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CHAPTER I 

INTRODUCTION 

Discussion 

The free vibrations of ring- and/or 'Stringer-stiffened circular 

and noncit,cular cylindrical shells are of interest to designers of 

flight and marine structures. Frequently, fuselages of flight struc­

tures and hulls of submarines have noncircular cross section due either 

to special internal storage requirements or to imperfections occurring 

during manufacture. The method of analysis developed in this report is 

capable of evaluating the free-vibrational characteristics of ring- and 

stringer-stiffened "singly" symmetric noncircular cylinders with 

arbitrary end conditions. 

Background 

Solutions for the vibrational characteristics of the special cases 

of unstiffened, circular, isotropic cylinders with specialized boundary 

conditions have been available for many years. Recent investigations 

have taken advantage of computers to analyze more complicated models of 

shell structures. One of the most general cases that can be analyzed 

is a stiffened, noncircular, anisotropic cylinder with arbitrary end 

conditions. 

Great attention has been paid to the application of the finite 

element and finite difference methods of analysis because of their 



generality and adaptability to the computer. However, computer storage 

and the speed of execution are two important factors which have still 

prevented economically feasible studies of shell structures. The 

closely related and well-known Rayleigh-Ritz method was successfully 

employed in the present study to obtain the vibrational characteristics 

of stiffened, noncircular cylinders with arbitrary end conditions. 

This method may provide significant economical advantages over the 

finite element and finite difference methods. The limitation of the 

Rayleigh-Ritz method is that the accuracy of the results is dependent 

upon the assumed mode shapes. In cases such as stiffened, noncircular 

cylinders with arbitrary end conditions (for which the displacement 

functions can be approximated fairly accurately by a double finite 

series) the Rayleigh-Ritz method is certainly advantageous to use. 

2 

Studies of noncircular cylinders are relatively few compared to 

those of circular cylinders. The variable radius of curvature of the 

cylinder causes difficulties in obtaining analytical solutions. If 

finite trigonometric series are used to represent the components of the 

assumed displacement functions, there will be coupling of the circum­

ferential terms due to noncircularity of the cross section of the shell. 

Furthermore, the resulting set of simultaneous equations is suffi­

ciently large that a digital computer must be ~sed for the solution of 

the general problem. 

Kampner (1) presented energy expressions and differential equations 

for cylindrical shells with arbitrary cross sections. Kampner and his 

associates have used these equations to study a wide range of problems 

dealing with statics, buckling,and postbuckling (2~7) of a special 

class of oval cylinders. Klosner and Pohle (8, 9, 10) studied the free 
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and forced vibrations of the s,;lllle class of oval cylinders, but with 

infinite length. An approximate method was used in which the frequen­

cies of noncircular cylinders were determined by perturbation of the 

equivalent circular cylinder frequencies •. Culberson and Boyd (11) 

obtained exact free vibrational characteristics of the same class of 

oval cylinders studied by Klosner and Pohle and showed that the approxi­

mate perturbation technique is accurate for small eccentricities. 

The displacement functions used by Boyd (12) in a static analysis 

of noncircular panels subjected to uniform normal pressures were used in 

a free vibrational analysis of noncircular cylindrical panels by Kurt 

and Boyd (13). 

Herrmann and Mi'rsky (14) investigated the longitudinal, torsional, 

and flexural vibrations of elliptical cylinders. Malkina (15) also 

studied the free vibrations of oval cylinders. 

Sewall et al, (16, 17) carried out both analytical (by Rayleigh­

Ritz) and experimental analyses of elliptical unstiffened cylinders with 

arbitrary end conditions. 

Analyses of stiffened shell structures may be classified either as 

"smeared," or as "discrete" depending upon the treatment of the 

stiffeners. In the conventional smearing technique (which is reasonably 

effective if the stiffeners are closely spaced) the effects of the 

stiffeners are averaged out over the entire surface of the shell, thus 

effectively replacing a stiffened shell by an equivalent orthotropic 

shell. A discrete analysis (which is accurate irrespective of the 

number and location of the stiffeners) treats the stiffeners as discrete 

elastic structural elements. 
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The present analysis may be considered as an extension (to include 

noncircularity) of the work in Reference (19) in which the free vibra­

tional characteristics of ring- and stringer-stiffened noncircular 

cylinders with arbitrary end conditions were developed through the use 

of a Rayleigh-Ritz technique. The stiffeners may be arbitrarily located 

and all stiffeners need not possess the same geometric and material 

properties; however, the stiffeners are assumed to be uniform along 

their axes. The analysis considers the extension and flexure of the 

shell and extension, torsion, and flexure about both cross-section axes 

of the stiffeners. The stringers may have nonsynunetric cross sections 

but the rings are assumed to have "singly" synunetric cross sections. 

The rotary inertia of the shell is.neglected. 

The derivation of the energy expressions for noncircular cylinders 

is described in the Method of Analysis section of this report. The 

stiffener energies are presented in Appendix B. The compatibility 

relations used in these equations are derived in Appendix A. The 

elements of the mass and stiffness matrices are given in Appendix c. 



CHAPTER II 

METHOD OF ANALYSIS 

The analytical method employed in this analysis was the well-known 

Rayleigh-Ritz (i.e. "assumed modes") energy technique. At the outset 

the strain and kinetic energies of the shell, ring, and stringer were 

derived. The compatibility relations were developed to express the 

displacements of rings and stringers in terms of the displacements of 

the median surface of the shell. The total strain energy of the shell 

and that of rings and stringers were combined to obtain the total strain 

energy of the stiffened cylinder expressed in terms of displacements of 

the shell median surface. The total kinetic energy of the stiffened 

cylinder was similarly formulated, Finite series were assumed repre­

senting the circumferential, axial, and radial displacements of the 

median surface of the shell and satisfying the shell kinematic boundary 

conditions. Simple trigonometric functions were used to describe the 

circumferential displacement distributions and beam functions were 

chosen to describe distributions along the axis of the shell. The 

assumed displacement functions with unde.termined coefficients were 

substituted into the total energy expressions of the structure, and the 

regular eigenvalue problem was formulated by minimizing the action 

integral. 
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Geometry 

Strain-Displacement Relations 

The classical theories of thin shells and beams were used to derive 

the energy expressions for the shell and the stiffeners, respec~ively. 

The geometry of the middle surface of a typical elliptical shell is 

illustrated by Figure 1. The three orthogonal coordinates x, 6, and z 

locate points within the structure and u, v, and ware the-corresponding 

displacement components. The variable radius of curvature of the shell 

cross section is expressed as a function of thee coordinate. The 

following Flugge relations were used to determine strains at points 

within the shell: 

ex= u,x - zw,xx 

v,e 1 { \" Q) w,ee] ·} ee = -- + -- z v - - -- + w R R+z _ , 9 R 

u,9 (R+z) z(2R+z) 
ex9 = R+z + R v,x - R(R+z) w'x6 ( 1) 

where ex and e9 are normal strains of x- and 9-oriented line elements!) 

respectively, and exe is the distortion angle between these two line 

elements. Furthermore, u, v, wand R refer to middle surface (z = 0) 

values. 

For the stringers and rings the normal strains were expressed as 

u s ,x 
(2) 

=..l.(v +w )-,--1._(v +w) R r,9 r R r,9 r (3) 
r er 

where the subscripts sand r indicate arbitrary points in the stringer 

and ring, respectively. (e) is the normal strain of the stringer in x s 
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y,v 

Figure 1. Geocnetry of an Elliptical Shell. 



the x direction, and (ea) is the normal strain of ring in thee ,;, r 

direction. R is the radius of the centroid of the ring. er 

· · Compatibility relations. The geometric details of eccentric 

stiffeners are shown by Figures 2 and 3. The compatibility equations 

8 

relating the displacements of any point in the stiffener cross section 

to those of its shear center are presented in Appendix A. The following 

equations were derived to determine the displacements in the stiffeners; 

For the stringers: 

I I 
u = u - z w - y v s scs scs,x scs,x (4) 

For the rings: 

v = v -~ u - -~ (w - v ) r scr R scr,9 R scr,9 scr scr scr 

I 
w =w +xw r scr scr,x 

(5) 

where the subscript sc identifies the shear center, and the coordinates 

I I I x, y and z are measured from the shear center of the stiffener. 

The following compatibility equations relating the displacements of 

the shear center of the stiffener to those of the shell's median surface 

were derived and are presented in A~pendix A. 

For the stringers: 

v = v - zls (W:0 - f) 
scs 

(w'e ) w = w+y __:__~ (6) 
scs ls R R 

For the rings: 

u scr ·= u - zlrw'x 
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Figure 2. Geometric Details of an Eccentric Ring Stiffener 
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Figure 3. Geanetric Details of an Eccentric Stringer Stiffener 
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v scr - ( 1 + zir )v - zir w.,e 

w = w scr (7) 

Strain and Kinetic Energies 

Shell Energies 

From Reference (1), the strain energy in an isotropic, elastic 

body subjected to small strains ex' e6 and exe is 

(8) 

For a shell of uniform thickness h, the above expression can be written 

as 

+ (l;V) e:e J (R + z) dz d9 dx 

where E is Young's modulus and Vis Poisson's ratio of the shell. 
c 

After substituting the Equation (1) into the Equation (9) and inte-

(9) 

grating over the thickness of the shell, we obtain the strain energy of 

the shell in terms of the displaqements of its median surface; i.e. 

a TT 

u = 12D I 
c :. 

h O 
I [Ru'~x + (1;\I) (1 + ha ) ua + 2Vu v 

R 12R 3 '0 'x 'e 
0 
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a TT 

+ ~v, e w + (~ + 1~:3 ) w2 J d0 dx + D J I [-2u, w, x xx 
0 0 

+ 20-'-') 3 .] de d R w,xe x 

a TT 

+ DJ J [i i_(f ),e} av 2 - 2v(i ),e vw'xx 

0 0 

- ..!. (.!) (vw,.. )] d6 dx 
Ra R , e GlEl + vw 

(10) 

where 

The last integral in Equation (10) vanishes for constant R. The first 

two integrals are equivalent to those developed by M;i.ller (21) and by 

Egle and Soder (19). 

Neglecting the contribution of rotary inertia, the shell kinetic 

energy may be written as 

a TT 

Tc= pchJ I [ti 2 + ; 2 + w2 ] Rae dx 

0 0 

where p is the mass density of the shell and the dot represents the 
c 

time derivative. 

(11) 
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Ring Energies 

The ring is assumed to be subjected to normal strains and shearing 

strains due to twisting. The cross section of the ring is assumed to be 

symmetric with respect to the outward normal to the shell surface 

through the line of attachment. The total strain energy in Krings due 

to normal strains is 

(12) 

Using the strain-displacement relation of the ring (Equation (3)) the 

above expression may be written as 

I Rl Iv 2 e+w :a+ v ew + w v eJ- dArk d9 
er Lr, r r~ r r r 1 · 

Ark x=xk 

(13) 

Substituting the first set of compatibility relations of the ring 

(Equations (5)) into Equation (1~) and performing the integration over 

the cross section of the ring, the strain energy of the ring due to 

extension (normal strain) may be written in terms of the displacements 

of its shear center as 

u 
~xt 

= U (u r scr' ext 
v w ) scr' scr 

(14) 

The function Ur (u v w ) is given in Appendix B. Combining 
ext scr' scr' scr 

Equations (7) and (14) results in 

u 
~xt 

= U (u, v, w) 
~xt 

The function Ur (u,v,w) is also given in Appendix B. 
ext 

(15) 

The strain energy due to twisting of the rings may be written as 

(Reference (27)) 
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K 2rr 

=I 
(GJ}rk J l 

u scr,e w,xe] a u +-- R de 
r Ra R er 
tor k=l 0 er er x=xk 

(16) 

where (GJ)rk is the torsional stiffness of the kth ring. Substitution 

of Equations (7) into Equation (16) results in 

u 
r 
tor 

= u r (u, v, w) 

tor 

The function Ur (u, v, w) is given in Appendix B. 
tor 

The kinetic energy of the ring is 

K 2rr 

Tr = i l prk f dA k R r er 
k=l O x = x 

k 

(17) 

de (18) 

Substitution of Equations (5) into the above equation and integrating 

over the cross section of the rin&s, and then substituting the 

Equations (7) into the resulting expression we have 

O O O 

T = T (u, v, w) r r (19) 

Note that Equation (19) includes both translation and rotation effects. 

Stringer Energies 

The stringer is assumed to be subjected to both extension and 

twisting. The cross section of the stringer may be nonsymmetric. The 

strain energy due to normal strain in the stringer is 

(20) 

or, introducing Equation (2), 



u 
~xt 

Substitution of Equation (4) into the above equation and integrating 

. 15 

(21) 

over the cross section of the stringer, and substituting Equations (6) 

into the resulting expression we obtain 

u 
~xt 

U (u, v, w) 
s ext 

The function U (u, v, w) is given in Appendix B. 
~xt 

(22) 

The strai-o. energy due to twisting of the stringer may be written as 

u s 
tor 

dx 

where (GJ)sL is the torsional stiffness of the ith stringer. Thus, 

L a a a 
= '\' < GJ) st J [ w 'x e + v 'x - 2 

L 2 Ra Ra 
L=l O 

u 
s 
tor 

The kinetic energy of stringer is 

a 

0 

[
o a 
u + s 

Ast 

dx 

combi~ing Equations (4, 6, and 25) and integrating the resulting 

expression over the cross section of the stringer results in 

T = T (~ ~ ;;,) 
s s ' ' 

O g O 

The function T (u, v, w) is given in Appendix B. 
s 

(23) 

(24) 

(25) 

(26) 



Displacement Functions 

The displacements u, v and w were assumed to be double finite 

series. Each term of the series is a product of a circumferential and 

an aJ<;ial modal function weighted by a time-dependent generalized 

coordinate (unknown amplitude coefficient). The assumed displacement 

functions were: 

u(x,. e, t) 

M* N* 

= l l (umncos n0 + 
m=O n=O 

M* N* 

ul sin n0) U (x) mn m 

\ v(x, e, t) = L. \ (v sin n0 + v' cos n0) V (x) L mn mn m 
m=O n=O 

M* N* 

iOJt 
e 

iWt 
e 

16 

w(x, e, t) = I I <wmn cos ne 
m=O n=O 

+ w' sin n0) W (x) 
mn m 

iwt e (27) 

where U (x), V (x), andW (x) are the axial mode functions which satisfy m m m 

at least the kinematic boundary conditions of the stiffened shell. 

Also, u , v and w are unknown amplitude coefficients of the mn mn mn 
I I I symmetric circumferential modes, and u , v , and w are those mn mn mn 

associated with the antisymmetric modes. 

In this analysis the axtal mode functions U (x), V (x) and W (x) m m m · 

were expressed by a single function t (x) such that 
m 

V (x) = t (x) m · m 

· W (x) = t (x) m · m 

The following functions were implemented in this analysis. 

(28a) 



17 

Boundary Condition Function Used Eqn. No • 

Freely supported: 

Clamped-free: 

Clamped-clamped: 

Free-free: 

.r. r . mTT X 
• (x) = ttJ 2 sin --
m a 

t (x) = x 1 Char~cteristic m m function 

a Clamped-free beam, 

.t (x) = x ' Char ac teris tic function m m 

a Clamped-clamped beam. 

to(x) = 1 

'1 (x) 
x -·i = -a 

of 

of 

t (x) = X 1, Characteristic function 
m m-

of a Free-free beam. (m~ 2) 

(28b) 

(28c) 

(28d) 

(28e) 

The characteristic functions X, their derivatives and eigenvalue 
m 

properties are tabulated in Reference (22). 

The Frequency Equation 

The total strain energy of the stiffe~ed shell was obtained by 

combining Equations ( 10, 15, 17, 22, and 24). Similarly, the total 

kinetic energy was obtained by combining Equations (11, 19, ~nd 26). 

Substi~uting Equations (27 and 28) into the total energies of the 

stiffened shell, the strain energy expression becomes a positive defi-

nite quadratic function. of the generalized coordinates u , v . , w , mn mn mn 
I I I 

umn1 ~ vmn1 and w • Furthermore, the kinetic energy e~pression becomes a mn., 
0 

positive definite quadratic function of the generalized velocities u , mn 
O O 0/ 0/ 0/ 
v w , u , vmn and w • mn' mn nm mn 

The total strain energy of the structure may be written as 
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* N* M* N,tc M 

u iI \ l \ = L, l K -- ~qmii. total mn,mn (29) 

m=O n=O m=O n.=0 

where 

0 8 u . total 
o~0 ·o%m 

0 3 Utotal 
= = K = K--o~ii o~ mn,lTln. mn,mn 

are known as elements of the stiffness matrix. 

The total kinetic energy of the structure may be written as 

M* N'\' M* N* 

T total = i l l l l Mmn,tiiii. ~n qniii 
m=O n=O rii=O n=O 

where M are ~he elements of the mass matrix. mn,mn 

(30) 

The mass and stiffness matrices obtained by the above operations 

were used together with Hamilton's principle to formulate the regular 

eigenvalue problem resulting in 

[[:;: :::] 
I ) 

:·· l ~Mss r:f - w :i = 0 (31) 
MT 

aa sa 

where K,. and M represent stiffness and mass matrices of size 

3(M* + l)(N* + 1), q and q. denote the symmetric and antisymmetric 
s a 

mode vectors, respectively, and superscript T denotes the transpose of 

a matrix. 

In Equation (31) the off-diagonal submatrices of both the 

stiffness and mass matrices vanish if the cross section of the 

stiffened shell is symxqetric with respect to the vertical axis (where 

e = O). Thus, the above equation is uncoupled into two equations; one 

for symmetric, and the other for antisymmetric modes. The equation for 

the symmetric mode problem may be written as 
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A D E N NN 

:] F DT B F - U) :a NNT Q = 0 (32) 

ET FT c PT RT w) 

Each letter in the stiffness and mass matrices represents a submatrix 

(presented in Appendix C) of * * order (M + l)(N + 1). 



CHAPTER III 

COMPUTER SOLUTION 

General 

A computer program was developed to find the eigenvalues and 

eigenvectors of Equation (32). The mass and stiffness matrices were 

generated in this program and the frequencies and mode shapes were 

computed using the subroutine EIGENP (23). The Oklahoma State Univer-

sity IBM Model 360/65 computer was employed for this project. 

The input data to the program may be categorized into four kinds. 

The first kind is general data. For example, the title of the problem, 

number of terms considered in the assumed displacement series, whether 

or not the cross section of the shell is circular, the number of 

. stiffeners, etc. The other three kinds of data are shell data, stringer 

data, and ring data. 

The radius of curvature (R) of the shell was considered to be a 

function of thee-coordinate. 1 
The expressions for R, (R) , 6 j and (R) 'e 

were calculated (considering elliptical cross section) in the function 

subprograms (RSHL), (RRRT) and (RSHLT), respectively. This procedure 

was used to make the computer program capable of analyzing arbitrary 

singly synn:netric stiffened oval cylinders~ However, only elliptical 

cylinders were considered in the present study. 

') (\ 
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Natural Frequencies and Mode Shapes 

If the number of circumferential and axial tenns considered in the 

assumed displacement series are M* and N*, respectively, (including 

m = O, and n = O, when needed) then the order of the stiffness and mass 

* * matrices is 3M N. Equation (30) may be written as 

whe:i:-e 

= 

uo 01 
uo 1 ' 

uo 2 

K = Stiffness Matrix 

M = Mass Matrix 

v = = w -

= 0 

(
WOO\ 

. WO 1 

\WO. 2 

\ WO 
0

N* 

w = The natural frequencies from Equation (33) in radian/sec. 

If the·matrices K ·and M became singular due to the presence·· 
. . 

(33) 

of zeros in some of the rows and columns, the matrices were condensed 

by eliminating those rows and columns of zeros. The subroutine called 

EIGENP (23), with double precision, was used to calculate the fre­

quencies (w 2 ) of Equation (33) and the· resulting eigenvectors 
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Once the eigenvalues and eigenvectors were obtained, the corres-

ponding mode shapes were found. 



CHAPTER IV 

NUMERICAL RESULTS 

Introduction 

The analysis described in this report was substantiated by com-

paring the results of this study with some of those obtained by previous 

investigators. Some parametric studies of stiffened noncircular 

cylinders were made and are alsopresented in this chapter. 

Comparison·With Known Solutions 

This section presents the comparison of natural frequencies for 

(1) and unstiffened circular cylinder with various boundary conditions; 

(2) ring- and/or stringer-stiffened circular cylinders with various end 

conditions; (3) unstiffened noncircular shells with various end 

conditions; and, (4) ring- and stringer-stiffened elliptical cylinders. 

Comparison,of Results for the.Unstiffened 

Circular Shells 

Forsberg (24) presented exact frequencies for a freely supported 

unstiffened circular cylinder, obtained by solving the differential 

equations of motion. The results.of this analysis and those of 

Forsberg's exact solution are compared in Table I. Both the analyses 
.. 

used the Flugge shell theory. As is evident from the Table I~ good 

correlation exists between the frequencies of both the analyses. Such 

?1 



TABLE I 

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY 
S.UPPORTED UNSTIFFENED CIRCULAR CYLINDER, 

OBTAINED BY THE PRESENT ANALYSIS 
AND FORSBERG (Hz.) 

PRESENT FORSBERG a n m ANALYSIS 

1 778 778 

2 2 2449 2449 

3 4253 4253 

1 628 627 

3 2 1458 1458 

3 2682 2681 

1· 974 974 

2 1304 1303 
4 

3 2021 2020 

4 2947 2946 

a) Reference (24), figure 3(a). 

24 



type of accuracy was expected because the assumed mode functions 

satisfy the freely supported boundary condition exactly. 

25 

Comparisons were also made with the results of Reference (16) for 

the same boundary condition and m = 1 and 2. These are presented in 

Table II. In Reference (16), Sewall et al., using Sander's shell theory 

(25), applied the Rayleigh-Ritz method as in our analysis. As is 

evident from Table II, excellent comparisons were obtained • 

. Figure 4 shows a comparison between the analytical and experimental 

results of Reference (17) and those of the· present analysis (for m = 1) 

considering a clamped-free, unstiffened, circular shell. The frequency 

curves reveal that this analysis yields results similar to those of 

Reference (17). The slight differences might be attributed to the 

difference in the shell theories. Comparisons were also made with the 

experimental results of Park, A. c. et al., (26) and the analytical 

results of Egle and Soder (19)~ These are presented in Table III. In 

this comparison four-place accuracy was obtained between the analytical 

results of Egle and Soder and the present analysis. The discrepancy 

between the analytical and experimental results increases as the number 

of circumferential waves decrease. Egle and Soder speculated in 

Reference (19) that the shell end may not have been absolutely fixed in 

the experiments. 

The experimental and analytical results.of Reference (16) for free­

free circular shells were used to establish the validity of the present 

analysis for this bounday-condition case. Table IV shows the com­

·parison of the results form= 1 and 2. l'he present analysis yielded 

four-place accuracy. 



a) 

TABLE II 

CCMPARISON OF .ANALYTICAL FREQUENCIES OF A FREELY 
SUPPORTED UNSTIFFENED CIRCULAR CYLINDER8, 

OBTAINED BY THE PRESENT .ANALYSIS 
.AND SEWALL (Hz.) 

m = 1 m = 2 

n PRESENT SEWALL PRESENT SEWALL 
.ANALYSIS (Ref 16) .ANALYSIS (Ref 16) 

1 1565.3 1565.0 2309.3 2309.0 

2 894.1 894.1 1782.4 1782.0 

3 529.8 529.8 1314. 9 1315 .o 

4 338.6 338.6 968.4 968.4 

5 235.6 235.6 726.3 726.3 

6 182.1 182.1 560.3 560.3 

7 162.2 162.2 · 448.6 448.6 

8 166.9 166.9 377 .2 377 .2 

9 188.6 188.6 338.1 338.1 

10 221.3 221.3 325.7 325.1 

11 261. 7 261. 7 335.0 335.0 

12 308.0 308.0 361.0 361.0 

13 359.5 359.5 399.6 399.5 

14 415.6 415.6 447.5 447.5 

'.fhe geom~try of the shell is given in Reference (16). 

26 
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14 

Figure 4. Comparison of Experimental and 'Analytical Frequencies of 
Clamped-Free Circular Cylindrical Shell (Hz.). 
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n 

2 

3 

4 

5 

6 

7 

8 

TABLE III 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES 
OF A CLAMPED-FREE UNSTIFFENED CIRCULAR CYLINDERa 

(Hz.) 

m = 1 m :;:: 2 

EGLE & b PRESENT b PARKS c EGLE & b PRESENT b PARKS c 
SODER ANALYSIS et al. SODER ANALYSIS et al. 

104.4 104.4 87.2& 
95.1 508.2 

55.6 55.6 51.5 281.3 

52.0 52.0 50.4 177 .9 177. 9 168.5& 
170.2 

71.6 70.9 135.4 132.8 

101.8 101.4 132.0 128.8& 
130.1 

139.1 139.1 138.8 154.2 154.2 153.6 

182.6 182.6 182.2 191.2 191.2 191.3 

. a) Reference (19), configuration 1, p. 28. 

b) Flugge shell theory, insurface inertias included. 

c) Reference (26), model 1. 
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n PRESENT8 

ANALYSIS 

1 2012.0 

2 7.5 

3 19.0 

4 34.2 

5 53.4 

6 76.6 

7 104.1 

8 135.7 

9 171.4 

10 211.4 

11 255.6. 

12 303.9 

13 356.5 

14 413.3 

TABLE IV 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL 
FREQUENCIES OF A FREE-FREE UNSTIFFENED 

CIRCULAR CYLINDER (Hz.) 

m = 1 m = 2 

SEWALLb SEWALLb PRESENT SEWALL 
ANALYSIS EXPERIMENT ANALYSIS ANALYSIS 

2014.0 2288.0 2293.0 

7.5 7.7 1613.0 1616 .o 

19.0 18.9 1066.0 1068.0 

34.2 35.7 716.9 717 .8 

53.4 53.0 504.4 504.8 

76.7 76.4 375.4 375.6 

104.1 103.8 299.8 299.9 

135.7 135.3 262.6 262.2 

171.5 170. 7 253.6 253.4 

211.5 210.2 266.5 266.3 

255.7 253.0 294.8 294.7 

304.1 305.5 333.9 334.0 

356.7 352.0 381.2 381.1 

413.5 412.5 434.7 434.7 

SEWALL 
EXPERIMENT 

377 .3 

299.1 

257.4& 
262.1 
248.8& 
249.3 

268.8 

290.9 

327.6 

436.6 

a) Flugge shell theory; 6 even, and 6 odd axial mode functions 
considered. 

b) Reference (16). 
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. Comparison of Results.for Stringer-Stiffened 

Circular Shells 

30 

Egle and Sewall (18) presented frequencies obtained for a stringer­

stiffened, freely supported, circular cylinder using a method similar to 

that of the present analysis but using the Donnell shell theory and 

neglecting the insurface. inertias of the stiffened shell. The shell 

theory used in the present analysis was modified to Donnell theory in 

order to compare the results of this analysis with those of Egle and 

Sewall. Table V gives the comparison between the frequ~ncies for m=2. 

The frequencies of Egle and Sewall are slightly higher than those of the 

·present analysis, evidently attributable to their neglect of the inplane 

inertias. It is evident from Table V that the discrepancy between the 

results of both the theories decreases as the number of circumferential 

waves increases, which is a typical characteristic of Donnell theory • 

.. · Comparison of. Results· With Ring-Stiffened 

Circular Shells 

Forsberg (24) obtained exact solutions for the natural frequencies 

of ring-stiffened circular cylinders. Bushnell (27) obtained the 

natural frequencies of ring-stiffened segmented shells of revolution 

using an energy method in conjunction with the method of finite 

differences. The compatibility relations and the energy expressions 

used by Bushnell are similar to those of the present analysis. Table VI 

presents the frequencies obtained by Forsberg, Bushnell, and the present 

analysis for freely supported circular cylinders with three rings of 

both zero and negative eccentricity. The frequencies of this analysis 

which are presented in Table VI were obtained by considering twelve 



TABLE V 

COMPARISONS OF FREQUENCIES OF FREELY SUPPORTED CYLINDERS 
WITH AND WITHOUT INSURFACE INERTIAS 

(DONNELL THEORY) 

THE PRESENT ANALYSIS EGLE & SEWALL* 
{Insurface Inertias Included~ {Insurface Inertias Neg.lected~ 

m n STRINGER STRINGER 
STIFFENED INTERNALLY UNSTIFFENED STIFFENED INTERNALLY UN STIFFENED 

Sym. Mode Antisym. Mode Sym. Mode Antisym; Mode 

3 555 555 568 591 591 602 

4 337 348 353 346 365 365 

5 236 235 246 241 241 251 

6 192 197 200 194 202 203 

7 189 189 194 191 191 196 
2 

8 208 213 216 209 217 218 

9 254 254 256 256 256 258 

10 295 303 308 297 306 309 

11 355 355 367 358 358 369 -

12 421 427 435 424 430 436 

* Reference (18). w 
t-' 



n m 

1 

2 2 

3 

1 

3 2 

3 

1 

4 2 

3 

TABLE VI 

COMPARISON OF FREQUENCIES OF A FREELY SUPPORTEP CIRCULAR 
CYLINDERa WITH THREE SYMMETRIC AND INTERNAL RING 

STIFFENERS, OBTAINED BY THE PRESENT ANALYSIS, 
BUSHNELL, AND FORSBERG (Hz. ) 

f?YMMETRIC INTERNAL 

FORSBERGb PRESENTd PRESENT BUSHNELLc FORSBERG BUSHNELL ANALYSIS ANALYSIS 

788 787 787 999 987 994 

2219 2219 2219 2254 2264 2252 

3796 3802 3801 3710 3741 3711 

1155 1152 1152 2087 2066 2081 

1661 1660 1660 2397 2382 2386 

2617 2619 2618 3073 3068 3066 

1988 1982 1988 3161 3120 3142 

2132 2130 2141 3085 3023 3032 

2535 · 2539 2548 3014 3019 3030 

'1!) Reference (24), figure 3(a). 

b) Exact solution obtained by solving the equations of equilibrium. 

c) Reference (27), an energy formulation is used in conjunction 
with the met~od of finite difference. 

32 

d) Energy expressions of ring are s:i,milar to those of Reference (27). 
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even and thirteen odd axial mode functions in the assumed displacement 

series. The results of this analysis are in excellent agreement with 

the exact frequencies obtained by Forsberg and the approximate fre­

quencies of Bushnell. The maximum discrepancy encountered for the case 

of zero eccentricity ring stiffener was 0.51% and 1..75% for the negative 

eccentricity, ring-stiffened case. The external ring-stiffened shell of 

Forsberg was also studied but the frequencies obtained did not converge 

for twelve even and thirteen odd axial mode functions in the assumed 

displacement series; hence those results are not presented in this , 

report. 

Comparisons were also made with some of the results of Al-Najafi 

and Warburton (28), for freely supported and free-free ring-stiffened 

circular shells and are presented in Table VII. Their results were 

obtained using a finite element technique employing five elements per 

bay. Significant reduction in the order of the matrices was obtained in 

their study, by considering the symmetry of the structures and neglecting 

insurface inertias. The results of the present analysis given in Table 

VII were obtained by considering circumferentially symmetric and ten 

even and.ten odd axial mode functions in the assumed displacement series 

but includinginsurface inertias. The values for the frequencies con= 

verged for fifteen even and fifteen odd terms but the difference between 

the results for ten terms and fifteen terms was rather small. aence, in 

order to compare on the basis of the order of the matrices, t:he result 

of ten terms.was chosen for comparison. It is evident from Table VII 

that the frequencies of the present analysis for the freely supported 

case are lower than those of the finite element method (except for m=3) 

and are also closer to the experimental values, For the free~free case, 



TABLE VII 

COMPARISON OF FREQUENCIES OF RING-STIFFENED CYLINDERS, 
OBTAINED BY RAYLEIGH-RITZ AND FINITE 

ELEMENT METHODS (Hz.) 
(n·= 4); d = 0.25 in. 

FREELY SUPPORTED FREE-FRE;E 

m RAYLEIGH-a - FINITEb . m RAYLEIGH- FINITE 
RITZ ELEMENT 

EXPRTL. RITZ ELEMENT 
EXPRTL. 

1 1867 1873 1867 oc 1550 1547 1551 

2 2089 2091 2076 le 1538 1537 . 1539 

3 2651 2650 2600 2 1889 1895 1890 

4 3415 3429 3355 3 2303 2290 2287 

5 4239 4270 4 3075 3044 3044 

6 4925 5022 5 3955 3920 3916 

7 5846 6 4910 

8 6585 7 5548 

9 7330 8 6349 

10 8079 9 7103 

a) Present Analysis, number of terms considered in the displace­
ment series is 10. 

b) Reference (28). 

c) Rigid body modes. 
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the finite element results were observed to be closer to experimental 

values than the results of the present analysis, except form= 1 and 2. 

In general, the agreement between the results of this analysis and those 

of the finite element and the experimental is good. 

In order to show the rate of convergence of the results of this 

study, the frequencies were obtained with different assumed numbers of 

terms. Theseresults are !?resented in Tables VIII and IX for the 

freely supported and free-free ring-stif~ened shells studied by Al-
\ 

Najafi and:Warburton. Tables VIII and IX show that'the rate of con-

vergence of frequencies is rather rapid. 

Comparison of Results With Ring- and Stringer-

· Stiffened Circular Shells 

Park,. A. c. et al. (26), presented a considerable amount of 

experimental information on the frequencies and mode shapes of stiffened 

and unstiffened circular and elliptical shells with clamped-free ends. 

Egle and· Soder (19) compared their analytical results with those of 

Park's experimental results for a clamped-free circular cylinder with 

three equally spaced internal rings and sixteen internal stringers. 

The same shell was analyzed by the present analysis and comparisons are 

indicated in Table X. Because the cross section of the stiffened shell 

was symmetric with respect to both the vertical and horizontal axes 9 

the frequencies of even and odd circumferential modes were able to be 

evaluated separately. It is interesting to notice in Table X that the 

results of the present analysis are consistently lower than those of 

Egle and Soder. This improvement in the frequencies may be attributed 

to the improved stiffener theories of the present analysis. The fact 



x 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE VIII 

SPEED OF CONVERGENCE OF FREQUENCIES OF FREELY 
SUPPORTED RING-STIFFENED CIRCULAR CYLINDERa 

(Hz.), n=4 

5 10 12 14 

2032.29 1867.32 1853. 29 1841.82 

2136.32 2089.33 2076.62 2067.81 

2682.82 2651.32 2640.59 2634.31 

3446.09 3414.67 3414.65 3409.95 

4263.22 4239.00 4238.98 4238.97 

4924.91 4924.59 4924.58 4924.57 

5877 .52 5845.98 5845.97 _ 5845. 97 

6613.81 6585.41 6585.39 6580.90 

7348.25 7329.87 7321.17 7316.42 

8098.23 8079~40 8072. 23 8067.25 

a) Reference (28), figure 2(c). 

15 

1841.83 

2067.81 

2634.30 

3409.94 

4235.32 

4924.47 

5841. 54 

6580.89 

7316 .41 

8067.24 

b) Number of terms considered in the displacement series. 

c) Axial wave number. 

36 



TABLE IX 

SPEED OF CONVERGENCE OF FREQUENCIES OF FREE-FREE 
RING-STIFFENED CIRCULAR CYLINDERa 

(Hz.), n = 4 

')-(_ 5 10 12 14 15 

1* 1591.53 1549.60 1546.82 1546.13 1544. 91 

2*. 1585.73 1538.16 1537.45 1536.33 1535.35 

3 2046.65 1888.92 1823.09 1816.19 1816. 05 

4 2380.46 2303.22 2300.84 2299.44 2299.35 

5 3127.52 3075.50 3067.22 3066.92 3066.66 

6 3979.47 3955.27 3952.06 3951. 22 3950.53 

7 4973.26 4909. 71 4836.28 4833.91 4833.57 

8 5595.02 5548.42 5542.69 5540.21 5539.64 

9 6439.71 6348.83 6312.89 6309.63 6308.67 

10 7189. 93 7102.58 7096.81 7093.99 7091.25 

* Rigid body modes. 

a)· Reference (28), figure 2(c). 

b) Number of terms considered in the displacement series. 

c) Axial wave number. 
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TABLE X 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL 
FREQUENCIES OF A CLAMPED-FREE 
RING- AND STRINGER-STIFFENED 

CIRCULAR CYLINDER (H~.) 

PRESENT8 EGLE & b PARK c 
n m ANALYSIS SODER et al. 

1 100.2 105.8 80.2& 
88.2 

2 2 432.2 433.9 

3 907.0 

1 207.6 216.9 184.6 

4 2 276.0 285.9 251.5 

3 437.2 447.1 397.0& 
430.4 

1 308.5 315.0 

6 2 345.9 353.8 

3 402.6 415.0 

a) n = 2, 4, 6; m = 1 to 10. 

b) Reference (19). 

c) Reference (26), model lS. 
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that the discrepancy between the analytical and experimental fre­

quencies decreases with the increase in wave numbers n and m suggests 

that the boundary conditions of the experiment and the theory may not 

match. 

39 

The results of the present analysis were obtained with ten axial 

mode functions and three even and three odd circumferential mode func ... 

tions. The reason for considering fewer number of circumferential terms 

than the axial terms is that the coupling between. the circumferential 

mode functions (due to the presence of stringers) is rather weak. This 

· was also noticed experimentally by Scrugg.s et al. (29). The coupling 

between the axial mode functions (due to the presence of rings)·· is 

considerable; hence, ten terms were considered in the longitudinal 

direction. To determine whether or not ten terms were sufficient for 

obtaining reasonably well-converged frequencies, M* was increased to 

thirty and only one circumferential term was used. The comparison 

between these results is shown in Table XI •. Since the difference in the 

results was found to be negligible, it was concluded that ten terms were 

sufficient for convergence • 

. Comparison of Results· With Unstiffened 

Noncircular Shells 

Having established satisfactory results for stiffened and 

unstiffened circular shells of arbitrary end conditions, comparisons 

were, then made for unstiffened noncircular shells •. Sewall. et al. (16, 

. 17) presented analytical and experimental results for elliptical shells 

with arbitrary end conditions. . Tables XII and XIII compare the 

analytical symmetric and antisymmetric frequencies for freely supported 



TABLE XI 

CONVERGENCE OF FREQUENCIES OF CLAMPED-FREE RING- AND 
STRINGER-STIFFENED CIRCULAR CYLINDER (Hz.) 

(Circumferentially Symmetric) 

n m a b 

1 99.32 100.19 

2 2 428.66 432.19 

3 903.77 906. 96 

*' * a) N = 2, M = 30. 

'b) * N = 6, * M = 10. 
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a) 

b) 

c) 

TABLE XII 

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY 
SUPPORTED ELLIPTICAL CYLINDERSa (Hz.) 

e = o. 526, m = 1 

n SYMMETRIC .ANTISYMMETRIC 

PRE SEN Tb SEWALLc PRESENT SEWALL 
ANALYSIS .ANALYSIS 

0 2550.2 2550.0 

1 1439. 7 1440.0 1685.7 1686.0 

2 876.6 876.6 888.9 888.9 

3 524.1 524.1 524.2 524.2 

4 335.5 335.5 335.5 335.5 

5 234.3 234.3 234.3 234.2 

6 184.2 184.2 184.2 184.2 

7 157 .1 157 .1 157 .3 157. 0 

8 160.5 160.2 160.6 160.2 

9 189.7 189.8 189.4 189.8 

10 221.5 221.9 221.8 221.9 

11 260.6 261.9 261.8 261.9 

12 307.6 308.1 308.0 308.1 

13 348.3 359.5 355.7 359.5 

14 405.7 415.6 413.4 415.6 

The geometric and material properties of the shells 
are given in Reference (16). 

Number of terms used is 13. 

Reference, (16). 
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a) 

b) 

c) 

TABLE XIII 

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY 
SUPPORTED ELLIPTICAL CYLINDERSa (Hz.) 

e = o. 760, m = l 
n SYMMETRIC ANTISYMMETRIC 

PRESENTb. SEWALLc PRESENT SEWALL · ANALYSIS ANALYSIS 

0 2611. 8 2612.0 

1 1237.7 1238.0 1855.7 1856.0 

2 785.1 785.2 858.4 858.5 

3 491.2 491. l 492.0 492.4 

4 319. 7 319.4 318. 7 319.4 

5 226.8 226.9 

6 

7 139.5 138.5 139.7 138.5 

141.1 140.1 141.3 140.1 
8 & & & & 

178.9 178.3 179.4 178.3 

183.5 184.1 185.0 184.1 
9 & & 

226.6 226.9 

10 223.1 223.9 223.2 223.9 

11 263. 7. 263.6 258.8 263.6 

12 313.l 307.3 . 298.6 307.3 

13 380.0 359.4 344.9 359.4 

14 465.2 417 .1 407.4 417 .1 

The geometric and material properties of the 
shells are given in Reference (16). 

Number of terms, used is 13. 

Reference (16). 
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elliptical shells of eccentricities of ·0.526 and O. 760 for m = 1. It is 

evident from Tables XII and XIII that the agreement between the results 

of both Sewall and the present analysis is generally satisfactory and is 

excellent for n less than ten. 

Comparison of results obtained for elliptical shells with free-free 

and clamped-free end conditions were also made and are presented in 

Tables iiv and XV, respectively. The results of this analysis are 

similar to those obtained analytically by Sewall. Also included are 

Sewall's experimental results and analytical results obtained by Klosner 

(9, 10). 

Comparison of Results With Ring- and Stringer­

Stiffened Elliptical Shells 

Park, A. c. et al. (26) presented experimental frequencies and 

mode shapes for a clamped-free elliptical cylinder with four equally 

spaced internal rings and sixteen internal stringers. This shell was 

also analyzed by the present analysis, and some comparisons are pre­

sented in Tabie XVI. Due to the symmetry of the cross section with 

respect to both the vertical and horizontal axes, the frequencies of 

even and odd circwnferential modes were evaluated separately. As is 

evident from Table XVI, the theoretical results are consistently 

slightly higher than the experimental results. The discrepap,cy between 

the analytical and experimental frequencies may again be attributed to 

the possible difference in the boundary conditions of the experiment 

and the theory. However, storage limitations of the IBM 360/65 computer 

prevented the consideration of a sufficient number of tenns in the dis­

placement series to assure convergence of frequencies. The results of 



TABLE XIV 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF A FREE-FREE ELLIPTICAL CYLINDER (Hz.) 
a= 12.95, b = 11.01, m = 0 

SYMMETRIC ANTISYMMETRIC 
KLOSNERd n PRESENTa SEWALLb SEWALLb PRESENT SEWALL SEWALL KLOSNERc 

ANALYSIS ANALYSIS EXPERIMENT ANALYSIS ANALYSIS EXPERIMENT 
2 5.98 5.62 5.6 5.60 5.68 5.6 5.92 5.56 

3 16.02 15.89 16.1 16.09 15.89 16.2 16.30 15.4 

4 30.07 30,52 30.9 30.07 30.52 30.8 31.2 31.1 

5 49 .55 49.41 50.1 49.56 49 .41 50.1 50.3 50.45 

6 72.68 72,54 74.8 72 .67 72.54 74.4 73.8 71.6 

7 100.00 99.87 102.4 100.00 99.87 102.4 101.5 98.9 

8 131. 65 131.40 134.6 131. 54 134,4 - 133. 5 133. 2 

9 167.31 167.20 171.5 167. 29 167.2 171. 7 169. 8 168. 1 

10 207.25 207 .10 212. 5 207.24 207.1 212.8 210,3 204.8 

11 251.43 251.30 258.8 251.42 251.3 258.4 255,2 251.1 

12 299.52 299.60 312.1 299.93 299.6 - 304.2 302.8 

13 352.02 352,20 363,8 353.39 352.2 362,3& 
363,0 357,5 351.9 

14 408.50 409.00 423,2 411.08 409.0 - 415. 2 405.8 

a) N'"' = 20, M* = 2, b) Reference (16), c) Reference ( 9 ) . d) Reference (10). 
,p,, 
~"" 
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TABLE XV 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL 
FREQUENCIES OF A CLAMPED-FREE 

ELLIPTICAL CYLINDER (Hz.) 
a = 12.95, b = 11.01 

m = 1 

SYMMETRIC ANTISYMMETRIC 
n PRESENTb SEWALL SEWALL PRESENT SEWALL SEWALL 

ANALYSIS ANALYSIS EXPERIMENT ANALYSIS ANALYSIS EXPERIMENT 

1 739.0 739.2 838.0 840.1 

2 387.9 390.6 402.6 394.1 

212.4 217. 5 201.9 212.4 217. 5 204.8 
3 & 

201.1 

133.7 136.4 129.5 133.8 134.0 
4 & 

129 .1 

5 97.9 99.5 96.4 97.9 99.5 100.2 

94.9 95.9 94.2 94.9 95.9 94.5 
6 & 

93.1 

7 113.2 114.2 115.1 113.2 114. 2 116.5 

138.4 139.6 141.8 138.4 136.4 142.3 
8 & 

"" 140.6 139.6 

9 171.3 171.4 170.0 171.3 171.4 176.2 

210.1 210.1 217. 2 210.1 210.1 216. 3 
10 & 

217 .1 

11 253.7 253.7 260.4 253.7 2~3.7 260.8 

12 301.5 301. 7 309.5 301.9 301. 7 310.6 

13 353.8 354.1 365.0 355.1 354.1 

14 · 410.2 410. 7 423.6 412. 7 410. 7 

a) N* = 20, M* = 2. 



TABLE XVI 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF 
A CLAMPED-FREE ELLIPTICAL CYLINDER8 WITH FOUR RINGS 

AND TWELVE STRINGERS 

n 

1 

2 

3 

4 

a) 

b) 

c) 

m = 1 

PRESENTb 
ANALYSIS 

177. 92 

92.08 

151. 7 5 

163.5 

60.8& 
79.7 

141.1 

m = 2 

PRESENT 
ANALYSIS 

242.64 

377. 68 

PARK 

226.7 

352.6 

The geometry of the stiffened shell is 
given in figure 32, model 48, Park, A. C. 
et al., dynamics of shell-like lifting 
bodies, Part II, the experimental investi­
gation. AFFDL-TR-65-17, Part II, June, 1965. 

.. * Rayleigh-Ritz method N'r = 12, /M = 5, 

Experimental results. 
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the present analysis were obtained with five axial mode functions and 

six even and six odd circumferential mode functions. 

Studies of Stiffened Noncircular Cylinders 

Having obtained satisfactory comparisons with known solutions of 

the circular, noncircular, unstiffened, and stiffened cylindrical shells~ 

two studies of stiffened noncircular shells were made. This section 

presents the results of those studies. 

Study of the Effect of Number of Stringers 

Egle and Soder (19) studied the variation of the minimum frequency 

of a stringer-stiffened, circular cylinder with the number of stringersj 

keeping the total cross-sectional area (LA) and the total torsional 
s 

stiffnes~ (LGJ) of the stringers constant. This is a reasonable s 

approach for studying the explicit effect of the number of stringers. 

However, the implementation of ''total" stringer properties being con-

stant while the number of stringers is varied is more difficult in the 

experimental study than in the analytical study. The reason is rather 

obvious, i. e. if the "total" stringer properties are held constant., the 

cross-sectional properties (A, GJ) of the stringers will vary with the 
s s 

number of stringers. Therefore, this method is not advisable from the 

experimental standpoint. 

In order to avoid this difficulty in the present study, the cross-

sectional properties of all the stringers were assumed to be the same 

while their total number varied. Table XVII presents the variation of 

the natural frequencies of various circumferential modes of an internal 

stringer-stiffened freely supported elliptical cylinder with the number 



K 
1 

3 

7 

9 

11 

13 

TABLE XVII 

STUDY OF THE EFFECT OF .NUMBER OF STRINGERS ON 
THE FREQUENCIES OF A FREELY SUPPORTED 

ELLIPTICAL CYLINDER.a (Hz.) 
e = 0.760, m = 1 

0 2 4 8 

1238.0 1159.0 1090.0 984.5 

491.1 470.4 448.3 450.2 

139.5 121.1 121.1 122.7 

183.5 184. 2 184.3 145. 7 

226.6 214.8 212.7 208.5 

263.7 262.1 256.5 258.1 

380.0 373.7 368.5 347.8 

48 

16 

831.3 

433.7 

114.5 

141.9 

204.9 

224.6 

290.6 

a) The geometry and material properties of the unstiffened shell are 
given in Reference (16). 

b) Circumferential mode number. 

c) Number of equidistant internal stringers. The properties of the 
stringers are: 

Asl, = 0.1037 sq. in. zlsi, = -0.0475 in. 

I = 0.005957 • 4 -0.2340 in. in. z2s.t = yys.t 

I = 0.001285 in; Y1s.t = 0.0 in. zzs.t 

I = 0 Y2st = o.o in. yzs.t 

(GJ) s1, = 912.5 lb. -in:3 p s.t = 0.0002588 1 b s • - sec :3 I in; 

Es.t = 10.6 X 10 7 lbs.-sec:3/in;' 
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of equally spaced stringers. The geometric and material properties of 

the stringers are given in the footnotes of Table XVII. In order to 

visualize the variation of the frequencies of various circumferential 

modes· with the number of stringers, sane of the results of Table XVII 

are plotted in Figure 5. As is evident from Figure 5, the overall 

effect of the stringers is a lowering of the frequencies., This effect 

is greater on the frequencies pertaining to lower circumferential wave 

numbers. The rate of decay of frequencies due ta the presence of 

stringers is greater for small numbers of stringers and diminishes with 

an increase in the number of stringers. 

Ring- and Stringer-Stiffened Elliptical 

Cylinders 

This section presents results for a stiffened, noncircular freely 

supported cylinder with large numbers of rings and stringers. The fre­

quencies of the unstiffened freely supported elliptical cylinder with 

s = 0.760 are presented in Table XIII. To study the effect of large 

numbers of ring and stringer stiffeners, sixteen internal stringers and 

eleven internal rings were added to the above elliptical shell. The 

geometric and material properties of the rings and stringers are 

assumed to be the same and are listed in the footnotes of Table XVII. 

The frequencies and the mode shapes of this shell were obtained using 

the present analysis. Table XVIII presents some of the frequencies. 

Figure 7 shows some of the axial mode shapes and Figure 8 shows some of 

the circumferential mode shapes. To visualize clearly the effect of the 

large number of rings and stringers on the natural frequencies, some of 

the frequencies presented in Tables XII~ XIII, and XVIII are plotted in 
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Figure 5. Study of the Effect of Number of'Stringers 
on the Natural Frequencies of a Freely 
Supported Elliptical Cylinder with 
e • 0.760, m • 1. · 
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TABLE .XVIII 

-FREQUENCIES OF 16 STRINGERa AND 11 RINGa INTERNALLY 
STIFFENED FREELY SUPPORTED ELLIPTICAL CYLINDERb 

WITH e = O. 760 (Hz.) 

d m c n 
1 3 

l 741.0 1703.0 

2 444.9 1303.0 

3 437.9 974.3 

4 743.7 973.5 

5 1155.0 1340.0 

6 1868.0 1998.0 

7 2924.0 2959.0 

a) The stringers and the rings have 
identical material and geometric 
properties.which are given in the 
footnotes of Table XVII. 

b) The geometric and material pro-
perties of the shell are given in 
Reference (16). 

c) Circumferential mode number. 

d) Axial mode number. 
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', TT = l 
'~ UNSTIFFENED 

... -o--.n-- ,..._ __ 
' o-=~ -o--- --.J 

00 2 4 6 8 10 
CIRCUMFERENTIAL MODE NUMBER 

Figure 6. Comparison of Frequencies of Unstiffened, and Ring­
and Stringer-Stiffened Freely Supported Elliptical 
Cylinder withe= 0.760. 
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Q. 

-LO 
AXIAL MODE m = l, n = 1; 741.0Hz 

AXIAL MODE m=3 n=3· 974.3 Hz . I I 

1.0 

-1.0 
AXIAL MODE m=5, n= 5; 1739 Hz 

Figure 7. Axial Modes 
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1.0 

:··-;' 

-1.0 
AXIAL· MODE' m= 7, n= 7;. 3615 Hz . 

Figure 7. ·. (Continued) · 
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1.0 

Qt-----ti-----t~--+----t----"'11:---+----+----+----+------t 
1T' . 

-1.0 
CIRCUMFERENTIAL MODE m = 1, n= 1 ; 741. 00 Hz 

1.0 

CIRCUMFERENTIAL MODE m=l, n=2; 444.9 Hz 

1.0 

. -1.0 
CIRCUMFERENTIAL MODE m=l, n=3; 437. 9 Hz 

Figure 8. Circumferen,tial Modes 



56 

1.0 

-1.0 
CIRCUMFERENTIAL MODE m=l, n = 4; 743.7 Hz .. 

1.0 

oi--.._.~--W'-----+-~--~~~-+-~-+-~Jt-----+---t 
1' 

~1.0 .. 
CIRCUMFERENTIAL MODE m=l, n=5; 1155 Hz 

l.O 

-1.0 CIRCUMFERENTIAL MOOE m=l,n=6; 1868Hz 

Figure B. (Continued) 
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1.0 

-1.0 
CIRCUMFERENTIAL MODE m=l,n=7; 2924Hz 

Figure 8. (Continued) 
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CIRCUMFERENTIAL MODE m=3, n = l; 1703 Hz 

. 1.0 

0 ........ ---t~--+~--t-~-t-~--t-~-t-~.....-:r--,-----.r-----. .,,. 

~l.0 
CIRCUMFERENTIAL. MOOE m=3, n=2; 1303 Hz 

-1.0 
Cl RCUMFERENTIAL MODE m=3, n = 3; 974.3 Hz 

Figure 8. (Continued) 
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-1.0 
CIRCUMFERENTIAL MODE m=3, n=4; 973.5 Hz 

Cl RCUMFERENTI AL MODE m= 3, n = 5; 1340 Hz 

1.0 

-1.0 
Cl RCUM FERENTIAL MODE m = 3, n = 6 ; 1998 Hz 

Figure 8. (Continued) 
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1.0 

... 1.0 
Cl RCUMFERENTIAL MODE m=3, n= 7; 2959 Hz 

Figure 8. (Continued) 
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Figure 6. The results presented in Table XVIII were obtained with five 

axial mode functions and six even and six odd circumferential mode func­

tions. It is quite evident from Figure 6 that the frequency curves of 

the ring- and stringer-stiffened shell under ccnsideration, are more or 

less similar to those of the unstif;fened shell; however, they are bodily 

shifted to the left. The minimum frequency of the stiffened shell is 

more than three times the minimum frequency of the unstiffened shell. 

The frequencies of the stiffened shell are consistently higher than 

those of the unstiffened shell. It should be noted that even though the 

ratio of number of rings to number of stringers in this problem is about 

3:4, the effect of rings is predominant. Figure 6 reveals that the 

frequency curves for various m values tend to merge as n increases. The 

difference between the frequency curves of different axial mode numbers 

mis maximum for n = 0 and tends to vanish very rapidly as n increases. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Summary 

An analysis has been presented in this study to determine the 

natural frequencies and mode shapes of ring- and/or stringer-stiffened 

noncircular cylinders with arbitrary end conditions. Case of circular, 

noncircular, unstiffened and stiffened cylindrical shells with various 

end conditions were investigated and the following observations were 

made. 

1) Comparisons with known experimental and analytical solutions of 

circular, noncircular, unstiffened and stiffened cylindrical shells 

with arbitrary end conditions showed this method of analysis to be 

valid. 

2) The natural frequencies obtained in this study for a clamped-free 

circular cylinder, were slightly higher (for the whole range of m and n) 

than those previously obtained experimentally. This discrepancy 

increases as the number of circumferential waves decreases. 

3) Comparisons of results obtained for stringer-stiffened, freely 

supported, cifcular shells showed that the frequencies previously 

obtained, neglecting insurface inertias, were slightly higher than 

those of the present analysis. The discrepancies between the results of 

the theoretical analyses decreased as the number of circumferential 

waves increased, which is a typical characteristic of Donnell's Theory. 
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4) Comparisons with Forsberg's exact results of ring-stiffened 

circular shells, showed that the results of the present analysis were in 

error only by a maximum of 0.51% for zero-eccentricity rings and 1.75% 

for negative-eccentricity rings. 

5) Comparisons with Al-Najafi and Warburton's finite element and 

experimental results (obtained for ring-stiffened circular shells) 

showed that the results for freely supported cylinders obtained during 

the present analysis were closer to their experimental results than 

their results using the finite element method. For the free-free case, 

of the six experimental results presented, the results of the present 

analysis were closer to the first three experimentally obtained fre­

quencies, whereas their finite element results were closer to the next 

three frequencies. 

6) The number of terms required in the displacement series for con­

vergence of results of ring-stiffened shells differed from problem to 

problem. Shells with positive eccentricities needed more terms for 

convergence than those with zero or negative eccentricities. 

Conclusions 

1) There is weak circumferential modal coupling due to the presence of 

stringers in both circular and noncircular cylinders. 

2) The stringers contribute mor~ to the total kinetic energy of the 

structure than to the strain energy. Therefore, the stringers have a 

reducing effect on the natural frequencies. 

3) The rings contribute more to the strain energy than to the kinetic 

energy of the structure. Therefore, the rings have an increasing effect 
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on the natural frequencies. The influence due to the presence of rings 

is more than the stringers. 

4) Reasonably accurate results for ring- and stringer-stiffened shells 

may be obtained by considering the same number of circumferential mode 

components as are necessary when the stringers are not present. 

5) The reduction-of-frequencies effect due to the presence of stringers 

is greater on the frequencies associated with the lower circumferential 

wave numbers. 

6) The rate of decay of frequencies due to the presence of stringers 

is greater for small numbers of stringers and diminishes with the 

increase of number of stringers, 
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APPENDIX A 

DERIVATION OF THE COMPATIBILITY RELATIONS 

The compatibility relations of the stiffeners were derived based 

on the assumption that the stiffeners are attached to the shell along a 

line of attachment of infinitesimal width. This assumption is probably 

valid when the stiffeners are closely riveted with a single row of 

rivets. 

The displacement vector of any point in the cross-section of the 

ith stiffener can be written as 

where 

i = { : 
for ring > 

forstringerJ (Al) 

= The displacement vector of an arbitrary point in the 

cross-section of the stiffener; 

q = The displacement vector of the shear center of the sci 

stiffener; 

w = The angle of rotation vector of the stiffener; 

Ri/sci The position vector of the point with reference to the 

shear center. 

These vectors may be expanded as follows: 

i r,s 
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= 

where (see for example, Reference (~O)) 

v . 
SCI. 

U) • = w sci,8 
R • 

SCI. 

---
Xl. 

= - w sci,x 

- u scr,8 
R 

w . = scr 
z l. 

R . 
SCI. 

for rings 

v for -stringers scs,x 

Also, (see Figures 2 and 3) 

I 
x 

0 

I z 

where the vector components 

center (sc). 

I x , 
I I y, and z 

i = r,s 

0 

I 
y 

I 
z 

are referenced to the shear 

Substituting the above equations into equation (Al), the compati-

bility relations of rings and stringers result. 

For the rings: 

I 
-z w scr,x 
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I 1 W e V \ -x , I :er, scr 
-R-- uscr,8 - z \ - - -R--) (A2) 

scr scr scr 

I 
x w scr,x 
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For the stringers: 
I I 

-z w - y v scs,x scs,x 

,w v 
-z'( :cs,9 _ Rscs) (A3) 

scs scs 

'(wscs,e - vscs) 
y R R 

scs scs 

Another set of compatibility relations were obtained to relate the 

shear center displacements of the stiffeners to those of the shell at 

the line of attachment by replacing r by scr, q by q, z' by zlr' x' . scr 
I by xlr' and R by R in equation (A2) ands by scs, q by q, z by scr scs 

by Yls' and R by R in equation (A3). scs 

For the rings: 

r -, r , 
l qscr J = l q J + 

-z1 w, r x 

x 1 w, . r x 

(A4) 

The cross-section of the ring was assumed to be synnnetric with respect 

to the normal to the shell surface. Hence, the above equation reduces 

to 

-z w, 
lr x 

0 

(AS) 



For the stringers:· 

( w '0 ' V\ 
-zls\T - RI 
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APPENDIX B 

ENERGY EXPRESSIONS OF RINGS AND STRINGERS 

Ring energy functions: 

K 2rr 

w - \' Erk I _l_(I {(·-1-) } a a 
scr)- l 2 ,; R zzrk R ,9 user ,9 

k=l O er scr 

I 
+ zzrk 

Ra 
scr 

u2 + 1zzrk ( 1 ) { + u u l 
scr,99 R \-R-- ,9 uscr,9uscr,99 scr,99 scr,9J 

scr scr 

( ) { 
, I . 

I - 1- u w + w u l - zzrk~u w 
zzrk R , 9 scr,9 scr,x scr,x scr,9J R l:scr,99 scr,x 

scr scr 

+ w u \ + ~ A + Ixxrk + _2_ A z l J3 
scr ,x scr, 99 J L rk R 2 R rk 2rkJ scr, 9 

scr 
scr 

rt \ , 2 ( I , , \ f 
+ I ~ !-1- l l v2 + ~ A z + xxrk ~ (_l_ \ I v v 

xxrkl\R 1,8 J scr i.. rk 2rk R ) \R /, 9\ scr scr,9 
scr scr scr 

+ v scr ,9 v scr) 

,-A z I 1 . ) 
rk 2rk + xxrk ' w +w 

- { R Ra j \ vscr,9 scr,99 scr,99vscr,9 
scr 

scr 

r I }( ) ( A · + xxrk 1 w , + - i_ rkz2rk R ~ , 9 vscr,9 scr,9 
scr scr . 

w v ) 
scr ,9 scr ,9 

- ;xxrk (~ ),9( vscrwscr,99+ wscr,99vscr) 
scr scr 

{( 1 \ ', 2( ) ( - I -- . v w + w v + A 1 
xxrk R J, 9 .J scr scr,9 scr,9 scr rk scr 

z2rk)( \ · 1 ) i + -- v w + w v 1 + A z -- v w 
R scr, 9 scr scr scr, 9 / rk 2rk( R , 9\ scr scr 

scr scr 
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where 

+ w v \ 
ser serJ 

I k' + xxr . w :a 
R :a ser ,99 

ser 

+I I · ~w 2 { ,· 1 ) -.:a 
xxrk \-R--- ,9J ser,9 

ser 

+ Ixxrk (--1--) (w w + w, w ') + A w:a 
R R , 9· ser,99 ser,9 .... ser.~B. ser,99 rk ser ser ser 

Arkz2rk , . ) 
- . lw w +w w R \ ser,99 ser ser ser,99 ser 

A z (--1--) ( w w + w w ) rk 2rk R , 9\ ser,9 ser ser ser,9 ser 

+ I w2 d9 zzrk ser,x"-
/x==xic 

I = I + A z 2 
xxrk xxerk rk 2rk 

K ff I 

73 

(Bl) 

U (u, 
r , ext 

v, w) = f E J< zzrk 
'-' rk R R :a 

I 
+ xxrk 

R R 2 
er ser 

k=l O er ser 

:a v,e -2 
I xxrk 

R R 2 
er ser 

I A 
+ zzrk :a + rk :a> de 

R w,x R w 
er er 

I z . 
zzrk lrk 

R R3 
er ser 

. A z 
+2 rk lrk +2 

R R 

I z . 
xxrk lrk} :a v,e 

R R 2 R er er ser 

. A k I k 
+2 ...!:..... + xxr 

R v,9w :a 
er R R er ser 

A z 2 I z 2 
+{ rk lrk + xxrk lrk 

R R 2 R R 2 R 2 
er er.ser 

I z A z A z 2 
xxrk lrk + rk lrk+ rk lrk 

R R 2 R RerR R R 2 
er ser er 

A z 2 I z 2 

v, w + { rk lrk + xxrk lrk 
e R R 2 R R 2 R 2 

er er ser 
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1xxrkzirk} 2 +2 w 
R R 2 R ·ee 
er ser 

A z 2 z 
+2 rk Irk 2rk +4 

A z z . 
rk Irk 2rk} 2 

v ·e 
A z 

_2 { rk 2rk +3 Arkzirkz2rk 

R R R 2 R R R R R R R R 
er ser er ser er ser er ser 

+2 
A z 2 z . A z 1 A z z , 
rk Irk 2rk t +2 J rk 2rk + rk Irk 2rkJ1 

) v,ew•ee l v,ew 
R R R 2 R R R R R 
er ser er ser er ser 

A z 2 z +{ 2 rk Irk 2rk +2 
- R R R 2 

A z z . .A z z 
rk Irk 2rk J w: _ ~ rk Irk 2rk 
R R R ee l R R R 

er ser er ser er ser 

TT 

r.<1zzrk (( 1 \ } 2 2 1zzrk ( 1 ) ' 1 
+ Erk j R l -R-/. u,9 +R R \-R- l u,9u•etu,99u,eJ 

O er ser'e er ser ser ·e 

_2 
1zzrk ( I )' 1;xrk f ( _R 1 ) ~ 2 v2 
R \-R-- u,ew'x + L\ ) 
er ser '9 er ser '9 

1xxrk ( 1 ) j -, 1xxrk I 1 ) 
+ R R \-R-.- lv,9v + vv,9j - 2 R R \-R-- vw,99 

er ser ser '9 er ser Iser '9 

I xxrk f I \ 
-2 R R \~) v,9w,9-2 

er ser ser'9 

I · 2 
xxrk {(-1 ) ~ 
R ~ R J vw,9 
er ser '9 

I .. ) -,2 I + xxrk J (_l_ ,. 2 + xxrk 
R l \R J w,9 R R 
er ser '9 er ser 

ITT I z {! ). · 2 zzrk lrk 1 1 

+ Erk <- 2 R ,-R- f u,ew'x9 
O er ser'e 
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I z · · . .A z 2 · - 2 
zzrk lrk ( 1 ) { l [ rk lrk f ( 1) ~ 

- 2 R R \-R-- u,99W'x9 + u,9w'x99J + R l\R J 
er ser ser '9 er '9 

I z 2 ( ) ( , ··· A z . · ). I z .· ) +2 xxrk 1rk .1 _1_) I v 2 + [" rk 1rk r .1 + xxrk 1rk ( .1 
R R R R , 9 R , 9 .J ,_ R \R ,9 R R2 \R ,9 er ser ser er 

er ser 

+ 
A 2 · I :;i I . 2 

rkzlrk (1) xxrkzlrk ( 1) + xxrkzlrk (_._l __ ) 

RerR R '9+ R Ra R R '9 R R R:. \Rser 1 '9 
er ser er ser 

+2 Ixxrkzlrk (-·-1-) '\ (. v' v +vv' \ -2 ['Arkz;rk (.!.) 
R R R R '9 _ 9 9) · R R R '9 er ser ser er 

I z 2 
+ xxrk lrk ( .!. ) +2 

R R 2 R \R '9 
er ser 

I z I z 2 ~ 
xxrk lrk (_1_) + xxrk lrk (_. _l_) 

\R 2\R / 
R R R ser '9 R R R ser '9 
er ser er ser 

I .. I 2 I 2 
+ xxr~zlrk ( 1) + xxrkzlrk ( .!. ) + xxrkzlrk (~) 

R R = R '9 R R 2 R R '9 R R R2 '9 
er ser er ser er ser ser 

I z . A z 2 
1 2 

+2 xxrk lrk (-1_') J v, w, _2 [ rk lrk {(.!.) ~ 
R R R R /,9· 9 9 R R,,9) er ser ser er 

2 
I z {r \ ·. 2 + xxrk lrk \ .!. ) j +2 
R R 2 R. '9 
er ser 

2 . 

+ 1xxrkzlrk i(-1-l 1 \ 2 
1xxrkzlrk (.!.) / _l_') 

2 L R I J R \R / 
R R ser '9 R R '9 ser '9 
er er ser 
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a 
+2 1xxrkzlrk (.!) (-·-1-) --\ +2 Arkzlrk ( .!) 

R R R R R J vw,9 R \R vw 
er ser '9 ser '9 er '9 

a a 
+ 1zzrkzlrk {(_1_.) .12wa + 1zzrkzlrk (_1_) jw w · 

· R \R · J 'xe R R \R l 'x9 'x99 
' er ser '9 er ser ser 'e 

a 
A z r( a + I rk lrk -< .!) J + 

_ R l R •e er 

I z 2 

xxrk lrk {(i) r + 
R R 2 '9 er ser 

a 
I z ,- 1 \ - a 
xxrk ;rk l(~) J 

R R ser '9 
er 

I z 2 
+2 xxrk .. lrk (.!) /_1_) 

R R R R \R 
er ser 'e ser '9 

I z r( \ a 
+2 ~rk R lrk l ~) J l 

er ser '9 -

I z 2 · 

+ xxrk lr~ (~) +2 
• R R R ser '9 er ser 

1:xxrkzlrk (-1-) 
R R R R 
er ser ser 'e 

A z 2 z . - A . z ~ 
+2 rk lrk 2rk ( .!) (-1-) J a { 2 rk lrk 2rk (.!) 

R R \R R v R R R . 
er '9 ser '9 - er ser '9 

A z 2 z ( ) A z ) A z.2 z ( ) +2 rk lrk 2rk .! + rk 2rk ·(-1'_ + rk lrk 2rk _l_ 
RR RR R R a R er ser '9 er ser '9 R R scr '9 

er 



A . , A ~ 
Z Z ( ) 1/ Z Z ( +2 rk lrk 2rk _J:_ , l + \) _2 ·[ 2 rk lrk 2rk .!.) 
R R R J \ vv '0 v '0 v R R R R 
er ser '0 er ser '9 

A z z ( ) A z 2 z ( } + rk lrk 2rk _J:_ + rk lrk 2rk _J:_ 
R R R · 2 R 
er ser '0 R R ser '0 

er 

Az z · . Az z (' + rk lrk 2rk ( .!.) l vw . -2 r 2 rk lrk 2rk .!. 1 
R R R , 9 .., '00 I R R R J , 0 er ser - er scr 

A z 2 z . , A z . , A z 2 . z . 
+2 rk lrk 2rk f .!.) + rk 2rk { ;...];_) + · rk lrk 2rk {_l_\) . 

R R R \R R \R · a \R 
er scr '0 er ser '0 R R ser '0 

er 

A z z ( ( ) A z 2 z ( ( ) +2 rk lrk 2rk .!.) _l_ +2 rk lrk 2rk .!.) _l_ J. 
R R R R R R R vw,e 
er '0 ser '0 er '0 ser '0 

A z z .( ) A z ( . ) A z z , ) J. +2 rk lrk 2rk .!. + rk 2rk _.!._ + rk lrk 2rk ,_1_ 
R R R R R R R \R vw 
er ser '0 er ser 'e er ser '0 

A z 2 z A z 2 z 
+ r 2 rk lrk 2rk {( .!.) ·}\2 rk lrk 2rk (.!.)- (-1_\ 

! R R \R R R R R I 
· - er ser '0 · er '0 ser '0 

A z z , (f) ( ) l -· A z a z . ) +2 rk lrk 2rk 1 _.!.._ :a + 'L 2 rk lrk 2rk i .!. 
R R . J w '0 R R R \R 
er ' e scr 'e er ser '0 

A z 2 z ( ) A z z ). + rk lrk 2rk _l_ + rk lrk 2rk (-1-_ 
:a R RR R, 

R R ser ' 0 er · ·· ser 0 
er 

A z z ( \ A z2 ( ) - r · -+ rk lrk 2rk _1_ 1 + rk rk _l_ I ww + w w~) 
. R R R J, 0 R R , 0 .~ l. '0 '0 J 

er ser er scr 
de 

x=~ 

(B2) 



u 

78 

r 

K TT z 

= I (GJ) k 11·· ~ +2 

z 
+ w,xe J R d9 

tor r O '-- R4 
k=l ser 

Rz er 
ser x=~ 

TT Z r I zlrk zlrk Z zlrk Z. J 
+ (GJ) k .· I -2 -- u, 9w, 9+ -- w, 9 -2 -- w, e . R d9 

r JO _ R 4 x R4 x R 3 x er 
ser ser ser x=xk 

K TT 

l.\' J< oz T = 2 ;2p k AkR u + r w r . r er 
k=l O 

I R zzrk er 

Rz 
ser 

-2 
I R 
xxrk er o o I R wz + 

vw,e+ xxrk er 'x Rz 
ser 

+ r R wz > ae zzrk er 'x . 
x=~ 

TI 

+2p k J<-2 A kzl kR M,, -2 r r r er x 
0 

O z O z 
u, 9+ A kR v + r er 

I R 

I R xxrk er 

Rz 
ser 

xxrk er 

Rz 
oz +A R woz 
w,e rk er r 

ser 

I z R 
zzrk lrk er o o 

u,9w,x9 
Rz 

zz z 
+ I A R ( lrk +2 lrk) + 

I R zz 
xxrk er ( , lrk +2 zlrk)Jvz 

R -_ rk er R z R Rz Rz 
ser 

O z v 

A z R z 
_2 [ rk lrk er ( 1 + lrk) + 

. R R 

I z ( xxrk lrk 2 
R2 R 

+zlrk)R loo 
R er J vw,9 

ser 

(B3) 

I z R 
xxrk lrk er 

I zz R .. 
+ xxrk lrk er J w;3 

+ 

Rz R R z Ra e 

I R zz 
zzrk er lrk 

Rz 
ser 

Oz > ae w,xe 
x=xk 

ser 

oo ( 1 z~rk A kz2 kR uw, +2 A kz2 k -R-- + ......;.. __ 
r r er x r r Ra.. ser -K 

ser 

ser 
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+2 zlrk \. v2 _2 A z R (-1- +3 zlrk .+2 ztrk \ oo 

RR !\r rk 2rk er R RR R 2R. "J vw,e 
· scr scr scr scr 

,Z z 2 

+2 A kzl kz2 kR w; +2 r r r er x 
A z R ( lrk + · lrk 
rk 2rk er \RR R2 R ) w:9 > de 

scr scr 

. 
Stringer Energy Functions: 

L a 
E 

U (u,v,w) 
~xt 

_\'--2.&r< 2 - , 2 J A nu, + 
'_.J , S,t, X 

J,=l O 

I v 2 + I w2 > dx zzsJ, 'xx yysJ, 'xx 
e=e,, 

+ 
I z 2 

zzsJ, lsJ, 

R2 

E a 

w2 dx 
'xxe> 

e=e . J, 

+ 2sJ, Jl'<-2 A nZ2 nu, w, +2 A z z w 2 
S,t, S,t, x xx sJ, lsJ, 2sJ, 'xx::::> dx 

o e=e,, 

u, v' x xx 

y u, w, I y 2 

_2 A z lsJ, x xxe ( 2 yyse lsJ, 
sJ, 2sJ, R + As.e,Y1s1, + R 2 

Iyysl,YlsJ, 
R 

AsJ, zls.t Z2s1,Y lsl, \ 
R + A n z2 yl n ) v, w, +2 i -

S,t, S£ S,t,l XX XX \ 

I y2 
yysJ, lsJ, 

R2 

x=xk 

(B4) 
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A z . 2 I . 2 ·I y 
+ sJ, 2siy 1s1,\ v w + yys,.e,Y lsl, 2 + ( yys~ lsl, 

R ) 'xx 'xx0 w,xxe R2 

+w, ew, )> dx xx xx, 
0=0.e, 

a . 

E 1, r< ( + + j -2 As1,Y2s1, 
0 

Az y r Az y y ·. 
+2 si, lsl, 2s.t u w + ·l 2 A Y y +2 si, lsl, 1st 2s.t ~ v 2 

R 'x 'xx9 ,. SJ, lsl, 2s1, R ) 'xx 

A z 2 y A z 2 y .· 
+ st lsl, 2s.t } si, lsl, 2s1, (. w - w w 

R 'xx 'xx R 'xx 'xx9 + w,xxew•xxJA.x 
9=0 1, 

a . 
E J rI Y I z nY ) ( , + __& <-2 l yzsi, lsl, + yzsi, lsx, lsl, v 2 + 2 I 

2 \ R R 2 'xx yzsi, 
Q I 

I z (I y I z y ) + yzs.t lsJ,) v w +2 yzsl, lsl, +2 yzsl, lsl, lsl, v w 
R 'xx 'xx R R 2 'xx 'xx9 

I = I + A z 2 
yysi, yycsi, si, 2s1, 

w;3xx9) dx 

0=9 
1, 

(BS) 

T cu,v,w) 
s 



2 ( · )Oo 02 
-- I +I vw +I w 

R 2 \ yysJ., zzsJ., 'e yysJ., 'x 

I I 
+ ( yysi, + zzsJ., ) w ;3 + A w 2 > dx 

\ R 2 R 2 . 0 sJ., 0=0,e 

I z 
zzs..t ls..t) o 2 v , 

R x 

A z 2 A z \ .. I z 2 I z \ + ( sJ., lsl, +2 s..t lsl, 1 ~ 2 _ 2 .\1 zzs..t ls..t + zzsJ., lsl, v o 

\ R z R ) R z R ) 'x w' x0 

·A z 2 A · z I z 8 

2 ( sJ, lsl, + s..t lsl,)· oo + A a o 2 + zzsJ, lsl, 2 - \ vw,e J,zlsi,w,. w,xa 
R2 R s x R2 

a A z A z z 
+ . J~2 A o o +2 ,r sJ, 2s1, + sJ, 1s.e, 2sJ,) o 8 

p II /lz2 /luw, R v 
Sx, Sx, Sx, X R 2 

0 

(
A z A z . z . A z z 

_2 sJ, R 2sJ, +2 si, lsi, 2si, ) vw 'e +2 sJ., Isl, 2si, w :a 
R 2 / R 2 

a I , A z y ) · · / si, 2si, lsi, o o 

+ psi, < 2 \ -AsJ,y ld + R UV 'x 

A z y _2 si, 2sJ., lsJ., oo 
R uw,x0 

0 

I y 2 A z y 8 A y 2 

( 2 + yysJ, lsJ., _2 sJ., 2sJ., lsi,) Vo ,a ·,+ sJ., lsl, Vo 2 

+ As..tY lsJ, R 2 R x . R 2 

A z z y 
si, lsJ, 2si, lsi, 

R 
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A z z y . A y 2 

+ sl, ls.I, 2sl, ls.t ) ( o o +o o ) + sJ, ls.t o 2 
R w,xw'x9 w, 9w, w,9 . x x R2 

A y , ) 
+ s.t ls.t ( 0 ~- + 0 O > d R \ w, 9 w ww, 9 . x 

a 

+ Ps.e, J <"2 (As..e,Y2s.t 
0 

9=9,e, 

( 
A z y y I y + 2 A +2 s.t ls.t ls.t 2s.t _2 yzsl, ls.t 

s.tYls.tY2sl, R R 

I y z). Ay y 
_2 yzs.t ld ls.t Vo ,2 +2 sJ, ld 2s.t 9_ 2 +2 (A 

v \ snz1snY2sn R2 x R2 ~ ~ ~ 
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A y y A z 2 y 
_2 . sJ, ls.t 2s.t oo _ ( s.t lsl, 2s.t vw,e 
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I y z 
yzs.t · lsl, lsl, o 2 

w,xe 
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APPENDIX C 

MATRIX ELEMENTS AND INTEGRALS 

The matrix elements of Equation (32) and the circumferential and 

longitudinal integrals involved in these elements are presented in this 

appendix. The closed-form expressions for the longitudinal integrals 

were obtained with the help of a table of formulas for integrals derived 

by Felgar (31). The circumferential integrals were evaluated numeri-

cally using the 8-point Gaussian quadrature method with four subintervals. 

The elements of the mass and stiffness matrices of a ring- and 

stringer-stiffened noncircular shell may be written as follows: 

Contribution of the Noncircular Shell 

A = S1 IS11 IX1 + (S2ISl2 + S3ISl3) nn IX2 mn,mn 

D = S 4 nISlsIXs - S2nISlaIX2 mn,mn 

E = S 4 ISlsIX3 -S 5 IS1 5IX + S 3 nn.ISl 7 IX2 mn,mn 1 

F = S nIS1 8IX 5 - S,f1ISlsIX4 + San.ISl2IX2 - S 7IS2 3IX4 mn,mn 1 

-2 -S 5IS22 (1-n )IX 5 

C = (S 1IS1 8 + S 6ISl4)IX 6 + g 5 !1IS1 1IX1 + (n 2 n. 2- n 2-n 2)ISl~X 5 I mn,mn 
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S = 2 p h IS\ IX 5 mn,mn c (Cl) 

where IS1 1 to IS2 3 are circumferential integrals, IX1 to IX 5 are 
' \ 

longitudinal integrals, ·and S1 to S9 are constants defined in Appendix D. 

The circumferential integrals are defined as follows: 

TT 
r 

n.0 ISl1 =jR cos ne cos de 

0 

TT 

ISl2 =Ii sin n0 sin ne d0 

0 

TT 
... 1 IS1 3 =I sin ne sin ne d0 ... Rs 
0 

TT 

r 1 cos ne cos ri.e d0 ISl4 = J 
0 

Rs 

TT 
r 

cos n0 n.0 IS1 5 :! cos de 
J . ·: 

0 

TT 

IS1 6 = J sin ne sin iie d0 

0 

TT 

IS1 7 = J ...!.. sin ne sin ne d8 
R2 

0 

TT 
f' 1 ri.e IS la =J i cos ¥0 cos d8 

0 

TT 

IS ls =I R sin n0 sin ri.e d0 

0 

TT 

r 1r1) }a iie IS2 1 = J R \'t sin ne sin d0 
0 \' '8 



1822 

TT 

= r i 
J R :a 
0 

TT 

1\ 
-) sin n9 cos n9 d9 
R '9 

!823 = r (1) sin n9 cos n9 d9 
J R '9 
0 

The matrix elements of the antisymmetric mode equations for the 
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(C2) 

shell are identical in form to the above equations and are obtained by 

interchanging Sine terms with Cosine terms and vice versa. Furthermore, 

/1) (R must be replaced by -(f) . ,e It was found that if the cross-
,9 

section of the shell is symmetric with respect to the horizontal axis of 

the shell, there is no coupling between the even and odd terms of n and 

n. Thus, in the analysis of elliptical cylinders, two computations must 

be made in both the cases of symmetric and antisymmetric modes (with 

respect to the vertical axis); one with all even terms of n and n, and 

the other with all odd terms of n and n. 
The longitudinal integrals may be defined by a general axial mode 

function 

§ 
m 

as follows: 
a 

IX1 =I §" §'~ dx 
m m 

0 

a 
r 

t' § !. IX2 =j dx 
m m 

0 

a 

!X3 =J §" §- dx 
m m 

0 

a 

!X4 =J § §! dx m m 
0 
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a 

IX .s = qi qi - dx 
t1 m m (C3) 

0 

Substituting Equations (28b to 28e) into the above equations, the 

longitudinal integrals for various boundary conditions may be written 

as: 

For freely supported cylinders: 

For 

m4rr 4 ---
2a3 

IXa 

IXs 
a 

= -2 

IX1 to IX 5 

2 2 m TT 
= -IX 4 = --:---2a 

= 0 

Form= m 

Form 'Fm 

clamped- f7:ee cylinders: 

l 13 4 a m=m 
IX1 

m 
= 

0 m i: in 

Ol 13 (2 + a 13 a) m=m mm mm 

413 13- -
IX2 = mm I (-l)m+m (0'-133 - a 13 ~) l3 4 _13 ! _ m m mm 

m m m 'F iii. 

-13 -13 ( ct 13 mm mm - a-13-) ] mm 

ot 13 (2 - ot 13 a) m = irl mm m.m 

IX 3 = 413 2 (a-13 irl - a 13 ) 
[ (-l)m+tTt 13 2+~:J m m mm m f, iii 

·13·~ - 13 4 
. m m 

m m 

la H2 -
a 13 a) -m=m mm mm 

IX4 = 4i3J(a 13 - Ol-13-) - -
m mm mm \(-l)m+ml3:1+l32\ m i: iii 

13 4 _ l3~ m m-1 
m m 

(C4a) 

I 
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1· m = iii 
IXs = 

. 0 m ,/: iii (C4b) 

For clamped-clamped cylinders: 

t::· m=m 

IX = 
l 

m ,/: iii 

0tJm(otJma - 2) m = ffi. 

IX2 = -IX 3 = -IX4 = 413)~(otml3iii -o:mj:lm) \ m+iii J 
(-1) +1 m ,f:. iii 

1:34-13: L 

m m 

1: 
m=m 

IX 5 = 
m I: iii (C4c) 

For free-free cylinders: 

m= 0 

IX 1 = IX2 = IX3 = !X4 =O l m= 0 
IX 5 = a 

IX = IX2 = IX 3 = IX 4 = IXs = 0 m= 1 
l 

IX1 = IX2 = IX3 = IX5 = 0 m~ 2 

l ""'- 1~- l 
iii~ 2 even only 

!X4 = 
m- m-

0 iii > 2 odd only 

m= 1 

IX1 = IX2 = IX 3 = !X4 = IXs = o I m = 0 

IX = IX 3 = IX4 = 0 

} l 
in= 1 

IX2 
1 a 

= - IXs = -a 12 

IX1 = IX 3 = IXs = 0 iii~ 2 

t~ m> 2 odd only 
IX2 = 

in~ 2 even only 
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t- 2a- l~- 1 
m> 2 odd only 

!X4 = 
a m-. m-

0 m ~· 2 even only 

m~ 2 

IX = IX2 = IX4 = IX 5 = 0 
1 r ~ 

m~ 2 even only m= 0 

IX 3 = O 
m-1 m-1 

m> 2 odd only 

IX1 = !X4 = IXs = 0 

l- ~ m> 2 odd only 
IX2 = 

. 0 m~ 2 even only m = 1 

r 2 odd only - - 2a 13 m> 
IXs = : m-1 m-1 

m~ 2 even only 

r· m = :in 
m-1 

IX = 
1 

0 m 'F :iii 

am-113m-l (am-l~m-1 a+ 6 ) m=m 

413 m-113 iii-1 (am-113 Ii- l -am-113 !-1) 
[1 IX2 = 

13:_1 - 13~-l 
m ,/, m 

+ (-l)m +:in - 2 J :iii~ 2 

am-113 m-1 (Z - am-113 m-1 a) m = :in 

413~-1 (am-113iii-1 - am-113m-1) 
[1 IX 3 = 

13~-1 - 13~-l 
m :/: iii 

+ (-l)m+iii- 2] 
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m = m' 

ti.e! 1<a le· 1- a- 1e- 1) r 
m- m: m-

4 
m- m- i_l 

em-1 - l\n-1 
m#m m;;c: 2 

+ (-l)m+m- 2 J 
Iii = m 

m#trt 

(C4d) 

The longitudinal integrals in Equations (C4a, C4c, and C4d) vanish if 

m±m is odd and are nonzero if m+m is even. 

A --mn,mn 

D -­mn,mn 

Contributions of Stringers 

L 

= l ( ss1 
L=l 

cos ne cos ii.e) 
0=0.e 

L 
.-,~, SS12 

= \/ ( -ss + -
!....J \ 11 . R 

1.=1 

L 

Emn,imi =I<- SS4COS ne cos ii0-SS9 cos ne cos ii.a 
1.=l 

SS21 
n- cos ne sin ne - ~ + SS 12 R - ---R--- ficos n0 sin n0 IX1 

e=e 1, 

B mn,mn 

SS2 3 SS2a 
+ ---R--- - ---R--- -

SS 27 ) 
- sin n9 sin iie). IX1 

R 2 0=9.e, 

sin ne sin fie IX:a . + (GJ)s.e, 
R2 



F mn,mn 

emn,mn 
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L . 
ri /( SS 5 si;,.,) _ . I 

= l'\\-;+T n 
.R 

J,=l 

sin ne sin ii.0 + { SS u - -- - --
\ R R 

') (SS14 SS1s) + SS 12 sin ne. cos ii.0 + -- - -- f'I. sin n0 sin ii.9 
. R2 R 

SS24 1 SS25\ 
+ -R- ii sin n9 sin ii0 + \ SS21 + -R-) sin n9 cos ii.0 

' 8$29) 
+ ( ss 29· + ~ sin ne cos ii9 

+(( GJ )s..e, ii. sin ne sin :5.9 "" IXa 

R 2 /e=e J, 

L 

= I< SS 3COS n0 cos n.9 + 
J,=l 

SS 5 
SS 8cos n0 cos n.0 + -- nii sin·ne sin n.0 

R2 

SS 14 1 SS1 7 
+ SS10 cos n9 cos ii.9 + -- nii sin n0 sin n.0 - \-R­

R 2 

SS.19) 1 ) 
+ -R- \ ii cos n9 sin n.0 + n sin n0 cos n.0 

SS2s.(_ ) + -R- n cos n9 sin n.9 + n sin n0 cos n.9 

SS29 (- ) + -R- n cos n9 sin n.0 + n sin n0 cos n.9 

SS27 
- -- nn sin n0 sin n.0 "'- IX1 

R 2 "s=e J, 

+ /(GJ) nii sin n9 sin n.9 > IXa 
~ st R 2 9=0 

J, 



L 

N --mn,mn r< = ) Ti ,_, 
1,=l 

cos n0 cos ;9> IX2 
9=9 J, 

L 
\'<( Ti7 

NN -- = L -Ti a + - -mn,mn R 
Tso\ _ ,> · 

T29 + -R ) cos n9 sin n9 IX2 
I 9=9 

t=l J, 

L 
\, ( ,Ti7 

Pmn,mn = L<- T 6 + Ti 3 ) cos n9 cos ii0 + \T 
.t=l 

TsO\ -
- T)n cos n9 sin n9 > IX2 

9=9 J, 

~,tiiii 

L 
'(( T 7 Ts Tie = /. T2 + - + - + Tie + --
c..J Ra R R2 

J,=l 

T20 T32 Tss. 
- R + Tsi + R - R 

- T34) sin n9 sin n9> IX2 +/( Ti 
R 2 0=9 "' J, 

Tis Ti4 Tis Tai\ 
+ -- + -- + -- + --) sinn9 sinii.9> IX 5 

R R 2 R 2 R 2 -0=9 
J, 

L s--<, T 5 Ti2 T 6 Ti 3 Ti 5 T2 5 
R = I (_ + -- + - + - + -- + --

mn,tiift. '--' \R2 R2 R R R2 R2 
t=l 

Tse \ _ . . /( T 11 Ts T2 4 

+ --1 n sinn9 sinfi9) IX s +\ - + R + -
R 2 9=9 t R 2 . R 2 

T20 Ts2 T33 Tse\ _ ~ 
- -- + -- - -- - --) ii sin n9 sin n9 IX2 

R R R Ra . 9=9 

<r T:a2 T23 T35 
+ \ T21 - R - R + T17 + Tso + R + Tse 

T37) <(Tia + R sin ne cos ii9 "'-.__ IX2 - R 
/'e=9 J, 

T2e) 
+ R sin n9 cos ii~ e=e,, IX5 

J, 
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L 

s mn,mn = Z(( T3 + Tg + 
.t=l 

+ T 1 4 + T 1 8 + T 31 ) nn sin n0 sin ii.9 > IX 5 
R 2 9=9 J, 

) nfl. _ ) /,( Ta s 
- T34 -· sin ne sin ne IX2 -'\ R 

Ra 0=9 , 
J, 

T 42) _ _ _ "-. 
+ R (n cos n9 sin n9 + n sin n9 cos ne) /,;_ IX5 

. · 0=0,, 

<( )( cos ne sin iie 
+ T40 + Tu - T:ae -T27 ii R 

+ n si~ n~ cos n.9 )) IXa 

0=0,, 

(CS) 

; 

where T1 to T42 are constants defined in Appendix_ D. 

Contributions of Rings 

K 

A = \ C 1n 2ii 2 IRl1 X 1 + C 1niiIR4 1 X 1 + C 1 (IR42 nii 2+n 2 :n IR43 )x 1 mn,mn L. 
k=l 

+ C-21 nii IRls X 1 

K 

E -- =) C 1n 2:rR12 X 1- C 4 n 2 i'i. 2 IR11 X 1+ C 1 nIR4,4X1 - C4 nn IR41X1 mn,mn ,_, 
k=l 

K 

Bmn,mn = l (canii IR1 3+ C 3nn IR11 )x2 + ( c 5 IR2 1+ Ce IR22 + c 7 IR2s 

k=l 



K 

93 

+ C 3 IR41X2 + C3 ( IR4an + IR4 3n) Xa + ( Cs IR51 e 

+ C a ·t IRS 1 + IR5 2 } + C e { IR5 3 + IR5 4} + C 1 e IR5 6 ) X 2 

. ' \ I ' I 

+ t Ce ( nIR57 + nIRSa )+ C1e'pIR5e + fiIR5e }+ C6 \ii.IR510 

+ nIR5 11) + Ca ( fiIR512+ nIR51 3) + Ca (nIR5 1 6 + n.IRS 14,) 

'\ ( ( ) 
+ C 12 IR6sJX2 + tc 11\nIR64 + nIR6 6 +nIR610 + nIR611 

+C12 (n.IR6a + nIR6 7)+ C14(n.IR44 + nIR4s )+ Cao ( n.IR6e 

+ nIR6e)} Xa 

F_ -- = )<C3nii. 2 IR1 1 + mn,mn -·-' 
I 

C2 nIR1 3 + \ C8IR2 4 + C9 IR2 3 + C6IR2 1 

k=l 

+ C6IR2a) nn a + CeIR2 3n + (c14IRla + Ci 6IR3a 

+ C12IR3i)nn. 2 +(ci¥Rla + C1aIR32)n + C3n. 2 IR4a 

+ C3IR4 3nn + C3iiIR41+ CsIR51 0 +Ca\ IR5i,;:i+IR514) 

( 

+ C 8IR5 16 + C1eIR5 8 + l Ce IR5 7 + C 6 IR511 + C1eIR5e 

+ C 6 ( IR5 13 + IR5 16) + C. 8IR5 17} nfi + {c 5I~5 18 + C a(IR5 1 

+ IR5 2) + e a ( IR5 3 + IR5 4 } + C 19IRS s} n + C eIR5 a 

+ {c 12IR6a + c 2 0IR69 + c 1 a(IR610 + IR6 4)} ii. 2 +f 17 (rR6 5 

+ IR611) + C1 2 IR6 7 + C1¥R4 6 + CaoIR6e} nii. + { C12IR61 

+ Ci 7IR6a + C1aIR6 3 } n + C1 a ( IR6 4 + IR6 10 ) 

+ C1 ~R4 4>X 2 
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K 

C -- =) C3n 2 n 2rR1 1 X,a + C1IR1s X1 + Ca IR1 3X2 + I C6IR2 1 mn,mn L.J \ 

k=l 

K 

+(C1eIR32+ C14!Rl2)if+n2x2 + C3 niiIR4 1X;a + cs(IR42nn 2 

+ n 3 n IR4 3)X2 + C10IR41nn:X1 + C1o\nn.2rR42+ n 2 n IR4 3}X1 

- C /n.IR4 6 + nIR4~X 1+ { C5IRS1e + Ca(IR51 + IR52) 

+ C19IR5 6 + c 0 (1RS4+ IR5 3)}nn.JC:a + t Cs(nn.2J:R51 0 

+ n 2 n IR511)+ C8 (nn 2rR5 12 + n 2 n IR51 3 + nn 2J:R514 

+ n 2 n IR5 16)+ Ce(nn.2J:R5 16 + nn.2J:R51 7)+ Cis(nn2rR5 9 

+ n 2 n.IR5s)}x.2 + Cs(nIR5 7 + nIR5 6JX2 +'LC12(IR61 

+ IR6a)+ C17IR62jX2nn +LC1a(nn.2IR6e + n 2 n.IR67) 

+ Ca O (nii 2rR6 9 + n 2 ii IR6 s) + Ci e ,: nii 2rR61 0 + n 2 ii IR611 

+ nn 2rR6 4+ n 2 ii IR6 s)}x.2 + l C 1e ( nIR6 5 + n!R6 4 + n.IR611 

\ /- \l ( . 
+ n!R6 1o)+ Ci 4\nIR4 6 + nIR4 4jJX.2 + \_02 1IR1 7 + C26IR1 5 

- C :nIRl a)nn·X1 

N = y (C22IRl4 + C;a 3 IR1 7nn)' Xi mn,mn 1_, \ 

k=l 

K 

Pmn,mn = l, (-CaeIRl4 - CasnnIR1 7 - C36IR1 4)X 1 

k=l 

K 

~,mn = 1~-' ( Ca2IRl 8 + C2 ~R1 7 + C30IR2 7 + C28IR2 8 + C32IR2 9 

k=l 



K 

R = \ (2C.a4,D.IR1 7 + 2C,31n.IR2 9 + 2C 30n.IR2 7 + 2C 3 3n!R210 mn,mn L 
k=l 

+ C 30IR1.a,X1 + { C sonnIR2 7 + C 3 snn!R21o + C 32nnIR2s} X2 

+ C 3 41.n.IR1 7 X1 + C40 IR~X1 + (c40 IS12 + C 37IS~)nnX2 
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(C6) 

where IR1 1 to IR6 11 are circumferential integrals and X1= ~'~'I 
m tii. x='1t 

and X2 = ~ ~-1 . and C1 to C40 are constants defined in Appendix D. 
mm x=xk 

The circumferential integrals are defined as follows: 

IR1 5 

TI 

I 1 cos n9 cos ii9 d9 
= R R 2 

O er scr 

TT 

= I 1 cos ne cos ii.a de 
R R 

O er scr 

TT 

=I 
0 

TT 

=I 
0 

TT 

Rl cos n9 cos n.9 d9 
er 

R cos n9 cos n9 d9 er 

-I 1 sin ne sin ne d9 
- R R 2 

O er scr 



IR la 

IR1 7 

IR1 8 

IR21,. 

IR22 

IR2 3 

IR2 5 

TT 

= r 1 sin n0 sin iie 
I 
" R R 
O er scr 

TT 

=J-1 sin ne sin iie d0 
R 

O er 

TT 

=JR sin n0 sin iie de er 
0 

TT 

= J l cos ne cos ii.a de 
R Ra 

O er 

TT 

d0 

J l cos ne cos iie d9 
= R · R aRa 

O er scr 

TT 

I 1 . = -cos R R 
O er 

TT 

ne cos iie de 

= J l cos n0 cos fie 
R RR 2 

O er scr 

TT 

= I 1 sin ne sin ne d0 
R 2 

O crRscr 

TT 

IR2e = j l sin ne sin iie d9 
R R 

O er scr 

TT R 

I er . e = --s:i.n n 
Ra 

0 

sin iie de 

IR2e 

TT R I er = T sin ne sin iie d0 

0 
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d0 



IR2s 

IR32 

IR42 

IR52 

,,. 
-J 1 sin n9 sin n9 d9 
- R R 2 

O er 

TT 

r 1 . 
= I -- sin .., R R 

O er 

TT 

n9 sin n9 d9 

-J 1 cos ne cos ii.9de 
- R R 2R 

O er scr 

TT 

= I R l RR 
O er scr 

cos n9 cos ri.e d0 

TT 

I 1 {( l \ "sl3 = R ~) J sin n9 
er scr 'e 0 

sin ii.9 d9 

sin ne cos ii9 d9 

TT 

=IR~ R 
O er set 

(~)'A scr _ 
cos ne sin ii.9 d9 

TT 

= J a1- (a1-) sin 
O er scr'e 

ne cos n.9 d9 

TT 
r 1 ( 1 \ = j - ,-; cos 

R Rscr '9 O er . 
n9 sin iie d9 

TT 

I 1 
= R R 2 

O er scr 

' ( 1, } :a \\RI sin n9 sin ii.0 d9 
'e -

TT -J 1 ff 1 ', ' 2 
--Lt-; J sin ne sin ne de 

- R R 9 \R '9 
O scr 

er 
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TT 

IRS3 
"1 1"'1\ ·,2 

= J R . R t(R ),ef sin ne sin ne de 
0 · er scr 

TT 

IRS 4 = J R 1 R (~ ,a (Rs~) 'e sin n0 sin iie d0 
O er scr 

TT I 

IRS 5 - J --· -1--- (.!).. (-1-) sin n0 sin ii.e d0 
· R RR \ R '0 Rscr 'A 

IRS a 

IRS 7 

IRS a 

IRSe 

IRS10 

IRS11 

IRS1a 

O er scr 

TT 

= J _L ('!) sin n0 cos n.0 d0 
R R ,0 O er 

TT 

= I i_ ( 1 \) cos ne sin ne d0 
R R ,9 O er 

TT I 1 . , 1) 
= R R 2 \i '0 

sin n0 cos fi0 d0 

O er scr 

TT 

=J Rl Ra (i),9 cos n0 sin ii0 d9 

O er scr 

TT s 1 1 1) sin ne cos ne = Ri \i ,0 
de 

O er 

TT 

-I _l_ (!' cos ne sin iie de - R R R),e 
O er 

TT 

=JR lRRa 
O er scr 

TT 

( 1 ) sin n0 cos iie de 
'[ 'e 

IRS13 = J l (.!) cos n0 sin ii0 d0 
R RR 2 R '9 

O er scr 
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TT 

r 1 · 1 ) IR514 = · ----- \-- sin n9 cos n9 d9 
,; R R2 R Rscr '0 
O er scr 

1 1 1 ·)· IR5 15 = ! 1-- cos n9 sin i'i.9 d9 
,, R R 2 R \Rscr '6 
O er scr 

TT 

IR51 s = Ji' l (·-1-). 
. R RR . R 'A sin n9 cos n.9 d9 
O er scr scr · 

'IT 

!R51 7 = r· l ( l \ cos n9 sin n9 d9 
J R RR \-R-I 'A 
0 .er scr scr ·· 

'IT 

f' 1 {(1' ·a 
IR5 18 = '. -R \-R J J sin ne 

'o er 1 '6 
sin rie ae 

TT 

-- Jr Rl R. ~(·_Rl),e··~ l J sin n9 sin n.9 ae 

O er scr 

TT 

IR6 2 = f _l_ (l ~) (-1-') sin ne sin ne ae 
J R R, , 9 R , , 9 
O er scr 

TT 

IR6 3 
,, 1 ; 1 ', ' 1 ) 

l ) ( sin ne sin ne ae = ,, ifR ,ii ,8\R ,8 
O er scr 

TT 
,. 1 

IR6 4 = j 
R R 

(!) sin ne cos ii.9d9 
'A 

O er scr 

TT 

IR6 5 = i' _l ___ ( l)' cos ne sin ii.9 ae 
" R R \R ,e 
O er scr 

TT 

I' 1 (1) IR6 6 = -
.. ! R RR . R '9 
O er scr 

sin ne cos iie ae 
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IR6 7 

IR6a 

,.,. 

IR6a r 1 / 1 ) 
= J R R 2 \R 'e 

O er scr 

TT 

I 1 ' 1 '\ 
IR610 - -- (_). 

- R R \R 'e 
O er scr 

,,. r 1 t' 1 ) 
IR611 = . RR \R '0 

O er scr 

cos ne sin ne d0 

sin ne cos ne de 

cos ne sin ne de 

sin ne cos :rie 40 

cos ne sin ri.e de 

The quantities X1 and Xa for different boundary conditions are 

defined as follows: 

For freely supported cylinders: 

-- ~ 
X1 = 2 mmTT cos 

a :a 

mTT~ 
cos 

a 

mTT ~ 

a 

-
mTT~ mTT~ 
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(C7) 

Xa = 2 sin sin --a a (C8a) 

For clamped-free cylinders: 

x-. 1 = emem {sinh em~+ sin emxk- Cllm(cosh Sm~- cos Smxk)}{s.inh em~ 

+ sin 13;,_~ - a;,_ ( cosh e m.xk - . cos S;,_~}} 

Xa = { cosh Sm~ - cos em~ - Clim ( sinh !,m~ - sin l:lmxj}{ cosh l:lmxk 

( \"' 
- cos Sm~ - Clim sinh emxk - sin emxk)J (C8b) 



For clamped-clamped cylinders: 

Expression is same as clamped-free but a 'sand 
m 

a 's are different. 
m 

For free-free cylinders: 

m = 0 

Xi = 0 l X2 = 1 

Xi = 0 

} -~ \ 

X2 =(-;--}) 
X1 = 0 

m = 0 

m = 1 

X2 = cosh am-l~ + cos am-l~ - °'m-l sinh am-l~ 

m = 1 

+ sinaiii.-lxk) 

~ 1 
X2 =-;- - z 

X1 
1 =-

2 a 

X2 
x: 1 

=-. +4 
a2 

- xk 
a 

} 

ati.i-1 { 
X1 = - 8 - sinh Sm-l~- sin Sm-l~ 

- am-1 ( cosh am-lxk+ cos am-1~)} 

-m = 0 

m = 1 

-m ~ 2 
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m.?: 2 

X1 

Xa 

X1 

x~ 

X1 

• 0 

• cosh sm-1~+ cos sm-1~ m = o 

• ot m-1 ( sinh em-lxk + sin 13m-1~) 

em-1 { • a'° sinh em-1~ - sin sm-lxk 

( ) ' . - °'m-1 cosh 13 m- lxk + cos e m-1 ~; J -m = 1 

r~ 1x . • 1.a ... 2 cosh em·l~+ cos em-1~ 

• °'m-1 ( sinh sm-lxk+ sin 13m-lxk} 

• e le - 1 { s inh 13 1 ~ - sin 13 1 ~ m- m- m- m-

• °'m-1 ( cosh sm-1~ + cos 13m-1~)} { sinh 13m-l~ 

... sin 13- x. - 0/• (cosh 13- x. + cos 13- x.)} m•l K m-1~ m-1 K m-1 k 
I' .. 

Xa • tcosh 13m-lxk+ cos 13m-l~- O!m-l (sinh 13m-l~ 

+ sin sm-1~)} {cosh 13m-1~+ cos 13m-l~ 

• °'m-1 ( sinh 13m·l~ + sin 13m-lxk)} 
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m ~ 2 

(C8c) 



APPENDIX D 

CONSTANTS OF MATRIX ELEMENTS 

This appendix contains the constants used in equations (Cl, CS, 

and C6) of Appendix c. These are various combinations of the stiffner 

properties given in the list of symbols. 

82 

S7 

SS 1 

SS 2 

SS 3 

SS4 

SSs 

SS 6 

SS 7 

24D =-
h2 

= 12D(l-V) 

h2 

= D(l-V) 

24:0V =--
h2 

= 2D 

= 3D(l-V) 

= 2Dv 

= 4D(l-\l) 

= Esl,Asi 

= E I d zzsJ, 

= E· I sJ, yysl, 

= Es1,As1,zls1, 

= E I z 2 
s1, zzd lsl, 

= 2 E I . z 
s.J, zzs.t ld 

= E I z 
sl, zzs.t lsi 
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2 
SS 1 4 = E s.t.1yysJ,Y lsl, 

2 
SS1s = 2 E9 .t,Asl,z2s.t,Yls.t, 

SS17 = Esl,Iyysl,Yls.t 

SS1e = Es.tAs.t,z2s1,zls.t,Yls.t 

2 
SS1s = E9 £,As.t,z2s.t,Yls.t 

2 
SS25 = Es1,As.t,y2s.tzls1, 
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Ts 

T13 

Ti4 

Tis 

Tia 

Ti7 

Tie 

Tis 

Tao 

Tai 

= P nA. n · s~ s~ 

= p sJ, IyysJ, 

= p sJ, (IzzsJ, + Iyyst) 

= 2 T4 

= 2 Ps.e,AsJ,zlsJ, 

2 
= P sJ, 1zzs.t zlsJ,. 

2 
= 2 p sJ, Izzs.t zlsA, 

A 2 = 2 P sl, sl, z lsl, 

= 2 Ps.tAsJ,z2sJ, 

= 2 PsJ,AsJ,z2sJ,zlsJ, 

= 4 PsJ,AsJ,z2sJ,zls.t 

= 2 P s.tAsJ,y ld 

= 2 PsJ,AsJ,z2sJ,ylsJ, 

= A 2 
P sJ, st Y lsJ, 

2' 

= P s1, 1yys.e,Y 1st 

2' 
= 2 PsJ,AsJ,z2sJ,ylsJ, 

= 2 P sJ,AsJ,y lsJ, zls.t 
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T22 = 2 P 8..e, Iyys1,Y ls.t 

2 
Ta 4 = 2 P 81, Iyys.tY lsl, 

Taa = Ps1,Iyys1,Y1s1, 

T27 = PstAs.tz2s1,Z1s.tY1s.t 

Tas = P sJ,A sJl ls.t 

Tae = 2 p si,AsLY 2s1, 

Tso = 2 P81,A8..e,Y2sl,zlsL 

T31 = 2 P81,As..e,Y2s1,Y1s.t 

T32 = 2 P8 ..e,A8 ..e,Y2s..e,Y1sLzlsL 

T33 = 2 P s1, 1yzs1,y ls.t 

T34 = 2 P81,Iyzsl,ylsl,zls.t 

A z2 = 2 P 8 ..e, s1, Y 2s1, ls 1, 

T3a = 2 p s1, Iyzsl, 

T37 = 2 P s1, IyzsJ, zlsL 

Tse = 4 P8 ..e,IyzsLYlsl,zls1, 

Tse = 4 P 81,As1,Yzs..e,Y1s1, 

T40 
2 

= P sl,As;,Y2sizlsl, 

T41 = P sl, Iyzsl, zlsJ, 

T42 = P sl,AsJ,Y 2s1, 

C1 = 2 Erkizzrk 
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2 
Ca = 2 Erk\ocrkzlrk 

2 
C10 = 2 Erkizzrkzlrk 

C13 = 8 ErkArkzlrkz2rk 

C14 = 2 ErkArkz2rk 

Cis = 6 ErkArkzlrkz2rk 

Cie = 2 ErkArkzlrkz2rk 

C17 = 4 ErkArkzlrkz2rk 

Cia 
2 

= 4 Erkixxrkzlrk 

Cie = 2 Erkixxrkzlrk 

C20 A 2 z = 2 Erk rkzlrk 2rk 
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C2 4 - 2 I . - Prk xxrk 

C2s = 2 (GJ\kzlrk 

C2s = 2 2 
(GJ)rkzlrk 

C2 7 = 4 (GJ)rkzlrk 

Cas = 4 PrkArkzlrk 

C2s = 4 Prk1zzrkzlrk 

C30 = 2 A z 2 
Prk rk lrk 

C31 = 2 PrkArkzlrk 

C32 
2 

= 2 Prk1xxrkzlrk 

C33 = 4 Prk1xxrkzlrk 

C34 
2 

= 2 Prk1zzrkzlrk 

C35 = 4 PrkArkz2rk 

C3a = 2 PrkArkz2rk 

c A a z 37 = 4 Prk rkzlrk 2rk 

Css = 8 orkArkzlrkz2rk 

C3s = 12 PrkArkzlrkz2rk 

C40 = 4 A z z Prk rk lrk 2rk 
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