets of H 

in G form a partition of G. 

Let H be a subgroup of G. Then the number of cosets of H 

contained in G is called the index of ff in G and is denoted by [G: H]. 



Topology 

Definition 1. 2. A set G is said to be a topological gl;"oup if: 

(1) G is a group; 

(2) G is a topological space; and 

(3) The group operations in G are continuous in the 

topological space G. In other words, the function 

-x is continuous on G, arid ~ + y is continuous on 

G X G. 

Theorem 1. 4. Let {U } be a basis for the open sets of the 
a 

idenUty e of the topological group G. Then the open sets of G are 
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unions of the sets of the form x + U where x e G, and the topology of 
a 

G is completely determined by the basis at e, 

Theorem 1. 5. If G is a topological group, and H is a subgroup 

which is open, then H is also closed. 

The cartesian product Ax B of two topological spaces A and 

B is a topological space with the product topology. The family !B of 

all cartesian products U x V where U is c;l.n open subset of A and V 

is an open subset of B is a basis for the product topology. A topolog-

ical space B is compact if every open covering of B has a finite sub-

cove ring. A topological space B is locally compact if each point of B 

has at least one compact neighborhood. 

Theorem l, 6, The cartesian product of two compac;t topological 

spaces is a c;ompact topological space. 



5 

Theorem 1. 7. The cartesian product of two locally compact 

topological spaces is a locally compact topological space. 

Theorem 1. 8. The cartesian product of two topological groups 

is a topological group. 

Theorem 1. 9. Every closed subset of a compact space is com-

pact. 

Theorem 1. 10. The family of all spherical neighborhoods of 

points in a set A with metric d forms a basis for a topology for A. 

p-Adic Numbers 

The set Qp of p-adic numbers is a field, and Z the set of 
p 

p-adic integers is a subset of Q. 
p 

The set Z is a commutative 
p 

ring with unity. Both Q and Z are abeUan groups with respect to 
p p 

addition. Any element a e Z has a unique representation 
p 

where O < a. < p-1, i e z•. This form is 
- l -

called the canonical form, and will be used throughout the paper 

assuming that the coefficients are thus restricted without specific note. 

Every 

where 

a E Z , a I: 0, has a unique representation in the form a = pm£ 
p 

me Z' and e is a unit of z . 
p 

Each nonzero a E Q is 
p 

uniquely expressed in the form a = pme where m E Z and £ is a unit 

of Z . 
p 

Definition 1. 3. 

( ) 1 "f k cpa =k 1 a=pi::, 
p 

The function cp : Q -. R' is defined as follows: 
p 

i:: a unit of Z , k e Z ; and cp(O) = 0 , 
p 

Theorem 1. 11. Let a , 13 e Q . The function cp has the 
p 

following properties: 
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(1) cp(a) > 0 with equality only if a = 0; 

(2) cp(af3) =cp(a)cp(f3); 

(3) cp(a + f3) ~ max (cp(a). cp(f3)); and 

(4) cp(a + f3) ~ cp(a) + cp(f3) • 

Property (3) is ;referred to as the non-Archimedean property of cp, 

The function d ; Q x Q - R' defined by d (a, f3) = <P(a - f3) is a metric p p p p 

on Q . The p-adic numbers with metric induced by cp is a totally 
p 

disconnected and locally compact metric space. The p-.adic integers 

form a compact subspace of the metric space Q . AU discussion of 
p 

Qp and Zp as topological spaces will be with respect to the metric 

induced by cp. Both topological spaces Qp and Zp are topological 

groups. 

The carte sian product Q x Q denoted by 
p p 

Q2 
p 

is a locally 

compact topological group. The cartesian product z2 
p 

is a compact 

topological group. 

space 

space 

Theorem 1. 12, The subsets pr Z • r E Z, of the. topological 
p 

rl rz 
Q are open, closed and compact. Also, p Z C p Z 

p p p 

Theorem 1. 13. The subsets prZ • re z•. of the top0logical 
p 

Z are open, closed and compact. 
p 

Theorem 1. 14. The set r p Zp. r E Z. is a subgroup of Qp. 

r 
Proof: The set p Z is a subset of Q . 

p p 
r r r 

Let p t 0 , p e: 1 e p zp 

Where t 0 ,e: 1 E Zp, The theorem will be proved if it can be shown that 

r r r 
p £0 - p £1 E p Zp 



r r 
zp is a ring. Thus p (to - e:1) e p zp. 

r r r 
Then :p £0 - p t l e p zp 

Therefore pr ZP · is a subgroup of Qp. 

Theorem 1. 15. r + The set p Z . , re Z , is a subgroup of Z . p p 

r r r 
Proof: Let p t 0 , p t 1 e p ZP where e: 0 , e: 1 E Zp •· But 

r r r 
p eo-P el~ p (e0-£1). 

r r 
p (eo-tl)Ep zp. Thus 

subgroup of Z . 
p 

And £0 - e: l e zp 

r r r 
p e0 - p £ l E p Zp 

as Z is a ring. 
p 

r 
Therefore p Z 

p 

So 

is a 
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The cosets of a subgroup K of a group G constitute a partition 

of the group G. This partition will be used in the same manner as the 

partition of an interval is used in the development of Riemann integra-

tion over the ~ield of real numbers. It will be of value to know the 

number of distinct cosets in a particular partition. 

Theorem 1. 16. 

[Z : K];:: pi. 

i 
If G = Z , and K = p Z where i e Z' then 

p p 

p 

i 
Proof: Let x e Z , then x + K = x + p Z • Let x be of the form 

p p 
i..,. 1 

x = a 0 + a 1p + •. , -tr ai-lp where aj e Z, 0 < aj .< p ... l for eaGh 

0 < j < i-1. These choices for x will give the distinct cosets of K 

in Z , 
p 

There are p choices for each a. and i choices for each j. 
J 

i 
So there are a total of p choices for x. 

i, j E Z' 

Theorem 1. 17. If G = z 2 , 
p 

then [z 2 : K] = pi+j. 
p 

Proof: Let 
2 

XE Z , 
p 

form 

Therefore [Z : K] = pi. 
p 

where 

Let x be of the 
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x= ( i-1 _j~l 
ao+alp+ •.• +ai-lp ,bo+blp+ .•• +bj-lp- ) 

where a e Z , 0 < a < p-1 for O < n < i-1 and b e Z, n - n-.- m 

0 .::_bro.::_ p-.1 for O :::_ m ~ j-1. These choices for x will give the 

distinct <;;osets of K in z 2 • There are p choic;es for eac:h a and i 
P n 

choices for n. There are p choices for each b and j choices for 
m 

m. So there are 

[z2 :K] = pi+j. 
p 

choices for x. Therefore 

Example 1. 1. 

[Z ; p 7 z ] = p 7 . 

Let G=Z., and K=p7Z. ByTheoreml.16, 
p p 

p p 

2 Example 1. 2. Let G = Z , 
p 

Theorem l,.17, [G: K] = pS+S::::: p 8 . 

,3 5 
and K = p Z x p Z • 

p p 

Haar Measure 

By 

Let G be a disconnected and locally compact topological group 

with its topology originating from a metric d(a, b), Haar proved the 

existence of a left invariant Lebesque measure in G. 

Definition 1. 4. A function m(H) is a left invariant Haar 

measure if it satisfies the following properties: 

(1) The function m(H) is defined for all sets H C G, 

and its values are real numbers such that 

0 .::_ m(H) ~ + co , 

(2) For every nonempty open set K f. { e} , m(K) > 0; 

for every compact set K, m(K) < + co • 



(3) If H 1, Hz,... is a finite or infinite sequence of sets, 

then m(H 1) + m(Hz) + ... .:::_ m(H 1 U Hz U ... ) , 

(4) ;If H, K are two sets with D(H, I:<) > 0 

(n(H,K) = inf{D(x,y) :xeH, yeK}), 

then m(H) + m(K) = m(H UK). 

(5) The function m(H) = inf {m(K): K if:l an open set, K:) H}. 

(6) The function m(H) = m(a + H) for all a E G, H CG 1 

(7) The function m(H) = m(-H). 

9 

The only disconnected and locally compact groups G of concern in this 

paper are those which are subsets of Q or subsets of QZ, 
p p 

A normalized Haar measure will be given for Q . Let 
p 

[ r ] r . r 1 -r m(Z ) = 1. Then as Z : p Z Z' = p , defme m(p Z ) = ~ = p . 
p p p r E p pr 

By the left invariant property (6), m(a+ prZ ) = p-r for all a E Q • p . p 

Similarly, as [p -r Z : Z ] z+ = pr, define m(p ,.r Z ) = pr. By the 
p pre · p 

left invariant property (6), m(a+ p -r Z ) = pr. This definition will 
p 

lead to a left invariant Haar measure, but all that will be needed in this 

paper ~s the measure of the sets that have been given. 

A normalized Haar measure for QZ is derived from the 
p 

measure on Q c1.s follows: m(A x B) = m(A), m(B) for each 
p 

2 
Ax Be Qp. For example: m(Z. x Z ) = m(Z )·m(Z ) = 1; and p p p p 

m(prZ x psZ ) = m(prZ ) . m(psZ ) = p-r. p-s = p-r-s 
p pr,seZ prEZ psEZ 

2 r s -r-s 
For each a E QP , m(a + p Zp x p ZP) = p . 



CHAPTER II 

PRELIMINARY CONCEPTS 

Functions 

The functions that will be of interest in developing Riemann 

p-adic integration are mappings from G to Q. 
p 

Definition 2. 1. A function f is a constant function on a set 

S ( G if f(x) = c for all x e S. 

Example 2. 1. Let f(x) = 3 for all x 1; G, then f is a constant 

function on G. 

Definition 2. 2. A function f is a locaUy constant function if 

for each x e G there exists a neighborhood N of x such that f is a 

constant function on N. 

Example 2. 2. Let G = Z , and 
p 

l.f 2z 5z XE p -p 
p p 

otherwise . 

Since p 5zp is an open set any element of p 5Zp has a neighborhood, 

p 5zp' over which the function is constant. Also, Z - p 2Z is an open p p 

set as p 2 Z is a closed set. Thus for each element of Z - p 2 Z 
p p p' 

2 
Z - p Z is a neighborhood over which f is a constanL 

p p 

1 ('\ 
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2 5 
Similarly p Z - p Z is an open set, so f<;:>r each element of 

p p 

p 2 zp - p 5zp, p2 zp - p 5zp is a neighborhood over which f is a constant. 

Thus f is a locally constant function. 

2 00 3i Ex<;imple 2.3. Let G = Z , and f= ::E p X(K.) where 
P i=O 1 

K. = piZ x p2 iz , i e Z 1 , and X i$ the characteristic function. Let 
1 p p 

4 2 
x = (p , p ) , Then x e K0 , x e K 1 and x e K2 • But x ¢ Ki for i > 3. 

So X(K 0) = 1, X(K 1) = 1, x(K2 ) = 1 and x(K.) = o for t > 3 . 
l 

4 2 0 3 6 
Therefore f(p , p ) = p + p + p 

Let N be any neighbol;'hood of (0, 0). Then there exists a 

+ . 2' 
j E z such that PJ z x p J z c N as n { K I K E c} = { 0} . .A.ls O I 

p p 
j+lz 2 0+l)z C jz 2jz Let 

P PXP p P pxp p" 
·+1 2('+1) 

X e pJ Z x p J Z and 
p p' 

. 2' ·+1 2('+1) 
y E ( PJ z x p J z ) - ( PJ z x p J z ' 

p p p p 
3('+1) 

So f(x) - f (y) = p J and 

x and ye N. Therefore f is not locally constant, 

Limit of a Function 

In the present setting the limit of a function is defined in the 

usual way, making use of the metric in G and in Q , 
p 

Definition 2. 3. Let x, a e G, f3 e Q , and f be a function, 
p . 

f: G - Q . The limit of the function f as x approaches a is f3 , 
p 

denoted by lim f(x) = f3, if for eac;h real number e > 0 th~re E)xists 
x-a 

a real number 6 > 0 such that cp(f(x) -13) < e whenever cp(x -a)< 6. 

Example 2. 4. 

Show lim 2 f (x) = 0 . 
x-p 

Let G = Z , and 
p 

{
O if xep2 Z -p5z 

f(x) = P · P 
I otherwise . 
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In order to satisfy the defini·tion it must be shown that for each 

e > O there exists 6 > 0 such that rp(f(x) - O) < e whehever 

2 -2 2 2.2 
rp(x-p) < 6. Let 6 = p • If rp(x-p) < p then 

Thus f(x) = 0 so rp(f(x)) = rp(O) = 0 < e • 

Therefore lim. f(x) = 0. 
x-p2 

In order to be able to apply the definition of limit to a function 

whose domain is a sub set of Q 2 , it will be necessary to define a 
p 

function- rp tha:t in~uce s a metric for the produc~ space. 

Definition 2. 4, Let (a, b) e Q 2 , then rp((a, b)) = max {rp(a), q,(b)}. . . p . 

from the:.properti.e:s .fof rp in the space Qp, 

Theorem 2. 1. The function·rp for a2 space is non~ 
p 

Archimedean. 

Proof: Let Then 

rp((xl' yl) + (x2, Y2)) = rp(xl + x2' Y1 t Yz) 

= max [rp(xl + x2)' rp(yl + Yz)] 

by definition, This implies that 

as 

rp[(x1,Y1) + (xz,Y2)] ::_ max[max[rp(xl),rp{yl)L max[<p(Xz),rp(yz)]] 

= max [rp (x p y 1) , rp (x2 , y 2 )] 



Therefore the metric for Q2 is non-Archimedean. 
p 

Example 2. 5. Let 

i i 

2 G::; Z , and 
p 

co 3 i 
f = E p x(K.) where 

i=O 1 

K. = p Z x p Z . Show 
1 p p 

lim f(x, y) = 1 + p 3 and 
( x' y) - ( p2 , p) 

~ p3i lim f(x, y) = µ 

(x, y)-(O, 0) i=O 

For each e > 0, a 6 > 0 must be found such that 

cp(f(x, y) - (1 + p3 )) < e whenever cp({x, y) - (p2 , p)) < 6. Let 

2 2 
But cp((x, y) - (p , p)) = cp(x - p , y - p). So 

2 2 
cp((x,y) - (p ,p)) = max{cp(x-p ),cp(y .. p)}. 

Thus cp (x - p 2) < p - l and cp (y - p) < p - l • This implies that 

~ -1 
u = p 

2 3 2 3 
y = p+a0p + a 1p + ... and x = b 0p + b 1p +... Therefore 

(x, y) e K 1 C K 0 and (x, y) i Ki for i ~ 2. Consequently 

f(x, y) =po+ p 3 Thus cp(f(x, yY- (1 +p3 )) = 0 < e •. Therefore 

lim 2 f(x,y) = l+p3 

(x, y) - (p 'p) 

In order to prove that 

lim f(x, y) 
(x, y)- (0, O) 

00 3 i = E p 
i=O 
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( co 3") for each e > 0, a 6 > 0 must be found such that cp f(x, y) - i~O p 1 < e 

whenever cp((x, y)) < 6. There exists an r E Z' such that 

-r -r+l 
p ~e<p 

-r 
Let o=p . But cp((x,y))=max(cp(x),cp(y)). 

Since cp(x) ~ p 
-r 

and 
-r 

cp(y) < p ' 

r+l r+2 
x = ar+ 1 P + ar+zP + ... 



and 

b rtl + r+2 + 
y= r+lP ar+zP ··• 

0 3 
Then f(x, y) = p + p + 

a e Z 1 , a > r + 1 . So 

where R= 
a 3i 
!: p 

i=r+l 

( 
00 3i) -3(r+2) 

<{} f(x, y) - . !; p < p < E • 

1:::,0 

Therefore 

lim f(x, y) 
(x, y)- (O, 0) 

00 3i = !: p 
i=O 

Continuity of a Function 

and 

Continuity plays a surprising role in the spc3rce of integrable 

functions. 

Definition 2. 5. A function f : G- Q is c;ontinuous at a if 
p 

14 

lim f(x) = f(a). A function f is continuous on G if it is continuous at 

each point of G. 

Example 2. 6. Let G = Z and p' 

2 5 

-- {01 f(x) 
if XE p Z ~ p Z 

p p 

otherwise • 

By Example 2 .4, the lim. f(x) = 0. 
X-+p2 

2 
Also f ( p ) = 0 • 

lim f(x) = f(p2 ). Therefore f is continuous at 
x-p2 
shown that this function is contin1,1ous on 

lim f(x) = 0. 
X-+XO 

2 
p . 

Thus 

It can easily be 



2 al 3i 
Let G = Z , and f = ~ p x(K.) 

P i=O 1 
· Example 2. 7. 

By Example 2. 5 , lim f (x, y) = 
(x, y)- (p2, p) 

i i 
K. = p Z x p Z • 

l p p 
2 3 

f {p , p) = 1 + p . Thus f is continuous at (p2, p). 

Also by Example 2. 5, 

But f(O, 0) 
al 3 i 

= ~ p 
i=O 

lim · .f(x, y) 
(x, y)- (0, O) 

q3 3i 
= ~ p 

.. i=O 

So f is continuous at (0, 0). 

Derivative of a Func;tion 

where 

The definition of a derivative will be the same as for real 
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Also, 

numbers. The non-Archimedean metric will cause some results to 

vary from that which was expected in the real numbers. 

Definition 2,6, Let f:G- Q • The derivative off at b 
p 

denoted by f'(b) is 

Example 2. 8. 

f'(b) = lim f(x) - f(b) 
x-b 

Let G = Z , and f(x) = p • 
p 

f' (y) = lim .E...::..E. = lim O = 0 • 
x-y x -y x-+y 

Therefore f' (y) = 0 for all y E Z . 
p 

Example 2. 9. Let G = Z p' 

p l xep p 
f. (x) 

l 
{ 

2i 'f i + 3i2 
= p 

O otherwise , 

Let ye Z . 
p 

Then 



(X) 

and f be defined by f = l::: f. • Show f 1{y) = 0 for all ye Z . 
i= 1 1 P 

Now f'{y) = 0 if and only if 

lim 
x-y 

f (x) - f(y) = 0, and x-y 
lim f (x) - f (y) = 0 

x-y 

if and only if for each e > 0 there exists 6 > 0 such that 

<P(f(x~ = ~(y)) < e whenever <P(x - y) < 6. Let ye Z • Either there 
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. i 0 3i0 P i 3i . 
exists uniquely i0 such that ye p . + p ZP or y f. p + p ZP for 

+ all i E Z . 

. Co~sider the case whe_re there. exists u?iquely i 0 such. that 
10 310 10 310 310+1 

yep + p Z . Then y = p + a 0p + a 1p + . . • Let 
3 . p 3· - :i.o - 10 

6 = p • Then <P(X - y) < p which implies that 

This means that 
Zi0 Zi0 

f(y) = p and f(x) = p . So 

210 zi0 
<P( f(x) -f(y)) = <P(p -p ) = <P(O) = 0 < e • 

x-y x-y 
I 

i 0 3i0 
Therefore f' (y) = 0 when ye p + p · Zp for some i0 • 

· 3i 
Consider the case where y f. p 1 + p Z for all i 1; z+. This 

P' 
m 2 

implies y = 0 or y = p (a0 + a 1 p + a 2p + ... ) where one of the 

following occur: 

( 1) m=O, and 1 ~ a 0 ~ p-1 . • 
(2) + and 2 .:5, ao < p~l me Z , ; or 

(3) + 
1 ' and there exists an i such that me Z , a = 0 

rn < i < 3m and a 1 j O . 



-r -r -r+l 
If y = 0 let 6 = p where p ~ e < p Then 

,p(x - y) < p-r which implies that x = pke0 where k > r + 1 and e0 
2k 

is a unit of Z . Either f(x) = 0 or f(x) = p , and f(y) = 0. If 
p 

f(x) = 0 then 

<p( f(x) -f(y)) = ,p(O) = 0 < e. 
x-y 

If f(x) = p 2 k then 

Thus ,p( f(x) - f(y)) = p-k < p -r < e since k > r + 1. Therefore 
x-y -

f 1 (0) = 0. 

If 

r. -1 where m = 0 and 1 ~ a 0 ~ p-1 let u = p 

which implies that 

Thus f(x) = 0 ab.ct f(y) = 0. So ,p( f(x2 = ~(y)) 

1 2 
f'(y) = O when y = a 0 + a 1p + a. 2p +... and 

m 2 
If y = p (a 0 + a 1 p + a 2p + ... ) where 

Then ,p (x - y) < p - l 

= 0 < e. Therefore 

1 < ao ~ p-1, 

me z+ and 

17 

r. -m -m 2 ~ a 0 ~ p-1 then let u = p , Then ,p(x - y) < p which implies 

m 2 
that x = p (a 0 + b 0p + i:? l p + , •• ) , Thus f(x) = 0 and f(y) = 0. So 

,p( f(x) - f(y) )· = O < e . Therefore f' (y) = 0 when 
x-y 
m 2 + Y : p (a0 + alp + a 2p + , , , ) , m E Z and 2 < a 0 ~ p-1 • 
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m 2 + 
If y = p (a 0 + a 1p + a~p + ... ) where me Z I a 0 = 1 and 

h h h .L 6 -3m t ere exists i euc t at m < i < 3m and a . .,.. 0 then ~et = p . 
l 

-3:m 
Then cp(x - y) < p which implies that 

Thus f(y) = 0 and f(x) = 0. Again, cp( f(x) - f(y)) = 0 < e . There
x - y 

fore f'(y) = 0 when y = pm(a0 + a 1p + a 2p 2 + ..• ), me z+, a 0 = 1 

and there exists i such that m < i < 3m and 

Therefore f'(y) = 0 for all ye Z . p· 

A Family C 

a.# 0. 
l 

Let C represent a family of open compact subgroups of the 

group G with the properties: 

(1) fl {K: Ke C} = {e} where e is the identity element 

of G, and 

(2) A e C and Be C implies that A fl Be C • 

Since such a family plays a central role in Riemann p-adic integration 

it is advantageous to exhibit such a family. 

Example 2. 10. Let 

{ kr 
~= p Z :reZ 

p 

is a family C. 

G = Q then 
p' 

and k is a constant, k e z+} 

Also, 

By Theorem 1. 14, pkr Zp is a subgroup of Qp for each r. 

pkrz is an open compact subset of Q fo:r each kr e Z. 
kp p 

Let 

kr1 rz 
p ZP, p ZP e ~ where r 1 < r 2 • Then 
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kr 1 kr 2 kr2 
P z n P z = P z ., 

p p p 

kr 2 
and p Zp E !t). ThE;i identity of Qp is O. 

Finally it must be shown that n {D ; De !t)} = { O} • It is clear 

that {O} C Ii {D: DE !t)}. Assume Ii {D: DE !t)} (/_ {0}. Then there 

exists a E Q , a f:. 0 , such that 
p 

aen {D:D !t)}. 1. 
But a = p ~O where 

J. E Z and e: 0 is a unit of 
kr 1 

z . 
p 

There exists such that 

kr 1 < i. . So a, p Z , 
. p This implies that a, Ii {D: DE~} . Thus 

n {D: DE~} c {O} . Therefore ~ is a family c. 

Examl?le 2.11. Let G = Z then p' 

~ = {pkrz : re Z', k is a constant, ke z+} 
p 

is a family C. The demonstrati,on is similar to the demonstration for 

Example 2. 10. 

Example 2, 12. Let G = Qz then p , 

{ kr J.s 
~= p Z xp Z :r,seZ 

p p 
and + k, i. constants , k, 1. e Z } 

is a family C • 

2 
Q is a locally compact topological group. Then Q 

p p 

locally compact topological group. By Theorem 1. 14, pkrzp 

is a 

and 

p 1 sz are compact subgroups of Q . Thus pkrz x p1 sz · is a 
p p p p 

compact subgroup of Q x Q . Also as pkrz and p1 sz 
p p p p 

are open 

. Q th krz i. Sz . . Q Q L t 
in . p, en p · p x p p is open in p x p e 

kr 1 i. s 1 
p Z x p Z a1:1.d 

p p 
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be elements of ~. Then 

kr 1 .ts 1 kr 2 .ts2 
p z x P z n P zP x P z p p p 

k max { r 1 , r 2} .R. max { s 1 , s 2} 
= p X p E~. 

Show r1{D:De~} = {O}. 

r1{D:De~} (/_ {O}. 

It is clear that {0} C (1 {D: DE~}. 

Assume that Then there exists· a E Q2 , a f. 0, 
p 

n m + such that ae n {D:De ~}. Thus a= p Z x p Z where n,me Z 
p p 

There exists r 1 E Z and s 1 E Z such that 
k .R. 

as a E p Z x p Z 
p p r 1k s 1.R. 

r 1k > n and s 1.t > m. Therefore aip Zpx p Zp. So 

a' n {D: DE~} . So n {D: DE~} ::: {O} . Therefore ~ is a family c. 

Example 2. 13, Let G = z 2 then 
p' 

kr .R.s + 
~ = {p Zp x p Zp: r, s e Z', k, .R. constants, k,.t e Z } 

is a family C • The demonstration is similar to the demonstration for 

Example 2. 12. 

The families C will be restrh;:ted to subfamilies of 

Riemann Sums 

Riemann sums will be developed with ITespect to the family C. 

Definition 2. 7. Let G be a compact group with q,(m(G)) = y, 

and f be a function from G to Q . The Riemann sum of f relative to 
p 

s 
Kand {;.} is the sum Em(K)f(;.) where KeC, s = [G:K], and 

1 i= 1 1 
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{ ;i} is a set consisting of one and only one element from each of the 

co~ets of K with respect to G. The notation S(f, K,;) is used to 

re pre sent this sum. ( Note m(K) = m(x + K) for all x E G.) 

2r } Example 2. 14. Let G = Z C = {K : K = p Z r E Z I 
- p' r r p' ' 

and f(x) = p for all x E Zp. Consider K 0 E C. By Theorem 1. 14, 

0 
[Zp:Ko]=p =l. So S(f,Ko,s)=m(Ko)f(;l) where S1EZP. Or 

S(f, K 0 , ; ) = 1 · p = p, 

Consider K 1 E C • 
2 

By Theorem I. 14, [Zp: K 1] = p • So 

2 

S(f,K 1,s) 
p -2 

= ~ p . p 
i= 1 

t: 2 -2 . t: Thus S(f,K 1,<:,)=p ·p ,p, Finally S(f,K 1,<:,)=p. 

4 
Consider K 2 EC. By Theorem I. 14, [Zp: K 2 ] = p . So 

4 
p 4 -4 = ~ m(K2 ) f(s.) = p · p • p 
i= 1 1 

Thus S(f,K2,s) = p. 

Consider Kr E C. Then [Zp: Kr]= p 2 r, and 

2r 
p 

S(f, K , ;) 
r 

= ~ m(K)f(;.). 
i= 1 r i . 

2r -2r 
Or S(f, K , ; ) = p • p · p . Thus S(f, K , ; ) = p. In this case r r 
S(f, K , ;) = p for every r and for every admissible {;.}. 

r 1 

Example 2. 15, Let 
2 

G = Z , 
p 



and 

So 

where 

RO= 

Consider 

0 

f = 
co 3r 
I: p X (K ) . 

r r=O 

min{k 1,k2} 

I: p3r 

r=O 

0 00 3r 
p I: p if ; l = ( 0 , 0) 

r=O 

O min ~l' k2} 3r . ( kl k2 ) 
p p if ; 1 = .• p e: 1 ' p e:2 

r=O 

a 3r 
I: p where a e Z , a > 1 or a = co • 

r:::,l 

2 2 
K 1 eC. So [Zp:K 1]=p. 

2 
p 

Then 

2 
p 

S(£,K 1,;) = I: m(K 1)£(;.) = 
i= 1 1 

m(K 1) I: £(;.). 
i= 1 1 

22 

For all cosets of K 1 except K 1 itself any element chosen from the 
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0 
co set will have a function value of p • Let s \ be the element chosen 

fr om K 1 • Then s 1 = ( 0, 0) or s 1 = (pk\: 1 , p 2 e: 2 ) w he re e 1 , e: 2 are 

units of Zp and k 1 , k 2 e Z, k 1 , k 2 ~ 1. Thus 

-2 
S(f,K,s)=p 

(X) 

~ p3 r if s 1 = ( 0, 0) 
r=O 

r=O 

-2 2 0 0 3 = p [p - p + p + p + R 1 ] 

where 

0 

a 
""" p 3 r where Z > 2 ..., a e , a _ or a = co , 

r=2 

t O 1 -2 
So S(f, K, '=') = p + p + p R l . 

Consider K 2 e C . Then 

S(f,K2 ,s) 

4 
p 

= ~ m(K2 )f(;.) 
i= 1 1 

or 

Thus 

4 
-4 p 

s(f, K 2 , s) = p ~ f(s.) 
i= 1 1 

The distinct cosets of K 2 can be represented by x + K 2 where 

2 2 
x = (ao + alp, bo + blp). If ao f. O and bo f. 0 there are p (p .,.1) 

cosets and the function value of any element in these cosets is po. If 

ao = 0, bo = 0 and al, bl not both zero there are 

the function value for any element in these cosets is 

2 
p - 1 cosets and 

pot P3 If 

a 0 ,a 1 ,b0 ,b 1 = 0 

from K 2 . Then 

the cos et is K 2 . Let s 1 be the element chosen 

kl k2 
; 1 = (O,O) or ; 1 = p e 1 ,p e: 2 where e 1 ,e2 are 
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units of Zp and k 1 ,~2 E Z, k,k2 .:::_ 2. So 

S(£,K 2,s) 

min { k 1 ' ~2} ( k 1 k2 ) 
~ p3r i'f t: "" '::, 1 = p El' p Ez 

r:::;0 

-4 [ 4 2 2 0 5 3 0 3 6 ] 
= p p - p + p - p + p - p + p + p + p + R2. 

-4 4 5 6 = p [p + p + p + R2 ] 

where 

R = 2 

0 

a 3r 
~ p w he re a E Z , a > 3 or a = oo • 

r=3 

t: 0 2 -4 Thus S(f, K2 , <::,) = p + p + p + p R 2 . 

By the use of mathematical induction it can be shown that 

0 1 n -2n 
S(f, K • s) = p + p +. '. + p + p R where n E z• and 

n n 

R = n 

0 

a 3r 
~ p where a E Z , a .:::_ q. + 1 or a = oo , 

r=n+l 

Pseudo Distance 

In order to discuss the relationship of Riemann integrability and 

continuity, it is necessary to have a fuq.ction with spe:cial properties 

that is related to the family C . 
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Definition 2. 8, The function wC associated with the family C 

is defined as we (x) = inf {m(K) : Ke Cx} where 

C = {K : K E C and x E K}. x 

This function wC will be used to indµce a function p suc;h that 

p(x, y) = we (x-y). The function p fails to satisfy property ( 1) of a 

distance function, and is c;alled a pseudo distance function. 

Example 2, 16. Let G = Z , C = { pr Z . , re Z '} , and x = p3 e0 p p 

where e0 is a unit of z . p 
r 

Then C = { p Z : r E Z , 0 < r < 3} • So x p - -

-r = inf { p : r E Z , 0 < r < 3} 
. - -

Therefore 
-3 

wC (x) = p 

Note that the function wC ie 

smallest disc in C that contains x. 

p 
-r 

where rz is the p p 

2 2r r 
Let G = Q , C = { p Z x p Z r :r E Z} 

p p p 

x = 

Example 2. 17. 

-4 
( p i:; 0 , p e 1 ) where e0 , e 1 are units of Zp. Then 

2r r 
C = {p · Z x p Z : re Z, r ~ -2}, 

x p p 

So 

w.c(x) = inf{m(p2rz x prZ ) : re Z, r :::_ -2} 
p p 

{ -3r = inf p : r E Z , r ~ - 2} 

Thus 

, and 



Theorem 2. 2. The function wC has the ·following 

pr.6perHe s: 

( 1) The function wC (e) = 0 where e is the identity of 

G. 

(2) The ·fun1ction · p(x, y) ;::: we (x-y.) is not a distance function, 

(3) If C and C' are two appropriate families such that 

c c C1 then WC (x) ~ we• (x) for all x E G. 

(4) Zero is the greatest lower bound of we (x). 

( 5) if G = Q , C = {pr Z : r E Z} 
p p 

then wC ;f ;x) = cp (x) 
\ 

for all x e Q . 

Proof: (1) Assume 

p 

G C Q • 
p 

\ 

\ 
\ 

Then since O & K fo~ every K E C , 
\ 

wC(O) = inf{m(K) ;Ke C}. Suppose inf{m(K) ;Ke C}'# O, then 

26 

inf {m(K); KE C} = e > 0, as m(K) > 0 for ~ach K & C , There exists 

. -k -k+l 
k e Z such that p ~ E < p . The family C is a subfamily of 

r r 
{p Z : re Z}. Let r > k, re Z. If p e K for all KE C then 

p 

n {K : Ke C} # { O} which is a ccmtradietion. Therefore there exists 

Ke C such that pr i K. This implies that m(K) < p-r < p -k < e which 

is a contradiction. Thus it follows that inf {m(K): Ke C} = 0, and that 

WC (0) = 0. 

Assume G C 0 2 . Then C is a subfamily of 
p 

Since (0, 0) e K for every Ke C, we (0, 0) = inf {m(K): KE C} 

Suppose the inf{m(K) :Ke C} # 0, then inf{m(K) :Ke C} z E > 0, as 

m(K) > 0 for each KE C , There exists k e Z such that 
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-k -k+l 
p ~ e < p . Let t > k, t e Z . There exists K 1 e C such that 

(pt, O) i K' for if not (pt, 0) e (') {K: KE C} which is a contradiction, 

ro s 
Thus·K 1 =p ZpxpZP where r 0 ,sez,r0 >t. Let u>k,ueZ~ 

There exists K"e C such that (0, pu) i K" for Hnot 

(0, pu) e (') {K: Ke C} which is a contradiction, Thus 

r so 
K" = p zp x p zp where r, so E z' so > u. But 

max{r0 , r} max {s 0 , s} 
K 1 (') K" z p Z x p Z E, C. . . p p 

It follows that 

-t-u ~Zk .. k 
<p <p <p ~E· 

Which contradiGts that inf {m(K) : Ke C} = E . Therefore 

inf {m(K): Ke C} :; 0, and we (0, 0) = 0. 

( 2) Let G :;: Z 2 , C = {pr Z x p s Z : r , s E Z '} , 
p p p . 

and x = ( 1, 0). 

C = { Z X ps Z : s e Z '} . So 
x p p 

Then ·. 

wC(x) = inf{m(Z x psZ ) : s e Z 1} = inJ{p-s: s e Z'} = 0, 
p p . 

But (1, 0) f. (0, 0) so we fails to satisfy property (1) of a distance 

function, 

(~) Let x E G. For each . KE ex:' KE c~ 

WC (x) = inf {m(K): KE ex} . But 

as C C C1 • So x . x 

inf {m(K): Ke C) > inf {m(K): Ke C.i} ;::: wc1(x) • 

Therefore we (x) > we, (x) for all x E G. 
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(i) For each Ke C , m(K) > 0. This implies the wC(x) > 0 

for each x e G. But wC (e) :;: 0, Therefore the greatest lowe:r bound 

of wC (x) is O, 

(5) Let x E Q • 
p 

k 
Then x :;: 0 or x ::; p e0 for some k e Z 

and e0 a unit in ZP. If x ::: O then Cx::: C • So 

wC(O)=inf{p~r:reZ}:;:0. Also c;o(O)=O. 

k r 
If x = p EO then C = { p Z : r < k}, So 

x p -

k -k 
Also c;o(p e; 0 ) = p • Therefore we (x) = <P(x) for all x e G • 

. In a similar mannel;' it c~n be shown that if G ::; Z . , 
p 

r 
c ;:: {p Zp: r E Z'} then Wc(x;) = c;o(x). 

Example 2. 18. Le.t G:;: Z~, C 1 :::; {prZpx psZP: r, s e Z'}, 

and C ::; {p2rz . x p 3rz : re Z'}. Thus CCC 1 , So by property .(2.) 
p p 

of Theorem 2. 2 we (x) ~ we 1(x) for each x e G. In particular, 

2 · 3 -5 2 3 2 2 ... 3 
WC (p • p ) = p = WC I (p • p ) . Also WC (p:, p ) = l but we, (p, p ) == p . 

2 2 \; . 
So WC (p, p ) > wc,(P, p ) . 

Example 2. 19, 

WC (x) = c;o(x) for each 

Let G = Z , and C 
·P 

x e Z . But c;o (x) < l 
p -

= {prZP: re Z '}. Then 

for each x E Z . There -
p 

fore we (x) .:S l. So for this particular situation we (x) is bounded 

above. 

Example 2. 20. 

wC (x) = <P(x) for each 

Let G = Q , and C ;:: {prZ.: re Z}. Then 
p p 

x e Q • But c;o (x) is not bounded above for 
p 

x; E Qp. Therefore we (x) is not bounded above for this situation. 
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The two previous examples illustrate that wC may or may not 

be bounded above. 

Theorem 2. 3. Let G C Q., and C C {prZ : re Z}, Then 
p p 

p(x, y) = wC (x-y) is a non-Archimedean distance function. 

Proof: By Theorem 2. 2, we (0) = 0, and wC (x-y) ~ 0. Suppose x f:. y. 

Then x - y -:/:- 0 , and m 
x - y = p e: 0 where me Z and e0 is a unit of 

Z . There exists a 
p 

m K' e C such that p e: 0 ,/. K 1 for if not 

pme:o E n K which contradicts n K = { e} . Therefore 
KeC KeC 

w.C (x-y) = inf {m(K): Ke C } > m(K) > 0. Thus p has property 1 of 
x-y -

a distance function. 

Also, p has property 2 of a distance function. For each Ke C 

such that x - ye K, it follows that y - x e K as K is a subgroup of G. 

Therefore wC (x-y) = wC (y-x). 

Consider wC (a+ 13) ~ wC (a) + wc(l3) where a ,13 e G. EHher 

cp(a) ~ cp(l3) or cp(a) ~ cp(l3), Without loss of generality assume that 

cp(a) ~ cp(l3). If cp(a) > cp(l3) then cp(a + 13) = cp(a) as 

cp(a + 13) ~ max {cp(a), cp(l3)} with equality when cp(a) -:/:- cp(l3). This 

implies that ca+l3 = ca , and the latter implies that wc(a + 13) = wc(a). 

Since cp(a)>cp(l3), CaCc13 , and wC(a)~wC(l3). Thus 

wC(a+l3) = max{wC(a), wc(l3)}. If cp(a) = cp(l3) then cp(a+l3) <cp(a), This 

implies that ca+l3:) ca, and the latter implies that wc(a + 13) ~ wc(a). 

Thus wC(a + 13) ~ max {wC(a), wc(l3)} as wC(a) = wc(l3), Let a = x - y, 

and 13 = y - z. Then wC(a + 13) ~ max {wC(a), wC(l3)} becomes 

wC(x-z) < max{wC(x-y), wC(y-z)}. This implies that 

wC (x-z) ~ we (x-y) + we (y-z). Therefore p is a non-Archimedean 

distance function. 



CHAPTER III 

RIEMANN p-ADIC INTEGRATION 

General Riemann p-Adic Integration 

The general Rieman.n p-adic integration 0£ a func;tion will depend 

upon the existence of the limit of the Riemann sums in much the same 

way af:l it does in Riemann integration over the real numbe:rs. This 

limit must be independent of the choices of an element in each of the 

cosets, and is thus rather Gomplicated, The Riemann sums in this 

case are derived f;rom the partitiqn of G by the left cosets of a sub-

group of G and will bt;i similar to what is called a regular partition in 

the study of integration over the real numbers. 

Definition 3. 1. The lim S(f, K, s) = A if for each E > 0 
K·ec 

there exists a Ko E c such that cp{A - S(f, K, s)) < E for each 

KC K 0 1 Ke c, and for each choice of { s.}. 
l 

Definition 3. 2, A function f: G -Q is R - C 
p 

integrable if 

lim S(f, K, s) exists. The space of R - C integrable fo,nctions is 
KeC 
representedby LR'C(G). If feLR'C(G),thendenote limS(f,K,s) 

/
R,C K EC 

by £, 

Exam.;ele 3 .• 1. Let G = Z. C = {K : K :;: p 2 rz re Z'} and 
- p' r r p' . ' 

f(x) = p for all x e Z . By Example 2. 14, S(f, K , s) = p for all 
p r 

r E z I and all choices of {s). So 

., n 
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1R.C f = 
limp. 
r-co 

/
R,C 

Thus f = p. 

Example 3.2. Let G = z2 , C = {K :K = prZ. xp:i;-Z , re Z 1}, · p r r p p 
a, 3r 

f = !: p x(K ) . By Example 2. 15, 
r=O r 

and 

· 0 1 r ~2r 
S(f, Kr' ; ) = p + p + .. , + p + p Rr 

where 

Thus 

R = r 

0 

a 3r 
!: p where a e Z' , a > r + 1 or a = a, , 

i::;r+l 

/
R,C O 1 . 2 co . 

f = lirn ( p + p + . ' • + pr + p ~ r R r) = !: pl • 
r-co i=O 

2 r 2r 
. Examl?le 3. 3. Let G = zp ' K~ ::: p zp x p zp, r E Z 1 ' 

{ 2r r C = K : K = p Z x p Z re Z '} 
r r p p' ' 

co 4r 
q.nd f = :z p x(K' ) • 

r=O r 

Show f i L R,C (Z 2). 
p 

Consider the Riemann sums formed by using different sets 

s 
S 1 = :Zm(K )f{s .} 

i;:=l r n 

s 
and s2 = !: m(K ) f (;' . ) 

i=l r . n 

where ; l = (0, 0), ;' l = (0, pr) and s . = s'. for all i suchcthat 
r r r1 r1 



i i, 1 . Then 

Thus 

where [I] is the greatest integer less than 
r 
2' Now 

(I) 

S S _ -3r ~ 4i = 
1- z-P p 

(I) 

~ :p 4i-3r 

i=[ ~]+1 i=[f]+l 

Thus 

When [ !.] is removed, this becomes 
2 

{ 
p 6k-.4k-4 if 

- pbk+3 - 4k-4 if r=2k+l, ke z•. 

r=2k, ke Z'. 

= { p2k,-4 

2k-l 
p 

if r = 2k. 

if r = 2k+ 1 . 

-3r 
p 

As r -oo , k - ro also, and as k - cxi , <P(S 1 - s2 ) ~ CX) • Therefore 

lim S(f,K,;) does not exist. Thus fiLR'C(Z 2 ). 
KeC P 

Some properties of L R,C (G) will be developed. 

32 
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RC 
Theorem 3. 1. Let f, g E L ' (G), and a e Qp, Then 

R c RC /R,C 1R,C /R,C 
f + g E L ' ( G) , af e L ' ( G) , ( f + g) ::; f + g , 

/
R,C 1R,C · 

(af) ::: a f. 

and 

Proof: Let f, g e L R,C • Consid~r £ + g. First by the q.efinition it can 

be shown that lim S(f + g, K, s) exists as follows: 
KeC 

s s 
S(f+g,K,s) = !; m(K)(f+g)(;.) = !; m(K)[f(;.) + g(;.)] 

·1 1 ·1 1 1 1= 1= 

s 
= !; [m(K) f(s.) + m(K) g(g.)] 

. 1 1 1 
1= 

s s 
= Z: m(K) f(s.) + !; m(K) g(s.) , 

. 1 1 . 1 l 1= 1= 

Consequently 

s s 
lim S(f+g,K,s) = lim ~ m(K)f(s.) + lim !; m(K)g(;.), 
K e C Ke C i::; 1 1 Ke C i= 1 1 

since both of the limits on the right e)(:ist, It follows that 

lim S(f + g, K, s) exists. Therefore f + g E L R,C (G). and 
K EC 

/
R,C /R,C IR,C 

f+g= f+ g. 

Let feLR'C(G) and aeQ. Consider af. Th.en p . 

lim ~ m(K) (af) (s.) = lim [a ; m(K) f(;. )] 
K e C i= 1 1 K e C i= l 1 

s 
= a lim !; m(K) f(;.). 

KeC i:::l 1 

This last li.mit exists as 
RC · 

f e L ' (G). Therefore 
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RC 1R,C .1R,C 
af ~ L ' (G) , and (af) ::.· a £. 

The previous theorem leads to the conclusion that LR'C(G) is 

a vector space. 

Theorem 3, 2. RC 
If f; g E. L ' (G) and a, b E Qp then 

! );t, C 1R, C 1R, C 
(aftbg):;: a f+b g. 

Proof: By Theorem 3. 1, 

/
R,C 1R,C 1. R,C 1R,C 1.R,C 

(~f+bg) = a{+. b$:;:;'a £+. b. g. 

Example 3. 4, Let 

2 i;o 3r 
f ;:: p I: p X (K ) • 

r:;:Q r 
and 

2 r r 
G = Z · C = { K : K = p Z x p Z . r E Z ~} ., p' r r p p' 

R,C 
Find f f. 

. Note:that , f = p 2f 1 
co 3 

where £1 = I: p r x(K ) . By Example 3. 2 
r=O · r R, C co . J f 1 = . I: p 1 , Then 

1=0 

JR, C 2 ~ . i ai i +2 
Thus f = p I: p = l:; p , 

i=O i=O 

by Theorem 3. 2. 

Theorem 3. 3. Let er be the left translation of a function 
x 

RC /R,C 1R,C 
fE L ' (G), that is, erxf(k) = f(x+k), then erxf = f, 

/
R,C 

Proof: By definition f = lim 
. R c K EC 

exists as f E L ' (G), Also, 

and the limit 

.1R,C s s 
er f = lim I: m(K)er £(;.) = lim · I: m(K)f(x+;.) 

x KeC i=l x l. KeC i=.1 1 
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if this limit exists, These two integrals will be shown equal by showing-

that each Riemann sum of one is also a Ri~mann sum of the other one. 

This will aho show that <T f EL R,C (G). Now ; m(K) f(x + ;.) is a 
x i= 1 1. 

Riemann sum of the type S(f, K, s) if and only if {x+ ;.} is a collec-
1 

tion of one and only one element from eac;h coset of K. Suppose this is 

not the case, that is, ;. I SkE {;.} such that x+sk,x+;. belong to 
J l J 

the same coset for some y E G. Then there exists k 1 , k2 e K such 

that x+sj = y+k 1 and x+;k= y+k2 , Thus 

which implies that sj - Sk = k 1 - k2 . But K is a subgroup of G so 

kl - k2 E K. So there exists k3 e K such that k3 = kl - k2 = sj- sk. 

Then sj = sk + k3 which impUes that sj E ~k+ K. But sk E Sk + K. 

Thus sj and . sk are elementi; of the same coset of K. This is a 

contradic;tion. 'rhus {x + si} is a colle~tion of one and only one 
s 

element from eac;h coset of K . Therefore I: m(K)f(x+;,) is a 
i= 1 1 

Riemann sum of the type S(£, K, s) . 
s 

Now it will be shown that I: m(K) f(s 11 ) is a Riemann sum of 
£=1 . ..t: 

the type S(ux f, K, s), For each sm e { s 1} there exists uniquely 

a E G such that s = x +a • Therefore 
m m m 

s s s 
I: m(K)f(; 11 ) = I: m(K)f(x+a ) = I: m(K)<T f(a ) • 

J.=l ..t J.=l m J.=l . x m 

This will be a Riemann sum of the type S(IT f, K, s) if {a } x m is a 

colleetion of one and only one element from eaqh coset of K. Again 

assume that ai,aj E {am} such that ai,Cl!j E y+K, ye G. There exist 
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k 1 , k2 EK such that c:\ = y + k 1 and aj = y + k2 . Therefore 

Si - x = y+kl and sj - x = y+k2. Thus si-sj = kl - k2. From here 

the argument follows as before. So {a } is a collection of one and 
m 

only one element from each coset of K. Therefore is 

a Riemann sum of the type S(o- f, K, ;) . 
x Consequently lim S(o- f, K,;) 

KeC x 
exists if and only if lim S(f, K, ;) exists, and 

K EC 

/
R~C 1R,C 

o-f= f. x 

Theorem 3. 4. If C CC' then L R,C I C L R,C and 

JR,C' 1R,C 
f = Li 

Proof ·. Let f E LR,C'. Th f h > 0 th . t K' C' en or eac E ere ex1s s O E 

such that 

whenever K' CK' K'e C' . 0' ' There ex~sts K 0 e C such that K 0 C K0 
as 11{KIKeC}={e} and, CCC'. Thus for each KC K it follows 

0 

that K C K 0 C K0 and KE CC C' . Therefore 

RC' 
<P ( S(f, K, ; ) -/ ' f) < E 

R C 1R,C' 1R,C 
for each K C K0 . So f E L ' and f = f. 

The large st family C that is possible would be composed of all 

open compact subgroups of G. This family would give the smallest 

space of integrable functions. The question may arise as to whether 

LR,C' is a proper subset of LR,C when C is a proper subset of C'. 



37 

Two appropriate families and a special f\mction are chosen in the next 

example to show thc1rt the subspace :i,s a proper subspace. 

Example 3. 5. 
2 

Let G = Z , 
p 

C::;: {K :K = prZ xprZ re Z'} 
r r p p' ' 

00 3r 
s e Z 1} , and f = ~ p X (K ) . 

r=O r 
C'={K :K =prZ xpsZ reZ' 

rs rs p p' ' 

By Example 3. 2, f e L R,C (Z 2 ). But 
p 

as will now be 

demonstrated. 

The demonstration will be complete if it can be shown that 

lim S(f, K, ;) does not exist. That is, there exists e > 0 with the 
KeC 
prope:i:-ty that for each KC C there exists K', K"C K such that 

<P S(f, K', ;) - S(f, K", ;) > e. These elements of C must be found, and 

the right choices for the element in each coset must be made. 

Let N be any positive integer. There exists k e Z i:,uc;:h that 

k 
p > N. There also existi:, r, s e Z 1 such that r+ s > k. 

( ) -r-s r+s k J. m+3 
<Pm(Krs) =<P(P ).=p ~p >N. Let y=(p,p ), 

where J. and m are constants, J. , me Z 1 , m > s, and 

So 

z = I. m 
(p , p ) 

J. ~ max { r , m + 3} • Thus y and z are in the same coset of K 
rs 

namely K itself. 
rs 

Two Riemann sums, s 1 and s 2 , of f with respect t:o K 
rs 

will be exhibited, Let the choices of the elements in each coset be the 

same except for the choices in the coset K 
rs 

Choose 

s 1 , and choose z e K for s2. rs 
Th1,1s 

Then 

( m+3 3 · m 3·) ( ) .· 1 1 -r-s 
<P (Sl - S2) = <P • ~ p - . ~ p <P p 

1=0 1=0 

ye K. for 
rs 



( 3m+3 + 3m+6 + 3m+9) r+s =<pp p p p 

-3m-3 r+s ,:: p . p 

r+s-3m-3 
= p 
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Let r increase without bound. Then y and z remain in the same coset 

of K as they have the same fir st coordinate and s is fixed. Thus 
rs 

q,(S 1 -S2 ) increaseswithoutbound. Therefore f;'LR,C'(z!), 

Note that in the example above CC C' . Thus 

LR,C'(z 2 ) C LR'C(Z 2 ) by Theorem 3.4. But fe LR'C(Zp2 ), and 
p p 

f;'LR,C'(z 2 ). Therefore LR,C'(z 2 ) isapropersubsetof LR'C(Z 2 ). 
p p p 

The following theorem is a generalization of the previous 

example. 

,Theorem 3. 5. Let G = z 2 and 
p 

{ r s 
C = K : K = p Z x p Z I re Z', s e Z '} . 

rs rs p p 

Then f e L R,C if and only if there exists Ke C such that f is a con-

stant function on each coset of K. 

Proof: The "only if" statement will be proved !iri,t. This wil\ be 

proved by contradiction. Suppose that f e L R,C and no such K exists, 

Then for each Ke C there exists x, y, z e G such that y, z ex+ K 

and f(y) /; f(z). Also for each positive integer N there exists K' e C 

such that q,(m(K' )) > N as there exi$ts a k e Z 
k 

such that p > N . 

Now choose K' = K such that r + i, _> k, and then 
rs 

( ) ( -r- s) r+ s k 
<p m (Kr s) = <p p = p ~ p > N . 



39 

Consequently there exists x, y, z e G such that ye x +K I and 

zex+K' and f(y),:Jf(z) where y=(yl'y2 ) and z=(z 1,z2 ). This 

y and z could be chosen such that they have a coordinate in common. 

For suppose a y and a z were ~hos en such that y 1 ,:J z 1 and y 2 ,:J z 2 . 

Consider u=(y 1,z2). Then uex+K and f(u),#f(y) or f(u),#f(z). 

For suppose f(u) = f(y) and f(u) = f(z) then f(y) = f(z) which is a 

contradic;tion. Thus a pair has been found satisfying the given condi-

tions and having a coordinate in common. Let y and z be such a pair, 

Without loss of generality it can be assumed that the first coordinate is 

the common one, that is, y 1 = z 1 • 

Let S 1 and s2 be two Riemann sums of f with respect to K 1 • 

Let the choices of the elemen.ts in each coset be the same except for the 

choices in the co set K'. Choose ye K I for s 1 and choose z e K' 

for s2 , Now s1 .. s2 = [f(y)-f(z)]m(K 1). Then 

cp(S 1 - S2 ) = cp{[f(y) -f(z)] m(K')} = cp[f(y) -f(z)]cp(m(K 1)) • 

Let r increase without bound. Then cp(m(K')) increases without 

bound, Also, y and z remain in the same cos et of K 1 = K as they rs 

have the same first coordinate. So cp[f(y) - f(z)] is a nonzero constant, 

Thus cp(S 1 - S2 ) in<;reases without bound. Therefore f i L R,C. 

The 11 if11 statement will now be proved, Assume there exists 

Ke C such that f is a constant on each coset of K. The value of 

S(f,K',;) is independent of the choice of {;.}, and independent of 
l 

the liJUbset K' of K. Therefore 

/
R,C 

and f = S ( f, K 1 , ; ) • 
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Strong Riemann p-Adic IntegJ;"ation 

Strong Riemann p-adic integration allows more types of parti-

tions than the general Riemann p ... adic integration. The general 

Riemann p-adic in~egration was compared to regular partitions, and 

stJ;"ong Riemann p-adic integration could be compared to a general 

partition in the study of the integration over the real numbers. The 

same type of limit will be used here as was used in general Riemann 

integration but there will be more potential Riemann sums. 

Definition 3. 3. Let G be compact. A partition, denoted by 6, 
t 

is a decomposition of G with G = U x. + K. where 
i= 1 l l 

xj + Kj n x,R. + K .R. = cp if j :/:. k, ki e C for all i and where there exists 

Ke C such that K. CK for all i. The smallest set Ke C that con-
1 

ta ins all K. is c;alled the norm of the partition and is represented by 
l 

N( 6) . 

Definition 3. 4. The Riemann sums correspond.ing to the parti
t 

tion 6 are defined as S(f, 6, £) = ~ m(K.) f(;.) where ; . ex.+ K .. 
i=l l l l l l 

Example 3. 6. Let G = Z C = {K : K = prZ re Z'}, and 
p' r r p' 

f be a function. 

Then {x+p Zp} where x e {ao: ao e Z', 0 ~ ao ~ p-1} is a 

partition of G • The set is just the distinct cosets of p Z so they are 
p 

pairwise disjoint and their union is G. In this case K. = p Z for all 
l p 

i. Thus N(6)=pZ and 
p 

p 
S(f, 6,;) = ~ m(p Z ) f(;.) = S(f, p Z , ; ) • 

i= 1 p 1 p 

Similar results could be obtained for any Ke C • 
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An example of a partition that does not result in a Riemann sum 

of the form S(f, Kl' s) is as follows. Consider {x+pZ } U {y+p2z } 
p p 

where 

as a partition of G. The {y+p2Zp} are the distinct cosets of p 2Zp 

2 . 
in p Zp, and thus U { y + p Zp} = p Zp , which are pairwise disjoint. 

The {x +p Z ·} are all of the distinct co sets of p Z except p Z . 
p p p 

So the union of all of these sets is G,and they are pairwise disjoint. 

Then N(o) = p Z , and, 
p 

p+(p-1) 
s(f,o,s)= :E m(K.)f(s.)~ 

l l i= 1 

The latter is not a Riemann sum of the form 

p 
S(f,pZ ,;) = ~ m(pZ )£(;.) 

p i= 1 p 1 

Definition 3. 5. A function f is strong R - C integrable if 

lim S(f, 6, ;) exists. A strong R - C integrable function is said to 
N(o)eC 
be R 1 - C integrable. The space of the R' - C - integrable functions 

will be denoted by LR' ,C (G) . 
• 

The space LR' ,C (G) will be probed in the following theorems. 

Theorem 3. 6, Let G be compact. U f is a locally constant 

R 1 C function then f e L ' (G) . 

Proof: Let f be locally constant. Then there exists {x. + K.}1<. < 
1 1 1 n 

U {x. + K. }1<. < = G and f is 
1 1 1 n 
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constant in each x. + K .• 
l l 

The value of the Riemann sums correspond-
n 

ing to partitions 6 such that N(6) C n K. is always the same. There .. 
. 1 l 

R' C fore f e L ' (G) . 

Example 3. 7. 

:i.= 

Let G = Z C 
p' 

f = {: 
J,.f 2z 5z XE p ~ p 

p p 

otherwise . 

Consider the pa.rtition 

of Z • If a. = 0 for 
p j. 

5 5 
i e Z 1 , 0 .:::_ i .:::_ r , then x + p Z = p Z 

p p 
For 

5 
each a e p Z , f(a) = 1 • 

p 
If a 0 = 0, a 1 = 0, and there exists i e z', 

2 < i < 4 
5 2 5 

such that a. f, 0, then x + p Z C p Z - p Z • There are 
l p p p 

3 p - 1 of these sets, and for any element chosen in any one of them 

the func:tion value is O. If a 0 :/: 0 or a 1 :/: 0 then 

x+p5z CZ -p5z . There are pS(p2 -l) of these sets, and for any 
p p p 

element <;hos en in any of these sets the function value is 1 . For this 

partition 
5 

N(6) = p Z . 
p 

Thus 

c [ 3 3 2 ] -5 5 3 -5 -2 -5 S(f, 6, '"') = (p - 1) • 0 + p (p -1) + 1 p = (p ... p + 1) p = 1 .. p + p 

regardless of the choices of the element in ei;i.ch set of the partition, 

Thus if N:( 6) Cp.5z then the Rie·mann sum would be . p 

equal to -2 -5 
1 -p + p Therefore lim S(f, 6, ; ) 

N( 6) EC 

-2 .. s 
= 1 .. p +p and 



43 

Recall that f(x) = 1 2 5 
for all x e Z - p Z , x e p Z , and 

p p p 

f (x) = 0 for all other x. Note that 

So the integral of a function whose range i$ 1 on some set and O else-

where is equal to the measure of the set. 

Theorem3.7. The space LR',CCLR,C. 

Proof: Let feLR',C, Thus lim S(f,6,;)=A, Thisimpliesthat 
N(6)eC 

for each e > 0 there exists K 0 e C such that (l}(S(f, 6, ;) -A) < e for 

each N(6) C K 0 • 

RC 
Assume fefL'. Therefore limS(£,K 1 ;)-f:.A, Sothere 

KeC 
exists e > 0 such that for any K 1 e C there exists K C K 1 , Ke C 

and cp(S(f, K,;) - A) > e . But for each Ke C the co sets of K form a 

partit~on for G and N( 6) = K. Thus S(f, K, g) is of the form 

S(f, 6, ;) where N(o) = K, Therefore f i L R',C, This is a contradic

tion so it must be concluded that f e LR,~ • So LR' ,C ( LR,C. 

It will be shown later that LR',C = LR,C for certain families 

C. An example will also be giyen to show that in certain cases LR',C 

is a proper subset of L R,C • 



CHAPTER IV 

SOME SPECIAL PROPERTIES OF THE SPACES 

OF INTEGRABLE FUNCTIONS 

The discussions in this chapter wiil be limited to G as a subset 

of Qp, This eliminates the use of prod\lc;t spaces and makes wC(x:...y) 

greater:. than O if x # y. 

R~ C RC 
It has been shown that L ' C L ' for each family C . Each 

of these spaces is dependent on the specific family C that is chosen, 

In particular, Theorem 3. 4 showed that if C CC' then 

LR,C' C LR,C. Is it possible to choose a family C such that 

L R,C = LR' ,C ? If so what are the characteristics of the family C ? 

Is it possible to choose a family C such that a fi,mction f exists where 

f e L R,C and ff, L R',C ? These questions will be answered, and as 

they are, other interesting questions will arise, The requirement that 

fe LR,C places some·limitations on the behavior off relative to the 

family C . A reasonable starting point for this inquiry is a study 0£ 

these limitations. 

Riemann Integration and Derivative 

The first tool that is needed is a relationship between an 

element of LR,C and a special limit. 

Theorem 4. 1. 

uniformly. 

A A 

then lim p(f(x) - f(y)) = 0 
x-y WC (x .. y) 
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Proof: Let f e L R,C (G). Then lim S(f, K, ;) exists. This implies 
KeC 

that for each e > 0 there exists K 0 e C such that 

q,[S(f, K, ;) - S(f, K, 11)] < e where K is any element of C that is also a 

subset of K 0 , and { ;J and { 11·} 
1 

are arbitrary sets of representa-

tives from each coset of K. Let x - ye K C K 0 , which implj_es that x 

and y are in the same coset of K. Choose a particular pair of sets, 

{;.}, {11.}, where ;. = 11· for 2 :::_ i :::_ s, ; 1 = x, and 11 1 = y. Then 
l 1 l 1 

q,[S(f, K,;) - S(f, K, 11)] = q,[m(K) f(x) - m(K) f(y)] 

= q,[(f(x) - f(y)) m(K)] . 

The pr ope rtie s of q, make 

q,[S(f,K,;)-S(f,K,11)] = q,(f(x)-f(y))q,(m(K)) <; e 

for each Ke C , K C K 0 . It now follows that 
x-y 

E 
q,(f(x) - f(y)) < q,(m(K)) = e m(K) 

1 
as q,(m(K)) > 0 and q,(m(K)) = m(K) , Take the infimum of each side 

of the ineguality, Then 

q,(f(x) "'f(y)) < E inf {m(K): KE c 'Kc Ko}. - x-y 

Therefore q,(f(x) - f(y)) :::_ e wC(x-y) which implies f(f(x) - f(y)) < e 
wc (x-y) 

as in the present setting wC (x-y) > O for all x, ye G such that x # y. 

Corollary 4, 1. If f e L R,C (G) then f is continuous. 

Proof: Let fe LR,C(G). Then by Theorem 4. 1, lim q,(f(x) -f(y)) = O 
x-y wc(x-y) 

uniformly. Remembering that w.C (x-y) = inf {m(K): Ke C } , then 
x-y 
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wC(x ... y) < m(K), Ke C . . Consequently wC(x-y) < m(G) as KC G 
~ x-y 

and m(K) < m(G), Now it follows that lim f(f~(G)()'.;)) = 0. But 
x-y 

as m(G) is a constant (1G. ) lim q,(f(x) ... f(y)) = 0. Thus 
m x-y 

lim q>(f(x) - f(y)) = 0 which implies that lim f(x) = f(y). Therefore 
x~y x-y 
f is continuous. 

This is interesting in its contras~ to the situation of the Riemann 

integral over the real numbers. A function may be discontinuous and 

still be Riemann integrable over the real numbers. Recall, however, 

that locally constant functions are continuous in this setting but not in 

the Euclidean spaces. Although a func;tion must be continuous to be 

integrable in the p-adic setting, not all c::ontinuous functions are inte-

grable as is illustrated in the following example. 

Example 4. 1. 
I 

r 
Let G = Z , C = {K : K = p Z . , r e Z 1} , 

p · r r p 

and f(x) = x for all XE Z , 
p 

The function f is continuous on · Z and p' 

y E Z , 
p 

The function f is continuous on Z 
p 

if 

That iei, for each E > 0 there exists 

lim x = y for each 
x-y 
6 > 0 such that 

q>(x-y) < E whenever q>(x-y) < 6. In this case, all that is needed is 

to let 6 = ~ • Therefore f is continuous on Z , 
p 

The function f i LR, C if lim S(f, K, ; ) does not exist. That 
KeC 

is, there exists e > 0 with the property that for all Ke C there 

exists K ( K, K e C, suc:h that q>(S(f,K ,;)-S(f,K. ,11)) > e, 
r r r r 

Let 

; i = 11i if if. 1 , ; 1 = pr , and 11 1 = 0 . Then 

S(f, K , ;) - S(f, K , 11) = (f(pr) - f(O)) m(prZ ) =pr· p-r = 1. 
r r p 



Conli)ider e 

that K C K , and 
r 

= 1 
z· For any Ke C there exists re Z I 

<P(S(f, K , £) - S(f, K , 11)) :;: 
r r 

1 cp( 1) > 2 . 

Therefore f IL R,C . 

Also,note that 

f, (y) = lim f(x) - f(y) 
x-y 

for all y E Z . 
p 

= lim ~ = lim 1 = 1 
x-y x-y x-y 

such 

Theorem4.2. Let G= Z, and C = {prZ :reZ 1}. If 
p p 

feLR'C(G) then f'=O. 

Proof: Let f e LR' C (Z ) . Then 
p 

lim cp( f(x) - f(y)) = lim cp (f(x) - f(y)) = lim cp (f(x) - f(y)) = 0 
x-y x-y x-y cp(x-y) x-y we (x:..y) 

47 

as cp(x~y) = wC(x-y) by Theorem 2. 2 (5). Since 

implies lim f(x) - f(y) = 0, it is seen that f'(y) 

lim cp( f(x) '"f(y)) = O 
x-y x-y 

x-y x~y 
= 0 for all y e Z . 

p 

The converse of Theorem 4. 2 is not true as the following 

example shows. 

Example 4. 2. Let G = Z C = {K : :K = pr Z re Z '} , and 
p' . r r p' 

{ 
2i "f i 3i p 1 xep tp Z 

£. (x) = p 
1 0 otherwise , 

CXl 

Let f be defined by f = ~ f. . By ;Example 2. 9, f'(y) = 0 for all 
i= 1 1 

ye Z . But fl LR'C(Z ) as wiLl be shown. 
p p 



This can be shown by finding two sets of elements {s.} 
l 

and 

{ Tl·} such that the difference of the corresponding Riemann sums 
l 

remains large. Let 

s 31 -1 
S 1 = :l;m(p Z )f(;.), 

i= 1 p . 1 
and 

s 31-1 s') = z; m(p z ) f(t1.) 
" i=l p l 
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Choose s. = 11· for each 2 < i < s , s 1 = p1 
l l - -

J. 31.-1 
and Tll = p + p • Note 

1 31-1 
that s 1 and 11 1 belong to p + p Zp Then 

1-1 Thus q,(S 1 - s2 ) = p and q,(S 1 - S2 ) increases as J. increases. The 

limit of S(f, K, s) cannot exist. Therefore f i L R,C (Z ) , 
p 

By the previous example it is seen that the fact that the deriva.:.. 

tive of a function is the zero function does not imply that the function is 

an element of LR, C . It is reasonable therefore to turn our attention 

to the properties of C which might ensure that L R,C = L R',C. 

Ample Families 

Definition 4. 1. The family C is ample if there exists a real 

number 13 > 0 possessing the property: given c;Lny K and K' elements 

of C with Kt C K , there exists {K.: K. e C, i e Z, 0 < i < n} such 
l l - -

that K 1 =KnCKn-lc ... CK1CKo=K and q,[K/Kj+l]::::_p-13 

where O :::_ j :::_ n ,. 1 . 

To emphasize what this definition implies, an ample family and 

a family that is not ample will be exhibited, 
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Example 4. 3. 

(a) Let C = {K : K = p 2rz , re Z}. C is an ample family 
r r p 

with 13 = 2. To see this consider any r 1 e Z. Then 

2(r 1+1) 
K +l = p Z , and 

rl p 

Therefore 
2 

[K + 1 : ;K ] = p . 
rl r 1 

[ ] -2 -2 
Thus cp K + l: K = p > p 

rl rl -

2r 
(b) Let C = {K :K = p Z , re Z}. Assume there exists 13 

r r p 

that satisfies the conditions of the definition of an ample family. Thus 

for each re Z, cp[Kr: Kr+ 1 ] ~ p - 13. Now there exists r 1 e Z such 
r 1-1 r 1 

that 2 ~ 13 < 2 • Since 

then 

Consequently 

rl 
= p2 z 

p 
and 

rl 

cp [K : K + 1] = p -2 
r 1 r 1 

But So 

< p - jj This implies that C is not an ample family. 

The ample family C is proposed as the family that will cause 

LR,C to be equal to LR',C, 

f e L R,C 

Theorem 4, 3. Let C be ample, Then L R,C = L Ri,c, and 

if and only if lim cp(f(x) - f(y)) = 0 uniformly, 
x-y wc(x-y) 
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Proof: The "only if" part of the proof follows directly from 

Theorem 4. 1. The 11if 11 part of the proof will be established if 

fe LR 1,C. For if fe LR1,C then fe LR,C as LR',C C LR,C. It 

h~s been shown that if f e L R,C then lim p(f(x; - f(r)) = 0 uniformly. 
x-+-y WC x-y 

If lim p~x) - f(y)) :::: 0 uniformly implies that f e LR 1 ,C then 
x-+-y C (x-y) 

LR,C C LRi,c. The conclusion is that LR,C:::: LR',C. 

So assuming that lim p(f(x) - f(y)) ::: 0 uniformly, it will be 
x-y WC (x-y) 

ahown that f e LR' ,C . As C is an ample family there exists 13 satis-

fying the conditions of an ample family. Then for each e > 0 there 

exists K 0 e C such that 

(4. 1) p(f(x) -f(y)) < e p-13 for each KC K 0 and x -ye K. 
wc(x-y) 

Let S(f,6,s) and S(f,0 1,; 1 ) 

N(o) ( ;K0 and N(6 1 ) C K 0 . 

q>(S(f,6,;)-S(f,6 1,; 1) < ep-13. 

be any two Riemann sums such that 

Then feLR 1,C ifandonlyif 

Let 6 be the partition 
t 

and 61 be the partition G :::: U (x! + K!) . Let 
i::: 1 1. 1 

K = ( r~ K.) n (A K!) . 
i= 1 1 i= 1 1 

It follows that 

q>(S(f, o, ;) - S(f, 6 1,; ')) 

= q>(S(f, 6, ;) - S(f, K, 11) + S(f, K, 11) - S(f, 6 1,; 1)) 

s 
G = U (x.+K.), 

i= 1 l l 

~ sup {q>(S(f, 6, ;) - S(f, K, 11)), q>(S(f, K, 11) - S(f, 6 1,; 1 ))}. 

It is seen that 
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<p(S(f, 6, s) _ s(f, 6', s')) < e P-13 

if 

sup {<p(S(f, 6, ;) - S(f, K, 11)), <p(S(f, K, 11) - S(f, 6 1,; '))} < e p-13 

Without loss of generality assume that the maximum is represented by 

<p(S(f, 6, ;) - S(f, K, 11)) ; then it is sufficient to show that 

<p(S(f, 6, s) - s(f, K, 11)) < E p-13. 

Consider the terms of S(f, 6, ;) - S(f, K, 11) whic;:h involve x. + K .. 
t l 1 

They are f(;.) m(K.) - ~ f(11 .. ) m(K) where { 11·.} is a complete col-
i 1 j = l lJ lJ 

lection of representatives of the cosets of K contained in x. + K. and 
1 ], 

;. is any element of x. + K. . If 
l l l 

t 
<p(f(;.)m(K.) - ~ f(11 .. )m(K)) < e p-13 

1 1 j = I lJ 

for each I~ i ~ s then <p(S(f, 6,;) - S(f,K,n)) < e p-13. The 

problem is equivalent to the following statement: if K CK I C K 0 then 

t 
<p(f(;)m(K') - ~ £(11.)m(K)) < e p-13 

j = 1 J 

where { 11·} is a complete collec;:tion of representatives of the cosets 
J 

of K contained in ;+ K', As C is an ample family there exi:;;ts {K!} 
l 

such that K = K' C . . n 

<p [KI : Ki+ 1] :::. p -13 . 

K' 1 C ... n-

Let {y .} 
S ,1 

C K 1 C K 1 C K 1 = K' and 2 1 0 

be a complete set of representatives 

'of the cosets of K contained in ; + K 1 • There is only one represen
s 

tative in K 0 as K 0 = K' so Yo= ; , Thus 



52 

. t 1 

<p(f(;)m(K') - .~ £(11.)m(K)) = <p(.~ f(y 0 )m(K0) - ~ f(y 1 )m(K1) 
J = 1 J l= 1 l ' 

+ ~ f ( y 1 , i) m ( K p - ~ f ( y 2 , i) m (K 2 ) 
l l 

+ ~ f(y2,i)m(K2) - · · • - ~ f(yn-l,i)m(K~-1) 
l l 

+ ~ f(yn-l,i)m(K~-1) - ~ f(yn,i)m(K~)) 
l l ' 

~ sup{<p(~ f(y .)m(K) - ~ f(y +l .)m(K +.l))} . s,1 s . s ,1 s 
l l 

Thus it will be sufficient if it is proved that 

<p(~ f(y .)'m(K ) - ~ f(y +l .)m(K +l)) < e p-13 
. S,l. S . S ,l S 
l l 

for each O < s < n-..1. This can be reduced as before by just consider-

ing the terms of 

that involve a particular cos et of K , say y + k • They are s s 

t 
f(y 1)m(K.) - ~ f(y·+l .)m(K +·l) 

s, s j = l s ,J s 

where y 1 E y+ K , 
s, s [K : K + 1 ] = t < p 13 , and { y + 1 . } is a s s - s ,J 

complete collection of representatives of the cosets of Ks+l contained 

in y +K ~ If s 

( t ) . 13 <p f(y 1)m(K) - ~ f(y +l .)m(K +l). < ep-
s, s j = l s ,J s 



for each possible c;oset of K then 
s 

<P ( !: £ ( y . ) m ( K ) - !: £ ( y + l . ) m ( K + l )) < E p -13 
i S,l S i $ ,1 S 

Let 

t 
a = £(y 1)m(K ) - !: £(y + 1 .. )m(K +l). 

s, s j = l s ,J s 

As m(Ks) = tm(Ks+l), it follows that 

<p (a) = <P(tm(K +l)f(y 1) - m(K +l) ~ f(y +l .)) 
s s, s j = l s ,J 

= q> [(tf(y s, I) - }I f(y s+!})m(Ks+l i] 

= q>(tf(y s, I) - }I f(y s+l }) q>( m(K s+I i) 

= q>[}I (f(ys,1) - f(ys+1})] q>(m(Ks+)l) 

:':_ sup { q,(f(y 6 , 1) - f(y s+ 1 }) ; I :,_ j :,_ t} ..(,,,(Ks+!)) . 

By equation 4. 1, 

Consequently 
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Remembering that <f>(m(K )) ~ 1 
· s+l - m(Ks+l) ' 

But t=[K.:K+ 1]<pl3 as <P[K :K+1]>p-13. Therefore 
s s - s s -

<P(a) < e p""l3pl3 = e. This implies that f e LRt,C • 

The previous theorem gives the conditions for L R,C = L R',C. 

If these conditions are not satisfied it is possible to find a function f 

such that fe LR,C and fl LR',C . 

and 

Example 4, 4. Let G = ZP, 

Zr 
C = {Kr:Kr= p[r]Zp, re Z' and p[r] represents p } , 

p[i] x u (j + p[i] z ) ' (
p[i- l]-1 ) . 

j=O p 

(X) 

f = ~ f. . 
i= 1 1 

By Example 4,.3, it is known that C is not an ample family. The inves-

tigation will be conducted in four parts. (a) The f. and f will be 
l 

explored. (b) Evalu,ation of Riemann sums of f for R.,. C integration 

will be discussed, (c) It will be shown that fe LR,C. (d) It will be 

R' C shown that f I L ' • 



(a) For i = 1 , 

fl = p2 X (p~.=l (j + p2Z )) 
j=O p 

= p2 xf(o+p2Z) U (l+p2Z) U ... U ((p-l)+p2 Z )) 
\ p p p 

where O .'.S_ a 0 .'.S_ p-1. Thus it is seen that 

For i = 2 , 

4 (p2 
-1 4 ) 

f z = p X ~ (j + p Z ) = 
J=O P 

where O .'.S_ a 0 .'.S_ p-1 and O .'.S_ a 1 .'.S_ p-1. It follows that 

For i = ;3 , 

= {p4 if xea0 +a 1p+p4 Zp 

O otherwise . 

where ai e Z 1 , 0 < ai .'.S_ p ... 1. The evaluation of £3 gives 

= {p8 if XE.ao+ alp+ a2p2 + a3p3 + p 8zp 

O otherwise • 
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For i = n , 

f = n 

Consequently, 

and 

(X) 2 i 
f(O) = ~ p 

i= 1 

(X) 2 i 
f( 1) = ~ p 

i= 1 

(X) 2 i 
f(p) = ~ p 

i=2 

2 2 m zi 
f(p ) = p + ~ p 

3 2 00 2i 
f(p ) = p + ~ p 

i=3 . i=3 

4 2 4 cxi zi 
f(p ) = p + p + ~ p 

i=4 

(b) The gener1;1.l Riemann sum will be approached by splitting 

the sum into two sums using 

i (X) -

f = ~ f. + ~ f .• 
j=l J {=i+l J 

This gives 

S(f,p[i]Z ,;.) = s(; f.,p[i]Z ,s.) 
p l j=l J p l 

= s(~ £.+ ; .f.,p[i]Z ~s.) 
j=l J j=i+l J p l 

= s( ~ £.,p[i]z ,s.) + s( .; £.,p[i]z ,s.) 
j = 1 J p l j =i+ 1 J p 'l 
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Ea<rh of these terms will now be examined. 

It is desired to show !that 

( 
i ) i~l 

S :E f.,p[i]Z.,;. = :E p[j] 
j=l J p 1 j=O 

which will be accomplished by mathemati<;;al induction. Let 

M = { i: the previous statement is valid} , 

+ and show that M = Z . Is 1 an element of M ? It is if 

where [Z : p 2 Z ] = p2 , Evaluation of the left hand side yields 
p p 

as there are only p of the cosets of p2 Zp that are subsets of a set of 

the form a 0 + p 2 Zp and the re st of the cosets have an empty inter

section with the sets of that form. Thus 1 e M. It will be assumed 

that the statement is true for i = k . and be shown true for i=k+l. 

From the induction hypothesis it follows that 

where 
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and {;k.th} is a collection of one representative of each coset of 

2 k+l 2 k 
p Z contained in the coset of p Zp of which ;k.€ is a represen-

p zk 
tative. Note that ea.ch coset of p · Z is either contained in a set of 

p 

the form 

or it is disjoint from any such set. Therefore 

2 k+l 
k-1 p 

:2::: p[j] = :2::: 
j=O g= 1 

k ( 2k+ 1 ) 
:2::: f. (;k ) mp Z 

j=l J g p 

where 

2k+l 
is a collection of representatives of the co sets of p Z 

contained in Zp, (The set {;kg} is simply the set {;klh} indexed 

in a different way.) Add 

2k+l 

P ( ) ( 2k+l ) 
:2::: fk+ 1 gk+ 1 m p Z 

g=l ,g p 

to each .side of the equation, and 

2k+l 

p ( ) ( 2k+ 1 ) k-1 . 
:2::: fk+ 1 ;k+ 1 m P Z + . :2::: p[J] = 

g=l ,g p J=O 

p 
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2k+1 

p k+ 1 ( ) ( z k+ 1 ) 
= ~ . ~ £. sk+ 1 m P z . 

g= 1 3= 1 J ,g p 

2 k+l 
Note that the nuxnber of cosets of p Z contained in a set of the 

p 

form 

zk 
is p and all other co sets are disjoint from a set of this form. This 

implies that 

(
k+l 2k+l ) 2 k 2k+l .... 2 k+1 k-1 . 

s .~ f.,p z ,sk+l =p ·p ·p + .~ p[3] 
3=0 J p 3=0 

2 k k- 1 k (k+ 1 ) - 1 
= p + ~ p[j] = ~ PU] = ~ p[j] . 

j=O j=O j=O 

+ Thus k+leM, and M=Z . 

Now s( ; f. , p[i] Z , s .) will be considered. First let i = 1 ; 
j=i+l J g l 

it is nece13 sary to evaluate . ~ f(; U) where {s u} is a complete 
J ::::2 

collection of representatives of the cosets of l?zp contained in Z 
r m p 

00 1 1 
Foreveryset {suL j~2f/su)=p O:'l where rl::::2 ,ml>i+l 

and a 1 E; Zp. Note that if an appropriate choice of {; 11 } is maq.e, 

then Cl' = 0. Such a choice is, for example, if ; 11 e a 0 + a 1p + p 2 ZP 

2 3 n 
then choose ; U = a 0 + a 1 P + P + P + , · · + P + · · • 

00 

Next let i:::: 2; it is necessary to evah;i.ate . ~ f(; 21 ) where 
J =3 

is a complete collection of representatives of the cosets of 

contained in Z . 
m p 

2 
where r 2 = 2 , m 2 ~ 

oo r 2 
For every set {SznL .~ f.(szn)=p 0:'2 

L J ::::3 J L 

i + 1 and a 1 e Zp, Note that if an appropriate 
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choice of {i; 21 } is made, then a 2 = 0. Such a choice is, for example, 

if 

then choose 

2 3 4 5 n 
s21 = ao + a 1 P + a2p + a3p + P + P + .•. + P + •.• 

By mathematical induction it can be shown that 
i, 

co r. m. \ 
~ f.(!;.n) = p 1a. where r. = 2 1 , m. > i+ 1, a\ e Z., and {!;. n} 

j = i+ l J 1...t 1 1 1 - \ p li 

is a complete collection of the representatives of the cosets of p 2 Z 
p 

contained in Zp, Choosing { !;i.t} such that 

2i-l 2 1 n s1.n=a0 +a 1p+ .•. +a. p +p + ... +p + .•. 
..t 21 -1 . 

co 
then ~ f. (!;. 1 ) = 0 • 

j=i+l J l 

It riow follows that 

as 

( 
co ~ 2i+l ( 2 i ) 2 i 

<P ~ f.(!;.n) < P- ,<f)m(p ZP) = p 
j=i+l J l..t 

and 

( 
co ~ ( 2i ) 2i _zi+ 1 2i-2i+ 1 2\1-2) -2i 

<P ~ f. (!; .. ) • <p m(p Z ) ~ p p = p = p = p 
j =i+ 1. J lJ p 
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The two terms have now be investigated. It has been found that 

where 
_zi 

<,0(a.) < p 
l -

i-1 
S{f, p[i]Z • ;.) = I: p[j] + a. 

p 1 j=O 1 

(c) In order to show that f e L R,C, it must be shown that 
CX) 

lim S(f, K, ;) exists, It wUl be shown that lim S(f, K, ;) = I: p[j] . 
KeC KeC j=O 
That is, for each e > 0 there exists K' e C such that 

<,O(S(f. K. s) .,. . ; p[j ]) < E 

J=O 

whenever K CK'. Let any O < e < 1 Qe given. There exlsts J. e Z I 

-J. - .. e+l [ ] h such that p < e < p . Choose K' = p h Z where 2 > J. , Then 
- p 

for any K CK' • K = p[i] Z where i > h, This implies 
p -

<,0(S{f,K .• ;) - ; p[j]) = <P(i;l p(j] +a.~ ; p[j]) 
1 j=O j=O 1 j=O 

and 

= "h · j;i PG 1) < max { q>(<';l ,.,c~i PG 1)} 
_zi 

= p 

<P( .. ;_ p[j i\ 
J=l J) 

_zl 
~ p Thus 

as . i ~h. 2h > l.. and p-l. 5. e. Therefore fe LR,C, 
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(d) In order to show that ff L R',C , it will be necessary to 

show that lim S(f, 6, ri) does not exist. That is, there exists an 
N(6) eC 

e > 0 with the property that for each K' e C there exists N(6 1 ) CK' 

and N(6") CK' such that <P(S(f, 6 1 , ri) - S(f, 6 11 , 11)) ~ e. Two such 

Riemann sums will now be found, 

The sum S(f,p[i]Z , g.) = S(f, 6!, ;.) where N(o!) = p[i]Z . It 
p l l l l p 

has been shown in part (b) that with a suitabie choice of {sij} this 
i-1 

sum is equal to ~ p[j] . Let 6! 1 be the partition formed by the 
j=O 1 

co sets of p[i] Z with the exception of p[i] Z itself and the c;osets of 
p p 

p[i+l]Z contained in p[i]Z , By the appropriate choice of {11.}, it 
p p l 

i-1 
can be shown that S(f, 6! 1, 11·) = 1 + ~ p[j] for each. i, where 

1 1 j=O 
N( 6! 1 ) = p[i] Z • This will be illustrated for i = 1 . In this case 

l p 

2 2 
p + (p -1) 
~ f(11 1.) m(K.) 

j = 1 J l 

where is a complete 

col~ection of representatives of the sets of the partitiop. The appro-

2 2 
priate cosets of p Zp are a 0 + a 1p + p ZP where a 0 -f. 0 or a 1 -j 0. 

Consider the cosets of this collection of the form a 0 + p 2 Zp, a 0 i O. 

Choose the element in this case as a = a 0 + p 2 + p 3 + •.• + pn + , •. 

2 
and f(a) = f 1 (a) = p . There are p - 1 of these cosets, Next consider 

2 
the cosets of the form a 0 + a 1 p + p Zp where a 1 1 0. Choose the 

element in this case to be a = a 0 + a 1p + p 2 + p3 + ..• + pn + ... , and 

4 2 3 4 
f(a) = 0. The approp:r;iat:e co sets of p Zp are a 2p + a~p + p Zp. lf 

a 2 and a 3 are not both equal to zero, then choose the element of these 

2 3 4 5 n 
sets as a = a 2p + a 3p + p + p + ... + p + , , . Ccmsequently 

2 2 f(a) = f 1 (a) = p I apd the:r;e are p -1 of these co sets. If a 2 = 0 and 



a)= 0, then choose the element of p 4 zp as 

4 5 6 n 
p+p+p+ .•. +p+ .•. 

It follows that 

4 5 
f(p + p + .•• ) 

4 5 4 5 
= f 1 (p + p + .• ' ) + f2 (p + p + ... ) = 

Therefore 

2+ 4 p p 

= m(p Z )(p-l)p +m(p Z.) (p -l)p + p +p) 2 2 4 ( 2 2 2 4) 
p p 

-2 2 -4 4 4 
= p (p-1 )p + p (p + p ) 

i-1 
= p-1 + 2 = p + 1 = 1 + ~ p[j] , i = 1 • 

j=O 

It could be proven that 

S(f, 6!',ri.) 
l l 

i-1 
= 1 + ~ p[j] 

j=O 
for all i . 

Consequently S(f, 6!, ;.) - S(f, 6!', TJ.) = 1 for all i. 
l l l l 

1 
Let e = 2 and K' be any element of C . There exists 
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1 
i e Z' such that K. C K'. But cp(S(f, 6!, ;.) ,. S(f, 6)', 11.)) =cp(l) = 1 > -2 l l l l l -

Integration of Products 

Theorem 4. 4. Let G be compact, and C be an ample family. 

If f, g e LR,C then f g e L R,C 

Proof: According to Theorem 4. 3 £ g e L R,C if lim f g(x)( - f gti) = O 
x-y we x-y 

uniformly. That is, if for each e > 0 there exi~ts K 0 E C such that 



p(fg(x) - f$(y)) < e whenever KC K and KE C The following 
wC (x-y) 0 x-y 

computation gives the appropriate inequality: 

<p(f(x) g(x) - f(y) g(y)) = cp(f(x) g(x) -f(x) g(y) +f(x) g(y) -f(y) g(y)) 

= <p(f(x) (g(x) .. g(y)) + (f(x) - f(y)) g(y)) 

~ sup {cp(f(x) (g(x) - g(y))), cp(g(y) (f(x) - f(y)))} 

= sup {cp(f(x))cp(g(x) - g(y)), cp(g(y))cp(f(x) - f(y))} 
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~ sup{cp(f(x)) ,cp(f(y))}sup{cp(g(x)-g(y)) ,<p(f(x)-f(y))}. 

The hypothesis that £ and g belong to L R,C implies that 

p(f(x) - f(y)) 
wC (x-y) 

< E , and p(g(x) - g(y)) 
wC (x-y) 

< E • 

Thi:1,t is, cp(f(x) - f(y)) < e wC (x-y), and cp(g(x) ... g(y)) < e wC (x-y). Then 

cp f(x) g(x) - f(y) g(y) ~ sup {cp(f(x)), cp(f(y))}e wC (x-y) . 

Thus 

p(f(x) g(x) -f(y) g(y)) < sup {cp(f(x))' cp(f(y))} E ' 
wC (x-y) 

and sup{cp#(x)), cp(f(y))} is a <;onstant. Therefore fg e LR,C. 

The basic ideas of Riemann integration have now been developed. 

Comparisons have been made between integration over the real number 

field and integration over the p-adic number field. The investigation 

has shown how the cosets of an element of a family C partition the 

group and play a role comparable to that of subintervals for Riemann 

integration over the real numbers~ The read.er who is interested in 



integration over the p~adic field will find an area of active research. 

The bibliography will give him an introduction to this research, 
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