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Abstract
Background: The feasibility of effectively analyzing high-density single nucleotide polymorphism
(SNP) maps in whole genome scans of complex traits is not known. The purpose of this study was
to compare variance components linkage results using different density marker maps in data from
the Collaborative Study on the Genetics of Alcoholism (COGA). Marker maps having an average
spacing of 10 cM (microsatellite), 0.78 cM (SNP1), and 0.31 cM (SNP2) were used to identify
quantitative trait loci (QTLs) affecting maximum number of alcoholic drinks consumed in a 24-hour
period (lnmaxalc).

Results: Heritability of lnmaxalc was estimated to be 15%. Multipoint variance components linkage
analysis revealed similar linkage patterns among the three marker panels, with the SNP maps
consistently yielding higher LOD scores. Robust LOD scores > 1.0 were observed on
chromosomes 1 and 13 for all three marker maps. Additional LODs > 1.0 were observed on
chromosome 4 with both SNP maps and on chromosomes 18 and 21 with the SNP2 map. Peak
LOD scores for lnmaxalc were observed on chromosome 1, although none reached genome-wide
statistical significance. Quantile-quantile plots revealed that the multipoint distribution of SNP
results appeared to fit the asymptotic null distribution better than the twopoint results.

Conclusion: In conclusion, variance-components linkage analysis using high-density SNP maps
provided higher LOD scores compared with the standard microsatellite map, similar to studies
using nonparametric linkage methods. Widespread application of SNP maps will depend on further
improvements in the computational methods implemented in current software packages.

Background
Alcoholism is a complex trait influenced by both genetic
and nongenetic factors. Previous linkage studies have
identified several chromosomal regions harboring poten-
tial genes for alcoholism [1], although only a few have

been replicated. Maximizing information in linkage stud-
ies will be crucial for the detection and replication of link-
age signals.
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Traditionally, studies involving genome-wide linkage
scans have used microsatellite markers spaced evenly
across the genome at ~10-cM intervals. An alternative and
increasingly popular strategy is to use a high-density map
of single nucleotide polymorphisms (SNPs). SNPs have
several advantages over their microsatellite counterparts.
They are found far more abundantly in the genome and
are easier to genotype. Howerver, because of the lower
heterozygozity on a per marker basis, a larger number of
SNPs is necessary to achieve an information content sim-
ilar to that of microsatellites [2].

One way of increasing power for linkage studies is to use
more closely spaced markers, which is now possible with
the advent of high-throughput technology for large scale
SNP genotyping. Simulation studies have indicated that
SNPs can offer equal or superior power to detect linkage
compared with low-density microsatellite maps [2].
Recently, several studies have demonstrated empirically
that denser SNP maps can improve gene localization and
increase power to detect signals for complex traits, partic-
ularly in regions characterized by poor coverage or infor-
mation content [3-5]. However, all of these studies used

nonparametric linkage methods, and it is not known how
SNPs will perform using other approaches, such as vari-
ance components, which can be more powerful than rela-
tive pair-based approaches. Thus, the purpose of this
study was to compare variance components linkage
results in detecting quantitative trait loci (QTLs) for alco-
holism using different density marker maps.

Methods
Data for the Genetic Analysis Workshop (GAW14) was
obtained from the Collaborative Study on the Genetics of
Alcoholism (COGA) [1]. Families with three or more
members diagnosed with alcohol dependence were
recruited from six COGA sites. Data were available from
143 pedigrees, including 1,614 family members. A subset
of alcoholism phenotypes and covariates were provided.
We chose the self-reported variable, "maximum number
of drinks consumed in a 24-hour period," as our alcohol-
ism phenotype. This quantitative trait is correlated with
diagnosis of alcoholism and was previously shown to be
linked to chromosome 4 in sibling pairs [6]. The trait was
natural log transformed (lnmaxalc) to reduce skewness
(2.41 vs. – 0.35) and kurtosis (12.19 vs. 2.82). Genome

Multipoint variance components LOD scores for log-transformed maximum number of alcoholic drinks per day (lnmaxalc), by marker panelFigure 1
Multipoint variance components LOD scores for log-transformed maximum number of alcoholic drinks per 
day (lnmaxalc), by marker panel. Adjusted for age, sex, and ethnicity; cM = sex-averaged distance from p-term.
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data included a standard 10-cM scan with 315 microsatel-
lite markers and two SNP maps of differing densities. The
Illumina Linkage III panel, referred to hereafter as SNP1,
contained 4,752 SNPs with an average marker spacing of
0.78 cM. The Affymetrix GeneChip Mapping 10 K array
(SNP2) contained 11,560 SNPs, averaging 0.31 cM. A
total of 1,332 subjects had both microsatellite and SNP
data available.

Heritability estimates and evidence for linkage were
obtained using the variance components approach imple-
mented in SOLAR version 2.1.2 [7]. This method parti-
tions the total phenotypic variance into variation due to a
major QTL, polygenic background, and random error.
Under the null hypothesis of no linkage, the QTL variance
is fixed at zero and is tested against a polygenic model in
which the same parameter is estimated from the data
using maximum likelihood methods. Quantitative
genetic analysis of lnmaxalc after adjustments for age, sex,
and ethnicity (coded as white, black, other) yielded a
residual kurtosis of 1.07. Non-normally distributed traits
may lead to excess type I error and inflated LOD scores in
the variance components model [8]. Therefore, robust
LOD scores were calculated within SOLAR by applying a
correction factor (0.86886) based on 11,000 simulations
of a fully informative marker, unlinked to the trait [8].
Two-point and multipoint identity-by-descent (IBD)
probabilities were calculated using SOLAR [7].

We examined the two-point and multipoint genome-wide
LOD score distributions of each marker set against the
asymptotic null distribution using quantile-quantile (Q-
Q) plots. Under the null hypothesis of no linkage, the
likelihood ratio test statistic that is given by (2 ln 10) ×

LOD is expected to be distributed as a 1/2:1/2 mixture of

a  variable and a point mass at 0 [7]. To calculate

empirical cutpoints for the maximum two-point and
multipoint LOD scores for each marker set, we simulated
200–500 replicates of the chromosome 1 data using gene-
dropping methods implemented in MERLIN version
0.10.2 [9]. Marker data are simulated under the null hypo-
thesis of no linkage or association to the observed pheno-
type, keeping the marker informativeness, spacing,
missing data patterns, and pedigree structure the same.
These randomly generated datasets were then imported
back into SOLAR for variance components analysis.

Results
Heritability of lnmaxalc was estimated to be 15%. In gen-
eral, genome-wide comparisons revealed similar linkage
patterns among the three marker sets (Figure 1). The less
dense SNP1 map appeared to perform similarly to the
SNP2 map, although LOD scores were highest with the
SNP2 map. Multipoint variance components linkage
analysis revealed robust LOD scores > 1.0 on chromo-
somes 1 and 13 for all three marker sets (Table 1). Addi-
tional LODs > 1.0 were obtained on chromosome 4 with
both SNP maps. Further signals on chromosomes 18 and
21 were observed with the densest SNP map (SNP2). Peak
LOD scores for lnmaxalc were observed on chromosome
1 for all three maps.

Q-Q plots of genome-wide two-point and multipoint
LOD scores are presented in Figure 2. The straight diago-
nal line represents the expected LOD score based on the
asymptotic null distribution. A LOD score of 1.5 is indi-
cated on each plot by a vertical red line. For the two-point

χ1
2

Table 1: Regions of linkage to lnmaxalc with robust LOD scores > 1.0 in COGA families.a

Chromosome Marker Panel Marker Region Map Position (cM)b Multipoint robust LODc

1 Microsatellite D1S226 114 1.26
SNP1 RS1492259-RS437749 101 2.02
SNP2 RS0320943-RS1592272 108 2.10

4 SNP1 RS1495127-RS724950 121 1.44
SNP2 RS0011540-RS0889153 124 1.66

13 Microsatellite D13S800 64 1.52
SNP1 RS768826-RS1023102 62 1.71
SNP2 RS1391748-RS0045587 63 1.77

18 SNP2 RS0261494-RS0444635 43 1.09

21 SNP2 RS0422341-RS1653187 55 1.30

aAdjusted for age, sex, and ethnicity.
bcM, sex-averaged distance from p-term.
cApplied correction factor of 0.87 from 11,000 simulations.
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results, the observed LOD scores were lower than expected
(Figure 2A); this conservative bias was most pronounced
for SNP2. In contrast, the SNP2 observed multipoint LOD

scores, plotted every 5 cM, appear to fit the expected dis-
tribution better (Figure 2B).

Quantile-quantile plots of genome-wide LOD scoresFigure 2
Quantile-quantile plots of genome-wide LOD scores. Twopoint (A) and multipoint (B) genomewide LOD scores are 

plotted against the asymptotic null distribution (1/2 ; 1/2 point mass 0) for each marker map. The red vertical line corre-

sponds to a LOD score of 1.5.

A. Two-point results

B. Multipoint results

χ1
2

Table 2: Chromosome 1 empirical maximum multipoint LOD score cutpoints.

LOD score

P-valuea Microsatelliteb SNP1b SNP2c

0.1 1.29 1.53 1.44
0.05 1.48 1.85 1.69
0.01 1.98 2.46 2.25
0.005 2.07 2.72 2.54

aChromosome 1 P = 0.004 corresponds to genome-wide P = 0.05.
bBased on 500 simulations.
cBased on 200 simulations.
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To further explore the distribution of maximum LOD
scores for each marker map, we simulated chromosome 1
data, where we obtained our highest genome-wide LOD
scores, under the null hypothesis of no linkage. We gener-
ated 500 replicates for the microsatellite and SNP1 maps,
and 200 replicates for the SNP2 map. The empirical LOD
score cutpoints were consistently higher for the SNP maps
than for the microsatellite map (Table 2). Our observed
chromosome 1 LOD scores of 2.02 for SNP1 and 2.10 for
SNP2 fall between the P = 0.05 and P = 0.01 cutpoints,
whereas the microsatellite LOD of 1.26 corresponds to an
empirical P > 0.10. A chromosome 1 P-value of 0.004 cor-
responds to a genomewide P-value of 0.05

. None of our LOD

scores reached genome-wide level of significance.

Discussion
A previous sib-pair linkage analysis of lnmaxalc in COGA
found significant evidence for linkage (LOD = 3.5) on
chromosome 4q21.3, near marker D4S2407 [6]. We were
unable to replicate this finding in our dataset; however,
we only had a subset of families and did not have the
additional chromosome 4 microsatellite markers used in
their study. Interestingly, our SNP-based analyses detected
a weak signal in the same chromosome 4 region, suggest-
ing that SNPs provided more information if indeed a true
linkage signal exists. Instead, our peak LOD scores were
found on chromosome 1, proximal to locations linked to
other alcohol phenotypes [1].

Genome-wide two-point results from the three marker
maps appeared to be comparable. However, the observed
SNP-based LODs were lower than expected under the
asymptotic null, which is probably due to the decreased
information content of SNPs on an individual basis. For
the multipoint results, the densest SNP map appeared to
fit better, likely reflecting the increased information con-
tent provided by the larger number of markers or finer
spacing. The asymptotic null distribution assumes inde-
pendence across the genome, but LOD scores are corre-
lated along a chromosome, even under the null
hypothesis of no linkage. Our Q-Q plot comparisons may
be affected by correlation among LOD scores. However,
we would expect such correlation to cause greater devia-
tions from the asymptotic null for the multipoint results
rather than the two-point results as we observed.

Peak variance-components LOD scores were consistently
higher for the SNP-based linkage analyses, similar to
recent reports using nonparametric linkage methods [3-
5]. However, we note that empirical P-values correspond-
ing to a given LOD score may also be higher for the SNP-

based analyses. To fully compare the power of marker
panels, extensive simulations should be carried out under
various genetic models, map densities and sample sizes.

Direct comparisons between SNP-based and microsatel-
lite-based results in this analysis were hindered by several
factors. First, we used the genetic maps as provided to us,
which were not aligned among the three marker sets. Fur-
ther, the presence of linkage disequilibrium among SNPs
can lead to inflated LOD scores [5]. However, we did not
test the hypothesis of both linkage and association, since
the average marker spacing was 600 kb and 210 kb for the
SNP1 and SNP2 maps, respectively. Another limitation is
that we calculated multipoint IBDs using an approxima-
tion method. Accuracy of IBD estimation can influence
the power to detect linkage [10]. We considered using
Markov chain Monte Carlo-based and exact methods for
IBD estimation but encountered difficulties when
attempting to analyze the large number of markers in the
SNP maps, i.e., programs either skipped larger families or
performed computations too slowly. It was encouraging,
however, to see that our multipoint results from the high-
est density SNP map fit the expected distribution well.
Perhaps the increased information content compensated
for the loss of information in the multipoint IBD approx-
imation.

Moving to denser SNP maps, however, comes at the
expense of increasing computational time. We performed
analyses in SOLAR using the RAM drive rather than the
hard drive, which decreased the computation time by
~50%. Each analysis of the simulated chromosome 1 data
took approximately 23 minutes for the microsatellite map
(38 markers), 3–5 hours for the SNP1 map (381 markers),
and 15–19 hours for the SNP2 map (864 markers). At the
time of our analysis, SOLAR was unable to handle more
than 500 markers per chromosome, so we had to break
the SNP2 data into two to three sections for the larger
chromosomes. This complicated the analysis as we had to
"bridge" across sections to minimize boundary effects
when estimating multipoint IBDs. The latest release of
SOLAR 2.1.4 can handle up to 2000 markers, but the com-
putation time may still be quite substantial.

Conclusion
In conclusion, variance-components linkage analysis
using high-density SNP maps provided higher LOD scores
compared with the standard microsatellite map. These
results demonstrate that using dense SNP maps in linkage
analysis is feasible and may increase power. However, the
computational challenges are not trivial and will only
increase as denser SNP sets become available. More wide-
spread application of SNPs in linkage analysis will depend
on further improvements to current statistical methods
and associated software packages.
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