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ABSTRACT

The incréasing demand in modern system design and control
to intelligently use information from observations in order to make
better decisions is stimulated by the better understanding of the
theory of stochastic process and computer hardware improvements.

This research presents an extensive study of both the ex-
tended non-linear Kalman filter and the second order approximate
filter. Theoretical and practical aspects are emphasized in the areas
such as comparisons of non-linear filter techniques, combined optimal
filtering and stochastic control, filter asymptotic stability, error
sensitivity analysis, bound of estimation error covariance matrix,
off-line model error compensation and on-line adaptive filtering and
filter decomposition and its applications to real-time filtering for
large complex systems.

As a result of this study, a sophisticated computer program
is developed to treat each of the above subjects and applied to the
filtering of a stirred tank reactor for both steady state feed-for-
ward control and optimum bang-bang control. The reactor is modeled
so that it has four state variables.

Conclusive results are obtained on each of the subject.
After this extensive study, we are more confideﬁt of applying ?he non-
linear filtering to actual process. This includes the implementation

of real-time filtering since our filter decomposition algorithm can

xi
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treat any large complex system by partitioning into several small
manageable subsystems, then apply different adaptive filtering
techniques to the individual subsystem. The error sensitivity
analysis and estimation error covariance bound calculation not only
provide us with the interactions among the variables and parameters
but also lead to better understanding of the structure of the system
which is essential to filter decomposition or model dimension reduc-
tion (approximate a higher dimension complex. system by a lower order).

With the aid of the adaptive filters developed by this work,
we are able to perform the filtering under various uncertainties.

We believe that this study will serve a useful guide for the

future theoretical and practical development of non-linear filtering

and control.



NONLINEAR ADAPTIVE FILTERING AND CONTROL WITH APPLICATION

TO CHEMICAL REACTOR SYSTEMS

CHAPTER I
INTRODUCTION

I.1 Introduction.

Filtering is the estimation of the state variables or para-
meters of a system based on the measurement observations when random
disturbances appear in both the system and the measurements.

Following the work of Kalman and Bucy [K1] in linear filtering,
many papers have appeared.treating linear filtering via 'least squares’,
i.e., the estimate which minimizes the mean square errcr. Others have
used the'maximum likelihood' principle which maximizes the likelihooa
function (the probability density function for a parameter given the
measurement of that parameter). In addition, there have been many
studies of the extension of non-linear filters [s6], [B1], [BS8].

The reason that the so-called Kalman-Bucy filter has received
a great deal of attention, both in the academic and aerospace fields,
is due to its sequential and recursive computational approach which
allows off-line digital calculations as well as on-line filtering of

observations.
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In spite of the wide spread applications in the aerospace
field, there are still differences in deriving a Kalman filter. As
stated by Jazwinski [J2], this is probably due to a lack of a thorough
understanding of Kalman's original work [K3]. Such important points
in linear theory as stability and error sensitivity analysis modeling
techniques have been ignored. Due to the urgent need existing in mis-
sile guidance, a great deal of emphasis has been placed on the practical
aspects, while neglecting the fundamental probabilistic structuring of
the filtering. This drawback has become increasingly important in
dealing with non-linear filtering.

A good review made by Jazwinski [J2] presents a complete cover-
age of filtering theory and error analysis together with applications
to guidance.

Despite the widespread attention to filtering in the aerospace
industry, it has been only within the last two years that filtering
techniques have stimulated the interest of chemical engineers. This
has been due to the complexity of a chemical process (which has pre-
dominantly non-linear characteristics) coupled with the lack of progress
in the theory of non-linear filtering. However, there have been many
recent developments in the theory of approximate non-linear filtering.
However, no conclusive results are available, either in the theory or
in applications to general problems. Bucy [B8] made a recent contri-
bution in developing some asymptotic properties and introduced a partial

solution to non-linear filtering problem.
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Wells [W1] and Mehra[M3] have studied filtering and adaptive
techniques. The former has been applied to chemical reactor modeling
and control while the latter was applied only to a linear model. This
limitation was due to the large amount of computation in generating
the noise covariance and filter gain matrix.

However, there is an urgent need to conduct a systematic study
by applying Kalman's original theory énd its extensions to the approx-
imate non-linear filtering problem, i.e., studying asymptotic stability,
error sensitivity analysis and various aspects in modeling errors, and
error compensation. These should be carried out in order to achieve a
unified approach and conclusive results. Hopefully this will provide
a guide to the applications of non-linear filtering.

Thus, with this aim, this study is-an attempt to apply the
above aspects to the filtering and control of a reactor. Both the
theory and numerical results are emphasized in order to obtain the
unified conclusions.

Our final goal in this study is to develop an online non-linear
adaptive filter which will achieve optimal filtering with linear con-
trol according to the separation principle and suboptimal filtering with

non-linear control.

1.2 Scope and Objective.
The objective in conducting this extensive study is:
1. To introduce error compensation techniques into the
non-linear extended Kalman filter and the second order
filter to compensate for model errors due to uncertain para-

meters, deliberate model simplifications and any error due
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to nonlinear approximation in filter model. All of these
aspects are applied to the chemical reactor model.

2, To extend the results obtained in linear filtering
to the non-linear filtering problem in a unified manner.
This includes such topics in linear filtering as stabil-
ity, model error sensitivity, error bounds all with ap-
plications to a chemical reactor operating under steady
state control or optimum bang-bang control.

3. To present a state-of-the-art review of the non-
linear filtering theory. This includes the development
of the second order non-linear filter and comparison of
this filter with non-linear extended Kalman filter when
applied to a chemical reactor.

4. To develop a sophisticated filter decomposition
algorithm to partition a large complex system into several
subsystems and applying the adaptive filtering techniques
‘developed by this work to the indi%idual subsystems thus
providing a unique approach to the on-line filtering of

large system.




CHAPTER II1

FILTERING THEORY

IT.1 fntroduction.

Most of the studies of chemical process dynamics and control
have been directed toward deterministic systems, assuming precise
knowledge of the system exists by describing the system with a speci-
fic mathematical model with a set of physical parameters. However,
in actual operation, uncertainties arise because of random fluctuations
in feed compositions, other changes in the input such as temperatures,
and imprecise knowledge of physical parameters such as chemical re-
action rate constants. Very often, due to the corruption of measure-
ment by inaccurate sensor instruments, experimental errors can affect
the process dynamics significantly.

The extended Kalman estimation technique has been applied
successfully to many aerospace systems such as the Agollo project.
Recent feasibility studies by Larson [L2], in applying these techni-
ques to the power industry, have shown encouraging results. This has
stimulated academic interest in the chemical engineering field.

Before applying the estimation technique to a real chemical
process plant, it is necessary to acquire a sound knowledge of filtering
theory, i.e., from the study of basic linear filtering, stability, and

error bounds, as well as its applicability to the extensions to non-

linear systems.
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I11.2 Discrete Linear Kalman Filter.
Since most studies of chemical process simulation have been
conducted on digital computer which operates with discrete data we
will introduce the discrete version of the Kalman filter [J2].

Given the dynamic system in the state variable form:

x(k+1) = ¢(k+1,K)x(k) + T(K)w(k+l). II-1
Where
gﬁk) = nxl state vector at t
¢(k+1,k) = nxn state transition matrix (from k to k+l)
r(k) = nxr system noise gain matrix
w(k) = rxl1 Gaussian white system noise

and the observation

z2(k)

H(k)x(k) + v(k) I1-2

with Gaussian white noise on the system and observation, i.e.,

E[w(k)] = 0 and E[w(k)w'(j)] = Qk) 8y,
E[v()] = 0 and E[y(k)y'(§)] = RK)&
Where
2(k+1) = mxl Measurement observation at tk+1
v(k+1) = mxl Gaussian white measurements noise
Q(k+1) = rxr process noise covariance matrix
R(k+1) = mxm Measurement noise covariance matrix

H(k+1)

mxn Measurement matrix .
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Then the new estimate and their error covariance matrices are calcu-
lated as follows:
1. Prediction Stage:

a) State Prediction:

"

®(k+1,k) = &(k+1,k)RX(k,k) I1-3

where

R({k+1,k) nxl State estimate at tp,;

b) Error Covariance Matrrix:

P(k+1,k) = ¢(k+1,k)P(k,k)®"'(k+l , k) +‘r(k)Q(k+1)r'(k). 11-4
2. Process the observation - and make correction on the estimate
a) Filter Gain Matrix:
K(k+1) = P(k+1,k)H' (k+1) [H(k+1)P(k+1,k)H' (k+1) + R(k+1)]-1 II-5
b) Correction of the estimate:
gﬁk+1,k+1) = gﬁk+1,k) + K(k+1)[gﬁk+1)-H(k+l)§ﬁk+1,k)] 11-6

c) New Error Covariance Matrix Calculation:

P(k+1,k+1) = [I-K(k+1)H(k+1)]P (k+1,k) 11-7

or

P(k+1,k+1) = [I-K(k+1)H(k+1)]P(k+1,k) [I-K(k+1)H(k+1)] +

K(k+1)R(k+1)K'(k+1) . | I1I-8



Where
R(k+1,k+1) = nxl state estimate at trel given z(k)
P(k,k) = nxn covariance matrix of the error in x(k,k)
P(k+1l,k) = nxn covariance matrix of the error in x(k+1,Kk)
K(k+1) = nxm Akaimén filter gain matrix at tiel -

Proof of the Equivalance of Equations II-7 and II-8

If we drop the time index k on the right hand side of Equation

11-8 for convenience, then expand and regroup

P(k+1,k+1) = (P-KHP)(I-KH)' + KRK'

P - KHP - PH'K' + KHPH'K' + KRK'

(I-KH)P - PH'K' + K(HPH'+R)K'

From the definition of steady-state Kalman filter gain matrix

K(HPH'+R) = PH', it follows that _

D(k+1,k+1)

(I-KH)P - PH'K' + PH'K'

[I-K(k+1)H(k+1)]P (k+1,k)

which is Equation II-7.

Equations II-7 and II-8 are equivalent. However, II-8 is
better conditioned in the sense of maintaining the symmetric and posi-
tive definite properties of the error covarianée matrix and is less
sensitive to errors in calculating the gain matrix. This can be seen
froﬁ I1I-7 that

8P (k+1,k+1) = - SK(k+1)H(k+1)P(k+1,k) ,
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while from II-8
§P(k+l,k+1) =0 .

However, this is not necessarily true in the non-linear filtering
case based on our simulation experience, II-8 often causing filter di-

vergence.
The following system is used to illustrate the formulation.
For a noise-free, second order system representing a falling body in

a constant gravitational field the describing equations are

X = - g(t20)

which become in state space form:

Leld b

(xbxzr; X, = X; X, = X. The state transition matrix is

e

where x

so that

t 0 t-t 0
x(t) = #(t,T)x(r) + dr

T

1 1 0.5
x(t+l) = [ }Ejt) - g[ ]; t=20,1...
0 1 ' 1 _

and

The scalar observation of position is

z(t) = (1 0)x(t) + xjﬁ); t=1,...6; M=(1 0)
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with error covariance R = 1.0. The initial estimate is SIO) =[9§]

and the error covariance is
10 0

P(0) = .
01

The system is observable since the information matrix is non-

singular.
t -1
I(t,t-1) = J &'(i,t)H' ()R (DH(D)e(i,i)
i=t-1
2 -1
In =

4 1
Let g = 1 and the true initial condition is xl(O) = z(0) = 100,
x2(0) = 0.0.

A complete output summary is listed in Table II-1. As stated
by Jazwinski [J2], the velocity estimation error is somewhat outside
1 standard deviation is due to the particular choice of x(0) and the
measurements. This initial transient will disappear eventually; we
observe that the position error drops fast as soon as the first ob-
servation is processed, while the velocity error drops until the second
observation. This occurs because two position observations are re-
quired to determine both components of the state vector. The dynamics
of this system are such that velocity affects the position but not vice
versa,

The Gaussian Markov property of the linear Kalman filter make
the transients due to the initial uncertainty in P(0) and x(0) disap-

pear eventually and the estimation error approaches zero as the filter
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Table II-1, Filtering results of falling body systenm.
time t 0 1 2 3

xl(t) 100.0 99.600 98.00 95.50 92.00 82.00
xz(t) 0.0 -1.000 -2.00 -3.00 -4.00 -6.00
z(t) 0.0 100,000 97.90 94.40 9?.70 82.10
xl(t,t) 95.0 99.600 98.40 95.20 92.30 82.10
xz(t,t) 1.0 0.370 -1.15 -2.90 -3.69 -5.80
Kl(t) 0.920 0.66 0.65 0.61 0.51
Kz(t) 0.083 0.33 0.31 0.23 0.15
Pll(t,t) 10.0 0.920 0.66 0.66 0.61 0.51

1.0 G.920 0.58 0.29 0.16 .05

PZZ(t’t)




12

approaches a steady state.

For the example problem with a different value for P(0)

[5 o]
P'(0) =
0 2]

our initial difference in P is

5 0
P(0) - P'(0) =
0 -1

The difference at the end of the 6th period is

0.02 0.01 ]

P(0)-PY0) = [
0.01  0.005

Different approaches have been used by various authors to derive the
above Kalman-Bucy filter. A brief list is as follows:
1. Minimum variance [B3], [S6]: This approach minimizes the

estimate error variance. Fbr example
Min E([x(K)-X(K)]' [x(K)-2(0)]) -

This can be done easily by minimizing each component of
the expected error through the orthogonal projection
principle, i.e., the prediction error is orthogonal to
the observation.

2. Recursive Least Squares: This method has been used by
Bryson and Ho [H2] and others [J2] to derive the dis-
crete Kalman-Bucy filter. This can be done by converting

the filtering problem to a least squares problem.
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Min #[x(0)-%(0)1P] [£(0)-R(0)] +

k
%.Zl[g(iJ-H(i)z(i)]'R(i)'l[g(i)-ﬂ(i)x(i)]

i=
subject to the constraints
Xx(i+41) = ¢(i+1,i)x(i); i=0,...k-1

This is accomplished by setting the gradients equal to zero.
3. Maximum Likelihood: This method was introduced by Ho,
Schmidt [H2] and others [J2] and consists of maximizing
the conditional density p[x(k),k|z(1),...2(k)] or maxi-
mizing the likelihood function.
In the linear case the conditional density satisfies

Kolmogorov's forward equation [B8].

dp/at = -p tr(F) - pin + %tr(GQG'p_.) I11-9

pXX

for the linear dynamics

dx = F(t)x dt + G(t)dy
II-10
E(dvdy') = Q(t)

The solution to (II-9) for the linear system (II-10) with
Gaussian noise is

|HPH'+R| %
(2x3.1416)*|R[%|P[%

plx(K),K|2(1),...2(0)] = exp[-3(A)] 1I-11

where
A= (z-HR)'RTI(ZHD + (1-%)'P1(x-2) - (z-HE)'(HPH'+R)~} (z-HR)

Therefore the maximum likelihood estimator is equivalent to minimizing
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A. See Jazwinski [J2] for detailed derivations.

Variations of the Linear Kalman Filter.

In deriving the linear Kalman filter we assume both the sys-
tem and measurement have the additive Gaussian white noise property,
i.e. it is not correlated. However, this restriction can be relaxed
in the following different ways:

1. Correlated system and measurement noise [K1].

Elw(k)v(3) '] = Ck) &y # 0

In this case, only the Kalman filter gain is modified as

K(k) = [P(k,k-1)H' (k) + Ir'(k-1)C(k)][H(k)P(k,k-1)H' (k)

g 12
+ H(K)T (k-1)C(K) + C'(K)T'(k-1)H' (k) + R(K)]

and

P(k,k) = P(k-1,k) - K(k)[H(K)P(k,k-1) + C'(K)I'(k-1)] . 11-13

2. Sequentially correlated (colored) measurement noise [J2].
Consider the measurement noise is correlated as
v(k+1) = Y(k+1,k)v(k) + u(k), assuming u(k) is white noise

(not correlated). Defining the augmented system

x(k) = [x(k), v(K)]'

SN

W' (k)

and the matrices

or 1]
n

[(w(k),u(k)]'
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Poll
{

i [Q(k) 0 ]
A(k) = (H,I) =

0 S(k)
The augmented dynamic system is

Z(k+1) = & (k+1,k)x (k) + FKu(k)

11-14

z(k) = H(K)Z(K)

3. Muitiplicative noise [S1].
This method treats the observation as being contaminated with

multiplicative noise
z(&) = [1sm(X)]h[x(k),k] + v(k) II-15

where m(k) is related to

m(k)
y(k+1)

CK)y(k)
D(K)y(k) + G(k)u(k) .

11-16

The distributions of x(0), y(0), u(k), w(k), v(k) are
Gaussian and have zero means and uncorrelated. Here again,

we can use the augumented system by defining:

(x(K) _ (1 (k)
x(k) = w(k) =
x.(K) (uk)
(a(k) 0 ) r(k) 0
3(k) = (k) =
| 0 D(K) L 0 G
h(k) = [1+C(K)y(K)]h[x(K),k)] . 11-17

See Sage [S1] for detailed derivations and extensions to non-linear

filtering via linearization.
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I1.3. Nonlinear Discrete Filteirng

Let the nonlinear discrete model be

x(k+1) = £[x(k)] + Tx(K)]u(k) 11-18
x(0) = ¢
and the nonlinear measurement be

z(k+1) = hix(k+1)] + v(k+1) 11-19

where v(k) and w(k) are uncorrelated Gaussian sequences such that

E[w(u' ()] = Q&

Bl (x' (5] = R(8,

Then the filter estimate conditional probability density function
contains all the information concerning the processes.
Let this conditional density be denoted by P,(y) then, the

following iterative formula determines P, (y)

CnPn+1(Y) = fexp[z(k),h(a)]R_1 —i]|h(aﬂ|2R_1Pn(a)

-3
x detr(@Qn-Dr @] = o r 31ly-£(a)||2 _qlda I1I-20
(2x3.1416)™ 2 A

where
C, = fexp[(z(k),h(a))R_l-%flh(a)HzR_l]Pnda
with

-3
(det K) )
P (a) = ~——5— exp(-%|]a]]? )
0 (zn)m/Z K-l

Here the state has m dimensions. Unfortunately, this approach involves
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massive computation. See Bucy [B8] for a detailed derivation. Start-
ing from the conditional probability density function, various approx-
imations are made by different authors in order to achie?e a computa-
tionally feasible filter algorithm. Among these, Bucy and Bass [B8]
use a Taylor series expansion neglecting orders higher than second
and thus arrive at the so-called second order approximate non-linear
filter. Jazwinski [J2] applied this approach to continuous processes
and with discrete measurement, he arrived at a continuous-discrete
filter. Lo [L4] made a recent modification and presented the idea of
continuous-discrete smoothing.

An alternative to this approach is skipping the conditional
probability density for the nonlinear model. The nonlinear model is
linearized and we can use the existing Kalman filter for the linearized
model. This approach is the so-called non-linear extended Kalman
filter.

Variations of these two types of nonlinear filters can be found
in Jazwinski and Schwartz's works [J2]. Sorenson [S11] made compari-
sons of four different non-linear filters on their performance on pro-
bability density functions. He concluded that using the extended
Kalman filter assuming the conditional density function was approxi-
mated by Gaussian density showed inadequacy in a nonlinear, nongaussian
system. The second order nonlinear filter proved to be better than the
Kalman type for a nonlinear nongaussian model. In the same paper,
Sorenson introduced his Gaussian sum filtér by approximating the con-
ditional density as the sum of weighted gaussian densities. He con-

cluded that in some instances, his gaussian sum approximation is
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superior to that of the second order method. However, one drawback
is that his new nonlinear filter requires significantly greater com-
putational load than both the extended Kalman filter and second order
filter.

Extended Kalman Filter

The extended Kalman filter is essentially the same as the
linear Kalman filter, e&cept the transition matrix and measurement
matrix are replaced by the linearized model of the original nonlinear
process. Thus, linear filtering theory can be extended to the treat-
" ment of nonlinear approximate filtering.

Let the nonlinear system be given as

x(k+1) = fx(k),u(k)] + gkIu(k) I1-21

z(k) = h[x(X)] + v(k) 11-22

where f and h are nonlinear process and measurement vector functions
and w(k), v(k) are both zero mean gaussian white noise.

The extended Kalman filter is evaluated by replacing

af[x(k-1) ,u(k-1)]|

P15 k-1]k-1) T T ax(k-D) (% (k-1]k-1) 11-23
_ dhix(K)]
H(k) = M ik 11-24
Therefore in the prediction stage, the filter estimate is
X(k k-1) = £[X (k-1 k-1),u(k)] 11-25

and the observation is

2(k k-1) = h[&(K k-1)] 11-26
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In order to make the extended Kalman filter applicable to a
nonlinear process, P(0), Q(k), R(k) cannot be too large to violate-
linearity assumptions. Note that the Gaussian and Markov properties
no longer hold globally for non-linear filtering and the initial prior
statistics are very importanﬁ and make the filter performance more
sensitive.

Nonlinear Second Order AEprokimate Optimal Filtering

Schwartz and Bass [B2] approximated the optimal non-linear
filter using a Taylor Series expansion with terms carried out to
second order.

Let the nonlinear model be represented by

[N
”
n

£(x)dt + I (x)dv 11-27

o
N
fl

h(x) + dw 11-28

where X is the state and z is the observation.

Using Taylor expansions of £(x) and h(x) around the estimate g

£ = £® + £ @D + H @ ¢ D) &R 11-29
h@ = h@® + b @ E-R) + #h @) @ xR x-R)' I1-30
where

[trace [f,__(x)S]
£,00 ¢S = xx
trace [fnxx(x)s]

Taking the expected value of Equations 1I-29 and II-30, an
appfoximate non-linear filter is: [since E(xf = x]

d% = £(R) + 4£, (R) : P dt + P h;(i)R-l(t)

11-31
[dz - h(R)dt - $h (R) : P dt]
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The approximate equation for the error covariance matrix is:
dP = Pf, (R)dt + £, (R)Pdt - P[h;(i)R-l(t)hx(i)]Pdt .

r(x)Q(e)r'(x)det + %[r(i)Q(t)P'(i)]xx : Pdt -
¥(P : h;x(i)R' (t)[dz - h(x)dt - ihxx(i) i P)
with

P(0) = E([x(0) - %(0)1[x(0) - %(0)1") . I1-32

Where Mxx : P denote a matrix and is a dyadic product

M. _ P)ij = trace (Mi.x P)

XX jxx
Q(t) and R(t) are the process and measurement noise covariances re-
spectively.

The above approximate non-linear filter shows marked differ-
ences to the extended Kalman filter which is obtained by linearization
of the process model and then applying linear filtering theory. This
approximate filter also represents a major simplification over the
direct calculation of the conditional distribution.

The Taylor series approximation techniques represents only
one approach to the practical synthesis of a filtering scheme for non-
linear systems. There still needs to be a great deal of effort, both
in the theoretical and practical aspects of non-linear filtering. This
work tries to fill a gap in this area by extensive evaluation and com-
parison of extended Kalman filters utilizing a chemical reactor example

suggested by Wells [W1].
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We observe that all of the terms in Equations II-31 and II-32
including Pfxx are used to correct the process nonlinearity while
chxx corrects the measurement nonlinearity.

In our numerical example, we have a linear measurement system,

therefore all of the terms with chxx drop out.

II1.4. Numerial Examples and Discussions.
Non-linear filtering of a Stirred Tank Reactor system [Wl1].
Given a chemical reactor, the describing equétion are:

a. Energy balance: (reactor) (Reaction: ZA—E>B)

oV, g% = PFC (T;-T) + AHKVexp(-E/RTIC} - hA(T-T,) 11-23
b. Eunergy balance on reactor wall
dT

W o_ _ N ‘ _
PV Cpy T = BACT-T) + BLA (T, -T)) 11-34

c. Energy balance on jacket side

dr
< - - - -
pVeloc TT = Pefclpe (Tci T) +hA (T -T) 11-35

d. Mass balance on reactor contents

de
V-

o F(C,.-C

- -E 2 _
Al A) KVexp ( L‘./RT)CA . I1-36

Following the same normalization procedures as outlined by
Wells' and requiring the reactor to be maintained at steady state,

the state space estimation equations are

s 2
X, —-(c1+c4)x1 + c3(1+x4) exp[K1x1/(1+§?]+ CyXy = C3 11-37

X

9 = -(c5+c6)x2 +Cexy + CeXq . I11-38
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o
1

= -(c7+c8)x3 + CgX, I1I-39

e
]

2
4 = C1%y - c2(1+x4) exp[K1x1/(1+x1)]+ c, 11-40

while the measurement equations are

Zi(k) = Ei(k) + xi(k); i=1,2,3. 11-41
1 0 0 O
The linear measurement matrix M= (0 1 0 O
0 01 0O

The transition matrix for the linearized system is related .,

to the Jacobian of the above system equations

fn f12 0 Ty
oo | T2 T2z f23®
0 £, £,.0
fn 00 iy

with process parameters given below

Cy =Cg = Cg =Cq = 0.5; c, = 0.05

Wells did not point out his K1 value where Kl = E/RTS. For the re-

sponse given by his Fig. 2 it was computed by this simulation that KI
is approximately 1.0.
The components of the Jacobian matrix’ are:

= 2
f11 = (c1+c4) + CSB KlDE

f.. =c¢,;

12 f. = 2c_BE

47 14 3
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f1° S
£, = ~legregds £z = ¢y
f3, = cg
£33 = - (cg*cg)
- - 2
£,, = - c,B2K DE
f44 = - c1 - 2c28E
Where
B = (1+x4)

E = exp[K1x1/(1+x1)]

D= (lex)"2

For the second order filter we need to evaluate the dyadic product of
the second order partial derivative and error covariance matrix. The

second order partial derivatives are defined as:

32f1
1xx = 9x.9X. i=1,4 =14
1 )
f1x1x1 0 0 f1x1x4
£, = 0 0 0 0 i 11-42
0 0 0
fIX4X1 0 0 le4X4

Where
= 202k 2E 2 :
f1x1x1 c3B D KIE ZCSB DKlE/(1+x1)
flx x, = f = 2c¢,BDEK
471 1x,x 3 1
174
flx X, ZCSE

474
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a2f2
fox = Ax.ox. 11-43
1]
32f5 ,
f T rm—— I1I-44

3xx 9X.9X.
R

The matrices fz and f are identically zero.
XX 3xx

9%y 11-45
faxx = TX 5%, -
1)
then
f 6 o0 f
4x1x1 4x1x4
0
f4xx - ’
0 0 '
4x4x1 4x4x4
where
= - 2n2 2 j :
f4x1x1 = czB D KlE + 2czB DEKl/(1+x )
f =f = - 2c¢,.BDEK
4x4x1 4x1x4 2 1
f =-2¢c.E .
4x4x4 2

Substituting the above relarions into the extended Kalman
filter and the second order filter with the x's evaluated at the esti-
mate at every sample period, we are able to carry out the sequential
filtering results as shown on Fig. 2.1, through Fig. 2.4 for the second
order filtering and Fig. 2.5 to Fig. 2.8 for the extended Kalman filter.
We adopt Wells' Nomenclature for the constants c(i), i = 1,8 and the

physical parameters. These values are outlined in Table II-2.
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Table II-2. Nomenclature.

- =3 3

Symbol Definition Units
P average density of reactor contents 1b/ft3
Py average density of reactor wall 1b/ft3
Pe average density of coolant 1b/ft3
4 reactor volume £t 3
Vw reactor wall volume ft3
Vc cooler volume £t 3
i feed temperature °R
Treactor content temperature °R
; reactor wall temperature °R
T, cooler temperature °R
Cp average heat capacity of reactor contents BTU/1b-°R
pr average heat capacity of wall BTU/1b-°R
Cpc average heat capacity of coolant BTU/1b-°R
F volumetric flow ft3/sec
F. volumetric coolant flow rate ft3/sec
K preexponential rate constant frequency factor 1/sec
H heat of reaction BTU/1b
h film coefficient of reactor content BTU/ft2-°F-sec
h, film coefficient between wall and coolant BTU/ft2-°F-sec
CA weight concentration of reactant A 1b/ft3
C,. feed concentration of A 1b/ft3
E : activation energy for reaction atm-ft3/mole
R gas constant atm-£t3/°R-mol
t time sec.
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Table II-2 Continued

reactor wall area . ft2

wall cooler surface area ft2

i

Dimensionless Constants

time scale factor = 1/240
E/RTS
F/V
(K/B)C2exp(-E/RT,)

- 2
AHKexp ( Kl)cs/(pCst)
hA/(pVCpB)
hA/ (pwVwCPwB)
(hAD/C o V.8
Fc/(VCB)
thw/(pcchpcB)

Cs steady state concentration

Ts steady state temperature

T-Tg
T

= Normalized reactor temperature.
s

Ty-Ts

Normalized reactor wall temperature.

Normalized coolant temperature.

]

Normalized reactant concentration.
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We assume the following prior statistics:

0.01 O 0 0
o 0.01 0 0
PO =19 o o0.01 0
0 0 0 0.01
0.0001 O 0 0
0 0.0001 O 0
Q(k) = constant= o 0 0.0001 0
0 0 0 0.0001
0.01 O 0
R(k) = constant = {0 0.01 0
0 0 0.01

with initial process conditions X; =Xy = Xg = 0; X, = 0.1 and the
initial estimate Xp =Xy =Xy =X, = 0.
As stated by Wells the estimate il, 22, is approach the true

states very well. However, x, requires several observations and is

4
caused by the fact that the actual error between the estimates is zero
for Xy Xp, Xg and 0.1 for Xy The ovgfshoot at the peaks of each of
the states is due to integration error. Euler's integration rule was
used.

Figure 2.1 shows the filtering on reduced temperature by second
order non-linear filter with lower initial estimation error covariance
P11(0) leads to a low estimate for the temperature, however, the trans-
ient due to the initial uncertainty of P11(0) disappears after the
fourth sampling (Gaussian Markov property) whe?e the filter approachés
the steady state. Figure 2.2 and Fig. 2.5 shows its effect on the
estimate of concentration. Figure 2.4 shows, the delayed approach to

steady state due to a higher value of P11(0), even though it predicts

very well in the early part of the filtering. It has been found in
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this simulation that with P11(0) greater than 0.02, the filter will
diverge after the third period. This shows a very sensitive nature
of the reactor model to different P(0). Similar results for the ex-
tended Kalman filter is shown in Fig. 2.6 to Fig. 2.8.

The degrading of the reactor temperature estimate due to
raising the error variance of its measurement is shown in Fig. 2.9
for the second order filter and Fig. 2.12 for the extended Kalman
filter. It is shown that the non-linear second order filter did a
better job than the extended Kalman filter. Figure 2.10 shows that
increasing the error variance of the reactant temperature has little
effect on the estimate of reactant concentration.

Discussion:

The reason that X, requires more obsefvations is not only due
to the existence of initial transients, but also to the fact that i4
is not a measured variable. Here we are facing the same situation as
in the linear filtering example. Therefore, it requires at least
four observations to completely define the 4 state variables, and the
estimate of X, is not expected to be good until 4th observation. The
solution to the oscillations and overshooting of this particular ex-
ample is to introduce the second order approximate filter.

One approach used to reduce the overshooting due to integra-
tion errors is to introduce a fictitious noise'to compensate for the
integration errors. See Chapter IV for a detailed discussion and
numérical examples.

Extensive numerical studies were performed on Wells' reactor

model using both the non-linear extended Kalman filter and the second
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order filter. All of the results shown improvement over his parti-
cular example and are probably due to the fact that we are using a
better matrix inversion routine [G1] to reduce the possible round-off
errors in the gain matrix calculation.

Generally spéaking, the second order filter gives improved
filtering results when compared to the nonlinear extended Kalman
filter in correcting the system nonlinearity. This improvement will
disappear as the sampling period is reduced to the point that the
E linearization error in carrying out the extended Kalman filter is not
observable.

In our reactor model, with a sampling period of 0.5 second,
the system nonlinearity is almost neglegible, thus the performance of
nonlinear extended Kalman is essentially the same as nonlinear second
order filter. However, the system nonlinearity error is so serious
it can cause the divergence of nonlinear extended Kalman filter, while

the nonlinear second order filter gives satisfactory results as shown

in Fig. 2.14, and 2.15. Therefore, in the online implementation of

; nonlinear filtering, we suggest using nonlinear extended Kalman
filtering only when the computational environment is suitable for small
sampling periods. The linearization error will be acceptable within
the smaller sampling periods but requires more frequent sampling and
faster computational speed. On the other hand; the second order filter,
with its correction terms for the system and measurement nonlinearity,

proved to be more flexible for real time filtering.

N e T ey .
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CHAPTER III

COMBINED FILTERING AND CONTROL

111.1 Introduction
It is a universal desire to maximize the return on investment
and this is especially true in engineering and business. This art of
utilizing our capabilities most efficiently is generally termed
'Optimization'. From experience, optimization problems often appear
baradoxical, in that it may appear impossible to find an optimal so-
lution and yet we never give up searching for an optimal solution be-
cause of its importance. |
A.typical optimization problem is composed of the following
parts: )
A. Definition of the goal or the criteria.
B. Is the goal reachable? This includes the study of our
environment; social factors, economic factors, and the
problem itself.
C. Determination of the best policy based on A and B.
Mathematically speaking, we attack this problem in the following
way:
1. Formulate the performance index.
2. Translate the physical problem descriptions and con-
straints into mathematical language.

3. Solve the problem mathematically.

44
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The first two problems are very difficult since most physical
process are too complicated to solve analytically or, due to our im-
preéise knowledge of £he problem, we can never obtain an exact mathe-
matical model for it. Applying the above approach to the real world
can be termed"optimal control’. Here, the term 'optimal control' may
not be the real 'optimal' due to the deliberate simplification of the
problem or imprecise knowledge of the process or the numerical approxi-
mations introduced in carrying out the solution. However, we settle
for the 'next to optimal', or 'suboptimal' or simply 'optimal' result
to make our way towards an ultimate solution.

. Before we get involved in optimal stocastic control, let us
introduce the five basic classes of control. We adopt Lee's [L3]
pictorial approach:

A. Deterministic optimal control problem.

z(t)
output

—-g-(—t—)—thlant process | —l-c-—(t—)—-r[measurement | ——

Given: The dynamic relationship between x and u, z and x.
Find: The control policy u(t) such that the output z(t) opti-
mize our performance index.
B. Estimation problem:

Estimate the states of the system in a stocastic environment

v

—— | plant process—lg‘(—-ﬁlﬂ»lmeasurememtj—» output z(t)

Where w(t) is the driving process noise vector, and v(t) is the measure-

ment noise vector.
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Given: 1. Relation between x and w (usually assume additive
Gaussian white noise).
2. Relation between z and x, v (also assume addi-
tive Gaussian white noise).
3. The statistical description of w and v.

Find: The best estimate X(t/T) based on the measurement z(t)
for t up to T. In the case t = T, we have the filter-
ing problem; for t> T, we have the prediction problem
and for t< T, the smoothing problem.

C. Identification problem.

ON ¥y}

u(t) [plant process = 7| ——— [measurement | —> output z(t)

Given: 1. The statistical description of w and V.
2. Physical relation between z and X, z.
3. The measurement z and input u.

Find: The best estimate of the plant process.

D. Stocastic control problem.

o) 2w () |
[7] == [plant process | —— [measurement | —— output z(t)

Given 1. Relation between x and w, u.
2. Relation between z and z, V.

3. The statistical description of w and V.
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Find: The optimal policy u(t) such that our best estimate of
x(t) optimizes our performance index. If u(t) is a function of the
output, we have the closed loop stocastic control problem.

E. Adaptive control problem.

s, boew . Ly
? | =-—=— | plant process = ? ]————e-[measurement4]———+ output z(t)

Given: 1. The statistical description of w, v.
2. Relationship between z and x, V.
3. The output z(t) and the input u are measurable.

Find: u(t) such that the best estimates optimize the per-
formance index.

Although we can classify the modern control problem into the
above five areas, the actual problem we face may not belong to any
single class. It may be some variation of tﬁe above categories or
combinations among them.

1. A + B: Combined estimation and optimal control. In practice
this cascades a filter to an optimal deterministic controller. If the
process is linear with a quad;atic performance index, the existence
and uniqueness of the optimal stocastic control can be assured by the
separation principle. The computational aspects of this problem can
be carried out by calculating the filter estimate and the optimal con-
troller gain separately. If the process is nonlinear, the separation

principle no longer holds. Theoretically, there may exist several
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local optimal solutions and we can no longer separate the filtering
and control. Iterative solution of the split twé point boundary value
solution via quasilinearization and invariant embedding ﬁay be a Qay
to approach a suboptimal solution. Lee and Sage {S2] have had some
success in applying Bellman's original idea in this field.

2. D+ E: This is a combined filtering, identification and

optimal control problem. Here again, if the process is linear with a
quadratic performance index, we can be assured of a unique optimal so-
lution by the separation principle. This occurs because we can treat
the uncertain model parameters as additional state variables and do
the filtering for the augmented system. An alternative to this pro-
blem is to apply the model error compensation techniques or adaptive
filtering to generate the best estimate and then casca&e it to the
optimal deterministic controller. Other variations in this category
includes the so-called learning controller in which we apply on-line
optimization using the plant's output, the controller iteratively
applying a learning algorithm (refer to Fu) [F2] to learn the optimum
control policy while minimizing the expected performance index
(McLaren and Pan) [P4]. In the situation where the uncertain para-
meter only consists of a finite number of values, this is a typical
filtering-detection-control problem where pattern recognition and

statistical decision theory play an important role.
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I11.2 Combined Linear Filtering and Linear Control with a Quadratic
Performance Index.

Problem Formulation and System Model

The System Model can be assumed to be described as below:

x(k+1) = o(k+1,k)x(k) + r(k+1,k)w(k) + ¥(k+1,k)u(k) III-1

with the observation:

z2(k+1) = H(k+1)x(k+1) + v(k+1) I11-2
for

k =0,1,2 ...
where

X =n - vector (state)

u =r - vector (control)

vector (system disturbance)

=
]

g
]

V. =m - vector (measurement error)

¢ = nxn state transition matrix

I'(k+1,k) = nxp disturbance transition matrix

¥(k+1,k)

nxr control transition matrix
H(k+1l) = mxn measurement matrix
x(0) = zero mean gaussian random vector with positive semide-

finite covariance matrix P(0)

The performance index is defined

N
Min J_ = MinE[ b ox'(D)A()x(1) + u'(i-1)B(i-1)u(i-1)] 111-3
i=1

Where A(i) and B(i-1) are positive semidefinite metrices which are nxn

and rxr respectively, and E is the expected value operator. Optimal
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control of the above stocastic system was first conjectured by Kalman
and Koepcke [K3] with the separation principle stated as follows:

Sepération Principle.

The optimal control system for the stocastic linear system de-
scribed above consists of the optimal linear filter cascaded with the
optimal feedback gain matrix of the deterministic regulator. The para-
meter for the two parts of the control system are determined separately.
This principle was proved by Joseph [B8].

Implementation.

1. Estimation:

X(k]k-1) = o(k,k-1)X(k-1|k-1) * ¥ (k,k-1)u(k-1) ' I11-4

2(k[K)

%(k|k-1) + K(K) [z(K)-H(K)R (k|k-1)] I11-5

Where K(k) is the Kalman filter gain defined exactly the same as in
the linear Kalman filter.

2. '0ptima1 Control:

u(k) = S(K)x(K) I11-6
S(K) = -[¥' (k+1,K)W(k+1)¥ (k+1,K)+ B(K)] ™}

Y(k+1,K)W (k+1) @ (k+1,K) ' 111-7
W(K) = @' (ke1,K)W(ke1) (kel, k)4 &' (k+1,K)W(ke1)¥ (k1 ,K) »

S(K) + A(K) 111-8

for

k = N-1, N-2, ... 0 and WN) = A(N).
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A block diagram for this algorithm is shown below:

+
+I
—Q G0 H—{belay -

+

\
£(k-1,k-1)

[}
x(k,k) |
—1S (k) |—> u(k)

20—,

A 4

o3
i

YOk D] [FeTay J+

u(k-1)

FEEDBACK CONTROL
GAIN MATRIX

) UL QU U UG Y K

OPTIMAL FILTER

The above algorithm has already been developed and completely

tested against the following example given by Meditch:

x(k+1) = x(k) + w(k) + 2u(k)
z(k+1) = x(k+1) + v(k+l)
3
Jg = E[x2(3) + igluz(i—l)]

with

Q(k) = 25, R(k+1) = 15,P(0) = 100;‘ x(0) = 0

the filter equation is

R(k|k) = R(k-1]k-1) + 2u(k-1) + K(K)[z(k)-% (k-1]k-1)-2u(k~1)]
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where

u(k-1) = S(k)x(k-1[k-1)
The following data has been checked out:

A. Filter: k P(k|k-1)  K(k) P (k|k)

0 ce cee 100

1 125 0.893 13.39
2 38.4 0.720 10.80
3 35.8 0.704 10.57

B. Optimal feedback controller:
k S(k) w(k)
3 ce 1
2 -0.400 0.200
1 -0.222 0.1i1

0 -0.154 0.077

Therefore the optimal control at each state is:

u(0) = -0.154 %(0]0) =0
u(l) = -0.222 x(1]1)
u(2) = -0.4 X(2|2)

The dual relation between filtering and control can be put

into the following correspondence:

Filtering Control
transition matrix F(t) F'(-t)
time (tyst) (-t,-to)

weighting matrix I'(t) K'(-t)
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gain matrix H(t) pr{-t)
performance index 3] |x-X| |2p Jn
Controllability Observability
Unbiased Estimation Minimum Energy
weighting matrix Q(t) A(-t)
R(t) B(-t)

Notice that the control sequence are calculated backward
(negative time sense). This duality correspondence allows us to
develope the control policy simply by dualizing the theory of linear
filter.

II1.3 Suboptimal Nonlinear Stocastic Control

Consider a general nonlinear stocastic control problem. Let

the system be described by n state vector x(*} with the observation m

vector y(t) corrupted with additive noise v:

System: x = f(x,u,k,t) I11-9
Observation: y = h(x,t) + v I1I1-10
t
Performance Index: J = E JofF(i,g,t)dt . I11-11

The optimal stocastic control for the system can be stated as 'chose
u(t) to minimize J'.

Solution of III-9 to III-11 is not possible even in the determin-
istic nonlinear optimal control problem and often involves solving a
two point split boundary value problem. Payne [P1] presents a system-
atic computation approach to the solution of optimal control problem.

Balakrisknan [Bl] recently presented the'Epsilon technique' to avoid
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the integration of dynamic equation by converting it into a minimiza-
tion problem it solves simultaneously the twin problems of integration
and finding the optimal solution. The separation principle for the
linear optimal stocastic control is a special case for the solution
of II1I-9 to III-11; and assumes III-9 and III-10 are linear and III-11
is quadratic.

Although the structure of the optimal nonlinear solution is un-
known, a suboptimal stocastic controller can be based on the idea of
separating the filtering and control. Thus, cascading a nonlinear
filter to the nonlinear optimal deterministic controller presents a
reasonable approach. Assuming the non-linear filter is represented
by non-linear extended Kalman filter, we then have the suboptimal

estimator and its error covariance matrix:

% = £(X,u,k,t) + Ph/H[y-h(X,t)] I1I-12

P

' ' “hg -
£P + Pl + P[hH(y h(z,0))],P I11-13

where k is the model parameter vector. In the case of combined iden-
tification and control, we can augment the E.= 0 into the filter
state equation.

Seinfeld [S8] presents the following scheme as one possible ap-

proach to the solution of the problem:

noise
v
- X
- h(x 11 2
system X lobservatlon | h(x) .| non-_.inear -
3 1 > filter >
u optimal

controller
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The solution of the system equations III-9 to III-11 can be
simplified by replacing the overall integral of III-1l by a single
stage. This idea was successfully applied to nonlinear éontrol by
Lapidus, Lee [L1], [L3]. Applying the idea of Lee: Let the system
be described by the discrete data form:
1. System x(k+1) = £[x(k),u(k),w(k)] I111-14
Observation z (k) = h[x(k),v(k)] I1I-15
2. Optimal filter. We assume that the nonlinear optimal
filtering estimate X(k,k) is given at all times.
3. Optimal prediction. X(k+1,k) = f[X(k.k),u(k)] II1I-16
4. Design the controller by single stage optimization,

such that:

in J = ||X(k+1,k)]|2 QSHE -
gﬁ:) ”2‘_( + ’k),’A(k) + ”l_‘l_(l\;.lg,:k) 1I1-17

subject to the constraints

R(k+1,k) = £[R(k,K),u(k)] . I11-18

5. The solution to the above problem is

u(k) = - B (k) A(K)  £[x(k,K), uk)] . I11-19

Ju (k)

Therefore, we can solve for u(k) as a function of X(k,k) or
X(k+1,k), this result is optimal for a single stage process. This
technique can usually be applied to the closed loop optimal regulator
where the error is not very large. We are able to approximate the be-
havior of a multistage process by properly choosing the weighting
matrix functions A(k), B(k) such that they are time varying and pro-

portional to the magnitude of the error.
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A special case of nonlinear stocastic suboptimal control was
treated by Seinfeld [S2] recently,{where he assumes the control ap-
pears linearly in a nonlinear stocastic process, and thuﬁ uses the
single stage process performance index

min J = (§;§é)'Q(g;§§) I1I-20
u

Thus by minimizing J at each instant of time, such that the rate of

movement toward x9 is a maximum,

P =2 ok
d I1I1-21
= 2(X-x ) 'Q[f(x,u,k,t)] + PhiH[y-h(x,t)]
Assuming
i=uw@ k1) +SEktu 111-22
and substitute III-22 into III-21; we then have
= 20k-xDQIWE K, t)] + S(X,K,t)u + PhyH[y-h(%,t)] . 111-23
Let
B = 28' (%,£,£)Qx-xd)
A minimum F is obtained if
u, = ur for B.<0
i i i
111-24

=u. for B.>0
i i

This is a bang-bang type of control with singular control when Bi = 0.
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Seinfeld applied this algorithm to a CSTR with first order reaction,

a two-state variable problem.
Fortunately, the control vector also appears linearly in our
nonlinear reactor model. Rewriting our reactor model in the pre-

vious chapter:

2
= -(c1+c4)xl + c3(1+x4) exp[klxl/(1+xl)]+ CyXy *+ Cuy I11-25

X, =
X, = -(c5+c6)x2 + CgXy + CeXg . I11-26
Xg = -(c7+c8)x3 + CgX,y + CoU, ' I11-27
- - - 2 -
Xy = -CyX, c2(1+x4) exp[lel/(1+xl)] + cqug I11-28
u]
where u = jup| is the control vector and is defined as
us
T, -T, Te;~Ts Ca;7Cs
u = : u = M u =
1 Tg ° 2 Ts ° 3 Cs

It is obvious that u appears linearly in Equations III-25 to III-28,

with the constant control gain matrix

o O O 0
0O o o©
0 ©o o o

Assuming in identity weighting matrix and §§ = 0, since we are interested

in returning to the steady state
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¢, 0 0 0 %)

B = 0 0 ¢, 0 xz
0 0 0 ¢ :23

X

with

= ui* if Bi >0

Then, we have the bang-bang controller. In our case, the choice of

* . . . * - . .
us and u, 1s very important, with u; = 1.0, and U, = 1.0 will

cause model divergence. This means the heat removal rate is too small
to quench the reaction heat, thus leads to runaway reaction. With too
high a value of the bounds will lead to excessive oscillation of the

dynamics and degrading of the product.

The best set of values seems to be:

¥ =1.0,u, = -1.0

u, = 5.0; u, = -5.0; u, = 0.5, u o -0.5; ug 34

Using these set of bounds, the transients due to a 10 per cent
upset in x4 disappeared almost instantaneously. Thus the dynamics
are able to return to the desired steady state in a very short period
without degrading the product quality.
| Another type of control introduced by Wells, as we used it

throughout our work for comparison purposes is steady state control.
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This can easily be obtained by setting the left hand side of Equations

III-25 to III-28 to zero; the resulting control will be:
u, = -c3/c1; u, = 0.0; u, = cz/c1

Substituting these relations into Equation III-25 to III-28
thus arriving at our reactor model equations as we use it throughout
studies. In our simulation, we found that bang-bang control is much
better than Wells' steady state control in compensating the initial
10 per cent upset in concentration. Figure 3.1 shows that the bang-
bang control can keep the reactor wall temperature (x2) almost at
steady state while it increases steadily with a maximum offset of 22
per cent by steady state control. Figure 3.2 indicates that bang-bang
control can compensate the concentration offset while steady state
falls in 10 seconds. Figure 3.3 and Fig. 3.4 show bang-bang control
can compensate the transient even with a reduced rate constant
RK = 6.0 (corresponds to higher reaction rate) while Wells' steady

state model diverges.



60

0.22 7
[ STEADY * STATE X3 X0OK =

[ BANG BANG X3 ##%#%%% -

—~  BANG BANG EST. .... -

, E

& F 7
S - -
= L. L
| ] L -
9] [ -
(&0 ] - :
- .

- 7

0.0 s Dt e DS ea T

0.0 5.0 10.0

TIME StC.

FIG. 3.1 BANG 2ANC CCONTROL
SECCND CRDER NCNLINEAR FILTER

UANGS ACAPTIVE I - .
" C 'STEADY ST. BANG BANG BANG BANG

TIME SEC. X 3 X3 ESTIMATE
0.5 €.0007 C.CCC2 0.0002
1.0 0.CC52 0.0001 0.00¢C2
1.5 C.0150 -C0.CCO3 -0.0004
2.0 0.0294 0.C004 0.00C5
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61

0.068 -
- \ STEADY STATE CONTROL X4 XCOXX -
: BANG BANG CONTROL XU ##%x% ]
- BANG BANG ESTIMATE X4 ..... 7
: E
P L
o pu
T -
e p
- 2
00 L e e ——
=] - -
s - .
=~ -
5; .
£ -t pa
: e
- 7
p— -
= 5
-0.073 [ :
0.0 5.0 10,9
TIME SFC.

FIG. 3.2 RANG BANG CCATROL
SECOND CRDER NCALINEAR FILTER
HUANGS ADAPTIVE 1
STEADY ST. BANG BANG BANG BANG

TIME SEC. X 4 XU ESTIMATE
5 C.C683 -0.Cl124 ~C.0132
0 0.0373 -0.C167 ~-0.0172
5 C.0CS7 -G.Cl1S1 -0.0154
0 =-0.0135 =-0.C207 ~C.02C8
5 ~0.0319 -0.C216 =0.0214
0 ~0.0459 =-C.C220 =-0.0214
5 -0.0562 =-0.0220 ~C.0211
0 ~C.C634 =-0.C216 ~-0.02C8
5 -0.0682 ~-0.C209 ~0.01S6
0 -0.0712 =-0.0200 =-0.0187
5 -0.0727 -0.C188 ~0.,0176
0 =-0.C733 -C.Cl75 =0.0163
5 -0.C732 -0.0160 =-0.0148
0 <0.0727 =-0.0145 =C.0132
5 -0.071§ =0.C125 =0.CLL7
0 -0.0710 =-0.0113 =0.0102
5 -0.07C2 - -0.CC97 =0.0087
0 =-0.0653 ~0.CC81 -0.0072
5 -0.0686 ~0.0065 -0.0057
¢ ~-C.C68C -G.CC5C ~0.0034
u

'ACCUMUL ATED MEAN ARE ERPROR =  0,9340E-06



62

2.35
- -
n -
- .
t oy
) - .
(] L -
g . F -
H C DYNAMICS OF X1
A - WITH REDUCED RATE
- CONSTANT RK= 6.0 -
» STEADY STATE XXXXX
- BANG BANG  ##%%% -
- BANG BANG EST. ..... o
-0.03 [ T —— ]
C.C - 5.C 1C. 0

TIVE SEC.

FIG. 3.3 BANC BANG CONTRGOL
NCNLINEAR EXTENCEC KALMAN FILTER

HUANGS ACAPTIVE I
) STEADY STATE BAN: BANG BANG BANG

TINME SEC. X 1 X1 ESTIMATE
Ce5 C.ClR6 C.C422 0.0422
1.0 C.C41lC C.C274 CaC274
1.5 C.C6%8  0.C126 C.012¢
2.C C.1Cs3 -C.CLCCS -C.0CC?
2.5 001671 'COCIEQ' -CQCI‘GZ
3.0 C.2598 ~-C.C275 -0.0275
2.5 C.42¢C2 C.C5E5 C.C57¢
4.0 C.7613 C.C456 C.C44t
4.5 l1.43<3 C.C328 C.0318
£.0 201321 C.ClES C.C18C
5.5 2.3749 0.CCé¢él 0.00E3
€.C 242520 -0.CC74 -C.CCT77
6.5 2.256C ~C.C213 ~-C.C22C
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CHAPTER IV
MODELING ERROR COMPENSATION AND ADAPTIVE FILTERING

IV. Introduction

A perfect model does not exist which can represent exactly
the physical problem. This can either be due to incomplete knowledge
of the physical system, or the system is too complex to be modeled
exactly. Therefore, it is normal to use an approximate mathematical
model which can represent the system in the region of interest. A
good model has to be accurate enough to provide useful numerical re-
sults and yet simple enouéh to fit the computational environment.

The restrictions on the applicability of filtering are:

1. The process model is described by a set of differential
equations in the continuous case and difference equations in the
discrete case.

2. The random noige in the system and the measurement are inde-
pendent and uncorrelated (can be relaxed).

3. The system can be represented by a finite number of state
variables (preferably as low as possible).

4. The process dynamic differential equations can be linearized

successfully (or differentiable).

64
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Often the model parameters have uncertainty associated with
these, (in some cases the parameter is completely unknown) and only
an estimated value can be used. Yet the model dynamic response can
be very sensitive to the variations of this parameter. In filtering,
we can treat the estimated parameter as an additional state variable
and do the filtering for the augmented system. Processing of the
measurement observations will adjust the parameter value and converges
it to the actual parameter value, and thus gives a better model esti-
mate. However, additional state variables not only increase the com-
putational load, but also increases the computer memory storage re-
quirement drastically. It is obvious that an alternative model error
compensation technique is needed.

Various on-line and off-line model error compensation techni-
ques have been tested on the reactor model in this work and can com-
pensate several types of model errors. The on-line model error com-
pensation (or adaptive) techniques developed in this work have been
shown to be powerful in the sense that they do not require any addi-
tional computer storage and computation time yet the results are

better than most of the existing error compensation techniques.

IV.2 Modeling Errors and Filter Divergence
There are several types of errors in modeling the system dy-
namics. Generally the most serious error is the uncertainty in modeling
physical parameters. If the filter is constructed on the basis of an
erroneous model, even if the error covariance matrix and filter gain

are kept low, the filter learns the wrong model too well after processing
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enough observations. Thus, the filter model and the actual-model
going in different directions may eventually lead to catastrophic
results. The phenomenon is called 'filter divergence'.

This divergence often occurs when the noise inputs to the
system are small and measurement noise is small. Then the filter
gain and error covariance are kept very low sa that the filter is
capable of learning the incorrect model too well. The subsequent
observations then have little effect on the estimate. However, the
actual system model is different from the filter model so that the
estimate and the actual state diverge.

For a nonlinear system, filter divergence is often related
to the stability of the system. .This is especially true for our re-
actor model since there exists three steady state solutions (Lapidus,
McGuire) [L1), [M1]. Therefore, uncertainty in model parameters may
trigger the filter estimate leading to an undesired steady state.

A typical filter divergence in the filtering of the reactor
model is shown in Fig. 4.1, 4.2 where the actual model used a reduced
rate constant of 1.0 while the filter model used 0.8. The calculated
error covariances based on the filter model are too low, as is the
gain matrix. Therefore, the filter is capable of learning the in-
correct model (with a rate constant of 0.8) too well and gives too low
an estimate for both the concentfation (x4) an& temperature (x1).
Other types of errors such as deliberate simplification of a higher
dimension system and replacing it by a lower order model may also cause
model divergence. From the above it is clear that model error compen-
sation and adaptive filtering techniques are needed in filtering prac-

tice.
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"IV.3 Modeling Error Compensation Techniques
1. State Augmentation (Schmidt Filter [S4]).

Most of the errors in filtering can be traced to the uncer-
tainty in model parameters. Instead of treating the parameters as
state variables and filtering the augmented system, an alternative
is to use the Schmidt filter. The Schmidt filter includes the model
uncertainty in the calculation of the augmented error covariance
matrix, and thus raises the error covariance-matrix and therefore
raises the Kalman filter gain matrix and makes the proper compensa-
tion. The systematic approach to compensate model error by this
filter also makes it suitable for on-line adaptive filtering.

The numerical experience of applying this technique to off-
line error compensation due to 20 per cent-error in the rate constant
K; can be summarized as follows:

A. Computation of the augmented error covariance still re-
quires a significant amount of computer storage and computation time.

B. Precise knowledge of the uncertainty in the parameters 1is
required to start reliable filtering. Too low an initial parameter
error covariance gives too small a compensation such that the accumu-
lation of uncertainty in modeling parameters will still give poor
filter performance. On the other hand, too high an initial parameter
error covariance matrix will drive the filter éutside the observabil-
ity and controllability region (the error covariance matrix of the
estimate becoming negative) and therefore cause filter divergence,.

C. Even with the above disadvantages acting against this

filter, the Schmidt filter offers a stable, consistent and smooth
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filter estimate while almost all of the rest of error compensation
techniques suffer from oscillations.
2. Wolf's Error Compensation Technique 1. ‘
Wolf [W6] introduced a systematic approach to determine a
fictitious noise input to the system such that it will compensate

for the model errors.

He uses the relation:

Q(k) = a?at? .
Where
Q(k) = system fictitious error noise covariance input at
time k.
a = a parameter determined by simulation experience.
At = sample period for the sample data system.

The experience of applying this technique to the reactor model
can be summarized as:

A. The parameter a is unknown, it changes for different system
models. It requires prior knowledge of the filter experience to déter-
mine a proper value of a to give a good filter performance. Otherwise,
too high a fictitious noise will cause filter divergence while too low
a noise will not be enough to compensate the model errors.

B. Since we are introducing a constant amount of noise into
the system, the filter estimate suffers serious oscillations, and this
may not be acceptable in a very sensitive system. The oscillations in

reactor temperature are observed as in Fig. 4.13 and Fig. 4.14.
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3. Wolf's Error Compensation Technique II.
This technique was also reported by Wolf [W6]. Instead of
using a constant amount of fictitious noise, he inputs the noise ac-

cording to:

Q(k) = ax(k)a'x(k)

Here Ax(k) is computed by picking a likely parameter error and using
the system dynamics equations to actually compute the difference
Ax(k) . This method avoids oscillations in the estimate as we ex-
pected, since it uses an accurate fictitious noise input.

We use this approach to treat the integration error using a
simple integration routine (Euler's integration) and simulate a rigor-
ous integration routine (Runge-Kutta Merson). Numerical experience
on our reactor model can be summarized a2s follows:

A. This method gives a smooth estimate, but the performance
of the filter again depends on the prior knowledge of the amount of
errors in the parameters. Therefore, this method can only be applied
to the situation where Ax(k) can be evaluated confidently.

B. The filter stability is very sensitive to this type of
noise input since Q(k) is usually very small. The filter control-
ability region is also small and this method therefore, suffers diver-
gence.

4. Pine's Computational Round-off Error Model.
Pine [P2] developed a noise input model according to

x%(k+1,k)

Qk) = 107%P . :
x2 (K+1,k)
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This model was reported by Schlee [P2]. He applied this
technique successfully to correct the round off error due to too
short a word length where p = 8 for single precision word length,

However, p = 6.5 gives better performance.

Round off errors in matrix operations and inversion have been
reduced in this work by using the Shur relation [G1] for matrix in-
version together with matrix iteration. Pine's method does not show
any significant improvement.

5. Overweighting the most recent observation.

Fagin [F1] introduced the technique of exponentially age-
weighting the old observation. He replaced the measurement noise co-
variance

R(1), R(2),...R(K)
by
etk t1) /Ry, (kT2 TRe2y,. .., (B RO

and this leads to the new gain matrix calculation
K(k+1) = P(k+1,k)H' (k+1) [H(k+1)P(k+1,K}H' (k+1) +

-1
R e Y TS L

and the recursive relation for error covariance matrix is
P(k+1,k+1) = e(tk+1-tk)/r [I-K(k+1)H(k+1)]P(k+1,k)

Note that the smaller Tt is, the faster the old observations are

forgotten.
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This technique has been applied successfully to the linear
filter example where only a scalar observation is used. The state
estimate can be adjusted as close as possible to the measurement by
using a proper t. However, vector observations have to be processed
on one by one in their components. Schmidt treats the estimate as a
linear combination of the estimate based on the current and past ob-
servation. The estimate based on the current observation along sounds
also promising for systematic overweighting of the current observa-
tions, but all of these involve the proper weighting coefficient for
the scalar observation and weighting coefficient vector for vector
observations.

6. Error Compensation Techniques Introduced by This Work.
A. By using the formula found in this work relating the

fictitious noise to the estimate error covariance matrix:

Q(K) = 4t2P (k)

Where
Q(k) = fictitious noise error covariance matrix (input
At = sample period for the system
P(k) = estimate error covariance matrix.

Very satisfactory filtering performances were observed in
compensating various modeling errors:
a. Modeling error due to integration round off errors.
b. Modeling errors due to model parameter uncertainty

(as much as 20 per cent deviation in rate constant).
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c. Approximating a higher dimensional system by a
lower dimensional model.

A1l of the filtering results show better performance than the
other techniques introduced in this section. Yet it does not require
any édditional computer storage and/or computation time. Another ad-
vantage of this method is that it does not require any prior knowledge
of the amount of uncertainty of the model errors or constants which
are based on filtering experience. Numerical experience with this
technique on our reactor model show this method always operates the
filter within the controllability and observability region and give
consistently improved smooth estimates. The results are shown in Fig.
8.1 to Fig. 8.5.

B. Fixing the Error Covariance Matrix (P matrix) at A Proper
Constant Value.

As is observed in this work, the calculated error covariance
matrix based on the incorrect model always gives too low an estimate
error covariance matrix which in turn will make the Kalman filter gain
matrix too low. This action will then lead to insufficient correction
of the filter estimate. In other words, the filter is too optimistic
and thinks the modeling error is very small, and the filter correction
is not enough to compensate the model errors. One way to remedy this
drawback is to fix the estimate error covarianée matrix at a constant
higher value thus raising the gain matrix. By fixing the error co-
variance at the value which occurs at stage number 3 it shows satis-

factory results on different types of model errors.
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Utilizing the above idea the new error covariance calculation
will be:

P(k+1l,k+1) = P(3,3) for k>3

and substitute this fixed P value into the gain matrix calculation.

C. By Stocastic Approximation.

Another systematic scheme for changing the error covariance
matrix, and thus raising the Kalman filter gain is using the Harmonic
sequence stocastic approximation.

The harmonic sequence 1, %, 1/3, 4,... etc. is of central
importance in stocastic approximation schemes where operating condi-
tions are continually being adjusted. If the step size is.decreased
according to the harmonic sequence, the procedure will eventually
reach the sought after value, nc matter how far away the problem is
started. This is because the harmonic sequence is divergent in the

sense that the sum of all of its terms is infinite, i.e.

The harmonic sequence is the fastest shrinking series of the type n P
that is divergent, that is, the harmonic sequence offers unlimited
correction effort if necessary.

Another desirable feature of harmonic sequence is that the

sum of its squares is convergent:

Ite~18

_1..<m o
n=1 n?
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This implies that the individual random errors will tend to cancel
each other out in the long run. Thus the harmonic sequence offers
a general guide to weighting the new and old data subject to random
errors. See Wilde [W4], Gardner [G2] for a detailed discussion on
harmonic sequences.
By applying properties of harmonic sequence to systematically

raising the estimate error covariance matrix in this work:

a
+——1i(P

X " V-1

P =P

K+l LY

Where k is the sample period number, a, is a weighting coefficient,

P, is the error covariance matrix at sample period number k. Satis-

k
factory results were obtained in applying this technique to compen-

sate various model errors in our reactor system.

IV.4 On-line Adaﬁtive Filtering

All of the filtering algorithms, assume a complete apriori
knowledge of the process and measurement noise statistics to start the
filter. However, in practice, these statistics are usually inexactly
known. The inexact knowledge of the prior statistics in the desigﬁ
of filter can lead to large estimation error or even filter divergence.
This problem becomes more serious in non-linear filtering since the
nonlinear model is more sensitive to errors in the prior statistics.
The controlability and observability region is much smaller than that
of in the linear case, therefore the filter is able to operate only
in a very small region. Inexact knowledge of the prior statistics

can easily drive the filter outside of the region and cause filter
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divergence. A good example of this type of filter divergence can be
found in our reactor model. With a process noise covariance matrix
Q(kj = 0.0001, this gives very good filtering result. However, if
Q(k) is raised to 0.01, this will cause filter divergence. This be-
havior is due to the sensitive nonlinear reactor model. Another type
of filter divergence is usually caused by uncertainty in model physi-
cal parameters as described in the previous section.

The purpose of an adaptive filter is to provide on-line reli-
able estimates of the states and parameters. Therefore, the filter
must be able to adjust itself to the uncertain environment based on
the measurement observations and making proper correction to the errors
due to all of these uncertainties. Most of the work in adaptive
filtering have been restricted as to the prior statistics, and try to
use various learning algorithms to identify the true process noise
and measurement noise covariance matrix. Sage-Mehra [S2] [M3] wrote
sevefal reviews of adaptive filteirng and introduced their own adap-
tive filters. All of their techniques are restricted to the identifi-
cation of the Q and R matrices. These techniques all suffer thc¢ dis-
advantages of many computations and require much additional storage.
Sage [S3] used a fixed interval smoothing algorithm as an adaptive
technique, which requires an additional matrix inverse and many matrix
operations. Mehra [M3] used a correlation method from the time series
correlation (Box) [B4] by applying the 'innovation properties pf the

observation residue'. His method also requires additional storage and

a matrix inverse and can only be applied to linear time invariant systenms.
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In this section we only introduce those adaptive techniques
suited for real time applications, i.e. limited computer hemory and
speéd. We are not only aimed at solving the problem of errors in
the prior statistics but also study the case with uncertain para-
meters.

Schmidt's State Augmentation

The behavior of a dynamical system depends on certain para-
meters which may be constant or vary with time. Very often, some of
these parameters are unknown or imprecisely known. Such parameters
may be considered as random variables with known apriori statistics.

Given a linear system

x(k+1) = ¢(k+1,k)x(k) + ¥(k+1,k)u + T(k)w(k+1)
Iv-2
y(k) = M(k)x(k) + N(k)p + v(k)
Where
u = dynamical parameter vectors
and
P = measurement parameter vectors
M(k) = mxn measurement matrix
N(k) = measurement parameter gain matrix
¥ (k+1,K = dynamics parameter gain matrix
y(k) = mxl observation vector

The following assumptions are necessary:

E(uw) = 0; E(p) = 0; E(uu') =Uo; E(pp') = Wo .
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Further,

p, u, x, w(k), v(k) are uncorrelated.

Define the augmented state space as follows:

x(k) -
x(K) = |u(k) where uf0) =u
p(K) plo) =p
The augmented system can be written as:
¢(k+1,k) V¥(k+l,k) O r(k)
X(k+1) = 0 1 0| X(k) + 0 |w(k+l1)
0 0 1 0
IV-4
with observations:
y(k) = [M(k) 0 N(k)]x(k) + v(k) . V-5

The linear filter is directly applicable to this augmented system
with the estimate:

£ (k,k)
x(k,k) = [d(k,k)
p(k,k)

Therefore, we can estimate the original states together with the un-
certain parameters in a recursive manner. However, it often creates
computer storage and computational load problems. This is especially
serious for a large system and it is not justified or feasible to
treat the problem in this way. In the meaptime, we are aware of the
fact that the ignorance of the uncertainty of these parameters often

causes filter divergence. This is especially true in the reactor
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system which is very sensitive to parameter variations (chemical
kinetics). Different parameters can lead to different steady states
or even to runaway reactions.
An alternative, suggested by Schmidt, is to take into account

f the effect of the uncertain parameters in degrading the state esti-
mate without really estimating the parameters. This can be done by
modifying the error covariance and filter gain matrix in the following
manner and will save computer storage in the filter estimate of the

parameters.

The error covariance matrix for the augmented system is

P Cu C Where P: error covariance of
R p original state
P = C& Uo 0 )
Cy = E[(x-Du']
C! 0 W N
P o Cp = E[(x-¥)p']

For the prediction stage we only estimate the original state:

R(k+1,k) = o(k+1,K)K(k,k) , V-6

and u, p are invariant in prediction. The modified error covariance

matrix for the augmented system is:

| o(k+1,k) ¥(k+1,k) O POGK) k) C (K
| P = 0 I 0 ik U 0
| 0 0 I Cp k. K) 0 W
§ 8 (k+1,K) 0 o] |rQ(k+1) T'(k) O O
! ¥(k+1,k) 1 0 0 0| 1Iv-7
0 0 I 0

e e TR A e
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We can then arrive at the following recursive algorithm by carrying

the matrix product component wise:

P(k+1,k) = &(k+1,k)P(k, k)8 (k+1,k) + @(k+1,k)C,(k,K)

v (k+1,k) + ¥(k+1,K)CYCk,K)@" (k+1,k) + ¥(k+1,k)

UL (ke1,k) + T()QUR+1)T! (K) V-8
Culk+1,k) = & (k+1,k)Cu(k,Kk) + ¥ (k+1,k)U V-9
Cplkt1,k) = & (k+1,k)Cp(k,K) - IV-10

Let M(k) be the augmented measurement matrix:

M(k) = [M(k) 0 N(K)] , Iv-11
and

Y(k+1,k) = M(k+])P(k+1,k)M' (k+1) + R(k+1j

M(k+1)P(k+1,k)M' (k+1) + M(k+1)Cp(k+1,k)N'(k+l)

+ N(k+1)Cp(k+1,k)M'(k+l)'+ N(k+1)WoN' (k+1) + R(k+1)
Iv-12

Process the observation and corrections:
R(k+1,k+1) = R(k+1,K) + K(k+1) [y (k+1)-M(k+1)% (k+1,k)] .  IV-13

Where K(k+1) is the modified Kalman filter gain
K(k+1) = [P(K+1,kIM'(k+1) + Cp(k+1,k)N'(k+1)]Y‘1(k+1,k) . Iv-14
The new error covariance matrix for the augmented system is:

“P(k+1,k+1) = P(k+1,k) - K(k+1)[M(k+1)P(k+1,k)+N(k+1)Cﬁ(k+1,k)]
IV-15
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Cy(k+1,k+1) = C(k+1,k) - K(k+1)M(k+1)Cy(k+1,k) IV-16

. Cp(k+l,k+1) = Cp(k+l,k) - K(k+1)[M(k+1)Cp(k+1,k)+N(k+1)Wo}-
Iv-17
With the initial conditions:

Cyu(0,0) = Cp(0,0) = 0

It is obvious that the computational load and storage is considerably
less than that required the augmented state filter,

In applying the Schmidt filter to our reactor system assuming
we are having a 20 per cent error in the reduced rate constant K; we

have: the linearizéd system as given by
X(k+1) = o(k+1,k)X(k) + ¥(k+l,k)u + T(k+1)w(k+1)

®(k+1l,k) is the transition matrix which is defined as the Jacobian
in Chapter II.

¥(k+1,k) is the Jacobian of the parameter matrix
_ of
¥(k+l,k) = 5—1-1‘

In this particular example with error in the rate constant,

of ) /3K,
of 0
¥(k+1,k) = 'aTl 0
af4/aK1
Where
= - 2. 2
af, /3K, ¢4k, B2E-K, co+c B2Ex / (1+x,)
= - 2 2
3f4/3K1 CZB Exl/(1+x1) + czB EKI
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and the parameter covariance matrix is Uo = 0.04.

Use the same prior statistics as in Chapter II, we are able
to carry out the sequential filtering on both the extended Kalman
filter and the second order filter. The results on Fig. 4.9 show
very good temperature estimate with a slight oscillation.

Fixed interval smoothing and fixed point smoothing.

The smoothing problem deals with the system's states which

are of the form
x(k[j) = £ [2()), 1 =1,...,i]

where j > k; that is, the time at which it is desired to estimate the
state lies to the left of the time of the last measurement, this is
equivalent to interpolation of the estimate based on the present and
past filtered estimate. We know that the optimal smoothed estimate
is unique since it is related to the filter estimate. Our purpose in
this section is to develop a recursive smoothing algorithm which per-
mits us to apply it to real time enviromment.

Smoothing can be used to improve the filtering estimate at.
the cost of additional computer storage and compution time; it is
still useful in the post experiment analysis. With slight manipula-
tion shown by Meditch [M2], this technique can be used for on-line
adaptive filtering. Jazwinski's [J2] limited memory filter is closely
related to the idea of smoothing. Sage [S2] used fixed interval
smoothing algorithm as an adaptive filtering.technique.

It has been shown by Meditch [M2] that the following three

different types of smoothing algorithms are equivalent.
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1. Fixed interval smoothing.

Consider the operation of a chemical reactor system; since it
is impossible to design a perfect model, we cannot expect the reactor
dynamics to follow exactly the desired profile during the operating
period. Sometimes, the discrepancy between the design and operation
is intolerable, which may cause a runaway reaction or may lead to an
undesirable product. Therefore, it is desirable to make the correction
later during the reactor operation. Let us suppose that during the
reactor operation, we obtain measurement data at N time points
K=1,2,...Nusing an optimal filtering technique discussed in Chapter
II. We then have the optimal fitering estimate x(k,k}, k = 1,2,...N.
The idea of fixed interval smoothing is to refine this set of filtered
estimate utilizing additional available measurement data. For example,
with N = 200, K = 51, the question is whether the optimal smoothered
estimate of x(51) based on 200 measurements a better estimate at that
time, than the filtered estimate x(Sl,gi). Intuitively, it should be
the case. Therefore, with the experiment completed in the interval
(0,N), for each time k within the interval, we wish to obtain the
optimal estimate based on all the data in the interval. Fixed interval
smoothing cannot be carried out online during the experiment, but it is
used for post experiment refinement of the estimate.

2. Fixed point smoothing.

Returning to our chemical reactor system where we are inter-

estéd in the operating cycle to keep the dynamics at a desired state

at a particular time. Let us assume that the reactor has been operating



89
for some time. We wish to use additional data to obtain and improve
the estimate x(N) where N is the time of particular interest. Up to
the time N we have the filtered estimate X(N,N) and what.we like to
do now is to determine X(N,N+1), X(N,N+2), etc. Here, we are concerned
with an estimate at a fixed point in time which is based not only on
measurements up to that time, but the additional measurement taken be-
yond it.

.The algorithm developed by Meditch is suitable for online ap-
plications. This algorithm can be easily applied to our reactor system
in order to determine a better estimate of our initial reactant concen-
tration and temperatures. The same algorithm is also used as an adap-
tive technique as shown in Fig. 8.8. We present the algorithm as

follows:
a. The optimal fixed point smoothed estimate:

2(k,j) = R(k,j-1) + WGH' GIRTI(GI [2(G)-H(GI @ (5,3-1)R(G-1,5-1)]

for I1V-18

j = k+1,k+2...
with the initial condition X(k,k) given.
b. W(j) is the nxn smoothing filter gain matrix which is cal-

culated by the recursive relation:

WG = WiG-10'(5L3-DII-S(GIP(,)] Iv-19

for

j = k+l,k+2...

with the initial condition W(k) P(k,k) and S(j) = H'(GIR"I(GIHG).

n
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¢. The estimate error covariance matrix satisfies:

P(k,j) = P(k,j-1) - W [S(IP(,5-1)S(GI+S (W' (5) Iv-20
for

j = k+l,k+2,...

with the initial condition P(k,k)

+ x(k,j)
2(§,5-1—> | M(k,j) | 7y >
| delay |«—¥
from optimal filter x(k,j-1)
j = k+1,k+2,...
2(j,j-1) = z(j) - HR(j,j-1) Iv-21
M(k,j) = WEH'GIRTI()
m i .
L 1 1 1 Tlme
k k+1 k+2 k+3

Limited memory filter.

The filter developed in Chapter II utilizes all the available
observations. It is optimal only if the filter is operated with com-
plete knowledge of the dynamics, measurement function and the statis-
tics of the dynamic system. If the dynamics are imprecisely known,
then the filter might learn the wrong model too well and cause filter
divergence as described in the previous section. A reasonable approéch

to avoid filter divergence is to limit the filter memory so that the
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estimate does not become 'too good', or to keep the Kalman filter gain
from getting too small thus making too small a correction. By limiting
the filter memory, we mean computing an estimate based oﬁ observations
from only the recent past and discarding the estimate from the distant
past. Jazwinski [J2] developed the theory of limited memory filter

and applied it successfully to the rectilinear orbit problem.

The limited memory filter estimate generates the optimal esti-
mate based on a 'moving window' of the most recent N observations.

Two Kalman filters and a predictor are required in the implementation
and N observations have to be stored in memory. Three matrix inver-
sions are required. Jazwinski applied the idea of discarding the old
data in batches of N, therefore, he filters the N observations and
predicts over the same time arc, thus reducing some of the computer
storage and computation time.

Even with Jazwinski's modification, the limited memory filter
has not been attractive enough to encourage wide application. On the
other hand, the smoothing algorithms presented in the previous section
are more promising.

This work.

All of the three types of error compensation techniques de-
veloped in this work can be used as adaptive filtering, since they can
be used in an on-line filtering environment. The filter can adjust by
itself to compensate for any model errors, or incomplete knowledge of
statistical parameters. A clear advantage offered by these adaptive

offered by these adaptive filters is that it does not require any
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additional storage or computational time and yet are reliable enough
to be applied to adaptive situation.

Two additional adaptive filtering techmniques devéloped by
this work as described follows are even more powerful in removing
model and prior estimate uncertainties and play an important role in
model approximation and model decomposition as in the filtering
studies for large systems.

A. Iterated Fixed Point Smoothing.

This algorithm has been developed in this work and success-
fully applied to approximate the 4th order reactor model by a second
order. In this algorithm, fixed point smoothing is applied whenever
the filter estimate residue (the difference between the filter estimate
and the measurement data) is greater than one standard deviation, thus
the model uncertainties or inaccurate initial estimate is removed by
smoothing through processing additional measurement data. The sequen-
tial nature of the fixed point smoothing algorithm allows us applying
it easily online and only requires slightly additional storage and
computational time.

The results shown on the next page indicates the fast rate of
disappearance of the 10 per cent error in x4 in the estimate, applying
one smoothing can remove most of the uncertainty in x4, while two
smoothing can put the estimate coincide with the true dynamics in the
approximation of our 4th order reactor model by a second order model
in the presence of 10 per cent error in initial estimate of x4.

Refer to the appendix for detailed filtering results for this

particular example.
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Table IV-1. Approximate the 4th order model by a second order using
Huang's II (iterated fixed point smoothing) sample out-

put for smoothing the initial condition uncertanties.

. First Second
True Dynamics Sggzgg?; Smoothing Smoothing
yn Est i ltg Iteration Iteration
stima Estimate Estimate
Initial Conditions: .
X1 0.0 0.0 0.0244 -0.0017
X2 0.1 0.0 0.0733 0.104
Period No. 1
X1 0.10026 0.0764 0.1064 . 0.107
X2 0.06832 0.0192 0.0483 0.072
Period No. 2
X1 0.1842 0.1627 0.1822 0.038
X2 : 0.0373 0.0172 0.0237 0.038
Period No. 3 )
X1 0.2475 0.2192 0.229 0.2449
X2 :: 0.0096 -0.00065 -0.0004 0.0064
Period No. 4
X1 0.2901 0.2674 0.2707 0.2825

X2 : -0.0135 -0.01675 -0.0184 -0.0164
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B. Overweight the most recent measurement by stcchastic ap-

proximation.

Fagin's error compensation technique by exponentially age-
weighting the old data requires a prior knowledge of the weighting
factor which varies in every filtering in the time varying system.
Improper values of the weight factor can easily lead to filter diver-
gence in non-linear filter and often requires extensive simulation and
filtering experience before a suitable factor can be found.

Schmidt presents the following systematic overweighting the
data by computing an estimate as a linear combination of the estimate
based on the current observation and past data (Kalman estimate) and

the estimate based on the current observation alone. Let:

px = x(k+1) - x(k+1,k)
AX = X (k+1,k+1) - X(k+1,k)
Az = z (k+1) - H(k+1)X(k+1,k) = H(k+1)Ax + v(k+1) .

The estimate based on the current observation and past data

is the usual Kalman estimate:
0R = P(k+1,K)H' (ke1) [H(k+1)P(k+1,k)H' (k1) + R(k+1)] laz .

If the observation is scalar, then, the quantity in the brac-

ket is also scalar, then the least square estimate is

Ag_= [H'(k+1)R'1(k+1)H(?rl)]# H'(k+l)R'1(k+1)Az . 1v-22
Where

A# is the pseudo inverse of A.
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For scalar observation, H is a row matrix therefore,
Ht = H'/H H'

So that IV-22 becomes:

H'(k+1) Az

& = HOeDH kel 22

or

AR = cH'(k+1)R(k+1) [H(k+1)H' (k+1)]*
. . 1V-23
X[H(k+1)P(k+1,k)H' (k+1)+R(k+1)] “Az

with the appropriate constant c, taking our estimate to be a linear
combination of the Kalman estimate and Equation IV-23 we have the

estimator:

R(k+1,k+1) = R(k+1,K) + [P(k+1,K)H' (k+1)
+cH' (k+1)R(k+1) [H(k+1)H' (k+1)] !
X[H(k+1)P(k+1,k)H' (k+1)+R (k+1)] L
X[z (k+1)-H(k+1)% (k+1,k) ] 1v-24

or

H(k+1)x(k+1,k+1) = H(k+1)x (k+1,k)

[H(k+1)P(k+1,k)H'(k+1)+cR(k+1)]
[H(k+1)P(k+1,k)H" (k+1)+R(k+1)]

AE.'

Thus with ¢ = 1 we have:

H(k+1)X (k+1,k+1) = H(k+1)X(k+1,k) + Az = z(k+1)

thus the estimate is the observation itself. With ¢ = 0, Equation

IV-24 reduces to the Kalman filter estimate.
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The recursive relation for the error covariance matrix is:

P(k+1,k+1) = P(k+l,k) - P(k+1,k)H' (k+1)

X[H(k+1)P (k+1,k)H' (ks1)+R (k+1)] "H(k+1)P (k+1,k)

. c2R2 (k+1) [H' (k+1)H(k+1)] ‘
[H(k+1)P (k+1,k)H' (k+1)+R(k+1)] [H(k+1)H' (k+1)]2

Note that the term involving c? produces a desirable increase in P.
However, the appropriate value of ¢ is not known and must be deter-
mined by simulation experience and different values of ¢ is required
for each observation type.

In our algorithm; we apply stochastic approximation to generate
the sequence of value of c, thus c is equal to the values in harmonic
sequence i.e. cy = 1/k and the sequence is restarted whenever the pre-
diction residue is greater than that of its standard deviation. Thus
providing overweight on the most recent data only the prediction is
bad.

Successful application of this algorithm to the approximation
of our 4th order reactor model by a second order model proved to be a

powerful adaptive filtering technique as shown in Fig. 4.7 and Fig. 4.8.

IV.5 Numerical Examples and Discussions
The filtering result in compensating 20 per cent rate constant
error can be found in Fig. 4.1 to Fig. 4.15. Figures 4.1, 4.2, and
4.3 show the filter divergence which occurs in X1, X2 and X4 without -
model error compensation while Fig. 4.4 shows that performance given

by the compensation techniques introduced in this work is better than
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that givén by the Schmidt filter shown in Fig. 4.9. Figure 4.10 shows

Wolf's II used in the estimation of reactor temperature. Figure 4.6
shoﬁs the improved estimate in reactant concentration given by this
work. Slight offset after the fifth period is observed in this work
I1I, as shown in Fig. 4.6. Figure 4.12 shows offset by constant

noise compensation, while Fig. 4.14 was Wolf's II. Even with Schmidt's
filter, state éugumentation fails to eliminate the offset. This is
probably due to the nongaussian property of X4 under these conditions
(20 per cent model error) which leads to the undesired steady state
solution of the Riccati equation of the error covariance matrix. This
offset disappears as the model error is reduced to less than 10 per

cent.

However, using the vector overweight both the reactor tempera-
ture and concentration measurement data by stocastic approximation in-
troduced by this work show excellent filtering performance and eliminate
the offset.

After an extensive study on model error compensation and adap-
tive filtering technigues and with applications to our reactor model, we
are more confident in implementing either off-line filtering analysis or
on-line filtering for any general non-linear filtering problem. A table
of summary of our numerical experiences on the reactor will provide a |

useful guide for future filtering practice.
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Table IV-2,

Model error compensation technique and adaptive filtering.

Model Error Type
: Small Large
Technique Integra- Machine model Model Adaptivity
tion round para- para- Statistics
error off meter meter error
€rror error
Wolf I C C B C C D
Wolf II B C A C B B
Overweight D c c D B D
This Work I A B A c A A
This Work II NJ NJ A A A A
This Work III C C B A B B
Smoothing NJ NJ B A B A
Schmidt NJ NJ A A c A
Pine B A C C c B
This Work IV NJ NJ A A A A

NJ: Not justified
Excellent

: Good

Fair

Bad

U O w >

901



CHAPTER V
OBSERVABILITY, CONTROLABILITY AND INFORMATION MATRIX

V.1 Introduction

In estimating the state and parameters of a dynamic system
from its measurement observations, it is important to ask the ques-
tion: What, if anything, can be gained from filtering the observation
data? How much information about the state of the system can be ex-
tracted from the Data? Can the state be determined from the measure-
ment observation? This chapter tries-to answer all of these questions
by relating the state estimation to its measurement system. |

The amount of information that can be gained from filtering
the observation is related to the system model itself. In order to
design a better filter, i.e. to gain more information from the system,
it is usually desirable to reformulate the model of the system or
take additional data or use an alternative measurement sensor system.
This can be done by relating thé information matrix to the process
transition matrix and measurement matrix and consequently developing
the upper and lower bounds of the estimation error covariance matrix
in terms of the controlability and observability matrix.

A given dynamic system with its meésurément sensor system 1is

observable if its initial state x(0) can be determined from the set

107



108

of measurements [z(1), 2(2),...z(n)] from some finite N. If this is
true for any initial time t,, then the system is said to be completely
observable.

A given dynamic system is controllable at time ty if there ex-
ists a control policy sequence u(t), dependinngn x(ty) and for which
x(t1) = 0 over some interval tj<t<ty, that is, we can steer the sys-
tem from x(t) to x(to) by the control sequence u(t). If this is true

for any t,, then the system is completely controllable.

V.2 Information Matrix and Observabiltiy

The information matrix of a dynamic system can be defined as:

In (k1) = lf<I>'(i,k)H'(i)Ri'lH(i)tb(i,k) . V-1
i=1
Where
¢(i,k) = process transition matrix as defined in Chapter II.
H(i) = measurement matrix *
R = measurement error covariance matrix
k = sample period number.

Refer to Chapter II for system descriptions.

This information matrix is positive definite, since by as-
sumptions R; is positive definite and therefore its inverse. The in-
formation matrix is also nonsingular, otherwisé, there will be no in-
formation about them in the observations since certain linear combina-
tions of the elements of x(k) cannot be deterﬁined. This can be vis-

ualized in the determination of upper bound of error covariance matrix
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in the next section. A singular information matrix will lead to in-
finity as the upper bound of the error covariance matrix.

Also, it should be noticed that the information ﬁatrix is
independent of the observations, this nice property makes it possible
to precompute the information matrix before the filtering begins.

Kalman [K3] first related this information matrix to the sys-
tem observability by utilizing the following definitions:

The dynamic system of Chapter II is completely observable if

and only if the information matrix is positively definite:

1. In(k+1,0) = ¢'(k,k+1)In(k,0)¢(k,k+1)+H'(k+1)R‘1(k+1)H(k+1)
V-2

2. It is related to error covariance matrix by:
P l(k,k) = ¢'(o,k)p;1<p(o,k) + 1 (k,0) . V-3

V.3 Controlability.
The similarities between the controlability and observability
are quite evident from the definitions.

Define the controlability matrix

k
C(k,0) = Z o(k,i+1)r(i) Q(i+1) r'(i) ¢'(k,i+1). V-4
i=0
Where

Q(i+l) is the process noise covariance matrix

I(i) is the process noise gain matrix.

A discrete dynamic system is completely controlable if and

~only if its controlability matrix is positive definite.
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The duality relation between controlability and observability

was first found by Kalman [K3] in a linear noise free system. This

duality is also true for stochastic system:

Observable Controlable
I,>0 C>0
(t,to) (to,t)
H(t) r(t)
R1(t) Q(t)

All of the theory regarding controlability and observability
only apply to linear systems. For non-linear systems there is no
global theory relating to controlability and observability, nor does
the duality relation exist. In such problems, it is convenient to
linearize the system equations about some assumed set of nominal con-
ditions and apply the linear system thﬁpry to the linearized system.

Some additional definitions regarding controlability and ob-
servability will be useful for developing the upper and lower bounds
of the error covariance matrix in the next section.

A stochastic linear system is uniformly completely controlable
if there exists a positive integer N and positive constants a, B such
that

0<alI<C(k,i-N)<BI . V-5

A stochastic linear system is uniformly completely observable

if there exists a positive integer N and positive constants a, B such

that
o<al<Iy(k,k-N)<RI .
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However, some progress has been made in the areas of non-lin-
ear controlability and observability for non-linear process with con-
trol appearing linearly. Roitenberg relates the obseryability of a
non-linear system to its system Liapunov function. Thus one will be

able to investigate the observability for the system:

X = A(t)x + f(x) + q(t) . . : V-7

With the observations:

Where -
A(t): matrix function of time
£(x): non-linear function of x

q(t): forcing function.

Haynes and Hermes [Hl] in a separate paper, introduced non-linear con-

trolability via Lie theory. Their theory is restricted to the following

system:
x = Blx(t)Ju(t) ,
where
B[x(t)] is a nonlinear matrix function of x(t)
and

u(t) is the control vector.

Lobry also uses Lie groups and arrived at the same conclusion.
All these approaches are confined to qualitative studies only.
Further work is definitely needed in order to apply these techniques

to real system evaluation.
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V;4 Bounds for the Estimation Error Covariance Matrix
By using the concept of stochastic observability and control-
abiiity we can develope some qualitative properties of the linear
filter in terms of an upper and lower bound of their estimation error
covariance matrix. The following development is based on the work of
Kalman, Deyst [K3] and Price and Sorenson [D2].

Let us define our dynamic stochastic system again:

x(k+1) = o(k+1,K)x(k) + I'(k)w(k+1) . V-8

With the discrete linear observations

z(k) = H(k)x(k) + v(k) . V-9

Refer to Chapter II for nomenclature.
1. 1If the dynamic system V-8 is uniformly completely observable
and uniformly completely controlable, and if P,2>0 then P(k,k) is uni-

formly bounded from above for all k> N.

P(k,K)<Izl(k,k-N) + C(k,k-N)< (l‘;—f’-@)x for k> N . V-10

Refer to Jazwinski [J2] for a detailed proof.
2. 1If the dynamic system V-8 is uniformly, completely observable
and uniformly, completely controlable and if P, >0 then P(k,k) is uni-

formly bounded from below for all k>N by

P(k,K)2[ I, (k,k-N)+ C“l(k,k-N)]'ll(ﬂ%B—)I for k>N . v-11
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3. If the dynamic system V-8 is uniformly completely control-
able and PozD, then P(k,k)>0 for all k> N.

Properties 1 and 2 give us qualitative upper and lower bounds
for the estimate error covariance. The uniformity property will pro-
vide us some idea of the best and worst we can obtain for a given
filter model. Property 3 provides us with the necessary condition
for a stable filter by keeping the error covariance matrix inside the
positive definite cone. Another advantage of the above development
can be visualized since it is independent of the observation data,
which makes it possible for prefiltering analysis and allows the de-
sign of a better filter model that will give acceptance error bounds

since the bounds are only dependent on the system model.

V.5 Numerical Examples and Discussions

The upper and lower bounds of the estimate error covariance
matrix in linear filtering theor} can be extended to the linearized
system of a non-linear problem. This is applied successfully to our
reactor model as shown in Fig. 5.1 to Fig. 5.8. Observe that the
filter estimation error lies within the bounds after the filter reaches
the steady state (k>N) even though it started outside the bound.

It is essential that the filter has to be kept within the
bound when it is approaching the steady state, since the bounds
qualitatively define a region of controlability and observability or
equivalently a region of the existence of a stable filter. This is

shown in Fig. 5.1 through Fig. 5.8.
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95 0.008S 0.0002

1000 0.0089 0.0002
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CHAPTER VI

STOCHASTIC STABILITY

Vi.1 Introduction.

Deterministic Stability is a branch of the qualitative theory
of dynamic systems. Most current results are oriented to the quali-
tative properties of differential equations (to avoid solving the
actual differential equation explicity). Lefschetz, Krasovskii [B8]
have made very important contributions in this field.

Related questions arise in the analysis of stochastic processes.
The first paper that suggested the existence of a stochastic Liapunov
function as in the deterministic case was that by Bertram and
Sarachik [B8], and Krasovskii [B8]. It is desirable to define several
technical terms for the analysis of the stability of stochastic pro-
cesses before we continue to introduce the stability theorems.

Definition 1.

Let the dynamic system be

x = f(x,t)

VI-1

x(ty) = ¢

Then an equilibrium point of VI-1 is stable if for every ¢>0. There
exists a G(E,to) such that if leo-xe||<6 then the dynamics &(t,xq,to)

122
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lie within a certain bounded region of x¢(Xe is said to be uniformly
stable if it is stable and § may be chosen independent of t,).

Definition 2. .
Let xo be an equilibrium point of VI-1, then x¢ is asyptotically stable
if it is stable and every motion of VI-1starting sufficient close to
Xe converges to Xe as toe,

Definition 3.

A sequence of random variables (xn)P =1,2,...n such that the condi-

tional expectation

E(xnlx

n_l,...xl)gx

n-1

and

E|x1|<°°

is called a supermartingale. There are some useful properties of

supermartingale. Let (x,) be a positive supermartingale and A >0

then .
E(xy)
A

P(sup xizj)

This means the probability of that the maximum value of the random
sequence will be greater than X is less then E(xI)/A.
Definition 4.

Let the discrete stochastic system be

) VI-2
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Where £(0,r,) are a sequence of random vectors and c is also a random

vector.
The dynamic system VI-2 is stochastically stable about 0 if
and only if every O<p<l and e positive, there exists 0<o<l and & posi-

tive so that P(sup||xp||>€)<p for all ¢ such that
n

P(|]c][>8)<o.

A sufficient condition for stability can be found by a stochastic
Liapunov function.
Theorem: Suppose there exists a continuous positive scalar

function V(x) satisfying:

a) V() =0 ;

b} V(x)»= as [Ix,[*m ;

c) V(xp) is a supermartihgalé along the dynamics of VI-2 then
VI-2 is said to be stochastically stable.

Theorem: If the dynamic system VI-2 is stochastically stable

and there exists a positive real function Y(||x,_7||) such that

E[V(xn)lxn_l,...xl) - V(x_ )< - Y(xq)

n_

is satisfied along VI-2, then VI-2 is stochastically asymptotically

stable. Refer to Bucy [B8] for a detailed proof.

VI.2 Some Forms of Stochastic Functions.
Since Bucy's [B8] introduction of the.supermartingale property

of a stochastic Liapunov function, Kusher [K4] made several successful



125

attempts to introduce various forms of a stochastic Liapunov function
for continuous random differential equations. However, there still
are few studies about stochastic Liapunov functions for discrete
stochastic systems.

1. Let V be the Liapunov function of the filter system

f(}_n_l ’I-n-l)
VI-3

Lal's

=C

Then V(xn) = xﬂP(x)xn for n> N (approaching steady state) where P(n)
is the error covariance matrix of the estimate at time (n).

Proof:

V(xr) satisfies the requirement for a Liapunov function
1

since
a) V() =0
b) V(xn)+°° as x -
c) From the properties of P introduced in the last chapter
(Pl <P < 1, V1-4
so that
a 1+aB '
T:ggllxllzi_x'P(n)x 5_—7;—4|x|l21 . VI-5

2. The second form of Liapunov function for the non-linear dis-
crete filter introduced by this work is the analogy of the determin-

istic Krasovakii form:

Vixg) = £'f
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since this also satisfies:

V(0) =0

V(xp)>~ as X >
V(xn) is a positive scalar.
3. The Liapunov function introduced by Jazwinski [J2]
V(xg) = x'P"1(m)x . VI-6
Refer to Jazwinski for a detailed proof.

A1l of the above Liapunov functions were tested on our re-

actor system. The following conclusions were reached:

a) The first form introduced by this work gives the largest
region of asymptotic stability ( 'RAS), provided the error covariance
P(n) stays in the positive semidefinite coﬁe (i.e. the filter sfays
with the observability and controlability region).

b) The Krasovskii form is too tonservative (gives a smallér
RAS) .

c) The third form does not apply to our reactor case since
P-1(n) is a monotonic increasing function of n.

VI.3 Properties of the Riccati Equation

The asymptotic behavior is closely related to the solution of

the estimate error covariance matrix equation which satisfies the
Riccati matrix equation.

P = F(t)P + PF'(t) =~ PH'(t)R™I(t)H(t)P + T(t)Q(t)r(t), VI-7
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where P is the error covariance matrix for the dynamic system.

dx = F(t)x(t)dt + G(t)dw
x(ty) = ¢

dz = H(t)x(t)dt + dv
P(ty) =Py >0 .

The solution of VI-7 has to stay inside the cone of positive semi-

definite matrices. The solution of VI-7 satisfies

t
0<P<®(t,t,)Po'(t,ty) + I e(t,)r(m)Q(r)r'(r)e(t,t)dr, VI-8

t
(v

where

@(t,to) is the fundamental matrix of F(t).

Note that the second term on the right hand side of Equation

VI-8 is the controlability matrix. The existence and uniqueness of
the solution of the Equation VI-7 is given by Bucy [B8], since the
upper bound of Equation VI-8 provides a Lipschitz constant for Equation
VI-7. From Equation VI-8 it is obvious that the existence of a unique
positive semidefinite solution of Equation VI-7 depends on:

1. The boundedness of the asymptotic stability properties of the
system transition matrix. |

2. P, has to be positive semidefinite.

3. 'The controlability matrix of the filter has to be positive
semidefinite.

Numerical solution of the Riccati equation.

Bucy's ASP program [B8] (automatic Synthesis Program) provides
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an efficient procedure for the numerical solution of the Riccati ma-
trix equation via quasilinearization. We will discuss two types of
numerical schemes solving the Riccati matrix equation with subsequent
successful application to our reactor system.

Let the solution of Riccati equation be S(P), then

P = S(P) = FP + PF' - PH'R"IHP + IQr.

1. The first order method: (this is a simple first-order

iteration)

P =P, +eS(P ;) . VI-9

2. Second-order iteration:
2S (Pn-l)

- p 2 -
P = Pn_1 + escpn_l) + }e 5p S(Pn_l) . VI-10

When both of these schemes were applied to our reactor.system, the
second order iteration scheme shows great improvement over the first
order during the initial stages of the calcualtion.

The requirement that the P matrix symmetric can be seriously
violated during the iteration process due to round off in the matrix
operations but this can be avoided by symmetrizing the iterates. The
problem of the iterates leaving the cone of positive semidefinite and
thus leading to an unbounded filter can be avoided by adding a larger
fictitious noise covariance term, the Q matrix. This increases the

controlability region.
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The computation time in carrying out the converged solution
of the Riccati equation depends on the step size e, but too small a
€ leads to excessive iteration and computing time. Therefore,
should be chosen as large as possible. Generally speaking, the compu-
tation time varies as the cube of the dimension of the Riccati matrix
equation. However, all of the trouble in symmetrizing and staying
positive definite are partially avoided in our work by using the
special matrix calculational scheme, thus keeping the round off
errors very low.

The solution of matrix Riccati equation governs the evolution
of the estimation error covariance matrix for the discrete time
filter. It is important to know the conditions for the uniqueness
of the Riccati equation which therefore ensures the optimal filter
performance. A good table made by Bucy [B8] is very useful for quick
reference.

Let us define the following nomenclature:

Al: Uniform R observability

A2: Uniform Q controlability

AS: Uniform Q controlability and uniform observability

Plz Existence of a positive semi-definite eQuilibrium solution
of the Riccati equation

Py: Uniform asymptotic stability of the optimal filter

P3: Uniform asymptotic stability of the Riccati equation

P4: A priori uniform upper bound (151+ C) for the solution of

Riccati equation
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P.: A priori uniform lower bound (I,+C 13" for the solution of

5
the Riccati equation

' P6: Unique positive semidefinite equilibrium solution of the
Riccati equation

P7: Monotonic convergence of the error covariance matrix.

For the time varying system:

With
R(t)>cI>0, P(0)>0

and
F(t), T(t), H(t), Q(t)

uniformly bounded. We have the following property table:

1 2 3 5
Al X - - X - - X
A2 - - - - X - X
A3 X X X X X X X

An entry (X) in the matrix i, j indicates that nnder assump-

tion i, the property holds while (-) indicates it is,insufficient.

VI.4 Numerical Examples.

A sample computer output shows the Liapunov function suggested
by this work and that of the Krasovski form. The Liapunov functions
all start at the origin with a value of zero, then increases steadily
until the filter approaches the steady state, then decrease monoton-.

ically. The Liapunov function of the form X'PX shows a clear indication
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of the stability property of the filter model, since the positive de-
finiteness of the P matrix can assure a unique solution of the Riccati
equation which in turn will assume a stable filter. The fact that P
is an monotonic decreasing function of time after the filter reaches
the steady state directly reflects the location of the steady state.
For the Krasovski's form §'§, the trend of monotonic decreases start

a little earlier where the filter may not be stable.
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SAMPLE COMPUTER OUTPUT OF
LYAPUNOV_FUNCTIONS __

THIS WORK

XTPx

060

0000000
0.000022
0.000108
0. 000188
0.000274
0000337
0000370

0.000364

0000347
0.000316
0.000277

"N
0.0C2C228°7

0000235
0.000227
0000223
0000217
0.000217
0.000212
0.000221

KRASOVSKI

x'x

0.000000
0006903
0.01E543
0e014413
0.008476
0.005843
0004166
0003170
0002413 .
0001921
0.001465
0001091
c.Cc2C79”
0.000556
0.000364
0000230
0000148
0000095
0000056
0000033



CHAPTER VII
ERROR SENSITIVITY ANALYSIS AND FILTER ADAPTIVITY

VII.1 Introduction

In the implementation of a filter, w; often face two difficult
problems; the choice of a proper initial estimate of the state, the
initial estimate error covariance matrix, system noise covariance ma-
trix, measurement covariance matrix and the choice of a proper mathe-
matical model for the system. The mathematical model must be simple
in order to make it feasible for on-line célculations but it should
be realistic enough to describe the system in the operating range;
on the other hand, the prior statistics and the initial conditions are
not easily available under normal conditions. Therefore, these often
produce erroneous filtering results or filter divergence as shown in
previous chapters.

The choice of different initial estimate error covariance
does not effect the filtering results when the filter is approaching
the steady state. This Gaussian-Markov properties, as proved in the
last chapter, may not hold for non-linear systems or it may take
longer to approach to the steady state, or there may exist several

steady state solutions as discussed in the previous chapters. Different

133
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choices of Q(k), (the process noise covariance matrix), and R(k),
(the measurement noise covariance matrix) may lead to the erroneous
filtering results as they may lead to an undesired stead& state solu-
tion of the matrix Riccati equation.

It is clear that an error sensitivity analysis is urgently
needed, especially in non-linear filtering, because of the uncertainty
in both the model parameters and prior statistics. This uncertainty
gives severe problems for non-linear filtering while it is less sensi-
tive in the linear filtering case. The most complete development of
an error sensitivity analysis has been done by Griffin and Sage [G4].
They consider both differential errors and large scale errors and
also apply the results to smoothing. However, they only are useful
for a simple time invariant model.

This work extends the results of Griffin and Sage and Jazwinski
[J2] to a more general algorithm. One can analyze the error sensitiv-
ity due to model error (uncertainty in model parameters or integration
truncation error), prior statistics, measurement errors, initial con-
ditions or any combination of the above categories. This sensitivity
analysis calculation can be utilized by the adaptive filters discussed
in the previous chapters. Therefore, we are able to do a sensitivity
analysis for various adaptive filters, a second order non-linear filter,
an extended Kalman filter and the smoothing. Thus, we can relate the
sensitivity to adaptivity.

An extensive'error sensitivity analysié was applied to the

chemical reactor model in this work. Some encouraging conclusive
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results are obtained which will be valuable for non-linear filtering
implementations. A relation between error densitivity and filter
adaptivity found in this study also provides guides to adaptive

filtering development.

VII.2 Developmen£ of General Sensitivity Analysis Algorithm
In order to apply the filtering to a system, the model para-
meters ¢ (process transition matrix), H(process measurement matrix),
noise statistics (Q and R matrix) and the initial conditions [x(0) and
P(0)] must be specified.
Following the approach of Sage and Jazwinski [G4], [J2]; let

the real system be represented by

x(k+1) = @(k+1,k)x(k) + ¥(k) + Ir(ku(k+1) VII-1

with the measurement

z(k) = HR)x(k) + (k) , VII-2

where w(k+1) is a zero mean Gaussian process noise with covariance
Q(k+1). v(k) is a zero mean Gaussian measurement noise with covar-
iance matrix R(k+1). The initial estimate is x(0) and the error co-

variance is P(0) while the filter model is:

X (k#1) = 0 (k+1,K)x (K) + ¥ (K) + T (K)w, (k+1) VII-3

2o (k) = Ho(K)xc (k) + v (k) VII-4

where we(k+1) is a zero mean process noise with covariance Q¢ (k),

Xc(k) is a zero mean measurement noise with covariance Rc(k), initial
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estimate 5c(0), Pc(O); ¥(k) and ?c(k) are in the dynamics to account
for any approximations due to nonlinearities, or reduction in system
dimension.

In order to operate a filter, it is necessary to assume uni-
form boundedness of the process transition matrix, measurement matrix
and the estimate error covariance matrix and the positive definite-
ness of the error covariance matrix as stated in previous chapters.

Our filter design for the above system model is:

A. Prediction stage.

R(k+1,K) = 0c (keD,K)R(K,K) + ¥ (K) . VII-5

B. Correction stage.
R(k+1,k+1) = [I-K (OH_(K)1R(ke1,K) + K (kel)z(k#1) ,  VII-6

where the Kalman filter gain is

Ke(k+1) = Po(k+1,k)HE (k+1) [He (k+1)Pc (k+1,k) e Hé(k+1) +

-1
and R.(k+1)] VII-7

Pc(k+1,k) = ¢c(k+1,k)Pc(k,k)Qé(k+l,k) + Pc(k)QC(k+1)Pé(k)
VII-8

Pc(k+1,k+1) [I-Kc(k+1)Hc(k+1)]Pc(k+1,k)

[1-K_ (k+1)H_ (k+1)1P_ (k+1,K) [I-K_ (k+1)H_(k+1)]"

+ K (k+1)R_(k#1)K! (k+1) VII-9

with initial estimate x(0) and error covariance PC(O,O) = P(0) given.
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We note that the filter operates on the real data z(k).

It is obvious that the computed matrix P.(k+l,k+1) is not the
actual estimation error covariance matrix of the system. This is due
to the difference from the real model. Neither does this filter sat-
isfy the minimum variance criterion for the actual system. The

actual estimation errors are
gﬁk+l,k) = x(k+1 - X(k+1,k) = ¢.(k+1,k)x(k,k) + ao(k+l,k)
+ T(k)w(k+1) + &(k) VII-10

x(k+1,k+1) = x(k+1) - X(k+1,k+1) = [I-K.(k+1)H(k+1)]

X(k+1,k) - K. (k+1)aH(k+1)x(k+1) - K (k+1)v(k+1).
VIIi-11
Where
Ad(k+1,k) = o(k+1,k) - ¢c(k+1,k)
(k) = ¥(K) - ¥ (K)
AH (k) = H(k) - Hc(k)

The performance measure of the actual estimation error covariance

matrix is

P(k+1,k+1)

E[X(k+1,k+1)X(k+1,k+1)'] ,
and ‘

P(k+1,k)

E[Z(k+1,K)Z (k+1,K) ']

Then, the recursive relation of error covariance is
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P(k+1,k) = ¢c(k+1,k)P(k,k)¢é(k+1,k) + T(KQ(k+1)r' (k)

+ A®(k+1,k)X(k)Ad ' (k+1,k) + A@(k+1,k)C(k,k)¢é(k+1,k)

+

Qc(k+l,k)C'(k,k)A¢'(k+1,k) + A% (k+1,k)m (k) aY' (k)

+

AY (K)m' (k) ad ' (k+1,k) + a¥(k)a¥'(k)

+

Qc(k+l,k)Am(k,k)AW'(k) + A¥(k)Am'(k,kﬁ%(k+l,k)

VII-12
and
P(k+l,k+1) = [I-K_(k+1)H_ (k+1)]P(k+1,k) [I-Kc (k+1)H_ (k+1)]"
+ Kc(k+1)R(k+1)Ké(k+1) - [I—Kc(k+1)HC(k+l)]
C* (k+1,K) aH' (k#1)K! (k#1) - kc(k+1)AH(k+1)C(k+1,k)
[T-K_(k+1)H_(k#1)]" + KoaH (k+1)X (k+1) 8H' (k+1)K! (k+1)
VII-13
where
X(k+1) = E[x(k+1)x(k+1)"']
C(k,k) = E[x(k)x(k,k)']
C(k+1,k) = E[x(k+1)X(k+1,k)']
m(k) = E[}_(k)j
Am(k+1,k+1) = E[X(k+1,k+1)] .

Together with their recursive relations:

X(k+1) = o(k+1,k)X(K)®' (k+1,k) + ¥(k)¥'(k) + T(k)Q(k+1)T'(k)

+ o (k+1,Kk)m(k)¥' (k) + Y(Km'(k)®' (k+1,k) VII-14
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C(k+1,k) = ¢(k+k,k)C(k,k)¢é(k+1,k) + & (k+1,k)X(K) A% (k+1,k)

+ P(K)Q(k+1)T' (k) + o(k+1,k)m(k)ay' (k) + ¥ (k)m'(k)

A% (k+1,k) + W(k)Am'(k,k)@é(k+l,k) + Y(k)avy'(k) ,

VII-15
Clk+1,k+1) = C(k+1,k) [I-K_ (k+1)H_(k+1)]"-X(K)AH' (k+1)K! (k+1)

VII-16

n(k+l) = o(k+1,K)m(k) + ¥(k) , VII-17

Am(k+1,k+1) = [I-Ke(k+1)H_(k+1)][o (k+1,k)Am(k,k)

+ A®' (k+1,k)m(k) + A¥Y (k)] - Kc(k+1)AH(k+1)m(k+1)

VII-18
With the initial conditions:

P(0,0) = P(0); X(0) = E(xy,x]) = P(0) + X(0)X'(0)
C(0) = E[x (x,-%(0))'] = P(0)
m(0) = E(x)) = %(0)

m(0,0) = 0

This general sensitivity analysis algorithm has been developed
into a subroutine and tested on the reactor model to evaluate various
effects on the filter performance due to different error categories.
Various special cases of errors treated herein are described by
Jazwinski [J2], however, we are trying to cover more completely and

present a detailed discussion and its relation to adaptivity.
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" VII. 3 Error Sensitivity Due to Prior Statistics
In this section we consider error to be existant only in P(0),

Q(k) and R(k). Substituting the relations:

Ad(k+1,k) = 0; A¥(k) =0
AH(k) = 0 into the general algorithm.

i.e. assume that the process transition and measurement matrix is
identical to that of the filter model. We then have the following re-
cursive relations for the error covariance.

For the actual error covariance:

P (k+1,k)

o (k+1,K)P(k,k) @' (k+1,k) + I'(k)Q(k+1)T' (k)

P(k+1,k+1)

[I-Kc (k+1)H(k+1) ]P(k+1,k) [I-‘l(c (k+1)H(k+1))*

+

K (IR (K)K! (kl+1)

The error covariance for the filter model is:

P (k+1,k) = o_(k+1,K)P_(K,k)8! (k+1,k) + T(K)Q, (k+1)I' (K)
P (ki k) = [I-Kc(k+1)H(k+1)]Pc(k+1,k)[I-Kc(k+1jH'(k+l)]'
+ K (R 1)R_ (k+ 1)K (k+1)
Let
E (k+1,k+1) = P(k+1,k+1) - P_(k+1,ke1)
E(k+1,k¢1) = [I-K_ (ke1)H(k+1)JE(k+1,k) [I-K_ (k¢1)H(k+1)]"

+ Kc(k+1)[R(k+1)-Rc(k+1)]Ké(k+1)
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Case I:

Suppose Q(k+1) :_Qc(k+1) and R(k+1) f_Rc(k+l) for all k then,
if E(k+1,k) < 0; it is clear that E(k+1,k+1) < 0. |

Case II:

Suppose Q(k+1) 3.Qc(k+1) and R(k+1) i.Rc(k*l) for all k then,

if E(k,k-1) > 0; it is clear that E(k+1,k) > 0 and E(k+1,k+1) > 0.

Application of the general algorithm to the chemical reactor
model has shown good results and we can arrive at the following con-
clusions:

1. If P(0)<Pc(0) and Q(k)<Qc(k), R(k)<Rc(k) for all k then,
P(k+1,k)<Pc(k+l,k) and P(k+1,k+1)<Pc(k+1,k+1) for all k. Therefore
the actual error covariance matrix is bounded by the error covariance
matrix based on the filter model as in thg first case.

2. On the other hand, if the prior statistics lie in the second
category (define), the filter error covariance matrix is bounded by
the actual model beforehand, and we cannot gain any information in
this case.

Therefore, it is preferable to set the prior statistics ac-
cording to case I, since we may precompute P (k+l,k+1) (satisfying the
Riccati.Equation) to determine conservative estimates.of the actual
P(0), Q(k) and R(k) which will give satisfactory filter performance.

Applying the error bound calculations in the previous chapters
for the filter error covariance, we can predict the estimation error

of an uncertain actual model.
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0.0004 0.0002
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NONLINEAR EXTENDED KALMAN FILTER
CONSTANT NOISE COMPENSATION
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TIME SEC. ACTUAL P MCDEL P

1,0 0.0030 0.00C11
1.5 c.0038 N.0025
2.0 c.0030 0.0027
2.5 0.0023 0.0026
. 3.0 C.C020 0.0024
3.5 €.0020 N.0C022
- 4.0 0.0022 Nn.0020
4.5 n.N023 0.CC19
5.0 C.0N24 0.0018
5.5 0.0024 N.0017
6.0 C.0024 0.0017
b5 C.0024 0.,0017
7.0 0.0024 0,0017
7.5 0.0024 0.0017
8.0 c.n025 0.0017
8.5 c.0025 0.N017
9.0 0.0025 0.0017
9.5 0.0024 0.0017
10,0

0.0024 0.0017
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A sample output for sensitivity analysis in this section can

be found in Fig. 7.1 through Fig. 7.6.

VII.4 Sensitivity Analysis Due to Model Errors

Various model errors exist in the filtering process. Some
are due to incomplete knowledge of the physical process leading to
uncertainty in model parameters. A typical example in our reactor
model is the uncertainty in the reactor rate constant or the reaction
mechanism for complex reactions. In addition, some model errors are
introduced deliberately for numerical simplification or when approxi-
mating a higher dimensional model by a lower order model. This saves
both in computer storage and computation time. In addition, one can
approximate a nonlinear model by a pseudo-linear model in order to
obtain analytical results and utilize linedr analysis.

In this section the sensitivity analysis of both the extended
Kalman filter and the second order nonlinear filter is studied when
the following effects are considered:

A. Uncertainty in the model parameters.

B. Model errors due to deliberate simplification in the

model .
C. Model errors due to the combination of deliberate model
simplification and error in the prior statistics.
1. Uncertainty in the model parameters:

An uncertainty in the model parameters will cause an undesir-

able model response and this may either degrade the filter performance

or cause instability and divergence. In order to use our general
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sensitivity analysis algorithm, we can treat the model uncertainty
via &% = ¢c-¢. ¢ is the transition.matrix of the actual model when
using accurate knowledge of the model parameter. o is fhe filter
model transition matrix with an uncertain model parameter. We sub-
stituted this relationship into the algorithm and permanent offset
and divergence between the actual and the computed error covariance
was observed. This offset and divergence depended on the particular
model response to the uncertainty in model parameters. This explains
the reason for filter divergence due to uncertainty in model parameters.

The error sensitivity due to the uncertainty in model para-

meters is evaluated via A¢ = Qc-¢ which can be achieved by substituting

into the general algorithm:

P(k+1,k) = @ P_(k, K)o (kel,k) + T(k)Q (k+1)I' (k)
+ 00 (k+1,K)X(K) 80" (ke1,K) + 80 (k+1,K)C(k, K)o ! (k+1,k)
+ 0 (k+1,K)C" (k, k) 40" (k+1,K) VII-19
P(k+l,k+1) = [I-K_(ke1)H_(k+1]P(k+1,k) [I-K_(k+D1)H_(k+1)]"

+ K_(ke1)R(k+1)KZ (k#1) . VII-20

Combining equations VII-19 and VII-20 we have on the right hand side,

dropping the index for convenience:
= - - ' -
P(k+l,ke1) = (I-K H)e P (I-K H)' + F(k) . VII-21

This is a linear inhomogeneous difference equation with the forcing

term:
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- - 1 ) |} - t
F(k) = (I-K_ H)(TQI'+A0Xa0'+a0Co! + & CAQ) (I-K H)+K RK{
VII-22

where X (k) and C(k,k) are as defined before. Note that if A = 0,

all terms with A% in VII-22 drop out, and we have
- [ - 1
F(k) = K.RKZ + (I KCH)(PQCP )

Substitute this into Equation VII-21,

P(k+1,k+1)

L]

(I-KCHXQCPQé)(I-KcH)' + KCRKé+(I-KcH)(FQF')(I-KCH)'

- ' 1] - ] t
(I-K_H) (ePo'+TQr') (I-K H)' + K_RK!

This is exactly the same as the filter model error covariance. The

sensitivity matrix as defined by

DP(k+1,k+1) = P(k+1,k+1) - Pc(k+1,k+1)

Therefore, if A% = 0, we will have DP(E+1,k+1) = 0 or P(k+l,k+1) =
Pc(k+1,k+1).
2. Model errors due to deliberate simplification:

As mentioned before, deliberate model simplification has been
used very often in simulation and filtering realization and usually
takes the form of replacing a higher order complex model by a lower
dimensional simpler one. Here again, we can use the general computer
program to make a sensitivity analysis via either ¢ = QC-Q or AWeWc-W
to take care of the errors either in reduction in dimension or non-

linearity. In this work, we evaluate the sensitivity due to integration
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error (using simple Euler's integration) via A¢ as derived in A, while
Fig. 7.7 to Fig. 710 shows the rapid disappearing of the difference
by using adaptive techniques introduced by this work.

3. Errors due to the combination of prior statistics and model
simplification.

A combination of errors in prior statistics and model simpli-
fication may also degrade the filter performance. The sensitivity
due to these errors can also be studied by our general algorithm.
Here, we treat again the model simplification via AY = ¥o-Y. In this
case the recursive relation for the error covariance is:

P(k+1,k) = ¢(k+1,k)P(k,k)®"'(k+1,k) + T(k)Q(k+1)T"' (k)

+ AY(k)ay' (k) + o (k+1,k)am(k)ay' (k) + a¥(k)am'(k,k)e' (k+1,k)

P(k+1,k+1) = [I-Kc(k+1)H(k+1)]P(k+1,k)[I-Kc(k+l)H(k+1)]'

+ Kc(k)R(k+1)Ké(k+1)‘ .
Combining these equations

P(k+1,k+1) = [I-K_(k+1)H(k+1)]® (ke1,K)P(k,K)&" (k+1,K)
+[1-K_ (K+D)H(k+1)]" + F(K)
Where F(k) is
F(K) = [I-Ke (k+1)H(k+1)][T (K)QCk+1)T" (k) +A¥ (k) A¥' (k)
+ & (k+1,k) am (k, k) A¥'+a¥ (k) Am* (k,k)8" (k+1,K)]

'[I-Kc(k+1)H(k+1)]' + Kc(k+1)R(k+1)Ké(k+l)
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am(kel,k+1) = [I-K_(k+1)H(k+1)]o(k+1,K)an(k,k) + £(k)

f (k) [I-Kc(k+l)H(k+1)]A?(k) .

Let

¥ (k+1,K) = [I-K (k+1)H(k+1)]o (ks1,k) .

The following theorem is due to Price [P3]. If the dynamic system is
uniformly completely observable and controlable and if F(k) is uni-
formly bounded and P(0) is bounded, then the error covariance matrix
P(k,k) is uniformly bounded for all k. Since the solution for P(k,k)
is:

k-1

P(k,k) = v(k,0)P(0)¥'(k,0) + [ ¥ (k,i+1)F(i)¥’(k,i+1) ,
c so0 © c

the uniform boundedness of the error covariance matrix assures us
that the filtering estimation error falls below the bound. Therefore
we can set up the filter model such that its error covariance matrix
stays within our acceptable region.

We can see that the boundness of the forcing term of the co-
variance equation requires the boundness of X(k), C(k,k) m(k) and
m(k,k). These are all related to the uniformly asymptotic stability
of the actual system dynamics. This is essentially assuming uniformly

asymptotically stable system dynamics.

VII.5 Error Sensitivity Due to Measurement Error
We will discuss two types of incorrect measurement errors in

this section using our general algorithm.

A. Incorrect measurement statistics.



157

B. Incorrect measurement matrix in the case of linear or
incorrect measurement function in'the nonlinear case.
1. Incorrect measurement statistics: .
Here, we are concerned with the incorrect measurement noise
covariance, R(k). Assuming everything of the filter model except the
measurement noise is the same as the actual model, then substituting

into our general algorithm:

P(k+1,k)

¢ (k+1,K)P(k,k)® ! (k+1,k) + T (k)Q(k+1)r' (k)

P(k+1,k+1)

[I-Kc(k+1)H(k+1)]P(k+1,k)[I—Kc(k+1)H(k+1)]'
+ Kc(k+1)R(k+1)Ké(k+l)

Therefore, similar results can be obtained as in the section of sensi-
tivity due to prior statistics. The boundedness of the error covari-
ance is also related to the asymptotic stability of the process trans-
ition matrix.

2. Incorrect measurement matrix:

An incorrect measurement matrix in the linear case or an in-
correct measurement matrix in the nonlinear case can also degrade the
filter performance. The sensitivity analysis study of these effects
can also be achieved by our general algorithm using AH(kK) = H(k)-Hc(k);
here H(k) is the actual measurement matrix while Hc(k) is the filter
model incorrect measurement matrix.

Substituting ‘this relationship into the general algorithm we

have:

P(k+1,k) = ¢(k+1,k)P(k,k)0! (k+1,k)} + T (k)Q(k+1)T" (k)
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P(k+1l,k+1) = [I-Kc(k+1)H(k+1)P(k+l,k)[I-Kc(k+1)H(k+1)]'

+ Kc(k+1)R(k+1)Ké(k+1) - Kc(k+1)AH(k+1)C'(k+l,k)

[I-Kc(k+1)H(k+1)]' - [I-Kc(k+1)Hc(k+1)]

C'(k+1,k)AH'(k+1)Ké(k+1)

+ Kc(k+1)AH(k)X(k+1)AH'(k+l)Ké(k+1) .

This is also a linear inhomogeneous difference equation with the under-
lined part as the forcing terms. Thus, if AH = 0, the sensitivity
. matrix is equal to zero.

In our reactor model, an incorrect measurement element on the
jacket temperature has no effect on the sensitivity of the reactant
concentration. Even a constant offset on the jacket temperature error
covariance matrix does not offset the concentration. This is due to
the very light interaction between the jacket temperature and the re-

actant concentration. This is shown in Fig. 7.16 and Fig. 7.17.

VII.6 Relation to Adaptivity

The purpose of applying an adaptive or error compensation
technique during the filtering process is to minimize any error due
to imprecise knowledge of prior statistics, measurement errors or un-
certain model parameters. It is intuitively clear that the adaptive
technique will adjust the filter such that the error covariance of the
filter is close to that of the actual model. This is also shown in
Fig. 7.7 and Fig. 7.9 in applying to our feact&r model.

Thus an adaptive filter can be used to minimize the sensiti-

vity matrix or to desensitize the system to any error in the filter
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process. Mathematically, this is a1§o very clear as shown in the pre-
vious section. The errors in filtering always appear in the forcing
term of the inhomogeneous linear difference equation inicalculating
the actual error covariance matrix. Thus, the adaptive filter is
trying to minimize the errors in filtering or to minimize the forcing
;v term, thus minimizes the sensitivity matrix. A perfect adaptive filter

will lead to a zero sensitivity matrix.

VII.7 Numerical Examples and Discussions
Sensitivity analysis for different error categories were per-
formed on our reactor model. Genérally speaking, we can reach the
b following conclusions:
1. Errors due to different initial error covariance will disap-
pear after the filter reaches the steady state.
2. Errors due to measurement noise on temperatures only effect

the temperature, not the concentration (due to the damping of reactor

wall and fluids).

5
A
Y

2wl

3. Errors due to model errors or integration errors can be de-

sensitized by a proper error compensation technique.

o e e g 28 A

4. Errors due to the combination of model error and prior
statistics is less serious than that of having model error alone,
since the error in statistics may desensitize the system and compen-
sate for part of the model error.

S.I Small errors due to measurement matrix in temperature do not
effect the concentration significantly. This is also related to con-

clusion 2. The result is shown in Fig. 7.16 and Fig. 7.17. However,

B s )
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CHAPTER VIII
ERRORS IN FILTERING

VIII.1 Introduction.

In this chapter we discuss various types of round off errors
in modeling and filtering. The round off errors in filtering and
modeling can cause filtering instability and even divergence. The
accumulation and propagation of errors during the filtering process
sometimes is so serious it can quickly pro@uce catastrophic errors
and a runaway situation.

Round off errors in the filtering part are due mostly to the
filter gain calculation which is in turn related to the error covar-
iance matrix calculation and matrix inverse calculations. Ill-con-
ditioning of the process model transition matrix and too short a com-
puter word length can easily introduce round off errors in the matrix
inverse and matrix operations carried out in the gain calculation.

Our reactor model is a typical case with very sensitive
dynamics. Propagation of round off errors in the early filtering
stages often causes runaway of the reactor dynamics. In order to re-
duce the possible round off errors, the following areas are important:

A. Use a better matrix inverse algorithm to treat the ill-

conditioned matrix.

167



168

B. Normalize the process dynamics state va?iables and use
proper scaling to reduce the sensitivity due to round off and there-
fore reduce the possible ill-conditioning of the processitransition
matrix. i.e. reduce the wide spread of the eigenvalues of the system
and thus reduce the system stiffness.
. C. Choose proper sensor measurement or take several sensor
measurements to reduce the uncertainty before starting the filtering.

D. Choose a very small initial error covariance of the esti-
mate, therefore decreasing the dynamics range or the ill-conditioning
of the matrix. Otherwise we will violate the linearization assumption.

E. As a result of this study, it is much better to make an
off-line calculation of the upper and lower bounds of the error covar-
iance matrix of the estimate before the filtering is started. Then,
we have an idea of the best we can hope for and the worst we can get
in the future filtering. Hence model instability can be prevented
and divergence avoided by tuning the various deel parameters and
prior statistics and increasing the confidence in on-line filtering

and thereby reducing the on-line computational load.

VIII.2 Modeling Errors and Approximations
As stated in the previous chapters and the last section, the
modeling error consists of uncertainty in modeling parameters (as rate
constants in the reactor model) or round off in integration, stiffness
or instability of the model dynamics, and some deliberate simplifica-
tion of the model dynamics for practical implementation. All of the

above errors can cause filter divergence and instability.
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A. Uncertainty in model parameters.

For a less sensitive model the uncertainty in a parameter can
degfade the filter performance and give filter offset in the estimate.
Some models are very sensitive when operating in certain region while
less sensitive in another region. The reactor model is a typical case
with reduced rate constant RK = 1.0, the model is not sensitive enough
to cause modeling instability while raising RK to 1.5 causes and ex-
ponential growth in the rate term and runaway in both the dynamics and
the filtering estimate. It is better to operate a filter in a less
sensitive parameter region to insure better filter performance, how-
ever, sometimes it can be unrealistic to do so due to physical and
economical reasons.

Here, the model error compensation and proper control will
play a very important role in confining the filtering in a stable
operable region before a runaway will occur. By using bang-bang con-
trol the dynamics and filtering estimates are stable even with RK=6.0
as it is shown in Fig. 3.3, and Fig. 3.4.

B. Round off in integration.

Round off error and truncation error in the integration of the

model dynamics often causes oscillation and overshooting in the dynamics.

This behavior is unacceptable when the filter is operating on a sensi-
tive model. An intensive study has been made in this work of the
effects round off and truncation error on the filtering performance.
An adaptive type model error compensation technique was developed to

reduce the sensitivity and overshooting.
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Euler's integration method was used in generating the filtering
estimate. Using.the extended Kalman filter with Euler integration
caused oscillation and overshooting (also shown Wells [W1]). We have
been very successful in introducing a fictitious model noise propora-
tional to the amount of the truncation error of the integration routine.
Significant improvement has been shown in using an extended Kalman
filter combined with model error compensation. Also, it has been found
that a combination of the second order non-linear approximate filter
with model error compensation shows even better performance.

The truncation error for the integration routine used is
closely related to the integration interval h. For Euler integration,
this error is proportional to h2?, while for the Runge-Kutta Merson it
is h5. The numerical stability of the integration is also related to
the particular interval chosen for integration. In the reactor model,
numerical instability is observed when h = 0.1 sec fof the Euler inte-
gration. However, h = 0.5 for Runge-Kutta Merson routine led to insta-
bility. The smaller the step interval, a heavier computational load is
necessary, while too large a step size not only causes serious round
off and truncation errors but also causes ill-conditioning of the pro-
cess -transition matrix, introducing errors in the matrix inverse, and
then instability in the process dynamics. Recent studies on the effic-
ient integration routines for.stiff differential equation system are
reported by Lapidus and Willoughby [S10], [WS].

C. Model approximation.

In many filtering applications, one should be willing to trade

off some filter accuracy by having model simplification. This can be
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done by the following approaches:

1. Use a pseudo-linear analysis by dropping the non-linear term,
or approximate the non-linear terms by linearization.

2. Reduction of the number of state variables of the system,
thus approximating a higher complex system by a lower dimensional sys-
tem.

3. Decompose the higher dimension system into several small sub-
systems, and then perform the filtering for each of the subsystem.

Bucy [B8] made several theoretical contributions to the above

subjects. We apply these successfully to our reactor model.

VIII.3 Round Off Errors in Matrix Inversion

For the time varying non-linear filtering case, matrix inver-
sion is required whenever the process transition matrix changes. Round
off error can become.very serious when the transition matrix is ill-
conditioned. In the reactor model, for, instance, the ill-conditioning
of the transition matrix is worse than that of a Hilbert matrix, if
we use h = 0.2 or higher for the Euler integration. In order to reduce
possible round off in the matrix inverse, we choose a combination Af
the Shur relations and matrix interaction to carry out the matrix in-
version in the filter gain calculation. |

A. Matrix inversion by the Shur relation.

The Shur relation expands the determinant by determinant of
subblocks (Gantmacher [Gl]). Suppose we are interested in finding
the inverse of matrix D, an NxN matrix. Let Dm be the mxm matrix

formed by the first m rows and columns.
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Let
D = Am bm - Dm-1 bm
mn c! d c! d
m m

Then a recursive scheme is developed as:

1 -
-1 = E = Em-1+amEm-1bmcmEm-1 o‘mEm-I bm ‘ VIII-1
n m - a c'E o .
m m m-1 m
Where

-1 = .

%n dm cmEm-lbm

By = 1/Dy; 5 dy =D,y by =Dip5 € =Dy -

B. Matrix iteration.

Suppose we already have the matrix inverse, B of matrix A,
then an improved matrix inverse can be found by the following itera-
tion scheme:

B = Bi(ZI-ABi) . VIII-2

i+l
VIII.4 Numerical Examples and Discussions

Extensive evaluations have been made in this work on various
errors in the filtering studies of our reactor model. Generally
speaking, round off errors due to matrix gaiﬁ calculation or integra-
tion truncation is not serious if we use filter sample period of 0.5
sec and integration interval of 0.05 sec. Round off errors of these
types can easily be compensated by the adaptivé techniques introduced
in this work as shown in Fig. 8.1, and Fig. 8.2. Sometimes it is de-

sirable to use various model simplifications as listed in the previous
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section. The errors introduced due to model simplification often bring
permanent offset, due to the nongaussian properties of the errors.
A. Pseudo linear analysis.
The error introduced due to pseudo-linear analysis has been
treated successfully by Bucy [B8] in terms of the development of upper
bounds for the error in process transition matrix:

The norm of a vector is defined as:
Il = @t
i

while the norm of a matrix is
ll6]] = (z262)?
1j 1)
Let

a = ||G-1sG||; a = ||8GG-1]].

Then, for a<<l we have

VIII-3

where

Ai = eigenvalue of P«
The error in the calculation of error covariance is related to that

of the process transition matrix., Let

0= (%)sc; :

Then

o
*
[

(G + a®)P(G + ao)'

P + a[GPO' + OPG' + aoPoO'] . VIII-4
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By applying Equation VIII-4 n times, we have
82
J—E—l—i 2na
Aj
This implies that the criterion of accuracy of the process transition

matrix G should be

-1 1
lase1] <<

where n is the number of computing intervals, nAt is equal to the
length of time that the approximation is used. Thus, this presents
an upper bound for the linearization error in the extended Kalman
filter.
B. Reduction of number of dimension of the state variables.
As a numerical example, we approximate our 4th order reactor
model by a second order model. Thus we use a second order model filter

to estimate the 4th order reactor model. The actual model:

X, = =(c,+c )x +c, (1+x )zexp (Elfla+ C,X,-C VIII-5
1 1 471 73 4 1+x4 472 73
X, = -(c5+c6)x2+c5x1+c6x3 VIII-6
Xy = -(cgteg)xgecex, VIII-7
X, = - C,X, - ¢ (1+x )2 X (Elflﬁ+ c VIII-8
4= 7 % T QUTXY) P ATt S - }
The filter model: dropping X, and Xq and Equations VIII-6 and
VIII-7
%= —(ese)x. + oy (lex) 2exp XLy | ¢ VIII-8
1 TS BT B SRR R S vy 3
X, = - C;X, - C (1+x )zexp (Eifla+ c VIII-9
4 174 2 4 1+xp 2
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Satisfactory results are shown in Fig. 8.5 and Fig. 8.6 by using the
smoothing and adaptive techniques of the work. Slight offset after

5 seconds is due to the steady increasing X, which we ignored in our
simplified model (this violates the Gaussian assumption of the dynamic
noise.

C. Decomposition of large system into subsystem.

Bucy [B8] presented the idea of partitioning a large complex
system into several smaller systems and perform the filtering for each
of the,subsystems. This approach not only saves computation storage
and reduces the computation load but also reduces the possible round
off errors in the calculations of filter gain matrix. With the help of
a decomposition algorithm, a very large unmanageable system can be
solved by partitioning it into several easily manageable subsystems.
This can be presented as follows:

Suppose we intend to decompose the system state vector X into
m subsystems 345 then Zi = 0153 In order to be able to recover the

X vector from the PP Di have to satisfy

Ipip=1 , : VIII-10

DIX, = X . VIII-11

Then the system equations can be written as:

m
X, (k+1) = D, ¢.Z

D;g_j(k) +D.u . VIII-12
j=1
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The measurement will be decomposed as:

m

+o
© z; = E;z = EjHx + E;y = EiHjZIDJ.l(_j +EV . VIII-13
The suboptimal decomposed filter will be:
Prediction - .
m
£.(k+1,k) = D,o(k) J D:X.(k,k) VIII-14
—1 1 . J=1 =)
A A m + 2 .
X, k+Lk+D) = X, (k+1,K) + Ki[zi(k+l)-EiHjZIDj3c_j (k+1,k)]. VIII-15
Let
+ +
N; = E;HD; ; 6, (k) = D;#(k)D;
Then
‘ -1
o 1 1] -
K, (k) = P, (K)NJ [N;P, (K)N;+R.] VIII-16
— D ' : ' "
P, (k+1) = 6, (K)P, (k)8! (k) + Q VIII-17
C; (k+1) = I-K, (k+1)N; (k+1) VIII-18
P, (k+1) = C, (k+1)P, (k+1) VIII-19

where Pi(O), Qi and Ri are the initial error covariance, process noise
" covariance and measurement noise covariance matrix for the subsystems.

The state variables which produce small effects can be separated into

iz.

In applying this idea to our reactor model, we separate our

four-state variablesproblem into two two-variable subsystems, i.e. X3

and Xy This is more sensitive and is separated from X, and Xz There-

fore we have
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. -
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« j
0.10F \ —— — = m T T T ]
o 4 wlU.U T 20.0
0 TIME  SEC.
1. 8.2 DOUBLE THE SAMPLING PERIOD
FILTER DECOMPOSITION ,SUBSYSTEM 1
“YIME SECe X 1 ESTIMATE
1.0 0.1856 0.1509
2.0 062927 0.2828
340 003292 0.3148
440 043265 0.3126
50 03087 042936
660 0.2888 02877
740 0.2723 0.2742
€40 042610 0.2584
9.0 062545 042493
10.0 042520 042543
11.0 0.2521 0.2597
12.0 042540 0.2584
1240 0.2568 0.2614
14,0 002599 . 042475
15.0 0e2631 0.2624
160 042661 0.2744
17.0 062690 0.2783
18.0 0.2716 0.2785
19.0 0e2741 0.2767
2040 042765 0.2807

ACCUMLLATEDO MEAN SQUARE ERROR = 0.2126E--03
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0.33F .
= -
— -
o .
- .
- -
T DYNAMICS X1 %%+ -
= I ESTIMATE <e.oe -
S r -
g FILTER DECOMPOSITION -
4] - IN THE PRESENCE OF 20% 3
- RATE CONSTANT ERROR ]
- SUBSYSTEM 1 : X1,X4 ]
o USING HUANG'S ADAPTIVE YII -
C SUBSYSTEM 2 : X2, X3 -]
- USING HUANG I ADAPTIVE -
0.1) |F *m——————— T -

TIME SCC.

FIG. 8. 3. FILTER DECOMPOSITION IN THE
PRESENCE OF 20 % RATE CONSTANT ERROR

TIMF SEC. X 1 ESTIMATE
£.5 c.1102 0.0172]
1.0 £.1962 £.1700
1.5 0,245 n.2369
2.0 C.25C? C.2580
2.5 L2153, C.71246
3.0 0.3270 c.331¢
3.5 £.1293 €.3273
4.0 C.27254 €.1174
4.5 0.3179 C.3079
5.0 C.2087 0.2651
5.5 0.2939 0.2846
€.C C.2895 C.2748
6.5 G.23C9 c.270Q
7.0 0.2734 0.2643
7.5 C.2671 C.2558
8.0 0.2621 0.2543
£.5 £.25€3 N.2537
S.0 0.2554 0.2460
s.5 £.25283 0.2454
| 16.0 C.?2523 C.2425
ACCUMULATED MFAN SCUARF FRROP = .3129F-C3
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0.068 d
N
B DYNAMICS XU ####*
q ESTIMATE eeo..
1
" t
H -
< 1z
=~ P
E‘I_J‘ b
w3 0.0
-0.073 '}
0.0 5.0 10,0
TIME SEG.
FIG. 8.4  USING HUANG'S ADAPTIVE I TO

COMPENSATE FOR EULER"S INTEGRATION
ERROR TO SIMULATE  THE RESULT OF USING
RUNGE-KUTTA MERSON INTEGRATION

ESTIMATE

TIME SEC. X 4
" 050 0.0683 0.0153
1.CO 0.0377 0.0379
1.50 0.0107 0.0124
2.00 -0.0120 -0.0105
2450 -0.0301 ~-0.0257
" 3.C0 -0.0440 -0.0425
3.50 -0.C543 -0.0546
4.00 -0.0616  ~-0.0626
450 ~0.0666 ~0.0677
5.00 -0.0698 - -0.,0708 .
5«50 -0.0716 -0.0726
600 -0.0725 -0.0727
6.50 "000727 "0.0729
7.50 -0007‘.8 "000720
8.00 -0.0711 -0.0712 .
8.50 -0.0703 -0.07C5
9.00 -0.0696 -0.0696
9.50 ~-0.0689 ~-0.0686
10.00 -0.0684 =—0.0688
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|

APPROXIMATING THE 4 th ORDER
BY A SECOND ORDER MODEL

DYNAMICS X 1y ¥#k&*
ESTIMATE x 2

o o 00

LIIJJ SEABEIEEREERER

TTTYI!IIY)!Ill))11!1Ti!]'lI|T1[ITIIIITl

 BEUANEEERERERNERRERE

-0.072 ) -
0.0 5.0 10.0
Time Sec.
FIG.8.5 MODEL APPROXIMATION

SECOND ORDER NONLINEAR FILTER
HUANG'S III

TIME SEC. X 2

ESTIMATE
0.5 0.0683 0.0668
1.0 0.0373 0.0388
1.5 0.C0S7 0.0114
2.0 -0.0135 -0.0125
2.5 -0.0319 -0,0317
3.0 -0.C459 -0.0461
3.5 -0.0562 -0.0564
4,0 -0.0534 -0,0633
4.5 -0.0682 -0.0682
5.0 -0.0712 -0.0696
5.5 -C.0727 -0, C7C4
6.0 .-0.0723 -0.C700
6.5 . =0.0732 -0.C693
7.0 -0.0727 -0.0678
7.5 . —-0.0719 -0,0667
8.0 ~0.0710 ~-0.0656
8.5 -0.07C2 -0.0640
9.5 ~0.0686 ~0.0616
10.0 -0.0680 -0.0612

ACCUMULATED MEAN SQUARF ERROR

0.1519E-04
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ESTIMATE
B RENEESERAREENEEREERERARERARERARRRAREAS!

0.200 [, .

] 2 i

DYNAMICS X1 ##%&%
ESTIMATE .ccee

APPROXIMATE THE 4 th ORDER
MODEL BY A SECOND ORDER

s - :. H ]

NERNEERE ERENAR AN AR AR AR RN R AR

0.0

FIC. 8.6

TIVE SEC.

\oomm\:qmou\mb:{»uwmv—mo
e ©® o © & ¢ o © o » © s ° o o » & o+ o
youvouwmwouwmouywownmouwmovnownmowm

10.0

TIME

5.0

SEC.

MODEL DIMENSION REDUCTION
SECCND CRDER NCALINEAR FILTER
HUANGS ADAPTIVE II1

X 1

C.10C2°
0.1842
C.24175
C.26C2
0.3153
0.3270
C.3263
0.3254
0.3179
C.3087
C.2983
0.2895
C.28CS
0.2734
0.2671
C.2621
C.25R3.
0.2556
C.2538
0.2528

ACCUMULATED MEAN SCUARE ERRCR =

ESTINMATE
0.C7¢&4
0.1656
0.2238
C.2773
C.3C54
0.32370
J.3372
0.2180
0.2988
C.2879
0.2851
0.2895
C.2686
C.26C4
C.2435
C.2334
0.2342
0.2524
0.2425
0.2488
0.2685E-03

1C.0
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0.33 7]
-
@ -
> =
' » -
2 . F -
- DYNAMICS X1 ####s 3
- -
" ESTIMATE <o 5
i APPROXIMATE THE U th ORDER
o MODEL BY A SECOND ORDER -
0'C7 Pl;: 5 1 (SN EEE SO U S TN N VY g ¢ _:
0.0 ’ . 54,0 1
TIME  SEC.
F1G. 8,7 CONSTANT NOTSE

SECCND CRDER NCNLINEAR FILTER
CONSTANT NCISE

TIME SEC. X 1 ESTIVMATE
0.5 0.1002  0.0764
1.0  0.1842  0.1620
1.5  0.2475  0.217¢2
2.0  0.2902  0.2659
2.5  0.3153  0.2911°
3.0  0.3270  0.3149
3.5  0.3293  0.3158
4.0  0.3254  0,3003
4,5  0.3179  0.2813
5.0  0.3087  0,2670
5.5  0.2989  0.2600
6.0  0.2295  0.2605
6.5  0.2809  0.2456
7.0 0.2734  0.2379
7.5 0.2671  0.2240
8.0  0.2621  0.2140
845 0.2583  0.2121
9.0 0.2556 0.2247
9.5 0.2538  0.2201

10.0 0.2528  0.2257

ACCUMULATED MEAN SQUARE ERROR

0.1057E-02
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0.10 o i ._l I | —!. 1 J - ] i 1 [l 1 i s 1 3 1 ]

0.0 5.0
TIME  SEC.

F16. 8.8 MODEL APPROXIMATION BY HUANGS IV
SECOND CRDER NCALINEAR FILTER

TIME SEC. X 1 ESTIMATE
0.1002 0.1C69
0.1842 0.1887
0,2475 0,2269
C.2902 C.28¢1
0.3153 0.3C3!}
0.3270 N0.3536
0.3293 0.3359
0.3254 N.302%

0.3178 0.3088
0.3087 0.3C28
0.2989 0.3021

NOD D VODNNOOOVMIANDDWWNONM==O
cCovovouvuos aoVovOoOWMmMoOwVwowunowm

0.2895 0.3079

0.2809 Ne 2666

. 0.2734 - 0.2745

. 0.2671 0.2422

. 0.2621 0.2459

. 0.2583 0.2507

. 0.2556 0.2745

. 0.2538 0.2418

10. 0.2528 N0.2653

ACCUMULATEN MFAN SQUARE ERROR = 0.1971€-03
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FIG. 8.9 MODEL APPROXIMATION BY HUANG'S IV

SECCND CRDER

TIME SEC. X 2
0.5 0.0683 0.0173
1.0 0.0373 0.0074
1.5 o.o097 -0.0115
2.0 -0.0135 -0. 0247
205 "000319 -0-0‘}00
3.0 -0.0459 -0.0479
3.5 -0.05862 -Ne 0593
4.0 -D.0634 -0.0652
505 "0.07?7 -00667
6.0 -0.073% ~0.0662
6.5 -0.0732 ~0.C6GD
T.0 -0.,07217 -N. 0651
7.5 -0.0716 ~-0.0652
8.0 -000710 ‘0.0616
B.5 -0.0702 ~-N.0594
9.0 -0.0663 -0.0578
9.5 -0.0686 ~-0.C612
10.0 ~0.0680 =-0.0581

ACCUMULATED MEAN SQUARE ERROR =

NCNLINEAR FJLTER

ESTIMATE

0.2441E-03
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The results by decomposing the reactor system into two subsystems show
better performance than those of reduction of dimension, i.e. ignore
the presence of X, and xg at all as this is intuitively clear.

Filter decomposition of large complex system not only saves
computation time and storage but also offers better filtering result
than those of filtering the original system. This is true for the
large stiff (or ill-condition) system, since the ill-conditioning is
reduced by partitioning the original system dinto smaller subsystem
thus a better filter gain is calculated for the subsystem as this is
shown in Fig. 8.2 where the integration interval is doubled the result
of decompose into two subsystem is better than those of filtering the
original system as shown in Fig. 2.14.

The result shown on Fig. 8.3 where.the decomposed filter also
offers better alternatives than the original system ih the preéence of
20 per cent rate constant error. Applying different adaptive techniques
to different subsystem based on its stéﬁcture and sensitivity nature
seems to be a better approach to the filtering in the presence of large
model error. As this is shown in Fig. 8.3, we grouped x1, x4 into
subsystem 1 as it is more sensitive to model errors and apply HUANG'S

III adaptive to this subsystem and group x2 and x3 into subsystem 2,

which is less sensitiwe; therefore we apply Huang's I adaptive.



CHAPTER IX
REAL TIME IMPLEMENTATION OF FILTERING

The growing importance of applying direct digifal control
(DDC) techniques to an industrial process is-due to its great success
in aerospace applications, As a result of the expanding aerospace in-
dustry in the last ten years, improvement in both the computer hard-
ware and software coupled with advanced numerical mathematical techni-
ques, modern control theory reflects the ability to use digital com-
puter to solve complex problems which were.considered impossible a few
years ago. Recent advancement in the field of stochastic processes
leads as a step closer to the real world.

The advantage of the Kalﬁan fi££er over conventional regression
and analysis and curve filtering are:

A. The Kalman filter uses a sequential recursive algorithm,
which requires much less computer storage and computation time.

The following example given by Bucy [B8] is very helpful. Con-
sidering just the matrix operation and inversion, curve fitting requires
knxny(1+nx) + ni multiplication plus an nxn inversion in processing
one data point while the Kalman filter only requires nxny(Snx+2ny+2) +

2

' 3 s . . .
ny + 4ny multiplications plus an n inversion.

yXNy
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Where
k = sample points
n, = number of state variables
ny = number of measurement va;iablgs .

As an example, consider:

k = 100
ny = 10
ny=3 .

Then, for curve filtering, 33,100 multiplications and a 10x10 inver-
sion are needed while only 5240 multiplications and a 3x3 inversion
are required for the Kalman filter. Curve fitting requires the stor-
age of all the observation data while the sequential kalman filter can
process observations online, one at a time.

B. Kalman filtering can handle the estimation of dynamics
under random forcing while curve fitting cannot. With the help of on-
line digital control combined with a filter algorithm, DDC becomes
possible. Real time filtering and the computer control system will
detect any outside disturbance, then adjust itself to the new optimum
state. Even the uncertainty in physical parameters in the design
state will not effect the real plant performance when used with the
help of an on-line error compensation technique.

We are interested in developing a reliable non-linear filter
to fit the real time DDC environment and yet powerful enough to deal

with most of the process disturbance and parameters uncertainties.
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In the computational implementation of real filtering, we are

faced with the following problems:

1. Limited memory.
2. imited speéd.

3. Limited word length.

1. Limited memory: This is the physical limitation of the ex-
isting computer. A typical 6-state variable filter as is used in our
reactor example requires about 600 words on the IBM-360. Generally
speaking, the memory requirement varies roughly as the square of the
number of state variable. Therefore, it is desirable to keep the
state variables of the system as low as possible. An alternative to
reducing the number of state variables is to partition (or decompose)
the state variables x into two or more parts and construct separate
filters for each part. This approach is called a 'suboptimal filter'
by Bucy [B8]. He derived the suboptimal filter algorithm and applied
it successfully to the Ranger IV, where it was possible to reduce a
nine state variable problem to three separate three state variable
problems. It takes less computing capacity to manipulate three 3x3
_matrices than one 9x9 matrix. This also drastically reduces the com-
puter storage since the storage requirement is proportional to the
square of the number of state variables.

2. Limited Speed: The improvement of computer hardware and soft-
ware make computational speed no longer a problem in on-line computa-
tion of a reasonable complex model. This is also true in real time

filtering. Computing time varies roughly as the cube of the number
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of state variables of the system. Our 4-variable reactor system takes
about 1.0 second for processing one sample period.

3. Limited word length: The limited word length 6f the digital
computer introduces round off errors into the solution of filter
equations. It is also desirable to keep the number of state variables
as low as possible to avoid the excessive accumulation of.round off
errors. However, selection of proper state variables and scaling (or
normalization) can easily avoid the trouble due to the limited word
length. This is especially true in our reactor model, we normalized
the temperatures (usually vary from 100 to 1000) and the concentration
(vary from 0.01 to 0.09). Without the normalization, this technique
suffers from round off errors and leads to bad results. The introduc-
tion of the Shur relation and matrix iteration for the matrix inverse
together with the Pine's machine error compensation also help reduce
the round off errors to an acceptable degree.

We conclude this chapter by a summary of results (Table
VIII-1) of various filters developed in this work and its feasibility

as to the future real time implementation.
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Table VIII-1. Summary of adaptive filters.

Memory Speed
JTIMTE  ord engen ]

word) (in sec.)
Extended Kalman filter 600 no problem 1.0
Non-linear second order 620 no problem 1.2
Schmidt 620 no problem 1.3
Wolf's I 600 nu problem 1.0
Wolf's II 600 no problem 1.0
Overweight the recent data 600 no problem 1.0
Pine's 600 no problem 1.0
This work I 600 no problem 1.0
This work II 620 no problem 1.2
This work III 600 no problem 1.0
This work IV 600 no problem 1.1
Limited memory 650 no problem 1.3
Dimension reduction” 500 no problem 0.7
Filter decomposition* 550 no problem 0.8

*combined with the adaptive filters introduced by this work.
(Approximately 0.3 second is used for generating the simulated
observation.) It is obvious that the dimension reduction and filter
decomposition are the most attractive filters in real time applica- -

tions.



CHAPTER X
SUMMARY AND CONCLUSIONS

After this extensive study of filtering theory and applica-
tions, we feel more confident in the implementation of a filter ana-
lysis either on-line or off-line. It was shown that the sensitive
nature of the non-linear filtering problem is due to a much smaller
region for filter stability (observability and controlability) than
that in the linear filtering. With the aide of error sensitivity
analysis and error bound calculation, and the error compensation
technique developed in this work, one is able to do the prefiltering
study by using a simple lower dimensional model to approximate the
coﬁplex model, design a better measurement sensor system through the
sensitivity analysis and study the interaction among the variables.
Thus, a reliable off-line filter model can be implemented for real
time application where limited computer memory and speed are of great
concern.

The introduction and analysis of a second order approximate
filter by this work also provides an alternative for non-linear real
time filtering where sampling is expensive, computer speed is limited
and the model is higﬁly nonlinear. |
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With the guide and formulation in Chapter III, possible fu-
ture implementation of combined filtering and control with more
" sophisticated controller i.e. combined feed forwarded and feedback
control can be done by dynamic programming as reported by West and
McGuire [W3], Clifton and McGuire [C1], Jacobson [J1] or by applying
conjugate gradient techniques and invariant embedding to solve the
two point split boundary value problem via iteration in the control
policy function space.

The introduction of several adaptive filtering and model error
compensation techniques enables us to extend the Kalman filter to var-
jious non-linear cases with severe model error and non-Gaussian model
and provides satisfactory filtering result.

The sophisticated filter decomposition algorithm developed by
this work not only offer a successful approach to the filtering of
large complex system with significantly saving in computation time and
computer storage but also provides better filtering result for non-

Gaussian non-linear systems.
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PROGRAM FLOW CHART

SUBROUTINE MAP FOR THE
COMPUTER PROGRAM

SUBROUTTNZ

STORAGE

PURPOSE

NAME ODRIGIN LENGTH

MAIN ocC insa CONTROL OF CQVERAL. CALLCUIATION LOGIC

TRCC GF a0 TorC i-‘I\’E*“ POINT SMOOTHING CALCUTATION

SUTRT GLo N PRINT AND PLOT TTLTERING RESULTS

RGocl ERIE PG GENET A"‘I\G DY NAMILS :\.-.U GRSERVATICN

FOUN TG T GENCEATING REACYOR DYNAMTICS

TR REELE ouY) PROCESS FRANSTTION MATRIN

ITF TT 7 LA L PPEIUAND LOSER RCUND CALCULATIONS

TR = =19 Fibe i AND RUNGE~KUTTS INTECRATTON
T nTE c7e PLOT ROUTINE T

it TS OU pepEas) nANK BVALUATICON OF MATRIX

TR Tedy ATy \ﬂfi\l‘ INVEASTON BY SHUR RELATTON

IR TeTH LIPS AUCIN TANVERSTON BY ITERATTON
T T7o5 ERE LAUOP\ D\"\A 1ICE OF THE ACTUAL MODEL

T TC DEENVIRS 3 - REACYOR DYANITICE 9T FILTER MODET,

s TSy [ KA AN ~‘?f‘i.’"\'TD’l‘ PULATR

T NN T CRAETATINA BADNSSFAY NOTSE

T ST T A M \H'- R_GENERATOR

TUT Cead R LOCATE MATRIN ELEMENTS

TELCY Lote L PLOT RO’C'_II..\E IT

ST Less ade PLOS RCUTINE 17T

P o £ SYMVETRIZING THE LREOR COVARTANCE _ |

SN €55y e oE\‘v"' TVITY AVALYSIZ  CALCILATTON

y:yoar ey (RS TRg ADAPTIVE TIT .{ BING TRCHNTOUR

Ze R T t.2CL Lo 7“\'1‘ INLIZTNG 1D ARRAY

TR IR SRS RuUMER K’J'l”:‘x '4 -.1__DI\I)v;!1 INTECRATTON

TF0 Liuire < SUN «\l\f' OF _INZUT CONDTITONS

e sLd R L3k INCTIALING THE ADRRAY

CONTRE IR Lan CPTIMAL CONTRGY. GAIN. CALCULATION

T < Qe SATRIN, PRODUCT LVATUATIONS

PR 13553 e COPY_ PANT OF "I'E MATRIX .

JUTHT LN Cu PLOTING OL""PI“J CEXNERATOR

T o BRI n*'TmY NI VeTT

OvwTY 6CE OVEI \EICIU. S&STOCASTIC APPROX,
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FLOW CHART : MAIN PROGRA

M

EEAD PRIOR STATISTICS,INIT

IAL

X

STIMATE ,MEASUREMENT MATRI
| k=0

L o

CALL ZERC1

INITIALIZING THE ARRAY

L

CALL INPUT

PRINT SUMMARY OF INTTTAIL CONDITION

k =kt 1

START THE FILTERING PROCESS

-ION MATRIX,
OBSERVATIONS,

USE LINEAR

READ TRANSII- YES
A P ' dt}x
nmv—w‘ .// )

CALL MODEL

YES

"

CALCUIATE REACTOR

DYNAMICS

KALMAN FILTER

Y

USE SECOND ORDER NONLINEAR

FILTER TO GENERATE THE

FILTER ESTIMATE

USE NONLINEAR EXTENDED

KALMAN FILTER TO

GENERATE THE ESTIMATE

Y
CALL ADAP

!

JSE_ ADAPTIVE FILTERING

YES
IS = 1

-

CALL SENS

NO

®~

PCRFORM SENSITIVITY

ANALYSTS
j
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CONTINUED

@

CALL CONTRL]

CALL INF

EVALUATE OBSERVABILITY,
CONTROLLABILITY ANDBOUNDS

OF ERROR CAVARIANCE

CALCULATE OPTIMAL
FEEDBACK CONTROL

!

GAIN MATRIX

YES

[CALCULATE PRLDICTLD ERRD_Pj
COVARTANCE MATRIX

CALL  SEnRS

» | CALCULATE ACTUAL
ERROR_COVARTANCE

CALL %8 YES
USE_SCHML'T FILTER}— 4@
| ‘ YES
PROCESS OBSERVATION AND
CALCULATE_UPDATED ESTIMNATE
> <-
CALCULATE 1PDATED ESTIATE
| ERROR COVATTANCE VATRITY
¢ YES
<=1\-
e
NO
\
¢
CALL LPLT |—= CALL SUNRY
STABILITY | . _|PRINT AND PLOT RESULTS
ANALYSTS
| Py YES
»<JA = 12 »

ICONTINUE FILTERING

CALL SMOOT
USE FINED POINT
SMOOTHING ALGORITHM

RESTART THE FILTLR

RUN THE ALTERNATIVL
CASES

END OF CALCULATIONS]
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SUBROUTINE ADAP

ADAPTTVE FILTERS (10)

. T G e S el S SR T P WY G GD W TP G o G G G W =

1
S JWOLE™S _ ADAPTIVE 1 | 2o
2 \ g
.- [NOT.F'S ADAPTIVE _TTl- —5
5 | |
- v [PINE'S VACHINE ERROR ADAPTIVE}—3
y

1,,WER WEIGHT THE MOST RECENT DA TApm

o

5
| IS WORK A}

7
f e (THIS _WORK P}

Y

o
—— ~RETURN 4
W CONSTANT INPUT KOISE) o
10 . .
+{THIS WORK C } b
11
ITHIS WORK D | o]
12

jrh—“IXED POINT SMOOTHING] o
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SUBROUTINE MODEL

CALCULATE REACTOR DYNAMICS AND TO
GENERATE SIMULATED OBSERVATION

COVARIANCE R(K).

RKM :
RKE

MKZ

[}

INEUT &
- STATE VARIABLES

N ¢ NO. OF INDEPENDENT
M : NO. OF MEASUREMENT VARIABLES

MEASUREMENT MATRIX,ERROR COVARIANCE P(k), PROCESS
NOISE COVARIANCE MATRIX N (k) , MEASUREMENT NOTSE

BB : INTEGRATION INTERVAL

RATE CONSTANT FOR THE ACTUAL PROCESS
RATE CONSTANT FOR THE FILTER MODEL

MKl : INTEGRATION TYPE FOR THE ACTUAL PROCESS
INTEGRATION TYPE FOR THE FILTER MODEL
WHERE MKl, MK2 = 0 FOi RUNGE_KUTTA MERSON

1 FOR EULER INTEGRATION

CALL RKK
INTEGRATE THE ACTUAI, PROCESS

CALL TRAN

USE NONLTNEAR YES
SECOND ORDER FILT]
ER TO GENERATE
THE CORRECTION

TERM £ : P
xX

USE EULER'S INTE-
GRATION TO GENERATE
THE FILTER ESTIMATE

CALCULATE FILTER TRANSITION
MATRIX
A
CALl. CAUSS
GENERATE CGAUSSIAN NOISE FOR
THE TILTER MODEL

CALL RKK
USE INTECRATION ROUTINE TO

GENERATE THE FILTER ESTIMATE

CALL GAUSS
GENERATE MEASUREMENT | |

GAUSSTAN NOISE

\4
GENERATE STIMULATED
OBSERVATIONS

[ REVURN J
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SUBROUTINE _SENS

GENERAL SENSITIVITY ANALYSIS

l INITIALIZE THE ARRAYS TO ZERO

CALCULATE THE
MEASUREMENT

MATRIN
DIFFERENCE Al

CALCULATE THE
UPDA'I ].r ACTU:MJ
EPROR COVARIANCE

MATRIX

CALL FUNA

 .CALCULATE THE ACTUAL

PROCESS TRANSITION

CALCUIATE THE
. DIFFERENCE £X

MATRIX
2|

-{INITIAL CONDITICNS

SET UP TiE

FOR THE ALGORTTEM |

CALCULATE THE ACTUAL
PREDICTED ERROR
COVARIANCE MATRIX

4

RETURN

.




APPENDIX B. SAMPLE COMPUTER OUTPUT

APPROX TMATE THE Uht ORDE" MODEL BY A SECOND ORDER USING HUANG'S IIX
~ (ITERATED FIXED FOINT SMOOTHING)

SAVMBLE PERICD 1

EULER INTEGRATICN

Y = N.10016 NFRY = 0.18271
Y = C.C683C DNERY = -C.Ch37A
Y = 0.N1012 CERY = 0.03%73%
Y = nN.ccCoH8  NERY = 0.CO3ED
= N.500C INTFRVAL = C.CSCCC
XFl= N.10561G C.042251
. SIMULATED CASERVATICN 0N.1C6958
- FILTER ESTIMATE N.1056 CeDar2
KALMAN FILTFR CAINMN = 0,.563966 (.C40883

CNFW FILTFR DATA  C.106270 C.C4830% -
NEW EPPCR COVARTANCE MATRIX  0.07564C 0.C004C9  C.00C43S 0.0C17C4

" SAVMPLE PERICE 2
EULER INTEGRATICN
Y = 0.18422 0NERY = C.15C1C
Y = 0.03733 ILERY = -0.C5%%Q
Y = 0.03528 [CERY = 0.03024
Y = n.crs2¢ CrRy = 0.C117C
T= 1.0000 INTFRVAL = 0.0%000

XE 1= N.174CE8% C.C23CR0
SIMULATED CRSFRVATICN 0.1ERT74G
FILTER ESTIMATF Q.1741 C.0771
. KALMAN FILTER GAIN = (C.53€887 (C.C43457
NFk FILTER DATA (Q.1R81699 0.C22718
NFWk ERRQR CCOVARTANCE MATRIX 0.7¢%359 C€.000435 0.000435 0.001723

hoe



APPROXIMATE THE &4 th ORDER MCJEL BY A SECOND ORDER USING HUANG'S II
(_ITERATED FIXED POINT SMOOTHING)

SAMPLE PERIORN 3

FULER INTFGRATICN

Y = 0.00947 DNDERY = ~0.0%148

Y = C.C6HE2  OLRY = Ca COHLDE

Y = N.014G7 RFRY = C.02412 -
T= 1.5CCC  INTERVAL = 0.050C0

XEl= 072298357 -C.000Q12%84

SINULATFD CARASFRVATICA 0.229742

FILTER ESTIMAITF 2299 =~0.0N04

KA{MAN FILTIFR GAIN = (Ca523127 (C.C52108

NEW FILTER DATA 0.2292727 ~C.COCRGC0

NEWw FRROR COVARTANCFE MATRIX 0.3¢5231 C€.C00531 C.00C531 0.C01685
SAVBLE PERICD 4 ’

EULER INTEGRATICN

Y = 0.29017 CERY = C.06"30

Y = ~-0.C1348 NERY = ~C.2412G

Y = 1.098%4% INERY = Q0.C5133

Y = 0.02942 FLIRY = 0.03258

T= T 2.000C INTFRVAL = 0.25000
XEl= 0.2524R0 —C.020471

SIVULATEND CRSERVATICN 0.288108
FILTFR FSTIMATE nN,2525 ° —-£.(20%
KALMAN FILTFR GCAIN = 0.513054 £.C56275
NEW FILIER DATA 0_.27C75G =0.01171266

SMOCCTHED FSTIMATFE PERIOD ¢ :
SMLCTHED FESTIMATE -0.0017 C.1041 €.C000 c.0coo0
SYAGTHED P = 0.CC265 -C.0C05% —~(C.D0CS8 - 0.00092
NEW FRRER COVARTANCE MATRIX N.205131 C.CO0CSG2 C.0CC5S3 0.C01637

s02




APPROXIM\TE THE 4 th ORDER MODLL BY A SECOND ORDER USING HUANG'S II

(ITERATED FIXED POINT SMOOTHING)

SAMPLE PFRICE 1

EULFR IANTEGRATICN

Y = 0.1C0LE NERY = N, 18231
Y = 0.CE83C COCFRY = -C.Ce784
Y = n.olNl2  TeRy = ND.0%724
Y = g.CcCChA  DRFRY = 0.C03R:

= 0.500C  INTERVAL = f.n=000
XFl= C.10722%4  C.072271
SIMULATED CRSERVATICN 0.1C6S850
FILTER FSTIMATEF n.1073 C.00723
KALMAN FILTFR CGAIN = @Q.,561190 0,027932
NEW FILTER TATA C.I07CST Q.C77224%
NEW FERPre COYARTANCE MATRIX 0.07%612 0.00C0279 C.0CC37S
SAMPLE PERIOD ? :

EULFR TINTFCRATICN

Y 0.13422 DERY = C.180112
Y = 0.03723 COCFRY = -0.0C5%5
Y = 0.03528 MNTRY = 0.0582a
Y = 0.CC52C OCERY = 0.C137C
= 1.0000 INTERVAL = 0.35CCO

XFl= 0.2C?2314 (C.C28S885

SIMULATED CRSERVATICN 0.188744

FILTFR FSTIMATF Q.2n29 C.C2"0

KALMAN FILTFR CAIN = (C.54663R n.041C19

NEW FILTFR BRATA 0.195124 0Q.C38408C

NEW ERRCR (CCVARTANCE MATRIX 0.005466 0.000410 C.00C41C

C.Col7ClL

0.CCl72C

90¢




APPROXIMATE THE 4 the ORDER MODEL BY A SECOND ORDER USING HUANG'S IIX

( ITERATED FIXED POINT SMOOTHING)
SAMPLF PFRICD 3

EULFR INTEGRATICN

Y N.2678C NFRY = 1073¢6
Y = 0.00¢67 DRERY = -q 0G40
Y = N.CH6E? LCERY = Qe Crefvi
Y = 0,C14G67 CNERY = 0.C2712

= 15000  INTERVAL 2.080C0

XE1= 0.20722C4 -C.0C3017

SIMIJLATED CRSFRVATION 0.,229742

FILTER FSTINMATE n.2N22 -0.0N20

CKALMAN FILTER GAIN = (Q.€1506C 0.CR590R

NFW FILTER CATA 0.21G141 -C.000C6RST

NEW FRPCR (OVARTANCE MATRIX ¢.ncsls51l C.00N852 0.00C359
SANOLE PERIND 4

FULER INTERRATICN
0.299117 BFRY
-N,"13%418 nERY i
C.CI9°44 DRERY C.C6752
N.N2G642 CERY 0.Cci:30
T= 2.0C00 INTE2AVYAL = GL.C5000
XE1l= 0.241146 —0.Q1G6787
STMULATEC CBSERVATION N.2E831CS
FILTrR ESTIVATF C.2411 ~-0.(.168
KALYAN FILTIFR GAIN = C.SSF1C? (.CC4€5C.
NEW FILTER OATA 0.267357 =C.01f 751
SMCCTHRED FSTIMATE OFRICH C

0.C6:30
-N.04108

U I T I
wonou b

K< <<

c.cCl8¢c8

S¥CCTHED ESTIMATE N.0244 ¢.0732 c.CCOC c.0000

SMOGCTHED P = 0.00553 =-C. Of“" -0.002517 C.00267
NFW FRRGR COVARTANCE NMATRIX N.NC5%21  C.CCN646 C.0CCH46

N0.001665

Loe



APPROXIMATE THE 4 th ORDER MODEL BY A SECOND ORDER USING HUANG'S II
(ITERATED FIXED POINT SMOOTHING)

TOTAL NOQO CF PERIODS 20SAVMPLE PERITE IN SEC,. C.50
SAMPLE PERICD 1

EULER INTFGRATICN

Y = 0.1001& NERY = 0.138731
Y = 0.C693C DERY = -0.0613134
Y = N.G1012 LERy = N.C372¢
Y = n.cncel nNERY = Q.0030¢4
= C.5CCC INTERVAL = CaO2CCC
XEl= 0.002468 0.071415
SINULATEN CRSERVATICN 0.,1064950
FILTER ESTIMATE 0.0025 0.CCl4
KALMAN FILTFR GAIN = C.7C7R81€6 C.170%28

NEW FILTER NATA  C.0T76422 H.CL9274
NFEW FRRGR COVARTIANCE MATPRIX ND.CCiC78 C.CO01709 ©.0017CS 0.005000
SANPLF PERIOD 2 :

EULFR INTECGRATICN

Y = 0.17427 DFRY = Q.15C1C
Y = N.C2723 DNERY =  —0.C59%9
Y = 0.03528 C[CFRY = N.05824
Y = 0.0052C LLRY = 0.C127¢C
= 1.72000  INTFRVAL = 0.cs5cCCC
XFl=  0.1100%5 0.006567
SINVULATED CRSERVATICN 0.188746
FILTER FSTIMATE GC.1100 0. Q0FY.
KALMAN FILTER CGAIXN = N.666726 0.135183

" NEw FILTFR DATA C.142750 0.C172C*7
C NFW ERRAR COVARIANCE MATRIX  0.0CA6G7 C.CC1252 C€.N001352 C€.C026C8

80¢ -



APPROXIMATE THE UYht ORDER MODEL BY A SECOND ORDER USING HUANG'S II
(_ITERATED FIXED POINT SMOOTHING)

SAMPLE PFRINO ?

EULFR [INTEGRATICN
C.2475C T[FRY
0.CNGAT7 DFRY
C.06662 NFERY NeCsaS6
0.01497 nNERY NeC2412

T= 1.50C0 INTERVAL = G.05C00
XEFl= 0.2¢1£496 C.008141

SIVULATED CRSERVATINN 0.229742
FILTER ESTIMATE C.2€615 Q.:3081
KALMAN FILTFR GAIN = C.S528£6% .(C51687
NFWw FILTER PATA  C.244892  Q.NG4RG :
NEW ERRO® COVARTANCE MATRIX 0.7425287 0.00C517 C.0CCS517 0.001678
SAMPLE PERI(CC 4

C.1073¢
=N,05148

< < < <
Wouonn

[T T I ]

EULFR INTEGRATICN
N.29017 CFRY

Y = = P

Y = -0.C1348 nCRY = ~C.C4:9G

Y = 0.C®344 [ERY = CeC&™H

Y = N.C2842 CFRY = D.0%3238

T= 2.C00C INTFRVAL = D.085000
XEl= N.276633 -C."17154

SINULATEN CRSERVATICN 0.28921C3

CILTER FSTIMATE N.21645 -C 172
KALVMAN FILTER GAIN = 0N.5157¢66 D,.0588G1°

NEW FILTER BRATA 0.282552 -C.01-482
SMOCTHEDR ESTIVMATE PFRINC G
S¥CCTHID FSTINATE -0.0067 0.0666 0.GCCC c.0CCo
SVMOOTUED P = 0.00745 =C.0C0%6 ~0.00056 . C.0C091
NFW CRRCR CUOVARIANCE MATRIX 0,00315F C.C0Cs%8¢ C.0CCHR8€ C.CCl628

60¢
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APPROXIMATE THE 4 th ORDER MODEL.BY A SECOND ORDER
USING HUANG'S IV (OVERWEIGHT THE DATA BY STOCASTIC APPROX,)

0 0 G G G2l G G R D G B D D N S . G T - S GO G S G G - O -

.
Gy - W - S S S N - o

TOYAL NO QF PERIONNS 20SAMPLE PERION IN SEC. 0.50
SAMPLE OPERIOD 1

EULER !NTEGRATION

.Y = 0.10016 NFRY = 0.18831

Y =~ 0.06830 DFRY = -0.0639%4

Y = 0.Cl101? DERY = 0.0373¢&

Y = Q.0Nnre NERY = 0.003R6

T= 0.5000C INTRERVAL = 0.05C00
XE1l= 0.0024568 -0,000585
SIMILATED CASERVETION 04106950

FILTER FESTIMATE 0.6025 -0.0006
KALMAN FILTFR GAIN = 0,7C7816 0.170628

NFW FILTFR DATA 0.105950 0.017274
NEW FRROR COVARTANCE MATRIX 0,007809 0,001709 0.001709

SAMPLE PERIOD 2 0.005000

“EULER INTEGRATION

Y = 0, 1R422 NEAY = 0.15010
Y = 0.N3733 RNEQY = -0. 05659
Y = N.025%3 NFRY = 0L05924
Y = 0.N0K20 NTERY = 0.017279
. TI= 1.0000 INTERVAL = 0., 05000
X&1= D0.142021 Q0.001264

SI'HJLATED CRSFRVATION 0,.193746

FILTER TSTIMATFE 0.1420 C.0013

KAL“AN FILTER GAIN =  0.6800832 0.1230745

NFW FILTER NATA Q0.183746 0.,007374

NEW SRPOR COVARTANCE “ATRIX D.,007601 0.001307 0.001307

SANMPLE PERIQOD 3 -0.002603

EULVR INTEGRATION

Y 26750 NERY = 0.10736

Y = 0 00067 NERY = —N. 05148

Y = 0.06662 NDFRY = 0.0645€

Y = 0.Cl497 RERY = 0.02412

T= 1.5000 INTERVAL = 0.050C0
XEl= 0.718565 -0.012360 :
SIMULATED OASFRVATION N.229742

FILTER FSTIMATF 0.2186 ~-0.0124

KALMAN FILTFP GAIN = 0.624769 0.030840
NEW FILTE? NDATA N.226S546 -0.011456
NFW FRROR COVARIANCE MATRIX 0.006482 0.000808 0.,0008C8

0.001881



£ILTER DECOMPOSITION SAMPLE COMPUTER OUTPUT
20 % rate constant error

SUBSYSTEM "1 ¢ X1 ,X4 ; SUBSYSTEM 2 : X2, X3
SAMPLF PERIND 2

STVULATFN CRSFAVATICN n.194n51 ©0,038281 0,037162
FILTFR FSTIMATE 0.1199 ¢.Cl74
SIMULATFN MFASUREMENT FCR SURSYSTEM 1 1S
0. 19805 C.03716
FILTER GAIN FNR SUBSYSTEM 1
N.64R880 N.156530 Ne 16530 0.C8025
UPNATEN FSTINMATE FOR THF SURSYSTEM 1 IS
N.17n002 N.C5328
NEW FRROR COVARTANGCE MATRIX 0.00£488 0.001653 (C.0N1A53

. TIME 0 MINUTE 0.7 SECONDS
SAVNPLE PERIQN 2
FILTFR FSTIMATE 0.1199 0.0176
STMILATEN MEASURFMENT FCR SURSYSTRM 2 1S
n.03829
FILTER GAIN FPR SURASYSTEM 2
N.17935  C.13414
UPRATED ESTIMATE FNR THF SURSYSTEM 2 IS

N.02130 0.00650 _ .
NEW FREOR COVARIANCF MATRIX™ 0.,001793 0.001361 0N.00L36A1L
TIME 3 0 MINUTE 0.0 SECONDS = . :

C.C00802

0.C013201

T12



