CONTINUOUS PHYSICOCHEMICAL

MONITORING AND MODELING

OF AN AQUATIC

ECOSYSTEM

Вy

GARY KEITH RICE

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1968

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1972

OKLAHOMA STATE UNIVERSITY LIBRARY

MAY 30 1973

CONTINUOUS PHYSICOCHEMICAL

MONITORING AND MODELING

OF AN AQUATIC

ECOSYSTEM

Thesis Approved:

Adviser Thesis

Dean of the Graduate College

PREFACE

The objectives of this study were to develop a method for continuously monitoring physical and chemical parameters for research in aquatic ecosystems. An effort was made to evaluate the resulting instrument in a laboratory monitoring experiment and to acquire some chemical data on a real aquatic ecosystem.

The work described here should provide guidelines for future comprehensive data acquisition efforts and will hopefully contribute to the advancement of the science of environmental monitoring.

This study was made possible by Dr. L. P. Varga who served as major adviser. Drs. H. A. Mottola, T. E. Moore, and T. C. Dorris served on the advisory committee. A special thanks is due to Dr. Dorris for his interest and support of this project since its conception. The generous assistance with instrument design of Jerry Waughtal and Joe Zinn of the Oklahoma State University Electronics Laboratory is gratefully acknowledged. Mr. R. F. Buck, Director of the Oklahoma State University Electronics Laboratory, provided consultation during the initial stages of this project and generously provided facilities and equipment during most of the electronic development. Special gratitude is extended to Ronald Morrison for his conscientious assistance with electronic design and construction and

. . .

especially for his design of the time code generator. Thanks to James Dillon for his layout and construction of the time code generator. Allen Faust and Jack Orr, participants in the Lake Carl Blackwell Ecosystem Analysis Program, assisted with the field work and provided algae and bacteria data respectively. Their consultation during the preparation of this manuscript is appreciated. Special thanks to my wife, Donna, for her patience and encouragement during the study and for typing the manuscript.

This study was supported by the Federal Water Quality Administration Training Program for Aquatic Ecologists 5 T1-WP-185, a National Defense Education Act fellowship administered by the Oklahoma State University Graduate College, Atomic Energy Commission Contract No. AT-(40-1)-4254, Oklahoma State University Research Foundation, Oklahoma State University Computer Center, and the Oklahoma State University Chemistry Department.

TABLE OF CONTENTS

٩

Chapter		F	'age
Ι.	INTRODUCTION	•	1
II,	THEORY AND APPLICATION OF CONTINUOUS MONITORING FOR CHEMICAL RESEARCH IN NATURAL WATER SYSTEMS	•	6
	Monitoring	· · · ·	6 7 8 13 15 16 20 24 27 29
III.	CONTINUOUS MONITORING SYSTEM	•	30
IV.	ION-SELECTIVE ELECTRODES AS CHEMICAL SENSORS IN NATURAL WATER SYSTEMS	•	43
	Reference ElectrodeStandard SolutionsHydrogen Ion Electrode.Sodium Ion Electrode.Calcium Ion Electrode.Divalent Cation Electrode.Electrode Drift.Carbon Dioxide Electrode.Carbon Dioxide Electrode Response Time	•	43 45 46 47 47 48 56 58 65

--

Chapter

•

V	DETERMINATION OF CARBONATE COMPONENTS IN LAKE CARL BLACKWELL	68
	Description of Lake Carl Blackwell	68 71 72
VI.	CHEMICAL EQUILIBRIA IN LAKE CARL BLACKWELL	74
	Carbonate Complexes in Solution	74
1 C.	Solubility Equilibria	89
	Carbon Dioxide Solubility	89
	Carbonate Ion Solubility.	90
	Phosphate Solubility	94
VII.	CONTINUOUS MONITORING OF A LABORA- TORY ALGAE CULTURE	96 97
VIII.	SUMMARY	111
	BIBLIOGRAPHY	115
the second	APPENDIX A - CARBON DIOXIDE ELECTRODE CALIBRATION PROGRAM	121
	APPENDIX B - WATER ANALYSIS DATA REDUCTION PROGRAM ,	126
	APPENDIX C - DETERMINATION OF CHEMICAL ACTIVITY BY THE KNOWN- INCREMENT METHOD	151

LIST OF TABLES

Table	•	Page
I.	Inorganic Mass Balance Equations	9
II.	Equilibrium Reactions and Stability Constants Involving the Dissolved Components	10
III.	Paper Tape Record Format, Time Data	40
IV.	Paper Tape Record Format, Sensor Data	41
v.	Daily Variation of Electrode Response	57
VI.	Depths and Depths Sampled at Each of Six Sampling Stations on Lake Carl Blackwell	70
VII.	Culture Medium for Aquarium Monitoring ,	98

LIST OF FIGURES

Figur	re	I	Þage
1.	Simplified Model of the Lake Carl Blackwell Aquatic Ecosystem	•	3
2.	Continuous Monitoring System Used on Keystone Reservoir	•	31
3.	Block Diagram of Reservoir Monitoring System	٠	33
4,	Diagram of a Water-Immiscible Liquid Cation Exchange Membrane		50
5.	Selectivity of the Divalent Cation Electrode	•	55
6,	Schematic Cross Section of CO_2 Electrode Assembly ,		59
7,	Carbon Dioxide Electrode Response Time	•	6 6
8.	Shoreline Map of Lake Carl Blackwell	•	6 9
9.	Algae and Bacteria Counts, Lake Carl Blackwell, Summer, 1971	•	76
10.	O ₂ and Temperature Profiles of Lake Carl Blackwell, Station Two, July 15, 1971	•	77
11.	Chemical Profile of Lake Carl Blackwell, Station Two, July 15, 1971	•	78
12.	O ₂ and Temperature Profiles of Lake Carl Blackwell, Station Two, July 22, 1971	٥	80
13,	Chemical Profile of Lake Carl Blackwell, Station Two, July 22, 1971		81
14.	O ₂ and Temperature Profiles of Lake Carl Blackwell, Station Two, July 30, 1971		83

Figure

15.	Chemical Profile of Lake Carl Blackwell, Station Two, July 30, 1971
16.	O ₂ and Temperature Profiles of Lake Carl Blackwell, Station Two, August 5, 1971
17.	Chemical Profile of Lake Carl Blackwell, Station Two, August 5, 1971
18.	Profile of Carbonate Complexes in Lake Carl Blackwell, Station Two, August 5, 1971
19.	Carbon Dioxide Saturation of Lake Carl Blackwell, Station Two Surface Water at 25 ⁰
20.	Calcite Saturation of Lake Carl Blackwell, Station Two Surface Water at 25 ⁰
21.	Dolomite Saturation of Lake Carl Blackwell, Station Two Surface Water at 25 ⁰
22.	Concentration of Orthophosphate Required to Saturate Hydroxyapatite from Lake Carl Blackwell, Station Two Surface Water at 25 ⁰ 95
23.	Dactylococcopsis Cell Counts and Daily Mean Bicarbonate Ion Activity During Continuous Monitoring
24.	Monitor Data of Algae Culture During Experiment Day Two
25.	Monitor Data of Algae Culture During Experiment Day Twelve
26.	Monitor Data of Algae Culture During Experiment Day Eighteen
27.	Monitor Data of Algae Culture During Experiment Day Twenty-nine
28.	Monitor Data of Algae Culture During Experiment Day Fourty-five

.

Figure

29.	Carbonate Complexes of Algae Culture During	
	Experiment Day Fourty-five	

v

CHAPTER I

INTRODUCTION

Determination of chemical constituents in natural water systems tends to be done on a basis of grab sampling with subsequent laboratory analysis. As more detailed information about a water system is desired, short term variations, such as diurnal cycles, must be measured. In order to assemble a complete description of a water system, the short term variations must be measured over extended periods of time. The large number of analyses which must be performed dictates automated methods of analysis and automatic sampling techniques. Sample transport mechanics and time between sampling and analysis can be minimized by locating the point of analysis near the point of sampling.

On-site physicochemical monitors are commercially available and are widely used in natural water systems to record water quality parameters. Many of these commercial instruments have physical limitations or are excessively costly for use where numerous locations must be monitored.

The primary objective of this research was to develop a reservoir continuous monitoring system suitable for use in biogeochemical research. The monitoring system was to measure the response of a number of ion-selective electrodes and other sensors. Measurements were to be recorded on a computer compatible medium. The monitoring system, to be housed on a floating instrument platform, was to be capable of unattended operation for periods of at least one week. Measurements were to be made on water samples from multiple depths. And the entire monitoring system hardware should be producible at moderate cost.

Coincident with the monitoring system development was the formation of an interdisciplinary research, education, and demonstration effort known as the Lake Carl Blackwell Ecosystem Analysis Program. The interdisciplinary nature of natural water research had been recognized and an effort was made to correlate the development of the continuous monitor with efforts to obtain ecological data on Lake Carl Blackwell. The study area was chosen partially because of its size, proximity to the main campus, and importance as a municipal water supply.

The aquatic division of the Lake Carl Blackwell study group proposed a fifteen compartment model of the Lake Carl Blackwell aquatic ecosystem. A simplified portion of that model is reproduced in Figure 1. The compartments, or blocks, in Figure 1 represent mass of the components. The k's are transfer coefficients which represent rates of mass transport among the compartments along the pathways designated by arrows. For example, k_{3-11} is the coefficient for the

transfer of mass from primary producers to the CO_2 compartment; this might correspond to a coefficient of respiration for phytoplankton.

The CO_2 compartment represents all of the inorganic carbonate forms in Lake Carl Blackwell. Since continuous monitoring would lend itself readily to measuring fluxes within compartment X11, the CO_2 compartment was chosen as the chemical system to be analyzed. Carbonate system data was not available from the study area; therefore, a grab sampling program was initiated to provide background data while monitor development continued. The aqueous carbonate system would also be emphasized during laboratory checkout of the instrument and procedures.

Lake Carl Blackwell is a chemically stable system in that major changes normally occur slowly. Thus, thoughout this study all dissolved chemical carbonate components were assumed to be in equilibrium at all times. Mass transport should occur mainly by wind induced currents. Currents were not quantified in this study, but spatial considerations were made by sampling multiple depths at six different locations on the lake.

The chemical concentration terms molality and molarity were considered equivalent in the aquatic systems studied. The small errors produced by this assumption were always within experimental variation.

The abbreviations used in this writing are consistent with common forms used in publications of the American Chemical Society.

The computer programs listed in Appendices A and B are written in Fortran IV and may contain some IBM S/360 Fortran IV language extensions. These programs were executed on an IBM S/360/65 computer, G level compiler.

> . .

CHAPTER II

THEORY AND APPLICATION OF CONTINUOUS MONITORING FOR CHEMICAL RESEARCH IN NATURAL WATER SYSTEMS

Monitoring

Natural water monitoring can be divided by objectives into two main categories: 1) pollution detection and 2) research. Pollution monitoring measures parameters that can be used to determine water quality (1). Monitoring for research collects data useful for determining the composition and nature of a water system. Equipment and procedures are similar for both classifications, but parameters measured, data handling, and data interpretation differ in line with different objectives. Research monitoring implicitly requires highly accurate measurements, while approximate measurement in pollution monitoring is sufficient to indicate if undesirable conditions are present, especially since pollution indices are somewhat arbitrary.

Recent government and industrial interest in pollution monitoring has brought about the development and commercialization of several automated water quality monitoring systems. A typical system is described by Keyser (2). Monitoring equipment for research is not

as well developed for two main reasons: national interest has inspired little effort and minimal financing for development, and accuracy required is difficult to maintain under field conditions. Some automated water monitoring for research has been done in the oceans, using specially designed instruments and adapted commercial equipment to measure only a few of the desired parameters. Pollution monitoring instrument methods suggest techniques for monitoring water for research, and field experience with pollution monitors will dictate design of future research monitoring systems.

Continuous Monitoring

Continuous monitoring strictly means that a continuous (with respect to time) analog record is produced. When data is digitized (electronically or manually), the continuum is lost, and the measured parameter is represented by points at intervals in time. If digital data is recorded in such a manner that a continuum is approximated within a specified error bound, that data can be considered continuous with a precision within that error bound. Therefore, a continuous monitor may be any monitoring device that produces data from which continuous data can be inferred.

When continuous monitoring is used to collect data reflecting short time-interval changes, measurements of multiple parameters may be required at time intervals of a few hours or less, continuously for months or longer. Generation of this type of data dictates

automation. Continuous monitoring in natural water systems requires that methods for measuring the necessary parameters be instrumented and then automated in a manner that produces continuous (or nearly continuous) data accurately for extended periods of time. This premise is the basis of the following development.

Parameters of Interest in Natural Waters

Parameters to be monitored are determined by the type of study being made. The equations in Table I were determined by Falls (3) to account for more than 99% of the total dissolved solids in a natural freshwater system. These same equations also define more than 99% of the dissolved constituents in seawater (4). Table I, then, represents the major inorganic mass balance for almost any natural water system in the world. If one term in each of the equations in Table I can be measured, the stability constants in Table II can be used to solve for all other terms, thus defining the major inorganic chemical system for the measured water mass at the time of measurement. The braces { } denote activities.

Note that mass balance equations in Table I contain concentration terms and that thermodynamic equilibria constants are expressed by activity terms. Concentration, C, is related to activity, \underline{a} , by the activity coefficient, y.

(1)

TABLE I

INORGANIC MASS BALANCE EQUATIONS

	Equation Number
[Total Ca]= $[Ca^{++}]$ + $[CaSO_4^{\circ}]$ + $[CaCO_3^{\circ}]$ + $[CaHCO_3^{-}]$	(2)
[Total Mg] = $[Mg^{++}] + [MgSO_4^{\circ}] + [MgCO_3^{\circ}] + [MgHCO_3^{-}] + [MgF^{-1}]$	└] (3)
[Total Na] = [Na ⁺]+[NaSO ₄ ⁻]+[NaCO ₃ ⁻] + [NaHCO ₃ ^o]	(4)
[Total K]=[K ⁺]+[KSO ₄ ⁻]	(5)
[Total HCO ₃] = [HCO ₃ ⁻] + [CaHCO ₃ ⁺] + [MgHCO ₃ ⁺] + [NaHCO ₃ ^o]	(6)
[Total CO ₃]= [CO ₃]+ [CaCO ₃ ^o]+ [MgCO ₃ ^o]+ [NaCO ₃ ⁻]	(7)
$[Total SO_4] = [SO_4^{-}] + [CaSO_4^{\circ}] + [MgSO_4^{\circ}] + [NaSO_4^{-}] + [KSO_4^{-}] + [KSO_4^{-}] + [KSO_4^{-}] + [KSO_4^{-}] + [KSO_4^{-}] + [MgSO_4^{\circ}] + [NaSO_4^{-}] + [KSO_4^{-}] + [KSO_4^{-$] (8)
$[Total Si] = [H_4SiO_4] + [H_3SiO_4]$	(9)
[Total F]= [F]+ [MgF ⁺]	(10)
[Total Sulfide]= [H ₂ S]+ [HS ⁻]+ [S]	(11)

(From Reference 3)

TABLE II

EQUILIBRIUM REACTIONS AND STABILITY CONSTANTS INVOLVING THE DISSOLVED COMPONENTS

Reaction	Stability Constant, K =	Log K	Equation
	"		Number
$CO_2 + H_2O = H_2CO_3^{\#}$	{H ₂ CO ₃ [#] }/{CO ₂ }	-540.0/T - 0.777	(12)
$HCO_{3}^{-} + H^{+} = H_{2}CO_{3}^{o}$	${H_2CO_3}/{H^+}{HCO_3^-}$	+630.0/T + 4.238	(13)
$CO_3^{} + H^+ = HCO_3^{}$	$\{HCO_3^-\}/\{H^+\} \{CO_3^-\}$	+860.0/T + 7.447	(14)
$Ca^{++} + HCO_3^{-} = CaHCO_3^{+}$	${CaHCO_3^+}/{Ca^{++}}{HCO_3^-}$	+1.26	(15)
$Ca^{++} + CO_3^{} = CaCO_3^{o}$	$\{CaCO_3^{\circ}\}/\{Ca^{++}\}\{CO_3^{}\}$	+3, 20	(16)
$Mg^{++} + HCO_3^{\perp} = MgHCO_3^{+}$	$\{MgHCO_{3}^{+}\}/\{Mg^{++}\}\{HCO_{3}^{-}\}$	+1.16	(17)
$Mg^{++} + CO_3^{} = MgCO_3^{o}$	$\{MgCO_3^o\}/\{Mg^{++}\}\{CO_3^{}\}$	+3.40	(18)
Na ⁺ + HCO ₃ ⁻ = NaHCO ₃ ^o	${NaHCO_3^o}/{Na^+}{HCO_3^-}$	-0.25	(19)
$Na^{+} + CO_{3}^{} = NaCO_{3}^{}$	$\{NaCO_{3}^{-}\}/\{Na^{+}\}\{CO_{3}^{}\}$	+1.27	(20)
$Ca^{++} + SO_4^{} = CaSO_4^{o}$	$\{CaSO_4^0\}/\{Ca^{++}\}\{SO_4^{}\}$	-292.7/T + 3.288	(21)
$Mg^{++} + SO_4^{} = MgSO_4^{\circ}$	$\{MgSO_4^o\}/\{Mg^{++}\}\{SO_4^{}\}$	-1190.5/T + 6.350	(22)
$Na^+ + SO_4^- = NaSO_4^-$	$\{NaSO_4^{-}\}/\{Na^+\}\{SO_4^{}\}$	+0.72	(23)
$K^{+} + SO_{4}^{} = KSO_{4}^{}$	$\{KSO_4^-\}/\{K^+\}\{SO_4^{}\}$	-673.6/T + 3.106	(24)
$H^+ + HS^- = H_2S$	$\{H_2S\}/\{H^+\}\{HS^-\}$	+1500.0/T + 1.932	(25)
H ⁺ + S = HS ⁻	${HS^{-}}/{H^{+}}{S^{}}$	+1470.0/T + 7.911	(26)
$H^+ + H_3SiO_4$ = $H_4SiO_4^o$	$\{H_4SiO_4^{\circ}\}/\{H_3SiO_4^{-}\}\{H^+\}$	+9.7	(27)
$Mg^{++} + F^{-} = MgF^{+}$	${MgF^+}/{Mg^{++}}{F^-}$	+1.82	(28)

 $H_2CO_3^{\#}$ = true H_2CO_3 ; H_2CO_3 = $CO_2 + H_2CO_3^{\#}$

(From Reference 3)

Determination of activity coefficients is necessary when activities and concentrations must be related. Activity coefficients may be calculated by the Debye-Hückel equation which for single ions is:

$$-\log f = \frac{A z^2 \sqrt{1}}{1 + Ba^2 \sqrt{1}}$$
(29)

Where \underline{f} is the rational activity coefficient (nearly equal to \underline{y} in dilute solutions), \underline{z} is the charge on the ion, I is the ionic strength, A and B are constants, and \hat{a} is an empirical constant defined as the effective diameter of the hydrated ion. Values of \hat{a} are tabulated. A and B can be calculated for water as functions of temperature only. I is a measure of the total ions in solution.

The Davies equation, Equation (30), seems to offer a better fit to experimental data at 25° (5).

$$-\log f = 0.5 z^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.30 I \right)$$
 (30)

This empirical equation has been shown to successfully calculate activity coefficients for a large number of 1-1 and 1-2 electrolytes at 0.1 M. Fairly good fit is obtained as ionic strength varies over a small range. The Davies equation may be useful at temperatures other than 25° by substituting a temperature dependent parameter similar to the Debye-Hückel A for 0.5.

Besides no experimental verification of calculated single ion

activity coefficients, other uncertainties are intrinsic in the use of the Debye-Hückel or Davies equations. Lack of accurate mean activity measurements at temperatures other than 25° prevents verification that successful calculation of mean activity coefficients is possible over a range of temperatures. The Debye-Hückel and Davies equations are empirically based on results of pure systems under laboratory conditions; the application to natural water systems is questionable.

Other calculations of activity coefficients can be made, but results are inconclusive. For example, Garrels and Thompson (6) calculate an activity coefficient for Mg^{++} in seawater of 0.36. Pytkowicz and Duedall (7) found a value of 0.17 under similar conditions.

Ion association and stability constants in natural waters were critically reviewed by Wigley (8). Wigley found that ion pair stability constant discrepancies appear in the literature due to assumptions about particular chemical systems and variations occur because of different methods of determination. There is also controversy about the existance of some ion pairs in natural waters such as $CaCO_3$ and $CaHCO_3^+$. Geochemical solution models are greatly dependent on concepts of ion pair formation and association stability constants. Ultimate success of these models awaits resolution of the predominant chemical equilibria in natural waters and consequent determination of associated stability constants (or, more correctly, stability functions of temperature). Research is currently underway to determine association constants from 0° to 100° of ion pairs thought to be important in natural water systems (9).

Water research of biological significance may require monitoring of some minor components (less than 1% of total dissolved solids) and dissolved gases. CO_2 and O_2 concentrations are important in biological systems. Nutrients, such as various forms of nitrates and phosphates, may largely determine growth characteristics of phytoplankton. Various trace elements may significantly influence the system being investigated. Some of known importance are Fe, Mo, Mn, and B.

Pollution monitors typically emphasize physical parameters because they are easiest to monitor. Some physical measurements are required for chemical research. Water temperature is almost always necessary. Many analytical techniques are temperature dependent, and the temperature dependence on equilibrium constants is illustrated in Table II. Ionic strength can be correlated with conductivity. Turbidity, atmospheric temperature, solar radiation, and light attenuation may also be monitored when important.

Biological Influence

Studies are frequently made on effects of the chemical system on aquatic organisms, but less consideration is given to biological influence on chemical equilibria. Lee and Hoadley have written a good discussion on this subject (10). An obvious interaction is biological CO₂

production and uptake influence on the carbonate system, and subsequent variation in all pH-dependent equilibria. Other interactions include chemoautotrophic organisms which obtain energy by oxidizing inorganic substances.

Turnover rates by the biological system may determine availability of elements to the chemical system. Some substances, such as phosphates, have a relatively fast turnover rate. Others, such as Ca, carbonates, and silicates, may be involved in insoluble skeletal structures and turnover time will be very long.

Biological activity in water greatly influences O_2 concentration. Gaseous oxygen can oxidize Mn^{2+} and Fe^{2+} to products that are generally insoluble, but reduction can occur in anoxic waters via the following reaction:

$$MnO_2 + 4H^+ \rightarrow Mn^{2+} + 2H_2O - 2e^- E^{O} = +1.28V$$
 (31)

Reducing conditions in natural waters are largely established by biological mechanism. A theory suggesting direct biological reduction of MnO₂ has been questioned (11). However, biological control of both Fe and Mn chemistry is often neglected in water chemistry when their very existance in solution depends on certain biological conditions. Another aspect of biological-organic interaction with inorganic equilibria has recently been discovered. The carbonate-seawater system is not usually at equilibrium (4). Microscopic examination of suspended carbonate particles revealed that each is covered with an organic coating which inhibits solution in seawater. Further work is needed to prove what effects such protective coatings have on solubility equilibria in general.

The biological and chemical systems are inseparable. Biological influence on chemical equilibria is very real and very important, but unfortunately, very complicated. Biological processes are difficult to represent mathematically, and significant progress in this area has been made only recently. It is probable that many other biological components of importance will be discovered in the future, further complicating the problem. In the meantime, models based on pure chemical thermodynamics may agree better with field observations if corrections are made for the important biological parameters, especially those based on known biochemical mechanisms.

Kinetic Factors

The validity of extrapolation of laboratory solution concepts to natural waters is debatable. Tyree (12) questions how many true equilibrium constants are known and whether or not solutions in natural waters are at equilibrium. Mass transport phenomena in natural waters (advection, convection, and diffusion) introduce spatial factors into ion concentration terms. This movement of chemical species through the solvent changes their environment which may change equilibrium conditions. Whether or not an equilibrium model will adequately describe chemistry of natural waters depends on how closely steady

state conditions are approached. If residence time (the time an ion is subject to particular conditions) is sufficiently large relative to reaction half-time, steady state conditions are approached (13). If a system is not at equilibrium, kinetic factors based on reaction rates and mass transport have to be considered.

Methods of Measuring Chemical Parameters

After the parameters to be monitored are determined, automated methods of measurement must be found. Measurement techniques may be derived from pollution monitoring methods, industrial process control (14, 15), and also from laboratory procedures developed for analyzing natural waters (16). Almost any laboratory technique can be automated, but past difficulties encountered with mechanizing particular methods (14, 15) form a basis for designating some techniques as less suitable for automation than others. Of all analytical methods two are most commonly adapted for continuous monitoring in natural waters: colorimetry and potentiometry.

Automated colorimetric analysis methods are well developed and well documented. Almost all require wet chemical methods. A good introduction with theory of operation is given by Sheen and Serfass (17). An example of a popular commercial automatic colorimetric analyzer is the Technicon AutoAnalyzer¹. The sample handling and processing

¹Technicon Corporation, Tarrytown, New York.

echniques of the Technicon instrument are similar to those used in nost commercial automated colorimetric equipment. Sample and reaents are proportioned before mixing by a peristaltic pump. Usually ll liquids are handled by the same pump so that mixing is in phase nd ratios are determined by cross section areas of the pump tubes. Properly proportioned liquids are combined and flow into a coil of ubing which serves as a mixing chamber. Various optional compoents are available to dialyze, filter, digest, distill, or heat as reuired for a particular analysis. Reagents can be added and mixed bepre or after any of these operations. The detector is usually a colormeter, similar to laboratory units with flow-through cells. Strip hart recorders are often used to present data for pollution or indusrial process monitoring, but means are provided to record on more omputer compatible media.

Technicon's CSM6 system is of special interest because it is speially designed for continuous monitoring of natural and waste water ystems. It will analyze up to six parameters simultaneously. Reagent onsumption has been minimized to allow unattended operation for up o one week. There is also a unit that prefilters sample water through 0.45µm filter.

A simpler method of reagent addition has been developed which implifies the processing apparatus. Reagent is contained in a solid od that is immersed in the sample stream where proportioning is

controlled by surface area of the reagent rod and sample flow rate (18). Once a sample stream is provided, an analyzer of this type can be built without any moving parts or valves.

Potentiometric methods provide a more direct measurement for many ions. The operation and application of ion-selective electrodes has been well documented; especially good descriptions are given by Durst (19) and Rechnitz (20). Ion-selective electrodes are suited for use in natural water systems (21, 22, 23) and have been used in automatic analyzers (24). When mounted in flow-through cells, these electrodes can be used for continuous monitoring. Many ions are measured directly by ion-selective electrodes which make the measuring part of a continuous monitoring system relatively simple and inexpensive.

Fluoride is determined by direct potentiometric measurement in an industrial fluoride monitor (25). A Ag-AgCl electrode is used for direct potentiometric determination of Cl⁻ in a commercial water quality monitoring instrument (26). A sophisticated continuous monitoring system records NO_3^- electrode data on magnetic tape (27). Water quality monitors are available which can be specially equipped with a variety of ion-selective electrodes. The electrodes may be housed in individual sample chambers (28), or in submersible sensor assemblies (28, 29). One of these instruments can record a maximum of twelve parameters (28), but none of them can automatically sample multiple

depths.

Ion-selective electrodes can also be used as indicators for titration reactions and this method usually gives more sensitivity than direct potentiometric measurement. Endpoints can be detected by monitoring either the ion of interest or another ion in the titration reaction. Indirect methods, where an electrode measures a different ion from the ion of interest, can be used to determine some ions for which electrodes are not available. When interfering ions are present, known addition techniques (19, 30) can be used to avoid corrections for high background potential or complexing agents. Of course, these later potentiometric methods (other than direct measurement) require reagent mixing and special handling of the data which complicate continuous monitoring processes.

Other methods of analysis are less often used for monitoring, but may have utility in special applications. The colorimetric detector of a wet chemical analyzer may be replaced by a flame photometer (26, 27), fluorometer, spectrophotometer, or atomic fluorometer. Simplified and ruggedized versions of these laboratory instruments, perhaps designed specifically for one type of analysis only, will be necessary before they are suited for continuous operation in the field

Some separation techniques could be automated. Instruments are commercially available that automatically perform gas-liquid chromatography. Automated solvent extraction and distillation methods have been used with industrial effluent monitors (33). No doubt other separations could be automated if a need should arise that would justify development.

Remote sensing has also been used in studying natural waters (34). Aerial and satellite photography using special color sensitive film and filters is the most common technique. Water movements (using a tracer dye), general pollution detection, oil pollution detection, and kelp inventory have been determined with some success by remote sensing. Application of this method to continuous monitoring in chemical research may be best effected from low orbiting satellites carrying high resolution television cameras equipped with special filters and image-converter tubes. Application of satellite photography in the near future will be limited to gross measurements in large water masses, but could be quite valuable when supplemented by in situ monitoring

Critique of Methods

Before methods can be selected for a particular analysis, the suitability for continuous monitoring under field conditions has to be evaluated. The wet chemical--colorimetric method has been evaluated under conditions of continuously monitoring river water (35). Results were not encouraging and indicate problems that might arise with any similar monitoring system. This system was run for one year and no

valid analytical data was obtained. The equipment was not rugged enough to operate reliably even with daily attention of a trained operator. Valves malfunctioned and plastic tubing to glass connections frequently failed. There was no way to compensate for interfering color or suspended matter. A dual beam colorimeter with a sample water blank might help this problem. Baseline drift could also be decreased by using a dual beam detector, but organic slime and algae growth inside the sample tubes and colorimeter cells will have to be controlled for long term stability.

Ion-selective electrodes can be used for water analysis (36) and are used in some commercial pollution monitoring instruments with good results. They have not been evaluated, however, with respect to long term stability of precision measurement in natural waters. Some general advantages and disadvantages of electrode methods given by Ross (37) are applicable. Electrode measurements are rapid and nondestructive, usually no sample pretreatment is required, and colored or turbid water can be measured directly. Electrodes are especially well suited for monitoring because equipment for direct measurement is relatively inexpensive, power consumption of instruments can be quite small, and simplicity allows compact and rugged design. Electrodes are not highly accurate because of drift. Under field conditions a precision of 4 mV is typical. This is an uncertainty of 15% in monovalent ion measurements and 30% for divalent ions. Much better

precision is obtained by using the electrode as an endpoint detector in a potentiometric titration. Electrode response is logarithmic; therefore, trace ions can be determined with as much precision as ions in more concentrated solutions. Equation 32 gives the potential response to cations in solution.

$$E = E_0 + \frac{RT}{nF} \ln a$$
 (32)

E_o⁼ potential due to standard reduction potential, reference potentials, reference junctions, etc.

- R = molar gas constant
- T = absolute temperature
- n = charge on the ion
- F = faraday constant
- a ⁼ chemical activity of ion being measured

Since electrodes respond to ion activity, they are especially well suited for chemical research monitoring because activity terms are used in equilibria expressions. There are, however, uncertainties in determining activities of calibration solutions (38). This has prompted work now underway at the National Bureau of Standards to develop activity standards for ion-selective electrodes (38). Activity coefficient determination is especially important when electrode measurements have to be related to total ion concentration.

Chemical interferences occur with electrode response to ions other than the ions being measured. Overall electrode response to an ion of activity, <u>a</u>, is described by a form of the Nernst equation empirically determined by Ross (39).

$$E = E_0 + \frac{RT}{nF} \ln \left(a + \sum_{i} K_i a_i^{n/x}\right)$$
(33)

 K_i = selectivity constant of i th ion a_i = chemical activity of i th interfering ion

 \mathbf{x}^{-} = charge on i th ion

Typical K; values range for 10^{-4} to 10^2 , so the K_ia; terms are negligible in some cases. Approximate values of K; are tabulated by electrode manufacturers for use in obtaining some idea about what interferences to expect. Selectivity values vary with solution composition. A method based on selectivity has not yet been devised that will resolve an electrode potential into its component contributions from various ions. The measuring electrode -- reference electrode pair constitutes an electrochemical cell with very high internal impedance. Glass electrodes typically have resistances of 10⁷ ohms. In order to obtain accurate potential measurements, high impedance input electrometers must be used. Extreme care has to be taken that all measuring leads are well insulated from ground and shielded against electrostatic noise. This could present some problems in the field with typically high humidity.

In situ monitoring requires operation of electrodes at varying temperature. Electrode response variation with temperature is given by taking the temperature differential of Equation 32 (40).

$$\frac{dE}{dT} = \frac{dE_0}{dT} + \frac{0.19841}{n} \log a + \frac{0.19841T}{n} \frac{d \log a}{dT}$$
(34)

The first term is characteristic of a particular ion-selective electrode and its reference electrode. The second term is the temperature coefficient slope term of the Nernst equation. This is the only term that is usually corrected by manual or automatic temperature compensation during measurement. The last part is the solution temperature coefficient term. Evaluation of this expression is complicated by the ionic activity being temperature dependent also. Theoretical evaluation of these terms has been attempted, and agreement with experiment is within experimental variation for some systems (41).

Specific Methods

Suppose that all of the concentration terms in Table I are to be determined. If thermodynamic equilibrium is assumed, the stability constants in Table II can be used to calculate some of the terms in Table I so that not all of them have to be measured directly.

If ionic activity is within the dynamic range of an electrode specific for that ion, direct measurement is possible. Electrodes are commercially available that are specific for H⁺, Ca⁺⁺, Na⁺, K⁺, F⁻, and S⁻⁻ activities normally present in natural waters (23, 42, 43). Mg⁺⁺ measurement in synthetic seawater has been demonstrated by means of a divalent cation electrode (44) that is approximately equal in response to Ca⁺⁺ and Mg⁺⁺.

A SO_4^{--} electrode has been built (45), but its selectivity over

other anions is poor. SO_4^{--} can be titrated by Pb^{++} which can be monitored by a Pb^{++} electrode. Since $PbSO_4$ is only slightly soluble in water, a continuous monitoring technique (46) may be used to indirectly monitor SO_4^{--} with a Pb^{++} electrode. A reagent stream containing a known concentration of Pb^{++} is proportionally mixed into the sample stream. $PbSO_4$ precipitates and the concentration of Pb^{++} remaining is monitored by a Pb^{++} electrode. Since the concentration of Pb^{++} in the reagent stream and the ratio of reagent to sample is constant and known, the amount of Pb^{++} combined with SO_4^{--} is calculable. This method of sulfate monitoring is not as simple as direct measurement, but only one reagent is required so plumbing is kept to a minimum, and use of a colorimetric detector with its associated problems is avoided.

A recently developed pressed-crystal membrane electrode may be useful for monitoring SO_4^{--} (47). At the time of this writing, insufficient data had been published on this electrode to evaluate its usefulness in natural water systems. The preliminary data that is available, however, does indicate good selectivity for SO_4^{--} over other anions.

 HCO_3^{-1} and CO_3^{-1} can be determined from pH if CO_2 can be measured (Equations 13, 14, and 15). An electrode commonly used for determining dissolved CO_2 in blood (48) may be applicable to natural waters. Direct measurement of CO_2 by an electrode assembly is most desirable because other CO_2 determination methods are complex (49) and would be difficult to automate.

At the present time there is no suitable potentiometric method to determine silicates in natural waters. In this case good colorimetric procedures are available (50) and have been automated (51).

Measurement of the above parameters and temperature is sufficient to calculate all of the concentration terms in Table I which describe the major dissolved species in natural waters. With the exception of silicates, all activities required for calculation of stability constant terms in Table II can be determined by potentiometric techniques. Conversion from activities to the concentration terms in Table I requires individual ion activity coefficients which may be calculated by Equation 29 or Equation 30.

If biological interactions are to be considered, some biologically important chemical parameters can also be monitored. Dissolved O_2 is easily monitored by a number of commercially available galvanic electrodes or by one of the newer potentiometric techniques (52, 53). Total carbon analysis has been automated (54), and commercial instruments are available. Indirect measures of organic content such as chemical oxygen demand (55) and biological oxygen demand (56) have been automated. Automated colorimetric methods have been developed for monitoring inorganic nutrients and associated species such as NH_3 , NO_3^- , NO_2^- , PO_4^{-3-} , etc. (57). A newly developed oxidation titration for NH_3 (58) may yield a simpler way of monitoring that component. Many of these methods involve complex procedures, so the problems
encountered with the automatic colorimetric analyzer could be expected to plague continuous measurement of these parameters also.

Recording, Data Processing, and Display

Many commercial monitoring instruments contain analog circuits that convert detector response to appropriate units (ppm, C^{0} , etc.) and record on strip charts. Strip charts are good visual displays; but if any calculations are to be made using the data, interpolation from graphs soon becomes tedious. Since equilibria determinations involve a large number of mathematical steps, calculations are usually done by a digital computer. Data translation problems are avoided if the monitoring system records directly on machine readable media. Punched paper tape or magnetic tape are frequently used; the choice between them is based mainly on amount of data to be recorded before retrieval. Direct transmission of data to a computer is possible via wire or radio when immediate data reduction is desired (59).

Large numbers of calculations are quickly done on high speed digital machines so that it is convenient to use successive iteration techniques for data reduction. Activity coefficients are calculated from ionic strength, I, which is not measured directly, but can be calculated from concentration of the ions.

$$I = \frac{1}{2} \sum_{i} C_{i} Z_{i}^{2}$$
(35)

 C_i = concentration of the ion, i Z_i = charge on the ion

All of the ionic concentrations necessary for calculation of I are usually not measured directly. Using the monitoring procedures outlined above, individual activities of each of the ions are measured or calculated, and I can be calculated by assuming concentration and activity are equal (activity coefficient assumed equal to 1). Activity coefficients are calculated and used to calculate a new set of concentrations. These concentrations then determine another value for I which gives a new estimate for the activity coefficients. This iteration can continue until the data is self-consistant within a specified error bound.

Continuous data would normally be taken in order to study some particular chemical processes in a water body. But display of concentrations or activity data is often useful to obtain a physical concept of these parameters. Tabulation of selected data will often show gross correlations. Isopleths on horizontal (60) or vertical (61) cross sections of the water body can be produced by computer (62) and are useful for observing spatial distributions. Three dimensional isopleths are difficult to construct and not often used, but by using computer generation and CRT display, they might be worth-while. Master variable diagrams of particular chemical systems are beneficial for visualizing which components could be expected to predominate under given conditions (63).

Sampling Frequency and Location

A parameter should be measured with enough frequency that the data accurately depicts any variations. One sample per day may be sufficient for deep ocean water while measurements may be taken each minute in a flowing stream. Sampling frequency of a shallow lake depends on the parameter and time of day, but would probably require between 0.1 and 10 samples per hour. If too many measurements are recorded, data reduction becomes formidable. For example, if 11 parameters at each of 10 depths, twice per hour, and at five separate locations in a reservoir are monitored to determine all chemical species in Table I, over 360,000 data points per week will be generated. Some data quality may be sacrificed if quantity has to be decreased.

Location of monitoring points depends on the type of study and the nature of the water body. A sizeable section of a turbulent stream may be well represented by measurements made at one location and one depth. A stratified lake may require continuous monitoring of one meter increments at multiple locations. Again, volume of data has to be considered along with cost per monitoring system if multiple fixed stations are used. Monitoring locations should be selected so that the data is representative of the largest possible water mass.

CHAPTER III

CONTINUOUS MONITORING SYSTEM

A continuous monitoring system (Figure 2) was developed and constructed during 1968 and operated from July, 1968, through November, 1968, near the dam of Keystone Reservoir, Oklahoma. The instruments diagramed in Figure 2 were housed in a floating instrument platform which was anchored in water approximately 20 meters deep located about 100 meters upstream from Keystone Dam. One-hundred ten volt AC power was supplied to the floating platform from the dam via an underwater cable. Water from each of the five depths was pumped through a plastic pipe and solenoid actuated valve to a sampling chamber containing a thermistor and a galvanic O_2 electrode. As the programmed controller actuated each valve for 9 minutes in sequence, O2 and temperature data was recorded on strip chart. When data from each depth had been recorded, the controller started the entire sampling sequence again. This method of periodic sampling and measurement is adequate for continuous monitoring if the data variance with time is small in the sampling period.

The Keystone monitoring system demonstrated the feasibility and general principles of multiple depth continuous monitoring in a

Figure 2. Continuous Monitoring System Used on Keystone Reservoir

reservoir. The strip chart data from this study was computer analyzed and used to evaluate multiple depth continuous monitoring as a method for measuring primary production in a reservoir (64).

Once the principles of multiple depth continuous monitoring were established, a more sophisticated system with larger sample and electrode capacity, more versatility, and a computer compatible recording medium could be designed. Much of the design of the final monitoring system was dictated by the experience with the earlier Keystone system.

A monitoring system has been developed for continuous automatic data acquisition of measurements on natural waters (Figure 3). Since a detailed description of the monitoring system hardware is available elsewhere (65), only a brief explanation of the monitoring system function is presented here. The monitoring system is designed particularly to record data from ion-selective electrodes which are electrical transducers of chemical activity in aqueous solutions. Water from selected depths is pumped into a sampling chamber allowing one set of electrodes to analyze samples from multiple depths. Data is recorded on punched paper tape which was chosen as the recording medium because of its computer compatibility and economy.

An electrode switching device, multiplexer, makes multiple electrode measurements possible with the single input mV meter. The multiplexer allows selection of any one of 5 (expandable to 24) sensor inputs by means of a high-impedance switching circuit. Accuracy of

Figure 3. Block Diagram of Reservoir Monitoring System. Arrows indicate general directions of information flow.

electrode potential is maintained by 19 of these inputs being isolated from ground and from each other through an impedance on the order of 10¹⁴ ohms. Special input jacks and reed switches maintain this circuit isolation from electrode input, through the multiplexer, and to the mV meter. The multiplexer also has 2 (expandable to 15) tip jack inputs to switch reference half-cell electrodes or other inputs which do not require especially high impedance isolation. All 15 tip jack inputs can be individually switched to the reference input of the mV meter. Six of the tip jack inputs can be individually switched into the high impedance bus for sensing-circuit input to the mV meter. Similarly, 3 of the 19 high-impedance multiplexer inputs can be switched to the reference circuit for special measurements.

The multiplexer design is an example of a theme of great flexibility and ease of change evident throughout the entire monitoring system. Flexible capabilities are necessary in prototype design to allow adjustment to obtain optimum performance under a variety of operating conditions and to increase utility in a multifaceted research program. For example, the multiplexer switching functions can be manually controlled by means of front panel control or put under full or partial program control of the controller. Patchboards in the multiplexer allow programming its switching function in automatic mode. The multiplexer function can be programmed to measure its inputs in any selected order, an input can be read numerous times at any place or several places in a measuring sequence, and any reference input may be selected for any measurement. The last capability allows one or a few reference electrodes to serve with a large number of measuring electrodes, and measurements can be repeated with different references for comparison purposes. Any of six tip jack inputs or any of three high-impedance inputs may be switched to the reference or the measuring inputs of the mV meter at any time during a measuring sequence.

Electrical response of the sensors is measured by an Orion¹ model 801 digital millivolt meter. The function of the Orion mV meter within the monitoring system is one of a high-impedance precision analog-to-digital converter. The four decimal digits of absolute mV data generated by the mV meter are displayed on its front panel and available in parallel binary coded decimal format from a rear connector tab. This digital output is relatively easy to record for direct computer reduction of the data.

The interface translates logic levels of the mV meter data and controller generated identification data into logic required for the punch coupler. Since the mV meter is to make measurements in an earth grounded solution, the mV meter measuring circuit has to be isolated from earth ground. This requires that all digital output lines from the mV meter be electrically isolated from the rest of the

¹Orion Research Incorporated, Cambridge, Massachusetts.

monitoring system. The interface provides this electrical isolation by opto-electronically coupling each logic line from the mV meter. When time code data is to be punched, the interface translates logic and switches approximately 40 logic lines of time code data into the punch coupler in place of mV data and controller generated identification code. A Hewlett-Packard² model 2545A tape punch coupler receives ten decimal digits in parallel binary coded decimal format from the interface. The punch coupler stores the data in a shift register which serves as a parallel-to-serial converter during the punching operation. Parity and end-of-word codes for paper tape are generated. The punch coupler completely controls operation of the paper tape punch. Front panel controls allow manual or automatic modes of operation and manual asynchronous punching of tape feed code to make tape "leaders" and "trailers".

Power for the punch solenoids is furnished to the punch coupler by a Hewlett-Packard model 2545B punch power supply.

The ten decimal digits of data from the punch coupler are serially punched on one-inch wide eight-level paper tape by a Teletype model BRPE 11 paper tape punch under punch coupler control. The punch is capable of punching 110 characters per second which far surpasses any foreseeable requirements of the monitoring system. Each data record occupies 1.1 inch of tape, therefore a supply reel

²Hewlett-Packard Company, Palo Alto, California.

capacity of 1000 feet of tape should allow unattended operation of at least two weeks for most monitoring applications.

The punched tape is rewound by a Cycle Tape Minder³ which has a take-up reel capacity of 1000 feet of punched tape.

The controller, as its name implies, performs a function of time sequenced control and coordination of the components in the monitoring system. The controller contains an adjustable timing system which initiates an electrode recording sequence. When operating in automatic mode, the multiplexer switches sensors on controller command. During data recording, controller generated signals give the mV meter a hold command, a signal commands the interface to switch either mV meter data or time code data to the punch coupler, and punching is initiated by a punch signal from controller to punch coupler.

An adjustable time interval of a few seconds between electrode readings allows stabilization of the measuring circuitry before recording. Time is allowed between recording sequences to permit thorough flushing of the electrode chamber by a new sample and chemical and thermal equilibrium between sample and sensors.

Controller action is programmable, and the controller can, to some extent, override the program in the multiplexer, further increasing the utility of the system. The controller program could be changed automatically if that need should ever arise. This capability

³Cycle Equipment Company, Los Gratos, California.

was designed especially to provide automatic selection of depths sampled in case the instrument is required to monitor water systems with widely fluctuating depths such as flowing streams.

The controller generates two decimal digits each of sample and sensor identification data in parallel binary coded decimal format. This data is translated by the interface and punched with mV data to identify the sensor and sample data being recorded.

At the end of each recording sequence, the controller advances the sampler to start flushing the next sample. The sampler is a programmable switching device with manual override capability which powers and controls solenoid actuated valves on the sample intake manifold.

The time code generator supplies coded output for recording time of day to the nearest minute and day of the year. The time code is recorded at periodic intervals to provide a time reference for sensor measurements. Sufficient accuracy of the time code should be obtained to allow correlation of data with that of other monitoring systems and weather stations, determination of diurnal cycles, etc.

A typical monitoring operation will be described with all instruments set in automatic mode and time punch set to auto. The following initial conditions are assumed: Sample has been flushing through the electrode chamber. The controller has signalled the multiplexer to switch the first sensor with its appropriate reference to the mV meter. All sensors are at equilibrium with the water sample, and the first sensor reading has stabilized on the mV meter.

The controller initiates a recording operation. The mV meter, on command from the controller, stores and holds the mV data. A controller generated command to the interface switches time code data to the punch coupler. A punch signal to the punch coupler initiates a punching operation which punches time code data on paper tape (Table III).

After time code data is punched, the interface switches mV and controller identification data to the punch coupler along with another punch signal. The mV and identification data is punched (Table IV), the mV meter hold is released, and the controller signals the multiplexer to switch the next electrode set to the mV meter. An adjustable time interval (usually 10 to 20 seconds) is allowed for stabilization of the measuring circuitry. The mV reading is held while mV and identifying data is punched on paper tape. The mV meter hold is released and the controller signals the multiplexer to switch to the next electrode set. This process is repeated until all of the programmed sensor data is recorded.

After the last sensor reading is recorded, the multiplexer is recycled to the first electrode set in its program, the sampler starts flushing the next sample through the electrode chamber, and another time code is punched. The entire monitoring system then waits until

TABLE III

PAPER TAPE RECORD FORMAT, TIME DATA

Character Valid		. <u></u>	
Position	Characters	Interpretation	
1	2	record contains time code data	
2	0	no significance	
3	0	no significance	
4	0-9	day hundreds digit .	
5	0-9	day tens digit	
6	0-9	day units digit	
7	0-2	hour tens digit	
8	0-9	hour units digit	
9	0-5	minute tens digit	
10	0-9	minute units digit	
11	EOW	end of word	

TABLE IV

PAPER TAPE RECORD FORMAT, SENSOR DATA

Character	Valid	***************************************	
Position	Characters	Interpretation	
1	1	record contains mV data	
2	$3 \text{ or } 4^4$	mV<0 if 3, mV≥0 if 4	
3	0-9 mV hundreds digit		
4	0-9 mV tens digit		
5	0-9 mV units digit		
6	0-9 mV tenths digit		
7	0-2 sensor ID tens digit		
8	0-9 sensor ID units digit		
9	0-2	0-2 sample ID tens digit	
10	0-9 sample ID units digit		
11	EOW	end of word	

 4 When mV data is positive, the punched mV data is the nines complement of its actual value.

the end of the flushing period when the time code and the first sensor mV data is recorded. The sensor reading and recording program is repeated for each sample until data for all samples has been recorded. At the end of the sampling sequence the sampler is recycled to the first of its program and the entire cycle is repeated automatically with all sensor measurements in the multiplexer program being recorded for each sample. Time code data is recorded immediately before the first sensor record and immediately after the last sensor record for each sample.

The entire monitoring program can be automatically repeated continuously to effectively monitor a water system.

CHAPTER IV

ION-SELECTIVE ELECTRODES AS CHEMICAL SENSORS IN NATURAL WATER SYSTEMS

Reference Electrode

The "other electrode" (66) used in potentiometric measurements is as important as the sensing electrode. Attention should be given to the reference electrode function and to possible sources of error that may occur from it. Reference electrodes and their properties have been extensively reviewed (67) and more recently have been reviewed with respect to applications with ion-selective electrodes (66).

The most common types of reference electrodes used for general laboratory and field applications are the calomel and Ag-AgCl types. Of these, the Ag-AgCl reference electrode is preferable for field monitoring applications. Next to the H₂ gas electrode, the Ag-AgCl electrode is probably the most reproducible electrode available, and is the most reliable reference electrode (66). Internal reference elements inside ion-selective electrodes are usually Ag-AgCl, therefore use of a Ag-AgCl external reference provides some self-compensation of systematic errors. The calomel electrode, less reproducible than

Ag-AgCl, has the serious disadvantage of a marked temperature hysteresis attributed to mercuric complexes formed at higher temperatures.

The half-cell potentials of both the calomel and Ag-AgCl electrodes depend on Cl⁻ activity in the electrolyte solutions. When the sample to be measured has varying and unknown Cl⁻ activity, a stable reference potential is maintained by reference electrode immersion in an electrolyte of constant Cl⁻ concentration. Contact between the internal reference electrolyte solution and the sample can produce a liquid junction potential which has been reviewed briefly by Covington (66).

Liquid junction potentials arise when the reference filling solution contains positive and negative ions which diffuse into the sample at different rates. Different rates of total charge migration lead to a potential difference across the liquid junction. The requirements of good reference electrode filling solutions, including equitransference, are discussed in Reference 68. An electrolyte solution will be approximately equitransferent if

$$\Sigma Z_{+}C_{+}\lambda_{+} = \Sigma Z_{-}C_{-}\lambda_{-}$$
(36)

where Z is the charge on the ion; C, the ionic concentration and λ is the equivalent conductivity (mho cm²/eq).

The Orion Research Incorporated model 90-01 single junction

reference electrode used in this study has a Ag-AgCl internal element. It has very little junction potential in dilute solutions when used with Orion number 90-00-01 filling solution. The electrolyte filling solution contains a mixture of K^+ , Na^+ , NO_3^- , and Cl^- in the appropriate ratios to satisfy Equation 36. The rugged plastic body and easily flushed sleeve-type liquid junction make this kind of reference electrode well suited for field applications.

Standard Solutions

Cation standard solutions (except H⁺ standards) were prepared from the respective chloride salts as suggested by Bates and Alfenaar (38). All salts used in standard preparation meet A.C.S. specifications and were used without further purification.

Standard stock solution of approximately 5×10^{-2} M NaCl was prepared from a measured weight of oven dried NaCl. Approximate 3×10^{-2} M stock solutions of CaCl₂ and MgCl₂ were prepared. A solution of 5×10^{-2} M AgNO₃ was standardized by titration with the standard NaCl. The titration endpoint was detected potentiometrically by a Ag-AgCl electrode vs calomel reference electrode assembly. The Ca⁺⁺ and Mg⁺⁺ solutions were then standardized by potentiometric titration with standard AgNO₃ solution. All standard solutions were stored in polyethylene bottles

Electrode calibration solutions were prepared by dilution of the

appropriate stock solution. Chemical activity of each calibration solution was determined from concentration by Equations 1 and 29. A least squares curve fit to mV vs activity data for each electrode provided a linear calibration equation with the form of Equation 32.

Hydrogen Ion Electrode

The H⁺ electrodes used in this study were glass membrane general purpose electrodes, Beckman¹ numbers 41263 and 39000. According to the manufacturer, Na⁺ interference should be negligible in samples where pH < 9 and $[Na^+] < 10^{-2}$ M (69).

All H⁺ calibrations were done in pHydrion² buffer solutions at 25°. Millivolt readings were taken at several $[H^+]$ values, and a least squares fit of the data yielded calibration equations with the form of Equation 32. H⁺ activity was assumed equal to concentration for $[H^+] < 10^{-5}$ M.

After approximately one week of monitoring a laboratory culture of 120 mg/l <u>Dactylococcopsis</u> at pH 8.5, H⁺ electrode response became very unstable. Electrode response was neither stable nor reproducible in buffer calibration solutions. After wiping the H⁺ sensitive membrane clean and soaking overnight in 0.1 M HCl, stability was restored and the electrode could be recalibrated.

¹Beckman Instruments, Incorporated, Fullerton, California. ²Micro Essential Laboratories, Brooklyn, New Jersey. Na⁺ activity was determined by a glass membrane electrode, Beckman number 39278. The manufacturer reports that this electrode responds to H⁺, K⁺, and Ag⁺ in addition to Na⁺ (70). Sensitivity data indicates there is no interference with Na⁺ measurement if [Na⁺] > 10^4 [H⁺], [Na⁺] > 10 [K⁺], and [Na⁺] > 10^{-4} [Ag⁺](70). If all three of these conditions are not met, the actual selectivity of the electrode should be determined to quantify the amount of interference to expect.

Na⁺ electrode response degradation was observed in the <u>Dactylo-</u> <u>coccopsis</u> culture similar to that of the H⁺ electrode. The condition was corrected by wiping the membrane clean and soaking overnight in 0.1 M NaCl solution.

Calcium Ion Electrode

An Orion model 92-20 liquid junction Ca^{++} electrode was used for potentiometric determination of Ca^{++} activity. The manufacturer's list of approximate selectivities for other divalent cations indicates that no appreciable ionic interference should be expected in most oxygenated natural freshwater systems where $[H^+] < 10^{-7}$, $[Ca^{++}]$ > 1.5 $[Mg^{++}]$, and $[Ca^{++}] > 1.5 [Sr^{++}](71)$. If these conditions are not met by the sample, the possibility of interference must be considered. Laboratory experience with this electrode indicated that with about four weeks use, the Ca⁺⁺ electrode response time increased, drift became more pronounced, and the calibration slope decreased. When this occurs, the electrode must be disassembled, cleaned, refilled with new solutions, and recalibrated.

Divalent Cation Electrode

There is no commercially available electrode specific for Mg^{++} in aqueous solutions. A part of this study was to evaluate the Orion model 92-32 divalent cation electrode as a sensor for determining Mg^{++} in the presence of Ca⁺⁺. The electrode responds approximately equally to Mg^{++} and Ca⁺⁺ in aqueous solutions and interference from Sr^{++} may occur unless $[Mg^{++}] + [Ca^{++}] > 50 [Sr^{++}](72)$.

Since this electrode responds to both Ca^{++} and Mg^{++} , it would seem possible that Mg^{++} activity could be determined if Ca^{++} activity is known. In order to predict electrode response to Mg^{++} in the presence of Ca^{++} , it is necessary to examine the nature of electrode selectivity.

A membrane potential theory for liquid ion exchanger membrane electrodes has been developed by Sandblom, Eisenman, and Walker (73) and re-presented by Eisenman (74). An experimental examination by Eisenman (75) of the selectivity of Na^+ and H^+ in di-2-ethylhexyl phosphoric acid in wet n-amyl alcohol supports the validity of theoretical prediction of liquid membrane selectivity. Their model (Figure 4) of two counterion species in an organic exchanger where counterions and sites are strongly associated most nearly corresponds to the Orion divalent cation electrode.

Sandblom, Eisenman, and Walker (73) have shown that for two counterions, the steady-state membrane potential is given by Equation 37.

$$E = \frac{RT}{nF} \{ (1-\tau) \ln \frac{(a_1)_e + \frac{u_2 + u_s}{u_1 + u_s} \frac{k_2}{k_1} (a_2)_e}{(a_1)_i + \frac{u_2 + u_s}{u_1 + u_s} \frac{k_2}{k_1} (a_2)_i} +$$

$$\tau \ln \frac{(a_1)_e + \frac{u_{2s}}{u_{1s}} \frac{k_2 K_{2s}}{k_1 K_{1s}} (a_2)_e}{(a_1)_i + \frac{u_{2s}}{u_{1s}} \frac{k_2 K_{2s}}{k_1 K_{1s}} (a_2)_i} }$$
(37)

Where τ , given by Equation 38, is in the range $0 \le \tau \le 1$ (65).

$$\tau = \frac{u_{s} (u_{2s}K_{2s} - u_{1s}K_{1s})}{(u_{1} + u_{s}) u_{2s}K_{2s} - (u_{2} + u_{s}) u_{1s}K_{1s}}$$
(38)

This theory assumes that ion pairs is the highest order complex formed in the membrane. K_{1s} is the association constant for the formation of the neutral ion pair (M_1)s in the organic phase. The u's represent mobilities of ions or ion pairs in the membrane phase, and

Figure 4.

Diagram of a Water-Immiscible Liquid Cation
Exchange Membrane. This diagram was modified from Reference 67. Phase boundaries are freely permeable to counterion M₁⁺ and M₂⁺.
Co - ions, A⁻, and exchange sites, S⁻, remain in the respective phases.

 k_1 is the partition coefficient of M_1^{n+} between aqueous and organic phases. All of the terms in the denominator of each logarithm except $(a_1)_i$ and $(a_2)_i$ are constant for a given membrane. The internal solution activities are fixed by constant composition of the internal electrolyte solution; therefore the log denominator terms in Equation 37 are constant. Under these conditions, the membrane potential is given by Equation 39 where <u>e</u> subscripts have been dropped from the external solution terms.

$$E = const + \frac{RT}{nF} \{ (1-\tau) \ln [a_1 + \frac{u_2 + u_s}{u_1 + u_s} \frac{k_2}{k_1} a_2] + \tau \ln [a_1 + \frac{u_{2s}}{u_{1s}} K_{12}a_2] \}$$
(39)

$$K_{12} = \frac{k_2 K_{2s}}{k_1 K_{1s}}$$
(40)

 K_{12} represents ion exchange selectivity of the reaction:

$$(M_2^+)_e + (M_1) S \stackrel{K_12}{\rightleftharpoons} (M_1^+)_e + (M_2) S$$
 (41)

As has been pointed out by Srinivasan and Rechnitz (76), K_{12} is not the equilibrium constant for Reaction 41 because the constants in Equation 37 are defined in terms of concentration instead of activity.

The value of τ depends only on properties of the ion exchanger

and the membrane solvent, and for some systems τ is near 0 or 1. In these cases Equation 39 reduces to Equation 42 which has the same form as the empirical Equation 33.

$$E = const + \frac{RT}{nF} ln (a_1 + Ka_2)$$
(42)

Membrane selectivity in Equation 42 depends only on the single constant K. Also, Sandblom, Eisenman, and Walker (73) have shown that for any single value of τ , Equation 39 is closely approximated by Equation 42 where K represents an average ionic selectivity.

At this point, the assumption is made that within the exactness of Equation 39 in representing the mathematical function of the divalent cation membrane potential, Equation 42 should closely approximate the functional form for divalent cation electrode selectivity. Equation 43, then, represents the observed potential vs a reference electrode, of a cation electrode responding to only two ions in solution.

$$E = E_0 + \frac{RT}{nF} \ln (a_1 + Ka_2)$$
 (43)

 E_0 includes the usual potential contributions described in relation to Equation 32 plus the const term in Equation 42.

If a_1 and a_2 in Equation 43 are changed by Δa_1 and Δa_2 respectively, the electrode produces a new potential E'.

$$a_{1}' = a_{1} + \Delta a_{1} \tag{44}$$

$$a_2' = a_2 + \Delta a_2$$
 (45)

$$E' = E_0 + \frac{RT}{nF} \ln (a_1' + Ka_2')$$
 (46)

Equation 47 results from subtracting Equation 43 from Equation 46.

$$\Delta E = E' - E = \frac{RT}{nF} \ln \left(\frac{a_1' + Ka_2'}{a_1 + Ka_2} \right)$$
(47)

The change in potential, ΔE in Equation 20, can be positive or negative, depending on whether Δa_1 and Δa_2 are positive or negative. Equation 47 can be rearranged to give Equation 48 which is the cation analogy of the anion selectivity equation derived by Srinivasan and Rechnitz (76).

$$a_{1} \left(\exp \left(\frac{nF\Delta E}{RT} \right) - 1 \right) + \Delta a_{1} = K \left(\Delta a_{2} + a_{2} \left(1 - \exp \left(\frac{nF\Delta E}{RT} \right) \right) \right)$$
(48)

This equation can be solved explicitly for K, or the left hand side of Equation 48 can be plotted vs the right hand part within parentheses and a value for K determined by the slope of a least squares fit of the data.

Equation 43 can be used to describe the divalent cation electrode response to Ca^{++} and Mg^{++} .

$$E = E_{o} + \frac{RT}{nF} \ln \left(\{ Ca^{++} \} + K \{ Mg^{++} \} \right)$$
(49)

The slope and intercept of Equation 49 can be determined from electrode calibration. Ca⁺⁺ activity can be determined by a Ca⁺⁺electrode. Then if K is known, Mg⁺⁺ activity can be determined from the electrode potential response and Equation 49. Since the divalent cation electrode was designed to give equal response to both Ca⁺⁺ and Mg⁺⁺, K should be equal to one. An exact value for electrode selectivity must be determined in order to solve Equation 49 for Mg⁺⁺ activity.

The Nernstian slope term required for the solution of Equation 48 was obtained by calibrating the divalent cation electrode in standard Ca^{++} solutions. Solutions of known Ca^{++} concentration were made in the range from approximately 2 X 10⁻⁵ M to 5 X 10⁻³ M Ca⁺⁺. Five increments of standard Mg⁺⁺ solution were added to each Ca⁺⁺ solution. Mg⁺⁺ concentrations ranged from 10% to 100% of each Ca⁺⁺ concentration. The activities of each ion were calculated by Equations 1 and 29. A selectivity plot of the four electrode potential changes based on Equation 48 was prepared by computer. A least squares determination of the slope of the selectivity plot gave a value for K. A selectivity coefficient was determined for each Ca⁺⁺ solution. The results are plotted in Figure 5.

Obviously the selectivity coefficient, K, is not a constant. The variations in K in Figure 5 indicate that Mg^{++} activity can be

determined only to within an order of magnitude by this method.

Precision Mg^{++} measurements will require that another method for the determination of Mg^{++} be used. The direct method described above may prove useful in the future if a functional form to describe the variations in K can be found. Some experimental evidence was obtained during this study to indicate that these values of K may be nearly reproducible. However, a mathematical description of the data in Figure 5 is not available at this time.

Electrode Drift

The accuracy of monitoring by direct potentiometric measurement depends on long term stability of the sensing electrodes. All electrodes drift with time. In most cases, the drift is noncumulative.

Three of the ion-selective electrodes were recalibrated daily while they were being used to monitor a laboratory culture of <u>Dactyl-ococcopsis</u> (2 X 10^6 cells/ml, algae biomass 77 mg/l). Table V shows the deviation in Nernstian slope and intercept of daily calibration of Na⁺, H⁺, and Ca⁺⁺ electrodes. The actual daily mV response to a particular standard solution represents actual potential variation which might occur while monitoring a water sample.

The % deviation of activity was calculated by assuming a hypothetical monitoring situation. A hypothetical calibration equation for the week was assumed to ideally predict the arithmetic average of all

TABLE V

DAILY VARIATION OF ELECTRODE RESPONSE

	i	Na ⁺		
	• • ·		mV of 8, 504	% deviation
day	slope	Eo	X 10 ⁻⁴ M	calc. activity
1	48.2	241.7	+88.7	+77.2
2	42.9	187.8	+55.4	-56.0
3	40.7	197.8	+73.8	+17.6
4	35.3	168.3	+59.8	-38.4
			$\bar{\mathbf{x}} = \overline{+69.4}$	
		H ⁺		
			mV of pH =	% deviation
day	slope	Eo	8.2 buffer	calc. activity
1	54.4	382.1	-65.7	+0.8
2	50.1	343.5	-66.9	+5.6
3	51.9	357.8	-65.9	+1.6
4	54.6	382.2	-65.7	+0.8
5	49.6	341.3	-64.0	-6.0
7	54.7	384.0	-64.9	-2.4
			$\bar{x} = -65.5$	
	. i	Ca ⁺	+	
			mV of 6. 420	% deviation
day	slope	Eo	X 10 ⁻⁴ M	calc. activity
1	28.3	97.4	+4.5	+24.0
2	30.9	103.9	+3.0	+12.0
3	30.5	101.6	+3.3	+14.4
4	30.5	99.9	-0.5	-16.0
5	30.6	100.7	+0.0	-12,0
7	27.8	90.1	-1.1	-20.8
			$\bar{x} = +1.5$	

•

daily potentials. The deviation of each daily potential from the mean represents a mV error in the hypothetical calibration equation. The % deviations were calculated from mV error by assuming an activity deviation of 4% per mV for monovalent cations and 8% per mV for divalent cations. The % deviation in calculated activity column gives an idea of how much error to expect from daily drift when using direct potentiometric monitoring.

The very high biological activity in the laboratory culture may represent an extreme condition relative to natural systems which may have contributed to drift, especially the large deviations observed for the Na⁺ electrode. Also, the electrodes in the laboratory were subjected to only minor temperature perturbations compared with that expected in field monitoring situations. Therefore, the drift exhibited in Table V should be regarded as only a very crude estimate of precision to expect from field data.

Carbon Dioxide Electrode

An electrode for measuring partial pressure of CO_2 dissolved in blood has been developed by Severinghaus and Bradley (77). A similar electrode was used in this study to measure dissolved CO_2 in natural waters.

Figure 6 is a schematic diagram of the electrode assembly used. CO_2 gas in the sample diffuses through the silicone rubber membrane

Figure 6. Schematic Cross Section of CO₂ Electrode Assembly. A Ag-AgCl reference electrode in the electrolyte solution is not shown.

where the H^+ activity change in an electrolyte solution is sensed by a glass membrane electrode.

Materials of choice for the CO_2 permeable membrane include Teflon³ and Silastic⁴ (silicone elastomer). Silastic 372⁵, a medical grade silicone elastomer, was used because it is about 80 times more permeable to CO_2 than Teflon of the same thickness (78).

The membrane was supplied in 5 mil thick sheets. After stretching over the H^+ sensitive end of a Beckman 41263 electrode, the membrane thickness was estimated to be 2 to 3 mils. Thinner membranes could be produced to increase permeability by calendering before stretching in the electrode assembly.

The electrolyte solution contained 0.1 M NaCl and 0.001 M NaHCO₃ in water. The NaCl provided a constant Cl^{-} activity for the Ag-AgCl reference electrode and helped maintain a constant ionic strength. NaHCO₃ increased the electrode sensitivity to CO₂. Equations 13, 14, and 50 can be combined with the charge balance Equations to give Equation 52.

$$[H^+][OH^-] = K_w$$
 (50)

³Du Pont Corporation.

⁴Dow Corning Corporation.

 $^{^{5}\!\}mathrm{Supplied}$ by Center for Aid to Medical Research, Dow Corning Corporation.

$$[Na^+] + [H^+] = [HCO_3^-] + 2[CO_3^-] + [OH^-]$$
 (51)

$$[CO_{2}] \approx [H_{2}CO_{3}] = \frac{[H^{+}]^{2} + [H^{+}][Na^{+}] - K_{w}}{K_{1} (1 + \frac{2K_{2}}{[H^{+}]})}$$
(52)

The electrode sensitivity has been defined as expressed in Equation 53 (75).

4

$$S \equiv \frac{\Delta pH}{\Delta \log [CO_2]}$$
(53)

In electrolyte solutions without $NaHCO_3$, Equation 52 reduces to Equation 54.

$$[CO_2] = \frac{[H^+]^2}{K_1}, \ S = 0.5$$
 (54)

Experimental verification has shown that electrode sensitivity to CO_2 is increased to a maximum when the electrolyte contains 10^{-3} M NaHCO₃ (77). In this case, the second term in Equation 52 predominates and electrode response is given by Equation 55.

$$[CO_2] = \frac{[H^+][Na^+]}{K_1}, S = 1.0$$
 (55)

The CO_2 electrode was calibrated in a solution made by bubbling CO_2 into a solution of 0.01 M NaCl. At approximately pH 5 the bubbling was stopped and the response of the CO_2 electrode and a H⁺

electrode in the solution were monitored for about six hours. The stirred solution, thermostated at $25.0^{\circ} \pm 0.1^{\circ}$, was open to the atmosphere. The CO₂ concentration changed from approximately 10^{-2} M to 10^{-5} M during the monitored period. The monitoring system described in Chapter III was used to record electrode response, usually every six minutes.

The CO_2 concentration can be calculated from $[H^+]$ at each recorded time by means of Equation 58. Equation 58 is derived from combining Equation 13, 14, and 50 with the mass balance Equation 56 and proton balance Equation 57.

$$C_{H_2CO_3} = [H_2CO_3] + [HCO_3] + [CO_3]$$
 (56)

$$[H^+] = [HCO_3^-] + 2[CO_3^-] + [OH^-]$$
(57)

$$[H_{2}CO_{3}] = \frac{[H^{+}]^{4} + K_{1}[H^{+}]^{3} + (K_{1}K_{2} - K_{w})[H^{+}]^{2} - K_{1}K_{w}[H^{+}] - K_{1}K_{2}K_{w}}{K_{1}([H^{+}]^{2} + 2K_{1}K_{2}[H^{+}] + 3K_{1}K_{2} + 2K_{1}K_{2}^{2}[H^{+}]^{-1})}$$
(58)

A computer program for performing the calibration calculations is listed in Appendix A. The program first calibrates the H⁺ electrode from pH buffer data by the method described previously. Paper tape data is then read and punched tape code is converted to mV data for both the H⁺ and CO₂ electrodes. H⁺ activity is calculated from mV data and the internally generated H⁺ calibration equation. H⁺ activity for each recording sequence gives a value of $[H_2CO_3]$ by means of
Equation 58. $[CO_2]$ in nearly equal to $[H_2CO_3]$; nevertheless the program applies the small correction defined by Equation 12.

The data is tabulated and plotted, $\log [CO_2] vs mV$, by an internal plotting routine. A CO₂ calibration equation results from a linear least squares fit to the plotted data.

Calibrating an electrode in terms of CO_2 activity (a_{CO_2}) when electrode response is to partial pressure (P_{CO_2}) , perhaps deserves some comment. The H⁺ electrode inside the CO_2 electrode assembly actually responds linearly to H⁺ activity. Since in the pH range of the internal electrolyte solution, H_2CO_3 dissociates according to the reaction associated with Equation 13, a_{CO_2} is proportional to a_{H^+} in the internal solution. Therefore, the equation for CO_2 electrode response could be written as Equation 59.

$$E = const + \frac{RT}{F} \ln a_{CO_2}$$
 (59)

In this case, a_{CO_2} is CO_2 activity in the internal electrolyte solution. Assuming a CO_2 activity coefficient of one, $a_{CO_2} = \underline{m}_{CO_2}$ ($\underline{m} = mol$ ality). Molality is related to partial pressure by Henry's law. Both inside the electrode

$$(\underline{m}_{CO_2})_{int} = k_{int} (P_{CO_2})_{int}$$
(60)

and outside the electrode

$$(\underline{m}_{CO_2})_{ext} \stackrel{=}{\xrightarrow{}} k_{ext} (P_{CO_2})_{ext}$$
(61)

The Henry's law constant, \underline{k} , is dependent upon temperature and solution composition. At equilibrium

$$P_{ext} = P_{int};$$
 (62)

therefore

$$(\underline{m}_{CO_2})_{int} = (\underline{m}_{CO_2})_{ext} \frac{k_{int}}{k_{ext}} .$$
 (63)

Equation 59 can now be rewritten in terms of $(\underline{m}_{CO_2})_{ext}$, the quantity to be measured by the electrode.

$$E = const + \frac{RT}{F} \ln \left[\left(\underline{m}_{CO_2} \right)_{ext} \frac{k_{int}}{k_{ext}} \right]$$
(64)

The Henry's law constants ratio can be included with the const term and concentration again equated with activity.

$$E = const' + \frac{RT}{F} \ln a_{CO_2}$$
(65)

Equation 65 is similar to Equation 59, but in Equation 65, electrode response is described in terms of a_{CO_2} of the external solution, i.e., the sample. Equation 65 should be valid for any ionic strength of internal or external electrolyte since any changes in <u>k</u> will be

incorporated in const'. The same value for k_{ext} is required, however, in both sample and calibration solution. A tabulation of Henry's law constants by Harned and Davis (79), indicates that deviation in the const' term will be small if both sample and calibration solutions have ionic strengths of the same order of magnitude and less than 10^{-1} M.

Carbon Dioxide Electrode Response Time

Two solutions of CO_2 in water were prepared. A low CO_2 concentration solution gave a mV response approximating 10^{-6} M. The solution of higher concentration was approximately 10^{-3} M. The response of the electrode was manually recorded after it was transferred from one stirred solution to the other. The experiment was then repeated with 1 mg/ml of carbonic anhydrase⁶ added to the CO_2 electrode internal electrolyte solution. The results are plotted in Figure 7.

Without the enzyme, the low to high response was faster than for high to low which took approximately 10 min for 90% response. When monitoring lake water from multiple depths, a faster response time may be desirable. The enzyme carbonic anhydrase which catalyzes the hydration and dehydration reactions of CO_2 substantially decreased the response time for both increasing and decreasing CO_2 . The low to high and high to low response times were more nearly

⁶Sigma Chemical Company, St. Louis, Missouri,

Figure 7. Carbon Dioxide Electrode Response Time. Closed circles represent a change from high to low CO_2 without enzyme. Open circles are low to high without enzyme. += high to low response with carbonic anhydrase. X = low to high with the enzyme.

equal with the enzyme. High to low response time was decreased to approximately 30 sec for 90% response.

į

CHAPTER V

DETERMINATION OF CARBONATE COMPONENTS IN LAKE CARL BLACKWELL

In order to obtain some preliminary information about the chemical system in Lake Carl Blackwell, a grab sampling program was begun in Summer, 1971. The field sampling and laboratory analyses were designed to give information similar to that expected from an in situ monitoring system. The data would also provide carbonate system data for an ecosystem modeling project which was initiated late in 1970 as a part of the Lake Carl Blackwell Ecosystem Analysis Program.

Description of Lake Carl Blackwell

Lake Carl Blackwell (Figure 8) located in north-central Oklahoma was completed in 1938 and first attained spillway level (283.2 m m.s.l.) in 1945. The lake has a maximum surface area at spillway elevation of approximately 3700 acres. During the study period, July, 1971, to January, 1972, the lake elevation was about 279 m m.s.l., and the lake surface area was less than 2500 acres (80). The main inflow to the lake is Stillwater Creek. Almost all of the water

flowing into the lake is from runoff. The main outflow during the time of this study was the water intake pipe to the water supply for the City of Stillwater. The drainage basin consists mainly of pastured grassland and wheat farmland. The lake stratifies in early summer, and turbidity and chemical distribution indicate the epilimnion is wind circulated.

The location of sampling stations used for this study are represented by numbers 1 through 6 in Figure 8. Each of the six sampling stations on the lake were marked by a permanent bouy to insure reproducibility of sampling location.

Samples at each station were taken at 0, 1, 2 and consecutively even numbered depths measured in meters from the surface. Table VI gives the depths sampled at each station. A total of 20 samples were taken from the lake on each day sampled.

TABLE VI

Station Number (see Figure 8)	Approximate Depth (m)	Depth Sampled (m from surface)
1	2.5	0, 1, 2
2	12	0, 1, 2, 4, 6, 8, 10
3	3.5	0, 1, 2
4	1.5	0, 1
5	1.5	0, 1
6	3	0, 1, 2

DEPTHS AND DEPTHS SAMPLED AT EACH OF SIX SAMPLING STATIONS ON LAKE CARL BLACKWELL

Sampling Procedure

Water samples were obtained at each station from a boat by means of a two-liter water sampling bottle¹, G M number 135WA142. The Van Dorn type bottle allowed only transparent butyrate plastic and rubber to contact the sample. Since all components being analyzed were well above trace amounts, contamination from the sampling bottle or line as discussed by Robertson (81) should not have been a problem.

Surface samples were obtained by holding the sampling bottle horizontally and releasing the end plugs just under the water surface. Deeper samples were obtained with the bottle in its normal vertical position. The center of the bottle was held at the exact depth to be sampled by a calibrated nylon rope, and the end plugs were closed by messenger activation.

Water was transferred to sample storage bottles with as little contact as possible with the atmosphere. One liter narrow-mouth polyethylene sample storage bottles with screw caps were chosen for chemical inertness (81, 82), and break resistance in the field.

Immediately after samples were taken and tightly capped, they were stored in ice or refrigerated at 4° until analysis. The cooling of samples was to inhibit biological activity and to increase the solubility of dissolved gases.

¹G M Manufacturing Company, New York.

Preceeding analysis in the laboratory, each sample was shaken to resuspend settled material. Then water was transferred from sample bottle via a polyethylene tube to a water jacketed beaker. There the sample was stirred and heated to 25.0° . After temperature equilibration, electrodes placed in the sample furnished mV analogs of activities of H⁺, CO₂, Na⁺, Ca⁺⁺, and Mg⁺⁺. In most cases, all samples were analyzed within 48 hours after collection.

Data Reduction

Data from the laboratory water analyses provided input for the computer program listed in Appendix B which calculated chemical activities in each sample. Electrode calibration equations expressing log (activity) as linear functions of mV were available from calibration data previously processed by computer programs.

The data reduction program (Appendix B) read all calibration equations along with each time of calibration and stored the calibration slopes and intercepts as time and electrode referenced array elements. All electrode mV data for each day was read in with identification codes representing time the sample was taken, station number, and depth. The sampling date was compared with calibration time codes, and the calibration equations were updated if necessary.

Using the proper calibration equation, electrode mV response for the day's data was converted to chemical activities of the five

measured species. (The selectivity coefficient in Equation 49 was assumed equal to one in order to approximate Mg⁺⁺ activity.) Then all the other species listed in Table I were calculated for each sample by combining the five measured activities with the equilibrium equations in Table II.

The data for each day was tabulated and plotted vs depth for each station. Several components were plotted on each graph by scaling the data for each species according to a factor calculated from values for each species at zero depth. Plotting symbols are keyed with scale factors at the bottom of each graph. Asterisks form connecting line segments between alphabetic symbols. Activities tabulated by the program are in moles/l at 25°.

If more data than for one day was included with the input, the program repeated itself by automatically dividing the data into one-day segments until all input data was processed.

CHAPTER VI

CHEMICAL EQUILIBRIA IN LAKE CARL BLACKWELL

The waters of Lake Carl Blackwell have the usual chemical characteristics of a small wind mixed eutrophic lake. An ionic strength on the order of 10^{-2} M reflects a lack of contact of the inflowing water with major mineral deposits. Carbonates in solution average about 10^{-3} M and are present almost entirely as bicarbonate ion since the pH is usually between 7.8 and 8.5.

Carbonate Complexes in Solution

The carbonate ions, complexes and CO₂ in Table I were assumed to represent all of the carbonates in solution. It was further assumed that no cations other than those in Table I significantly affect the carbonate system. Complexes of higher order than ion pairs have not been demonstrated as significant in natural water systems and were not considered in this study.

Since the inorganic carbonate system in Lake Carl Blackwell is directly connected to biological activity through primary production, respiration, and decomposition, it is important when studying the inorganic carbonate system to consider its interrelations with the other

aquatic systems which affect it.

Samples of algae and bacteria were taken from Lake Carl Blackwell at the same times and locations that chemical samples were collected. The biological analyses were made by participants in an interdisciplinary effort of which this chemical study is a part.

Since only a part of the biglogical data was available at the time of this writing, data from a selected period, July 15, 1971, through August 5, 1971, which comprises four weekly sampling periods, will be discussed with some empirical observations. No general conclusions about the lake system behavior can be attempted until more data becomes available and a more detailed analysis of the data is made.

Surface total algae cell counts and bacteria counts for the water column at station two are plotted in Figure 9. Referring to Figure 9, a large algae bloom is evident on July 1. As algae from the bloom died, a very large bacteria peak occured which was falling off by July 15, the first complete chemical sampling date.

Dissolved O_2 and temperature data were obtained in situ at the same time water samples were collected. Dissolved O_2 and temperature in Figure 10 are plotted with the ordinate scale reversed from usual profile graphs to match the computer generated profile graphs which plot zero depth at the coordinate origin. Both O_2 and temperature profiles indicate lake stratification between 6 and 7 m depth. The chemical ion graph in Figure 11 for the same date reflects the

is from Reference 84.

Figure 10. O2 and Temperature Profiles of Lake Carl Blackwell, Station Two, July 15, 1971

Two, July 15, 1971

observed stratification by increasing H^+ and CO_2 activities below 6 m. The CO_3^{-1} curve in Figure 11 resembles a mirror image of the CO_2^{-1} curve which simply indicates the shift in carbonate equilibria with the H^+ increase. HCO_3^- activity being nearly constant through the 6 m depth suggests no total carbonate system change due to stratification. The large H⁺ increase below 6 m may be due to bacterial decomposition products from the algae bloom of July 1. This data does not show that CO_2 is a decomposition product but rather that the CO_2 increase is due to a shift in carbonate equilibria caused by the H⁺ increase. There is no distinct chemocline for the metal ions; therefore stratification must be due to thermal differences only. The \mbox{Ca}^{++} increase below 6 m can be attributed to a $CO_3^{=}$ decrease and subsequent reduction in CaCO₃ complex. The simultaneous decrease in all free carbonate species at 1 m with very little change in H^+ indicates a region of HCO_3^- uptake, probably by photosynthesis since O_2 increases at 1 m in Figure 10.

By July 22, both bacteria and algae counts had decreased to a low level. Thermal stratification is still evident in Figure 12, but the temperature of mixed epilimnic water had decreased by 2. 4° which in effect moved the thermocline downward to 8 m. A comparison of O_2 profiles in Figures 10 and 12 indicates water was mixing to the 8 m depth. The profiles of H⁺, CO₂, and CO₃[±] in Figure 13 also show partial mixing to 8 m.

71 722 STATION NUMBER 2

Two, July 22, 1971

On July 30, with both bacteria and algae still at low populations, the thermocline in Figure 14 moved to below 9 m. H⁺ difference between 8 and 10 m is small in Figure 15. Figure 15 does show a highly variable but decreased HCO_3^- activity. The decrease could have been due to HCO_3^- uptake by algae. Notice the CO_2 , HCO_3^- , and $CO_3^$ curves are nearly parallel from 0 to 2 m. The large amount of change in the carbonates may indicate high biological activity at a time which turned out to be the start of another algae bloom.

Then on August 5, both bacteria and algae counts went up almost simultaneously. The station was thermally destratified according to Figure 16. The increasing H⁺ with depth below 6 m may again be attributed to bacterial decomposition products since the bacteria count for this date was high. The CO_2 increase below 6 m in Figure 17 can again, be attributed to the change in H⁺ activity at low depths. But a large decrease in O_2 is observed in Figure 16 below 6 m in unstratified water without a corresponding increase in CO_2 in Figure 17.

Insufficient evidence was obtained during this study to determine the mechanism of periodic algae blooms in Lake Carl Blackwell. The following explanation of the August 5 algae increase is offered as a conjecture based on a preliminary analysis of the available data. O_2 during the week before August 5 had been reduced in concentration by aerobic bacterial decomposition of dead algae. The decomposition products were organic acids which caused the rise in H⁺ below 6 m.

STATION NUMBER 2

Figure 15. Chemical Profile of Lake Carl Blackwell, Station Two, July 30, 1971

Figure 16. O2 and Temperature Profiles of Lake Carl Blackwell, Station Two, August 5, 1971

Figure 17. Chemical Profile of Lake Carl Blackwell, Station Two, August 5, 1971

œ

As these organic acids were further decomposed to CO_2 , the CO_2 produced was immediately taken up by algae, thus there was no net gain in HCO_3^- . The high O_2 concentration from 0 to 5 m measured at midday on August 5 was a product of photosynthesis by the large amount of algae present.

It is interesting to note that HCO_3^- which had undergone an overall decrease on July 30 had increased on August 5 to approximately the same value on July 22, before the bloom. Also, HCO_3^- activity was nearly the same from surface to bottom with only a small decrease below 6 m.

In Figure 17 Na⁺, Ca⁺⁺, and Mg⁺⁺ activities show little change from surface to 10 m. This may (but not necessarily) mean that analytical concentrations of these species were the same throughout the water column on August 5. The small decrease in activity of Na⁺ and Mg⁺⁺ may have resulted from temperature lowering as depth increased (Figure 16). The small increase in Ca⁺⁺ activity, where a decrease would be expected because of temperature lowering, can be accounted for by corresponding decreases in CaHCO₃⁺ and CaCO₃^O complexes as shown in Figure 18. The changes in activity of the carbonate complexes follow patterns established by the respective free anion activities. Generally, in Figure 18 the CO₃⁼ complexes show variable activities while HCO₃⁻ complexes reflect the usual HCO₃⁻ constancy with depth.

71 8 5 STATION NUMBER 2

Blackwell, Station Two, August 5, 1971

88

Chemical activity data, such as that obtained for Lake Carl Blackwell, is also useful for solubility equilibria determinations. A lake is not a completely closed chemical system. Dissolved and suspended material are contained in inflowing water and some material is released with the outflow. Dissolved gases exchange with the atmosphere. When the ion products of certain dissolved species become greater than the solubility product constants, solids may precipitate. Precipitated solids may be suspended, redissolved, or fall out of the water phase and become part of the sediments. Solubility may be of biological importance when chemical species affecting growth are involved.

Carbon Dioxide Solubility

The exchange flux of CO_2 across the air-water interface depends upon the partial pressure difference between CO_2 in air and CO_2 in water. When $(P_{CO_2})_{atmosphere} = (P_{CO_2})_{water}$, there is no net exchange and the water is saturated with CO_2 . Since P_{CO_2} is constant in the atmosphere at 10^{-3} . 48 atm, it is possible to calculate the molality of CO_2 required to saturate lake water at 25° . The relation between molality and partial pressure of CO_2 in water is expressed by Henry's law in Equation 61. A Henry's law constant of 0.0343 for 10^{-2} M NaCl at 25° was interpolated from data in Reference 79. Then, by Henry's law the lake at 25° will be saturated with CO_2 at 1.10 X $10^{-5} \text{ m} CO_2$.

 CO_2 data from the chemical analysis program for station two surface water is plotted in Figure 19. Comparing the data with the saturation line, high CO_2 production in summer along with warm water contribute to CO_2 saturation. Cold water in January contained a high CO_2 concentration which shows a saturated condition at 25°.

Carbonate Ion Solubility

 $CO_3^{=}$ may precipitate from natural waters in the form of calcite, CaCO₃. The saturation line in Figure 20 was drawn based on a log K_{S0} of -8.35 for calcite (85). The plot of ion products in Figure 20 indicates a possibility of calcite precipitation in summer when $CO_3^{=}$ activity is high.

Another form of $CO_3^{=}$ precipitation could be dolomite, CaMg $(CO_3)_2$ with a log K_{S0} of -16.50 (86). That dolomite saturation in summer months is possible is evident from the ion products plotted in Figure 21.

Other minerals which may play secondary solubility roles under certain conditions are aragonite, another form of $CaCO_3$, and magnesite, MgCO₃. It is possible that HCO_3^- available for primary production may be limited by CO_3^- precipitation at least part of the time.

Station Two Surface Water at 25°. Arrows designate points off scale.

Two Surface Water at 25°. Arrows designate points off scale.

Figure 21. Dolomite Saturation of Lake Carl Blackwell, Station Two Surface Water at 25°. Arrows designate points off scale.

Phosphate Solubility

Kramer (87) has suggested that solubility of hydroxyapatite may control phosphate activity in the Great Lakes. Since Ca^{++} and H^+ data is available from this study, it is possible to calculate the concentration of phosphate necessary to precipitate hydroxyapatite from solution. The pK_{S0} of Ca₁₀ (OH)₂ (PO₄)₆ is 113.9 at 25^o (87).

$$[Ca^{++}]^{10} [OH]^2 [PO_4^{3-}]^6 = 10^{-113.9}$$
 (66)

The concentration of PO_4^{3-} , if phosphate in solution is in equilibrium with hydroxyapatite, can be calculated by rearranging Equation 66. At a pH of approximately 8.2, orthophosphate in Lake Carl Blackwell should exist in the form of HPO_4^{-} . The third acid dissociation constant for H_3PO_4 is $10^{-12.32}$ (88). Therefore,

$$[HPO_4^{=}] = [PO_4^{3-}] [H^{+}]/10^{-12.32}$$
(67)

concentrations of HPO₄⁼ necessary for equilibrium with hydroxyapatite are plotted for station two surface water in Figure 22. The particularly high values in November and January are due to low Ca⁺⁺ activity on those dates.

Two Surface Water at 25°

CHAPTER VII

CONTINUOUS MONITORING OF A LABORATORY ALGAE CULTURE

The monitoring system described in Chapter III, which was designed for field data acquisition, is also useful for monitoring aquatic systems in the laboratory. A laboratory monitoring program was carried out as one of the final developmental stages leading to in situ monitoring of natural water systems.

Monitoring in the laboratory allowed the instrument hardware to operate under simulated field conditions. Minor design adjustments were made while in the laboratory that should eliminate some potential problems in the field. Operating and maintenance procedures were developed and practiced before adverse field conditions were encountered. A preliminary evaluation of sensor stability was made. Data acquired from laboratory algae cultures, while giving important information about the particular algae and support medium studied, provided a data set similar in content and volume to one that would be obtained from the field. This data set allowed development of computer programs for data reduction. Methods of data display and interpretation could be practiced. At the same time, continuous data was

obtained on diurnal variation of the carbonate system in an aquatic ecosystem which may prove useful for elucidating some of the interactions between the abiotic and biological aquatic systems.

Experimental Procedure

All algae cultures were contained in a rectangular glass aquarium containing 35 l of support solution. Rapid stirring of the solution was maintained by a stainless steel rotating paddle. The aquarium was housed inside a darkbox, so the only light available for photosynthesis was supplied by two 40-watt fluorescent grow-lamps¹ suspended 29 cm above the water surface. An electric timer turned the lights on at 0600 hrs and off at 1800 hrs each day. No attempt was made to control temperature of the culture, but the observed temperature remained constant at $26^{\circ} \pm 1^{\circ}$.

Electrodes sensitive to H^+ , CO_2 , Na^+ , Ca^{++} , and Mg^{++} were calibrated as described in Chapter IV and placed in the aquarium. The data acquisition system described in Chapter III periodically recorded data from each electrode.

A culture medium with the composition given in Table VII was prepared from reagent grade chemicals in deionized water. Essential trace metals were assumed available from impurities in the added salts. Approximately $2 \times 10^{-3} \text{ M NO}_3^-$ and $1.7 \times 10^{-4} \text{ M HPO}_4^-$

¹Sylvania F40-GRO Gro-Lux

provided ample reserves of these nutrients. Carbon was initially available from approximately 2.5 \times 10⁻⁴ M HCO₃⁻.

TABLE VII

Concentration Reagent g/1 Approx. M MgSO₄ · nH₂O assay 63.8% MgSO₄ $8 \times 10^{-4} Mg^{++}$ 0.16 10-3 Ca++ $Ca(NO_3)_2 \cdot 4H_2O$ 0.24 2.5 X 10⁻⁴ CO₃* NaCO₃ 0.026 10^{-3} Na⁺ 1.7 X 10⁻⁴ PO₄³⁻ Na₃PO₄ 12H₂O 0.063 10⁻⁵ K⁺ KC1 0.0007 1% FeCl₂ soln 0.1 ml/ladjust to pH = 8.2 with HClO₄

CULTURE MEDIUM FOR AQUARIUM MONITORING

The solution, after mixing and pH adjustment, was allowed to equilibrate with stirring in the aquarium for 24 hrs; then a small amount of <u>Dactylococcopsis</u> filtered from a natural culture was washed into the aquarium solution.
Since multiple depth capability was not required, the five electrodes were placed in the aquarium in direct contact with the surface of the solution. Electrode leads were passed through a hole in the side of the darkbox for connection to the multiplexer of the monitoring system. Data from each of the five electrodes was recorded every 12 minutes for 7 weeks. Data was taken in this manner continuously except for temporary shutdowns required for instrument service and electrode calibration.

Cell counts were taken daily by filtering a small aliquot of culture solution through a 0.45µ Millipore filter and averaging counts in ten microscope fields. No cell identifiable as other than <u>Dactylococ-</u> <u>copsis</u> were ever observed during counting. Gravimetric determination of suspended matter gave a factor of 38.61 mg/1/10⁶ cells/ml for converting cell counts to dry weight biomass.

As shown in Figure 23b an exponential growth curve started to form during the first week, but about the tenth day, growth became more or less linear with time at an approximate rate of 4.44 mg/l/day. Very little carbon was available in the original culture solution; therefore the main source of carbon for the observed biomass increase must have been atmospheric CO_2 . An estimate of CO_2 necessary to produce a given biomass can be calculated from the very simplified photosynthesis reaction, Equation 68.

$$CO_2 + H_2O$$
 photosynthesis $CH_2O + O_2$ (68)

Figure 23. Dactylococcopsis Cell Counts and Daily Mean Bicarbonate Ion Activity During Continuous Monitoring

The observed biomass increase can be attributed to a daily influx of CO_2 , $\Delta[CO_2]/\Delta t = +6.5 \text{ mg/l/day}$, which corresponds to a surface diffusion rate of 0.16 mg/cm²/day.

The instantaneous diffusion rate of CO_2 , $d[CO_2]/dt$, depends upon the partial pressure of CO_2 in the water phase, a value which exhibits diurnal variation. The above rates may be considered as daily totals which are nearly constant for each 24 hr period.

The quantity of inorganic carbon available as HCO_3^- is depicted in Figure 23a where daily averages of $\{HCO_3^-\}$ are plotted on the same time scale as the growth curve in Figure 23b. By the eighth day $\{HCO_3^-\}$ had been decreased by fourfold, and biomass uptake decreased it even further during the following two weeks. The rise in $\{HCO_3^-\}$ about the twentieth day may have been due to decomposition of organic matter. Near the end of the experiment, $\{HCO_3^-\}$ apparently was asymptotically approaching a constant value well below that of the starting solution.

The paper tape data file was processed by computer. Calculations made were the same as those previously described for lake data. Chemical activity values were tabulated and plotted vs time for each day. Line printer plots for selected days are shown in Figures 24 through 28. Activity units are moles/l scaled according to the key below each graph and time of day is in hours and hundredths of hours. It is important to note that activity scales differ among the graphs.

Analysis of this data for the 50 day period monitored will require an interdisciplinary approach, and such analysis was not available at the time of this writing. A few selected graphs are presented here with general comment and should be regarded as examples of information available from continuous monitoring of aquatic ecosystems.

In Figure 24, during the second day of the experiment, biomass was small and only slight diurnal variation of the graphed parameters is evident. The metal ion activities, with the exception of some unexplained variation in $\{Mg^{++}\}$, were nearly constant for the day. Bicarbonate ion activity decreased slightly throughout the second day which is consistent with Figure 23a.

By the twelfth day, the rate of biomass increase became dependent on diffusion rate of CO_2 . CO_2 and $CO_3^{=}$ in Figure 25 show the expected diurnal cycle while all the other chemical species were relatively constant. The rapid fall in CO_2 occurs at 0600 hrs when the light source turned on. CO_2 rise started shortly after 1800 hrs when the he light was turned off. HCO_3^{-} and H^+ indicate a very small diurnal variation.

On the eighteenth day cell counts were 1.2×10^6 per ml and HCO_3^- activity was near the minimum in Figure 23. The computer plot for day number 18, Figure 26, shows a marked diurnal cycle for HCO_3^- in contrast with practically constant HCO_3^- in Figure 25. Even though the entire carbonate system was at very low activity, diurnal

Figure 24. Monitor Data of Algae Culture During Experiment Day Two

72 216

. ОЗ

Figure 25. Monitor Data of Algae Culture During Experiment Day Twelve

Eighteen

72 3 3

cycles are apparent in both CO_2 and $CO_3^=$. As would be expected, the metal ions were not affected by the changes in very low HCO_3^- and $CO_3^=$ activities. The nonlinearity of Na⁺ which cannot be accounted for by formation of HCO_3^- or $CO_3^=$ complexes, was probably due to response of the Na⁺ electrode to H⁺. The Na⁺ electrode manufacturer's selectivity condition for no H⁺ interference of [Na⁺] > 10^4 [H⁺] was just barely met by this solution.

On the twenty-nineth day of the experiment, total carbonate activity increased and the cell count doubled from that of the eighteenth day. The H⁺ and CO₂ on the twenty-nineth day in Figure 27 are nearly parallel through the 24 hr period. A steep decrease in CO₂ activity at 0600 hrs occured as usual. The CO₃⁼ peak increased earlier in the day than previously, but the trailing edge of the peak remained at 1800 hrs. Although magnitude of diurnal variation of HCO₃⁻ was larger than before, the daily average HCO₃⁻ activity was smaller on the twenty-nineth day than on the eighteenth.

Data for day number fourty-five in Figure 28 shows a stable system in which the CO_2 component exhibits typical diurnal characteristics. The HCO_3^- curve appears to be a damped function of CO_2 . H⁺ closely paralleling CO_2 indicates a system with low buffer capacity. The graph is dominated by the very large CO_3^- peak which became wider throughout the experiment. On the fourty-fifth day the leading edge of the CO_3^- peak was moved up to 0600 hrs, and the trailing edge

Figure 28. Monitor Data of Algae Culture During Experiment Day Fourty-five

remained at 1800 hrs. The divalent cations show no significant diurnal variation, and Na^+ changes may again be attributed to Na^+ electrode response to H^+ .

The carbonate complex activities in Table II were also calculated and plotted for each day. Since the metal ion activities were nearly constant throughout each 24 hr period, the carbonate complex curves show the same structure as each respective anion curve. The line printer graph of the fourty-fifth day is presented in Figure 29 as an example.

Figure 29. Carbonate Complexes of Algae Culture During Experiment Day Fourty-five

CHAPTER VIII

SUMMARY

The primary objective of this research was to develop a multiple-depth continuous monitoring system that would record ionselective electrode data on a computer compatible medium. The monitoring system described in Chapter III has not undergone field evaluation, but has proved itself successful for monitoring in the laboratory.

This monitoring system will accept up to 25 sensor inputs, of which 19 can be high impedance electrodes. A facility for switching 18 reference electrodes was also provided. In its present form, the monitoring system will accept any analog signal between -1 and +1 volts. Digital mV data with sample and sensor identification codes is punched on computer readable paper tape. A provision is available for optional recording of time code. Water samples can be pumped from multiple depths through an electrode chamber. Samples and sensors can be scanned automatically and data for each can be punched under programmed control. The use of current saturated switching circuits in the digital logic modules will help insure error free operation under adverse environmental conditions.

All of the major inorganic carbonate species known to exist in

• • •

many natural waters can be determined by measurement of H^+ , CO_2 , Na^+ , Ca^{++} , and Mg^{++} . The equilibria calculations require determination of ion activities which suggests the choice of ion-selective electrodes as chemical sensors. H^+ , Na^+ , and Ca^{++} were monitored directly by use of commercial electrodes and a suitable reference electrode. A CO_2 electrode of the Severinghaus type was developed to a degree where it could be used in natural water systems. Since there is no Mg^{++} electrode commercially available, a divalent cation electrode was used to measure Mg^{++} with only marginal success. All electrodes were found to exhibit drift of varying degrees which is a severe drawback for sensors to be used for continuous monitoring.

The function of the monitoring system has been demonstrated by monitoring a laboratory algae culture. The data that was obtained and analyzed from this experiment provided an example of diurnal data that could be expected from monitoring in a natural system. This laboratory monitoring experiment also pointed out that much valuable information about aquatic ecosystems may be obtained from laboratory studies where controlled conditions specify variables that may contain high degrees of uncertainty in the field.

The measuring techniques to be used for continuous monitoring were applied to analysis of grab samples from Lake Carl Blackwell. The chemical data along with biological studies has provided a means for formulating a general description of abiotic-biological interactions in that particular water system. A background study is therefore available prior to more comprehensive efforts which should be implemented on a continuous basis. The data from Lake Carl Blackwell has also demonstrated the rate of change to be expected from environmental measurements and will be valuable for estimating frequency of future sampling.

Aquatic ecosystems are dynamic; therefore, in lieu of adequate theories for describing life processes, the determination of interconnections between abiotic and biological systems will require continuous monitoring. Both quanitative and qualitative data are required and information is needed for all interconnecting systems in a body of water. The carbonate chemical system certainly undergoes diurnal variations. In order to achieve continuous monitoring, measurements should be made on the chemical system described in Chapter VI at a rate of once per hour at 1 m depth intervals. The algae and bacteria populations in Figure 9 showed large weekly variations. Algae and bacteria counts may have to be made once per day or more often to enable derivation of continuous functions to adequately describe the population dynamics. Biological data should also be taken at multiple depths. Zooplankton were not considered in this study, but should be included in future efforts.

The monitoring techniques which have been developed during this study are applicable to obtaining continuous chemical data in

natural systems. Technology, unfortunately, has not progressed to the point where automated methods are available for determining the desired biological parameters. Highly automated particle counters are a step in the right direction, but they offer little information for discriminating different kinds of particles. Even though the biologist is presently fettered to his petri dish and microscope, the sampling part of biological investigations could be automated by integration with the chemical monitoring system. Computer data reduction of biological data is readily available when a mathematical analysis can be utilized.

Natural ecosystems consist of a large number of highly connected interrelated components. The various components can be described in terms of particular scientific disciplines, but nature is not delineated into specific disciplines. For this reason, a scientific study of aquatic ecosystems requires a simultaneous approach through several fields of study. Interdisciplinary cooperation and communication among scientists is required, for if a part of the whole system is neglected, or even minimized, a realistic explanation of any other part may be impossible.

BIBLIOGRAPHY

- (1) Porterfield, H. W. Oceanology International, 22-4 (Oct., 1970)
- (2) Keyser, A. H. Chem. Eng. Progr. 60, 53-6 (1964)
- (3) Falls, C. P. "Chemical Equilibria and Dynamics of Keystone Reservoir", Ph. D. Dissertation, Oklahoma State University, 1969
- (4) Chave, Keith E. J. Chem. Educ., 1971, 148-51
- (5) Davies, C. W. <u>Ion Association</u>, Butterworths, London, 1962, pp. 39-42
- (6) Garrels, R. M. and M. E Thompson. Amer. J. Sci. <u>260</u>, 57-66 (1962)
- (7) Pytkowicz, R. M., I. W. Duedall, and D. N. Connors. Science 152, 640-2 (1966)
- (8) Wigley, T. M. L. Can. J. Earth Sci. 8, 468-76 (1971)
- (9) Hosteller, P. B. Univ. of Missouri, Columbia, Missouri, Water Resources Scientific Information Center, U.S. Department of the Interior, "Water Resources Research Catalog" 6: 1.0064 (1970)
- (10) Lee, G. Fred and Alfred W. Hoadley. <u>Chemical Equilibrium</u> in Natural Water Systems, Advan. Chem. Ser. No. 67, 319-38 (1967)
- (11) Ingols, R. S. and Mine E Enginun. <u>Trace Inorganics in Water</u>, Advan. Chem. Ser. No. 73, 143-8 (1968)
- (12) Tyree, Jr., S. Y. <u>Chemical Equilibrium in Natural Water Sys</u>tems, Advan. Chem. Ser. No. 67, 194 (1967)
- (13) Morgan, James J. Chemical Equilibrium in Natural Water Systems, Advan. Chem. Ser. No. 67, 11-6 (1967)

- (14) Babcock, Russell H. J. Amer. Water Works Ass. <u>62</u>, 145-8 (1970)
- (15) Kelly, I. M. Ann. N. Y. Acad. Sci. 87, 944 (1960)
- (16) Fishman, Marvin J. and David E. Erdmann. Anal. Chem. <u>43</u>, 356R-388R (1971)
- (17) Sheen, R. T. and E. J. Serfass. Ann. N. Y. Acad. Sci. <u>87</u>, 844-56 (1960)
- (18) Fuhrmann, Hans. U.S. 2,995,425, Aug. 8, 1961
- (19) Durst, Richard A. Ion-Selective Electrodes, R. A. Durst ed., National Bureau of Standards Special Publication 314, 1969, pp. 375-414
- (20) Rechnitz, G. A. Chem. Eng. News 45 (6), 146-58 (1967)
- (21) Riseman, Jean M. American Laboratory, 32-9 (July, 1969)
- (22) Weber, Stephen J. American Laboratory, 15-23 (July, 1970)
- (23) Durst, Richard A. Industrial Research, 36-9 (Nov., 1970)
- (24) Noebels, H. J. Ann. N. Y. Acad. Sci. 87,934-43 (1960)
- (25) Bulletin No. B-5-054, Calgon Corporation, Pittsburgh, Pennsylvania, 1968
- (26) Specifications Sheet No. INS1010 WA 568 10M, Union Carbide Corporation, White Plains, New York
- (27) Bulletin 7117-372, Montedoro Corporation, San Luis Obispo, California
- (28) Description and Specifications of Model SM-1250, Water Quality Monitoring System, Raytheon Corporation, Environmental Systems Center, Portsmouth, Rhode Island
- (29) Hydrolab Corporation, Austin, Texas
- (30) Specific Ion Electrode Technology 1, 10-1 (1969)
- (31) James, W. G. and A. H. Fisher. Chem. & Ind. 1971, 1435-7

- (32) Isreeli, Jack, Milton Pelavin, and Gerald Kessler. Ann. N. Y. Acad. Sci. 87, 636-49
- (33) Marten, J. F. Effluent Water Treat. J. 5, 617-19 (1965)
- (34) Welch, Robin I. Proceedings of the Eutrophication-Biostimulation Assessment Workshop 1969, 227-42
- (35) Obrien, James E. and Rolf A. Olsen. Final Report, FWPCA Demonstration Project Grant WPD 119-01 (RI) 67
- (36) Andelman, Julian B. Jour. Water Pollution Control Federation 40, 1844-60
- (37) Ross, James W. <u>Ion-Selective Electrodes</u>, R. A. Durst, ed., National Bureau of Standards Special Publication 314, 1969, pp. 60-1
- (38) Bates, Roger G. and Marinus Alfenaar. <u>Ion-Selective Elec-</u> <u>trodes</u>, R. A. Durst, ed., National Bureau of Standards <u>Special Publication 314</u>, 1969, pp. 191-214
- (39) Ross, J. W. Science 156, 1378-9 (1967)
- Light, Truman S. <u>Ion-Selective Electrodes</u>, R A. Durst, ed., National Bureau of Standards Special Publication 314, 1969, pp. 354-7
- (41) deBethune, A. J., T. S. Licht, and N. Swendeman. Jour. Electro. Chem. Soc. 106, 616-25 (1959)
- (42) Moody, G. J., R. B. Oke, and John D. R. Thomas. Analyst (London) 95, 910-8 (1970)
- (43) Herbert, Normand C. and Martin E. Nordberg. U.S.3, 578, 579
- (44) Thompson, Mary M. Science 153, 866-7 (1966)
- (45) Chem. & Eng. News 44 (5) 24 (1966)
- (46) Specific Ion Electrode Technology 2, 21-3 (1970)
- (47) Rechnitz, G. A., G. H. Fricke and M. S. Mohan. Anal. Chem. 44, 1098-9 (1972)

- (48) Severinghaus, J. W. Ann. N. Y. Acad. Sci. 148, 115-32 (1968)
- (49) Ehrenburg, J. P. and G. B. Smit. Anal. Chim. Acta <u>29</u>, 1-9 (1963) (in French)
- (50) APHA. "Standard Methods for the Examination of Water and Wastewater", 12th ed., APHA, New York, N. Y., 1965
- (51) Schunk, D. F. Ann. N. Y. Acad. Sci. 87, 924-33 (1960)
- (52) Robinson, Richard H. U.S. 3, 313, 720, Apr. 11, 1967, 5 pp.
- (53) Capuano, I. A. U.S. Patent 3, 218, 242, November, 1965
- (54) Kieselbach, R. Anal. Chem. 26, 1312 (1954)
- (55) Molof, A. H. and N. S. Zaleiko. Purdue Univ., Eng. Bull., Ext. Ser. 117, 540-51 (1964)
- (56) Suzuki, Hideo. U.S. 3, 374, 065, Mar. 19, 1968, 3 pp.
- (57) Millar, A. S. Effluent Water Treat. J. 7, 468-9, 471-3 (1967)
- (58) Diggens, A. A. and W. D. Meredith. Meas. Contr. <u>4</u> (3), T48 (1971)
- (59) Weiss, Charles M. and Ray T. Oglesby. Jour. Amer. Water Works Assoc. 1963, 1213-19
- (60) Kramer, J. R. Great Lakes Res. Div., Inst. Sci. Tech., Univ. Mich. Pub. No. 7, 27-56 (1961)
- (61) Leifeste, Donald K. and Barney Popkin. Texas Water Development Board Report 85
- (62) Nicholls, I. G. and B. W. Logan. <u>The Collection and Process-</u> <u>ing of Field Data</u>, E. F. Bradley and O. T. Denmead, ed., John Wiley and Sons, New York, 1967, pp. 229-241
- (63) Sillen, Lars Gunmar. Equilibrium Concepts in Natural Water Chemistry, Advan. Chem. Ser. No. 67, 45-56 (1967)
- (64) Faust, Allen R. "Continuous Monitoring of Dissolved Oxygen Concentration and Temperature at Multiple Depths in a Reservoir", M.S. Thesis, Oklahoma State University, 1972

- (65) Rice, G. K. and L. P. Varga. "Description and Operation of the ÓSU Water Monitoring System", Special Publication, Reservoir Research Center, Oklahoma State University, in preparation
- (66) Covington, Arthur K. <u>Ion-Selective Electrodes</u>, R. A. Durst, ed., National Bureau of Standards Special Publication 314, 1969, pp. 107-38
- (67) Ives, D. J. G. and G. J. Janz, eds. <u>Reference Electrodes</u>, Academic Press, New York, 1961, 651 pp.
- (68) Specific Ion Electrode Technology 1, 21-3 (1969)
- (69) Beckman Instructions 678-0, Beckman Instruments, Inc., 1966
- (70) Beckman Instructions 1155-B, Beckman Instruments, Inc., 1964
- (71) Instruction Manual Calcium Activity Electrode Model 92-20, Orion Research Inc., 1966
- (72) Instruction Manual Divalent Cation Electrode Model 92-32, Orion Research Inc., 1967
- (73) Sandblom, J., G. Eisenman, and J. L. Walker Jr. J. Phys. Chem. <u>71</u>, 3862-70 (1967)
- (74) Eisenman, George. <u>Ion-Selective Electrodes</u>, R. A. Durst, ed., National Bureau of Standards Special Publication 314, 1969, pp. 1-56
- (75) Eisenman, George. Anal. Chem. 40, 310-20 (1968)
- (76) Srinivasan, K. and G. A. Rechnitz. Anal. Chem. <u>41</u>, 1203-8 (1969)
- (77) Severinghaus, J. W. and A. F. Bradley. Journal of Applied Physiology 13, 515-20 (1958)
 - (78) Galletti, Pierre M., Michael T. Snider, and Daniele Silbert-Aiden. Medical Research Engineering 5, 20-3 (1966)
 - (79) Harned, H. S., and R. Davis, Jr. J. Am. Chem. Soc. <u>65</u>, 2030-7 (1943)

- (80) Norton, Joseph L. "The Distribution, Character and Abundance of Sediments in a 3000-Acre Impoundment in Payne County, Oklahoma", M.S. Thesis, Oklahoma State University, 1968
- (81) Robertson, David E. Anal. Chem. 40, 1067-72 (1968)
- (82) Robertson, David E. Anal. Chim. Acta 42, 533-6 (1968)
- (83) Faust, Allen R. Lake Carl Blackwell Ecosystem Analysis Program (unpub. data)
- (84) Orr. Jack L. Lake Carl Blackwell Ecosystem Analysis Program (unpub. data)
- (85) Garrels, Robert M. and Charles L. Christ. <u>Solutions, Miner-als, and Equilibria</u>, Harper and Row, New York, 1965, 450 pp.
- (86) Sillen, L. G. and A. E. Martell. Spec. Publ. 17, The Chemical Society, London, 1964
- (87) Kramer, J. R. Science 146, 637 (1964)
- (88) Butler, James N. Ionic Equilibrium, Addison-Wesley, Reading, Mass., 1964, p. 465
- (89) Eckfeldt, E. L. ISA Transactions 9, 37-44 (1970)
- (90) Eynon, J. U. American Laboratory (Sept., 1970)
- (91) Specific Ion Electrode Technology 2, 5-7 (1970)
- (92) Ibid., p. 34

APPENDIX A

CARBON DIOXIDE ELECTRODE

CALIBRATION PROGRAM

FORTRAN IV	G	LEVI	EL 19	MAIN	DATE =	72162	17/44/09	
		ç	PROGRAM	TO CALIBRATE H+ ELECTRODE	AND THEN CAL	I BRATE C	02 ELECTRODE FROM	
		C	PH DATA	EQUATIONS ASSUME A PURE	AQUEDUS CARE	SONATE SO	LUTION.	
0001			REAL F	(MVI 399,2),CU2CUNI 399),KI	, K2 , KC02 , KW	Z(399),	LOGCO2(199) ,	
			EX(50	,PH(10),HMV(10)				
0002			INTEG	ER UNIT #2 (8), SP ILL #2 (8), MV	8),PRJB+2(8)	• SAMPL * 2	(8),PROBE#2(9	
			£99) , S/	MPLE*2(999)				
0003		_	DATA	(/0/,J/0/,L/-1/,N/0/	<u>.</u>			
		C	READ	1+ ELECTRODE CALIBRATION DA	TA. VPTS =	NUMBER J	F CALIBRATION PUIN	r s
0004			REAU	<pre>L1, NPTS, (PH([], HMV([), [=];</pre>	NPTS)			
0005			PRINT	13				
0006		1	L3 FURMAT	IT H+ ELECTRODE CALIBRAT	IUN DATA: ")			
0007			PRINT	11,NPTS, (PH(1),HMV(1),1=L)	NPTS			
.0008		1	LI FORMAT	(12/(2+10.1))				
005			CALLI	ESQRE (NPTS, HMV, PH, AH, BH)				
0010			PRINT	12, AH, BH			•	
0011		1	2 FURMAT	[(* PH=*,E13.6,* MV + *,E]	3.61			
0012			6 J=J+1					
		C	READ	ALL PAPER TAPE DATA				
0013			READ	(5,1,END=9) (UNIT(M),SPILL(MJ, MV(M), PRC	B(M) , SAM	PL(M),M=1,8)	
0014			1 FORMA	[[8[2] 1, [4, 2] 2]]				
0015			DO 2 M	1=1,8				
0016			IF (U	NIT(M) .EQ. 0) GO TO 9				
0017			IF (PF	(OB(M) .EQ. 1) K=K+1				
0018			· IF (U	NIT(M) .NE.1) PRINT 3, UNIT	(M),J			
0019			3 FORMA	[(UNIT NUMBER , 12, ON (ARD ,16]			
0020			IF (SP	PILL(M) .EQ. 5) AMV =(999	9-MV(M))/10.	0		
0021			IF (SI	PILL(M) .EQ. 3) AMV =-MV(M)/10.0			
0022			IF (SP	PILL(M) .NE. 3 .AND. SPILL	M) .NE. 5) F	PRINT 5, 3	SPILL(M),J	
0023			5 FORMAT	I (SPILL COUNTER CODE IS	,I2, ON CAP	(D°,16)		
0024			IF (P)	ROB(M).NE.1 .AND. PROB(M).	NE.2 PRIN	IT 4, PROB	(M),J	
0025			4 FURMA	<pre>(* PROBE NO. IS*,I3,* ON C</pre>	ARU ,16}			
0026			2 RMV (K	PROB(M))=AMV				
0027			GO TO	· 6	1			
		C	K VALUES	S ARE DISSOCIATION CONSTANT	`S			
002.8			9 K1=10.	0**(-6.352)				
0029			К 2=10.	0**(-10.332)			•	
0030			KC02=1	LO.0**(-2.589)				
0031			K₩=1.0)E-14			-	
0032			00 7	[=1,K				
0033			X(I)=	RMV(I,2)				
		C	H = H + (CONC.				
CC34			H=10.(D**(-AH*RMV(I,1)-BH)				
0035			CORCUM	\{[)=	K2-KW) *H**2	2-K1*Kw*H	-K1*K2*KW}/	
			€ (K1×	(H**2+2*K2*H) * (1+K1/H+K1*	K2/H**2}))/(1+KCD21		
0036			7 LOGCO	2(I)=ALOG10(CO2CON(I))				
0037			PRINT	10,(CO2CON(I),RMV(I,2),I=)	.•K)			
C C 3 8			CALL I	LESQRE(K,X ,LOGCO2 ,A,B)				
0039			PRINT	8, A, B				
0040			8 FORMAI	[(*0 LOG (CO2) = *,E13.6,*	MV + ",E13.6	b		
C041		1	LO FORMAI	11- CO2 CONC. MV* / ()	PE12.4.0PF8.	1))		
0042			CALL F	PLOT(X ,0,CO2CON,5,Z,0,K,)	,1,0,2,0,2)			
CC43			STOP					
CC44			END					

PAGE 0001

FORTRAN IV G LEVEL	. 19 LESGRE	DATE = 72162	17/44/09	PAGE 0001	
0001 C C C C C C C C C C C C C C C C C C	SUBROUTINE LESQRE (N, X, Y, A, B) THIS IS A SUBPROGRAM FOR DETERMINING INTERCEPT (B) FOR A LINEAR PLOT BY T Y = AX + B N = NUMBER OF POINTS ON THE GRAPH SUM = SUM UF THE X VALUES SUN = SUM UF THE Y VALUES DIMENSION $x(N)$, $y(N)$ SUM = 0.0 DO 1 I = 1.N SUM = SUM + $x(I)$ L SUN = SUN + $y(I)$ R = N XAVE = SUM/R YAVE = SUN/R SUM1 = 0.0 DO 2 I = 1.N SUM1 = 0.0 DO 2 I = 1.N SUM1 = SUM1 + $(fx(I) - xAVE)*(y(I) - 2SUM1 = SUM1 + (fx(I) - xAVE)*2 A = SUM1/SUM1 B = YAVE - A*XAVE RETURN END$	THE SLOPE (A) AND THE HE LEAST SQUARES METHOD YAVE))			

• .

123

		5.47255-0	6 -191.8
		4 97445-0	6 _102 5
		4 37545-0	5 -192 •J
		4. 5/54C-U	6 -193.0
H+ ELECTRU	DE CALIBR	ATION DATA: 3.9270E-0	0 -193.5
8		3.5518E-0	5 -194.2
5.0	130.2	3.1874E-C	6 -194.6
5.6	93.4	2.8824E-0	6 -195+1
6.0	69.3	2.6470E+0	5 -195.4
6.6	33.6	2.4120E-C	6 -195.9
7.0	11.8	2.2148E-0	6 -196.5
7.4	-19.4	2.033 CE-0	6 -196.9
8.0	-53.1	1.85255-0	6 -197.3
8.6	-92 1	1 70065-0	6 -197.8
040 146749	-02.11		4 -109 1
PH=-0.100100			0 -190+1
			-190.0
		1.3366E-U	5 -199.1
CC2 CONC.	MV	1.2546E-0	5 -199.5
3.1989E-C3	-136.9	1.16946-0	6 -199.9
2.7645E-03	-137.9	1.0983E-0	5 - 200.1
2.4262E-03	-139.6	1.0315E-0	6 -200.5
2.1456E-03	-141.2	9.7637E-0	7 -200.9
1.8975E-03	-142.7	9,24105-0	7 -201.2
1.67816-03	-145-0	8.7455E-C	7 -201-6
1 405 55-03	-145 0	8 34155-0	7 -201.9
1 21255-02	-143.0	7 05575-0	7 -201.5
1.51252-03	-141.0		-202.5
1.1607E-03	-148.8	1.04105-0	7 -202.5
1.03446-03	-150.6	(.3510E-0	7 -202.9
9.1479E-04	-151.9	7.C098E-0	7 -203.2
7,9668E-04	-153.5	6.8450E-0	7 - 203.4
7.0999E-04	-154.8	6.6312E-0	7 -203.8
6.2789E-04	-156.4	6.3729E-0	7 -204.2
5.5104E-04	-157.7	6 • 2226E-0	7 -204.3
4-8732F-04	-158.9	6-0757E-0	7 -204.5
4.30975-04	-160.3	5.93225-0	7 -204.8
3 763 36-04	-161 6	5 79205-0	7 - 205 1
3.744.05.04	-161.8		7 -2051
3+34405-04	-102.9	5.63300-0	7 205.5
2.9129E-04	-164.2	2. 202 3E-U	7 -205.6
2.5/61E-04	-165.3	5.4771E-U	1 -205.1
2.2608E-04	-166.9	5.3902E-0	7 -206.0
1.9840E-04	-167.9	5.3046E-0	7 -206.2
1.7146E-04	-169.1	5.2203E-0	7 -206.6
1.5163E-04	-170.2	5.1786E-0	7 -206.7
1.3205E-04	-171.4	5.0963E-0	7 -207.0
1.1589E-C4	-172.4	5.01525-0	7 -207.1
1.0092E+04	-174-0	5,0152E=0	7 -207.3
8 7889E-05	-174.6	4. C353E-C	7 -207.5
7 46305-05	-176 1	4 03535-0	7 - 207 9
1.03370-05	-176 7	4.73332-0	7 -207.9
0.11085-05	-110.1	4.89385-0	7 -201.9
5.8045E-05	-177.9	4. 556 /E= U	7 -208.2
5.0548E-05	-178.7	4.8178E-0	7 -208.4
4.4019E-05	-179.7	4.7792E-0	7 -208.5
3.83336-05	-180.5	4.77926-0	7 -208.7
3.3381E-05	-181.6	4.7409E-0	7 -208.7
2.9292E-05	-182.3	4.7409E-0	7 -208.9
2.5312E-C5	-183.3	4-7029E-0	7 -209.2
2.22115-05	-183.9	4.70295-0	7 -209.3
1 01075-06	-165 2	4 62785-0	7 -209.5
1 0710.0	_125 0	4.02102-0	
ない タイユビナビン	-102.7	· · · · · · · · · · · · · · · · · · ·	
1//E-05	~100.4	LOG (CO2)	= 0.5928
1.2806E-05	-187.4		
1.1376E-05	-189.5		
9.9805E-06	-138.6		
8.7561E-06	-189.3		
7.7411E-06	-190.1		
6.8963E-06	-191.7		
6.14345-04	-191-0		
00 1 40 4C - CO			

2E-07	-208.7			
9E-07	-208.7			
96-07	-208.9			
9E-07	-209.2			
96-07	-209.3			
8E-07	-209.5			

= 0.592895E-01 MV + 0.604245E-01

124

~

-- ---

.

APPENDIX B

WATER ANALYSIS DATA REDUCTION PROGRAM

FORTRAN	١v	GL	EVEL	19	MAIN	DATE	= 72162	17/43/57	PAGE 0001
0.001			A A A	EAL INTOP	T (5, 100), SLOPE(5, 100)	,ION(13,100)	.XION(10) .X	DEPTH(10) .	
0002				NTEGER YR	(50).MD(50).DY(50).	CYR(5.5	0) .CMD(5.50) .CDY (5.50).	
			- 13	ICAL (5)/5+	0/.N/1/.I/1/.JCAL/1/.	J/1/.BLNK/	*/+H/*H+	*/.CD2	
			3	+CO2 1/.1	A/ NA+ / CA / CA++*/	,M / M++ 1/,			
			43	ULT(13),		STA (50), DEPTH(50)	,WORD(B)	
			3	/6 *! ! ;	*DEPT*,*H */,	KHAR (13)/	H4, 10 1, 1N 1,	"A", "M", "B",	
			3	********	*,*G*,*S*,*O*,*D*/				
0003			ł	1003=10**6	.352				
C004				03 =10**10	.332				
0005			C	AHC03=10*	*1.26				
0006			(CACO3=10 **	3.20				
C007			, i	IGHC03 =1 0*	*1.16				
0008				IGC 03= 10**	3.40				
0009				NAHCU3=10	≠ [-0.25]				
0010		~		NACU3=10##					
0011		L		DEANK LAKE	PULLUWS THE CALIBRAT	IUN JAIA			
0011			18 4	CEAU LIIX	+17K,1MU,1UT,X3LUPC,X	1N1 513-41			
0012				UKMAI LAN	+ 3A+312+13A+E13+0+0A+	[]].0/			
0015				LF, LIX + E4	- BLNKI GO 10 2				
COLA		r	10	1 0 5 4 4 1 4 5	-A THROUGH THE EALLA	UTNC STATEME	NTS. AN EDD		JUCN
		Č	1 1		AN APPAY SUBSERIDT I	NOTCATING IN		TA	
661.5		Ŭ		E IIX . EG	(-H) I=1				
0016				F TX F	. (02) I≠2				
0017			.]	F (IX .EG	NA) I=3				
CC18			i	F (IX .EG	. CA) I=4				
0019			1	IF (IX .EL	• M) I=5				
0020			7	CAL(I)=NO	AL (I)+1				
0021			0	YR [I + NCAL	(I.))=IYR				
0022			(MO(I, NCAL	(I))=IMO				
0023			C C	DY (I , NCAL	(I))=IDY				
0024			9	SLOPE(I, NC	AL(I))=XSLOPE				
0025			1	INTEPT(I,N	ICAL(I))=XINT				
CC26			Ç	GO TO 18					
0027			20	10 6 K≖N,5	0				
		C	BL /	NK CARD #	WST FOLLOW INPUT DATA				
0028			F	EAD (5.7.	END=8) YR(K),MO(K),DY	(K),STA(K),C)EPTH(K),(IO	N(I,K),I=1,5	
			_ & ,) 					
0029			7 6	ORMAT (10	X, 312, 4X, 11, 1X, 12, 6X,	5F10.1)	NG(X) 100	DW11 50	
0690				F LONUIOL	TO O	. MULLI .EQ.	MULKI AND	• DAILY • EA•	
0031			, CL	TINJJ 60					
0031		~	0 1	NT COLUMN					
003.2		L	0 0	RI CULUMIN	I HEADINGS				
0032			20 6		1.17.10ATEL. 67.1101.	101.4444.131	. 10021.128.	INA+1.12X.	
0033			201	CA++ \$.11 x	- # MG++ # -11 ¥ - # HC O3-# -1	08.10031/1	002 11241	NAT TREAT	
		C	к-1	= NUMBER	OF DATA POINTS PER D				
6634		v		00=K-1		~ `			
0035			C	Ω 10 J≠1.	KDO				
0036			P	RINT 11 Y	R(J),MO(J),DY(J),STA(J),DEPTH(J)			
CC37			11 F	ORMAT ('	*,312, 5X,11,*-*,12)				
0035			5	0 13 I=1.	5				
		C	CHE	CK FOR LA	ST CALIBRATION DATA S	ET			
0035			L	F (JCAL .	GE. NCAL(I)) GO TO 13				
		C	UPD	ATÉ CALIB	RATION EQUATIONS				
0040			19 1	F (YR(J)-	CYR(I, JCAL+1)) 13,14,	15			
CC41			14 I	F (MO(J)-	CMU(I, JCAL+1)) 13,16,	15			

FCRTRAN	٢V	G	LEV	EL 19	` MAIN		DATE = 72162	17/43/57
0042				16 IF ()	Y(J)-CDY(I,JCAL+1))	13,13,15		
0043				15 JUAL				
0044					J 19 }→10 0##(INTCOT(I.			
0045				I DINE	5.1)=10.0++(1010P1(1)	}	113CA21- 100011311	
0040				LONG	= 1) =1 ON(2 + 1) / 1 ON(1 + 1	,)/+CD3		
0048				LONG	$7_{-1} = 10N(6_{-1})/10N(1_{-1})$	1/003		
0049				10 PRIN	[17.(ION(I,J),I=1.7)]			
0050				17 FORM	AT(*+*.15X.197F15.3)			
0051			С	CALCUL	TE AND PRINT DTHER C	ARBONATE SPE	CIES FROM EQUILIB	RIUM CONSTANTS
0051				25 FOOM	1 37 1 4 4 - 1 1 4 6 4 7 6 4 4 4		AHC0348	34. OV. 14 CHC
0052				50. FURM 603+*	9X, MGCD3, 9X, NAH	CO3*, 9X, NA	1003-17)	5-1 9A1-HUNC
C053				DO 3.	3 J=1,KDO			
0054				PRIN	[11, YR (J), MD(J), UY(J	J STALJJ DEI	PIHEDI	
0055				LUNG	3, J) = 10N(4, J) = 10N(6, J	1*CAHCU3		
0056				IONE	3;J)=IUN(4;J)*IUN(7;J	J#LACU3		
0057				IUNC	LO,J]=IUN[5,J]#IUN(6,	JJ#MGHCU3		
0058				IUNC	[1, J] = [UN(5, J) + [UN(7, J)]	41 #MGCU3		
C 05 9				IUNC	[2, J] =[UN(3, J] * [UN(6,	JJ #NAHGUS		
0060				TONC	[3, J]= [UN(3, J] *[UN(7,	JJ#NACU3		
0061				33 PRIN	1 30, (1UN (JJ, J1, JJ=8,	131		
0062			~	36 FUKM	AI (+• ,15X,1P0E15.3)			
			C C					
			č.		TA FOR FACH DAY BY	TATION		
004.3			C	PLUID	ATA FUR EACH DAT DT 3	TATION		
0005				 	-0		,	
0045				21 NTIM	-0			
0005				DO L				
0066				1001	-1			
0068				32 KAD-				
0000			r		TEP END SCALING PLOT	S IS CALCINA		EIRST DATA FOR
			č	EACH S	TATION	J IJ CALCUL		
0069				DO 2	1 [=1,13			
0070				21 MULT	(I)= INT(ABS(ALOG10(I	ON(1,M))))+:	L	
CC71				NSIG	=0			
0072				CALL	NUGRID(1)			
0073				28 00 2				
0074				N=0				
0075				00 2	3 J=MaKDU Talila NE Stalila S	0. 70. 24		
0076				1 1 1	STALJI •NE• STALMII G	0 10 24		
0077								
0078				XUEP	H (N)= UEP H (J) (
0079			~	23 XIUN	(N)= 10N(1, J)+10++MULI	(1)		
			ί,	1516=1	AT END OF DAT			
0080				1316	-L 1010 EO 11 KAR-KHAR	(])		
0081				24 17 6	NJIG DEWD VION VOEDTU	-N1		
0082				ZZ UALL	FLZGINAR IN UNIADEPIN	4-141	-	
0000				LE U	-1 -1			
0005				0.0 1	 			
0085				26 00 1	29.YR(1),MO(1),DY(1). STA(M)		
0000				20 6064	AT (\$1\$,T35,312,T50.4	STATION NON	3ER (.12///)	
0089				27 FURD.	PINT4(32, WOPN)	-		
0000				DOIN	F 38			
CC07				38 E08M	- 35 Δτ. { # Ο # 4 Τ6Ο 4 ΔC ΤΙ VI TV	IN MOLESZI	ITER!)	
0091				15 FUKM	ATTMES .EQ. 11 DEINT	30. (MULTET)	1=1.7)	
0021					114/16J ACM 4 47 FR191	JUTTINE IST	** = * * * *	

PAGE 0002

FORTRAN IV G LEVEL 19 MAIN DATE = 72162 17/43/57 PAGE 0003 0092 30 FORMAT (*0*, 6 5X,*C = (C02)E*,12, 5X,*N = (NA+)E*,12, 5X,*A = (CA++)E*,12, 6 5X,*C = (C02)E*,12, 5X,*T = (C03)E*,12, 5X,*T = (C03)E*,12) 0093 IF (NTIMES .EQ. 2) PRINT 37, (NULT(1),I=8,13) 0093 1F (NTIMES .EQ. 2) PRINT 37, (NULT(1),I=8,13) CACC3)E*,12, 5X,*T = (CACC3)E*,12, 5X,*T = (CACC3)E*,12, 5X,*C = (NAHCC3)E*,12, 5X,*C = (NAHC3)E*,12, 5X,*C = (NAHC3)					•				
0092 30 FURMAT ('0', 6 5X,'K = (102)E+,12, 5X,'N = (NA+)E+,12, 5X,'A = (CA++)E+,12, 6 5X,'K = (NG++)E+,12, 5X,'B = (LAC03-)E+,12, 5X,'C = (C33)E+,12) 0093 1F (NTIMES -60, 2) PAINT 37, HOL (11,1-8,13) 0094 37 FURMAT ('0',TL0,'L = (CAHC03+)E+,12, 5X,'T = (CAC03)E+,12, 5X, 6 (MAC03+)E+,12, 5X,'S = (MGC03)E+,12, 5X,*D = (NAHC03)E+,12, 6 (MAC03+)E+,12) 0095 1F (NTIMES -50, 2) GO TO 34 0096 ID01=8 0097 1D02=13 0098 GO TO 32 0100 34 F (IS G -60, 1) GO TO 25 0101 M=J 0102 GO TO 31 C C C C 0104 YR(1)=YR(K) 0105 MO(1)=HO(K) 0106 DEPTH(1)=DFTH(K) 0107 DO 1=1-10N(1,K) 0108 DEPTH(1)=DFTH(K) 0109 DO 1=1-10N(1,K) 0101 12 I=1,13 0102 GO TO 2 0103 DEPTH(1)=DFTH(K) 0104 25 N=2 0105 DO(1)=FTH(1)=DFTH(K) 0106 DEPTH(1)=DFTH(K) 0107 STAL1)=STA(K) 0108 DEPTH(1)=DFTH(K)		FORTRAN IV G	LEVEL 19	MAIN	DATE = 72	.62 17/4	3/57	PAGE 0003	
C 5A, A = C (0, C,		0092	30 FORMAT ('0', & 5x,'C = (CO2)E'	112, 5X, N = (N	T10,4 A+JE+,12, 5X,4A	$H = (H+)E^{+}, I2,$ = (CA++)E^{+}, I2,			
C094 37 FORMAT (*0*,*TL0;*L = (CAHCO3+)E*,12, 5X,*I = (CACO3)E*,12, 5X, C*G = (MGHCO3+)E*,12, 5X,*S = (AGCO3)E*,12, 5X,*O = (NAHCO3)E*,12, C 5X,*D = (NACO3+)E*,12) C 5X,*D = (NACO3+)E*,12) C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7		0093	4 5X,*M = (MG++); 16 (NTIMES .80.	2) DETNT 37.(M	HUUD-JE*+12+ DX+* T/T}-JE*+12+ DX+*	1 = ((U))E-,	21		
aig = (MGRC03+E*,12, 5x,*S = (MGC03)E*,12, 5x,*D = (NAHC03)E*,12,		0094	37 EORMAT (101-T10		1.12.5X.11 = (0)	CD31E7.12. 5%.		1	
$ \begin{array}{cccc} \hat{L} & 5X, *D = & (NACO3 - jE^*, 12) \\ CC95 & IF & (NTIMES - EQ. 2) & GO TO 34 \\ O096 & ID01 = 8 \\ O097 & ID02 = 13 \\ CC98 & NTIME S = 2 \\ O099 & GO TO 32 \\ O100 & 34 & IF & (ISIG - EQ. 1) & GO TO 25 \\ O101 & M = J \\ O102 & GO TO 31 \\ C \\ $			$\mathcal{E}^{\dagger}G = \{MGHCO3+\}E^{\dagger}$	-12 , $5X$, $S = {+}$	GC031E 12 5X 1) = { NAHCO3 } E* .]	12.		
C095 IF (NTIMES .EQ. 2) GO TO 34 0096 IDD1=8 0097 IDD2=13 C098 NTIMES=2 0099 GO TO 32 0100 34 IF (ISIG .EQ. 1) GO TO 25 0101 M=J 0102 GO TO 31 C C			& 5X, D = (NACO3-	-)E',12)					
$ \begin{array}{cccccc} 0096 & ID01=8 \\ 0097 & ID02=13 \\ 0098 & NTIMES=2 \\ 0099 & GO TO 32 \\ 0100 & 34 [F (ISIG .EQ. 1) GO TO 25 \\ 0101 & M=J \\ 0102 & GO TO 31 \\ \\ C $,	CC95	IF (NTIMES .EQ.	2) GO TO 34		· .			
$\begin{array}{cccc} 1 & 1002=13 \\ C C 98 & NT ME S=2 \\ 0099 & G0 TO 32 \\ 0100 & 34 & IF (ISIG .E0.1) GD TO 25 \\ G101 & M=J \\ 0102 & G0 TO 31 \\ \\ C $		0096	I DO 1=8						
CC98 NTIMES=2 0009 GO TO 32 0100 34 IF (ISIG.EQ.1) GO TO 25 0101 M=J 0102 GO TO 31 C C C C 0103 25 N=2 0104 YR(1) = YR(K) 0105 MO(1) = MJ(K) 0106 DY(1) = DY(K) 0107 STA(1) = STA(K) 0108 DEPTH(1) = DEPTH(K) 0109 D0 12 I=1,13 0110 12 ION(I,K) 0111 GO TO 2 0112 8 STOP		0097	1002=13						
00099 GO 10 32 0100 34 IF (ISG -E0. 1) GO TO 25 0101 M=J 0102 GO TO 31 C C C C 0103 25 N=2 0104 YR(1)=YR(K) 0105 M0(1)=M0(K) 0106 DY(1)=DY(K) 0107 STA(1)=STA(K) 0108 DEPTH(K) 0109 D0 12 I=1,13 0110 12 ION(I,1)=ION(I,K) 0111 GO TO 2 0112 8 STOP		0098	NTIMES=2		-				
0100 54 17 00 10 25 0101 60 TO 31 C C C 0103 25 N=2 0104 YR(1)=YR(K) 0105 M0(1)=HD(K) 0106 UY(1)=DY(K) 0106 UY(1)=DY(K) 0108 DEFTH(1)=DFTH(K) 0108 DEFTH(1)=DFTH(K) 0109 DO 12 1=1,13 0110 12 ION(1,1)=ION(1,K) 0111 G TO 2 0112 8 STOP		0099		0 70 25		•			
GU TO 31 C C C C O103 25 N=2 O104 VR(1)=VR(K) O105 MO(1)=+HQ(K) O106 UV(1)=DV(K) O106 UV(1)=DV(K) O107 STA(1)=STA(K) O108 DEPTH(1)=DPVTH(K) C109 DO 12 1=1,13 O110 12 ION(1,1)=ION(1,K) O111 G TO 2 O112 8 STOP		0101	M=1	00 10 25			1		
C C C O103 25 N=2 O104 YR(1) = YR(K) O105 M0(1) = HO(K) O106 UY(1) = DY(K) O106 UY(1) = DY(K) O107 STA(1) = STA(K) O108 DEPTH(1) = DEPTH(K) C109 D0 12 I=1,13 O110 12 ION(I, I) = ION(I,K) O111 G0 T0 2 O112 8 STOP		0102	GO TO 31						
$ \begin{array}{c} C \\ C \\ C \\ 0103 \\ 0104 \\ 0105 \\ 0105 \\ 0106 \\ 0107 \\ 0106 \\ 0107 \\ 0108 \\ 0108 \\ 0108 \\ 0108 \\ 010 \\ 010 \\ 010 \\ 012 \\ 0112 \\ 011 \\ 011 \\ 011 \\ 012 \\ 0112 \\ 01$		1000	c						•
C 0103 25 N=2 0104 YR(1)=YR(K) 0105 M0(1)=MD(K) 0106 UY(1)=DY(K) 0107 STA(1)=STA(K) 0108 DEPTH(K) 0108 DEPTH(K) 0109 D0 12 1=1,13 0110 12 ION(1,1)=ION(1,K) 0111 GG TO 2 0112 8 STOP		(C						
0103 25 N=2 0104 VR(1)=VR(K) 0105 M0(1)=HD(K) 0106 UV(1)=DY(K) 0107 STA(1)=STA(K) 0108 DEPTH(1)=DP(TH(K) 0108 DEPTH(1)=DN(I,K) 010 12 IN(I,1)=IDN(I,K) 0110 12 STA(L)=DN(I,K) 0112 8 STOP			C						
0104 YK(1)=YK(K) 0105 M0(1)=KD(K) 0106 UY(1)=DY(K) 0107 STA(1)=STA(K) 0108 DEPTH(1)=DPTH(K) 0109 D0 12 1=1,13 0110 12 ION(I, I)=ION(I,K) 0111 GG TO 2 0112 8 STOP		0103	25 N=2						
0105 D011-D01(K) 0106 UV(1)=D7(K) 0107 STA(1)=STA(K) 0108 DEPTH(1)=DEPTH(K) 0109 D0 12 I=1,13 0110 12 IDN(I,I)=IDN(I,K) 0111 GG T0 2 0112 8 STOP		0104	$\mathbf{Y}\mathbf{K}(1) = \mathbf{Y}\mathbf{K}(\mathbf{K})$						
0107 STA(1)=STA(K) 0108 DEPTH(1)=DEPTH(K) 0109 D0 12 I=1,13 0110 12 ION(I,1)=ION(I,K) 0111 GG T0 2 0112 8 STOP		0105	DV(1)=DV(K)						
0108 DEPTH(1)=DEPTH(K) C109 D0 12 I=1,13 0110 12 ION(I,1)=ION(I,K) 0111 GG T0 2 0112 8 STOP		0107	STA(1) = STA(K)						
C109 D0 12 1=1,13 0110 12 IDN(I,I)=IDN(I,K) 0111 GC TO Z 0112 8 STOP		0108	DEPTH(1)=DEPTH(H	()					
0110 12 ION(I,I)=ION(I,K) 0111 GG TO 2 0112 8 STOP		C109	DO 12 1=1,13						
0111 GG TO 2 0112 8 STOP		0110	12 ION(I,1)=ION(I,	0					
0112 8 STOP		0111	GO TO 2						
		0112	8 STOP						
UIIS ENU		0113	ENU						

0001 SUBROUTINE PL (KHAK,X,Y,NPTS) 0012 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 001 0014 0014 0010 0101 0101 0100 0101 0101 0100 0101 0101 0101 FRUM AULTIPLE ARRAY, CALL PL2 FOR EACH ARRAY WITH KHAREIH 0110 0114 0110 0111 0111 0110 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111	FÖRTRAN IV G	LEV	EL 19	PL	DATE = 721	11/00/48	
C SHUKTGUT RAUTINE FOR PRINTER PLOTS. 0002 HAS UTTIONS TO SET MAX ETC. AUTOPATICALLY TO FRAME THE SET OF POINTS, AND UL CONNECT AUALACENT POINTS BY LINE SEGMENTS. 0002 PL CALLS PLUTZ, PLOT3, AND PLOT*. 0007 C TO DELETE INTERNAL GAID LINES, CALL WIPE(1). 0008 C TO DEUT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU 0100 C CONNECT ALJACENT PUINTS WITH LINE SEGMENTS. 0112 C OLHENSION ATIOD, YTIOD) 012 C TO PLUT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU 0100 C CONNECT ALJACENT PUINTS WITH LINE SEGMENTS. 0122 C OLHENSION ATIOD, YTIOD) 013 C CALL PLIATY, XII), YTI), -1001 013 C TO PLUT FROM AULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0160 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0160 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0160 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0160 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0160 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0160 C TO FRAME ALL OF THE FIRST SET OF CALLS TO PL23 IS INMATERIAL. 0210 C TAMENSION X1001,Y11001,Z11001 0223 C CALL PL23(1H,X(1),Y(1),-1001 0225 C CALL PL23(1H,X(1),Y(1),-1001 0225 C CALL PL23(1H,X(1),Y(1),-1001 0255 C CALL PL23(1H,X(1),Y(1),-1001 0255 C CALL PL23(1H,X(1),Y(1),-1001 0255 C CALL PL23(1H,X(1),Y(1),-1001 0255 C CALL PL23(1H,X(1),Y(1),-1001 033 C CALL PL23(1H,X(1),	0001		SUBRO	UTINE PL (KHAK,X,Y,NPTS)) i i		0010
L SHURILDI NUDITAE FUR PRINTER PLUIS. H MAS UPTIONS TO SET XMAX FIC. AUTOMATICALLY TO FRAME THE SET UP OUX OF LALLS PLUTS, AND TU CONNECT ADJACENT POINTS BY LINE SEGMENTS. C PL CALLS PLUTS, PLUTS, AND PLUT*. C TU DELETE INTERNAL GRID LINES, CALL WIPE(1). C TO PLUT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU C CONNECT ALJACENT PUINTS WITH LINE SEGMENTS. C TO PLUT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU C CONNECT ALJACENT PUINTS WITH LINE SEGMENTS. C TO PLUT FROM A UTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLUT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO ARRAY ARE TO GE CONCECTED BY LINE SEGMENTS, AND CALL PL4. C THE SIGN CF NPTS IN THE FIRST SET OF CALLS TO PL23 IS IMMATERIAL. C O DIMENELS C		C		ASSETTINE FOR AGAINEED AL			0020
C PAS 00 F1003 10 SCHNECT ADDACENT POLITYS BY LINE SCHEMTS. 0000 C PL CALLS PLUTZ, PLUTZ, PLUTZ, PLUTZ, AND PLUTY. 0010 C TU DELETE INTERNAL GRID LINES, CALL WIPETIJ. 0000 C TU DELETE INTERNAL GRID LINES, CALL WIPETIJ. 0010 C TU DUT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU 0100 C COLUT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU 0100 C CALL PLLINY, VIIN, VIIN, INTS NITH LINE SEGMENTS. 0122 C DIMENSIUN AT100, VI100) 0133 C CALL PLLINY, VIIN,		L.	SHURICUT	NUTINE FOR PRINTER PLU	JIS. Tomaticali V. To: Edami	THE SET OF	0030
C PURNSY AND 10 CURIS ADDRECT ADDRECT FORTS DETINE DETINE DEDRECT C PURNSY, AND 10 CURIS , ADDRECT AD		5	HAS UPIN	INS TO SET AMAX ETC. AU	DOINTS BY LINE SECH	ENTS	0040
C TH CALLS FLOTE TO THE ARAAL GRID LINES, CALL WIPETIJ. 007 C TU DELETE INTERNAL GRID LINES, CALL WIPETIJ. 008 C TU DELT FRUM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU 0100 C CONNECT ACLACENT PUINTS WITH LINE SEGMENTS. 012 C DIMENSIUN ATION, VII00) 013 C CALL PLUTHY, ATI, VII, VII, TOO) 014 C CALL PLUTHY, ATI, VII, VII, TOO) 015 C CALL DIT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSIT 015 C TU DEUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSIT 016 C TO FLAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTSI, AND CALL PL4. 020 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTSI, AND CALL PL4. 020 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTSI, AND CALL PL4. 0200 C CALL PL23(IN + X(1)/(10), Z(100) 0233 C CALL PL23(IN + X(1)/(1)/(1), 100) 0244 C CALL PL23(IN + X(1)/(1)/(1), 100) 0246 C CALL PL23(IN + X(1)/(1)/(1), 100) 0246 C THE LAST OF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0286 0300 C CALL PL23(IN + X(1)/(1)/(1)/(1), 100) 0326 C CALL PL23(IN + X(1)/(1)/(1), 100) 0326 C CALL PL23(IN + X(1)/(1)/(1), 100) 0326 </td <td></td> <td>č</td> <td>PULAIS A</td> <td>PLOT2, PLOT3, AND PLOTA</td> <td>FOIRTS DI LINE SEOR</td> <td></td> <td>0060</td>		č	PULAIS A	PLOT2, PLOT3, AND PLOTA	FOIRTS DI LINE SEOR		0060
C TU DELETE INTERNAL GRID LINES, CALL WIPE(1). 0080 C TO PLUT FRUMA SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TU 0100 C CONNECT AGLAGENT PUINTS WITH LINE SEGMENTS. 0121 C DIMENSIUM A(100),Y(100) 0133 C CALL PL(1HY,X(1),Y(1),-100) 0145 C C CONNECT AGLAGENT PUINTS, GALL PL23 FOR EACH ARRAY WITH KHARSEIH 0160 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEIN 0146 C TO PLUT THE DESIRED SYMBOL LAND NPTS NEGATIVE IF THE POINTS IN 0186 C THE ARAYA ARE TO GE CONNECTED BY LINE SEGMENTS), AND CALL PL4, 0197 0122 C THE ARAYA ARE TO GE CONNECTED BY LINE SEGMENTS), AND CALL PL4, 0197 0212 C C ALL PL23(IH, X(1),Y(1),Y(1), 00) 0226 C C ALL PL23(IH, X(1),Y(1),Y(1), 00) 0226 C C ALL PL23(IH, X(1),Y(1),Y(1), -100) 0226 C C ALL PL23(IH, X(1),Y(1),Y(1), -100) 0326 C C ALL PL23(IH, X(1),Y(1),Y(1), -100) 0326 C C ALL PL23(IH, X(1),Y(1),Y(1), -100) 0326 C C AL		č	PL LALLS	PEOIZ, PEOIS, AND PEOI	•		0070
C 0090 C TO PLUT FRUM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TO 0100 C CONNECT AGLAGENT PUINTS WITH LINE SEGMENTS. 012 C DIMENSIUM ACLOD, Y(100) 0130 C AGL PL(1HY, X(1), Y(1), -100) 0146 C CALL PL(1HY, X(1), Y(1), -100) 0146 C CALL PL(1HY, X(1), Y(1), -100) 0146 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0166 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0166 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0166 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0167 C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0167 C TO THE SIND XCIDO), Y(100), Z(100) 0212 0120 C THAT ARRAY ARE TO DE CONNECTED BY LINE SEOMENTS), AND CALL PL4. 0200 C CALL PL23(HT, X(1), Y(1), TOO) 0226 C CALL PL23(HT, X(1), Y(1), TOO) 0246 C CALL PL23(HT, X(1), Y(1), TOO) 0266		č	TU DELET	E INTERNAL GRID LINES. (ALL WIPE(1).		0080
C TO PLOT FROM A SINGLE ARRAY, CALL PL. SET NPTS NEGATIVE TO C CONNECT ACLACENT PUINTS WITH LINE SEGMENTS. 0120 C ALL PL(1HY,X11),Y(1),-100) C CALL PL(1HY,X11),Y(1),-100) C TO PLOT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLOT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLOT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLOT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLOT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHARSEN C TO PLOT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PLA. C EVAL TO THE DESIRED SYMOUL (AND NPTS NEGATIVE 1F THE POINTS IN C THE SIGN CF MPTS IN THE FIRST SET OF CALLS TO PL23 IS IMMATERIAL. C DOMENSION X(100),Y(100),Z(100) C CALL PL23(1H, X(1),Y(1),100) C CALL PL23(1HY,X(1),Y(1),-100) C CALL PL23(1HY,X(1),Y(1),-100) C CALL PL23(1HY,X(1),Z(1),-100) C CALL PL23(1HY,X(1),Z(1),-100) C CALL PL23(1HY,X(1),Z(1),-100) C CALL PL23(1HY,X(1),Z(1),-100) C CALL PL23(1HY,X(1),Z(1),-100) C CALL PL23(1HY,X(1),Z(1),-100) C CALL PL23(1HY,X(1),Y(1),-100) C CALL PL24(1HY,X(1),Y(1),-100) C CALL PL24(1HY,X(1),Y(1),-100) C CALL PL24(1HY,X(1),Y(1),-100) C CALL PL24(1HY,X(1),Y(1),-100) C CALL PL24(1HY,X(1),Y(1),-100) C CALL PL23(1HY,X(1),Y(1),-100) C CALL PL24(1HY,X(1),Y(1),-100) C CALL PL24(HY,X(1),Y(1),-100) C CALL PL24(HY,X(1),Y(1),-100) C CALL PL24(HY,X(1),Y(1),-		č					0090
C CONNECT ACJACENT PUINTS WITH LINE SEGMENTS. C EXAMPLE C JIMENSIUM A(100),Y(100) C GALL PL(1HY,X11),Y(1),-100) C GALL PL(1HY,X11),Y(1),-100) C GALL PL(1HY,X11),Y(1),-100) C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH RHAR=1H Old C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH RHAR.SET O FOR EXAMPLE C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH RHAR.SET O FOR C TO FRAME ALL OF THE POINTS, CALL PL23 FOR EACH ARRAY WITH RHAR.SET O FOR C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL6, O FOR C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL6, O FOR C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL6, O FOR C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL6, O FOR C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL6, O THENSIUM X(100),7(100),7(100) C C CALL PL23(IH ,X(1),7(1),100) C C CALL PL23(IH ,X(1),7(1),-100) C CALL PL23(IH ,X(1),7(1),	1	Č	TO PLOT I	RUM A SINGLE ARRAY, CAL	L PL. SET NPTS NEG	ATIVE TO	0100
C EXAMPLE 012 C JIMENSIUN A(100),Y(100) 0130 C CALL PL(1HY,X(1),Y(1),-100) 0140 C CALL PL(1HY,X(1),Y(1),-100) 0140 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0146 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0146 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0146 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0146 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0146 C THAT ARRAY ARA FO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0196 C THAT ARRAY ARA FO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0196 C THAT ARRAY ARA FO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0201 C DIMENSION X(100),Y(100),Z(100) 0223 C CALL PL23(1H,X(1),Y(1),100) 0244 C CALL PL23(1H,X(1),Z(1),-100) 0246 C CALL PL23(1H,X(1),Z(1),-100) 0246 C THE LAST UF THE FIRST SET OF CALLS TO PL23 CAN UE COMBINED WITH THE 0280 C FIRST CALL OF THE SECOND SET. 0300 C CALL PL23(1H,X(1),Y(1),-100) 0340 C CALL PL23(1H,X(1),Y(1),-100) 0345 C CALL PL4. 0346 C THE SION X(100),Y(100), (100,2), I FA LABEL IS DESIRED 044 C TAL PL23(1HY,X(1),Y(1),-100) 0443 C CALL PL4. 045 C CALL PL4. 045 C CALL PL4 BUTH SIDE AFTER CALLING PL23, IF A LABEL IS DESIRED 0445 C CALL PL4. 045 C CA		C.	CONNECT	ACJACENT PUINTS WITH LIN	E SEGMENTS.	1	0110
C DIMENSION X(100),Y(100) 0132 C CALL PL(1HY,X(1),Y(1),-100) 0155 C TO PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0166 C TO FRAME ALL OF THE PUINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0166 C TO FRAME ALL OF THE PUINTS, CALL PL23 FOR EACH ARRAY WITH KHAR SET 0176 C EQUAL TO THE DESIRED SYMBOL (AND NPTS NEGATIVE IF THE POINTS IN 0186 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTSJ, AND CALL PL4. 0200 C THE SIGN CF MPTS IN THE FIRST SET OF CALLS TO PL23 IS IMMATERIAL. 0210 C DIMENS JON X(100),Y(100),Z(100) 0233 C CALL PL23(1H, X(1),Y(1),-100) 0245 C CALL PL23(1H, X(1),Y(1),-100) 0245 C CALL PL23(1H, X(1),Z(1),-100) 0230 C CALL PL23(1H, X(1),Y(1),-100) 0323 C CALL PL23(1H, X(1),Y(1),-100) 0326 C CALL PL23(1H, X(1),Y(1),-100) 0336 C CALL PL23(1H, X(1),Y(1),-100) 0336 C CALL PL23(1H, X(1),Y(1),-100) 0336 C CALL PL23(1H, X(1),Y(1),-100) 0336 <tr< td=""><td></td><td>С</td><td>EXAMPLE.</td><td>•••</td><td></td><td></td><td>0120</td></tr<>		С	EXAMPLE.	•••			0120
C CALL PL(1HY,x(1),Y(1),-100) 0144 C TU PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0165 C TU PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAR=1H 0166 C TO FRAME ALL OF THE PUINTS, CALL PL23 FOR EACH ARRAY WITH KHAR=SET 0176 C EQUAL TU THE DESIRED SYMBOL (AND NPTS NEGATIVE IF THE POINTS IN 0186 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0200 C THA ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0210 C DIMENSION X1100), Y(100), Z(100) 0223 C CALL PL23 LIN , X(1), Y(1), 100) 0224 C CALL PL23 LIN , X(1), Y(1), 100) 0246 C CALL PL23 LIN , X(1), Y(1), 100) 0246 C CALL PL23 LIN , X(1), Y(1), 100) 0246 C CALL PL23 LIN , X(1), Y(100), Z(100) 0246 C CALL PL23 LIN , X(1), Y(1), 100) 0323 C CALL PL23 LIN , X(1), Y(1), 100) 0326 C CALL PL23 LIN , X(1), Y(10), Z(100) 0326 C CALL PL23 LIN , X(1), Y(10), 12(100) 0326 C CALL PL23 LIN , X(1), Y(1),		C	DIMEN	IUN X(100),Y(100)			0130
C TU PLUT FRUM MULTIPLE ARRAYS, CALL PL23 FÜR EACH ARRAY WITH KHAR=1H 0163 C TU FRAME ALL OF THE PUINTS, CALL PL23 FÜR EACH ARRAY WITH KHAR=1H 0166 C TU FRAME ALL OF THE PUINTS, CALL PL23 FÜR EACH ARRAY WITH KHAR=11 0166 C TU FRAME ALL OF THE DINTS, CALL PL23 FÜR EACH ARRAY WITH KHARS SET 0176 C EQUAL TU THE DESIRED SYMBOL (AND NPTS NEGATIVE IF THE PUINTS IN 0186 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0190 C THE SIGN CF NPTS IN THE FIRST SET OF CALLS TO PL23 IS IMMATERIAL. 0200 C CALL PL23(1H, X(1), 2(1), 100) 0234 C CALL PL23(1H, X(1), 2(1), -100) 0264 C CALL PL23(1H, X(1), 2(1), -100) 0266 C CALL PL23(1H, X(1), 2(1), -100) 0310 C CALL PL23(1H, X(1), 2(1), -100) 03320 C CALL PL23(1H, X(1), 2(1), -100) 0336 C CALL PL23(1H, X(1), Y(1), -100) 0336 C CALL PL23(1H, X(1), Y(1), -100) 0336 C CALL PL23(1H, X(1), Y(1), -100) 0336 C CALL PL23(1H, X(1), Y(1		Ç	CALL	PL(1HY,X(1),Y(1),-100)			0140
C TO PLOT FROM MULTIPLE ARRAYS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0107 C TO FRAME ALL OF THE PUINTS, CALL PL23 FOR EACH ARRAY WITH KHAREIH 0107 C EQUAL TO THE DESIRED SYMBOL (AND MPTS NEGATIVE IF THE POINTS IN 0106 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0107 C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4. 0210 C THE SIGN CF MPTS IN THE FIRST SET OF CALLS TO PL23 IS IMMATERIAL. 0200 C ALL PL23(IH, Y(11), Y(11), 100) 0223 C CALL PL23(IH, Y, X(1), Y(11), -100) 0246 C CALL PL23(IHY, X(1), Y(11), -100) 0246 C CALL PL23(IHY, X(1), Y(11), -100) 0246 C CALL PL2 0211H/X, X(1), Y(11), -100) 0246 C THE LAST UF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0290 C THE LAST UF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0300 C CALL PL4 0310 C THE LAST UF THE SECOND SET. 0302 C CALL PL23(IHY, X(1), Y(1), -100) 0323 C CALL PL23(IHY, X(1), Y(1), -100) 0326 C CALL PL23(IHY, X(1), Y(1), -100) 0356 C CALL PL23(IHY, X(1), Y(1), -100) 0342 C TU SET THE PLUT LIMITS TU ARBITRARY MALUES, 0346<		3					0150
C 10 FAME ALL OF THE POINTS, CALL PL2S FUR EACH ARKAT WITH KHAR SET C EQUAL TO THE DESIRED SYMBOL (AND NPTS NEGATIVE IF THE POINTS IN 0186 C THAT ARKAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4, 0197 C THAT ARKAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4, 0197 C THAT ARKAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PL4, 0200 C EXAMPLE 02202 C CALL PL23(IH, +, (1), +(10), 2(100) 0233 C CALL PL23(IH, +, (1), +(1), -100) 0246 C CALL PL23(IH, +, (1), +(1), -100) 0256 C CALL PL23(IH, +, (1), +(1), -100) 0266 C CALL PL23(IH, +, (1), +(1), -100) 0266 C CALL PL23(IH, +, (1), +(1), -100) 0266 C CALL PL23(IH, +, (1), +(1), -100) 0276 C FIRST CALL OF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0299 C FIRST CALL OF THE SECOND SET. 0310 C CALL PL23(IH, +, (1), +(1), 100) 0330 C CALL PL23(IH, +, (1), +(1), 100) 0336 C CALL PL23(IH, +, (1), +(1), -100) 0346 C CALL PL23(IH, +, (1), +(1), -100) 0356 C CALL PL23(IH, +, (1), +(1), -100) 0346 C CALL PL23(IH, +, (1), +(1), -100) 0346 C CALL PL23(IH, +, (1), +(1), -100) 0346 C CALL PL23(IH, +, (1), +(1), -100) 0402 C CALL PL23(IH, +, (1), +(1), -00) 0402 C CALL PL23(IH, +, (1), +(1), -00) 0502 C CALL		C	TO PLUT I	RUM MULTIPLE ARRAYS, CA	ALL PL23 FOR EACH AP	RAY WITH KHAR=1H	0160
C E GUAL TO THE PLOINE STANDUL LAND WITH NEDGHENTS), AND CALL PLA. C THAT ARRAY ARE TO BE CONNECTED BY LINE SEGMENTS), AND CALL PLA. C THE SIGN CF NPTS IN THE FIRST SET OF CALLS TO PL23 IS IMMATERIAL. C DIMENSION X(100),Y(100),Z(100) C CALL PL23(LH,X(1),Y(1),100) C CALL PL23(LH,X(1),Y(1),100) C CALL PL23(LH,X(1),Y(1),-100) C CALL PL23(LH,X(1),Y(1),-100) C CALL PL23(LH,X(1),Y(1),-100) C CALL PL23(LH,X(1),Y(1),-100) C CALL PL23(LH,X(1),Y(1),-100) C CALL PL23(LH,X(1),Y(1),-100) C FIRST CALL OF THE SECOND SET. C DIMENSION X(100),Y(100),Z(100) C CALL PL23(LH,X(1),Y(1),100) C CALL PL23(LH,X(1),Y(1),-100) C CALL PL2(XHAX;XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL2(Z0,LO,SO,O,C) C CALL PL2(Z0,LH,X(1),Y(1),-100) C DIMENSION X(100),Y(100) C CALL PL2(Z0,LH,X(1),Y(1),-100) C CALL PL2(Z0,LH,X(1),Y(1),-100) C CALL PL2(Z0,LH,X(2),Y(1),-100) C CALL PL2(Z0,LH,X(Z),Y(1),-100) C CALL PL2(Z0,LH,X(Z),Y(1),-100) C CALL PL2(Z0,LH,X(Z),Y(1),-100) C CALL PL2(Z0,LH,X(Z),Y(1),-100) C DIMENSION X(1000,Y(100)		Č.	TU FRAME	THE DESIDED SYMPOL (AN	NOTS NECATIVE LE I	HE BOINTS IN	01100
C THAT ANALT AN LOUDE CONTROLED OF CALLS TO PL23 IS INMATERIAL. C THAE SIGN CF NPTS IN THE FIRST SET OF CALLS TO PL23 IS INMATERIAL. C EXAMPLE C OMEAS JUN X(100),Y(100),Z(100) C CALL PL23(IH, x(I),Y(1),100) C CALL PL23(IH, x(I),Y(1),100) C CALL PL23(IH,x(I),Y(1),-100) C CALL PL23(IH,x(I),Y(1),-100) C CALL PL4 C THE LAST OF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0200 C FIRST CALL OF THE SECOND SET. C CNTINUE C FIRST CALL OF THE SECOND SET. C DIMEAS JUN X(100),Y(100),Z(100) C CALL PL23(IH,x(I),Y(1),-100) C DIMEASION X(100),Y(100) C		C C	TUAT ADD.	THE DESIRED STADUL TANK	UNIT NEGALIVE IF I	NO CALL DIA.	0100
C EXAMPLE 0210 C DIMENSIUM X(100),Y(100),Z(100) C CALL PL23(1H,X(1),Y(1),100) C CALL PL23(1H,X(1),Y(1),-100) C CALL PL2(Z0,NO,SOC,O) C CALL PL2(Z0,NO,SOC,O) C CALL PL23(1H,X(1),Y(1),-100) C CALL PL23(1H,X(1),Y(1),-100) C CALL PL2(Z0,NO,SOC,O) C CALL PL2(Z0,NO,SOC,O) C CALL PL2(Z0,NO,SOC,O) C CALL PL23(1H,X(1),Y(1),-100) C CALL PL23(č	THE STON	CENTS IN THE FIRST SA	ET OF CALLS TO PL23	IS IMMATERIAL.	0200
C 01MEMSIGN X(100), Y(100), Z(100) 0222 C CALL PL23(1H , X(1), Y(1), 100) 0230 C CALL PL23(1H , X(1), Y(1), -100) 0250 C CALL PL23(1HY, X(1), Y(1), -100) 0260 C CALL PL23(1HY, X(1), Y(1), -100) 0270 C THE LAST OF THE FIRST SET OF CALLS TO PL23 CAN GE COMBINED WITH THE 0290 C CALL PL23(1H, X(1), Y(1), -100) 0320 C CALL PL23(1H, X(1), Y(1), -100) 0320 C CALL PL23(1H, X(1), Y(1), -100) 0336 C CALL PL23(1HY, X(1), Y(1), -100) 0356 C CALL PL23(1HY, X(1), Y(1), -100) 0356 C CALL PL2(20, 10, 50, 50, 0.) 0337 C CALL PL22(1HY, X(1), Y(1), -100) 0456 C CALL PL2/20(1H, X(1), Y(1), -100) 0456 C CALL PL2/20(1H, X(1), Y(1), -100) 0456 C CALL PL2/20(1H, X(1), Y(1), -100) 0456 C		č	EXAMPLE				0210
C CALL PL23(1H, X(1), Y(1), 100) 0230 C CALL PL23(1H, X(1), Z(1), -100) 0240 C CALL PL23(1H, X(1), Z(1), -100) 0250 C CALL PL23(1H, X(1), Z(1), -100) 0260 C CALL PL23(1H, X(1), Z(1), -100) 0260 C CALL PL23(1H, X(1), Z(1), -100) 0260 C THE LAST UF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0290 C FIRST CALL OF THE SECOND SET. 0300 C OTHENSION X(100), Y(100), Z(100) 0323 C CALL PL23(1H, X(1), Z(1), -103) 0333 C CALL PL23(1H, X(1), Z(1), -103) 0346 C CALL PL23(1H, X(1), Y(1), -100) 0350 C CALL PL23(1H, X(1), Y(1), -100) 0346 C CALL PL23(1H, X(1), Y(1), -100) 0346 C CALL PL23(1H, X(1), Y(1), -100) 0346 C CALL PL24 0346 C CALL PL24 0450 C CALL PL24 0440 C CALL PL24 0440 C CALL PL24 0440 C CALL PL24		č	DIMENS	IN X(100).Y(100).Z(100			0220
C CALL PL23(1H y,X(1),Y(1),-100) 0246 C CALL PL23(1H y,X(1),Y(1),-100) 0266 C CALL PL4 0276 C CALL PL4 0276 C CALL PL4 0276 C CALL PL4 0276 C CALL PL4 0286 C THE LAST UF THE FIRST SET UF CALLS TO PL23 CAN BE COMBINED WITH THE 0284 0276 C THE LAST UF THE FIRST SET UF CALLS TO PL23 CAN BE COMBINED WITH THE 0294 0306 C CONTINUE 0310 0333 C CALL PL23(1H ,X(1),Y(1),100) 03326 0326 C DIMENSION X(100),Y(100),Z(100) 0333 0336 C CALL PL23(1H ,X(1),Y(1),-100) 03356 0366 C CALL PL23(1H ,X(1),Y(1),-100) 0356 0366 C CALL PL4 0366 0376 C CALL PL4 0366 0400 0400 C CALL PL4 0366 0426 0426 C DIMENSION X(100),Y(100) 0426 0426 0426 C CALL PL2(20,, 10.,50.,0.) 0426		č	CALL	PL23(1H ,X(1),Y(1),100)			0230
C CALL PL23(1HY,X(1),Y(1),-100) 0256 C CALL PL4 0276 C CALL PL4 0286 C THE LAST UF THE FIRST SET UF CALLS TO PL23 CAN BE COMBINED WITH THE 0296 0300 C THE LAST UF THE FIRST SET UF CALLS TO PL23 CAN BE COMBINED WITH THE 0296 0300 C THE LAST UF THE FIRST SET UF CALLS TO PL23 CAN BE COMBINED WITH THE 0296 0300 C TEXAMPLE 0310 0320 C DIMENSIUN X(100),Y(100),2(100) 03330 0320 C CALL PL23(1HY,X(1),Y(1),-100) 0336 0360 C CALL PL23(1HY,X(1),Y(1),-100) 0356 0360 C CALL PL23(1HY,X(1),Y(1),-100) 0356 0370 C CALL PL4 0360 0370 C CALL PL2(XMAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARKAY, AND 0396 C CALL PL2(XMAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARKAY, AND 0396 C CALL PL2(XMAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARKAY, AND 0396 C CALL PL2(XMAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARKAY, AND 0496 C DIMENSION X(100),Y(100) 0426 0440		C	CALL	L23(1H ,X(1),Z(1),100)	• · · · · · · · · · · · · · · · · · · ·		0240
C CALL PL23(1H2,x(1),Z(1),-100) 0266 C CALL PL4 0276 C CALL DL4 0286 C THE LAST UF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0296 C FIRST CALL OF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0296 0002 CENTINUE 0310 C DIMENSION X(100),Y(100),Z(100) 0326 C CALL PL23(1H,X(1),Y(1),100) 0336 C CALL PL23(1H,X(1),Y(1),-100) 0336 C CALL PL23(1HY,X(1),Y(1),-100) 0366 C CALL PL4 0360 C CALL PL4 0366 C CALL PL24(MAX,XMIN,YMAX,Y':IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL4 0366 C CALL PL4 0406 C CALL PL4 0496 C CALL PL23(1HY,X(1),Y(1),-100)		C	CALL	PL23(1HY,X(1),Y(1),-100.) · · · · · · · · · · · · · · · · · · ·		0250
C CALL PL4 0276 C C 0286 C THE LAST UF THE FIRST SET GF CALLS TO PL23 CAN BE COMBINED WITH THE 0296 C FIRST CALL DF THE SECOND SET. 0300 C CONTINUE 0310 C CINTINUE 0310 C OIMENSIUN X(100),Y(100),Z(100) 0333 C CALL PL23(1H,X(1),Y(1),100) 03346 C CALL PL23(1H,X(1),Y(1),-100) 0350 C CALL PL23(1H,X(1),Y(1),-100) 0356 C CALL PL4 0366 C CALL PL4 0406 C DIMENSIUN X(100), Y(100) 0420 C <td></td> <td>C</td> <td>CALL I</td> <td>PL23(1HZ+X(1)+Z(1)+-100)</td> <td></td> <td></td> <td>0260</td>		C	CALL I	PL23(1HZ+X(1)+Z(1)+-100)			0260
C 0284 C THE LAST UF THE FIRST SET GF CALLS TO PL23 CAN BE COMBINED WITH THE 0290 C FIRST CALL DF THE SECOND SET. 0300 C CANTINUE 0310 C DIMENSIUN X(100),Y(100),Z(100) 0320 C CALL PL23(1H,X(1),Y(1),100) 0320 C CALL PL23(1H,X(1),Y(1),100) 0336 C CALL PL23(1HY,X(1),Y(1),-100) 0350 C CALL PL23(1HY,X(1),Y(1),-100) 0356 C CALL PL23(1HY,X(1),Y(1),-100) 0356 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL23(1HY,X(1),Y(1),O) 0420 C CALL PL23(1HY,X(1),Y(1),-100) 0420 C CALL PL23(1HY,X(1),Y(1),-100) 0440		Ç	- ÇALL İ	2L4			0270
C THE LAST OF THE FIRST SET OF CALLS TO PL23 CAN BE COMBINED WITH THE 0290 0300 0002 CENTINUE 0310 C DIMENSIUN X(100),Y(100),2(100) 0320 C DIMENSIUN X(100),Y(100),2(100) 0330 C CALL PL23(1H,X(1),F11),100) 0330 C CALL PL23(1H,X(1),F11),100) 0330 C CALL PL23(1H,X(1),F11),100) 0336 C CALL PL23(1H,X(1),F11),100) 0336 C CALL PL23(1H,X(1),F11),100) 0336 C CALL PL23(1H,X(1),F11),100) 0366 C CALL PL2(MAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(MAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(XHAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(MAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(MAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(MAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(MAX,YMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL2(MAX,YMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY,		C					0280
C FIRST CALL OF THE SECOND SET. 0300 C CONTINUE C CONTINUE 0002 C EXAMPLE 0310 C DIMENSIUN X(100),Y(100),Z(100) 0320 C CALL PL23(1H *,X(1),Y(1),100) 0336 C CALL PL23(1HZ,X(1),Z(1),-103) 0346 C CALL PL23(1HZ,X(1),Y(1),-100) 0356 C CALL PL23(1HY,X(1),Y(1),-100) 0366 C CALL PL2 0366 C CALL PL2 0366 C CALL PL4. 0366 C CALL PL4. 0366 C CALL PL4. 0366 C CALL PL4. 0406 C CALL PL4. 0406 C CALL PL4. 0406 C CALL PL4. 0406 C CALL PL2. 0407 C CALL PL2. 0406 C CALL PL2. 0406 C CALL PL2. 0407 C CALL PL2.3(1HY,X(1),Y(1),-100) 0436 C CALL PL2.3(1HY,X(1),Y(1),-100) 0436 C CALL PL2.3(1HY,X(1),Y(1),-100) 0456 C CALL PL2.3(1HY,X(1),Y(1),-100) 0510 C CALL PL2.3(1HY,X(1),Y(1),-100) 0510 C DIMENSION X(1000,Y(100),Y(100)		C	THE LAST	OF THE FIRST SET OF CAL	LS TO PL23 CAN BE O	COMBINED WITH THE	0290
0002 C EXAMPLE 0310 C DIMENSIUN X(100),Y(100),Z(100) 0320 C CALL PL23(1H,X(1),Y(1),100) 0336 C CALL PL23(1H,X(1),Y(1),-103) 0346 C CALL PL23(1HY,X(1),Y(1),-103) 0356 C CALL PL23(1HY,X(1),Y(1),-100) 0356 C CALL PL23(1HY,X(1),Y(1),-100) 0356 C CALL PL23(1HY,X(1),Y(1),-100) 0356 C CALL PL4. 0360 C CALL PL4. 0400 C CALL PL2.XMAX,XMIN,YMAX,Y.IN), CALL PL23 FOR EACH ARRAY, AND 0397 C CALL PL4. 0400 C CALL PL4. 0400 C DIMENSIUN X(100),YI100) 0420 C CALL PL2.2(20+,10+,50+,0+) 0430 C CALL PL2.2(1HY,X(1),Y(1),-100) 0420 C CALL PL2.2(1HY,X(1),Y(1),-100) 0420 C CALL PL2.2(1HY,X(1),Y(10),-100) 0430 C CALL PL2.3(1H X(1),Y(1),-100) 0450 C CALL PL2.3(1HY,X(1),Y(1),-100) 0450 C CALL PL2.3(1H X(1),Y(1),-100) 0		ί	FIRST CAL	L UF THE SECOND SET.			0300
C DIMENSION X(100),Y(100),Z(100) 0320 C CALL PL23(1H,X(1),Y(1),100) 0333 C CALL PL23(1HZ,X(1),Z(1),-100) 0350 C CALL PL23(1HY,X(1),Y(1),-100) 0355 C CALL PL23(1HY,X(1),Y(1),-100) 0366 C CALL PL23(1HY,X(1),Y(1),-100) 0366 C TU SET THE PLUT LIMITS TU ARBITRARY VALUES, 0366 C CALL PL2(XMAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL4. 0400 C DIMENSION X(100),Y(100) 0420 C CALL PL2 CALL PL2.0.,10.,50.,0.) 0433 C CALL PL2 CALL PL2.0.,10.,50.,0.) 0436 C CALL PL2.3(1HY,X(1),Y(1),-100) 0446 C CALL PL2 CALL PL2.0.,0.4 0450 C CALL PL2.1. 0456 0466 C CALL PL2.1. CALL PL2.1. 0456 C CALL PL2.1. CALL PL2.1. 0456 C CALL PL2.1. CALL PL2.1. 0466 C CALL PL2.1. CALL PL2.1. 0500	0002	r		NUE			0210
C CALL PL23(1H, x(1),Y(1),100) 0330 C CALL PL23(1H, x(1),2(1),-100) 0340 C CALL PL23(1HY,x(1),Y(1),-100) 0350 C CALL PL23(1HY,x(1),Y(1),-100) 0350 C CALL PL2 0360 C CALL PL2 0360 C CALL PL2 0360 C CALL PL4 0400 C CALL PL4 0400 C CALL PL4 0420 C CALL PL23(1HY,x(1),Y(1),-100) 0420 C CALL PL23(1HY,x(1),Y(1),-100) 0440 C CALL PL4 0450 C CALL PL4 0450 C CALL PL4 0450 C CALL PL3(1HY,x(1),Y(1),-100) 0500 C CALL PL23(1H,		- C	O IMEN'	JUN X(100). Y(100). ZE100			0320
C CALL PL23(1H2,X(1),Z(1),-100) 0340 C CALL PL23(1HY,X(1),Y(1),-100) 0350 C CALL PL23(1HY,X(1),Y(1),-100) 0360 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL2(XMAX,XMIN,YMAX,Y).IN), CALL PL23 FOR EACH ARRAY, AND 0360 C CALL PL4. 0400 0410 C DIMENSION X(100),Y(100) 0420 0440 C CALL PL23(1HY,X(1),Y(1),-100) 0440 0440 C CALL PL23(1HY,X(1),Y(1),100) 0510 0510 C CALL PL23(1HY,X(1),Y(1),100) 0520 0520 C CALL PL23(1HY,X(1),Y(1),-100) 0520 0530 C CALL PL23(1HY,X(1),Y(1),-100) 0520 0		č	CALL	PL23(1H .X(1),Y(1),100)			0330
C CALL PL23(1HY,X(1),Y(1),-100) 0350 C CALL PL4 0360 C TO SET THE PLOT LIMITS TO ARBITRARY VALUES, 0360 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0490 C CALL PL2(XMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0490 C CALL PL2(ZMAX,XMIN,YMAX,Y):IN), CALL PL23 FOR EACH ARRAY, AND 0490 C CALL PL4. 0400 C DIMENSION X(100),Y1100) 0420 C CALL PL2(Z0+,10.,50+,0-) 0420 C CALL PL2(20+,10.,50+,0-) 0420 C CALL PL2(20+,10.,50+,0-) 0420 C CALL PL2(Z0+,10+,50+,0-) 0420 C CALL PL2(Z0+,10+,70+,0-) 0420 C CALL PL2(Z0+,10+,70+,1),-100) 0446 C CALL PL2(Z0+,10+,1),Y(1),-100) 0510 C CALL PL2(Z0+,10+,1),Y(1),-100) 0520 C CALL PL2(HH,X(1),Y(1),-100) 0520 C CALL PL2(HH,X(1),Y(1),-100) 0524 C CALL PL2(HH		Č.	CALL I	L23(1HZ, X(1),Z(1),-100)		0340
C GALL PL4 0366 C TO SET THE PLOT LIMITS TO ARBITRARY VALUES, 0386 C CALL PL2(XMAX,XMIN,YMAX,Y:IN), CALL PL23 FOR EACH ARRAY, AND 0396 C CALL PL4. 0400 C DIMENSION X(100),Y(100) 0420 C DIMENSION X(100),Y(100) 0420 C CALL PL2:0:,10.,50:,0.) 0436 C CALL PL2:2(1HY,X(1),Y(1),-100) 0436 C CALL PL2:3(1HY,X(1),Y(1),-100) 0446 C CALL PL4 0450 C CALL PL4 CALL PL4 0450 C CALL PL2:3(IH;X(1),Y(1),-100)		Ç	CALL	PL23(1HY,X(1),Y(1),-100;	l de la companya de l		0350
C 0370 C TU SET THE PLUT LIMITS TU ARBITRARY VALUES, 0380 C CALL PL2(XMAX,XMIN,YMAX,YDIN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL4. 0400 C EXAMPLE 0400 C DIMENSION X(100),Y(100) 0420 C CALL PL2(20.,10.,50.,0.) 0430 C CALL PL23(1HY,X(1),Y(1),-100) 0430 C CALL PL23(1HY,X(1),Y(1),-100) 0430 C CALL PL3(1HY,X(1),Y(1),-100) 0440 C CALL PL4 0450 C CALL PL4 BUTH SKIP TO A NEW PAGE BEFORE PLUTTING. THE USER CAN 0470 0446 C CALL PL014 HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED 04480 0450 C AT THE TOP AND/OK LEFT SIDES OF THE PLOT. 0490 C EXAMPLE 0500 C DIMENSION X(100), Y(100) 0510 C CALL PL23(1H,X(1),Y(1),100) 0520 C CALL PL23(1H,X(1),Y(1),100) 0530 C CALL PL23(1HY,X(1),Y(1),-100) 0530 C CALL PL23(1HY,X(1),Y(1),-100) 0530 C CALL PL23(1HY,X(1),Y(1),-100) 0530 C CALL PL23(1HY,X(1),Y(1),-100) 0530 C CALL PL3(1HY,X(1),Y(1),-100) 0530 C CALL PL3(1HY,X(1),Y(1),-100) <td></td> <td>C</td> <td>CALL I</td> <td>24</td> <td></td> <td></td> <td>0360</td>		C	CALL I	24			0360
C TO SET THE PLOT LIMITS TO ARBITRARY VALUES, 0380 C CALL PL2(XMAX,XMIN,YMAX,YLIN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL4. 0400 C DIMENSIUN X(100),Y1100) 0410 C DIMENSIUN X(100),Y1100) 0420 C CALL PL2:20+,10+,50+,0+) 0430 C CALL PL2:20+,10+,50+,0+) 0440 C CALL PL2:20+,10+,50+,0+ 0440 C CALL PL2:20+,10+,50+,10+,100 0440 C CALL PL2:0+,10+,10+,10+,100+ 0510 C CALL PL2:0+,10+,20+,10+,20+,10+,10+,10+,10+,10+,10+,10+,10+,10+,1		C					0370
C CALL PL2(XMAX,XMIN,YMAX,YGIN), CALL PL23 FOR EACH ARRAY, AND 0390 C CALL PL2,XMAX,XMIN,YMAX,YGIN), CALL PL23 FOR EACH ARRAY, AND 0490 C CALL PL4. 0410 C DIMENSIUN X(100),Y(100) 0420 C CALL PL2(20.,10.,50.,0.) 0420 C CALL PL2(20.,10.,50.,0.) 0430 C CALL PL2(210.,10.,50.,0.) 0430 C CALL PL2(210.,10.,50.,0.) 0430 C CALL PL2(210.,10.,50.,0.) 0430 C CALL PL2(114,X(1),Y(1),-100) 0430 C CALL PL2(20.,10.,50.,0.) 0450 C CALL PL4 0450 C CALL PL4. 0450 C CALL PL3. CALT THE TOP AND/UK LEFT SIDES OF THE PLOT. 0590 C DIMENSIÓN X(100),Y(100) 0510 0510 C CALL PL23(111,X(1),Y(1),100) 0520		Ç	TO SET T	HE PLOT LIMITS TO ARBITH	RARY VALUES,		0580
C CALL PL4. 0400 C EXAMPLE 0410 C DIMENSION X(100),Y(100) 0420 C CALL PL2/20.,10.,50.,0.) 0430 C CALL PL2/20.,10.,50.,0.) 0430 C CALL PL23(1HY,X(1),Y(1),-100) 0440 C CALL PL4 04460 C AT THE TOP AND/OK LEFT SIDES OF THE PLOT. 0490 C EXAMPLE 0500 C DIMENSIÓN X(100), Y(100) 0510 C CALL PL23(1H,X(1),Y(1),100) 0520 C CALL PL23(1H,X(1),Y(1),Y(1),-100) 0520 C CALL PL23(1H,X(1),Y(1),Y(1),-100) 0530 C ALL PL23(1H,X(1),Y(1),Y(1),-100) 0530 C ALL PL3(1HY,X(1),Y(1),Y(1),-100) 0530 C ALL PL3(1HY,X(1),Y(1),Y(1),-100) 0530		ç	CALL PL2	(XMAX,XMIN,YMAX,YAIN), (CALL PL23 FOR EACH A	RRAY, AND	0390
C EXAMPLE 0410 C DIMENSION X(100),Y(100) 0420 C CALL PL2(20.,10.,50.,0.) 0430 C CALL PL2(10.,10.,50.,0.) 0430 C CALL PL23(1HY,X(1),Y(1),-100) 0440 C CALL PL23(1HY,X(1),Y(1),-100) 0440 C CALL PL23(1HY,X(1),Y(1),-100) 0460 C CALL PL24(D14 HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED 0480 L AT THE TOP AND/DK LEFT SIDES OF THE PLOT. 0490 C EXAMPLE 0500 C DIMENSIÓN X(100),Y(100) 0510 C CALL PL23(1H X(1),Y(1),100) 0520 C CALL PL23(1HY,X(1),Y(1),-100) 0534 C DERMANT(10,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0594 C CALL PL23(1HY,X(1),Y(1),-100) 0534 C IO FORMAT(1H,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0594 C CALL PL23(HY,X(1),Y(1),-100) 0536 C CALL PL23(HY,X(1),Y(1),-100) 0536 C CALL PL23(HY,X(1),Y(1),-100) 0536 C CALL PL23(HY,X(1),Y(1),-100)		Ĺ	CALL PLA	•			0400
C DIFENSION X (D07,F00,F00,F00,F00,F00,F00,F00,F00,F00,F		د د	EXAMPLE.				0410
C CALL PL23(IHY,X(I),Y(I),-100) 0440 C CALL PL4 0450 C CALL PL4 0460 C CALL PL4 0460 C CALL PL4 0460 C PL AND PL4 BUTH SKIP TO A NEW PAGE BEFORE PLUTTING. THE USER CAN 0470 C CALL PLUT4 HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED 0480 C CALL PLUT4 HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED 0490 C CALL PL23(IH, SLIPTIO) 0500 C DIMENSION X(100), Y(100) 0510 C CALL PL23(IH, X(1), Y(1), 100) 0520 C CALL PL23(IH, X(1), Y(1), -100) 0530 C PRINT 10 0546 C 10 FORMAT(IH1, 20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X //IOXI3HR = 1000 UHMS, 5X11HL = 100 MH, 5X16HC = 200 MICRO F.) 0567		č		2(2(20, 10, 50, 0))			0420
C CALL PLS (INTERTITY FOOD 0450 C CALL PL4 0450 C C 0460 C C 0460 C C 0460 C C 0460 C C 0470 C CALL PLOT HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED 0480 C CAT THE TOP AND/OK LEFT SIDES OF THE PLOT. 0490 C DIMENSIÓN X(100), Y(100) 0510 C CALL PL23(IH +,X(1), Y(1), 100) 0520 C CALL PL23(IH +,X(1), Y(1), -100) 0520 C DAMATI (IH1, 20348HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C 10 FORMAT (IH1, 20348HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X //IOXI3HR = 1000 UMMS, 5X11HL = 100 MH, 5X10HC = 200 MICRO F.) 0567 C CAL PLOT(40,0,0H) UMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550		Č	CALL	PI23(1HY,X(1),Y(1),-100)			0440
C CALL PL23(1H+,x(1),y(1),-100) C ALL PL23(1H+,x(1),y(1),-100) C CALL PL23(1H+,x(1),-100) C CALL PL23(1H+,x(1),-100) C CALL PL23(1H+,x(1),-100) C CALL PL23(1H+,x(1),-100) C CALL PL23(1H+,x(1),-100) C CALL PL23(1H+,-100) C CALL PL23(1H+,		č	CALL I	223 (1), (((((((((((((((((((0450
CPL AND PL4 BOTH SKIP TO A NEW PAGE BEFORE PLUTTING. THE USER CAN0470CCALL PLUT4 HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED0480CAT THE TOP AND/OK LEFT SIDES OF THE PLOT.0490CEXAMPLE0500CDIMENSION X(100), Y(100)0510CCALL PL23(1H, X(1), Y(1), 100)0520CCALL PL23(1H, X(1), Y(1), -100)0530CPRINT 100540C10 FORMAT(1H1, 20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT0550CX//10X13HR = 1000 UHMS, 5X11HL = 100 MH., 5X10HC = 200 MICRO F.)0557		č	Unge .				0460
C CALL PLOT4 HIMSELF AFTER CALLING PL23, IF A LABEL IS DESIRED 0480 C AT THE TOP AND/OR LEFT SIDES OF THE PLOT. 0490 C EXAMPLE 0500 C DIMENSIÓN X(100),Y(100) 0510 C CALL PL23(1H,X(1),Y(1),100) 0520 C CALL PL23(1H,X(1),Y(1),-100) 0520 C PRINT 10 0530 C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X //IOX13HR = 1000 UMMS,5X11HL = 100 MH.,5X10HC = 200 MICRO F.) 0557		č	PL AND PL	4 BUTH SKIP TO A NEW PA	AGE BEFORE PLUTTING.	THE USER CAN	0470
L AT THE TOP AND/OK LEFT SIDES OF THE PLOT. 0490 C EXAMPLE 0500 C DIMENSION X(100),Y(100) 0510 C CALL PL23(1H,X(1),Y(1),100) 0520 C CALL PL23(1H,X(1),Y(1),-100) 0530 C CALL PL23(1HY,X(1),Y(1),-100) 0530 C PRINT 10 0530 C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X //10X13HR = 1000 UHMS,5X11HL = 100 MH.,5X16HC = 200 MICRO F.) 0557 C C AL /PLOT(40,0.0H) UMPEDANCE IN OHMS.) 0537		Ċ	CALL PLU	14 HIMSELF AFTER CALLING	9 PL23, IF A LABEL 1	S DESIRED	0480
C EXAMPLE 0500 C DIMENSIGN X(10C),Y(100) 0510 C CALL PL23(1H,X(1),Y(1),10C) 0520 C CALL PL23(1HY,X(1),Y(1),-100) 0530 C PKINT 10 0540 C 10 FORMAT(1H1,20X48HIMPEDABCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X //10X13HR = 1000 GHMS,5X11HL = 100 MICRO F. J 0550 C C CAL PL014(40.40H) [MPEDABCE IN OHMS J 0570		L	AT THE TO	DP AND/OR LEFT SIDES OF	THE PLOT.		0490
C DIMENSION X(100),Y(100) 0510 C CALL PL25(1H,X(1),Y(1),100) 0520 C CALL PL25(1HY,X(1),Y(1),100) 0530 C CALL PL25(1HY,X(1),Y(1),100) 0530 C PKINT 10 0540 C PKINT 10 0540 C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X X/10X13HR = 1000 GHMS,5X11HL = 100 MH.,5X10HC = 200 MICRO F.) 0550 C C CAL PLOT(40,040H) [MPEDANCE IN OHMS] 0570		C	EXAMPLE.	• • •			0500
C CALL PL23(1H ,X(1),Y(1),100) 052C C CALL PL23(1HY,X(1),Y(1),-100) 053C C PRINT 10 054C C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 055C C X //IOXI3HR = 1000 UHMS,5X11HL = 100 MH.,5X10HC = 200 MICRO F.) 055C C X //IOXI3HR = 1000 UHMS,5X11HL = 100 MH.,5X10HC = 200 MICRO F.) 055C		C	DIMEN	SIÚN X(10C),Y(100)			0510
C CALL PL23(11HY,X(1),Y(1),-100) C PKINT 10 C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT C X //IOXI3HR = 1000 GHMS,5X11HL = 100 MH.,5X10HC = 200 MICRO F.) C C 11 PLOID(40.400H C C 11 PLOID(40.400H) C C 10 FORMATION CONTRACTOR C C C 10 FORMATION CONTRACTOR C C 10 FORMATION C C 10 FORMA		C C	CALL P	223(1H ,X(1),Y(1),10C)			0520
C PRINTIO 0540 C 10 FORMAT(1H1,20X48HIMPEDANCE VS. FREQUENCY FOR A SERIES RLC CIRCUIT 0550 C X //10X13HR = 1000 0HMS,5X11HL = 100 MH.,5X16HC = 200 MICRO F.) 0550 C C 11 PLOIG(40.40H MPEDANCE IN 0HMS) 0570		C	CALL	2L23 (1HY, X(1), Y(1), -100)			0530
C TO FORMATITH, 2048HIMPEDANCE VS. FREQUENCE FOR A SERIES REL CIRCUIT 055C C X //10X13HR = 1000 UHMS, 5X11HL = 100 MH, $5X10HC$ = 200 MICRO F.) 055C (CALL PLOT4(40.40H) (MPEDANCE IN OHMS) 057C		C C	PRINI 10 FOSTIN	LU TILL DOV/DUTADEDANCE -	ERECHENCY COD A		0540
(1) P D T 4 (4) 4 D H		с r		(11 M1+20A48M1MPEDANUE ¥3 (811 kmp = 1,330 (8000),5911	ы ЕКСЦИСИСТ РИК А 3 н = 100 мн -бут́⊬чр	= 200 MICPO E	0550
		č	CALLE	210T4140.40H	IMPEDANC	F IN OHMS }	0570

FERTRAN	IV G L1	EVEL 19	PL PL	-	DATE = 72165	11/00/48	
	č	PRINT 20 FORMA	20 T (/ / 40X22HF REQUE)	NCY IN KILDHERTZ	,		0580 0590
	č				•		0600
CCC3		DIMEN	\$IÜN X(1) +¥{1) +K#	H(1)			
C004	_	CUMMUI	N /BLOK1/JWHICH				
	C			XX AND YY MUST	BOTH BE DIMENSIO	INED AS	0630
0005	Ŀ	O IN CN	- 100 - VV/ 10/01 - VV/	LARGE AS	MAX (RUWS + CULUMS) .)	0640
0005	ſ	DIMEN	STON ANTIOUSFITT.	CRAPH IS NEEDER	N WITH UNDIGT, AU		0650
	č			JPLOT.	D WITH ONFEDIT DO	NUT WITH	0670
	č	DIMEN	SION GRAPH(867)				0680
	C						0690
0 0 0 c		EQUIV	ALENCE (XMAX, KX)	,(YMIN,KY)		•	0700
	C	· · ·					0710
CCC7		DATA	RUWS/50./ COLUMS/	/100./			0720
0008		DATA	KLEAN/U/				0.1/0
0009	r	UALA	XDL/IN / KUL/INA/	/ +KAS/ 1H+/			0740
	C C			JUMP=0 IE PL W	AS CALLED. =) IE	P123 HAS	0760
	č			CALLED, =-	-1 IF PL2 WAS CAL	LED.	0770
001 C		JUMP=	່				0780
0011		GŬ TO	10				0790
	C					1. A.	0800
	C C	ENTRY PL	23 FRAME THE	E PUINTS.			0810
	C C	CATON	ג בוח				0820
0012		ENTRY	PL23 [XHA8, X, V,	NPTS)			0840
0013		JUMP=					0850
C014		IF(JW	HICH}20,10,20				0860
0015		10 XMAX=	X(1)				0870
0016		XMIN=	X(1) .				0880
0017		Y MAX=	Y (1.)				08 90
CC18		YMIN=	Y(1)				0900
0019		JWHIC DO NETCH					0910
0021			SINCHI				0920
0022		LECIW	HICH1150.30.30				0940
0023		30 00 40	N=1 NP				0950
CC24		IFCX	N)-XMAX131,31,32			•	0960
0025		32 XMAX=	K (N)				0970
CC26		GO TO	33				0980
0027		31 IF(X(VJ-XMINJ 34, 33, 33				0990
0028		34 XMLN=.	44N) NILVHAVIJE 26 36				1000
0030		36 VMAX=	NI - TMAAI 33,33,33,30 V (Ni)				1020
0031		GE TO	40				1030
C032		35 IF(Y(N)-YMIN)37.40.40				1040
3 ذ 50		37 YM 11=	Y (N)				1050
C034		40 CONTI	NUE				1060
5 ف 00		IF(JU	4P)60,60,50				1070
0036	-	50 1F(KH	AR-KBL 160, 260, 60				1080
	C	ENTUX OF					1090
	ç	ENIKY PL	Z SET UP THE	: GRIU.			1100
	r r	= NI-V	DI 2				1120
0.037	L	ENTRY	PL 2 (XMX.XMN.YM)	X.YMN)			1130
6638		JUMP=	-1				1140
	с .	-		MOVE THE ARGUM	ENTS.		1150

FCRTRAN	IV	GLE	V EL	19	PLŻ	DATE =	72165	11/00/48
6633				XMAX=XMX				114
0040								114
0041								110
6642		c		T PLA IN T PON	DE-CIMME:		RTRAN	1.20
		č		кхжкнак	DE-COMMEN	I IUN CUC FU		121
		č		XMIN=XIII				12
		č		YMAX = Y(1)				123
		č		KY=NPTS				124
6043		. *	60	CALL PLOT2 (URAPH . XH	AX.XMIN.YMAX	YMIN		12
0044				IF (KI EAN) 70. 140. 70				120
		C			WIPE OUT	THE INTERNAL	GRID LINES.	12
C045		•	70	XD= (XMAX- XMIN) /C OL U	MS			120
0046				YD= (YMAX-YMIN)/KUWS				129
CC47				NCM=COLUMS5				130
C048				NRM=RUWS5				131
0049				NCMM=NCM-9				132
CC5C				NRMM=NRM-9				. 13:
C051				DO 80 J=1,NCM				134
0052			6Ο	XX(J)=XMIN+FLOAT(J)	¥XD			135
C053				DO 100 J=10,NRMM,10				13
C054		•		YT=YMIN+FLUAT(J)*YD				13
CO5 5				DC 90 K=1,NLM				134
CC56			90	YY(K) = YT				139
0057			100	CALL PLOT SIKBL, XX, Y	Y • NC M }			140
C058				DU 110 J=1,NRM				141
6659			.110	YY(J)=YMIN+FLOAT(J)	ŧ YU			14
0060				UU 130 J=10, NCMM, 10				14:
1001				ATEAMIN+FLUAT(J)*XU				144
0062			1.10	DU 12U K=I+NKM			÷	14:
0063			120	AALL DIGTRINGI VE H				140
1004		c	100	CALL PLUISINDLAXAT	I J N KMJ			14
0065		C	140	JWHICH=+1				140
0000			140	JEL.UNP1260.150.150				15/
		C.		111000000000000000000000000000000000000	PUT THE	AP POINTS INT	D THE GRID-	15
CO6 7		v	150	CALL PLOTS (KHAR-X-)	YNPI			152
0001	÷			IF(NSIGN)160-230-230	3	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		15
		С			LINEAR I	TERPOLATION	WAS REQUESTED.	154
C 06 9		-	160	NGMAX = .5 + AMAX 1 (RUWS	COLUNS			155
C07C				XD=(XMAX-XMIN)/CGLU	MS			150
CO71				YD= (YMAX-YMIN)/ROWS				157
C072				XBUT=XMIN-0.5+XJ				154
0C73				YUP=YMAX+1.5+YU				159
0074				NRB=(YUP-Y(1))/YD				· 160
C C 7 5				NCB=(X(1)-XB0T)/XD				16.
0070				IF(NP.LT.2) GO TO 23	30			16.
		С			LOOP OVER	C PAIRS OF AD	JACENT PUINTS.	163
C077				UG 220 J=2,NP				16
C070				NRÜW=(YUP-Y(J))/YD				16
CO7 🗉				NCUL=[X[J]-XBOT]/XD	1			160
		C			COMPUTE (G. THE NUMBE	R OF INTERPOLA	TING 16
		C			CHAi	RAC TERS.		168
		С						164
ပြေခြင်				NG=MAXO(1ABS(NROW-N	RB), IABS (NCO	L-NC8))-1		170
081				IF(NG)210,210,170				171
COBZ			170	IFING-NGMAX)180,180	,210			17.
		C			PUT IN TH	HE NG UNIFORM	LY SPACED	17.

132

PAGE 0003

FGRTRAN	IV	Gι	EVEL.	19	PL2	DATE = 72165	11/00/48	
		с			INT	ERPOLATING CHARACTERS.		1740
0083			180	ANGP=NG+	1			1750
CO84				DX=X(J}-)	((J-1)			1760
0085				0Y=Y(J)-'	Y(J-1)			1770
0086				DO 190 K≠	=1,NG			1780
CCE7				FRAC=FLU	AT (KJ/ANGP			1790
0088				XX(K)=X(.	J-1)+FRAC*DX			1800
6089			190	YY(K)=Y{.	J-1}+FRAC*DY			1810
		C			INTERPOL	ATE WITH ASTERISKS UNLES	SS THE	1820
		. C	;		PLO	TTING CHARACTER IS AN AS	STERISK.	1830
		C	;	•	IN	THAT CASE, USE A DOLLAR	SIGN.	1840
C09C				IF(KHAR.	E. KASI GU TO 200			1850
0091				CALL PLUT	[3(KAS, XX, YY,NG)			1860
CC92				GO TO 210				1870
0093			200	CALL PLO	T3(KDL,XX,YY,NG)			1880
0094			210	NRB=NROW				1890
CC95-			220	NCB=NCOL				1900
C096			230	IF(JUMP)	260,240,260			1910
		0	:					1920
		C	EN	TRY PL4	CALL PLGT4 TU PRINT	THE GRAPH.		1930
		C	;					1940
0097				ENTRY PL4	÷			1950
CC98			240	PRINT 250)			1960
CC99			250	FORMAT(1)	11)			1970
C100				CALL PLOT	[4 (0,KH)			1980
C101				JWHICH=0				1990
		0	;					2000
0102			260	RETURN				∠01 0
		c						2020
		C	EN.	TRY WIPE.	SET KLEAN FOR GRID	LINES (=0) OR NO GRID H	LINES (=1).	2030
		0						2040
		C	. Şe	TTING KLE/	AN TO 1 SLOWS DOWN EXEC	JTION VERY GREATLY. IF	PL IS	2050
		C	; bе	ING USED W	VITH JPLOT (AS OPPOSED	TƏ UMPLOT, IUPLƏT, ETC.)),	2060
		C	CA C	LL NGGRID	(1) TO ACCOMPLISH THE S	AME THING AS CALLING WI	PE(1).	2070
		C						2080
		C		ENTRY wI	PE			2090
0103				ENTRY WI	PE (KHAR)			2100
C1C4				KLEAN=KH	AR			2110
0105				GU TU 260	0			2120
0106				ÉND				2130

.

PAGE 0004

FORTRAN IV G LEVEL 19 BLK DATA DATE = 72162 17/43/57 PAGE 0001

CC01 0002	BLOCK DATA Common /Blok1/JWHICH				
0003	DATA JWHICH/0/				
CC04	END				
FURTRAN	1.4	9	LEVEL	19 PLUI2 DATE # /2162 1//43/37	
---------	-----	---	-------	--	------
0001				SUBROUTINE PLOT2 (DUNNY, XMX, XMN, YMX, YMN)	2140
0002				LOGICAL*1 LA,LB	2150
0003				COMMON /BLOK1/JWHICH	
0004				DIMENSION JRAPH(20,51),LABEL(52),ABSC(11)	2160
0005				DIMENSION JA(5), JAA(5), JB(5), JBB(5), JC(5), LA(4), LB(4), INTEGR(9)	2170
0006				EQUIVALENCE (LA(1),IA,XA),(LB(1),MM)	2180
C007				DATA NOK/O/,MULT/1/,KHPWD/4/,MM/4H /,KBITCH/8/	2190
0008				DATA JAA/4H+,4H,4H+-,4H,4H/	2200
C003				DATA JA/4H+,4H,4H+,4H,4H/	2210
0010				DATA JB/4H #4H #4H #4H #4H /	
0011				DATA JBB/4H + 4H + 4H + 4H /	
0012				DATA INTEGR/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/	2240
0013				DATA KPL/4H+ /•KI/4H1 /•KBL/4H /•KMI/4H- /	
0014				XMAX=XMX	2260
0015				X M I N=X MN	2270
0016				YMA X= YMX	2280
0017				YM I N=YMN	2290
0018				IF (XHAX.NE.XMIN .AND. YMAX.NE.YMIN) GD TO 20	2300
0019				NUK=0	2310
0020				PRINI 10, XMAX, XMIN, YMAX, YMIN	2320
0021			10	FURMAI(745H BAD PLUI2 ARGUMENIS. XMAX, XMIN, YMAX, YMIN = 4E21.8)	2330
0022	÷.,				2340
0023			20		2350
0024					2360
0025					2370
0028					2380
0027				TUP=T MAXTI. D+TU	2390
0028			21		2400
6029			21		2410
0031					2420
0032					2430
0033					2450
0034					2460
0035			23	JRAPH(KP+1, J)=JC(1)	2470
0036				JRAPH(26.J)=KPL	2480
0037				IF(JA(1), EU, KBL) JRAPH(1,J)=KPL	2490
0038				IF(J,EQ,1) = OR, J,EQ,51) = JRAPH(1,J) = JAA(1)	2500
0039				IF(J-41)28,25,200	2510
0040			28	IF(J.NE.1) GO TO 26	2520
C041				DD 24 K=1,5	2530
0042			24	JC(K) = JA(K)	2540
0043				GO TO 26	2550
0044			25	DO 27 K=1,5	2560
0045			27	JC(K)=JAA(K)	2570
0046			26	DO 22 L=1,9	2580
0047				1+L=J46	2590
0048				ΚΡ=-5	2600
CC49				DO 29 K=1,5	2610
0050				КР=КР+5	2620
0051				DO 29 M=1,5	2630
0052			29	JRAPH(KP+M,JPL)=JB(M)	2640
0053				JRAPH(1, JPL}=KI	2650
0054			22	JRAPH(26, JPL)=KI	2660
00:5				GD TO 200	2670
0056				ENTRY PLOTS (MSY, X, Y, NPTS)	2680
0057				DIMENSION XII), Y(1)	
0058				IFINUK.NE.IJ GU FO 200	2700

.

. . .

FC	RT	RAN	I۷	G LEVEL	19
----	----	-----	----	---------	----

PLOT3

17/43/57

059		
061		
100 L		
1002		NCCH+1CCFT1N77T0 3CCH−174N-30CT177C
065		TELENANT TADULET AU TELENANT TADULET AU
045		1711AD518KUW-201.61.22 .UK. 1AB5(8LUL-201.61.30) 60 10 100
0000		
000		
067		IATJKAPHENNU, NKUWJ
800		NBY1E=NUUL-KHPWU#NTRUNC+1
069		LB(1)=LA(NBYIE)
070		TF(MULT.EQ.O .UR. MSYN.EQ.KBL) GO TO 80
071		IF(MM.EQ.KBL.UK.MM.EQ.KI.UK.MM.EQ.KMI.UR.MM.EQ.KPL) GO TO 80
372		1F(MM-IN)EGR(2))52,51,50
073	51	MM=INIEGR(3)
074		GO TO 90
075	52	IF(MN-INTEGR(9))50,100,53
076	50	MM=INTEGR(2)
. 770		GO TO 90
)78	53	IF(MM-INTEGR(5))56,55,54
79	55	MH=INTEGR(6)
080		GO TO 90
081	54	IF(MM-INTEGR(3))58,58,57
382	57	MM=INTEGR(3)
083		.GO TU 90
)84	58	MM=INTEGK (4)
85		GO TO 90
86	56	IF(MM-INTEGR(7))61,60,59
87	59	MM≃INTEGR(7)
88		GD TO 90
89	60	MM= INTEGR(8)
90		G0 T0 90
91	61	MM=INTEGR(9)
92	, •••	G0 T0 90
93	яO	MM=NSYM
194	90	LA(NBYTE)=LB(1)
95		JRAPH(NWD.NROW)= [A
196	1.00	
97	1,00	G0 T0 200
98		
100		
00		IEINGKINE II CO TO 200
01		
01		JIUF+180731/4 IC/1708 (C A) CO TO 118
02		
0.0		
0.9		
10 D		NAUU=4+J-4
じち		
97 6 6		
N 8	110	
.0.9	111	NL=MAXU(1,MINU(52,NCH+1))
10		1+(NL.6(.51) GU TO 130
11		DO 120 N=NL,51
12	120	LABEL (N)=KBL
13	130	DO 150 I=1.6
14		ORD=YMAX-(FLOAT(I-1)/5.)*(YMAX-YMIN)
15		IF(I.EQ.6) ORD=YMIN
16		NR=10*I-9

e e Maria Antonio de Constante de							
	FCRTRAN IV G LEVEL	19	PLOT4	DATE = 72162	17/43/57	PAGE 0003	
	0117 0118 140 0119 0120 0121 0122 0122 0123 0123 150 0124 160 0125 170 0126 180 0127 0126 0128 0127 0130 0131 0132 200 0133 0135 0134 0135 0135 0136 0137 0138 0140 211 0142 220 0143 0144 0144 221 0145 0146	PRINT 140,LABEL(NR), FORMAT(5XA1,2X,1PELO IF(I.GE.6) GO TO 170 NRP=NR+1 NCP=NR+1 DO 150 NA=NRP,NCP PRINT 160, LABEL(NA) FORMAT(5XA1,13X26A4) DO 180 I=1,10 ABSC(I]=XMIN+(FLOAT ABSC(I]=XMIN+	ORD; [JRAPH(J,NR], .3,1X26A4) ,(JRAPH(J,NA),J=1 (1-1)/10.0)*(XMAX	J=1,26) ,26) -Xmin)	3290 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3400 3440 3450 3450 3450 3450 3450 3450 3510 3510 3510 3520 3530 3550 3550 3550 3550		
		an An Maria An An					

.

.37

	DATE	ID	H+	C 02	NA+	CA++	MG++	HC 0 3-	CO3	,
	72 111	1-0	9.3165-09	1,1066-05	4.782E-02	7-8105-05	1.0455-04	5.2775-04	2.6376-06	
	72 111	i - i	9-1485-09	7.2425-06	2.6205-02	5.4545-05	1.7855-04	3.520 5-04	1.7915=06	
	72 111	1- 2	9 3595-00	2 8055-05	1 3485-03	7 4545-05	1 3036-04	1 2225-02	4 4305-04	
	72 111	2 - 0	9.3392-09	2.0002-00	1.2305-02	(7035-05	1.3836-04	1.0155-03	6.0302-06	
	72 111	2-0	9.5302-09	2.1/82-05	1.3502-02	8. 1920-03	1.4892-04	1.0192-03	4.9602-06	
	12 111	24 1	9.5742-09	1.641E-05	~8.755E-03	6.1482-05	1.490E-04	1.6228-04	3.707E-06	
	12 111	2- 2	9.705E-09	1.366E-05	8.720E-03	6.0262-05	1.728E-04	6.259E-04	3.003E-06	
	. 72 111	2- 4	9.838E-09	1.736E-05	8.052E-03	6.9298-05	1.686E-04	1.848E-04	3./14E-06	
	72 111	2- 6	9.617E~09	1.890E-05	7.230E-03	6.026E-05	1.635E-04	8.737E-04	4.2308-06	
· ·	72 111	2-8	9.793E-09	1.596E-05	7.768E-03	5.907E-05	1.693E-04	7.244E-04	3.4448-06	
	72 111	2-10	1.006E-08	9.739E-06	6.519E-03	5.564E-05	1.681E-04	4.303E-04	1.991E-06	
	72,111	3-0	9.574E-09	1.090E-05	7.465E-03	5.676E-05	1.763E-04	5.063E-04	2.462E-06	
	72 111	3-1	9.705E-09	1.310E-05	7.145E-03	5.241E~05	1.760E-04	6.000E-04	2.879E-06	
	· 72 111	3-2	9.838E-09	8.339E-06	7.259E-03	6.658E-05	1.665E-04	3.769E-04	1.784E-06	
	72 111	4-0	9.4442-09	2.550E-06	5.153E-03	8.291E-05	1.234E-04	1.201E-04	5.919E-07	
	72 111	4- 1	9.274E-09	2.623E-06	5.112E-03	6.792E-05	1.384E-04	1.258E-04	6.313E-07	·
	72 111	5-0	9.148E-09	1.978E-06	6.838E-03	6.929E-05	1.248E-04	9.614E-05	4.893E-07	
	72 111	5-1	9.530E-09	2-660 E-06	5-995E-03	6-398E-05	1-341E-04	1.241E-04	6-064E-07	·
	72 111	6-0	9-530F-09	2.343E-06	5.715E-03	6-026E-05	1-299F-04	1-093E-04	5-341E-07	
	72 111	6-1	9-530E-09	2-410E-06	4-464 E-03	6-5275-05	1.369E-04	1-124E-04	5.493E-07	
	72 111	6- 2	9.3595-09	2-479E-06	4.0255-03	6.3986-05	1.3415-04	1.178E-04	5-860 -07	
					40252 05		113412 04	1.1101 04	, J. 600L 01	
					·					
	DATE	10	CAHC03+	CACO3	MGHC 03+	MG CO 3	NA HCO 3	NACO3-		
	72 111	1-0	7.500E-07	3.264 E-07	7-9706-07	1-302E-06	1.4198-05	2.348F-06		
	72 111	1 1	3-4935-07	1.549E-07	9-082E-07	2-224E+06	5.1855-06	8-738E-07		
	72 111	1-2	1.857E-06	8.045 E-07	2-664E-06	1.7235-06	9.3555-06	1.5415-06		
	72 111	2-0	1.2555-06	5.3405=07	2:1565-06	1 8315-06	7 5965-06	1 2295-06		
	72 111	2-0	9 5 3 7 5 - 0 7	3 4125-07	1.6625-06	1.0510-00	3 7636-04	6 0635-07		
· ·	72 111	2 1	6 9445-07	3.0405-07	1.0420-00	2 1525 04	3.0405-04	6.0452-07		
		2-2	8.804E-07	2.8882-07	1.5632-06	2.1532-06	3.0692-08	4.8/82-07		
	72 111	2- 4	9.895E-07	4.079E-07	1.912E-06	2.100E-06	3.554E-00	5.569E-07		
	72 111	2- 6	9.581E-07	4.040E-07	2.065E-06	2.037E-06	3.553E-06	5.695E-07		
	72 111	2-8	7.7872-07	3.224E-07	1.773E-06	2.109E-06	3.164E-06	4.982E-07		
	72 111	2-10	4.357E-07	1.755E-07	1.046E-06	2.0958-06	1.5778-06	2.416E-07		
	72 111	3-0	5.230E-07	2.215E-07	1.290E-06	2.196E-06	2.125E-06	3.423E-07		
	72 111	3-1	5.7226-07	2.391E-07	1.526E-06	2.192E-06	2.4118-06	3.830E-07		
	72 111	3-2	4.566E-07	1.882E-07	9.069E-07	2.0748-06	1.539E-06	2.411E-07		
	72 111	4-0	1.811E-07	7.778E-08	2.141E-07	1.537E-06	3.4798-07	5.679E-08		
	72 111	4-1	1.554E-07	6.796 E-08	2.515E-07	1.724E-06	3.615E-07	6.010E-08		
	72 111	5~ 0	1.212E-07	5.374E-08	1.734E-07	1.555E-06	3.697E-07	6.230E-08		
	72 111	5-1	1.445E-07	6.148F-08	2.405E-07	1-671E-06	4-184E-07	6.769E-08		
	72 111	6- 0	1-199E-07	5.1015-08	2-053E-07	1-619E-06	3-513E-07	5-684 E-08		
	72 111	6-1	1.3355-07	5-682E-08	2.2245-07	1-705E-06	2.9235-07	4.566E-08		
	72 111	6-2	1.3716-07	5 941 5-08	2.2835-07	1.6715-06	2.6645-07	4.3916-08		
	16 111	0 2	Telite of	34341E.00	202032-01	1.0110 00	210000-07	40371L VO	and the second se	
	•		1							
								· ·		
										. 1

STATION NUMBER 1

111 21

72 111 STATION NUMBER 3

72 111 STATION NUMBER 6

APPENDIX C

DETERMINATION OF CHEMICAL ACTIVITY BY

THE KNOWN-INCREMENT METHOD

The principle of known-increment, also called standard addition, can be applied to any analytical technique in which measured response is a nonlinear function of the variable of interest. The Nernst equation for electrode potential is logarithmic in terms of activity and therefore fits the above requirement. The known-increment principle has been described and is in common usage for determining ion concentrations by ion-selective electrode measurements (25, 89, 90, 91, 92). The technique consists of two or more measurements taken before and after a known concentration of the ion being measured is added. A variation known as known-decrement, or standard subtraction, which involves complexation or precipitation of the ion being measured, is also used (90, 93). Instruments with direct reading scales for both known-increment and known-decrement are available (90, 91).

It would be possible to employ the same principle to determine ion activities if the activities could be changed by a known amount. No method for incrementing activities has been described; for that reason, the following derivation is presented as a theoretical treatment only. The equations derived here apply to cation sensitive electrodes and the known-increment principle. Other electrode systems and the known-decrement method can be derived by a similar treatment.

The usual response of a cation electrode in a solution containing activity, \underline{a} , of an ion to which the electrode responds is given by Equation 69.

$$E = E_0 + \frac{RT}{nF} \ln a \tag{69}$$

If a known increment, Δa of the ion is added such that a different activity, $a' = a + \Delta a$, is obtained; a potential response, E', will result.

$$E' = E_0 + \frac{RT}{nF} \ln a'$$
 (70)

By subtracting Equation 69 from Equation 70, Equation 71 is obtained.

$$\Delta E = E' - E = \frac{RT}{nF} \ln \frac{a'}{a}$$
(71)

Equation 71 can be rearranged to give the resulting activity expression, Equation 72.

$$a = \frac{\Delta a}{\exp(\frac{nF\Delta E}{RT}) - 1}$$
(72)

In Equation 72, activity of the original solution is expressed in terms of the known increment, the difference in potential due to the increment, and known constants. The E_0 terms which are implicitly assumed unchanged by addition of the increment, have been eliminated. Any changes in E_0 due to drift or temperature variations are unimportant as long as the E_0 terms in Equations 69 and 70 are equal. A theoretical Nernstian slope is implied in this development, but if a better value for the electrode slope is known from calibration, that term can be substituted into Equation 72.

Furthermore, the slope term can be eliminated by adding a second known-increment, Δa_2 .

$$E'' = E_0 + \frac{RT}{nF} \ln a''$$
 (73)

Where $a'' = a' + \Delta a_2$ and $E'' = E' + \Delta E_2$. Equation 73 when combined with Equation 70 where the first increment and first ΔE are labeled with subscript (1)'s gives Equation 74.

$$\frac{\Delta E_2}{\Delta E_1} = \frac{\ln \left(1 + \frac{\Delta a_2}{a + \Delta a_1}\right)}{\ln \left(1 + \frac{\Delta a_1}{a}\right)}$$
(74)

Equation 74 can be solved for the variable <u>a</u> by successive approximations, or if the second increment can be added so that $\Delta E_2 = \Delta E_1$, Equation 75 results.

$$a = \frac{(\Delta a_1)^2}{\Delta a_2 - \Delta a_1}$$
(75)

Equations 74 and 75 both express <u>a</u> as functions independent of any electrode parameters which were subject to considerable drift in Table V. Unfortunately, double known addition has the disadvantage that small errors in potential determinations cause large errors in the value of \underline{a} (92).

1

The known-increment method can also be used when an electrode such as the divalent cation electrode responds to more than one ion in solution. Equation 76 is assumed to describe the electrode selectivity response.

$$E = E_0 + \frac{RT}{nF} \ln (a_1 + Ka_2)$$
 (76)

After addition of a known increment of a_2 , which may or may not change a_1 , the change in response is given by Equation 77.

$$\Delta E = E' - E = \frac{RT}{nF} \ln \left(\frac{a_1' + K\Delta a_2 + Ka_2}{a + Ka_2} \right)$$
(77)

Equation 77 can be solved for a₂.

$$a_{2} = \frac{\frac{a_{1} \exp\left(\frac{nF\Delta E}{RT}\right) - a_{1}'}{K} - \Delta a_{2}}{1 - \exp\left(\frac{nF\Delta E}{RT}\right)}$$
(78)

The determination of a_2 in the presence of a_1 by the known-increment method requires that values be known for a_1 , a_1 ' if different from a_1 , and the selectivity coefficient, in addition to Δa_2 and ΔE .

VITA J

Gary Keith Rice

Candidate for the Degree of

Doctor of Philosophy

Thesis: CONTINUOUS PHYSICOCHEMICAL MONITORING AND MODELING OF AN AQUATIC ECOSYSTEM

Major Field: Chemistry

Biographical:

- Personal Data: Born in Cushing, Oklahoma, June 19, 1946, the son of Mr. and Mrs. Edgar L. Rice, Perkins, Oklahoma.
- Education: Graduated from Ripley High School, Ripley, Oklahoma, in May, 1964; received the Bachelor of Science Degree from Oklahoma State University, Stillwater, Oklahoma, May, 1968, with a major in Chemistry; completed requirements for the Doctor of Philosophy Degree at Oklahoma State University, July, 1972.
- Professional Experience: Student assistant, Chemistry Department, Oklahoma State University, 1964; laboratory assistant, Research Foundation, Oklahoma State University, 1966; Federal Water Quality Administration Traineeship, Research Foundation, Oklahoma State University, June, 1968 August, 1970; National Defense Education Act Fellowship, Graduate College, Oklahoma State University, September, 1970 July, 1972.

Professional Organizations: American Chemical Society, Phi Lambda Upsilon and Sigma Xi.