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CHAPTER 1
INTRODUCTION
Discussion

The free vibrations of ring- and/or stringer-stiffened circular
ané noncifcular cylindrical shells are of interest to designeré of
flight and marine structures, Frequently, fuselages of flight struc-
tures and hulls of submarines have noncircular cross section due either
to special internal storage requirements or to imperfections. occurring
during manufacture. The method of analysis developed in this report is
‘capable of évaluating the free-vibrational characteristics of ring- and
stringer-stiffened "singly" symmetric noncircular cylinders with

arbitrary end conditions.
Background

Solutions for the vibrational characteristics of the special cases
of unstiffened, circular, isotropic cylinders with specialized boundary
conditions have been available for many years. Recent investigations
have taken advantage of computers to analyze more complicated models of
shell structures, One of the most general cases that can be analyzed
is a stiffened, noncircular, anisotropic cylinder with arbitrary end
conditions.

Great attention has been paid to the application of the finite

element and finite difference methods of analysis because of their



generality and adaptability to the computer, However, computer storage
and the speed of execution are two important factors which have still
prevented economically feasible studies of shell structures. The
closely related and well-known Rayleigh-Ritz method was successfully
employed in the present study to obtain the vibrational characteristics
of stiffened, noncircular cylinders with arbitrary end conditioms,

This method may provide significant economical advantages over the
finite element and finite difference methods, The limitation of the
Rayleigh-Ritz method is that the accuracy of the results is dependent
upon the assumed mode shapes. In cases such as stiffened, noncircular
cylinders with arbitrary end conditions (for which the displacement
functions can be approximated fairly accurately by a double finite
series) the Rayleigh-Ritz method is certainly advantageous to use.

Studies of noncircular cylinders are relatively few compared to
those of circular cylinders, The variable radius of curvature of the
cylinder causes difficulties in obtaining analytical solutions. If
finite trigonometric series are used to represent the components of the
assumed displacement functions, there will be coupling of the circum-
ferential terms due to noncircularity of the cross section of the shell.
Furthermore, the resulting set of simultaneous equations is suffi-
ciently large that a digital computer must be used for the solution of
the general problem,

Kampner (1) presented energy expressions and differential equations
for cylindrical shells with arbitrary cross sections, Kampner and his
associates have used these equations to study a wide range of problems
dealing with étatics, buckling.and postbuckling (2-7) of a special

class of oval cylinders. Klosner and Pohle (8, 9, 10) studied the free



and forced vibrations of the same class of oval cylinders, but with
infinite length. An approximate method was used in which the frequen-~
cies of noncircular cylinders were determined by perturbation of the
equivalent circular cylinder frequencies, - Culberson and Boyd (11)
obtained exact free vibrational characteristics of the same class of
oval cylinders studied by Klosner and Pohle and showed that the approxi-
mate perturbation technique is accurate for small eccentricities,

The displacement functions used by Boyd (12) in a static analysis
of noncircular panels subjected to uniform normal pressures were used in
a free vibrational analysis of noncircular cylindrical panels by Kurt
and Boyd (13).

Herrmann and Mirsky (14) investigated the longitudinal, torsional,

.and flexural vibrations of elliptical cylinders. Malkina (15) also
studied the free vibrations of oval cylinders.

Sewall et al, (16, 17) carried out both analytical (by Rayleigh-
Ritz) and experimental analyses of elliptical unstiffened cylinders with
arbitrary end conditions.

Analyses of stiffened shell structures may be classified either as
"smeared," or as "discrete'" depending upon the treatment of the
stiffeners, In the conventional smearing technique (which is reasonably
effective if the stiffeners are closely spaced) the effects of the
stiffeners are:averaged out over the entire surface of the shell, thus
effectively replacing a stiffened shell by an equivalent orthotropic
shell. A discrete analysis (which is accurate irrespective of the
number and location of the stiffeners) treats the stiffeners as discrete

elastic structural elements,



The present analysis may be considered as an extension (to imclude
noncircularity) of the work in Reference (19) in which the free vibra-
tional characteristics of ring- and stringer-stiffened noncircular
cylinders with arbitrary end conditions were developed through the use
of a Rayleigh-Ritz technique. The stiffeners may be arbitrarily located
and all stiffeners need not possess the same geometric and material
properties; however, the stiffeners are assumed to be uniform along
their axes. The analysis considers the extension and flexure of the
shell and extension, torsion, and flexure about both cross~section axes
of the stiffeners. The stringers may have nonsymmetric cross sections
but the rings are assumed to have "singly' symmetric cross sections.
The rotary inertia of the shell is.neglected.

- The derivation of the energy expressions for noncircular cylinders
is described in the Method of Analysis section of this report. The
stiffener energies are presented in Appendix B, The compatibility
relations used in these equations are derived in Appendix A, The

elements of the mass and stiffness matrices are given in Appendix C.



CHAPTER II

METHOD OF ANALYSIS

The analytical method employed in this analysis was the well-known
Rayleigh-Ritz (i.e, "assumed modes') energy technique, At the outset
the strain and kinetic energies of the shell, ring, and stringer were
derived. The compatibility relations were developed to express the
displacements of rings and stringers in terms of the displacements of
the median surface of the shell. The total strain energy of the shell
and that of rings and stringers were combined to obtain the total strain
energy of the stiffened cylinder expressed in terms of displacements of
the shell median surface. The total kinetic energy of the stiffened
cylinder was similarly formulated, Finite series were assumed repre-
senting the circumferential, axial, and radial displacements of the
median surface of the shell and satisfying the shell kinematic boundary
conditions, - Simple trigonometric functions were used to describe the
circumferential displacement distributions and beam functions were
chosen to describe distributions along the axis of the shell. The
assumed displacement functions with undetermined coefficients were
substituted into the total energy expressions of the structure, and the
regular eigenvalue problem was formulated by minimizing the action

integral.



Geometry

- Strain-Displacement Relations

The classical theories of thin shells and beams were used to derive
the energy expressions for the shell and the stiffeners, respecfively.
The geometry of the middle surface of a typical elliptical shell is
illustrated by Figure 1. The three orthogonal coordinates x, €, and z
locate points within the structure and u, v, and w are the corresponding
displacement components. The variable radius of curvature of the shell
cross section is expressed as a function of the 8 coordinate., The
following Flﬁgge relations were used to determine strains at points

within the shell:

e =1u, - zw,
X X XX

Vog ) '
ee=_+—{[<\z> R ]*W}

u’e R+z2 _ z(2R+2) 1
°x0 R+z Vox ~ R(R+z) Yo y® 1)

where e, and eg are normal strains of x- and O-oriented line elements,
respectively, and e 8 is the distortion angle between these two line
elements, Furthermore, u, v, w and R refer to middle surface (z = 0)
values,

For the stringers and rings the normal strains were expressed as

(ex)s - us,x (2)
1 1
(ee)r = E; <Vr,9 + Wr>AJ§;; <vr,9 + Wr) (3)

where the subscripts s and r indicate arbitrary points in the stringer

and ring, respectively. (ex)S is the normal strain of the stringer in



Figure 1. Geometry of an Elliptical Shell,



the x direction, and (ee)r is the normal strain of ring in the ©

direction, Rcr is the radius of the centroid of the ring.

- Compatibility relations. The geometric details of eccentric

stiffeners are shown by Figures 2 and 3. The compatibility equations

relating the displacements of any point in the stiffener cross section

to those of its shear center are presented in Appendix A. The following

equations were derived to determine the displacements in the stiffeners;
For the stringers:

u.=u -z'w -y'v (%)

7 7
V.=V 2y £ <w v )
r scr R scr,® R scr,© scr
scr scr
4 a
W =W + x W (5)
r scr SCT,X

where the subscript sc identifies the shear center, and the coordinates
xl, yl and z’ are measured from the shear center of the stiffener.

The following compatibility equations relating the displacements of
the shear center of the stiffener to those of the shell's median surface
were derived and are presented in Appendix A,

For the stringers:

u =u - 2, W -
scs 1s ’x

- (___z>
Vees =V T %15 \R R

(2 -3)
Yses — ¥ + yls R § (6)
For the rings:

UYser = U 7 Z1rYox
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z z
S(1e ),
Vser (1 + R /Y )
Yser =V ()

Strain and Kinetic Energies

Shell Energies

From Reference (1), the strain energy in an isotropic, elastic

body subjected to small strains-ex, e, and €0 is

)

E 3 g ¥) o
U = —_— | e + 2\)e e + d(VO].) (8)
Il 2(1-v%) E x " % J

For a shell of uniform thickness h, the above expression can be written

as

B, LR
[ x eg + 2Vexee

=

+ —l;zl _‘(R + 2z) dz d@ dx ¢))

where Ec is Young's modulus and V is Poisson's ratio of the shell.
After substituting the Equation (1) into the Equation (9) and inte-
grating over the thickness of the shell, we obtain the strain energy of

the shell in terms of the displagements of its median surface; i.e,.

a m
]
_12 I I [ 3 (1-v) (l h )
Uc = ;;— .Ru,x + 5 R + 1R ’9 + 2Vu, v,e
: 0 0

]
+ (1-V)u,gv, + 2u, w+ -1% V??e + (1"\" (R gy ) ,2
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: ) f f
+ VW + KR + TEET ] dé dx + D [ 2u, " xex

3
W,
+ L];ﬁu’ w, - ..2—\—).V’ w’ - MV, W, + Rwa + ee
R3 207 °x6 R ’0 ’xx R x ’x0 Pxx RS
= ) +3( | )
+ e \ree T ¥oge") TR \Wrxx208 T V200" xx
2(1-v) a ~
+ R ’er do dx
a 1 s
l : _];) 3 2 >
+D f I [R iKR ’eJ v© - ZVK VW,
0 0
.2 l) )‘J
= (R ,e(vw,ee 4 o) | ©ax (10)

where
E h®
D = e
12(1=v ")
The last integral in Equation (10) vanishes for constant R, The first
two integrals are equivalent to those developed by Miller (21) and by
Egle and Soder (19).
Neglecting. the contribution of rotary inertia, the shell kinetic

energy may be written as

a T
=pchf I[ﬁz+%2+&2]1{dedx (11)
0 0

where P is the mass density of the shell and the dot represents the

time derivative,
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Ring Energies

The ring is assumed to be subjected to normal strains and shearing
strains due to twisting., The cross section of the ring is assumed to be
symmetric with respect to the outward normal to the shell surface s
through the line of attachment. The total strain energy in K rings due

to normal strains is

K 2n

S Ik J J ]a dA_ R__ d8 2

Uy =472 [(ee)r rk “cr (12)
k=1 0 Ark X=X,

Using the strain-displacement relation of the ring (Equation (3)) the

above expression may be written as

K E 2n
<
Ur =I_IJ-—E-15-I J —RL[ +w +v e¥y +w v, S_J dArkde (13)
k=1 o0 A °F " x=x
rk k

Substituting the first set of compatibility relations of the ring
(Equations (5)) into Equation (13) and performing the integration over
the cross section of the ring, the strain energy of the ring due to
extension (normal strain) may be written in terms of the displacements

of its shear center as

Ur - Ur (uscr’ Vser? Wscr) (14)
ext ext

The function ngt (uscr’vscr’wscr) is given in Appendix B. - Combining
Equations (7) and (14) results in

Ur = Ur (u, v, w) (15)
ext ext

The function U5 (u,v,w) is also given in Appendix B.
xt
The strain energy due to twisting of the rings may be written as

(Reference (27))
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K 2m
GJ) . U w 2
_Y ( rk I L scr,® ’x@]
U, =4 2 R 3 R Ry 98 (16)
‘tor k=1 .0 cr €T y=x

k
where (GJ)rk is the torsional stiffness of the ktP ring. Substitution
of Equations (7) into Equation (16) results in

u,o=U. (u, v, W) (17)
tor tor

The function UE (u, v, w) is given in Appendix B.
or

The kinetic energy of the ring is

K 2n
T =&Zprkf I ’[&:+ vE+ w:J da R d® (18)
k=1 0 A.rk X =X
Substitution of Equations (5) into the above equation and integrating
over the cross section of the rings, and then substituting the
Equations (7) into the resulting expression we have

Tr = Tr (ﬁ, vV, W (19)

Note that Equation (19) includes both translation and rotation effects.

-8tringer Energies

The stringer is assumed to be subjected to both extemsion and
twisting. The cross section of the stringer may be nonsymmetric, The

strain energy due to normal strain in the stringer is
L a
; }E sd I J ® d
Us L2 [(ex)s] dAs£ x (20
0 A

or, introducing Equation (2),
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L a :
Us = z -3_£ J‘ J‘ ‘:us,x] 2 dAs£ dx (21)
0 A

Substitution of Equation (4) into the above equation and integrating
over the cross section of the stringer, and substituting Equations (6)
into the resulting expression we obtain

U =T (u, v, w) (22)
s .
ext ext

The function US (u, v, w) is given in Appendix B.
ext
The strain energy due to twisting of the stringer may be written as

L a
s, =T et [[le Tx)t (2
s L 2 R R
tor g1 0 0=8,
where (GJ)sZ is the torsional stiffness of the Zth stringer. Thus,
L a 2 ]
(GJ) W.’ v’ V’ W’
U ___z SLJ‘ \: x© + =X _ ., x xe] dx (24)
s 2 2 2 3
tor g-1 0 R R R e=62
The kinetic energy of stringer is
L a
_ . °2 ° 2 ° 3
T = % pszf f \:us + 2+ WS] dA_, dx (25)
A=1 0 AsL e=9£

combining Equations (4, 6, and 25) and integrating the resulting
expression over the cross section of the stringer results in

TS = Ts(u, v, W) (26)

The function Ts(ﬁ, %, ;) is given in Appendix B,
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Displacement Functions

The displacements u, v and w were assumed to be double finite
series, Each term of the series is a product of a circumferential and
an axial modal function weighted by a time~dependent generalized
coordinate (unknown amplitude coefficient). The assumed displacement
functions were:

M° N*

_ o 1w
u(x, 6, t) —2 2 (umncos nb + wn sinn®) Um(x) e

m=0 n=0

t

M° N*

v

v(x, 0, t) =/ Z(vInn sinn® + vt:m cos nb) Vm(x) etWE

m=0 n=0
M N*
w(x, 6, t) =Z 2 (wmn cosnb + wt:m sinn®) Wm(x) et (27)

m=0 n=0

where Um(x), Vm(x), and Wm(x) are the axial mode functions which satisfy
at least the kinematic boundary conditions of the stiffened shell,
Also, u__, v._ and w__ are unknown amplitude coefficients of the

mn mn mn -
symmetric circumferential modes, and u’ R v’ . and w  are those

mn’ mn mn
associated with the antisymmetric modes.
In this analysis the axial mode functions Um(x), Vm(x) and Wm(x)

were expressed by a single function.ﬁm(x) such that

d
U () = 32 8 (%)

v (x) =8 (%)

W) = 2 () (28a)

The following functions were implemented in this analysis.
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“Boundary Condition Function Used Eqn. No.
Freely supported: @m(x) =N 2 sin mT;x (28b)
Clamped-free: Qm(x) = Xm, Characteristic function of (28¢c)

a Clamped-free beam,

Clamped=clamped: -Qm(x) Xm,.Characteristic function of (28d)

a Clamped-clamped beam,

Free-free: §0(x) =1 (28e)
X
¢ x) =X s, Characteristic function
m m-1

of a Free-free beam., (m = 2)

The characteristic functions Xm, their derivatives and eigenvalue

properties are tabulated in Reference (22).
The Frequency Equation

The total strain energy of the stiffened shell was obtained by
combining Equations (10, 15, 17, 22, and 24). Similarly, the total
kinetic energy was obtained by combining Equations (11, 19, and 26).
Substituting Equations (27 and 28) into the total energies of the
stiffened shell, the strain energy expression becomes a positive defi-

nite quadratic function of the generalized coordinates u , v, w__,
m’ wmn’ mn

’ ’ ’ . . s
us 5, v+ and w__, Furthermore, the kinetic energy expression becomes a
mn’ ‘mn mn ; '

. s . '3 ’ 3 . . 3 o
positive definite quadratic function of the generalized velocities U

o o o 7 o/ e/
V., s U5 V and w .
mn’ mn’ mn° mn mn

The total strain energy of the structure may be written as
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M N* M* N
_ Y Y
Utotal B %z L L Kmn,:iﬁ Yn Y5A (29)
m=0 n=0 m=0 n=0
where
3 3
»B Utotal 9 Utotal

are known as elements of the stiffness matrix.

The total kinetic:energy of the structure may be written as

M* N M¥ N*
. o
Teotal = %z z z an,fﬁﬁ n %A (30)
m=0 n=0 m=0 n=0

where M _. are the elements of the mass matrix,
mn ,mn
The mass and stiffness matrices obtained by the above operations
were used together with Hamilton's principle to formulate the regular

eigenvalue problem resulting in

/ Y
K I M | M L a |
s8 sa ss sa L s
. —w? I — =0 (31)
I K M I M | q
sa aa sa aa ( a

wheré K, and M represent stiffness and mass matrices of size

3(M* + 1)(N* +1), dq and 4, denote the symmetric and antisymmetric
mode  vectors, respectively, and superscript T denotes the transpose of
a matfix.

In Equation (31) the off-diagonal submatrices of both the
stiffness and mass matrices vanish if the cross section of the
stiffened shell is symmetric with respect to the vertical axis (where
® = 0), Thus, the abo&e equation is uncoupled into two equations; one
-for symmetric, and the other for antisymmetric modes. The equation. for

the symmetric mode problem may be written as
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A D E N NN P aj
pf 38 rF|l -w® {m' @ R 3 =0 (32)
2 FT ¢ T RT s )

Each letter in the stiffness and mass matrices represents a submatrix

(presented in Appendix C) of order (M* +'1)(N* +1).



CHAPTER III
COMPUTER . SOLUTION
General

A computer program was developed to find the eigenvalues and
eigenvectors of Equation (32). The mass and stiffness matrices were
generated in this program and the frequencies and mode shapes were
computed using the subroutine EIGENP (23), The Oklahoma State Univer-
sity IBM Model 360/65 computer was employed for this project.,

The input data to the program may be categorized into four kinds.
The first kind is general data. For example, the title of the problem,
number of terms considered in the assumed displacement series, whether
or not the cross section of the shell is circular, the number of
stiffeners, ete, The other three kinds of data are shell data, stringer
data, and ring data,

The radius of curvature (R) of the shell was considered to be a
function of the:®-coordinate. The expressions for R, (%)?9 , and (R)‘,e
were calculated (considering elliptical cross section) in the function
subprograms (RSHL), (RRRT) and (RSHLT), respectively. This procedure
was used to make the computer program capable of amalyzing arbitrary
singly symmetric stiffened oval cylinders, However, only elliptical

cylinders were considered in the present study.

mn
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Natural Frequencies and Mode Shapes

If the number of circumferential and axial terms considered in the
assumed displacement series are M* and N*, respectively, (including
m =0, and n = 0, when needed) then the order of the stiffness and mass

. . *, % . .
matrices is 3M'N , Equation (30) may be written as

=
K -w? M 'x—'r/ =0 (33)
W
where
("0 0 /Wo 0\
Yo 1) Y01
\"0.2 / \Wo.z
_ _ {"0 N* _ ‘Wo N*
4 = ; v = v H w o= W
10 10
11 < 11
. 12 W1.2
e ] e
K = Stiffness Matrix
M = Mass Matrix -
w = The natural frequencies from Equation (33) in radian/sec.

If the matrices K and M became singular due to the presence-
of zeros in some of the rows and columns, the matrices ﬁeré condensed
by eliminating those rows. and columns of zeros. The subroutine called
EIGENP (23), with double precision, was used to calculate the fre-

quencies (w2 ) of Equation (33) and the resulting eigenvectors



\
el

<li

Once the eigenvalues and eigenvectors were obtained, the corres-

-ponding mode. shapes were found.
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CHAPTER IV

NUMERICAL RESULTS

Introduction

The analysis described in this report was substantiated by com-
-paring the results of this study with some of. those obtained by previous
investigators., Some parametric studies of stiffened noncircular

cylinders were made and are also-presented in this chapter,

Comparison' With Known- Solutions

This section presents the comparison of natural frequencies for
(1) and unstiffened circular cylinder with various boundary conditions;
(2) ring- and/or stringer-stiffened circular cylinders with various end
conditions; (3) unstiffened noncircular shells with various end

conditions; and, (4) ring- and stringer-stiffened elliptical cylinders.

Comparison: of Results for the Unstiffened

Circular Shells

Forsberg (24) presented exact frequencies for a freely supported
unstiffened circular cylinder, obtained by solving the differential
equations of motion., The results of this analysis and those of
Forsberg's exact solution are compared in Table I. Both the analyses
used the Flagge shell theory. As is evident from the Table I, good

correlation exists between the frequencies. of both the analyses, Such
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TABLE I

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY
SUPPORTED UNSTIFFENED CIRCULAR CYLINDER,
OBTAINED BY THE PRESENT ANALYSIS
AND FORSBERG (Hz.)

PRESENT a
n m ,arvers  FORSBERG
1 778 778
2 2 2449 2449
3 4253 4253
1 628 627
3 2 1458 1458
3 2682 2681
1 974 974
2 1304 1303
4
: 3 2021 2020
4 2947 2946

a) Reference (24), figure 3(a).
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type of accuracy was expected because the assumed mode functions
satisfy the freely supported boundary condition exactly,

Comparisons were also made with the results of Reference (16) for
the same boundary condition and m = 1 and 2. These are presented in
Table II. 1In Reference (16),:Sewa11 et al.,, using Sander's shell theory
(25), applied the Rayleigh-Ritz method as in our analysis. As is
evident froem Table II, excellent comparisons were obtained.

. Figure 4 shows a comparison between the analytical and experimental
results of Reference (17) and those of the present analysis (for m = 1)
considering a clamped-free, unstiffened, circular shell. The frequency
curves reveal that this analysis yields results similar to those of
Reference (17). The slight differences might be attributed to the
difference in the shell theories. Comparisons were also made with the
experimental results of Park, A, C, et al., (26) and the analytical
results of Egle and Soder (19), These are presented in Table III. 1In
this comparison four-place accuracy was obtained between the analytical
results of Egle and Soder and the present analysis. The discrepancy
between the analytical and experimental results increases as the number
of circumferential waves decrease, Egle and Soder speculated in
Reference (19) that the shell end may not have been absolutely fixed in
the experiments.

-The experimental and analytical results of Reference (16) for free-
free circular shells were used to establish the validity of the present
analysis for this bounday-condition case., Table IV shows the com-
-parison of the results for m = 1 and 2, The present analysis yielded

four-place accuracy.



TABLE II

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY
SUPPORTED UNSTIFFENED CIRCULAR CYLINDERE
OBTAINED BY THE PRESENT ANALYSIS
AND SEWALL (Hz.)

m =1 m = 2

n PRESENT SEWALL PRESENT SEWALL

ANALYSIS  (Ref 16)  ANALYSIS  (Ref 16)
1 1565.3 1565.0 2309.3 2309.0
2 894.1 8941 1782.4 1782.0
3 529.8 529.8 1314.9 1315.0
4 338.6 338.6 968.4 968.4
5 235.6 235.6 726.3 726.3
6 182.1 182.1 560.3 560.3
7 162.2 162.2 - 448.6 448.6
8 166.9 166.9 377.2 377.2
9 188.6  188.6 338.1  338.1
10 221.3 221.3 325.7 325.1
11 261.7 261.7 335.0  335.0
12 308.0 308.0 361.0 361.0
13 359.5 359.5 399.6 399.5
14 415.6 415.6 447.5  447.5

a) The gedmgtry gﬁf the shell is given in Reference (16).
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Figure 4. Comparison of Experimental éhd;AhéIytical'Fféqﬁencies of
Clamped-Free Circular Cylindrical Shell (Hz.).
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TABLE III

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES
OF A CLAMPED-FREE UNSTIFFENED CIRCULAR CYLINDER?
(Hz.)

m = 1 m = 2

T EGLE & b PRESENT b PARKS ¢ EGLE & b PRESENT b PARKS

SODER ANALYSIS et al. SODER ANALYSIS et al.

c

87.2
2 104 .4 104 .4 95 1% - 508.2 -
3 55.6 55.6 51.5 - 281.3 -
' 168.5
4 52.0 52.9 50.4 177.9 177.9 170, 2%
5 - 71.6 70.9 - 135.4 132.8
: 128.8
6 - 101.8 101.4 - 132.0 130.1%
7 139.1 139.1 138.8 154.2 154.2 153.6
8 182.6 182.6 182.2 191.2 191.2 191.3

. a) Reference (19), configuration 1, p. 28.
b) Flugge shell theory, insurface inertias included.

¢c) Reference (26), model 1.



TABLE IV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A FREE~-FREE UNSTIFFENED
CIRCULAR CYLINDER (Hz.)

m = 1 . m = 2

o PRESENTa SEWALLb SEWALLb PRESENT . SEWALL SEWALL

ANALYSIS ANALYSIS EXPERIMENT _ANALYSIS ANALYSIS EXPERIMENT
1 2012.0  2014.0 - 2288.0  2293.0 -
2 7.5 7.5 7.7 1613.0  1616.0 -
3 19.0 19.0 18.9 1066.0  1068.0 -
4 34.2 34.2 35.7 716.9 717.8 -
5 53.4 53.4 53.0 504 .4 504.8 -
6 76.6 76.7 764 375.4 375.6 377.3
7 104.1 104.1 103.8 299.8 299.9 299.1
8  135.7  135.7 135.3 262.6  262.2 gg;:i&
9  171.6  171.5 170.7 253.6  253.4 st
10 211.4 211.5 210.2 - 266.5 266.3 268.8
11 255.6  255.7 2530 2948 2947 290.9
12 303.9 304, 1 305.5 333.9 334.0 327.6
13 356.5  356.7 352.0 381.2  381.1 -

14 413.3 413.5 412.5 4347 434.7 436.6

a) Flugge shell theory; 6 even, and 6 odd axial mode functionms
considered.

b) Reference (16).
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. Comparison of Results for Stringer~Stiffened

Circular Shells

Egle and Sewall (18) presented frequencies obtained for a stringer-
stiffened, freely supported, circular cylinder using a method similar to
that of the present analysis but using the Donnell shell theory and
neglecting the insurface. inertias of the stiffened shell. The shell
theory used in the present analysis was modified to Donnell theory in
order to compare the results of this analysis with those of Egle and
Sewall. Table V gives the comparison between the frequéncies for m=2.
The frequencies of Egle and Sewall are slightly higher than those of the
present analysis, evidently attributable to their neglect of the inplane
inertias, It is evident from Table V that the discrepancy between the
results of both the theories decreases as the number of circumferential

waves increases, which is a typical characteristic of Donnell theory.

Comparison of Results With Ring-Stiffened

Circular Shells

Forsberg (24) obtained exact solutions for the natural‘frequencies
of ring-stiffened circular cylinders. Bushnell (27) obtained the
natural frequencies of ring-stiffened segmented shells of revolution
using an energy method in conjunction with the method of finite
differences. The compatibility relations and the energy expressions
used by Bushnell are similar to those of the present analysis. Table VI
presents the frequencies obtained by Forsberg, Bushnell, and the present
analysis for freely supported circular cylinders with three rings of
both zero and negative eccentricity. The frequencies of this analysis

which are presented in Table VI were obtained by considering twelve



TABLE V

COMPARISONS OF FREQUENCIES OF FREELY SUPPORTED CYLINDERS
WITH AND WITHOUT INSURFACE INERTIAS - -
(DONNELL THEOQRY)

THE PRESENT ANALYSIS
(Insurface Inertias Included)

EGLE & SEWALL¥

(Insurface Inertias Neglected)

m n STRINGER STRINGER
STIFFENED INTERNALLY UNSTIFFENED STIFFENED INTERNALLY UNSTIFFENED
Sym, Mode Antisym., Mode Sym. Mode . Antisym. Mode
3 555 555 568 591 591 602
4 337 348 353 346 365 365
5 236 235 246 241 241 251
6 192 197 200 19 202 203
7 189 189 194 191 191 196
: 8 208 213 216 209 217 218
9 254 254 256 256 256 258
10 295 303 308 297 306 309
11 355 355 367 358 358 369
12 421 427 435 424 430 436

* Reference (18).

1€



TABLE VI
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COMPARISON OF FREQUENCIES OF A FREELY SUPPORTED CIRCULAR

CYLINDER? WITH THREE SYMMETRIC AND INTERNAL RING
STIFFENERS, OBTAINED BY THE PRESENT ANALYSIS,
BUSHNELL, AND FORSBERG (Hz.)

SYMMETRIC INTERNAL
nom b ¢ PRESENT? PRESENT
FORSBERG ~BUSHNELL® , .’ c o FORSBERG BUSHNELL ,o.ocio
1 788 787 787 999 987 994
2 2 2219 2219 2219 2254 2264 2252
3 3796 3802 3801 3710 3741 3711
1 1155 1152 1152 2087 2066 2081
3 2 1661 1660 1660 2397 2382 2386
3 2617 2619 2618 3073 ' 3068 3066
1 1988 1982 1988 3161 3120 3142
4 2 2132 2130 2141 3085 3023 3032
3 2535 2539 2548 3014 3019 3030
a) Reference (24), figure 3(a).

b)

c)

d)

Exact solution obtained by solving the equations of equilibrium,.

Reference (27), an energy formulation is used in conjunction
with the method of finite difference.

Energy expressions of riﬁg are similar to those of Reference (27).
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even and thirteen odd axial mode functions in the assumed displacement
series. The results of this analysis are in excellent agreement with
the exact frequencies obtained by Forsberg and. the approximate fre-
quencies of Bushnell. The maximum. discrepancy encountered for the case
of zero eccentricity ring stiffener was. 0,51% and 1.75% for the negative
eccentricity, ring-stiffened case. The external ring-stiffened shell of
Forsberg was also studied but the frequencies obtained did not converge
for twelve even and thirteen odd axial mode functions in. the assumed
displacement series; hence those results are not presented in this
report,

Comparisons were also made with some of the results of Al-Najafi
and Warburton (28), for ffeely,supported and free-free ringuséiffened
circular shells and are presented. in Table VII. Their results were
obtained using a finite element technique employing five elements per
bay. Significant reduction in the order of the matrices was obtained in
their study by considering the symmetry of the structures and neglecting
insurface inertias. The results of the present analysis given in Table
VII were obtained by considering circumferentially symmetric and ten
even and ten odd axial mode functions in the assumed displacement series
but including insurface inertias. The values for the frequencies con-
verged for fifteen even and fifteen odd terms but the difference between
the results for ten: terms and fifteen terms was rather small. Hence, in
order to compare on the basis of the order of the matrices, the result
of ten terms was chosen for comparisen, - It is evident from Table VII
that the frequencies of the present analysis for the freely supported
case are lower than those of the finite element method (except for m=3)

and are also closer to the experimental values, For the free~free case,



TABLE VII

COMPARISON OF FREQUENCIES OF RING-STIFFENED CYLINDERS,
OBTAINED BY RAYLEIGH-RITZ AND FINITE

ELEMENT METHODS (Hz.)
(n=4); d=0.25 in,

FREELY SUPPORTED FREE-FREE
m a- b “m '
RAYLEIGH-° FINITE RAYLEIGH- FINITE
RITZ ELEMENT PRIl RITZ ELEMENT —APRile
1 1867 1873 1867 0¢ 1550 1547 1551
2 2089 2091 2076 1€ 1538 1537 . 1539
3 2651 2650 2600 2 1889 1895 1890
4 3415 3429 3355 3 2303 2290 2287
5 4239 4270 - 4 3075 3044 3044
6 4925 5022 - 5 3955 3920 3916
7 5846 - - 6 4910 - -
8 6585 - - 7 5548 - -
9 7330 - - 8 . 6349 - -
10 8079 - - 9 7103 - -
a) Present Analysis, number of termé considered in the displacé-

ment series is 10,

Reference (28).

Rigid body modes.,

34
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the finite element results were observed to be closer to experimental
values than the results of the present analysis, except for m = 1 and 2,
In general, the agreement between the results of this analysis and those
of the finite element and the experimental is good.

In order to show the rate of convergence of the results of this
study, the frequencies were obtained with different assumed numbers of
terms. These results are presented in Tables VIII and IX for the
freely supported and free-free ring-stifﬁened shells studied by Al-

1

Najafi and: Warburton. Tables VIIT and IX show that the rate of con-

vergence of frequencies is rather rapid.

Comparison of Results With Ring- and Stringer-

Stiffened Circular Shells

Park, A. C, et al. (26), presented a considerable amount of
experimental information on the frequencies and mode shapes of stiffened
and unstiffened circular and elliptical shells with clamped-free ends,
Egle and: Soder (19) compared their analytical results with those of
Park's experimental results for a clamped-free circular cylinder with
three equally spaced internal rings and sixteen-intérnal stringers.

The same shell was analyzed by the present analysis and comparisons are
indicated in Table X. Because the cross section éf the stiffened shell
was symmetric with respect to both the vertical and horizontal axes,
the frequencies of even and odd circumferential modes were able to be
evaluated separately. It is interesting to notice in Table X that the
results of the present analysis are consistently lower than those of
Egle and Soder, This improvement in the frequencies may be attributed

to the improved stiffener theories of the present analysis. The fact



TABLE VIII

SPEED OF CONVERGENCE OF FREQUENCIES OF FREELY

SUPPORTED RING-STIFFENED CIRCULAR CYLINDER?

(Hz.), n=4
R u 5 10 12 14 15
1 2032.29  1867.32  1853.20  1841.82  1841.83
2 2136.32 2089.33  2076.62  2067.81  2067.81
3 2682.82  2651.32  2640.59  2634.31  2634.30
4 346,00  3414.67  3414.65  3409.95  3409.9%
5 4263.22  4239.00  4238.98  4238.97  4235.32
6 4924.91  4924.59 . 4924.58  4924.57  4924.47
7 5877.52  5845.98  5845.97 _ 5845.97  5841.54
8  6613.81  6585.41  6585.39  6580.90  6580.89
9 7348.25  7329.87  7321.17  7316.42  7316.41
10 8098.23  8079.40  8072.23  8067.25  8067.24

a) Reference (28), figure 2(c).

b) Number of terms considered in the displacement series,

¢) Axial wave number,.
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TABLE IX

SPEED OF CONVERGENCE OF FREQUENCIES OF FREE-FREE
RING-STIFFENED CIRCULAR CYLINDER?Z

(Hz.), n = 4
R W 5 10 12 14 15
1 1591.53  1549.60  1546.82  1546.13  1544.91
¥ 1585.73  1538.16  1537.45  1536.33  1535.35
3 2046.65  1888.92  1823.09  1816.19  1816.05
4 2380.46  2303.22  2300.84  2299.44  2299.35
5 3127.52  3075.50  3067.22  3066.92  3066.66
6 3979.47  3955.27  3952.06  3951.22  3950.53
7 4973.26  4909.71  4836.28  4833.91  4833.57
8 5595.02  5548.42  5542.69  5540.21  5539.64
9 6439.71  6348.83  6312.89  6309.63  6308.67
10 7189.93  7102.58  7096.81  7093.99  7091.25

a) -

b)

c)

Rigid body modes.

Reference (28), figure 2(c).

Number of terms considered in the displacement series.

Axial wave number,
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TABLE X

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
RING- AND STRINGER-STIFFENED
CIRCULAR CYLINDER (Hz.)

b c

o PRESENT®  EGLE & PARK
ANALYSTS SODER et al.
80.2
| 1 100.2 105.8 83, 2
) 432.2 433.9 S
3 907.0 - R
1 207.6 216.9  184.6
L2 276.0 285.9 251.5
. 397.0
3 437.2 447 .1 13045
1 308.5 1315.0 -
6 2 345.9 353.8 -

3 402.6 415.0 -

a) n=2,4, 6;m=1 to 10.
b) Reference (19).

c) Reference (26L model 1S.
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that the discrepancy between the analytical and experimental fre-
-quencies decreases with the increase in wave numbers n and m suggests
that the boundary conditions of the experiment and the theory may not
match,

The results of the present analysis were obtaiﬁed with ten axial
mode functions and three even and three odd circumferential mode func-
tions. The reason for considering fewer number of circumferential terms
than the axial terms is that the coupling between the circumferential
mode functions (due to the presence of stringers).is rather weak., This
was also noticed experimentally by Scruggs et al. (29). The coupling
between the axial mode functions (due to the presence of rings) is
considerable; hence, ten terms were considered in the longitudinal
direction., To determine whether or not ten terms were sufficient for
obtaining reasonably well-converged frequencies, M* was increased to
thirty and only one circumferential term was used. The comparison
between these results is shown in ?able XI. Since the difference in the
results was found to be negligible, it was conecluded that ten terms were

sufficient for convergence.

- Comparison of Results With Unstiffened

Noncircular Shells

Having established satisfactory results for stiffened and
unstiffened circular shells of arbitrary end conditions, comparisons
were then made for unstiffened noncircular shells. - Sewall et al. (16,
17) presented analytical and experimental results for elliptical shells
with arbitrary end conditions, Tables XII and XIII compare the

analytical symmetric and antisymmetric frequencies for freely supported



TABLE XI

CONVERGENCE OF FREQUENCIES OF CLAMPED-FREE RING- AND
STRINGER-STIFFENED CIRCULAR CYLINDER (Hz.)
‘ (Circumferentially Symmetric)

n m a b
1 99,32 100.19
2 2 428.66 432,19
3. 903,77 906 .96
% *

o
N
=
]
L))
=
it

10.



TABLE XII

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY
SUPPORTED ELLIPTICAL CYLINDERS? (Hz.)

€ = 0,526, m=1

n SYMMETRIC _ANTISYMMETRIC
peemr, owm®  RERT o

0 2550.2 2550.0 - -
1 1439.7 1440.0 1685.7 1686.0
2 876.6 876.6 888.9 888.9
3 5241 524.1 5242 5242
4 335.5 335.5 335.5 335.5
5 $234.3 2343 2343 234.2
6 184.2 184.2 184.2 184.2
7 157.1 157.1 157.3 157.0
8 160.5 160.2 160.6 160.2
'9‘ 189.7 189.8 189.4 189.8
10 221.5 221.9 221.8 221.9
11 260.6 261.9 261.8 261.9
12 307.6 308.1 308.0 308.1
13 348.3 359.5 355.7 359.5
14 405.7 415.6 413.4 415.6

a) ‘The geometric and material properties ;f the shells

b)

are given in Reference (16).

Number of terms used is 13.

Reference (16).
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TABLE XIII

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY
SUPPORTED ELLIPTICAL CYLINDERS? (Hz.)

€ =0.760, m = 1

n SYMMETRIC ANTISYMMETRIC
e
0  2611.8 2612.0 - -
1 1237.7 1238.0 1855.7 1856.0
2 785.1 785.2 858.4 858.5
3 491.2 491,1 492.0 492.4
4 319.7 3194 318.7 319.4
5 - - 226.8 226.9
6 - - ‘.. -
7 139.5 138.5 139.7 138.5
141.1 140.1 141.3 140. 1
8 & & & &
178.9 178.3 179.4 178.3
183.5 184.1 185.0 184.1
9 & &
226.6 226.9 - -
10 223.1 223.9 223.2 223.9
11 263.7 263.6 258.8 263.6
12 313.1 307.3 - 298.6 307.3
13 380.0 359.4 3449 359.4
14 - 465.2 417.1 407.4 417.1
a) The geometric and material properties of the

shells are given in Reference (16).

Number of terms used is 13.

Reference (16).

42



43

elliptical shells of eccentricities of 0.526 and 0,760 for m = 1, It is
evident from Tables XII and XIII that the agreement between the results
of both Sewall and the present analysis is generally satisfactory and is
excellent for n less than ten.

Comparison of results obtained for elliptical shells with free-free
and clamped-free end conditions were also made and are presented in
Tables XIV and XV, respectively. The results of this analysis are
similar to those obtained analytically by Sewall. Also inecluded are

Sewall's experimental results and analytical results obtained by Klosner

(9, 10).

Comparison of Results With Ring- and Stringer-

Stiffened Elliptical Shells

Park, A, C, et al. (26) presented experimental frequencies and
mode shapes for a clamped-free elliptical cylinder ﬁith four equally
spaced internal rings and sixteen internal stringers. This shell was
also analyzed by the present analysis, and some comparisons are pre-
sented in Table XVI. Due to the symmetry of the cross section with
respect to both the vertical and horizental axes, the frequencies of
even and odd circumferential modes ﬁere evaluated separately. As is
evident from Table XVI, the theoretical results are consistently
slightly higher than the experimental results, The discrepaﬁcy between
the analytical and experimental frequencies may again be attributed to
the possible difference in the boundary conditions of the experiment
and the theory. However, storage limitations of the IBM 360/65 computer
prevented the consideration of a sufficient number of terms in the dis-

placement series to assure convergence of frequencies., The results of



TABLE XIV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF A FREE-FREE ELLIPTICAL CYLINDER (Hz.)

a= 12,95, b =11.01l, m =0

SYMMETRIC - ANTISYMMETRIC
n PRESENT? SEWALLDP SEWALLP PRESENT SEWALL SEWALL KLOSNER®  KLOSNERY
ANALYSIS  ANALYSIS EXPERIMENT  ANALYSIS  ANALYSIS FXPERIMENT

2 5.98 5.62 5.6 5.60 5.68 5.6 5.92 5.56

3 16.02 15.89 16.1 16.09 15.89 16.2 16.30 15.4

A 30.07 30.52 30.9 30.07 30.52 30.8 31.2 31.1

5 49,55 49.41 50.1 49,56 49.41 50.1 50.3 50.45

6 72.68v 72,54 74,8 72.67 72,54 74.4 73.8 71.6

7 100.00 99.87 102.4 100.00 99.87 102.4 101.5 98.9

8 131.65 131.40 134.6 131,54 134.4 - 133.5 133.2

9 167.31 167.20 171.5 167.29 167.2 171.7 169.8 168.1

10 207.25 207.10 212.5 . 207.24 207.1 212.8 210.3 204.8

11‘ 251.43‘ 251.30 258.8 251,42 1251.3 258.4 255.2 251.1

12 299.52 299.60 312.1 299.93 299.6 - 304.2 302.8

13 352,02 352.20 363.8 353.39 352.2 ggg:g& 357.5 351.9

14 408.50 409.00 423.2 . 411,08 409.0 - 415.2 405.8
a) N = 20, M* 2, b) Reference (16). ¢) Reference (9), d) Reference (10).



TABLE XV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
ELLIPTICAL CYLINDER (Hz.)
a= 12,95, b = 11,01
m= 1

SYMMETRIC ANTISYMMETRIC
PRESENTb SEWALL SEWALL PRESENT SEWALL SEWALL

ANALYSTS ANALYSIS EXPERIMENT ANALYSIS ANALYSIS EXPERIMENT

739.0 739.2 - 838.0  840.1 -
1387.9 390.6 - 402.6 394.1 -
212.4  217.5 201.9 212.4 217.5 204.8

- - 201.1& - - -
133.7 136.4 129.5 133.8 - 134.0

- - 129.1& - - -

97.9 99.5 96.4 97.9 99.5 100.2
94.9 95.9 94,2 94.9 95.9 94,5
&

- - 93.1 - - .
113.2 114.2  115.1 113.2 114.2 116.5
138.4 139.6 141.8 138.4 136.4 142.3

- - 140.6& - 139.6 -
171.3 171.4 170.0 171.3 171.4 176.2
210.1 210.1 217.2 210.1 210.1 216.3

- - 217.1& - - -
253,7 253.7 260.4 253.7 253.7 260.8
301.5 301.7 309.5 301.9 301.7 310.6
353,8 354,1 365.0 - 355.1 354,1 -
410.2 410.7 - 423.6 412.7  410.7 -

N* = 20, M¥ = 2,
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TABLE XVI

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF
A CLAMPED-FREE ELLIPTICAL CYLINDER?® WITH FOUR RINGS

AND TWELVE STRINGERS

m=1 m= 2
b
PRESENT ¢ PRESENT
ANALYSTS  TARK ANALYSTS  DARK
177.92 163.5 - -
60.8
92.08 g - -
151.75 141.1 242 .64 226.7
- - 377.68 352.6

b)

The geometry of the stiffened shell is

given in figure 32, model 45, Park, A, C.

et al., dynamics of shell-like lifting
bodies, Part II, the experimental investi-
gation, AFFDL-TR-65-17, Part II, June, 1965.

*

Rayleigh-Ritz method N* = 12, M = 5.

Experimental results,
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the present analysis were obtained with five axial mode functions and

six even and six odd circumferential mode functions,

- Studies of Stiffened Noncircular Cylinders

Having obtained satisfactory comparisons with known solutions of
the circular, noncircular, unstiffened, and stiffened cylindrical shells,
two studies of stiffened noncircular shells were made, This section

presents the results of those studies.

- Study of the Effect of Number of Stringers

Egle and Soder (19) studied the variation of the minimum frequency
of a stringer-stiffened, circular cylinder with the number of stringers,
keeping the total cross-sectional area (LAS) and the total torsional
stiffness (LGJS) of the stringers constant, This is a reasonable
approach for studying the explicit effect of the number of stringers,
However, the implementation of "total' stringer properties being con-
stant while the number of stringers is varied is more difficult in the
experimental study than in the analytical study. The reason is rather
obvious, i. e. if the '"total" stringer properties are held constant, the
cross-sectional properties (AS, GJS) of the stringers will vary with the
number of stringers, Therefore, this method is not advisable from the
experimental standpoint.

In order to avoid this difficulty in the present study, the cross-
sectional properties of all the stringers were assumed to be the same
while their total number varied, Table XVII presents the variation of
the natural frequencies of various circumferential modes of an internal

stringer-stiffened freely supported elliptical cylinder with the number
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TABLE XVII

STUDY OF THE EFFECT OF NUMBER OF STRINGERS ON
THE FREQUENCIES OF A FREELY SUPPORTED
ELLIPTICAL CYLINDER? (Hz.)
€ =0,760, m =1

0 2 A 8 16

1 1238.0 1159.0 1090.0 984, 5 831.3
3 491.1 470.4 448.3 450.2 433.7
7 139.5 121.1 121.1 122.7 114.5

183.5 184.2 184.3 145.7 141.9
’ 1226.6 214.8 212.7 208.5 204.9
11 263.7 262,1 256.5 258.1 224.,6
13 380.0 373.7 . 368.5 347.8 290.6

a) The geometry and material properties of the unstiffened shell are
given in Reference (16).

b) Circumferential mode number,

c) Number of equidistant internal stringers. The properties of the
stringers are:

A, = 0.1037 sq. in, 2,y = ~0.0475 in.

= . 5 i :L ‘ = =U. i
Iyysz 0.005957 in Zyes 0.2340 in,

- . 4 - .
Il 0.001285 in? Vigy = 0-0 in.
Iyzs,(’, =0 Yosh = 0,0 in,
(GJ) , = 912.5 1b.-in? 0 = 0.0002588 1bs.-sec>/in*

s{ sk
E = 10.6 X 107 lbs.-secl'a/in‘.L

sk
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of equally spaced stringers. The geometric and material properties of
the stringers are given in the footnotes of Table XVII, 1In order to
visualize the variation of the frequencies of various circumferential
modeé with the number of stringers, some of the results of Table XVII
are plotted in Figure 5. As is evident from Figure 5, the overall
effect of the stringers is a lowering of the frequencies.. This. effect
is greater on the frequencies pertaining to lower circumferential wave
numbers. The rate of decay of frequencies due to the presence of
stringers is greater for small numbers of stringers and diminishes with

an increase in the number of stringers.

Ring- and Stringer-Stiffened Elliptical

Czlinders

This section presents results for a stiffened, noncircular freely
supported cylinder with large numbers of rings and stringers, The fre-
quencies of the unstiffened freely supported elliptical cylinder with

6 = 0,760 are presented in Table XIII. To study the effect of large
numbers of ring and stringer stiffeners, sixteen internal stringers and
eleven internal rings were added to the above elliptical shell, The
geometric and material properties of the rings and stringers are

assumed to be the same and are listed in the footnotes of Table XVII.
The frequencies and the mode shapes of this shell were obtained using
the present analysis. Table XVIII presents some of the frequencies,
Figure 7 ghows some of the axial mode shapes and Figure 8 shows some of
the circumferential mode shapes. To visualize clearly the effect of the
large number of rings and stringers on the natural frequencies, some of

the frequencies presented in Tables XII, XIII, and XVIII are plotted in
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Figure 5. Study of the Effect of Number of '‘Stringers
on the Natural Frequencies of a Freely
Supported Elliptical Cylinder with
€ =0.760, m = 1,
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TABLE XVIII

"FREQUENCIES OF 16 STRINGER? AND 11 RING® INTERNALLY
STIFFENED FREELY SUPPORTED ELLIPTICAL CYLINDER

WITH ¢ = 0,760 (Hz.)

d
m

(o4

n
1 3

1 741.0 1703.0
2 Lt .9 1303.0
3 437.9 974.3
A 743.7 973.5
5 1155.0 1340.0
6 1868.0 1 1998.0
7 29240 2959.,0

b)

c)

d)

The stringers and the rings have

identical material and geometric

properties which are given in the
footnotes of Table XVII,

The geometric and material pro-
perties of the shell are given in
Reference (16).

Circumferential mode number.

Axial mode number,
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Figure 6. Comparison of Frequencies of Unstiffened, and Ring-

‘and Stringer-Stiffened Freely Supported Elliptical
Cylinder with ¢ = 0,760,
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1.01

AXIAL MODE m=7, n=7; 3615 Hz

Figure 7. (Continued)
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Figure 8. Circumferential Modes
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. CIRCUMFERENTIAL MODE m=1, n=4; 743.7 Hz
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Figure 8. (Continued)
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CIRCUMFERENTIAL MODE m=1, n=7; 2924Hz :

Figure 8, (Continued)



58

CIRCUMFERENTIAL MODE m=3, n=1; 1703 Hz =
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Figure 8. (Continued)
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Figure 6., The results presented in Table XVIII were obtained with five
axial mode functions and six even and six odd circumferential mode func-
tions, It is quite evident from Figure 6 that the frequency curves of
the ring- and stringer-stiffened shell under comsideration, are more or
less similar to those of the unstiffened shell; however, they are bodily
shifted to the left. The minimum frequency of the stiffened shell is
more than three times the minimum frequency of the unstiffened shell.
The frequencies of the stiffened shell are consistently higher than
those of the unstiffened shell. It should be noted that even though the
ratio of number of rings to number of stringers in this problem is about
3:4, the effect of rings is predominant. Figure 6 reveals that the
frequency curves for various m values tend to merge as n increases, The
difference between the frequency curves of different axial mode numbers

m is maximum for n = 0 and tends to vanish very rapidly as n increases,



CHAPTER V
SUMMARY AND CONCLUSIONS
Summary

An analysis has been presented in this study to determine the
natural frequencies and mode shapes of ring- and/or stringer-stiffened
noncircular cylinders with arbitrary end conditiens. Case of circular,
noncircular, unstiffened and stiffened cylindrical shells with various
end conditions were investigated and the following observations were
made,

1) Comparisons with known experimental and analytical solutions of
circular, noncircular, unstiffened and stiffened cylindrical shells
with arbitrary end conditions showed this method of analysis to be
valid.

2) The natural frequencies obtained in this study for a clamped-free
circular cylinder, were slightly higher (for the whole range of m and n)
than those previously obtained experimentally. This discrepancy
increases as the number of circumferential waves decreases.

3) Comparisons of results obtained for stringer-stiffened, freely
supported, circular shells showed that the frequencies previously
obtained, neglecting insurface inertias, were slightly higher than
those of the present analysis, The discrepancies between the results of
the theoretical analyses decreased as the number of circumferential

waves increased, which is a typical characteristic of Donnell's Theory.
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4) Comparisons with Forsberg's exact results of ring-stiffened
circular shells, showed that the results of the present analysis were in
error only by a maximum of 0.51% for zero-eccentricity rings and 1.75%
for negative-eccentricity rings.

5) Comparisons with Al-Najafi and Warburton's finite element and
experimental results (obtained for ring~-stiffened circular shells)
showed that the results for freely supported cylinders obtained during
the present analysis were closer to their experimental results than
their results using the finite element method. For the free-free case,
of the six experimental results presented, the results of the present
analysis were closer to the first three experﬁnentally obtained fre-
quencies, whereas their finite element results were closer to the next
three frequencies.

6) The number of terms required in the displacement series for con-

. vergence of results of ring-stiffened shells differed from problem to
problem., Shells with positive eccentricities needed more terms for

convergence than those with zero or negative eccentricities.
Conclusions

1 There is weak circumferential modal coupling due to the presence of
stringers in both circular and noncircular cylinders.,

2) The stringers contribute more to the total kinetic energy of the
structure than to the strain energy. Therefore, the stringers have a
reducing effect on the natural frequencies,

3) The rings contribute more to the strain energy than to the kinetic

energy of the structure. Therefore, the rings have an increasing effect
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on the natural frequencies. The influence due to the presence of rings
is more than the stringers,

4) Reasonably accurate results for ring- and stringer-stiffened shells
may be obtained by considering the same number of circumferential mode
components as are necessary when the stringers are not present,

5) The reduction-of-frequencies effect due to the presence of stringers
is greater on the frequencies associated with the lower circumferential
wave numbers,

6) The rate of decay of frequencies due to the presence of stringers

is greater for small numbers of stringers and diminishes with the

increase of number of stringers,
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APPENDIX A
DERIVATION OF THE COMPATIBILITY RELATIONS

The compatibility relations of the stiffeners were derived based
on the assumption that the stiffeners are attached to the shell along a
line of attachment of infinitesimal width. This assumption is probably-
valid when the stiffeners are closely riveted with a single row of
rivets,

The displacement vector of any point in the cross-section of the

ith gtiffener can be written as
~ 3 | ‘ . 5
{qi} - {qsci f +'{wj-* {Ri/sci} ? 1= { : §§§.§t:§ngerf (A1)
where q; = The displacement vector of an arbitrary point in the
cross-section of the stiffener;
ooy = The displacement vector of tne shear center of the
stiffener;
) = The angle of rotation vector of the stiffemer;
Ri/sci = The position vector of the point with reference to the

shear center.
These vectors may be expanded as follows:

u u

i _ scil
b
= <{v, 3 {' .f = v, i=r,s
{ql} i ? Ysci sci ?
W, W
i sci

68
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where (see for example, Reference (30))

W . v_ .
o _ "sei,b sci i=r.s
xi R . R, ?
sci sci
Whs: = - .
6i Ysei,x
" Yser,B
-E{—_L_ for rings
w o, = sScY
zi ]
v for -stringers
SCS,Xx -

Also, (see Figures 2 and 3)

x’ 0

. . )
{Rr/scr} N 0 ? {Rs/scs} B y
z’! z’

where the vector components x’, y', and z’ are referenced to the shear
center (sc).

Substituting the above equations into equation (Al), the compati-
bility relations of rings and stringers result.

For the rings:

-z W
scr,x
, w v

(1 _f - -x’ + [ 'ser,B scr
ta gy =qa....7*t u - = - ) (A2)
(S T 1%cer) Roop SCT,0 k Reer Reer

'

i
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For the stringers:

-z Wscs,x -y scs,x
o : ’ Yscs,0 Uscs ’
= wr! 2V A3
iqs} {qscs}'+ z R R > (43)
, scs “scs

W v
/( scs,0 . scs)
T\R R

scs scs
Another set of compatibility relations were obtained to relate the

shear center displacements of the stiffeners to those of the shell at

/

the line of attachment by replacing r by scr, by q, z°" by z,_, x’
, P 9scr 1r
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The cross-section of the ring was assumed to be symmetric with respect
to the normal to the shell surface. Hence, the above equation reduces
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APPENDIX B

ENERGY EXPRESSIONS OF RINGS AND STRINGERS

Ring energy functions:
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APPENDIX C

MATRIX ELEMENTS AND INTEGRALS

The matrix elements éf Equation (32) and the circumferential and
longitudinal integrals involved in these elements are presented in this
~appendix. The closed-form expressions for the longitudinal integrals
were obtained with the help of a table of formulas for integrals derived
by Felgar (31). The circumferential integrals were evaluated numeri-
cally using the 8-point Gaussian quadrature method with four subintervals.

The elements of the mass and stiffness matrices of a ring- and

stringer-stiffened noncircular shell may be written as follows:
Contribution of the Noncircular Shell
T = 81I811IX1 + (S2IS1; + S3IS13) nn IX,

Dmn,l;uf-l = 54 nIS15IXz ~ SonIS1gIXs

Emn’lia = S4 ISlsIXs "Ss ISlstl + S3 nnISl7 IXo

Bon,im = S$nnISlelXs + (SpISlg + Sg IS12)IXz + Sg IS2 IXg

Fom,am = 5 nISlglXg - SMIS1gIX, + SenIS13IXK; - S,IS2,IX,

-SIS2; (1-n3)IXg

. . -‘ vl - I
anon = (S1ISle + SSISLTXg + Ss|IS1,IX; + (n® A% n®n?)IS1 JIX,

-S,1S1g (n%IX5 + n%IX, ) + SennISIpIX,

Nonsm = 2 PhISY, IXs

an,!;lﬁ 2 pChI819 IX5
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_-—— = ’ S L.
mn ,mn 2 pchI h X ' (C1)
where IS1l; to IS2, are circumferential integra}s, IX; to IXS‘ are

longitudinal integrals, ‘and S; to Sg are constants defined in Appendix D.

The circumferential integrals are defined as follows:

Ll

181, = ‘PR cos nb cos n® do
A -
m .

ISl = : -1]{; sin‘ nd sip no de
0 '
m

IS1l, = L sin n6 sin np do
¢ R3
Ll

ISl, = 1 cos nf cos nd deo
uo R® : :
™

ISlg = J’r cos nf cos 79 do
0
L

ISlg =Jr sin nd sin no do
0
™

181, =J —1; sin nd sin nd do
oR o
m

1Slg = JP -1%- cos pb cos nd doé
o :
™

ISle =f R sin n® sin no do
o L .
™o .

Is2, = Jr %{K%le}un nd sin n6 do
0 o
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182, = f é{\i)’e sin nd cos nd dd

7

1825 = | | ) sin n® cos nd do (C2)

’0

o3 o
7 |

The matrix elements of the antisymmetric mode equations for the
shell are identical iﬁ form to the above equatioﬁs and are obtained by
ihterchanging Sine terms with Cosine terms and vice versa. Furthermore,
<%>’9 must be replaced by -<%>’6; It was found that if the cross-
section of the shell is symmetric with respect to the horizontal axis of
the shell, there is no coupling between the even and odd terms of n and
n. Thus, in the analysis of elliptical cylinders, two computations'must
be made in both the cases of symmetric and antisymmetric modes (with
respect to the vertical axis); one with all even terms of n and n, and

the other with all odd terms of n and n.

The longitudinal integrals may be defined by a general axial mode

function

as follows:

a

IX - @ll Qli dx

1 N m m

0
a

IXQ = Ql Q-l- dx
o m m
0
a

IX; =| & &- dx
J m
0
a

IX, =] & 8% dx
P m m
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Substituting Equations (28b to 28e) into the above equations, the
longitudinal integrals for various boundary conditions may be written
as:

For freely supported cylinders:

4_a
IX; = —%
2a®
_ m? 7w ? -
IXs = -IXg = -IX, = 7a For m = m
D(s = %
IX, to IXs =0 For m # m (Cha)
For clampéd-fﬁee cylinders:
B;a m=m
IXl =
0 m#m
dem(Z + dmﬁma) m=m
4B B- -
i, = (B[ D™ 02 - o B
Bm-sﬁ m# m
B @,y - %) |
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2
Xs = _4Bm(aﬁsﬁ ol {(_1)m+m 62+52:| m# i@
L m ' m !
. .B% -~ B;’
af (2 -af a) } m=m
= 2
o P Can ~ Py [(-1)“1"'{‘.1 24+82| m#m
g% - g2 L m m
m "m
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(C4d)
The longitudinal integrals in Equations (Céa, _C4c, -and C4d) vanish if

m+m is odd and are nonzero if m+fi is even,
Contributions of Stringers

A __ =z (SS cos nd cos ﬁe)
mn 1

mn, =
2=1 ©=9
L
T< 5812 8821\ .
. = -ss + - - i
Dondd =L ( 58 +—F— - 8520 - —3—) cos n8 sin %0 >e=e IX,
A=1 2
L
e =z<- SS, cos nf cos nd -~ SSg cos nd cos nb
mn , M
4=1
- SSpy
+ 58, 5 SO5 0O 8in 89 _ ~— i cos ng sin ﬁe> IX:
0=0
L , : A
y , SS. SSg SS14 SSis
Bnga =L (sS2 + -;—; + o+ SS15 + = "X + S8z
L=1
SS25 SS2s SSz i
- - 2>sinn9sinne IX,
R e=ez
4 (GT) sin n® sin 09 X5 l
sl Rz 0=

2



mn ,mn

Cmn ,mn

s

90

SSS SS-’ e SSl7 Ssle
<—+—-—-— n sin nf sin 9 +kSSle -5 " X
=1 _

: : 8514 SSi9
+ SSlz> sin n6 cos nd + ( - >ﬁ sinnb sinnd
2 R
- R
SSza _ , SSasy
+—¢— 1 sin n® sin 6 + K SS,y + ) sinn cos fi9
; SSz9
+ kssze‘ + R > sin nB cos fif
-( + 7)13 sinn® sin 1'16> IX,
R 3
24 9=9z
<(GJ> , i - sin n® sin fi6 > X,
R? =0
. 8 2
SS
SSscos nb cos n® + SSgcos nd cos n® + — nn sinnd sinnb
R ?
. SS34 . /SS1y
+ SS14 cos nB cosnb + —— nn sinng sinnb - {
R

Ss_le\\ / - Y
+ R /Kﬁ cosnd sinnb®+ n sinnd cos ne/)

SSs s ) )

+ R (n cosnd sinnB + n sinnb cos n6>

SSz g - - -\
+ <n cosnb sinnb 4+ n sinnb cos nG)

SSz, _ )

- nn sinnb sinnb > X,
R? 0=0,

+ @ o5 sinnf sin nb 1%,
st RZ 6=0
g



mn ,MmiA

91

_ L
/

<T1 cos nf cos n9> IX,

4=1 _ ,6

Tiq TSO\ ' e -
- =Z_| T15+—— - T29+T/) cos nd sinnd IX,
0=0

mn ,mn

Un 50

mn , fifi

e
L
T (200 200 Jommocon + (2
= - T§+T13 i,cosnecosn + (R
4=1
Taoy _
- —x/0 cos nd sin ﬁe> IXo
=0
zv
L .
3‘ < T, Tg Ti9 Tao Tasz Tas
=) T2+R—2+-§-+ '121,3+—Rz -+ Tar + 4 - %
4=1
T34r - T4 Tg Te
- ——) sin nd sinn9> IX, +<<T1 +—+_+-1T'
R® =9 R® R
Ty3 Tia Tig Tain
+ R + + + /'SJ.nnG s:.nn9> Xs
RZ RZ R2 9=0
1
L
T‘ "TS le Ts T13 T15 T25
A SR b b ol e
g=1 B R R® R
Taey _ 0 T11 Tg Tz2a
+—/n81nn s:.nﬁ9> IX5+ <——+_.+_
R? \ R R R?

Tzo  Taz Tasz Taey _
- - - = . e .
R + = R Rz) i sinn® sin n9> _9 IX,

Taz Tz Tasg
<\T21 "7 T Tar + Tao + g + Tae

T3 v) . Tie
+ < sin nd cos 6 e X, - <<—R—

Tze
+ T> sin n® cos n_9> 9=9£IX5



92

L

—

Smn,t?u-x = _/)'_,<<Ta + Tg + T14> cos nd cos nd IXo +<<T.4 + Tg
) 6=8,

+ T14 + Tle + T31>E'rl Sinne Sinﬁ9> IX5
RZ =6,

+<T1 cos nd cos nd > IX +<(T., + Ty9
. 9=9z

- ' Tag
- T34> nfl sinnb sin n9> IX2 _<(_R_
R? 0=0, \

Tz

+ -—> (n cosnd sinnd + n sinnd cos nd )> IX

R B =l
GGL

\f . cosnd sinnf
+<<T4o + Tg1 - Tzg -T2y Xn —_——

R
4+ q Sin nGRcos nd >> IX,
9=9L
(C5)

where T; to T4p are constants defined in’Appendix_ D.
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where IR1; to IR6,; are circumferential integrals and %= @I'néi‘

and X2= ® 3.
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m X=Xk

and C; to Cyp are constants defined in Appendix D.

The circumferential integrals are defined as follows:

IR1,

IR1;

IR1,

IR1,

IR1g

J’ 1

0 “cr ser

[

0 Rcr Rscr

™

1
I R cos
0 cr
™
Jr Rc cos
0

0 "er scr

"cos n® cos nd do

cos n® cos nb 4o

no® cos nd dd

sin n® sin nb a9



IR1g

IR1,

IR1lg

IR2,

IR2,

IR2,

IR2,

IR2,

IR2,

IR2,

IR2¢

o 3 o 1 o 3 o — 3 o3 o 13 o —3 o 3 o 1 o — 3 o ~—3

(o]

sin n® sin 19 de

R
r Scr

L sin n® sin no do

c

R

r

sin n® sin n® do
cr

1 cos nf cos N db
R _R?
er
1 —— cos né cos nd dd
-
Rch Rscr
R R ©°8 n® cos nod dé
cr
1 -
5 cos n® cos b6
R RR
cr  Sscr
1 . L -
~—=—m gsin n® sin n6 dO
RZ :
CY scr
1 . . =
sin n® sin n6 46
R
chscr
R £
~£%in nd sin nd do
R 2
R
_Lr

R

L sin nd sin nd 4o

de

96



IR2¢

IR2,0

IR3,

IR3,

IR4,

IR4»

IRG 4

IRG ,

IR4

IR5,

IR5,

o “—3 o A 231 o~ 3aq o 31 o =31 o “—3a1 o3l o“3aA o33 o 4
= w

sin no sin no do

R R

cr

1 . . =
x g sin nd sin n6 d6

cr

1 " cos nP cos nfdd
R R

cr Rscr

1 cos n® cos nd dd
R _RR

er scr

a2

R—l—{<R1 > j sin n® sin nd 4o
cr ‘ser °8

L ' K L ) sin n® cos nb dd
R s
scr ’8
cr scr
L K L ) cos nd® sin nd db
: ’
scr A

EL (f{—l—> sin n® cos nb db
ecr scr’g

cr scr’Q

;L.;;.;_ ’L(%) ’e} * sin pe | sin n@ dé
cr’ ser

N\ N2
\ .

1 [/ 1 . .-
~[\E—/ j‘ sin nB sin nd d6
scr’Q

R R®
cY

97



IR5; =

' IRSQ =

IR5, =

IR5e =

IR5;; =

IR5,5 =

98

ﬂ f
J R R {K’"‘) f sin nf sin no do
0 cr scr’e
m . .
: 1) 8in n® sin D 4o
v (R/ 0 (;Rscr ’ ‘

\R) (‘R_') sin né sin n€ li

o3
'—I

R _RR
er | scr
il
f e (l> sin nd cos nb do
R R/,
o °F
i
I L <l> cos n8 sin nd d6
R R/,
cr 2]
0
ﬂ .
f L Kl) 8in n® cos nP db
2 R/,
R’ e
0 "cr scr

i
I : — <l> cos nf sin fi® dO
2 R . _

0 RerBger 7O
™ .

1 __1_> - i
I R R KR , sin nb® cos nb 4o
0 cr )
m

1) -

JR R(Rrecosnes:l.nnede
0
n .
f L (‘1') sin nf cos ﬁe de
0 "ecr Tser
m

1 1> .
.Jr - <E cos nf sin 09 4O

R? ’g



R Y |

IR51 4 = L KRl sin n® cos n® dd
R _R3R scr ’6
0 cr scr
m
IRS; 5 = | L l/\Rl > cos nd sin f0 de
v RZR scr ’9
0 cr scr :
m
| 1
IRS16 = v R ), sin n® cos nf do
R _RR scr ’8
0 cr sC
ul
IR5, 5 =Ji L /\ 1 cos nf sin nd do
R s
R _RR scr °A
0 cr “scr -
m
n
IR5,¢g = ‘5 L {« J sin-n6 sin nd do
R,,e
0
m _
o 1N )
IR6, =] L _ {<E>,j sin nf sin nf 46
0 “ecr scr
™ .
IR6, = r L <l\ <-l-,\' sin n6 sin nd de
: J R R/,,\R__/,
c 8 scr ’6
0
TT .
ot 1 1y (A ) . I
IR63 = T X \R), QR , sin n® sin nf do
cr 8 scr ’0
0 .
TT .
r
IR6 4 =_J L (%) sin n® cos n0d6
R R ’
0 cr scr
”
IR65 = | . <-1-) cos nf sin n6 d°
*R_R R7.8
0 cr scr
ul
[ 1 ' 1 ~
IR65 = T <§) sin n6 cos nd do

R RR . )
0 "ecr "scr



100

™ 2
IR6, =J L (k]-'-) cos n® sin n® dé
R _RR S %0
0 “er scr
n ;
f 710 . -
IR6g = J KE——/ sin n® cos nd do
0 cr scr’@
TT 7
IR6g = j L (§1—> cos nd sin nb do
0 Rch ser’0
n
r 4 -
IR610 = J R lR (El—> sin n® cos nf do
er scr’9
0
n ’
IR6,, = I' (El—) cos nf sin ﬁe de
0 scr’d

(€7)
The quantities X, and X3 for different boundary conditions are
defined as follows:

For freely supported cylinders:
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For clamped-clamped cylinders:
Expression is same as clamped-free but am's and
Bm's are different,

For free-free cylinders:
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APPENDIX D

CONSTANTS OF MATRIX ELEMENTS
This appendix contains the constants used in equations (Cl, C5,
and C6) of Appendix C. These are various combinations of the stiffner

properties given in the list of symbols.
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