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CHAPTER I 

INTRODUCTION 

Large amplitude vibrations in plates occur in practice in large 

glass windows, in skin panels of aircraft, in flexible roof structures, 

and in the walls of containers and cartons of various types. The 

present study is mainly concerned with the response of large glass 

windows to pressure pulses such as sonic booms. During the last 

seven years there have been several studies made at Oklahoma State 

University.on various aspects of structural response to the sonic 

boom. The latest study dealt with a finite-difference solution to the 

nonlinear Von Karman plate equations for the transient response of 

thin, rectangular, elastic plates with various boundary conditions. 

There are no known exact solutions to the Von K.irman equations with 

which the finite-difference solutions may be compared. A major pur

pose of the experiments described in this report was to compare the 

experimentally observed response with that predicted by the finite

difference solution. Thin glass plates with simply supported edges 

were used to model the response of large glass windows. A plate is 

generally considered to be loaded into its nonlinear range when its 

center deflection exceeds half the plate thickness. The maximum 



center deflection recorded during the present tests was of the order 

of five and a half times the plate thickness. 
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The response of a continuous structure like a plate should ideally 

be measured over its entire surface. The reflected Moire technique 

was applied to measure the deflection of the plate over its whole area 

at several instants during its transient response. A continuous 

record of the surface strains and the deflection at the center was also 

obtained experimentally. 

In some of the previous studies on the linear response of glass 

windows, it has been pointed out that the response of a window set in 

a room with an open door can be larger than that of a glass window 

alone. This important practical case was simulated experimentally 

by coupling a thin glass plate to a Helmholtz resonator and subjecting 

it to pressure pulses such that large amplitudes were excited. The 

finite-difference program was suitably modified to accommodate this 

type of loading. 

Another objective of this study was to compare the measured 

response of thin plates with the response predicted by lumped

parameter .models for the plate. Lumped-parameter models are 

described by ordinary differential equations which are generally less 

costly to integrate than partial differential equations. In this report 

several models for the plate derived by Galer kin I s method and 

involving both single and multiple plate modes are compared with 
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the experimental data and the finite-difference results. The single 

mode model is also applied to the case of a plate coupled to a Helm

holtz resonator. In the determination of the critical response of such 

systems, the finite-difference solution is prohibitively costly and the 

use of a reasonably accurate single mode model is necessary. 

The objectives of this study are as follows: 

(1) To design and construct apparatus to subject thin, simply 

supported elastic plates to pressure pulses such that large 

amplitudes result. 

(2) To develop an experimental technique for obtaining the 

dynamic response of a plate over its whole surface. 

(3) To compare the experimentally observed plate response 

with the theoretical response predicted by the finite

difference solution .of the Von Karman equations. 

(4) To compare the experimental response with the theoretical 

nonlinear response obtained from lumped parameter 

models. 

(5) To determine, experimentally, the transient response of 

a plate coupled to a Helmholtz resonator and compare the 

results with the theoretical response predicted by finite

difference and lumped parameter solutions. 



CHAPTER II 

LITERATURE REVIEW 

The scope of the present study indicated that a literature survey 

in the following areas was required: ( 1) theoretical and experimental 

work on plates undergoing large deflections with special reference to 

dynamic response studies, (2) experimental methods of subjecting 

plates to transient pressure pulses, (3) whole field, experimental 

techniques for determining the dynamic response of ptates, (4) dynam

ics of mechano-acoustical systems with special reference 'to window

room-door interactions. 

Large Deflections of Plates 

The equations most commonly used to describe the large deflec

tions of thin, elastic plates were derived by Th. Von Karman (1) in 

1910 and are named after him, The maximum relative deflection for 

which these equations are valid has not been established. Tadjbakhsh 

and Saibel (2) have derived a more general set of equations for a thin: 

plate which include the effect of rotatory and in-plane inertias and 

transverse shear. However, no solution is available for these 

·equations. 

4 



R. L. Penning (3) has reviewed the theoretical and experimental 

work q,one up to 1970 on the static, large deflection behavior of plates~ 

The theoretical methods used to solve the nonlinear partial differential 

equations fall under the general categories of finite-difference methods, 

perturbation, finite elements and Fourier series solutions. The 

experimental methods generally made use of deflection transducers 

for point by point deflection measurements and standard strain gages. 

The pertinent literature on the large deflection dynamic response 

of plates has been reviewed by D. J, Bayles (4) for the period up to 

196 9. The theoretical solutions up to that time were based on a 

lumped-parameter representation of the plate which was derived by 

various approximate methods and which was based on assuming that 

the plate deflected in its fundamental, linear mode shape. Bayles 

solves the Von Karman equations by the finite-difference method for 

rectangular plates with different types of boundary conditions and 

compared his results with those obtained from lumped-parameter . 

models derived by Yamaki (5). He found that the lumped-parameter 

model and the finite-difference solution were in good agreement at 

relatively small nonlinear deflections but differed considerably from 

each other at larger deflections. The finite-difference solution 

appears to be the most accurate theoretical solution that is available 

at present. 

Since 1969 several papers have appeared that deal with the 

dynamics of plates undergoing large deflections. Ventres and 
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Dowell (6) used Galerkin's method on the Von Karman equations to 

study the nonlinear flutter of clamped rectangular plates subjected to 

a static pressure differential. For the case of zero in-plane edge 

restraint, they assumed a series of functions for the deflection and 

for the stress function and reduced Von Karma.n's equations to a set 

of ordinary differential equations. The assumed functions satisfied 

all the boundary conditions. They obtained good correlation between 

experimental and theoretical flutter boundaries for plates exposed to 

a static pressure differential. It was found that four to six modes 

must be used in the modal expansion for the deflection to obtain 

accurate results. A similar approach has been taken by Farnsworth 

and Evan-Iwanowski (7) in determining the resonance response of 

nonlinear circular plates subjected to a uniform static load. Bennett 

(8) has recently extended this method to the study of nonlinear vibra

tion of simply supported, angle ply, laminated plates. It is apparent, 

from a study of the literature, that Galerkin's method is widely used 

in solving nonlinear plate vibration problems. This approach has not 

yet been applied to transient response problems. A comparison of 

the solutions obtained by Galer kin's method with finite-difference 

solutions should yield some insight into their relative accuracies, 

ease of application, and cost. 
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Dynamic Loading of Plates 

Edge and Hubbard (9) have recently reviewed various sonic-boo:rp 

simulation methods. Most of the methods described by them are 

specifically for generating a sonic boom type of pressure signal. One 

of the devices, described by Tomboulian (10), permits a wide variety 

of pulse shapes to be generated in a diverging tube. The test objects 

are placed directly inside the diverging tube, or, as in the case of 

glass panels, on one of the wall's of the tube. The reflections from 

the end of the tube were reduced by means of a special absorber. 

Some of the basic features of Tomboulian I s design have been incor

porated in the pulse generator used in the present study. 

Whole Field Experimental Techniques 

Since a plate is a continuous structure, an adequate experi

mental measurement of the plate response should ideally yield 

continuous data on a significant variable over the whole surface of the 

plate. A brief review of the methods reported in the literature for 

determining whole field response of plates is next given. 

Photoelastic methods for plates have been studied by Goodier 

(11), Mindlin (12), Drucker (13) and Bednar (14). The methods sug-

gested involve either bonding of two birefringent materials of different 

stress optic coefficients, or initially freezing a direct stress in the 

plate, or sandwiching a reflecting aluminum foil between two sheets of 



birefringent material. These methods have not been applied to 

vibrating thin plates. 

Several Moire grid methods have been developed for measuring 

plate deflections. Ligtenberg ( 15) has described a method in which 

the reflection on the plate surface, of a coarse grid of straight lines 

8 

is photographed and contours of equal partial slope are obtained by 

superposing the images of the grid before and after loading the plate. 

This method has been applied by Nickola (16) to determine the dynamic 

response of thin membranes. A Moire grid method, using finer grids, 

in which the. shadow of a reference grid on the deflected surface of the 

plate interferes with the reference grid to produce fringes which 

directly indicate the deflection contours of the plate has been applied 

by Hazell (17) to vibrating plates. Some other tec,hniques are de

scribed in the books on the Moire method written by Theocaris (18) 

and Durelli and Parks (19 ). 

Photogrammetric methods have been used by Merchant et al 

(20) to measure the dynamic displacements of plates. Holographic 

techniques were applied, for the first time, to obtain the deflection 

contours in steady state vibration by Powell and Stetson (21 ). Since 

then there have been several papers on this method. For the case of 

transient motion, pulsed lasers have been used. The principal dis

advantage of the holographic method, in the context of the present 

study, is that its application is limited to very small motions (of the 

order of microinches). 
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For the experiments described in this report, the Moire grid 

method used by Nickola (16) was chosen because it was simple, appli

cable to large deflections, required nothing in close proximity to the 

plate (so that the pressure field near the plate was not affected), and 

it did not require a perfectly flat plate. 

Window-Room-Door Response 

Previous studies at Oklahoma State University (22, 23) have 

indicated that the maximum center deflection of a window subjected 

to a N wave type of pressure pulse is larger when it is coupled to a 

room and an open doorway than when it is by itself. This is the case 

whether the deflections are in the linear or in the nonlinear range. In 

the analysis of such coupled systems, it is essential that the simplest 

analytical models be used to represent the distributed physical sys -

terns. Not much experimental work has been done in this area to 

verify the validity of the models used. Clarkson and Mayes (24) have 

recently reviewed the literature on building structure response to 

sonic booms, Usually windows are coupled to other windows and to 

several rooms and doorways. It was decided to confine the present 

study to the case of one window coupled to a room and an open doorway. 



CHAPTER III 

EXPERIMENTAL METHOD 

Figure 1 shows the general layout of the equipment used in the 

tests. A pressure pulse was produced at the pulse generator, sent 

down the plane wave tube and reflected off the simply supported glass 

plate mounted at the other end of the tube. The plate was instrumented 

to record the Moire pattern of the deflected plate, strains at the sur-

face of the plate, center deflection and pres sure acting on the surface 

of the plate. Details regarding each of the elements in the test are 

given below. 

The Plate 

The plate used in the experiments had the following properties 

and dimensions: 

Size 

Thickness 

Material 

Modulus of elasticity 

14 in. x 9. 35 in. 

0, 037 ± 0, 001 in. 

>'~ 
Glass plate ' 

6 
9.0xlO 

±l/32in. 

6 . ± O. 2 x 10 psi 

*supplied by the American Saint Gobain Corp., Kingsport, 
Tennesseeo 

1 () 
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Pois son I s ratio 

Density 

0.220 

153.0 

12 

± 0.004 

± O. 5 lbm/cu ft 

The plate was mounted in an aluminum box whose supporting 

edges had been beveled to approximate a simply supported boundary 

condition. (Figure 2) The box was designed to accommodate various 

sizes of plates ranging from a maximum size of 14 in. x 14 in. to 

14 in. x 7 in. 

The Pressure Load 

The plate was subjected to an uniform, transient pres sure load 

which approximated an N wave. The actual shape of the load was not 

critical for the tests so long as it was accurately known for use as 

input for the theoretical methods. However, a pulse with its funda

mental frequency component close to that of the plate was desirable 

so that larger plate deflections could be excited for a given amplitude 

of the pres sure pulseo 

The pressure load was produced by a pulse generator based on 

a basic design due to Tomboulian (10). Figure 3 gives some details 

of the pulse generator. This is based on the principle that the 

pressure at a given radius from an ideal compressible fluid flow 

source is proportional to the rate of change of the mass rate of fluid 

flow. In the pulse generator, the mass rate of flow is controlled by 

varying the exit area of a converging nozzle through which choked 
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flow is taking place. The exit area is varied by pulling a sliding ori-

fice plate across a fixed orifice. A slider crank mechanism is used 

to pull the sliding .orifice plate at approximately constant velocity. The 

orifice in the sliding plq,te was shaped to nominally produce an N wave. 

In Figure 4p the idealized variation of nozzle exit area (and hence, 

mass rate of flow) with time and the corresponding variation of pres-

sure with time are shown. Figure 5 shows the pressures measured 

using B & K 1 /4 in. microphones at two different points at the surface 

of a 3/4 in. plywood plate at the end of the plane wave tube. The pres-

sure measured using a Photocon 514-3997 microphone with the thin 

plate in position is shown in Figure 6. The maximum pulse pressure 

was varied both by using different sliding orifice plates and by varying 

the tankpressure. The possible variation in pressures is shown in 

Table I for one sliding orifice plate. The pulse duration is varied by 

changing the speed of the motor driving the slider mechanism. 

TABLE I 

MAXIMUM PULSE PRESSURE AS A 
FUNCTION OF TANK PRESSURE 

Tank Pressure [psig] 

20.0 
30.0 
40.0 
60.0 
80.0 

Max. Pulse Pressure [psf] 

18.0 
30.0 
36.0 
45.0 
54.0 
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A pulse effect is created by mounting the plate to be tested at 

one end of a 32 fto long, 14 in. x 14 in. square, plane wave tube and, 

the pulse generator, at the other endo The plate thus experiences a 

single pulse and then almost no pres sure during the time the pulse 

takes to retr·ace its path, The uniformity of the pressure pulse was 

checked and the variation of the pres sure between different points on 

the surface of the plate was less than 7%. 

Moire Method of Determining 

Whole Field Response 

The arrangement for the reflected Moire method used in the 

tests described he:re is shown in Figures 1 and 7. It consists of a 

plane grid of alternate black and white lines of equal width in front of 

the plate under test and a 35 mm. camera facing the plate. One side 

of the plate is silvered so that the camera sees the reflection of the 

plane grid on the surface ,of the plate, The fringe patterns were ob

tained by taking one exposure of the reflected grid with the plate 

undeflected and then taking a second exposure at a specific deflection 

of the plate during its re;sponse to the pressure pulse. The second 

exposure was controlled by small, flexible contacts at the center of 

the plate. Distinct black and white fringes are formed on the film in 

the camera wherever black and white lines during the second exposure 

are superposed on black and white lines from the first exposure. To 
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a first approximation, the fringes obtained by this method represent 

lines of constant partial slope with respect to a chosen direction on the 

plate. For example, this direction can be either along the x or y 

reference axis for the plate depending on whether the grid lines are 

perpendicular to the x or y axis. 

The relationship between plate deflection, slope and fringe order 

are derived next. In Figure 7, let S be a particular point on the film 

in the camera. With the plate in its undeflected state, the image of 

a point Q on the plane grid is formed at the point S. When the plate 

deflects, and the film is exposed a second time, the image of a point 

R on the plane grid is formed at the same point S on the film. A dis -

tinct fringe occurs at the point S when the distance RQ on the grid is 

an integral multiple of the pitch of the grid. Thus the fringe order N 

may be obtained from 

N = QR 
p 

where P is the pitch of the grid. From Figure 7, 

QR= OR - OQ 

( 1 ) 

= X' + (Al - W(X')) tan(9+2il?') - (X+Al tan9) (2) 

where ii?' is the slope aW /oX at X' and W(X') is the deflection of the 

plate at X'. 

The other symbols are defined in Figure 7. In order to get a 

tractable expression for QR, the following approximations are made. 

W(X') is neglected in comparison with Al, ii?' is taken to be the same 
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as qi which is the slope of the plate at the point X. Also, 2qi is assumed 

to be sufficiently small to allow the approximation, 

tan 2qi ~ 2qi (3) 

It may also be noted from Figure 7 that 

tan e = X/A2 (4) 

The fringe order N is then given by 

(5) 

This equation may be solved for qi as a function of N and X. 

aw N qi - = ~~~~~~~~~~~~~~~~~ 
oX (2 Al/P) + 2 Al(X/A2) 2 + 2XN/A2 

( 6) 

In order to get the deflection of the plate surface, equation (6) 

is integrated numerically when the fringe order is known as a function 

of X. The starting point for the integration is taken at the edge of the 

plate where the deflection is known to be zero. The relation between 

N and qi may be linearized by dropping the nonlinear terms, X/ A2 and 

2Xqi I AZ, from Equation (5 ). For (X/ A2) equal to O. 25 the linearized 

equation gives a slope qi that is about 6% larger than the actual value. 

The data presented in this study were all obtained by integrating the 

complete Equation (6 ). 

The reflected Moire method gives information only on the 

deflection of the plate, W, and its derivatives. One of the main con-

siderations in design is the stress distribution in the structure. The 
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second spatial derivatives of W may be used to determine the bending 

moments and, hence, the bending stresses. However, in a large de

flection problem, membrane stresses are also present and the maxi

mum stresses have to be determined by adding the membrane and 

bending stresses. The reflected Moire method does not yield any 

information on the in-plane deformations of the center plane of the 

plate. Except for the case of bonded plates, the center plane is inac

cessible. One possible a,pproach to this problem is to use the standard 

Moire method for determining surface strains to determine the strains 

on the two faces of the plate. This method has been applied by Durelli 

(19) to statically loaded plates. A 1000 lines/in. grating was printed 

on the surface. of a plexiglas s plate. The master grating of 1000 

lines/in, was placed in contact with the printed surface of the plate 

using a thin layer of paraffin oil between the two surfaces to ensure 

uniform contact. This method, as described above, is not suitable 

for dynamic studies because of the added mass of the master grating 

and the shear layer of paraffin oil. If it is pas sible to make a double 

exposure of th.e printed grating on the plate surface, this method can 

be used in conjunction with the reflected Moire technique to determine 

the complete state of strain in the plate at large deformations. 

The pitch of the grid used in this study was 0, 096 0 in. with a 

standard deviation of 0. 0023 in. The distances Al and A2 were 

30. 0 in. and 31. 5 in. respectively. The grid was illuminated by a 
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single Chadwick-Helmuth Strobex strobe light with an approximate 

flash duration of 50 micro sec. The strobe was placed at a distance of 

6 ft. from the grid. The film used was Kodak Tri-X. The 35 mm. 

camera was set at f8. The exact instant at which the second exposure 

of the film occurred was recorded on the storage oscilloscope by 

means of a photocell. A modified Brashear process was used to 

silver one side of the thin glass plates. The silver coating added an 

average value of O. 25 lbm/cu. ft. to the density of the glass plate and 

thus was negligibly small. 

Pressure, Deflection and 

Strain Measurements 

The pressure at the surface of the plate was measured by a 

Dynasciences Photocon 514-3996 microphone. It was calibrated be

fore tests by means of a piston phone over a frequency range of 3 to 

30 Hz and at an amplitude of 23. 7 psf. The output at 3 Hz was 3% 

below that at 30 Hz. 

The deflection of the center of the plate was measured by a 

DCDT with flat response from DC to a first order corner frequency 

of 170 Hz. Its output was not entirely linear at the maximum plate 

amplitudes. The DCDT was calibrated before and after each test by 

means of a micrometer attachment. The DCDT data was corrected 

for both its nonlinearity and lack of high frequency response by 
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computational methods. The DCDT core assembly attached to the plate 

weighed 3. 5 gms. Tests run with and without the DCDT affixed to the 

plate showed no significant difference either in the period or in the 

amplitude of strain at the center of the plate. 

The strains were measured on the front and back surfaces of the 

plate in the x and y directions at the center of the plate and at a point 

on the diagonal midway between the center and the corner. Standard 

foil gages were used with Ellis BAM-1 strain meters .. All data were 

recorded on a Tektronix 564 storage oscilloscope with four channels. 

The scope traces were photographed and then enlarged for data 

processing. 

Simulation of a Window-Room-Door System 

The response .of a window set in a room with an open doorway 

I 
subjected to a pressure pulse was simulated experimentally by means 

of the arrangement shown in Figure 8. This is basically the same 

arrangement as for the plate tests except that a rigid wooden box has 

been added to form a 11 room 11 and the wooden closure in Figure 2 has 

been removed to form a ''door. 11 Two room sizes were used in the 

tests. The test arrangement is such that the same pressure acts on 

both the plate and on the open door. The physical parameters of this 

system are given below: 

Room sizes: 
Area of door: 
Length of door: 

1. 80 cu. ft. and 3. 66 cu. ft. 
O. 357 sq. ft. 
o. 25 ft. 
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CHAPTER IV 

THEORETICAL SOLUTION 

Finite-Difference Method 

The observed experimental data is compared with solutions to 

. the Von Karman plate equations which describe large deflection re-

sponse of elastic, isotropic, thin plates. These equations are of the 

form: • 

v' 4 F = E[W 2 - W, W, ] (7) 
'xy xx yy 

Dv' 4 W + ph W, = P(t) + h[F, W, 
tt yy xx 

+ F, W, - 2F, W, ] 
xx yy xy xy 

(8) 

where F = Airy stress function 

W = deflection of plate. The commas stand for differenti-

ation with respect to the subscripts which follow them. 

D = Eh3 /12(1 - ,;2) plate stiffness 

E = Young's modulus 

h = plate thickness 

v = Pois son I s ratio 

p = plate density 

2h 
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P(t) :: pressure acting on plate 

v' 4 :: biharmonic operator 

The above equations do not include damping, in-plane and rota-

tory inertia and transverse shear effects. The boundary conditions for 

a simply supported plate with stress-free edges, with the origin of the 

coordinate system at one corner of the plate, are 

X :: 0, a w :: o, w. :: o, F, :: 0, F, :: 0 
xx xy yy 

y :: O,b W:: 0, w, :: o. F, :: o, F, :: 0 
yy xy xx 

(9) 

Equations (7) and (8) have been solved by the method of finite-

differences by Bayles (4) for uniform transient pressure loads and for 

several boundary conditions. He also established the conditions to be 

satisfied by the spatial step size and by the time step in order to 

obtain a stable solution. A listing of the finite-difference program is 

given in Appendix A. For the particular plate used in the experiments 

described in this report, a grid of 9 x 6 was used for one quarter of 

the plate. The integration step time was chosen as O. 000018 (sec). 

The measured pressure at the surface of the plate was used as input 

to the program. 

The response of the plate in the simulated window-room-door 

system was calculated by the finite-difference method by modifying the 

net pressure acting on the plate. The pressure acting on the plate for 

this case is (refer to Figure 8) 
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P(t) = P ex/t) - Kvol · (JJ W dxdy - Ad W 1 ) 

s 

(10) 

where P(t) = net pres sure acting on the plate and on the air 

mass in the door. 

P (t) = External pres sure acting on the outside 
'ext 

surface of the plate and door. 

Kvol = stiffness factor of room= p0 c:.i /V 

Po = density of air 

C = speed of sound 

V = volume of room 

Ad = area of door 

W1 = displacement of air mass in door. (Displacement 

into the room is negative.) 

Equation (10) is based on lumping the stiffness of the room and 

the inertance of the air mass (22). An additional equation for the 

displacement, W 1 , has to be solved simultaneously with Equations 

( 7 ) , ( 8), and ( 1 0): 

( 11) 

L' = effective length of door 

!; = effective damping factor at door 

w = natural frequency of room-door system 

The finite-difference program listed in Appendix A has the 

window-room-door case built in as an option. 



29 

Lumped Parameter Solution 

The lumped parameter models used in this study are a single 

mode model derived by Yamaki (5) and a multimode model that is 

derived in this section. 

Bayles (25) has also developed a lumped parameter model of a 

rectangular plate by assuming fundamental mode solutions and using 

Hamilton 1s principle to set up the differential equation of motion for 

the system. The functions assumed by him are 

. a TIX .., TIV 
F = F 11 ( t) sin - sin"' .:.:..L. 

a b 

W = W 11 (t) 
, TIX , TIV 

sin - sin .:.:..L. 
a b 

These satisfy all the boundary conditions (9). The resulting differen-

tial equation is then of the form 

where 

M Wu+K w11+eK Wf1=A ·P(t) 
eq eq eq eq 

W 11 = plate center displacement 

M = pabh/4 
eq 

a, b = plate length and width 

h = plate thickness 

A - ...±_ ab 
eq - TI:.! 

(12) 
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e = 

a= a/b 

The stress function coefficient F 11 is determined from 

The lumped parameter model derived by Yamaki (5) has been 

found to be more accurate than that due to Bayles. A computer pro1-

gram for ,integrating Equation (12) u'sing either Bayles' or Yamaki's 

model is listed in Appendix B. 

As the amplitude of the response becomes relatively larger, it 

has been found that there is very poor agreement between the finite-

difference and the fundamental mode, lumped parameter solutions. · It 

was surmised that the inclusion of higher modes in the lumped param-

eter solution would increase its accuracy. The approach followed 

here in deriving this lumped parameter model is to assume suitable 

functions for the deflection and the stress function and then to deter-

mine the differential equations for the unknown coefficients by Galer-

kin I s method. 

The following functions, which satisfy all the boundary condi·-

tions (9), are assumed for the deflection W and the stress function F: 



M N 

W=I I W (t) . mrrx . nrry 
sin- sin 

mn a b 
m=l n=l 
m,n odd 

J K 
F = l 'I Fjk (t) sin a j:x sina k~y 

j=l k=l 
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( 13) 

(14) 

Only odd values of m and n are used in the assumed functions for W 

since a uniform pressure is assumed. 

The assumed functions (13) and (14) are first substituted into 

Equation (7 ). Following Galer kin's procedure, weighted residuals 

are obtained by multiplying the resulting equation by each of the terms 

in the assumed function for F and i~tegrating over the entire area of 

the plate. The residuals are then set equal to zero. This results in 

J x K simultaneous, linear, algebraic equations for Fjk in terms of 

W ·W 
pq rs 

These equations may be written as 

[FF] [F .k} = [COEF] [W · W } 
J pq rs 

where [FF] is a J x K by J x K matrix of coefficients, [F jk} is a 

column matrix of J x K elements from Equation (14), [COEF] is a 

J x K by (M+l) x (N+l)/4 matrix of coefficients of the products W · 
pq 

W with W and W as defined in Equation (13 ). 
rs pq rs · 

The above equations may be solved to obtain the coefficients 

F jk if the values of the deflection components are known. 
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[F .k} = [FFf 1 [FCOEF] [W · W } 
J pq rs 

(15) 

The functions for W and F are next substituted into Equation (8) 

and the Galerkin method is again applied, this time using the elements 

of W as the weighting functions. Finally, the coefficients of F jk are 

expressed in terms of W using Equat_ion {15) and the resulting ordinary 

differential equations take the form 

~ ~ ~f M4 ~ {Coefwlqrstu W • W • W 
l l l l - L.. mn pq rs tu 
p q r s u 

P{t) {16) 

These equations reduce to the exact linear case when the coef-

. . pqrstu 
fac1ents {Coefw) are set equal to zero. The coefficients have to 

mn 

be generated only once for a given plate. It is possible to obtain a 

simple expression for e in Equation {12) by this method when only 

W 11 and F 11 are used. · The results for this fundam_ental mode case 

are given below. 

1 
e = h2 

= E . w2 
- 6 11 ( ea + 4 + 6f:l2) 
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For comparison, the value of e h:a obtained by the various 

methods for ~ = 1. 5 and \J = O. 22 are: above formula = O. 1207, 

Yamaki = 0. 125 2, and Bayles = O. 1755. 

The ordinary differential equations of the lumped parameter 

models are integrated numerically using a standard predictor-

corrector method. Subroutine DHPCG in the IBM Scientific Sub-

routine Package was used for this purpose. The computer program 

for the multimode model is listed in Appendix C. 

The fundamental mode model was also used on the window-

room-door system. The equations to be solved for this case are 

(refer to Figure 8) 

pabh " 
4 w 11 + K w 11 + e K w~ 1 eq eq 

= 4ab r p (t) + po ca (A W - 4ab W ) J (17) 
113 L ext V d 1 11:a 1 1 

• p ca 
PoL' AdWl + 2$Po L'Ad wl +TA~ wl 

4ab~ _ 
- a V Ad W 11 - -Ad p (t) 

11 ext 
(18) 

W 11 is the center deflectfon of the plate and W 1 is the deflection 

of the air mass in the door. The other symbols have already been 

defined. 



CHAPTER V 

EXPERIMENTAL RESULTS 

The plate was instrumented to obtain Moire fringe data, strains 

in the x and y directions at the surface of the plate and the deflection 

at 'the center. 

Moire Fringe Data 

The support conditions at the boundary were fir st checked for 

symmetry and for free rotation by taking Moire fringe photographs of 

the surface of the plate when it was subjected to a static pressure. 

Figures 9 and 10 show the static Moire fringes in the x and y direc

tions for a plate center deflection of O. 039 in. The fringe lines 

represent contours of points which have, approximately, the same 

partial slope (0 W /0X in the x direction and oW /o Y in the y direction). 

The static deflection profiles along the center lines of the plate are 

shown in Figures 11 and 12. These were obtained by integrating 

Equation (6) numerically using the measured fringe data. The fringe 

photographs indicated in a graphic manner that the boundary conditions 

of the plate were acceptable. 
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Figure 9. M ire Fringes in t h e y 
Dire tion of a R ectang ula r 
Plate Subjected to Static 
P re s sure 

Figur l O. M ,1i ' Fring s in the x 
D i e · ion of a Re c ta ngula r 
P l a Subjec ted to Static 
P ,:- ss ure 

35 



0.12 

0.10 -z 
- 0.08 z 
0 -t; 0.06 
w 

STATIC 

DYNAMIC 

FINITE 
DIFFERENCE 

----+ve 
---- -ve 

o· 
0.010 SEC. 0 

0 ----------0 ,,_,_,,,..., .,,....,..,, 
_J 

~ 0.04 
0 

0.02 

o// 
// 0 Q./ ~-~~-==--==-:::::::::==-=-=-:-=~~~ 0.00 25 

.....-1 ..... ~----&=--cr--cr----0----0--- 0.0094 

00 2 3 4 4.675 

DISTANCE ALONG Y CENTERLINE OF PLATE { IN.) 

Figure 11. Static and Dynamic Deflection Profiles of the y 
Centerline of the Plate by Moire and Finite.,. 
Difference Methods 

w 
O' 



0.18 
I 

0 STATIC --- 0 T0.0044 SEC 
O.l 6 1- DYNAMIC + ve 

---- - ve 
0.141- FINITE . 

DIFFERENCE 
0 

I 
z 0.12 

6 0.10 
I-
u 
w 0.08 
_J 

LL 
w c 0.06 

0.041 

0.02 

, 
.~ -

..0.,. 0 0 
_,,..- -..:.- __ ... ----

~ _ ..,..,-- - -:g ,_..----
~-~ 9'"'---~ o_,,,___... - o ' - 0 

0 0 

-------- 0 0 ---------__.P---o-0 

00 2 3 4 5 6 7 

DISTANCE ALONG X CENTER LI NE OF PLATE (IN.) 

Figure 12. Static and Dynamic Deflection Profiles of the x Centerline of the 
Plate by MoirE! and Finite-Difference Methods 

~ 
-..J 



38 

A sequence of Moire fringe photographs taken at different 

instants during the response of the plate when it is hit by a pressure 

pulse is shown in Figures 13 to 20. At smaller values of center 

deflection, fringes in both x and y directions are shown. For the 

larger deflection values (Figures 15 and 16) the fringes in they di

rection were too close together to be resolved. This problem can be 

alleviated to .a certain extent by moving the Moire screen closer to 

the plate. The experimentally observed deflection profiles along the 

centerlines of the plate obtained by integrating the data from the fringe 

photographs are shown in Figures 11 and 12. The corresponding values 

obtained from the finite-difference solution are also shown in the same 

figures. The sequence of photographs was obtained by using separate 

pulses for each photograph. The pressure pulse was closely repro

duced each time. The finite-difference data was obtained for only one 

pressure pulse which was characteristic of this series of tests 

(Figure 23). Generally, the same deflection magnitude was not 

obtained by the Moire method and the finite-difference solution at 

the same instant of time. The profiles were obtained by matching 

the experimental and theoretical center deflections. The value of a 

whole field method of visualizing the deflection response of the plate 

is best brought out in Figures 13 and 14 where the effect of the third 
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mode is clearly displayed. The deflection measured by the Moire 

method over one quarter of the plate is shown for two instants of 

time in Figures 21 and 22. 

Strain Data 

43 

The strain was measured on the front and back surfaces of the 

plate (the back surface looks into the plane wave tube) in the x and y 

directions at the center and at the mid-point of the diagonal connecting 

the center and the corner. The magnitude of the pressure pulse was 

varied so as to get data ranging from the almost linear to highly non

linear response. Two photographs of oscilloscope traces of tests in 

which the maximum center displacement to thickness ratio were 5. 6 

and 2. 6 respectively, are shown in Figures 23 and 24. The traces 

represent strain in the y direction at the center of the plate on the 

back surface, the deflection of the center of the plate (inverted), the 

pressure acting on the plate anc:l the strain in the y direction at the 

center on the front surface of the plate, in that order from the top of 

the photographs downward. 

The measured strain in the y direction at the center of the front 

surface of the plate is compared with the values calculated by the 

finite-difference meth0d, the single mode lumped parameter model of 

Yamaki and the multimode lumped parameter model in Figures 25 to 

30 for maximum deflection to thickness ratios of 5. 6, 2. 6, and 0. 85. 
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For all three cases, the density was adjusted empirically to 172. 0 

lbm/cu. ft, (measured density of glass was 153. 0) to account partially 

for the reactive component of the radiation impedance faced by the 

front surface of the plate. This corrected value for the density is 

also obtained by an approximate analysis which is given in Lin (26 ). 

The correction for the density was not applied to the face of the plate 

looking into the plane wave tube because the pres sure transducer gives 

the actual pres sure acting on that faceo The damping was considered 

to be zero for all theoretical calculationso The average measured 

value of the damping ratio was 0. 03. 

The results shown for the multimode model are for the case, 

J = K = 4, M = N = 3 in Equations (13) and (14) for the assumed furn:

tion. It was found that the results using a smaller number of terms 

for the stress function, J = K = 2, were not much different from the 

results using J = K = 4, but the latter case was closer to the finite

difference datao 

In Figures 31 to 36, the measured strains on the back surface 

of the plate in the x direction at the center (the x axis is oriented along 

the longer edge ·of the plate) and in the x and y directions at the quarter 

diagonal location are compared with the theoretical solutions. As a 

final example of the strain data obtained in this study, the strain in 

the y direction on the front surface of the plate is plotted in Figure 3 7 

over one quarter of the plate at about the time of maximum response. 
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The following observations may be made about the strain data. 

The expected error in the strain data is 5%, and this data is the most 

accurate of the various measurements that were made on the plate. 

The shapes of the measured and theoretical response curves (espe

cially for the finite-difference and the multimode model) are almost 

identical for all three relative amplitudes of deflection. For the 

maximum deflection ~atio, the amplitude of the third mode component 

of strain for the measured data is, at times, only about 45% of the 

theoretical amplitude. But the mean values are of the same magni

tude. It is possible that higher modes are more severely damped than 

the lower modes. The other possible causes are non-uniformity of the 

pressure loads and the plate thickness and boundary conditions that are 

not perfectly symmetrical. The Moire fringe photographs in Figures 

1 7 and 19 indicate some asymmetry in the fringes in the y direction 

during the tail end of the response. The strain magnitudes are com

pared next. The magnitudes of special concern are the peak values. 

In almost all cases, the measured first maximum strains in the y 

direction are larger than the finite-d'ifference values--?% larger .for 

the deflection ratio of 5. 6, 13% for the 2. 6 ratio and 3% for the ratio 

of 0. 85. However, for the second maximum strains, the theoretical 

values are invariably larger th.an the mea,sured values. It is possible 

that this behavior is at least partly due to the low frequency response 

characteristics of the microphone used to measure the pressure. The 
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pres sure acting on the plate, which is a measured quantity and thus 

subject to error, is one of the major input quantities for the finite-

difference and lumped parameter model computer programs. These 

programs also require the measured plate dimensions and the 

material properties. Thus, the theoretical results are also subject 

to deviations which are dependent on the deviations in the input quanti-

ties, It is difficult to give a numerical estimate of the maximum 

deviation possible in the theoretical results. If the theoretical results 

are assumed to be subject to no deviations, comparison with the strain 

data indicates that the finite-difference solution of the Von Karman 

equations closely approximates the actual behavior of a thin plate 

undergoing large deflections up to as much as 5. 6 times the plate 

thickness. The multimode lumped parameter model gives results 

' 
similar to the finite-difference response. The single mode model is 

as good as the other two theoretical solutions for a deflection ratio 

of 0, 85, But for deflection ratios of 2. 6 and 5. 6, the single mode 

model predicts a much larger strain than either the measured values 

or the other theoretical solutions. 

From Figure 37 it is clear that the maximum strain, for non-

linear deflections, does not occur at the center. A large area of the 

plate is heavily stressed,and t]:ie maximum strain occurs at a point 

approximately on the diagonal and closer to the corner than the 

quarter diagonal position. Since a larger area of the plate is heav'ny 
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strained for nonlinear deflections, the probability of failure of a glass 

plate with a given density of flaws per unit surface area is greater 

when it is loaded to a specified maximum strain in the nonlinear case 

than in the linear case where the maximum strain occurs only in a 

· region localized around the center of the plate. 

Deflection Response 

The measured displacement of the center of the plate is com

pared with the theoretically predicted values in Figures 38 to 43 for 

maximum center displacement to plate thickness ratios of 5. 6, 2. 6, 

and 0. 85. Some of the reasons for the difference between experi

mental and theoretic al values have already been discussed for the 

strain data. An additional factor contributing to the expected deviation 

for the deflection data was the inadequate high frequency response of 

the displacement pickup. The measured data was put through a 

Fourier transform program, corrected for its frequency response 

in the frequency domain and reassembled in the time domain by an 

inverse Fourier transform. The results indicate fair agreement 

between experiment and theory. 

Window-Room-Door Simulation 

Photographs of oscilloscope traces obtained during tests on the 

window-room-door model with the small room and the large room are 
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shown in Figures 44 and 45 respectively. In these photographs, the 

top most trace is strain in the y direction at the center of the front 

surface, followed by the pres sure, center displacement, and y strain 

at the center of the back surface in that order. 

The measured y strain at the center of the front surface of the 

plate and the theoretically calculated values are plotted in Figures 

46 and 47. The lumped parameter model shown in these figures is 

the fundamental mode model of Yamaki. In the theoretical calcula

tions, the density of the plate was kept at its measured value of 153. 0 

lbm/cu. ft. and plate damping was neglected. For the given dimen

sions of the room used in the test and the fundamental frequency of 

the response, the principal acoustic effect of the displacement of the 

window was to cause a net change in pressure inside the room that was 

proportional to the volume displaced by the movement of the plate. 

The effective length of the doorway was empirically set at O. 67 ft. and 

a damping factor of 0, 05 was used for the door. The maximum center 

displacement to thickness ratio for both the small room and the large 

room was 4. 2. The center deflection is plotted in Figures 48 and 49, 

Once again, the important contribution of the third mode to the re

sponse at large amplitudes can be readily seen. The agreement 

between measured and theoretical values is remarkable considering 

the complicated nature of the system, 



Figure 44. Osciiloscope Traces of 
Test on Window-Room
Door Model With Small 
Room (1 cm. = 
0. 005 sec.) 

Figure 45. Oscilloscope Traces of 
Test on Window-Room
Door Model With Large 
Room (1 cm = 
0. 005 sec.) 
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CHAPTER VI 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

An experimental study was made of the nonlinear, transient 

response of simply supported, thin, rectangular elastic plates sub

jected to pulse type loads. The reflected Moire grid technique was 

used to obtain the deflection response of the plate over its entire 

surface at several instants during its motion. The strains at the 

surface of the plate at its center and at a quarter diagonal location 

were measured during its response. 

The results of the experiments were compared with the theoreti

cally predicted values. The theoretical values were obtained from a 

finite-difference solution, a single mode lumped parameter model, 

and a multimode, lumped parameter model based on the Von Karman 

plate equations. The multimode lumped parameter model was de

rived as part of the present study, the other two solutions were 

already available, 

The important practical case of a window coupled to a room and 

an open doorway was simulated experimentally on a small scale. 

Strain and deflection data at the center of the window was obtained 
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during its nonlinear response when both the window and the doorway 

were exposed to pressure pulses. The experimental results were 

compared with the finite-difference and the single mode lumped 

parameter model solutions for the plate which were suitably modi

fied to account for the effect of the room and the doorway. 

The following results were obtained: 
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1) Close agreement was obtained between the finite

difference solution of the Von Karman plate equations 

and the experimentally measured response for maximum 

center displacement to thickness ratio of O. 85,, 2. 6 and 

5. 6. 

2) The single mode, lumped parameter model for nonlinear 

plate response was sufficiently accurate at maximum 

deflection ratios of 0. 85 and 2. 6. However, at a deflec

tion ratio of 5. 6 the maximum strain predicted by the 

lumped parameter model was about 50% more than the 

experimental and the finite-difference values. 

3) The multimode, lumped parameter model gave almost 

the same results as the finite-difference solution. The 

contribution of the higher modes increases as the ampli

tude of plate deflection increases. The presence of 

membrane stresses at larger deflections causes the 

shape of the deflected surface to deviate considerably 



from a simple sinusoidal shape so that higher mode 

components are needed to describe the surface. 

4) The cost of computation for the multimode, lumped 

parameter model was approximately one sixth the 

cost of the finite-difference solution. 
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5) At a deflection ratio of 5, 6, the higher mode component 

of the experimentally measured strain was about 45% of 

the theoretically predicted values. This could be because 

the higher modes are most sensitive to damping and 

boundary conditions, 

6) The reflected Moire technique provided whole-field data 

on the deflection of the plate at several instants during its 

transient motion. The agreement between deflections 

measured by the Moire method and the finite-difference 

values was within 10% except at O. 0094 sec. when the 

deviation was larger. 

7) At large nonlinear deflections, a much greater area of 

the plate was found to be subjected to high stresses as 

compared to the linear case where the highest stresses 

occur only in the region around the center. The maximum 

stresses, for the nonlinear case, were in an area of the 

plate that was between the quarter diagonal point and the 

corner. In any predictions on the failure of glass windows 
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at large deflections, the effect of this stress distribution 

should be an important factor. 

8) The finite-difference program for solving the Von Karman 

equations was extended by applying it to the study of the 

transient response of a window coupled to a room and a 

doorway. Good agreement was obtained between experi

ment and finite-difference and single mode, lumped param

eter solutions at a maximum center deflection to thickness 

ratio of 4. 2. 

The ma,jor conclusions from this study are: 

1) The pulse generator and plane wave tube system described 

in this study is a versatile tool for experimental studies 

on the transient response of plates and simulated window

room-door systems. Since the energy of the pulse is 

confined inside the tube it is an efficient way of generating 

pulses of sufficient strength to cause large deflections or 

failure in thin glass plates. 

2) The reflected Moire technique is a simple and reliable 

method of recording whole-field deflection data during the 

transient response of plates and it is applicable to large 

deflections .. It should be particularly helpful when thin 

glass plates are loaded to failure. 
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3) Comparison with experimental data obtained during this 

study indicates that the finite-difference solution of the 

Von Karman equations accurately represents the behavior 

of simply supported, thin glass plates undergoing large 

amplitude transient motion. 

4) The single mode lumped parameter model is accurate 

for relatively small deflection to thickness ratios (DT 

ratio) up to about 1. 5. At larger DT ratios, it tends to 

overpredict the strain. Therefore, it is not advisable to 

use the single mode model for stress and safety calcula

tions at large deflections. 

5) At large dynamic defl~ctions, a larger area of the plate is 

heavily stressed than for the case of linear deflections 

for which the maximum stresses are localized at the 

center. 

6) The multimode lumped parameter model obtained by 

Galer kin I s method gives results comparable to those 

obtained by the finite-difference technique at much less 

cost, 

7) Experimental results obtained in the present study show 

that the transient response of a window-room-door system 

subjected to pressure pulses, which cause large deflections, 

can be simulated accurately by a combination of the finite-
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difference model for the window and the lumped parameter 

representation for the room and open doorway. Useful, 

but less accurate results are obtained by using the single 

mode lumped parameter plate model for this case. 

The following recommendations are made for further study: 

1) The finite-difference solution of the Von Karman equations 

may be extended to studies on the response of thin plates 

to steady, sinusoidal pressures. The practical application 

of such studies would be in the areas of panel flutter and 

plate response to wind storms and jet noise. 

2) A more detailed study should be made of multimode 

lumped parameter models for nonlinear plate behavior. 

The finite-difference program offers a ready check on 

the accuracy of such models. 

3) The failure of glass windows subjected to large ampli

tude, transient motion may be further investigated taking 

into account the greater area of the window that is sub

jected to high stresses as compared to the linear case. 

4) Further experiments on thin glass plates may be con

ducted to study the failure criteria governing glass 

breakage due to pressure pulses. 

5) In the present study, the Moire fringe photographs were 

obtained by repeating the test for each instant of time at 



which fringes were desired. A reliable method of 

obtaining a sequence of photographs during a single test 

is desirable. Such a method will be of great value in 

tests in which the glass is loaded to failure. 
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6) The reflected Moir~ method gives only the deflection 

response of the plate. At large amplitudes, the in-plane 

deformations are also important. The possibility of using 

in-plane Moire techniques for determining the in-plane 

components during nonlinear deformation needs to be 

investigated. 

7) The various methods described in this study, both 

theoretical and experimental, may be extended to the 

study of nonisotropic plates. 
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APPENDIX A 

The following computer program gives the finite-difference 

solution to the Von Karman equations for the transient response of 

simply supported, thin, elastic plates with no in-plane edge restraints 

subjected to a uniform pressure pulse. It has the window-room-door 

system as an option .. Its usage is given as part of the listing. 
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THIS PROGRAM COMPUTES THE RfSPONSE OF THIN, SIMPLY SUPPORTED 
RECTANGULAR, ELASTIC PLATES SUBJECTED TO SYMMETRIC 
PRESSURE LOADING. THE VON KARMAN PLATE EQUATIONS 
ARE SOLVED BY THE METHOD OF FINiTE DIFFERENCES 
MORE DETAILS ABOUT THE PROGRAM CAN BE FOUND IN 
A THESIS BY D.J. ilAYLES-•NONLINEAR DYNAMIC RESPONSE OF 
THIN RECTANGULAR PLATES SUBJECTED TO PULSE TYPE LOADS•. 
OKLAHOMA STATE UNIVERSITY, MAY 1970. 
THE FOLLOWING PROGRAMS ANO SUdROU,TINES ARE REIIUIRED: 
MAIN,PGMl ,DUNT ,FDIA .COEFA,AGEA, PGM2 

JACK BAYLES,CURTIS IKARD AND GANESH RAJAGOPAL O. S. U. 

THE DATA 
CARD l 
IPGMS: 

CARO 2 

CARD 3: 
IFT AB: 

NTAB: 
IFCOT: 

IFVOU 

CARD 4: 
DTTAB: 

CARD 5: 
TTAB: 

CARD6_: 
PSCALE: 

CARD 7: 
PTA_B: 

CARDS SHOULD BE IN THE FOLLOWING SEQUENCE 
FORMATIA41 IPGliS . 
INSERT PGMl IF NEii SET OF DATA IS 
TO BE CALCULATED 
INSERT PGM2 IF DATA HAS ALREADY BEEN 
CALCULATED ANO STORED ON DISK AND ONLY 
SOME PARTICULAR DA TA POINTS ARE TO 
BE OUTPUT• IN THIS GASE SEE 
I USA~E-PGM2 1 WHICH FOLLOWS. 

FORMATl3Dl5.81 TS,PL,TAU 
TS:' STOP TI ME FOR THE I NTEi.RAT ION, is fCI 

., PL: MAGNITUDE OF N NAVE IPSFI 

I:U:~~;A~~~;s~:/1~A~~r AN 11Avti,1!~'-!No 
TAU CAN BE LEFT BLANK 

FDRMATl4151 IFTABiNTAB,IFCDT,IFVOL 
O lF INPUT DATA IS NOT TABULATED 
1 If INPUT DATA IS' IN THE FORM OF 

A TABLE OF NUMBERS. 
NUMBER OF DATA POINTS IN TABLE 
O If TABLE IS Nor AT UNIFORM TIME 

INTERVALS 
1 IF TABLE IS AT UNIFORM TIME INTERVALS 
D PLAT!: ALONE 
1 WINDOll~ROOM-DOOR SYSTfM 

FURMATID15. 81 DTTAII 
IIFCDT=ll UNIFORM TIME INTERVAL OF 
TABULATED INPUT DAT A. 

FORMATID15.81 TTA1l 
IIFTAB=l AND IFCDT.LE".01 UNITS ISECI 
TIMES AT WHICH PRESSURE DATA ARE TABULATED 
NT AB VALUES- ARE Rf<1UIRED IN SEQUENCE, ONE 

·VALUE PE~ CARO. 

FORMATIOl~.61 PSCALE 
MULTIPLYING FACTOR FDR TABULATED 
PRESSURE VALUES TO CONVERT THEM INTO 
POUNDS PER S~UARE FOOT UNITS. 

FORMATID15. 81 PTAB ,, 
NTAB VALUES FOR THE INPUT PRESSURE 
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CARD 8: 
AX: 
BY: 
H: 

CARD 9: 

e: 
PR: 
sw: 

CARO 10: 
M: 
N: 
ox: 

uT: 

NOTES: 

IIFTA8zll ON!: VALUE PtR CARO 

FCRMATl3Dl5.81 AX,BY,H 
LENGTH Of PLATE IFTI 
WIDTH OF PLATE IFT I 
THICKNESS OF PLATE I INI 

FORMATl3-Dl5.81 E,PR,,S_;i 
MATERIAL PARAMETERS , 
YOUNGS MODULUS IPSII 
POISSliNS RATIO 
SPECIFIC WEICiHT I LBF/FT .. 31 

FORMAT lll5 ,.!015 ,81 M,N;Dll,DT, 
NUMBER Of GRID POINTS IN ·x DI RECTI ilN_ 
NUMBER OF GRI_D POINTS IN Y DIRECTION 
GRID LENGTH iFT I MUST HE SAME IN 
X AND Y DIREC TIDNS. 
INTEGRATION STEP s llE I sec, 'MUST BE 
LESS 'THAN CRITICAL VALUE FD~ _ 
STABILITY. !REFER TO O.J. BAYLES' THESISI 
M MUSi BE GREATER THAN OR EQUAL TO 5 
ALSO M. LE. N 
DIM-ENS IONS HAVE BEEN SET UP FOR 
A MAXI MUM OF M*N=64 GR IO POINTS• 

INTRODUCE NEXT CARD ONLY IF lFVOLs 1 
CARD 11: FORMATl4Dl5.51EL,-AR,-VOL,Z 

EL: EFFECT! VE LENGTH UF- DOOR IFTI 
AR: AREA OF IIODR IFT**ZI 
VOL: VOLUME OF ROOM I FT ••31 
z: EFFfCTIVf: DAMi'ING FACTOR AT DOOR 

CARD 11• 
OUTPUT 
1150: 
NMULT,: 

NREC: 
NS REC: 

IFSOP: 

FORMATl5 l5 I NSD,NMULT ,NREC,NSREC, IFSDP 
INFORMATION 

NUMBER OF OUTPUT POINTS _ 
MUL'TIPLl:S OF THE TIME lNT-ERVALS AT _WHICH ilATA is:
STOREO ON THE DISK AT "HICH STRESS-STRAIN OUTPUT, 
IS 'DES IRED. - -

NUMBER OF RECORDS ON DISK 
STARTING RECORD fOk STRESS-STRAIN 
CALCULATIONS 
O PARTICULAR RECORDS ONLY ARE TC BE 

OUTPUT• THESE f<ECORO NUMBERS 
ARE iii VEN UNllER IVREC. INEXTI 

SUCCESSIVE RECORDS SEPARATEll 
II• TIME BY NMULT•DT ARE TO BE 
OllTPUT 

NOTES: TH"IS PROGRAM HAS BEEN SET UP TU STJltE 
A MAXIMUM OF_ 289 KECORUS ON A UISK,EACH RECORD 
CONTAINS- TIME,DEFLECTION A~ STRESS FUNCTION 
AT EACH GRID PCllliT AT THAT TIME.THE DATA IS STOR1:D AT 

11 EVERY INTEGI\AUON STEP IF 
ITS/DTl•l .E.289 

ll EVERY OTHER INTEGKAT IUN STEP IF 
I TS/OTHl .GT .289.AND. LT• 594 

3J EVERY FIFTH INTE-GRATION STEP IF 
ITS/DTl•l .GT.594.AND.LT.1188 

-.J 
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4IEYERY TENTH INTEGRAJIOli SlEP IF 
I TS/D Tl+l.GT.1188.AHO.LJ.2316 

51PROGRAII ~UITS If ITS/OTl+l.Gl.2376 

FOR EACH Of THE CASES A60YE, THE NUMBER 
Of RECORDS,NREC,l~ THEN 

11 NREC=ITS/DTJ+l 
ZI NREC= ITS/12*0TJ)+l 
31 NREC= ITS/15•DHH1 
41 NREC= ITS/ ll~DTI I +l 

NMULT IS THE MULTIPLE OF THE TINE INTERVALS 
BET oEEN RECCRDS 

CARDlZ: FORHATI 1615111 VREClll.1=1,NSOI 
REQUIRED ONLY IF lFSOP..O 

I VRECI II= THE PARHCULAR NUM8ERS t;;c THE 
RECORDS NHICH ARE 10 BE OUTPUt 

CARIJB: FtJRMATl1615111 OPVU I ,1=1,Hld 
IOPV 111= 0 NO Pl! INT Ok PUNCH 

l PRUIT 
Z PRINT ANO PUNCH 

THIS CONTROLS NATURE Of STRESS, STRAIN, 
DEFLECTION OUTPUT AT EACH Glth> POINT FOR 
THE SELECTED NSD TIIIES AT .. HICH OUTPUT 
IS DES IRED 

PUNCHED OUTPUT FORMAT: 
FGRMAT 15015 .7 ,151 EPX8, EPXH,EPY 6,EPYH,DEFL ECJIDNo I 
EPXB: SENOING STRAIN IN ll OIRECTl!IN 
EPXM: MEMBRANE STRl,IN U. X OlRfCTIDN 
EPYB: BENDING STRAIN Iii Y D!RECJION 
EPY14: MEMBRANE STRAIN IN Y DIRECJJOr. 
UEFLECT ION: DEFLECT !UH IN INCHES 
I: GRID POINT AT .. HICH DAHi IS OUTPUT. 

TH lS PROGRAM ALSO OllJPUTS PRESSIME AND CENTER DEFLECTION 
AT EACH INTEGRATION STEP AND OEFLECJION PROFILE IN ll AND I' 
UIRECTIONS AT THE CENTER OF lltE PLATE Al EVERY TENTtt 
lhTEGRAT!ON.STEP. 

'USAGE -

CARD l: 

CARD 2 
CARO 3 
CARO 4 
CARD 5 
CARD b 

PGM2' 
FUR IPGMS IN CAkO •• • PGMZ HAY BE 
INSERTEU i,;HEN DATA HAS ALREAD\' BEEN 
PUT ON DISK ANO INFORHATH1N IS JO 8E OUTPUT 
ONLY AT PART !CUL AR l lHES.TttE 
FOLLOW! NG SEUVENCE Of CAltDS IS HiEN REW IRcO 

FORMAT IA41 IPbHS 
I PGMS=Pli112 
FORMATl4Ul5.81 E,H,PR,DX 
FORMAT 1215 IM,N 
FORMA Tl 5151 NSO,NliUL T ,NREC•N'>REC,lfSOP 
FORMAT! lb 15H IVRECI I h I= l,NSOI 
FORMATl16151110PVll1rl=l,HNI 
SYMBOLS HA VE SAHE MEANING AS ll'EfllitE 

c 
c 
c 
C l'AIN 
c 
c 

c 

c 

c 

c 

IMPLICIT REAL•B IA-H,0-ZI 

COMMON f.H.PR.ox.M.N.104 

10 FORl'AT 14015.81 
ZC FORMAT IA41 
?C FORMAT 12151 _. 

&99 FORMAT 1' l SKIP A PAGE BEhlEEN CASES' I 

CATA IPGMZ l'PG/42 1 / 

C DEFINE A FILE FOR DIRECT ACCESS l<ITH UP TO 300 RECOROS, EALH niTH 
C A FIXED LENGTH OF 258 STtMAGE -OS. IT,i;l641,Fl641 = 129 UOUBLE 
C FRECIS!llH WORDS = 258 SJCRAGE WORDS.I 
c 

c 

c 
c 
c 
c 

c 

c 

(. 

c 

CEFINE FILE 41300,258,U,1041 

999REAll 15,201 IPGMS 
IF IIPGHS • E1,1. IPGMU Gu TD 100 
RcAO 15,101 TS,PL,TAU 
lt)4z 1 
CALL PGMl ITS,PL,TAUI 
GO TO 200 

100 READ I 5, 101 E ,H ,PR ,OX 
FEAU 15,301 M,N 

2CC CALL PGM2 
WRITE 16,6991 
GC TC 999 
ENO 

SU6RllUTINE PGMl ITS,PL,lAUI 
IMPLICIT REAL•B IA-H,C-ZI 

CUHMON E1H 1 PRiOX 1 M,N 1 l04 

OIHENSION wl 64,lll ,Fl 64,ld ,Al b't, 6'tl,81 b41,CI b41,B81 b41 
l ,DCl18001,PllZI 

CI~EI\SIIJN TJ,1811001, FTABl!OOI 
OlKENSION POPllll 

Dll'Ei'<SION EX21l.!1,PlllU 

KR~b't 

C l~PLT FCRHATS. 

c 

lCC FORIIAT 131)15.81 
101 FORMAT 1215,2015.al 
500 FORHAT14151 
5Cl FORMAT 1015.81 

C ClTPUT FORMATS. 

...J 



c 

110 FORMAT (//lX,'TIME = ',F7.S,10X,'!04 = ',151 
111 FORMAT llX,10013.SI 
120 FORMAT ( 'l TIME RESPONSE SUBROUTINE SUBPROGRAM ( PGMll' 

* /lllX,'FROM A MAH• PROGRAM BY JACK BAYLES MAY 1970• 
* /lllX,'FINAL CHANGES SY ROBERT C IKARD JULY 1971' 
* //lllX,'8ASIC PLATE INPUT DATA IS AS FOLLOWS' 
* /lllX,'AX (LENGTH --- X-OIRECTIONI =',Fl6.l0,' FEET' 
* //UX,'BY (LENGTH----- Y-DIRECTIONI =• ,Fl6.l0,' FEET' 
* //llX,'H (PLATE THICKNESS) =•,Fl6.l0,' INCHES' 
* //llX,•E (MODULUSI =',016.6 ,• PSI' 
* //llX, 'PR IPOISSON"S RATIOI =• ,Fl6.l0 
* //UX,'SW (SPECIFIC WEIGHT I =•,Fl6.l0,' PCF' I I 

121 FORMAT 1///llX,'N-wAVE LOAD-TIME PROFILE OPTION' 
* //llX, 'Pl (PRESSURE LEVELi =• ,Fl6.l0,' PSF' 
*. //llX,'TAU (PERIODJ = 1 ,fl6.10,' SECONDS' 

122 FORMAT (1//llX,'TIMt RESPONSE UJNTRDL PARAMETERS' 
* //llX,'M (X-DIRECTION NOOE POINTS)=• ,IS 
* //llX,'N IV-DIRECTION NODE POINTS) =',15 
* //UX, •ox (GRID SIZE - EQUAL X,YI =· ,Fl6.l2,' FEET' 
* //llX,•OT (TIME INCREMENJJ = 1 ,Fl6.l2,' SECONJS• Ill I 

6CC FURHAT ( 1 1 NUMBER OF TIME STEPS EXCEEDS STO~AGE.• 
* //2X,'TTIME =',012.4 
* //2X ,• PRCGRAH HAS ENDED.' I 

601 FORMAT (15X,'TIME-PRESSURE VARIATION DESCRIBED BY TABULAR INPUT' 
* //SX, •NUM8EK OF TIME-PRESSURE POINTS =' ,15 
* ///5X, 1 TINE' ,llX,'PRESSUH.E' I ) 

602 FORMAT ( lX,012. 5, 5X,Ol2. SI 
603 FORMAT I /lX,'PRESSURE, CENTER DISPLACE:MENT ANO STRESS FUNCTION FD 

*R A SET OF 10 TIME POINTS.• I 
604 FORMAT(llX, 

l'Y CENTERLINE DISPLACEMENT AND STRESS FUNCTION ANO X CH LINE JI SP 
l TIME=' ,F7.51 

C START AT THE FIRST RE<:;GRO ON UNIT 4. 
ID4=l 
READ15,50011FTAB,NTA8,IFCOT,IFVOL 

IF IIFTAB .LE. 01 GO· TO 87 
IF ( IFCOT .LE. 01 GO ro, 77 
READ 15,5011 DTTAB 
DO 75 (:l,NTAS 

75 TTAB(il = ll~ll * DTTA8 
GC TC 78 

17 READ (5 1 5011 (TTAS(ll,l=l,NTA~I 
78 READ 15,5011 PSCALE 

READ 15,5011 (PTABlll,l=l,NTABI 
00 ,9 l=l,NTA8 

'J9 PTAS(ll ~ PSCALE * PTA1HII 
€7 READ (5 1 10CI AX,BY,H,E,PR,SW 

WR!TE(6,120l AX,BY,H,E,PR,SW 
IF IIFTAB .LE. 01 GO TO 88 
WRITE 16,6011 NTA8 
WRITE lb,6021 ITTABlll,PTAblll,!=l,NTABI 
GO TO 89 

88 WRITE( 6 1 1211 PL, TAU 
89 ~O=SW/32 .2 DO 

U=E*H**3/I 12.DO*I l.DO-PR**21 I 
RicAD I 5 1 1011 M,N,DX,DT 
oRITE16,l22l M,N,DX,DT 
HIME = TS I DT 

FOR 

c 

IFITTIHE.LE.2376.001 GO TO 15 
WRITEl6,6001 TTIME 
GO TC 90 

15 1FITTIME.GT.ll88.00I GO TO 205 
IFITTIME.GT.594.001 GO TO 200 
IFITTIME.GT.289.DOI GC TU 201 
INCR=l 
GO TC 17 

201 1N(;R=2 
GO TO 17 

200 INCR=5 
GO, 10 1.7 

205 INCR= 10 
17 TMFLT=OFLOAT I INCRI 

T=c.oo 
MN=M'"N 
Cl=OT**2*DI lRO*H*OX**4l 
C2=0T**2 II RO*llX**41 
C3=0T**2*144.00/IRO*HI 

C SET lW IAI MA.TRIX 

c 
c 
c 

c 

SH 

:.01 

6C5 

6C6 

CALL COEFA IAilhN,KR I 
CALL AGEA (A,OC,M,N,KRI 

UP !NIT !AL CONDIT IONS 
CHECK FOR WlltOOW-ROOM-OfiUR OPTION 
IFI IFVOL-11300,301,300 
CChTINUE 
READ15,605l El,AR,VDL,Z 
FORIIA Tl 4015. 51 
ELl=EL 
E112= ELl*AR*l.4*14.7*144./11100.*llOO.l 

EK22=1.4*14.l*l44./YOL 
WR ITEl6,606lEl.oAR,VOL, EK2, l 
fUKMAH2X," INPUT FOK ROCM DOOR i:TC "•5(2X,Dl2.5ll 
wMNlo°!:= ll00.40SQRT(Mt,i ELl*VDU J 
EHTEM=E112/IDT*DTI 
Z TEN=Z * IIHNA T•E M2/UT 
FACT 1=2,*Elff EIV I EMJ EM•ZJEMJ 
FloCT2=1ZTEM-EIIJEMJ/fEMTEll<-ZTEIIJ 

FACT ~-AR/lEMTEM•Z lEMJ 
CJEM=OT*Dl/Elt2 

E•21H=O.DO 
EX212t=-loR"f'TA61 U*DlEM 

Pl IH=0.00 
3CC CUNTINUE 

0031=1,MH 
f I I ,l J=0.00 

3 •If ,U=O.DO 

C CALWLATE LOAD AT FIRST IIME STEP 
IF IIF TAil .LE. OJ GO lO 37 

c-
c 1-BLLAR VALUES. 

c 

Pl U = PTAIII U 
QJ Ti) 38 

C lt-1tAYE 
37 l'IJJ=l'l 

-.] 

00 



c 
C STARTING FORMULA 

38 0051=1,MN 

c 

WI I ,21=.5DO*C3*Plll 
POP Ill • Pl 11 

6 CONTINUE 

C CALCULATE LOAO FOR NEXT 10 TIME STEPS 
IF IIFTAB .LE. 01 GO TO 70 

c 
C TABULAR VALUES. 

c 

IF !T .GT. TTABINTABII GO TO 
00 56 J=Z, 11 
T = T + OT 
CALL DLINTl (TTAB,T,PTAB,PINT,NTASI 
P( JI = PINT 
IF IT .LE. TTABINTABII GO TO 56 
Pl JI • O.DO 

56 CONTINUE 
GO TG 10 

C h-WAVE 

c 

7C IFIT.GT.TAUI GO TO B 
D07J=2, 11 
T=T+OT 
Pl JI =PL* (l. 00-2 .DO*T/TAUI 
!FIT.LE.TAUi GO TO 7 
PIJl=O. 00 
CONTINUE 
GO TD 10 

8 C09_J= 2, 11 
T•T+UT 

9 P(J l•O. DO 
10 CONTINUE 

C CALCULATE W & F FOR 10 TIME STEPS 
CAll FDIA(M,N,~N,W,f,A,a,c,sa,oc,P,Cl,C2,C3,E,KR,EK22,DTEM, 

l AR ,EX2, P l,OX,FAC Tl ,FAC T2 ,FAC T3 ,IF VOLi 
TT= T -10.00 * OT 
oRITE 16,1101 TT,104 
CO 479 1•2, 11 

479 POPIII = Pill 
IIRI TE 16,6031 
WRITE 16,1111 (POPlll,1•1,101 
POP 111 = P 1111 
kRITEl6,llll IWIMN,JI ,J=l,101 
WRITEl6, llll IFIMN,Jl,J=l, 101 
1'1M = TT • 9.00 * OT 
WI ITE I 6,b041 TMM 
WRITEl6,llll IWll,101,l=H,MN,MI 
oRITEl6,llll IFll,101,l=M,MN,MI 
NCAT=MN-H+l 
oRITE lb ,111 IIWI 1,101, I=NCAT, MN I 

IFIIFVOL-11302,303,302 
303 CONTINUE 

EX211 l•EXZ 1111 
EX2121•EX21121 
Pll ll=Plllll 

302 CCNTI NUE 

c 
c 
c 
c 

TW=TT 
DO 20 J=l,10,INCR 
i.RITE 14'11)4) TW,IWII ,JI ,1=1,MNI ,lftl,Jl ,I=l,MNI 

20 h = TW + TMFLT * OT 
00711=1,MN 
Fl 1, ll=FI 1, 111 
1<11,ll=W!l,lll 

71 ~1,Zl•Wll,lZI 
IF (TT .LT. TSI GO TO 6 
GO Tei 199 

SC CALL EX! T 
199 RETURN 

ENO 

SUBROUTINE FOIA(H,N,~N,-,F,A,d,C,8ti,D~,P,Cl,C2,~J,E,KK,~K2i,DT~M, 
1 AR,EX2 ,Pl ,DX,FACTl,FACT2,FACT3, IFVOL I 

IMPLICIT REAL*B IA-H ,O-ZI 
Cl~HSION WIKR,ll,F(1<R, ll,Al1<.R, ll,B(ll,CI 11,Bol 11,ll<:I U ,Plll 

DIMENSION EX211J ,Pl Ill 
C SET UP CONSTANTS ONE TIME ONLY 

c 

l IFI .. IMN,11.NE.O.J GO TO 2 
IU=M+l 
M2• 2*11 
~.::,zJ•M 
M4=4*M 
MNM=MN-M 
LT= I N-21 *M•l 
LN=N-2 
Ul=M-1 
LLN•~-3 
UM=M-2 
LLT=LT+2 
LLS=MNM-2 
M2l=M.2+ l 
LS= I N-31 *M+l 
LST=lt,-Zl*M 
CONTINUE 
C070J=2, ll 

C USE LINEAR TERMS ONLY FOk VERY SMALL 
c 

c 

IFlwlMN,Jl*WIMN,JI.GT.O.OOOlllOIGO TU 10 
0031=1,MN 
F(l,Jl=O.DO 
68111 •0, DO 
GO TO 50 

10 CO~TINUE 

C CALCULATE CONSTA,,T IIECTUR Fu~ A f-=C !SS CR Cl 
c 

Clll=IWIH+2,Jl**2/lo.DO-l-2.UO*Wll,Jl+W12,Jll*l-2.DO*Wll,JI+ 
l WIM+l,JI I l*E 

-J 
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c 
c 
c 

c 
c 
C. 

CIHl•l-12.00*WIM-l,Jl-2.00*WIM,Jll*IWIH2,Jl-2.00*WIH,Jlll*E 
CIHNl•I-IZ.OO•wlHN-l,Jl-2.DO*WIHN,Jll*l2oOQt<W(HNH,Jl-2.00*WIHN,JI 

l ll•E 
K•MNM+ l 
CIKl•(-1-2.oo•wlK,Jl+WIK+l,Jll*(Z.uO•WIK-M,Jl-2.00*WIK,Jlll•E 
00111=2 ,LM 
K=l+H · 
Cl 11• I 1-W(K-l,J 1+11 (K+l, JI I **2116.00-( WI l-l ,Jl-2.0Qt<WI I ,JI+ Wll+l ,JI 

l 1•1-2.oo•wll,Jl+WIK,Jlll*E 
K=MNM+I 

11 CIK 1=1-IW (K-1,J 1-2 .OD*• IK,J l+WIK+l,J 11•1 2 • .,o•w1 K-H,Jl-2.00*W(K,JI 
l ll*E 

00121•Ml,LT,M 
IM•l+M 
ll=I-M 

12 C(Il=((W(IH+l,JI-WIIL+l,Jll**2/l6o00-(-2.00*WII,Jl+WII+l,JII• 
l IWIIL,Jl-2.00*Wll,Jl+WIIM,Jlll*E 

00131•'42,MNM,M 
IM=l+M 
IL•l-M 

13 Cll l =(-12. OO*WI 1-1, Jl-2 .uo• .. 11, JI,., .. I IL,J 1-2 .oo•w 11,J l+wl IM,J II 
l l*E 

C014K•l, LN • 
KM=K*M 
00 l'tl= 2, LM 
l:=Kfil+l 
IM:;i:l+H 
IL= 1-M 

14 C 111• I (WI IL-1,J 1-W I IM-1,J I +WI IM+l,J 1-W Ill+ 1,JI I **2116,00-I WI l-l ,JI 
l -2.oo•wll,Jl+Wll+l,Jll•IWIIL,Jl-,.oo•w11,Jl+W(IH,Jlll•E 

PERFORM GAUSS EL IM Jr.AT ION ON CII I 

21 KK•O 
L=2•M+l 
K=l 

22 l•K+l 
23 KK=KK+l 

Clll•CIII-DCIKKl*CIKI 
lfll-Ll24,25,40 

24 l•l+l 
GOT023 

25 IFIL,LT.MNIL•L+l 
2f IFIK-MN+l127,31,40 
27 K=K+ l 

GOTC22 

PERFORM BACK SUBSTITUTION FOR Fiii 

31 LL•Mh-MZ 
L=MN 
FIL,Jl•C(LI/AIL,LI 
l=M~-1 

~2 IFII.LT,LLIL=L-1 
K=l+l 
S•O.DO 

~3 S=S+AI 1,Kl*fl K,JI 
IFIK-LIH,35,40 

il4 K=K+l 

c 

GOT0.:13 
35 Fil ,JI •ICIII-SI/All,Il 

If( 1-1140,40,36. 
36 I• 1-1 

G!lTC32 
~0 CONTINUE 

C CALCULATE hONLINEAI< TERMS f(R SS OR C 
c 

88111= 1-2.oo•FI l,J I +FIM +l,J 11•1-2.oo•w11,Jl+WI 2,JI I +1-2.oo•F 11,JI + 
l f 12,JI I• 1-2.00*W 11,JI +WIM+l ,JI I-IF IH+2,J l*WIH+2,J 1118.00 

881 Hl•l-2.0 O*F IH,Jl+FIH2 ,J 11•12 .DO*hl M-1,JI -2.oo•w IM,JIJ+ 12.00• 
1 F 111,-1,J 1-2 .oo•FIH,J 11•1-2 .oo•wlH ,J )+WI HZ,JII 

BBi ""' •12. OO*f IHNH, Jl-2 .DO•F (MN,Jll •12.oo•w IMN-1,J 1-,.oo•wlHN,J 11 • 
l 12.00*-FIHN-l,J 1-2.oo•F I MN ,Jll •12. DD*"' Ht,H,Jl-2.00••IHN, JI I 

K=HMl+l 
BBIKl=l2.0D*FIK-M,JI-Z.oo•FIK,Jll•l-2.DO•wlK,Jl+wlK+l,JII+ 

l 1-2.oo•FI K,J l+FI K+ l,J 11•1 2.oo•w1 K-M,Jl-2. 00*•1 K,JI I 
DO'ol 1=2 ,LM 
K:f+H 
fBI 11= 1-2.DO•FI 1,J 1 +flK,J I I •I WI 1-1,J 1-2,DO•lll l ,JI +.11+1,JI I+ 

l If 11-1,JI -z. DO•FI I ,JI +fl I +l ,JI l•l-2 ,00*" 1 I,J I +w IK,J 11-
2 I-fl K-1,J l+FIK+l ,J 11*1-wl K-1,JI +WI K+l ,JI I /8,00 

K==f'~M+I 
H BBIKI •12.0D*f IK-M,.Jl-2.oo•F {K ,JI,., WI K-1,J 1-2.00*W IK,J I ... , .. +1,J 11+ 

l (f IK-1,J 1-2.oo•F I K, Jl+f I K+l ,JI>• ( .2.00*111 K-H,Jl-l, oo•w lK,JI I 
OD421•Ml,LT,M 
IM=l+H 
IL= 1-M 

42 BB{ 11= If I IL,.i 1-2 .oo•FII, JI +F( 111, J 11 •1-2.oo•wll ,JI +wl I +1,J 11+ 
1 1-2.00*F 11 ,Jl+f l·l+l ,JI •• , W II L,Jl-2 .oo•w 11,J h• 1 IM,J 11-
2 IFIIM+l,JI-FIIL+l,Jll*IWIIH+l,JI-Wlll+l,Jll/8,00 

0043 l•MZ ,MNM,H 
IM=l+H 
ll=.I-H 

43 HB 111= If I IL,J 1-2 .oo•FI 1,J l+FI IH,J 11 •12.oo•wl l-l,Jl-l.OO*WI I ,JI I+ 
1 12.oo•FI 1-1., JJ-2.00*f 11,Jll•lw I I L,Jl-2 .oo•w 11,J 1 +• 1111,J 11 

C01t41(=1,LN 
Kfl'=K•lil 
OO~U=Z,LM 
l=KH+L 
IM=l+H 
ll=I-M · 

t,t, 1>6 I I l=I Ft! L ,Jl-2,0il*F 11 ,Jl+F I IM,JI I* I WI 1-1,Jl-l, O.l*wl 1, JI +,.11+1, JI 
l I +IFI 1-1,J 1-2.DO*FI I, JI +fl l+l,J 11*1 wll L,Jl-2, DO*wll ,Jhwll M,JI 1-
2 If IIL-1,Jl-f 1111-1,J l+f IIM+l ,JI-fl IL+l, J 11* 
3 I WIIL-1,J J-wl lM-1,JI+ wl I M+l ,Jl-,;( ( L+l ,JI 1/8,00 

50 CONT lltUE 
c 
c CALCULATE DEL fuukTH" fuK ~IMPLY SUl'POilTED 
c 

8.111 =l B,ilO*wl.l ,JI-~. OO•l •12 ,Jl+w lHl ,JI 1+2,DO.••IHl +l, JI+.< 13,J I+ 
l w(.Ml+l,JI 

fl21=19.DO*w12,Jl-a.OO•l•ll,Jl+ol~,Jl+wlM+2,Jll+2.llO•lwlHl,JI+ 
l WIM+3,Jll+lcl4,Jl+IIIH2+2,JI 

f1Hll=l9 .oo•wlMl,J 1-a.00•1 .. (M+Z,J I+ l<IM2+1,Jf+wl 1 ,JI 1+2.olO• 
l INIM2+2,JJ+WIZ,Jll+wlM+3,Jl+wlMi!+l,JI 

8( H+21•20,il0*"1 M+2,Jl.-8, 00* I wl 111,JI +~111+3 ,Jl+w( 14£+2 ,JI +i, 12,J 11+ 
l 2 .uo• 1w IM2+l,J l+W IM2+3,J l+hl i ,J l+ .. 13,JIJ .... M+4,Jl+iOl 113+2 ,JI 

OC> 
0 



e( M- ll= 20 .OO*W( M-1, J 1-a.00•1 W( M-2,J I+ WI M, JI+ W( M2-l, J l 1+2. DO* 
l IWIM2-2 ,Jl+W (M2,J l J+W( H-3,J l+W IM3-l,J l 

BIMl=l9.00*WIM,Jl-8.D0*(2.DO*W(H-l,Jl+WIM2,Jll+4.DO*wlM2-l,JJ+ 
l 2.DO*WIH-2,J l+WIM3,JI 

B(M2-ll=21.00*WIH2-l,Jl-8.DO*(W(M2-2,JJ+W(H2,Jl+W(H3-l,Jl+W(H-l,Jl 
l l+2.DO*IWIM3-2,Jl+WIM3,Jl+W(M-2;Jl+WIH,Jll+W(H2-3,Jl+WIH4-l,JJ e, M2 )=20 .DO*W (M2, J 1-8 .DO*( 2 .DO*W I M2- l, JI +WI 113,J l +w( H, J l I +4. U O* 
l IW(H3-l,Jl+WIH-l,Jll+2.DO*W(M2-2,Jl+W(M4,JI 

K=LT 
8( K1=20. 00 OW IK,J 1-B .DO*( WIK +l, J l+W ( K+M, J )+;,/( K-M, J l l +2.00* 

l IW(K+Hl,J)+W(K-LH,Jll+W(K+2,Jl+WIK-M2,JI 
K=K+l 
B(K 1=21.00*W IK, J 1-8 .DOO(W(K-1, JI +wl K+l,J J+WIK+M ,J l +WI K-H, JI I +2. DO* 

l (WIK+LH,Jl+W(K+Ml,Jl+W(K-Hl,Jl+W(K-LM,Jll+W(K+2,Jl+W(K-M2,JI 
K=MNM+l 
BIKl=l9.00*WIK,Jl-8.DO*(WIK+l,Jl+2.000W(K-H,Jll+4.DO*WIK-LM,JI+ 

l W(K+2,Jl+2.DO*WIK-M2,JI 
K=K+l 
Ill KI =20. OO*W (K, J 1-8 .DO* (W IK-1, J I +w (K + 1, J 1+2 .oo•wc K-M, J 11 +4.0 O* 

l ( WIK-Ml, JI +WI K-LH, JI I +WI K+2 ,Jl+2. DO*WI K-M2 ,JI 
K=MNM-1 
81 Kl =22. DO*W{K,Jl-8 • 00* (W (K-1,J I +w (K +l ,J l+W( K+M, J l+W( K-M, J 11+2.uO* 

l IWIK+LM,Jl+W(K+Ml,Jl+W(K-Ml,Jl+WIK-LM,Jll+WIK-2,Jl+W(K-M2,JI 
K=K+l 
8( Kl =21. DO*W I K, Jl-d. DO• 12 .DO*W(K-1, JI +w I K+M, J l+w (K-H, JI l +4.00* 

l (W(K+LM,J l+W(K-Ml,Jll+2.00*WI K-2,Jl+W(K-M2,JI . 
K=MN-1 
Bl Kl =21. DO*WI K, Jl-8. DO•'I WI K-1, JI +WI K+l, JI +2. DO*W (K-H, J 11 +'t .DO* 

l I WIK-Hl,J l+W( K-UI, J 11 +WI K-2,J I +2.DO*WI K-M2, JI 
8( MNl=20 .DO*W (MN ,JI -lb. DO• (W IK,J I +w IHNM, J 11 +8 .LlO*WI MN-Ml, JI+ 

l 2.DO*IWIMN-2,Jl+W(MI.-M2,JII 
D05 ll=3, LLH 
Ill 11 =19. DO*W 11,Jl-8. DO* IW ( f'-1,J I +w I l+l ,J )+WI l+M, J 11 +2.00* 

l I WI l+LM,J l+W( I +Ml ,JII +WI 1-2 ,JI +WI 1+2 ,JI +WI l+M2 ,JI 
K= l+M 

51 8( Kl =20.DO*W( K, Jl-8. co• (W IK·-1, JI +WI K+l,J l+W (K+M, J l+W (K-M,J 11 +2.uo• 
I (W(K+LM,Jl+W(K+Ml,Jl+W(K-Ml,Jl+W(K-LH,J)l+W(K-2,Jl+W(K+2,J)+ 
2 WIK+H2,Jl 

00521=LL T,LLS 
Bl 11=21.000W( 1,J 1-8.DO*( W( 1-·1, JI +WI I+ 1, J)+W( l+M, JI +W( 1-H, J l l +2. DO* 

l (Wll+LH,Jl+WI l+Hl,Jl+W (1-Ml,Jl+W( 1-LH,J I )+WI 1-2,J )+WI 1+2,JI+ 
2 WI l-M2 ,JI 
~I~ .. 

52 8( Kl=20.oo•w (K,J b8 .oo•cw(K-1,J I +w I K+ l,J 1+2.DOOW( K-M ,JI 1+4.UO* 
l I W( K-M 1, Jl+W( K-LM, JII + WI K-2, JI+., K+2 , JI +2. uo•w I K-M2, JI 

C053 l=M21,LS,M 
B(I I =19. DO*W( 1,Jl-8 .DO* (W ( l+l ,J l +W ( l+M ,J )+WI 1-M, JI )+2.DO* 

l ( WI l+Ml,J l+W( 1-LM, JI HW( 1+2 ,JI +WI l+M2, JI +WII-H2 ,JI 
K=l+l 

:3 BIKl=20.00*WIK,Jl-8.00*IW(K-l,Jl+W(K+l,Jl+WIK+H,Jl+W(K-H,Jll+2.DO* 
l (W(K+LH,Jl+W(K+Ml,J)+W(K-Hl,Jl+W(K-LH,J)l+W(K+2,J)+W(K+M2,Jl+ 
2 WIK-M2,JI 

0054l=M3 ,LST ,M 
B( 11= 20 .DO*W( 1,J 1-8. DO*( •• oo•w, 1-1,J)+W( l+M,J) +w I 1-M, J) l +'>. DO* 

1 (WI l+LM,JI +WI I-Ml, J 11+2.DO*W I 1-2,J I +W ( l+M2,J l +WI I-M2,Jl 
K=l-l 

5'> 8( KJ=21.00•11 IK ,J )-8. DO* ( W( K- l,J l +W( K+ l, J l+W( K-M, J)+ W( K+ M ,JI l +2. oo• 
l (W(K+LM,Jl+WIK+Ml,Jl+WIK-Ml,Jl+WIK-LM,Jll+W(K-2,Jl+W(K+M2,Jl+ 
2 WIK-M2,Jl 

c 

0055K=2 ,LLN 
KM=K*H 
C055L=3,LLM 
l-=KM+L 

:5 Bl I 1=20 .DO*•H 1,J l-8.DO*( WI 1-1,JI +WI I+ l ,Jl+W( l+M,Jl +WI 1-M,JI I +2 • DO* 
l I W II +LM,JJ +W( l+Hl t J l+W (I-Ml, J l+W ( 1-LM,J 11 +II( 1-2,J l+W( 1+2 ,J )+ 
2 W(l+M2,Jl+hll-M2,Jl . 

IFIIFVOL-lll00,101,100 
101 CONHNUE 

C THE VOLUME OISPLACED BY PLATE DEFLECTION IS CALCULATED NEXT. 
c 

c 

vot= .. 11, JI *OX*O X/ 3. 
DD 71 l=l,LM 
VCL=VOL+ IW 11 ,Jl +W 11+1, JI l*DX*DX/4. 

7l CONTINUE 
DG 72 l=l,LT,M 
VCL=VOL+IWll,Jl+Wll+M,Jll*DX*DX*0•25 

72 CONTINUE 
NV=N-l 

DC 73 l=l ,NV 
Ll=II-ll*M+l 

Wl=W(Ll,JI 
W3=W(Ll+M,JI 
DO 73 K=l,LM 
Ll=Ll+K-1 
W2=•1 l2+ 1, Jl 
114=W<IL2+H+l,Jl 
VQL,aVQL+O. 25*DX*DX* (Wl +W2+W3+W4 I 
Wl=W2 - ' 
W3=W4 

73· CONTINUE 
VUL=VOL/3. 

ETVOL=ARl<EX21Jl-VOL 
Pl I JI =EK22* ET VOL 
PJ=PUJl+P(Jl 

EX2(J+l l=FACTl*EX21J )+FACT 2*EX.2(J-l )+FACT3*PJ 

C CALCULATE Wll ,J+ll 
c 

OObCl=l",MN 
bO W( 1,J+ll=2.•wu ,J 1-W( 1,J-11-C l*B I I )+C2*B8 I I l +C3* PJ 

GO TO 70 
lCC CONTINUE 

C CALCULATE DEFLECTION FOR PLATE 

c 
c 
c 
c 

00 102 l=l ,MN 
102 Wli ,J+ll=2.UO*W(l ,JJ-W(l ,J-ll-Cl*Blll+C2*B8(11+C3*P(JI 

70 CUNT If'fJE 
RETURN 
END 

SUBROUTINE COEFA IA,H,N,KRI 
IMPLICIT REAL*B IA-H,C-Zl 
DIMENSION AIKR,11 

C SET UP (Al MATRIX FOR STRESS FREE EDGES 
C IA)F=C, SIMPLY SUPPURTED OR CLAMPED 

00 
t--' 



MN=M•N 
0011=1,HN 
CO!J=!,HN 
All ,Jl=O .DO 
002K=l,HN 

2 A!K,K1=20.DO 
A!l,11=22.0D 
L=H-2 
003K=2,L 

3 A!K,Kl=2!.DO 
Al H- l,H-11= 22.00 
AIM,HJ=2!.DO 
L=MN-3*H 
004K=M.L,M 
AIK•l,K•ll=21.00 
KK=K•H-l 

4 A(KK,KKl=2l.DO 
Ll = I N-2 I *H•2 
A( Ll-1, Ll-11 =22.DO 
L=Ll•H-l 
C05K=Ll ,L 
A( K ,Kl =21.DO 
A(HN-M-l,HN-M-11=22.00 
A(HN-l ,HN-l 1=21.00 
D06K=2,HN 
A(K,K-ll=-8.00 
A(K-l,Kl=-8000 
HNH=MN-M 
C07K=H, HNH, H 
A( K+l ,Kl =O. DO 
A(K,K•ll=0.00 
C08K=3, MN 
AIK,K-21=1.00 
A(K-2,Kl=l,DO 
C09K=H,HNH,M 
Al K•l,K-ll=OoOO 
A!K•2,K l=0.00 
A(K-1,K•ll=O.DO 

9 Al K ,K•ZJ=0.00 
COlOK=M,HN,H 
Al K ,K-11 =-16.00 

10 A!K,K-21=2.00 
Ml=M•l 
DOllK=Ml ,MN 
KH=K-M 
A!K,KHl=-8 ,00 
Al KM ,Kl =-8. DO 
A( K-1,KHl=Z,DO 

11 A(KH,K-11=2,00 
MNl=HN-1 • 
0012K=Hl,HN1 
Al K•l,K-H1=2 .DO 

12 AIK-H,K•ll=z.oo 
HNl=HN+ l 
C013K=Hl ,HNI ,H 
KH=K-H 
A(K-l,KHl=0,00 

13 A(KH,K-11=0,00 
M2=2*H 

c 
c 
c 
c 

00l4K=H2 ,HNH,H 
KH=K-H 
AIK+l,KHl=0.00 

14 A(KH,K•ll=0.00 
H2l=M2+1 
0015K=H21,KN 
KH2=K-H2 
AIK,KHZl=l.00 

15 AIKM2,Kl=l.OO 
0016K=H2,KN,K 
A(K, K-H-11= 't.l>O 

16 AIK-H,K-U='t.00 
. L=HI0-11+ 1 
00l7K=L,HN 
KM=K-H 
AIK,KHl=-lb.00 
A( K, KK• ll=~.00 
Al K ,KH-U='t. 00 

17 AIK,K14-Kl=2.00 
AIL,HN-HZ'l=0.00 
AIHN,HN-H-1)=6.00 
AIHN,L l=0.00 
RETURN 
END 

SU6ROUTI NE AGEA IA ,DC.,K, N, KRI 
ll'PLll:lT REAL*S IA-li,0-ll 
DlHENSlOH ~IKR,11,DClll 

c PERFORM GAUSS ELIMINA no .. OH IAI KA TRIX ANO 
C SET UP IDCI VECTOR FOR USE ON IC) VECTOR 
C FOR STRESS FREE EDGES, SIMPLY SUPPORTED OR CLAMPED 

Hl'l=H*N 

c 
c 
c 

K=l 
KK=C 
l=K+l 
L=Z*H+K 
IFI L.G T .Mi.I L=MN 

2 Kl<=KK+l 
CCIKKl=All,Kl/AIK,KI 
Al I ,Kl=O. 
J=K+l 
All,Jl=All,JI-DCIKKl*AIK,JI 
IFI J-Ll4,5,30 

4 J=J+l 
GOTC3 
IFI !-LI b,7, 30 

6 l= l+l 
GOTC2 

7 IFIK-HN+UB,30,30 
8 K=K+l 

GUTCI 
30 RETURN 

END 

00 
N 



c 
SUBROUTINE OLINTl IT,TW,X,XW,NJ DLINTl 
REAL•B T,TW,X,XW 
DIMENSION Tlll,Xlll 

c 
C LINEAR INTERPOLATION ROUTINE. EXJRAPOLAT ION IS VAllll. 
C RESTRICTION TO SINGLE VALUED DEPENDENT VARlAl!LE. 
C !TEST IS IF ABSOLUTE VALUE OF DIFFERENCE OF TIIO SUCCEEDING 
C VALUES OF THE INDEPENDENT VARIASLE ITI IS .GT. 1.0-101. 
C IN OTHER WORDS, All Tlll,1=1,N HtlST SE DISTINCT. 
c 
C •••ARGU~ENTS••• 
C T = INPUT VECTOR OF INDEPENOtNT VARIABLE. SIZEINI 
C TW = !~PUT VALUE AT WHICH INTERPOLATED VALUE IS ~ANTED. 
C X = INPUT VECTOR OF DEPENDENT VARIABLE ICORRES. TO TI. SIZEINI 
C XW = OUTPUT INTERPOLATED VALUE• 
C N = INPUT NUMBER OF PAIRS OF OATA POINTS. 
c 

c 

c 
c 
c 
c 
c 

c 

c 

c 

·600 FORMAT I' l ERROR IN SUBROUTINE Dll NTl' 
• l2X,'SINGLE VALUED DEPcNOENT VARU.BLE IS ASSUMED' * //ZX, 'Tl .11 = ',Dl.2.5 ,5X, 'Tll+ll = ',012 .5 
• //2X, 'PROGRAM HAS ENDED.' I 

OD 10 I=l,N 
IF ITII .Le. Tll+ll .OR. I I+ll .Eu. NJ GO TO zo 

10 CONTINUE 
ZO IF I ITll+ll - .TIIJJ .GT. 1.0-101 GO TO 30 

WRITE 16,6001 TIIl,Tll+ll 
CALL EXIT 

30 XW =XIII+ ITW-Tllll * IXll+ll-Xllll.l ITll+ll-TIUI 
RETURN 
ENO 

SUBROUTINE PGM2 
REAL*8 E,H,PR,DXl,SBC,SMC,T8C,TMC,WXX,WYY,W1F,T, 

* SIGXB,SIGXM,SIGYB,SIGYH,TXYH,TXYM, 
* SXBMT,SXMMT,SYBMT,SYMMT,TXYBMT,TXYMHT 

REAL*B DX 
REAL*B CS1,CS2,CS3,CS4,CS5,CS6, 

* CHT1,CMTZ,CMT3,CHT4,CMT5,CHT6 
REAL*B DNST,DNSB,PNT,PNB,SST,SSB,ST,SB, 

• PNTMT,PNBMT,SSTMT,SSBMT 
REAL*B STRAIN,Sl,S2,S3,S4 

COMMON E,H,PR,DX,H,N,104 

OXI = 12.DD * DX 

C SONIC BOOM PROJECT. ROBERT CURTIS IKARD 
C PROGRAM TO CALCULATE STRESS DISTRIBUTIONS FOR THE FINITE DIFFERENCE 
C METhOD OF NONLINER PLATE DYNAMIC RESPONSE - CASE IA. 
c 

DIMENSION WI 641, Fl 641, SlGXBI 641, SIGXMI 641, SIGYBI 641, 
* SIGYM( 641, TXYB( 641, TXYMI 1>41, SXdMTI 64,41, 
* SXHHTI 64,41, SYBMTI 64,41, SYMHTI 64,41, 

c 
c 

c 
c 

• 
DIMENSION 

• 
.'I< 

DIMENSION 
• 
* DIMENS IuN 

* 

TXYBMTI 64,41, TXYMHT( 64,41, IVRECl3001 
CSU 641, CSZI 641, CS31 641, CS41 641, CS5 I &41, 
CS61 641, CMTll 64,41, CMTZI 641 41, CMT~I 64,41, 
CHT41 64,41, CIIT51 64,41, CMTol 64,41 
PNTI 641, PNIII 641, SSTI 6'+1, SSBI 6'ol, 
PNT.MTI 64,41, PNBMTI 64,41, 
SSTHTI 64,41, SSBMTI 64,41 
SHI.AINI 64,41. Sll ;.64,ltl, S21 64,4,I, 
S31 64,41; 54( 64,41, IOPVI 641 

INPUT FORMATS. 
501 FORl'AT 116151. 

CUT PUT FORMATS. 
600 FORMAT l'l STRESS DISTRIIIUTlllN FOR FINITE DIFFERENCE HETHOU OF ~O~ 

*LINEAR PLATE DYNAMIC RESPONSE - CASE IA' 
* //2X,'l'INAL REVlSIUNS BY ROIIERT C IKARD JULY 1971' 
* //2X,'BE .. OtNG STRESS IS CALCULATED AT Z = +HIZ' 
* llll2X,'STRESS COMPONENTS ARE PROPORTIONAL AS FOLLOWS,' 
* //2X,'SIGHA X,Y·. IIEfoOING PR T0',012.4,' * FUNCTIONS OF ~· 
* //2X,'SIGHA X,Y MEMSRANE PR ro•,012.4,, * FUNCTIONS OFF' 
* //2X, 'TAU XY BENDING PR ro•,DlZ.4,' * FUNCTIONS OF w• 
* //2X,'TAU XY MEMBR.ANE PR TO•,DlZ.4,' * FUNCTIONS OF F' J 

601 FORMAT! lX,'STRESS DISTRIBUTION FOR TIME =• ,FlZ.o,6X,' ID4 =•, I~, 
* 7X, 'DEFLECT ION OF CENTER OF PLATE = ',O 12. 4 
* //2X,'GRIO POINT' ,4x,•x-DIRECTION NORMAL STRESS•,9x, 'Y-OIRECT IO 
*N NORMAL STRESS', 14X, •SHEARING. STRE ss• 
* l4X,'NUMBER ',314X,'IIENOINGIPS-II MfHBRAl'iEIPSll',2XI I I 

6C2 FORMAT 15X,13,316X,DlZ.4,4X,Dl2o4H 
603 FORMAT I lX I 
604 FORMAT l'l' ,32X,'MAXIIIJ11-MINIMUM.SUMMARY OF' I 
605 FORMAT I 37X, 'BENDING COMPUNENT' I 
606 FORMAT 137X, 'MEMBRANE COMPONENT' I 
607 FORl'AT f3ZX,'0F STRESS IN THE x~DIRECTION' //1 
6Cti FORMAT I 3ZX, 'OF STRES·S IN THE Y-DIRECTION• //1 
609 FORMAT (37X,'0F SHEARING STRESS' II I 
6lC FORMAT llOX,'GRIO POINT',5X,'TIME OF• ,26X,'TIME OF• 

• 112x,•NUHHER•,5x, 1 NAX STRESS 1 .5X, 1 MAX STRESS', 
* 7X,'HIN STRESS',5X,'MIN STRESS' II 

611 FORMAT I 13X,13,Zl5X,Fl2.6,4X,Dl2.411 
615 FORMAT lll2X,'THE FULLUWING RECORDS ARE TO ae PROCESSED BY ulRECT 

*ACCESS', II 12X,ZOl5H 
620 FORMAT (ll2X,'FOLLu•IN; INTEGER PARAMETERS wERt SPECIFIED', 

* //2X,'M, = •,I:J. 1 //2X,'N = 1 ,13, 
* //2X, 1 NSO = • ,.13. //2X, 1 NMULT = 1 ,13, 
• //2X, 1 NREC = 1 ,13, //2X, 1 NSREC = 1 ,13, 
* ///2X,•FOLLOWINli llllUBLE PRECISION PARAMETERS -ERE SPECIFlcD', 
* 11zx.,•e =• ,012.1t,. 112x.,•H =• ,012.4, 
* //2X,'PR =•,DlL.4, //2X, 1 0XI =1 ,012.4,' IN:HES 1 I 

621 FURMAT 1///2.X,'GRID POINT' ,5X,'COMBINED X i'<ORMAL STRESS',lOX, 'CJMo 
* INEO Y NORMAL STRESS• ,lOX,'COMDINEO SHtARI NG STRcSS' 
* /4X, 1 NUMSER 1 ,2X,315X,•AT + H/2 1 ,8X, 1 AT - H/2 1 ,SXJ I J 

622 FORMAT 132X,'COH81'1i:il I +H/2 I COHPOIIIENTS• I 
623 FORMAT l3ZX,'COMBINEO I -Hl2 I COMPONENTS' I 
024 FORMAT lll/2X,'GRID POINT',5X,•PRINCIPLE NuRMAL STRESS•, 

* lOX,'HAXIMUM SHEARING STKESS' * I 4X, 1 NUMBER 1 ,2X,215X, 1 AT + H/2 1 ,8X, 1 AT - H/2 1 ,SXI 
625 FORMAT 15X,13,216X,Dl2.4,4X,Dl2o4ll 
626 FURMAT l29X,'PRINCIPLE NORMAL STRESS AT z~+Hl2' II 

00 
w 



c 

627 FORMAT 129X,'PRINCIPLE NORMA'L STRESS AT Z=-H/2' II I 
b28 FORMAT I 31X, 'MAXIMUM SHEAR STRESS AT Z=+H/21 II I . 
b29 FORMAT 131X,'MAX1MUM SHEAR .STRESS AT Z=-kl2' II I 
&30 FORMAT 11/IZX,'GRID POINT' ,4X,' X-OIRECTION NORNAL STRAIN1 ,9X,'lf-DI 

*RECTION NORMAL STRAIN' 
* /4X,'NUMBER1 ,214X,• BEIIDING MEMBRANE '• ZXI I I 

&31 FORMAT (5Fl5.7,151 
&37 FORMAT l32X,'0F STRAIN IN THE X-DIRECTION' Ill 
63S FOR,(AT 13ZX, 1 0F STRAIN IN THEY-DIRECTION' Ill 
&40· FORMAT llOX, 1 GRID POINJl,5X,'TIME 0F',26X,'TIME Of' 

* /12X, 1 NUMBER 1 ,5X, 1 NAX STRAIN 1 ,SX, 'MAX STRAI~•, 
* 7X,'MlN STRAIN' ,5X,'MIN STRAIN' II 

&89 FORMAT 1/// 110X,8Dl2,411 

C HART THE PROGRAM, 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IF 

IF 

READ 15,5011 NSD,NHULT,NREC,NSREC,IFSDP 

NMULT ,NE, O, 
CALCULATE STRESSES FOR 
THOSE RECORDS NS REC, 
IN MULTIPLES OF NMULT, 

NMULT ,EQ. 0, 

!«EC CONSECUTIVE TIMES, BUT OUTPUT ONLY 
NS REC + NHUL T, i'<SREC + Z'"NMUL T , •• • 
STARTING WITH NSREC. 

READ IN SPECIFIC LOCATION OF RECORDS DES IRED, CALWLATE STRESSES 
ONLY AT THOSE TIMES AND OUTPUT, 

IN THE !ST CASE INMULT ,NE. 01, NREC CONSECUTIVE VALUES CALCULATED, 
CNLY NSD STRESS DISTRIBUTIONS OUTPUT. 

IN THE 2ND CASE INMULT .Ew. 01, NSO STRESS DlSTRlSUTIDNS CALCULATED 
AND OUTPUT. 

C IN ANY CASE, NSD RECD.RDS lilLL BE OUTPUT (PRINTED!. 
C **NOTE** AT LEAST 1 PAGE OF OUTPUT RE SUL TS FOR EACH RECORD PROCESSED, 
C THEREFORE, RUNS WITH NSD MORE THAN 40 RESULTS IN EXCESSIVE 
C OUTPUT BE ING PRINTED. I SEE DSU COMPUTER CENTER USERS GUIDE! 
c 

c 

IF INMULT ,GT. 01 GO TO 5 
REAU 15,5011 IIVRECIIl,1=1,NSDI 
GO TO 7 

5· lVRECI ll=NSREC 
00 b l=Z,NSD 

b lVREClll = lVRECll-11 + NMULT 
1 CONTINUE 

C CALCULATE INTEGERS NEEDED. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

MN=H*N 
NHl=N-1 
~Ml=M-1 

DEFINE INTEGER OUTPUT CONTROL VECTOM, PRINT ALL IF IIFSOP .LE. 01. 
OTHERWISE, READ IN CONTROL VECTOR. METHOD OF CONTROL IS AS FOLLOWS. 

lOPVI 11 = 0 
lOPVlll = l 
lOPVll 1 = 2 

DON'T PRINT OR PUNCH DATA FOR ITH NOOE. 
PRINT DAT A FOR ITH NODE PO INT• 
PRINT DATA AND PUNCH STRAINS FOR ITH NODE. 

~AX - MIN SUMMARIES WILL BE PRINTED FOR ALL POINTS. 

c 

DO 8 l=l ,HN 
8 IOPVIII = 1 

IF I IFSDP ,LE. 0 I GD TO 9 
READ 15,5011 UOPVlll,1=1,MNI 

C CfFlNE CONSTANTS NEEDED 1N STRESS CALCULATION LOOP AND OUTPUT THEM. 

c 

9 SBC = -E*H/12,00*11,DD-PR*PRl*DXI"OXII 
SMC= l,DOIIDXl*DXIJ 
TBC = -E*lll 12 •00*1 l ~OO+PRl*4.DO*DXl*DX 11 
THC = -1.00/14.DO*DXl*DXII 
WRITE 16,6001 SBC,SMC,TBC,TMC 

C WRl TE OUT INPUT DA TA, 

c 

WRITE 1&,&201 M,N,NSD,NMut.T,NRi;C,NSREC,E,H,PR,LIXI 
IF (~HULT ,EQ, 01 WR!Ti: 1&,bl5.1 IIVREClli,1=1,NSDI 

C ZERC GUT MAXMIN-TIHE MATRICES. 

c 

00 10 l=l ,MN 
co 10 J=l,4 
SXBMTll,Jl=0,00 
SXMMTI 1,Jl=O.DO 
SlfBMTI 1,J l=O .DO 
SYMMTI 1,Jl=O.DO 
TXYBMTll,Jl=O.DO 
TXYMMTI l,J 1=0,DO 
CIHlll,Jl=0,00 
CMTZl 1,JJ=O.DO 
CMT311, J l=O ,DO 
CMT411,Jl=O,OO 
CMT511, JI =o.oo 
CMT&I 1,Jl=O .• DO 
PNTMTII,JI = 0,DO 
PNBHTI I ,JI = O.DC 
SSTMTll,JI = O,DO 
SSS.MT U ,JI = O. DO 
Sll 1 ,JI = O.DO 
SZI hJI = O.DO 
S311,JJ = o.oo 

10 S411,JI = 0.00 

C STRESS CALCULATION LOOP. 

c 

104=NSREC 
NT lME=NREC 
IF INMULT .EQ, 01 NTIME=NSD 
KDUT= l 
CU 300 LCUUNT=l,NTIME 
iF IMIULT .E~ 01 104 = IVRECILCGUNTI 
READ 14'1041 T,IWIIJ,1=1,MNl,IFIJl,J=l,MNI 

C nRESS AT I =l ,J=l CCHNER. 111 
. IJ=l 

JR= IJ+l 
lA=l J+M 
lAR=lJ+M+l 
wxx = -2.oo•wllJI + WllRI 
kYY = -Z.OO*kllJI + WllAI 
SIGXBI 1 JI = SBC*I WXX + PR*WYYI 
SIGYBIIJI = SBC*li•YY + PR*WXXI 
SIGXMIIJI = SMC*I -2,DO*FIIJI + FllAII 

00 
~ 



c 
c 

c 
c 

SJGYIIII JI = SMC* I -2.00•FIIJI • fllRU 
TXYBIIJI = TBC*WIIARI 
TXYIII IJ I = TIIC*FI IAR I 
CSlllJI = SIGXBIIJI + SlGXlfHJI 
CS211JI = -SIGXBI IJI + SIGXlfll.11 
CSlllJI = SIGYBIIJI + SIGYIII lJI 
CS411JI =·-SlGYBIIJl + SIGYMIIJI 
CS51 IJ I = TXYB I IJI + TXYM I lJ) 
CS6 IIJ I = -TXYB II.I I + TXYM I IJ t 
DNST = ICSllIJI - CS311JII 'z.·oo 
IJNSB = ICS211JI - CS411JH I z •. OO 
ST = CS511JI 
SB= CS61IJI 
SSTIIJI = DSQRTIDNST*DNST + ST•STI 
SSBllJI = DSQRTIDNSl!*DNSI! + SB*SBI 
PNTIIJI = ICSUJJI + CS31IJII I 2~00 + SSTIIJI 
PNBIIJI = ICS211JI + CS4CIJII ./· 2.L}O + SSBIIJI 
STRAINIIJ,ll = ISIGXSllJI - PR*SIGYBIIJI) I E 
STRAIN! IJ,21 = ISIGXIIIIJI - PR*SIGYIIIIJII I E 
STRAINIIJ,31 = ISIGYBI IJI - PR*SlGXBllJIJ IE 
STRAINIIJ,41 = ISIGYIIIIJI - PR•SIGXl'!IIJII I E 

STRESS ALONG J=l SIDE 11=2,11-11 121 
00 20 I =2 ,lflll 
IJ= I 
IR= IJ+I 
IL=I J-1 
IA= IJ+H 
IAL=I J+H-1 
IAR=IJ+M+l 
wxx = Willi -2.oo•wllJI + w(IRI 
~yy = -2. DO*W IIJI +. W IIAI 
SIGXBI IJI = SBC*I WXX + ~R*WYYI 

·SIGYBI IJI = SSC*IWYY + PR*WXXl 
SlGXHllJI = SHC*I -2.IIO*FIIJI + ftlAII 
SIGYHIIJI = SIIC*IFIILI -2.DO*FIIJI + FIIRII 
TXYi!IIJI = TBC*I -WI IAU + WI URI I 
TXYllll JI = TMC•t -FIIALI + FUARI l 
CSlllJI = SIGXl!IIJI + SIGXM!IJI 
CS2 IIJ I = -S IGX·BI IJ I' + S IGXKI IJI 
CS3IIJI = SIGYBIIJI + SIGYHIIJI 
CS411JI = -SIGYBIIJI + SIGYKIIJI 
CS511JI = TXYB IIJI + TXYM llJI 
CS61lJI = -TXYB IIJI + TXYH tlJI 
CNST = ICS l lIJ I - CS31 IJ II I z.DO 
DNSB = ICSZIIJI - CS411Jll I 2.00 
ST = CS51 IJ I 
SB = CS611J I 
SSTIIJI = DSQRTIDNST•DNST + ST*STI 
SSBI IJ I = DSQRTI DNSB*DNSB + SB•SIII 
PNTIIJI = ICSlllJI + CSHIJII, 2.DO + S.STIIJI 
PNBIIJI = ICS211JI + CS4(1Jll I 2.DO + SSBIIJI 
STRAIN( IJ,11 = tSIGXBtlJI - PR*SIGYBIIJII IE 
STRAINIIJ,21 = ISIGXIIIIJI - PR*S-IGYIIIIJH I E 
STRAINIIJ,31 = ISIGYBIIJI - PR*SIGX.8UJU I E 

20 STRAINIIJ,41 = ISIGYIIIIJI - PR•SIGXl'lllJI), E 

STRESS AT 1=11,J=l CORNER 131 
IJ=M 

c 
c 

IL= IJ-1 
IA=IJ+II 
WXX = 2.00*( Wll LI - WU JI I 
WYY = -2.DO*WIIJI + WIIAI 
SIGXBIIJI = SBC*IWXX + PR*WYYI 
SIGVBIIJI = SBC*IWYY + PR*WXXI 
SIGXHIIJI = SMC*I -2.DO*FllJI + FIIAII 
SIGVMllJI = 2.DD*SMC*IFIILI - FIIJII· 
TXYBIIJI = O.DO 
TXYMIIJI = O.DO 
CSlllJI = SIGXBIIJI + SIGXMIIJI 
CS211JI = -.SIGXBIIJI + SIGXIIIIJI 
CS3-IIJI = SIGY-BIIJI + SIGYIIIIJI 
CS411JI = -SIGYBIIJI + SIGYIIIIJI 
CS5 IIJ I = TXYB I IJ I + TXYM IIJ I 
CS611JI = -TXYll IIJI + TXYII IIJI 
ONST = ICSlllJI - CS31IJII I 2.00 
CNSB = ICS211JI - CS4IIJII I 2.00 
ST = (;5511 JI 
SB = CS611JI 
SSTIIJI = OSQRT lllNST•DNST + ST*STI 
SSBIIJI = OSQRTIONSB*ONSB + SB*SBI 
PNTIIJI = ICSll IJI + (;S31IJII I Z.DO + SSTIIJI 
PNIIIIJI = ICS211JI + CS4.llJII I z.oD + SSBIIJI 
STRAIN II J,11 = I SIG XS II JI - PR* SIGYBIIJII I E 
STRAINIIJ,21 = ISIGXMIIJI - PR*SIGYIIIIJII IE 
STRAINIIJ,31 = ISIGYBIIJI - PR*SIGXBIIJII I E 
STRAINIIJ,41 = ISIGYIIIIJI - PR*SIGXMIIJ>I IE 

HRESS ALONG l=l SIDE IJ=2,N-ll 141 
00 30 J=2,NM1 
IJ=l+M*IJ-i I 
IR=IJ+l 
18= IJ-M 
IA=IJ+M 
IAR=IJ+ll+l 
!BR= IJ-M+l 
wxx = -2 .oo•w UJ I + w IIRI 
WYY = Wllill -Z.DO*illl JI + WIIAI 
SI·GXI!( IJ I = ssc•1wxx + PR*WYYI 
SIGYBIIJI = SBC*IWYY + PR*WXXI 
SIGXIIIIJI = SIIC*IFIIBI -Z.OO*FIIJI + FIIAII 
SIGYIIIIJI =- SIIC*I -2.DO*FIIJI + FIIRII 
TXYBIIJI = TBC*I WIIARI - WIIBRII 
TXYMIIJI = TMC*I FIIARI - FIIBRII 
CSlllJI = SIGXBIIJI + SIGXMI IJI 
CS211JI = -SIGXBIIJI + SIGXIIIIJI 
CS31 IJI = SIGYillIJI + SIGYHIIJI 
CS411JI = -SIGYBI IJI +. SIGYMIIJI 
CS51 IJI = TXYB IIJI + TXYII II JI 
CS611JI = -TX·YB IIJI + TXYH IIJI 
ONST ;.- ICSl IIJI - CSl IIJ 11 I 2.00 
DNSB = ICSZIIJI - CS41IJII I 2.DO 
ST = CS511JI 
SB = CS611 JI 
SSTIIJI = OSQRTIONST*ONST + ST*STI 
SSSIIJI = OSQRTIONSil*ll,SB + SB*SBI 
PNTIIJI = ICSIIIJI + CS311JII I 2.00 + SSTIIJI 
PNBI IJ I = ICS21 IJ I + CS41 !JI I I z.oo + SSBII JI 

00 
tn 



c 
c 

c 
c 

STRA!Nl!J,11 
STRAIN( lJ,21 
STRA!Nl!J,31 

30 STRAIN( !J, 41 

I SlGXBll JI - PR*SIGYBllJI I I E 
IS!GXIIIIJI - PR*SIGYMIIJII IE 
ISIGYBIIJI - PR*SIGXBIIJII I E 
ISIGYIIIIJI - PR•SlGXMtlJII I E 

~TRESS ALONG l=H SIOE IJ=2,N-ll 151 
00 40 J==2,NHl 
lJ=M+H*IJ-11 
IL=lJ-1 
IS= lJ-H 
IA=!J+M 
WXX = 2,DO*IWl!LI - Wl!Jll 
WYY = WI !Bl -2.DO*WI !JI + WI IAI 
S!GXBIIJI = SBC*IWXX + PR*W'('(I 
SIGYB(IJI = SSC*IWYY + PR*liXXl 
SIGXHI IJ I = SHC*IFI 181 -2.00*fllJI + F(IAII 
S!GYH(IJI = 2,00*SHC*(F(ILI - FIIJII 
TXYBllJI = O.DO 
TXYHI !JI = O.DO 
CSU !JI = S!GXBIIJI + SIGICHll.JI 
CS211JI = -SIGXBIIJI + SIGXMIIJI 
CS311JI = S!GYBI IJI + SIGYHIIJI 
CS411JI = -SIGYBIIJI + SIGYIIIIJl 
CS51 IJ I = TXYB I IJI + TXYII II.JI 
CSo(IJI = -TXYB (!JI + TXYH IIJI 
DNST = (CSltlJI - CS311.jll I 2.00 
DNSB = ICS21 !JI - CS41 IJII I 2.00 
ST= CS511JI 
SB= CSollJI 
SST! !J l = DS~RTI DNST*ONST + ST*STI 
SSB<I Jl = DSORT IDNSB*DNSB + SB*SBI 
PNTllJl = lCSlllJI + CS311JII I 2.0D + SSTIIJJ 
PNBIIJI = ICS21IJI + CS411.>ll I 2.00 + SSBl!Jl 
STRA!N(!J,ll = (Slt;XBIIJI - PR*SlGYBllJll IE 
STRAIN( !J,21 = ISIGXHllJl - PR*SIGYHIIJII I E 
STRAIN( !J,31 = (S!GYSl!J'I - PR*SIGXIHIJJI IE 

40 STRAINl!J,41 = IS!GYMIIJI - PR*SIGXHIIJII I E 

STRESS AT l=l, J=N CORNER 161 
!J=l+H*I N-11 
IR=IJ+l 
IB=IJ-H 
wxx = -2.00*w(IJI + ollRI 
WYY = 2.DO*llillSI - wllJll 
SIGXS(!JI = SBC*IIIXX + PR*iiYYI 
SIGYBIIJl = SBC*IWYY + PR*WXXI 
SIGXH(IJI = 2.00*SHC*IF( 181 - Fil.Ill 
SIGYHIIJI = SMC*( -2.00*FUJI + FIIRII 
TXYBI IJ I = O.OO 
TXYMIIJ) = 0.00 
CSl<IJI = SlGXBIIJl + SIGXIIII.11 
CS21 !JI= -S!GXSIIJI + SlGXIIIIJI 
CS3<1JI = SIGYBIIJI + SIGYlll!JI 
CS411Jl = -SIGYBIIJl + SIGYIIIIJI 
CS511JI = TXYB IIJI + TXYH IIJI 
GS6IIJI = -TXYB I IJI + TXYM IIJI 
DNST = ICSlllJl - CS3(1JII I 2.DO 
DNSB = ICS211JI - GS4llJII I 2,00 
ST= CS511JI 

G 
c 

c 
c 

SB = CS611JI 
SST! IJJ = DSQRTIDNST*ONST + ST*STI 
SSB(IJl = DSQRTIONSB*DNSB + SB*SBI 
PNTIIJJ = ICSlllJI + CS311Jll I 2,00 + SSTIIJI 
PNBIIJI = ICS211JI + CS411Jll I 2.00 + SSBIIJJ 
STRAINIIJ,ll = (SIGXBIIJI ~ PR*SlbYBIIJll IE 
STRAIN( IJ,21 = ISIGXM(!JI - PR*SIGYMIIJII I E 
STRAIN( IJ,31 = ISIGYB(IJ) - PR*SIGXBlfJII IE 
STRA!NIIJ,41 = ISIGYMIIJI - PR*SlGXIIIIJII IE 

STRESS ALONG J=N SIDE 11=2,H-lJ 171 
00 50 1=2,MMl . 
IJ=l+M*I N-ll 
IR=IJ+l 
I L=l J-l 
IB=IJ-11 
WXX = Wl IL I -2.00*wl IJI + WI !Kl 
>YY = 2,DO*IW(IBJ - WllJII 
SI GXSI IJ I = SBC*( •XX + PR*WYYI 
SIGYBIIJI = SBC*lwYY + PR*WXXI 
SIG)HIIJI = 2,DO*SHC*IF(Hll - FIIJIJ 
SIGYHI IJI = SMC*IFIILI -2.DO*FIIJI + fl!Rll 
TXYBIIJl = 0.00 
TXYHIIJI = 0.00 
CSll lJI = SIGXBl!JI + SIGXHl IJI 
CS211JI = -SIGXBIIJI + SIGXHIIJI 
GS3IIJI = SIGYB(IJI + SIGYMl!JI 
CS411JI = -SIGYSl!JI + SIGYMIIJI 
CSSIIJI = TXYB (!JI + TXYH IIJl 
CS6(1Jl = -TXYB (IJI + TXYH (!JI 
ONST = (GSl(IJI - CS311Jll I 2.DO 
DNSB = ICS211JI - CS411Jll I 2.DO 
ST= CS511Jl 
SB = CSollJI 
SSTIIJJ = DS'1RTIONST*UNST + ST•STI 
SSBI !JI = OSQRTIDNSS*IJIISB + SB*Sdl 
PNTIIJI = ICSlllJI + CS311JJI I 2,UO + SST! IJJ 
PNBIIJl = ICS211JI + CS411Jll I 2,IJO + SSt!IIJI 
STRALNl!J,11 = ISIGXBIIJJ - PR*SlGYBIIJI) IE 
STRAIN! IJ,21 = lS!GXHUJI - Pk*SIGYMIIJII I E 
STRAIN! IJ,31 = ISIGYSIIJI - PR*SlGXBIIJII I E 

50 STRAIN! !J,41 = tS!GY~IIJI - PR*SIGXMIIJI I I E 

STRESS AT 1=11,J=N CORNER 181 
IJ=HN 
ll=IJ-l 
IS= IJ-M 

WXX = 2.DO*IWIILI - Wl!JII 
IIYY = 2.00*( WI !Bl - W(i JII 
SIGXBI IJ l = SBC*IWXX + PR*WYVI 
SIGYBl!JI = S~C*IWYY + PR*WXXI 
SIGXHIIJI = 2.DO*SMC*lFIIBI - FIIJI l 
S!GYMl!JI = 2.DO*SMC*IFIILI - fl!Jll 
TXYBIIJI = C.00 
TXYHI IJ l = O.DO 
CS l I IJ I = S l GX BI IJ I + S !GXM I IJ I 
CS2(1JI = -SIGXollJI + SIGXMIIJI 
CS311JI = SIGYBllJ) + SIGYHl!JI 
CS411JI = -S!GYBIIJI + SIGYMIIJI 

00 
Cl' 



CSSll.11 = TXYB IIJI + TXYH IIJI 
CS611JI = -TXYB IIJI + TXYH IIJI 
DNST = ICSll lJI - CS31 IJH I 2.00 
DNSB = ICSZ IIJ > - CS'*I IJ I} I 2.DO 
ST = CSSIIJI 
SB = CS61 IJI 
SST I lJI = DSllRJ IDNST*llNST + ST•ST I 
SSBUJI = DSQRHDNSB<IDHSB + SB*SBI 
PNTIIJI = ICSUIJ) + CS3UJU /'2.DO + SSTIIJI 
PNBIIJI = ICSZIIJI + CS,_IIJII I z;oo + SSBIIJI 
SJRAINIJJ,11 = ISl&XBIIJI ·- PR*SlGYBIIJII IE 
STRAINIIJ,21 = ISIG>CMIIJI - PR•Sl&VHIIJII IE 
STRAINIIJ,31 = ISl&YBUJI - PR*SIGXBIIJII I E 
STRAIN! IJ,,.L= ISIGYMIIJI - PR•SlGXHIIJll I E c . 

C STRESS AT INTERllllt POINTS (GENERAi. CASEI 191 

c 

00 60 J=2,Nlll 
DO 60 1=2,11111 
lJ=l+N*I J-11 
Ii<= IJ+l 
IL=IJ-1 
IB=IJ-M 
IA= IJ+II 
IBL=IJ-M-1 
IAL=I J+ll-1 
lAR= IJ+H+l 
IBR=IJ-14>1 
iiXX = Willi -2.DD*"II JI + "URI 
WYY = WIIBI -2.DO*WIIJI + WI IAI 
SI GXIU I JI = s.BC* I WXX + PR*WYY I 
SIGYBIIJI = SBC*IWYY + l'R*WXXI 
SIGXMI IJ I = SIIC*IFI IBI -2.00*FI IJ I + Fl IAI I 
SIGYIIIIJI = Sllt*IFIIU -2.00*FllJI + FHRII 
TXYBI IJ I = IBC*l'"IJBLJ - WI IALI + WIIARI - WIIBRII 
TXYMIIJJ = THC*IFIIBLI - FIIAl.1 + FIIARI - FIIBRII 
<;SlllJI = SfGXBIIJJ + S.IGXHIIJI 
CS211JI = -SIGXBIIJI + SIGXHIIJI 
CS311JI = SI.GYBUJI + SlGYHIIJI 
cs~, lJl = -SIGYBUJI + SlGYIIIIJI 
CS511JI = IXYB IIJI + TJIYII IIJI 
CS611JI = -TXYB II.II + TXYII IIJI 
llNST = ICSllJJI - CS.311.111 I 2~DO 
DNSB = ICS21IJI - CSHIJH I 2.00 
ST = C 5511 JI 
SB = CS61 IJJ 
SST IIJI = DSQRJ lDNST*llHST + ST*ST I 
SSBIIJI = DSQRHDNSB•DNSB + SB*SBI 
PNTIIJI = (CSHIJJ • CS311JU I 2.DO + SSTIIJI 
PNBllJI = ICS211JI + CSUlJII I 2.00 + SSIIIIJI 
STRAlNIIJ,11 = lSJi>JC8tl,I> - PR*SIGYBIIJIJ I E 
STRAlNIIJ,21 = ISIG>CHClJI - PR*SIGYHIIJI I IE 
STRAINIIJ,31 = ISIGYBIIJI - PR*SlGXBIIJII IE 

60 STRAINIIJ,.,_I = fSlGYHllJJ - PR*SIGXIIIIJII IE 

C All STRESS VALUES COMPUTED. .OUTPUT HEADING ANiJ SPACE 8ETwEEN ROWS. 
Ni14= ID4-l 
IF INW4 .NE. IVRECIKOUJ H GO TU 90 
WR! TE I 6 060U T.N~ 1 iolllld 
00 80 J=l,N 

c 
c 

c 

c 
c 
c 

DO 70 l=l,H 
IJ= l+H*IJ-11 
IF IIOPVIIJI .LE. 01 GO TO 70 
WRITE 16,6021 lJ,SIGXBllJl,SIGXHIIJl,SIGVB(IJl,SlGYMIIJI, 

* TXYBIIJl,TXYIIIIJI 
1C CONTINUE 
80 CONTINUE 

hRITE 16 ,6891 IW I 11, l=l ,IINI 
WRITE 16,6891 IF.111,1=1,MNI 
WRITE 16,6211 
DO 67 J=l ,N . 
00 83 1=1,11 
lJ= l+ll*IJ-11 
IF IIOPVIIJI .LE. 01 GD TO 83 
~RITE 160 6021 IJ,CSlllJl,CSlllJl,CS311JI ,CS4llJI ,,s511Jl,CSbllJI 

83 CO~TINUE 
E7 IIRI TE ·16,0031 

wlUTE OUT PRINCIPAL t,CIII.MAL ANO MAXIMUM SHEAR STRESSES. 
IIRI TE I 6,02.,_I 
00 89 J= 1,N 
CO 88 1=1,H 
IJ=I +II*( J-11 
IF (IOPVIIJI .LE. 01 GO IO 88 
hRITE 16 ,6251 IJ, Ph Tl IJJ, PNtil IJ I ,SST l lJ 1,SSBI IJ I 

88 CONTINUE . 
89 WRITE 16,603) 
"RI TE OUT STRAINS. 

WRITE (6,6301 
DO 92 J=l,N 
00 Sl l=l,H" 
lJ= l+H*IJ-11 
IF IIOPVIIJI .GT• 01 WRITE lo,6251 lJ,ISTRAINIIJ,Kl,K=l,41 
IF IIOPVIIJI .GT. 11 WRITE 17,olll ISTRAINIIJ,Kl,K=l,41,•lHNl,lJ 

91 CONTINUE 
92 hRITE 16,6031 

KOl,T=KUUT+ l 
90 CONT IIWE . 

CHCK FOR MAXIMUM AND HlMIIUM VALUES. 
DO 200 1=1,H 
DO 200 J=l ,N 
IJ=l+H*fJ-11 
IF ISIGXBII JI .LE. SXBHTIIJ,211 GO TO 105 
SXBHTIIJ,21 = SIGXSIIJI 
SX BMTI IJ, LI = T 

105 IF ISIGXBII JI .GE. SXBHTllJ,411 GO TC 110 
Sl(BHTIIJ,41 = SIGXi>IIJI 
SXBMTIIJ,31 = T 

· 110 IF ISIGXIII !JI • LE. SXHHT 11 J ,211 liU TC 115 
SXIIMTI IJ,2·1 = SIGXMI !JI 
SXMMTI I J ,11 = T 

115 IF lSIGXIIIIJI .liE • SXIIII Tl I J ,,.II GO TO 120 
SXIIHTIIJ,41 = SIGXIII IJI 
SXMMTI I J ,31 = T 

120 IF ISIGYollJI .LE. SYBHTI IJ ,211 GO T.O 125 
SYBHTIIJ,21 = SIGYdl !JI 
SYBIITI I J ,11 = T 

00 
-J 



1Z5 If CSIGYB(IJI .GE. SYBMTIIJ,411 GO TU 130 PNTMTCIJ,11 = T 
SYBMT! IJ,41 = SIGYBIIJI 1€6 IF (PNTCIJI .GE. PNTHTIIJ,411 GU TD 188 
SYBHTI IJ,31 = T PNTMTCIJ,41 = PNTIIJI 

130 IF ISIGYHIIJI .LE. SYMMTIIJ,211 GO TD 135 PNTHTII J,31 = T 
SYHHTI IJ,21 = SIGYHIIJI l.l:8 IF IPNBC IJI .LE. PNBHTIIJ,211 GO TO 190 
SYHHT(IJ,11 = T PNBHT(IJ,21 = PNB(IJJ 

135 IF ISIGYHIIJJ • GE. SYHHTI I J ,411 GO TO 140 PNBMTII J,11 = T 
SYHHH IJ,41 = SIGYHI IJI - 190 IF CPNBIIJI .GE. PNBHTIIJ,411 GO TD L92 
SYHHTIIJ,31 = T PNBHT I IJ,41 = PNBI IJ I 

140 IF !TXYBIIJI .LE. TXYBHTIIJ,211 Gil TO 145 PNB HTC I J ,3 l = T 
TXYBHTC IJ,21 = TXYBIIJI 192 IF ISST!IJI .LE. SSTMTIIJ,211 GO TO L94 
TXYBHTIIJ,ll = T SSTHTIIJ,21 = SST( IJI 

145 IF CTXYBIIJI .GEs TXYBMTIIJ,411 GO TO 150 SSTMT! IJ,11 = T 
TXY BMTI IJ, 41 = T XYBIIJ I 194 IF (SSTIIJI .GE. SSTMTI IJ,411 GU TD 196 
TXYBHTIIJ,31 = T SSTMTCIJ,41 = SSTCIJI 

15C IF ITXYHCIJI .LE. TXYHHTIIJ,211 GO TU 155 SSTMT! IJ,31 = T 
TXYHHT I IJ, 21 = TXYMC IJI 196 IF ISSBI IJ I .LE• SSBMTI IJ, 211 GLt TD 198 
TXYMHTIIJ,11 = T SSBHTI I J ,21 = SSBI IJJ 

155 IF ITXYHIIJJ .GE. TX.YHHTIIJ,411 GO TO 160 SSBMTC IJ,ll = T 
TXYHHTIIJ,41 = TXYHIIJJ 198 IF ISSBIIJ I .GE. SSBHTI IJ,411 GO TO 199 
TXYHHT(IJ,31 = T SSBHTI I J ,41 = SSBIIJI 

160 IF ICSlllJI .LE. CHTIIIJ,Zll GO TO 162 SSBMTIIJ,31 = T 
CHTlllJ,21 = CSlllJI 199 IF ISTRAINIIJ,ll .LE. SllIJ,211 GO TD 210 
CMTll IJ,ll = T Sll IJ,21 = STRAINlfJ,11 

162 IF ICSlliJI .GE. CHT 11 IJ, 411 GO TO 164 Sll!J,ll= T 
CHH II J,41 = CSlllJJ 210 IF (STRAIN( IJ,11 .GE. SlllJ,411 GO TU 220 
CHTlllJ,31 = T SlllJ,41 = STRAINIIJ,ll 

164 IF ICS21IJI .LE. CHT211J,2U GO TO 166 SlllJ,31 = T 
CHT21IJ,21 = ·cszllJI 220 IF CSTRAINIIJ,21 .LE. S2!1J,21J GO Tu 230 
CMT21 IJ, ll = T 521 IJ,21 = STRAIN(! J,21 

166 IF CCS2 I IJ I .GE. CHT2( IJ,41 I GO TO 168 SZI lJ, 11 = T 
CHT2!1J,41 = CS211JI .230 IF CSTRAINl!J,21 .GE. S211J,41l GO TD 240 
CMT2( lJ,31 = T 521 !J,41 = STRAINIIJ,21 

168 IF CCS3!1JI .LE. CMTJl!J,211 GO TO 170 SZIIJ,31 = T 
CMT311J,21 _= CS3IIJI 240 IF ISTRAINCIJ,31 .LE, S3!1J,21J GO TO 250 
CMT311J,11 = T 531 IJ, 21· = STRAIN( IJ,31 

170 IF ICS3 II JI .GE. CMT311J,4ll GO TU 172 S3!1J,ll=T 
CHT3(1J,41 = CS3!1JI 2 :0 IF I STRAIN! IJ,31 .i;E. :.3(1J,41l GO TO 260 
CMT311J,31 = T S31 IJ,41 = STRAINIIJ,31 

172 IF ICS411JI ,LE~ CHT411J,211 GO TO 174 53 I I J ,31 = T 
CMT4! !J, 21 = CS41lJI 2c0 IF I STkAINC I J,41 • LE. S4!1J,211 GO TO 270 
CMT41lJ,ll = T S4(1J,21 = STRAlN(IJ,41 

174 IF ICS41IJJ .GE. CHT411J,411 GO TO 176 541 l J,11 = T 
CHT4! IJ,41 = CS411J I 270 IF CSTRAlNllJ,41 .GE. 541 I J ,41 I GU TO 200 
CHT4IIJ,3l = T 54 ( lJ,4 l SIJ<AlNUJ,41 

17o IF ICS511JI ,LE. CHT51IJ,2U Gil TO 178 S41IJ,31 = T 
CMT5(IJ,21 = CS511JI 200 CONT lNUE 
CMTSIIJ,11 = T 300 CO~T INU E 

178 IF ICS511JI ,GE. CHT511J,411 GO TO 180 c 
CHT51IJ,41 = CS5IIJI c riRITE OUT MAXIMUM - Mli.lMUM SUMMARIES. 
CMT511J,31 = T WRITE 16,604) 

180 IF ICS6! IJ I ,LE. CHT6(1J,211 GU TO 182 •RI TE I 6 0 6051 
CMT611J,21 = CS611JI WR IH I 6,6071 
CHT6( IJ,11 = T •RI TE (6 ,6101 

182 IF I CS6 I IJ I .GE. CHT611J,4ll GO TO 184 DO 310 L=l ,MN 
CMT61 IJ,41 = CS61IJI "' 310 WRITE (6,6111 L,ISXBMTIL,Jl,J=l,41 
CMT6! !J,31 = T •RI TE 16 0 6041 

184 IF CPNT! !JI ,LE. PNTMTCIJ,211 GO TO 186 WR I TE I 6,, 6061 
PNTMTI I J,21 = PNTC !JI WRITE 16,6071 

00 
00 



WRITE 16,olOI 
00 320 L=l, KN 

320 WRITE lo,6111 L,ISXIIIIHL,JI ,J=l,41 
WRITE 16,60"1 
WRITE 16,6051 
WRITE 16,6081 
WRITE 16,6101 
00 330 l=l ,Kh 

330 WRITE 16,olll L,ISYBIITIL,Jl,J=l,41 
WRITE 16,60"1 
IIRI TE ( 6 ,0061 
WRITE lo,6081 
WRITE 16,6101 
00 340 L=l',KN 

340 WRITE 16,6111 L,ISYIIIITIL,Jl,J=l,41 
WRITE lo,6041 
W<I TE 16,6051 
WRITE 16,6091 
;.RITE 16,6101 
00 350 L=l ,111<1 

350 WRITE 16,6111 L,ITAYBMTIL,Jl,J=l,41 
i<RITE 16,66"1 
WRITE I 6, 6061 
WRITE 16,6091 
•RI TE lb,blOI 
DD 360 L= l,KN 

360 WRITE lo,6111 L,ITXYMMTIL,Jl,J=l,41 
c 
C llRITE OUT COHlllNEO STRESS MAX-HIN SUMMARIES. 

WRITE 16,6041 
kRITE 16,6221 
WRITE 16,6071 
WRITE 16,6101 
00 370 L=l ,Kh 

37C WRITE 16,6111 L,ICHTl ll,Jl,J=l,41 
WRITE 16 ,6041 
Ill! re 16,6231 
WRITE I 6,0071 
•RI TE 16 ,6101 
00 380 L=l,llh 

380 WRITE 16,6111 L.ICMT2 IL,Jl,J=l,41 
WR! TE 16 ,60,,1 
WRITE 16, 6221 
WRITE 16,6981 
WRITE 16,6101 
DO 390 L=l,KN 

390 WRITE 16,6111 L,lCMT3 IL,Jl,J=l,41 
WRITE 16,66"1 
WRITE 16,6231 
WRITE to,6081 
WRITE 16,6101 
00 400 L=l,HN 

400 WRITE 16,6111 L,ICMT4 IL,Jl,J=l,41 
Ill ITE I 6, 6041 
WRITE 16,6221 
WRITE 16,6091 
WRITE 16, 6101 
CG 410 L=l, MN 

410 kRITE 16,6111 L,ICHT5 IL,Jl,J=l,41 

c 

WRITE 16,6041 
WRITE 16,6231 
WRITE 16,6091 
hRITE 16,6101 
'co 420 L=l, MN 

4ZO WRITE 16,6111 L,ICHT6 IL,Jl,J=l,41 

C kRITE OUT PRINCIPAL ANO SHEAR STRESS MAX-·IHN SUMMARIES. 
WRITE 16,6041 
kRITE 16,6261 
WRITE 16,6101 
00 430 L=l,Hfll 

430 ilRI TE 16 ,6111 L, l PMHTIL ,JI ,J=l ,41 
WRITE 16,6041 
oRITE lb,6271 
Wi<I TE 16,6101 
00 440 L=l,MN 

440 WRITE 16,6111 L,IPNBHTIL,Jl,J=l,41 
WRITE 16,6041 
WRITE (6,6281 
WRITE 16 ,6101 
00 450 L=l ,HN 

450 WRITE 16,6111 L,ISSTKTIL,Jl,J=l,41 
kRITE 16,6041 
WR !TE ( 6, 62~1 
WRITE 16,610 I 
DO 460 L=l, HN 

460 WRITE 16,6111 L,ISSBHTIL,Jl,J=l,41 
c 
c hRITE our COHPCNEH STRAIN SUMMAR j ES. 

wRITE 16, 6041 
WRITE 16,6051 
•RI TE 16,6371 
WRITE 16,6401 
00 465 L=l,MN 

4f5 WRITE (6,6111 L,ISllL,JI ,J=l,41 
WRITE (6,6041 
oRITE 16 ,6061 
o!!.ITE I 6,6371 
WRITE 16,6401 
00 470 L=l, HN 

470 WRITE (6,6111 t.,IS21L,JI ,J=l,41 
WRITE 16,6041 
•RITE 16,6051 
WRITE (6,6381 
WRITE (6 ,640 I 
00 475 L=l ,HN 

475 WRITE 16,6111 L,IS31L,Jl,J=l,41 
WRITE (6,6041 
WR! TE ( 6,6061 
WRITE (6,6381 
WRITE 16,6401 
00 480 L=l,HN 

480 WRITE 16,6111 L,IS4lL,Jl,J=l,41 
RETURN 
END 

00 

'° 



APPENDIX B 

The following computer program uses a single mode, lumped 

parameter model for a simply supported plate based on the results 

of either Yamaki (5) or Bayles (25). The transient response is ob

tained by numerical integration of the model differential equation 

using Subroutine DHPCG which is available as part of the IBM 

System/36 0 Scientific Subroutine Package, Version III. This pro

gram has the window-room.~door system as an option. Its usage is 

given as part of the listing, 

90 



II EXEC FORTGCLG,REGION.G0=127K 
II FORT .SY SIN 00 * 
C THIS PROGRAM COMPUTES NONLINEAR PLATE RESPONSE TO PULSE LOADS 
C IJSING SAYLES'S FIRST MOOE MODEL OR Y,AMAKl'S MODEL ANO 
C SUBROUTINE CHPCG FOR NUMERICAL INTEGRATION. 
C THIS PROGRAM ALSO HAS A ROOM-W INOOW-OOOR OPT ION. 
C GANESH RAJAGOPAL JUNE 1972 10.s.u. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INPUT CATA: 
CARO l: FORMATl7Fl0,31A,B,H,E,PR,RO,Z 

A=PLATE LENGTH IFT I 
B=PLATE wlOTH IFTI 
H=PLATE THICKNESS IINI 
E=YOU~G•S MODULUS OF PLATE MATERIAL (PSI I 

PR=POISSON•S RATIO 
RO=OENSITY ILBF/FT**31 

Z=OAMPING FACTOR 
CARO 2:FORMAT13Fl0.3,515IOT,PRMTl31,PSCALE,NSTRAN,NMULT,NYAMAK,N,IFROOH 

OT=TIME INTERVAL BETWEEN INPUT PRESSURE DATA POINTS 
PRHT131=1NITIAL INTEGRATION STEP SIZE 

PSCALE=CONVERSI ON FACTOR jo CONVERT INPUT PRESSURE INTO PSF 
NSTRAIN=NUHBER OF POINTS AT WHICH STRAINS ARE TO BE COMPUTED 

NMULT=OUTPUT ONLY EVERY NMULT TIMES PRMT(3) 
NYAMAK=O, IF BAYLES' S HODEL IS TO BE USED 

=l IF YAMAKl'S MODEL IS TO BE USED. 
N=NUHBER CF TERMS TO BE USED IN YAMAKl'S STRESS 

FUNCTION. 
IFROO""'O PLATE ONLY 

•l WINOOW-ROOM-OOOR SYSTEM 
CARO 3: FORMAT (8Fl0,3 II XX( 11, VY( 11, l=l,NSTRAINI 

XXlll=X COORO OF POINT I AT WHICH STRAIN IS REQUIREDIFTI 
YYlll=Y •••••••••IFTI 
****ORIGIN OF COORD SYSTEM IS AT CORNER OF PLATE 

C~ROS 4:FORHAT(ll,Fl9,3INSTOP,Plll 
NSTOP IS USED TO IDENTIFY END OF INPUT DATA 

NSTOP=O EXCEPT FOR LAST CARO FOR WHICH 
NSTOP=l 

P(ll=PRESSURE ((THIS CAN BE ANY SET OF NUMBERS 
REPRESENTING INPUT OATAII 

NOTE**•ONE CATA CAROIS NEEDED FOR EACH INTERVAL OF TIME OT 
CARO 5: FORMAT 1~015. BIEL,AR, VOL, OAHP l 

OUTPUT 
Wl.l TES 

EL=EFFECT IVE LENGTH OF DOOR I FT I 
AR=AREA OF DUOR IFT**ZI 

VOL=VOLUME OF ROOM IFT**31 
OAMPl=EFFECTIVE OAMPING FACTOR AT ODOR 

X, Y2 ,EPSUMX,EPSUMY 
X=T IME 

Y2=CENT ER DEFLECT ION I IN I 
EPSUMX=TOTAL SURFACE STRAIN IN X DIRECTION. 
EPSUHY=TOTAL SURFACE STRAIN IN Y DIRECTION. 

PUNCHED OUT PUT 
FORMATl6Fl3.7,121X,EPX8,EPXM,EPYB,EPYH,Y2,1 

X=TIME 
EPX8=8ENOING STRAIN IN X DIRECTION 
EPXH=HEMBRANE STRAIN IN X DIRECTION 
EPYB=BENDING STRAIN IN Y DIRECTION 
EPYM=MEMBRANE STRAIN IN Y DIRECTION 

c 
c 
c 
c 
c 
c 

Y2=CENTER DEFLECTION IINI 
l=NSTRAI N VALUE 

IMPLICIT REAL*BIA-H,0-ZI 
DI MENSI ON DERY 141,Y 141, PRMT 151, AUX ll6,4hP(.2001,XXI 41, YYI 41, 

1 S IGXMI 41, SIG YMI 41 ,EP sx111.-.1 , EP SYH( 41 ,SIGXB 141 ,SI GYB 141, EPSXB 141, 
2EPSY8141,Xll61 

CGMMON P, Sl,GXM,SIGYM,EPSXM,EPSYM,SIGXB,SIGYS, EPSXB, 
3 EPSY8,EK1,EM1,EK1PNL,OAHP,C3,0T,PSCALE ,PRESS,ND ,NSTRAN 
3 ,~C,NMULT.EK21,EK22,EK2.,C6,AR 
4 ,EK12,EK1R,OAMP2,IFRCOH 

EXTERNAL UUTP, FCT 
C READ ALL INPUT DATA 

12 CONTINUE 
OG 11 NKOUNT=l,5 
READl5,11A,8,H,E,PR,RO,Z 
FORMAT( BF 10. 31 

READl5,1001DT,PRMTl31,PSCALE,NSTRAN,NHULT,NYAMAK,N,IFROOM 
lCO FORMATl3Fl0,3,5151 

READ! 5, 11 I XX( 11, VY( 11, 1=1,NSTRAN 
ND=O · 
ND=NO•l 
READ15,21NSTDP,PINDI 

2 FORHATl11,Fl4.31 
IFINSTOP.LT.llGO TD.3 

C CALCULATE SYSTEM PARAMETERS 
EKl= E *IH**31*13.l.-.lb**4l*IIA*A•B*81**21/ll44.*ll.-lPR * 

lPR 11*4•*11A*81**311 
E~l=RD *A*B*H/14.*32.2*12.I 
C3=4.*A*B/(3.1416*3,l4161 
Dl= 1.-PR 
02=3 ,l4lo**213 • 
BE TA=A /B 
82=8ETA*BETA 
Cl=B2+l./62 . 
C 2=82*8 2+ l. II B 2*821 
EP=0.375*Dl/(Cl+2.)*(2.*ID2+~.)-ICl*(D2+4.l-4.•PRl••2113.•u1•cL+ 
C2*1D2+2.51-2.*PR+9,II 

EK1PNL=l44.*EP*EK1/IH*HI 
OIIEGP= I EK 11 EM! 1**0.5 
PERl00•6.2832/0MEGP 
OMEG31=(9.+821*0MEGP/I 1+821 
OMEG13= 11.+9 ,*82 l*OMEGP/ I 1<821 
PER31=6,2832/0MEG31 
PER 13=6 .2832/0MEG13 

C CALCULATE STRESS AND STRAIN PARAMETERS 
Cll=Cl*ID2+4.l~4.*PR 
C22=3. *Dl*Cl+ I 02•2. 5 l*C2-2. *PR +9. 
SIGX=02*0, 75*E*Cll/ lC.i:2*8*61 
SIGY=SIGX/82 
S IGB= E*H*D2*l ,5/I I 1,-PR*PR I *12. I 
PRO=PR 
CALL YAMAKIIN,BETA,X,EP2,POl,Pl0,PROI 
PA=3,l416DO/A 
1'8=3.141600/8 

00 7 l=l,NSTRAN 

'° ...... 



Xl=XXI 11 
Yl=YYI II 
SX=DSI Nl3. l416DD*Xl/ Al 
SY=DSINI 3o l416DO*Yl/81 
SIGXBlll=SIGB*IISX/IA*All+IPR*SY/18*8111 
SIGYBlll=SIGB*IISY/IB*Bll+IPR•SX/IA*AIII 
EPSXBI 11=1 SIGXBl 11-PR*SIGYBI 111 /E 
EPSYBll l=IS IGYBI 11-PR*S IGXBI 111/ E 
IF I NYAMAK-11109,110,109 

110 CONTINUE 
C USE YAMAKl'S MODEL 

Xl=O. 500*A-XXII I 
Yl=0.500*8-YYIII 
POl=POl-lloD0/13ZoDO*BZII 
SIGXMI ll=POl*DCOSIPB*Z•DO*Yll 
PlO=Pl0-182/3Z.DOI 
SIGYMI ll=P.lO*DCOSI PA*Z.DO* Xll 
L=N/Z 
DO 106 NP=l IL 
NSQ=-l**NP. 
PBE=NP*3. l416.DO/BETA 
OPP=OEXPI PBEI 
OPM=OEXPI-PBEI 

S I NHP= I OPP-DPM I *O .5 DO 
CDSHP= I DPP.+OPMI •a.soc 
00 107 NQ=l~L 
NSf=-l**NQ 
ACOF=NP •NSP*SI NMP•SINHP/ IS l·NHP*COSHP+PBEI 
QBE=NQ*3.l41600*11ETA 
CATCH=4.00*BET A/13ol4l6ilO*I INP*NP+B2•NQ*NQ 1**211 
OQM=OEXPI-QBEI 
o,P=DEXPIQBEI 
SINHQ=I-DQM+DQPl•0.500 
COSHQ=I DQM+DQPl*O• 500 
BCOF=NQ*NS Q•S INHQ*S INHQ/1 S INHQ*COSHQ+QBEI 
PUSH=DCOSl2.DO*NP*PA*Xll*DCOSIZ.DD*NQ*PB*Yll*CATCH*IACOF*XINPI+ 

BCDF*XIL+NQI I . 
SIGXMI ll=S IG~MI ll+PUSti*NQ*NQ 

SIGYMI ll=SIGYMlll+PUSH*NP•NP 
107 CONTINUE 
106 CD~TINUE 

SIGXMI ll=SlGXMI ll*E*4• Dll*PB*PB 
SIGYMlll=SIGYMlll*E*4•DO*PA*PA 
EPSXMCll=ISIGXMIII-PR*SIGYMI 111/E 
EPSYMI 11=1 SIGYMI 11-PR*SIGXMll 11/E 
GO TO 111 

lC~ CONTINUE. 
C USE BAYLES•S MODEL 

EP2=EP 
SIGXMI I l=SIGX•Sx•sx•ocos (I, .283ZDO*Y 1/.BI 
S IGYMI I l=SIGY*DCOSI 6.Z830DO*Xl/AI* SY*SY 
EPSXM Cl l=IS IGXMI 11-PR*S IGYMll 11/E 
EP SYMI 11=1 SIGYHI 11-PR*SIGXMIII I/E 

111 CONTINUE 
7 CONTINUE 

EKS=EKlPNL 
PRR= 1.-PR *PR 

EPl=lZ.•PRR/ I IC1+2. J•to.•Cl+4 o I I 
NC=O 

DAMP=2.•EMl*OMEGP•Z 
EK 1PNL=IEP2/EPl*EKS 
PRMT 111=0 • 00 
PRMTl21=1NO-ll*OT 
PRMTI 41=0.001 

PRMT 151=0 • 00 
Ylll=O.OO 
YI 21=0 .DO 
DERY 111=0 .5 
llER Yl-21 =O. 5 
NOIM=2 . 

C NRITE OUT. INPUT DATA 

c 

NRI TEI o,41A ,B ,H ,E, PR,-RD,Z 
4 FORMAT llHl, lOX, 'INPUT DATA FOR PLATE• ,/I ,5X, 'A=• ,O lZ. 5,ZX,' 8=• , 

4 012. 5,2x.• H=• ,012.5 ,IJ ,5x,• E=• ,Oll .5, lX ,• PR:-= •.012. 5, lX, 'RO=•, 
s 012.s,zx, •z=•,012. s,111 

NRITE16,5 I EMl, DAMP, EKl, EKlPNL ,C3 
5 FORMATl5X,'SYSTEM DIFFERENTIAL EQUATION ',//,5X, 
1 012.s,••oox+•,012ps,••ox+•,012.s,••x+• ,012.s,••x••3= 1 ,012.s,••PIT 
21• .,11 

NRITEI 6,1011 EP;·e Pl ,EPZ 
101 FORMAT llOX, 'EP= •, 012.s, 5X, 'EP l=' ,D 12. 5, sx, 'EP2=' ,01z. 5,/ II 

WRITE lo ,61 OMEGP,OHEG3l, OMEGU ,PER IOO,PER31, PER13 
6 FORHATl5X,'NATURAL FREQUENCIES ILINEARl',t/,5X,'DHEGP=',Ol2oS, 

7 2X,'0MEG31=',Dl2,5,2X,'0MEG13=•,o12.s,,,,sx,•pERIOOll=',Dl~.5, 
8 ZX,' PERI0031=' ,Dl«.5 ,2X ,, PERIOOU=• ,DlZ.5,//1 

WRITEl6,40111,XXlll,YYlll,1=1,NSTRANI 
40 FORMATl/,5X,'STRAIN 0 IS CALCULATE.O. AT THE FOLLDNING PUlNTS',211,10 

1X,Iz,5x,012.s,5x,012.51,111 
NRITElo 1 81DT,PRMTl31, NSTRAN ,PSCALE 

8 FORMATl5X,'0THER INPUT DATA',//,5X,'OT=•,012.5,2X,'PRMTC31=' 
9 ,Dl2o5,2X, //,5X, 1 NSTRAIN=1 ,12,5X,' PRESSURE SCALE 
2FACTR=',D12.5 1 /,// ,5X, 'INPUT PRESSURE OATA',//,5X,'1',9X,'PIII• 
:i: ,II 

WRITE Io, 9111,PI 11 ,l=li'NOI 
9 FORMAT llX, 15,5-X,012.51 

C THE FULLONING BLOCK OF CARDS ARE FOR RUDH MIINDOW DOOR RESPONSE 
c 

IFIIFROCM-llo09,o10,&09 
olO CONTINUE . 

READ15,605JEL,AR,.VOL ,OAMPl 
605 FORMA Tl 'tO 15, 81 . 

Ell=EL+l.45*DSURT I AR/3.14101 
Ell=EL 

EM2=ELl*AR*lo4*l4.7*1~4./lll00o*ll00ol 
EK22=1.4*1••7*144o/Vt:JL 
NRITElo,60olEL,ELl,AR,VQL,EM2,DAMP1 

006 FORMAT( lX,/.,llX,'INPUT DATA UN RUOM ANll DOOR', 
*II llX, 'LENGTH.OF DOOR =• ,F16. l0,' FEET' 
*llllX,'EFFECTIVE LENGTH OF DOOR =',flo.10,' FEET' 
*l/liX,'AREA OF ODOR =· ,Flo.lo,• FT•FT. 
*llllX,'VOLUME OF ROOM =',Fl6.lO,•FT**3' 
*l/llX,'EFFECTIVE MASS OF AIR IN DOUR =',Flo.10,• SLUGS' 
*l/llX,'EFFECTIVE DAMPING FACT~ =· ,Flo.lo,• OIMENSIONLESS 1 /I 

EK2=EK22 
EK2l=EK2*AR*C 3/EMZ 
EK22=-EK2*AR*AR/EM2 
Co=-AR/EM2 
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c 

EK12=EK2*AR*Cl/ EMl 
EK1R=(EK2*C3*C3•EK11/EM1 
C3=C3/EM1 
DAMP=DAMP/ EM! 
EKlPNL=EKlPNL/EMl 
DAMP2=-2.*DAMPl*OSQRTIEK2*AR*All/EM21 
WRITEl6,6081EK22,EK2l,C6 

608 FORMAT(J.2x.•OERY(~t=•.01~.5.••Yl3J••.01z.5.••Y111+•.012.5.••P(TJ 
l I .l} 

NDI M='. 
Yl31=0.DO 
Yl41=0.00 
DER YI ll=0.25 
OERY(Zl=0.25 
DERYUl=0.25 
DER YI 41 =O. 25 

C END CF ROOM ll[NOllt DOllR l!LOCll 
c 

c 
c 
c 
c 

609 CONTINUE 
WA (TE(6 ,10 I 

10 FORM T( lttl .ax.•TJ ME' •. 5x.•OEFLECTION1 .sx.• EPSUKl' ,7X, 1 EPSUNr•,, J 
CALL DHPCGIPRMT,Y,DERY,NOIM,llt.F,FCT,OUTP,AUXJ 

11 CONTINUE 
STOP 
Ei.o 

SUBROUTINE FCTIX,Y,DERYI 
IMPLICIT REAL*81A-H,O-L) · 
DI l'ENS ION DERY 141, YC4l,PllMH 51,AUlU 16, 41,PI 2001,lll 41, YYI 41, 

l SIGXMl41,SlGYMl41,EPSXM141,EPSYMl41,SlGXBl41,SlGY8141,EPSll8141, 
2 EPSY8141 

COMMON P, S[GXM,SIGYN,EPSXM,EPSYN,SlGXB,Sll,\'11,EPSXB, 
3 EPSYB ,EKl,ENl,EKlPNL,OAMP,C3,0T,PSCALE ,PRESS,ND ,NSTRAN 
3 ,NC,NMULT,EK21,EK22,EK2,C6,AR 
4 ,EK12,EK1R,OAMP2,IFROOM 

DERYI ll=YI 21 
C CALCULATE PRESSURE BY LINEAR INTERPIK.ATIIIN 

IP=X/OT +l 

c 

fRsX/ OT-IP +l 
PRESS=PSCALE*IPIIPl•FR•IPIIP•ll-PIIPIII 
IFIIFROOM-112,3,2 

3 CONTINUE 
DERYl21=C3*PRESS-DAMP*Yl21-EK1PNL*Ylll*Ylll*Ylll+EK12*Yl31 
-EKlR*YI 11 
DERY 13 l=Y 141 

OERYl4l=EK22*Yl31+EK2l*Ylll+C6*PRESS 
•DAMP Z*YI 41 

GO TO 4 
2 CCNHNUE 

OERYl21s(C3*PRESS-OAIIP*Yl21-EKl*Ylll-EKlPNL*Ylll•Ylll 
l *Yllll/EMl 

4 CONTINUE 
RETURN 
END 

c 
c 
c 

c 
c 
c 
c 

SUBROUTINE OUTPIX,Y,DERY,lHLf,NOIM,PRMTI 
IMPLICIT REAL*BIA-H,0-ZI 
DI MENSI ON DERYI 41, Yl41 ,PRMTC51 ,AUXl16,4 I ,Pl200 I ,XX 141,YY 141, 

• SI GXltl 41, S IGYM I 41, EPSXM 141, EP SYMI 41,SIGXB I 41 , S.I GYBI 41 , 
I EPSXB(41 ,EPSYBl41 

COMMON Po SIGXM, SIGYM,EPSXM,EPSYM,SIGXB,SIGYI!, EPSXB, 
3 EPSYB,EKl ,EK1,EK1FNL.,OAMP,C3,0T,PSCALE ,PRESS,NO ,NSTRAN 
3 ,NC,NMULT,EK21,EK22,EK2,C6,AR 
4 , EK12,.fk1R,OAHP2, IFROOM 

IFl.X;LT.NC•N,;_iLT*PRMH311 RETURN 
NC=NC+ 1 
Y2=12.*Ylll 
0.0 1 1=1,NSTRAN 

n-v1 11 *YI 11 
SYM=~IGYMlll*Yl 
SXM=SI GXMI ll*Yl 
SXB=SIGXBlll*Ylll 
SYB=SIGYB(ll*Ylll 
EPXM=EPSXMlll*Yl 
EPYM=EPSYHI I l*Yl 
EPXB=EPSX B 111 *Y Cl I 
EP YB=EP SYSI I l*Yll I 
EPSUMX=EPXB+EPXM 
EPSUMY=EPYB+EPYM 
WRI TEI 6 ,31 X,.,Y2,EPSUMX,EPSUMY 

3 FORHATl1X,412X,Dllo411 
WRITE 17 ,41 X ,EPX 8, EPXM, EPY B, EPYM,YZ, I 

4 FORMATl6Fl3.7,121 
1 CCNTINUE 

IF ( XoGE.PRMTIZI IPRHT 151=1. 
RETURN 
ENC 

SUBROUTINE YAMAKIIN,BETA,X,EP2,P01,Pl0,PROI 
IMPLICIT REAL*SCA-H,O-ZI 
Dl~ENSION. All6,l61,CU61,Xll61,Dl51 
K=l 
L=N/2 
Pl =3.141600 
00 l lsl,N 
DO 1 J=l,N 
All ,Jls0.00 
00 2 l=l,L 
Al 1, 1+L1=1·.oo 

2 All+L,11=1.DO 
00 3 J=l,L 
G=J/8ETA 
ANG=P I •G 
EX=DEXPIANGI 
EXN=DEXPI-ANGI 
HSIN=I EX-EXNl*0.500 
HCCS=IEX+EXNl•0.500 
TF=HSIN**Z/IPl*IHSIN•HCOS+ANGJI 
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c 
c 
c 
c 

T FC=-1 • OO**J*4. DO*G*TF 
DD 3 H=l,L 
AIH,J I= -l .OO**H*H**2/( G**2+M**21 **2*TFC 
DO 4 J=l ,L 
G=J*BE TA 
ANG=Pl*G 
EX=DEX PI ANG) 
EXN=DEXP(-ANGI 
HSIN=(EX-EXNl*0.5DO 
HCOS=IEX+EXNl*0.5DO 
Tf=HSIN**Z/(Pl*IHSIN*HCOS+ANGII 
T f C=-1 **J *'<*G*T f 
DO 4 H=l,L 

4 A( M+L ,J +L )=-l**M*M**2/t G**2+M**21 **2* TFC 
DO 5 l=l ,N 
Cl 11=0.DO 
Cl 1 l= l .D0/ 32 .DO 
CIL+ll=BETA**2/32,DO 
CALL BANDGE !A,C,X,N,LI 
ANG=P !*BETA 
EX=DEXPIANGI 
E~N=DEXP(-ANGI 
HSIN=(EX-EXNl*0•500 

HCOS=I EX+EXNl*0,500 
CPB=HSIN**Z/IPl*!HSIN*HCOS+ANGII 
ANG=PI/ BET A· 
O=DEXPIANG) 
EXN=DEXPI-ANGI 
HS IN=( EX-EX Nl*O .500 
HCO S=I EX+E XNI *O• SD O 
CPGB=HS IN**Z/ IP I *I HS IN*HCOS+ANG)) 
82=BETA*BETA 
PO 1=2. DO/BE TA** 3*CPB*X (L+ l l 
Pl0=2*BETA*CPOB*XI 1) 

DI K) =-24. 00* 82 II l. C0+82 I **2 *I POl +P 10- ( 82 + l ./8 21/ 32.DO I 
PR=PRO 
PRC=l-PR*PR 
EP2=D(Kl*PRC 
WRITE(6,10)N,EP2,BETA 

10 fORHATl/,lOX,'NONLINEAR PARN4ETER FOR PLATE BY YAMAKIS METHOD',// 
1,5X,'NUHBER Of TERMS N=• ,12 ,5X,' EP= 1 ,D12.5,5X,' BETA=' ,F4.:Z.,/ J 

RETURN 
END 

SUBROUTINE liANDGE IA,C,X,N,HI 
IMPLICIT REAL*B IA-H,O-Zl 
Ol~ENSION All6,l6l,Cll6l,Xll61 
K= l 
l=K+l 
L=M+K 
IF( L,G T ,NI L=N 

2 D=All,KI/AIK,KI 
Al I ,Kl =O. DO 
J=K+l 

3 All,Jl=All,JI-D*AIK,Jl 
lfl J-U4,5 ,20 

4 J=J+l 
GO TO 3 
CI I )=CI ll-O*C(K I 
lf(l-Ll6,7,20 

6 l=l+l 
GC TO 2 

7 lflK-N+llB,11,20 
8 ~=K+l 

GC TO 1 
ll LL=N-H 

L=N 
XI Nl=C (NI/ AIN, N) 
I =1'1-l 

12 lfl l,LT.LLIL=L-1 
J=i+l 
S=0.00 

l3 S=S+AI 1,Jl*XIJI 
lflJ-U14,15,20 

H J=J+l 
GO TO 13 

15 X(.ll=ICHJ-Sl/All,i) 
lfll-1120,20,16 

16 I= 1-1 
GO TO 12 

20 RETURN 
END 

//GC.SYSPUNCH DD SYSOUT=B 
//GO.SYSIN OD * 
II 
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APPENDIX C 

The following computer program generates and numerically 

integrates a multimode, lumped parameter model for a simply 

supported rectangular plate based on the Von Karman equationso 

Its usage is given as a part of the listing, 



II EXEC FORH,CLG ,REGICN. GCJ;lOOK 
//FORT.SYSIN DD* 
c 
(. 

(. 
(. 

c 
(. 

(. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
(. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c. 
t 

THIS PROGRAM COMPUTES THE NONLINEAR TRANS IE 
RECTANGULAR ELASTIC PLATES TO ARBITRARY PRE. 
A HULTIHODE HOuEL DERIVED dY ~ALERKIN'S HETH 
REPRESENT THE PLATH 

RESPONSE OF THIN 
'JRE LOADS• 

i S USED TO 

SUBROUTINE DHPCG IS USED FOR NUMERICAL INTEGR, ·. IUN. 
GAt,ESH RAJAGOPAL JUNE 1972 O.S.U. 

INPUT DATA• 
CARO 1: FORHAT17Fl0.31A,B,H,E,PR,RO,Z 

A=PLATE LENGTH lfTI 
Bzl'LATE WIDTH IFTI 
H=PLATE THICKNESS I IN I 
E=YOUNG'S MODULUS OF PLATE HATER!Al lPS. 

PR=POI SSON' S RA Tl O 
Rll=DEl,SITY ILBF/FT**31 

l=DAHPING FACTOR 
CARC 2·: FOR HA Tl 3Fl0.3,2i 51DT ,PRHTl 31,P SCALE ,NSTRAN,NHUl T 

. UT=T !HE INTERVAL BETWEEN INPUT PRESSURE DATA fDINTS 
PRHTl31=1fd TIAL INTEGRATION STEP SIZE 

PSCALE=CONIIERSION FACTOR TO COl,VERT INPUT PRESSURl:. INTO PSF 
NSTRAIN=NUHBER .Of POll,TS AT WHICH STRAINS ARE TO B·E COHPuTED 

NHUI.T=OUTPUT .ONLY EVERY NHULT TIMES PR-HTl31 
CARD 3:FORHAT 18Fl0 .311XXII I ,YY l 11, 1= 1,NSTRA IN I 

XXlll=X COORD OF POINT I AT "HICH STRAIN IS REWIREOlfTI 
YYlll=Y •••••••••IFTI 
****ORIGII, .llF COORD. SYSTEM ·IS AT CORNER OF PLATE 

CARDS to:FORM4TI 11,Fl 9.31NSTOP,PII I 
NSTOP IS US.ED TO IDENTIFY END OF INPUT DATA 

NSTIJP=O EXCEPT FOR LAST CARO FOR WHICH 
NSTOP=l . . . 

PI ll=PRESSURE II THIS CAN BE ANY SET OF NUMBERS 
REPRESENTll'<G INPUT DATAII 

NUTE***UNE DATA CARD IS NEEDED FOR EACH INTERVAL OF TIME OT 
CARD 5 :FDRHATl'>IKINL,HL,JL,KL -
NL=HIGHEST ORDER 000 MODE TO BE CONSIDERED IN X DIRECTION. 
HL=HIGHEST ORDER ODD HOOE TO BE CONSIDERED IN Y DIRECTION. 
JL=HIGHEST NUl.!_BER IN ASSUMED ST RESS FUNCTI O"' IN X DlRECTlilN, 
KL=HIGHEST NUMBER IN ASSUMED STRESS FUNCTION IN Y DIRECTION. 
CARD 6: FORHATll51 IFCOEF 
FOR A GIVEN PLATE THE COEFFICIENTS ARE CONSTANT AND THEY NEED TO 
BE GENERATE.D ONLY ONCE •. 
IFCOEf= D COEFFICIENTS HAVE TO· tlE GENERATED. 

1 COEFFICIENTS WILL BE READ IN. 
NCTE: 
ADDITIONAL EXPLANATIONS ANO DEFINITIONS ARE.PROVIDED IN THE B.JDY JF 
THE PROGRAM• 

IMPLICIT REAL*BIA-H,0-ll 
DIMENSION AUXl16,81,DERYl81,Yl81,PRHTl51 
COMMON COEFW14,4,'>,'>1, 

SIGX812,3,31,SIGYBl 2,,,31,SIGXH12,lb,l61, 
SIG YMI 2 ,16 ,lbl ,FF 116 ,161 ,FFF 116 ,161, w 13 ,31 ,WNAU, 31, 

• FCOEFF116,161, COEFl16,161, 
i FWw13,31,AEFF13,31, FFWl161, FWWWl'>I, Pll001,XXl31,YY(31,Fwllbl 

,. 
c 
'C 

c 
c 
c 
c 
c 

c 
c 
c 

c 

c 

c 

c 

-J,PR.E ,OT,BRAT ,t.Rl,l'iL,ML,JHl ,l'it,NMULT,JL,KL,NPl ,NPl,NSTrtAN 

100 

·3 

122 

101 

15 
1 

l'> 

EXTERNAL FCT,OUTP 

DC 120 IKOUNT•l,4 
READ ALL INPUT DATA. 

REAC(5,11A,B,H,E,PK,RV 1 l 
FOR HA Tl 8F 1 O. 31 . 
REACl5,1001DT,PRIH13J, PSC'AL·E, 
FORHATl3Fl0.3,2151 
REAOl 5, 111 XXI 11 ,YYI 11 ,1 •l ,NSTRANI 
ND=O 
NO•hO+l 
READ( 5, 2·1NSTOP,PINUI 
Pl hDl=PINDl•PSCAL E 
FORMTlll,Flto.31 
lflNSTOP.LT.llGO TU 3 
NC•O 

NSTRA"' ,NHULT 

THE FOLLOWING STATEMENT dYPASSES CUEFFICIENT GENERATOR If 
SAME PLATE IS BEING USED. 
REMOVE THIS STATEHl:NT IF SAHE JOB RUNS CIFFERENT PLATES. 

IFl!KOUNT-11121,1~2,121 
CONTINUE 
REAO(;,lOll~l,HL,jL,KL 
FORMAT lit 15 I 
READ15,i0111FCOEF 

CALWLATE SYSTEM PARAHETEi<S. 

EM l=RO*A*B*HI 1 '>.*32. 2* 12. I 
EHl ;.HASS IN SLUG5'1S AME .FOR ALL HODES I 
C 3•4. *A*B II 3.1"16* 3. l'ol 6*EH11 
STIFFNESS AND NATURAL FREQUENCIES 
OS•E* I H**31 * 13 .1416**'> I *A*B*0.25/1144 •*11.-Pk*PR I j 
00 14 M-=l,HL,2 
DG l'> N=l,NL,2 
S T(fFzDS•·111 H/Al* I H/AI+ IN/111*1 NI 811•*21 
WNAlM,Nl=STIFF/EHl 
WhAT~OSQRJ.IW,..AI ~,MI 
FREQ=WNAT*O. 5/3.1416 
PER 100=1./FREQ 
WRITEl&,15JH,N,wNAT,FREQ,PERIOD 
fORMA. Tl 5X, •NATURAL FREQ.I RAO PER SECJ, ( •·,ll ,• ,, , 12, • J=•, ul2 .Si, :,x, 
I f AEiiAJ ENC'fz I t 012 .5 r 5X, •PfR..10():,,: 1 ,012. 5,/) 
EFFECTIVE AREA DIVIDED BY THE HASS IS AEFF 
AEFflH,N l•C3/IH*NI 
CChT INUE 
NP lz0.25*1 NL+l 1 *I NL+ll 
J~l•JL*KL 
NRl=NPl 
NPl=T 
NP 2•NP 1 *NP 1 
BRAT•-Z •* 13 .1'>16**'> l*H/ 11 A*A*tl*Bl•EH 1*12. I 
CALCULATE THE NECESSAli. Y TERMS FOR STRESS FUNCTION 
PA=l.00/A 
PB•l.00/11 
IFIIFtOEF-ll~l,2Z,2l 
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C READ All THE NECESSARY CUEFFIENT MATRICES IN. 
c 
C FIRST FCOEFF 

22 CONTINUE 
DO 23 1=1,JMl 

23 REAU15,lll llFCOEFFll,Jl,1,J,J=l,JHll 
C SECOND C OEF w 
c 

OG 24 NUV=l ,4 
DO 24 NPQ=l,4 
DO 24 NRS= 1, 4 

24 REA015,l09IICOEFWINUV,NPQ,NRS,NHNJ,NUV,NPQ,NRS,NHN,NMN=l,41 
GO TO 25 

21 CONTINUE 
00 16 M=l ,JL 
DO 16 N= 1,KL 
DO 16 J=l,JL 
DC 16 K=l,KL 
JJ=JL*IN-ll+H 
KK=JL* IK-11 +J 
FF I JJ, KKI =II I PA*J I *PA*J+PB*K*PB*KI **21 *C2JS Ql. IJ, M, A I *C2J SI.Ill K, N, 

1 Bl- I I PA•J I **4l*C 2J SQL( J ,H,A I *O• 50 O*B-1 ( PB* Kl **41 *C2J SQL I K, N, Bl 
2 •o.5oO•A 

lt CONTINUE 
WRITElb,1051 

105 FORMATl5X,' FF IS GIVEN t>tLOw'I 
DO 103 l=l,JHl 
WR !TEI 6, 10211 FF I I, JI, J= 1,JH 11 

102 FORHATl5X,812X,Dl0.31,/,10X,812X,Dl0.3ll 
103 CONTINUE 

DO 113 l=l,JHl 
00 113 J=l, JHl 

113 FFFI 1,Jl=FFll,JI 
CALL HATINVIO,DETI 
WRITE16,10i>J 

106 FORHATl5X, 'Ff INVERSE IS GIVEN BELOW'I 
DO 104 l=l, JMl 
WRITEl6,10211FFll ,JI ,J=l,JHll 

104 CONTINUE 
C CHECK ON INVERSION 

DO 114 1=1,JMl 
DO 114 J=l,JMl 
COEF 11 , JI =O • 00 
DO 114 K= l,JH l 

114 COEF I 1,J l=COEFI I, J J+FFI 1,K l*FFFI K, JI 
WR! TEI 6 ,1151 

115 FORHATl2X,'IDENT!TY MATRIX SHOULD BE BELGW'I 
DO 116 1=1, JHl 

lit WRITEl6,l02IICDEFll ,Jl ,J=l,JMll 
C CONTINUE TO CALCULATE PARAMETERS 

DO 17 J=l, JL 
DO 17 K=l,KL 
JJ=JL*IK-1 l+J 
00 17 NP=l, NL, 2 
DO 17 NQ=l,HL,2 
NPs= 11 ML+l I* INP-11/41+1 IN,l+l 1/ 21 
DO 17 NR=l,NL,2 
DO 17 NS=l,ML,2 
NRS=l(HL+ll*INR-ll/41+11NS+ll/21 

c 

NP•RS=4*1NRS-ll+NP~ 
COEFIJJ,NPQRSl=E*3b. *IPA*NP*PA*NR*PB*NQ*PB*N,•CCSQINP,NK,J,AI 

l*CC,Q(NQ,NS,K,BI-PA*NP*PA*NP*Pa*NS*PB*NS*SSSQ(NP,KR,J,Al•SSSQIN~,N 
2S,K,811 

11 CONTINUE 

C CALCULATE FCO EFF= FF INVERSE*CDEFF 
c 

c 

00 107 l=l,JMl 
DO 107 NPQRS=l,JMl 
FCOEFFll,NPQRSl=O.DO 
DO 107 K= l,JHl 

107 FCCEFFll,NPQRSl=Ffll,KI* COEFIK,NPQRSI +FCUEFFll,NPQRSI 

iJO 10 8 NU= 1, NL, 2 
DO 108 NV=l,ML,2 
NUV=NU-l+(INV+ll/21 
DO 108 M=l,ML,2 
DC 108 N=l,NL,2 
NMN=M-l+l(N+ll/21 
Du 108 J=l,NP.2 
LEFT=( J-11/~Pl 
NR S=LEF T+ l 
NPl.l=J-NPl*LEfT 
COEFW ( NUV ,NPQ, NRS, NHNl =O. O·J 
DO 108 l=l,JMl 
LEFT= I 1-ll/JL 
K~=LEFT+l 
JJ= 1-J L *LEFT 

108 CCEFW(NUV,NPQ,NRS,NMNl=COEF•INUV,NPQ,NRS,NHNl+FCUEFFll,Jl*(KK*KK* 
lM*M*SSSQ{M,NU,JJ,AJ* LSSCKK,N,NV,DJ+ JJ*JJ*N*N* CSS(JJ,M,NU,A)* 
2 SSSQCN,NV,KK,BJ+ JJ*KK*M*N* SCS(M,NU,JJ,A) *SCS(N,NV,K.K,tiJ )*BR.AT 

DO 112 1=1,JHl 
WRITE( 7,lilJIFCOEFFll ,Jl ,1,J,J=l,JHll 
wRITElb,lllllFCOEFF(l,Jl,1,J,J=l,JHll 

111 FuRMATl4(1X,Dl5.8,212ll 
112 CUNT! NUE 

DC 110 NUV=l,NPl 
DO 110 NP~=l,NPl 
DO 110 NRS=l,NPl 
wRIT E 16,l 091 I COEf• 11'UV ,NP<J,NRS ,NMNl ,NUV, lil'w,NKS,NMN ,NHN=l, <,;I 
WR[ TE C 7 ,l 09·) C COEFW ( NIJV ,NPQ ,NRS, NKf\), M.JV, NPQ,NKS ,NMN, NMN= l, 4J 

109 FORMATl4( 1X,Dl5.B,4llll 
110 CCNTI NUE 

25 CONTINUE 
PB=3 .l4lo*PB 
PA=PA* 3.1416 

C SET UP PARAMETERS FUR STRtSS CALCULATIONS 
B E~D= E*H*O .5•, .1416*3 .1416/1 ( 1.-Pi< *PR l * 12. I 
DO 7 1=1,NSTRAN 
Xl=XX(I) 
Yl=YY(ll 

llO 19 M=l ,ML,2 
00 19 N=l,NL,2 
DS=OS IN I H*PA*X 1 I *DS IN( N*P B*Y 11 
SIGXB( I ,M ,NI ;=BEND•(( Ml A)* ( H/ Al +PR* IIVBl* IN/Bl I •os 
SI GYol l,M,N )=BEND*( I M/AJ *( H/AJ *PR+ (N/81 *( N/BI I *D S 

19 CGM!NUE 
DC 20 J=l,JL 

'--......._"'--...._ 
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DO 20 K=l,KL 
SlGXHII ,J,Kl=2 .•PB*PB*K*K• IDS IN IJ*PA*Xl 1••21•DCOSI 2.*PB*K*Y 11 
SIGYHll,J,Kl=Z.*PA*PA*J*J*IDSINIK*PB*Yll**Zl*OCOSIZ.•PA*J*Xll 

ZO CC~TINUE 
7 CONTINUE 

121 CONTINUE 
C PARAMETERS NEEDED FOR DHPCG 

PRMTI llzO.DO 
PRMTl21=1ND-ll*DT 
PR·MTl4l =0.00100 
PRMTI 51=0.DO 

C SET UP !NIT !AL CONDITIONS 
NOIM=2*NP1 
00 18 1=1,NOIM 
Y II l=O .DO 

16 OERYlll=l.DO/NOIM 
C WRITE OUT INPUT DATA 

WRITEl6,4lA,B,H,E,PR,RO,Z 

c 
c 
c 
c 

4 FORHATllHl,lOX,'INPUT DATA FOR PLATE1 ,//,5X,1 A= 1 ,Dl2.5,2X, 11!=', 
• 012.5,zx, •H= • ,012. ,,,, .sx, •e=• ,012 .s,1x, •PR=' ,o 12. s, 1x, •Ro=•, 
5 012.s,2x.,iz=•,012.5,/IJ 

WRITE( 615lEMl ; 
FORHATl5X, 'EFFECT IVE HASS OF PLATE=',012.51 
WRITE 16,12111, XXI H,YY 111, 1=1,NSTRANI 

12 FORMATl5X,•STRESSES AND STRAINS ARE COMPUTED AT THE FOLLOWING LOC 
lATIONS' ,/ ,2115X, 11, 012.5, 2X, 012 .5,/ I I 

WR! TEl6 ,81 DT ,PRIHl31 ,TFRING ,NS TRAN , PS CALE 
8 FORMATl·Sx,•'oTHER INPUT OATA•,J/,5X, 10T=',012.5,ZX,'PRHTl31=' 

9 ,D12.5 ,ZX ,•TFRING=' ,DlZ.5,//o 5X, •NSTRAIN=', 12, 5X 1 •PRESSURE SCALE 
2FACTR=',012,·5,/.I/ ,5X,'INPUT PRESSURE DATA',ll,5X,'1 1,9X, 1P(II'·. 
i ,n 

WRITEl6,9111,P(ll,1=1,NOI 
9 FORMAT(lX,15,SX,Dl2.51 

WRITE16,ll1NL,ML,JL,KL 
11 FORMATIZX,'LARGEST MODE CONSIDERED 1 ,/,/,SX,'DEFLECTlUN=•.iz, 

·1 1 , 1 1 12,//1 5X, 1 STRESS = 1 ,12, 1 , 1 ,IZJ . 
WRITE 16 ,10 l 

10 FORHA Tl lHl ,sx,• OUTPUT DATA' ,// ,7X, •TIME' ,&X,' DEFLECT ION' ,bX, 
l 'EPSUMX',7X,•EPSUMY',/I. 

CALL OHPCGIPRMT,Y,DERY,NOIM,IHLF,FCT,OUTP,AUXI 
12C CONTINUE 

STCP 
ENO 

SUBROUTINE OUTP(X,Y,DERY,IHLF,NDIH,PRMTI 
IMPLICIT REAL*B(A-H,O-ZI 
DIMENSION AUX(lb 181,DERYIBl,YIBl,PRHTl51 
COMMON COEFW14,4 14,41, 

SLGXB12, 3,31,S IGYBI Z, .ii, 31, SIG XHI 2, 16 ,lbl , 
SIGYMI Z,lb ,161 ,Ff I lb ,161 ,FFFllb ~lbl, W 13 ,31 ,WNAI 3, 31, 

* FCOEFFl16,lbl, COEFl16,lbl, 
2 FWW13,31,AEFF13,31, FFWl161, FWWWl41, PllOOl,XXl31,YYl31,FWl161 
3,PR ,E ,OT ,BRAT ,NRl ,NL,ML,JMl , NC,NMULT ,JL,KL,NPl , NPl,.NST RAN 

C OUTPUT ONLY AT MULTIPLES OF PRl1Tl31 
IFIX.LT.NC*NII.ILT*PRMTl31l RETURN 
NC=NC+l 

C COMPUTE CENTER DEFLECTION 
c 
C CHECK IF ONLY SINGLE MODE HODEL IS TO BE USED 
c 

!Fl ML-115, 6, 5 
b COHINUE 

FWlll=YI ll 
C FOLLOW ING THREE CARDS ONLY FOK USING SAME FORHA T 

Yl3l=Oo00 . 
Y( 51=0.DO 
Y 171=0 .oo 
Wll,ll=Ylll 
Y Z= 12 .DO*YI 11 
GO TO 7 
CONTINUE 
Y2=12.*IYI 11-YI 31-Y( 51+YI 711 
FWlll=Ylll 
Fol 21=YI 31 
FWl31,;,Y(51 
FWl41 =Yl71 
WI 1, ll =YI 11 
Wll,31=Yl31 
Wl3,ll=Yl51 
WI 3, 3l=YI 71 

7 CONTINUE 
C COMPUTE. STRESSES AND STRAINS 
C GENERATE STRESS FUNCTION ELEMENTS. 
c 

DO 9 l=l ,J1U 
LEFT=l 1-11/JL 
KK=LEFT+l 
JJ=I-JL*LEF T 
FFFIJJ,KKl=O.DO 

" DO 9 ·;l=l ,JMl 
LEF T=I J-11 /NP 1 

· NRS=LEFT+l 
NPQ=J-NPl* LEFT 

9 FFFI J,loKKI =FFF I JJ, KKl+FCUEFFIL ,Jl*FW(NPQl *FWINRS I 
DO '1 l=l;NSTRAN 
SXB-=O. DO 
SYB=O.DO 
DO Z M=l ,HL,2 
DOZ N=l,NL,2 
SXB=SXB+SIGXBI 1,M,Nl*WIH,NI 
SYB=SYB+S IGYBI 1,H,Nl*W IM,NI 
CONTll><UE 
SXM=Q .DO 
SYM=O. DO 
DO 8 J=l,JL 
DC 8 K=l'1KL 
SXM=SXM+Sl~XHII,J,Kl*FFFIJ,KI 
SYM=SYM+.SIGYMI I iJ ,Kl *FFFI J ,Kl 

8 CONTINUE 
SX~=SXM/144.DO 
SYM=SYM/144.DO 
EPXB= ISXli-PR*SY 81/ E 
EP YB=I SY~-PR* SXBI/E 
EPXM=I SXH-PR*SYMI/E 
EPYH=ISYM-PR*SXMI/E 

si) 

00 



c 
c 
c 
c 
c 

EPSUHX=EPXB•EPXM 
EPSUMY=EPYB+EPYH 
WRITE ( 7,41 X,EPXB ,EPXH,EPYB ,EPYM,Y2 ,1 

4 FO?MAT(6Fl3.7,12J . 
WR! TE(6,3J X,Y2,EPSU~X,EPSUMY 
FORMATl1X,412X,Dll.4JJ 
WRITEl6 ,10 JY 11 I ,Y {3 J ,Y 151, Y 171, SXB, SYB, SXM, SYM 

10 FORMAT! lOX,Bl2X,Dll.4l ,IJ 
l CCNT INUE 

IFIX.GE.PRHTl2Jl PRHT15J=l. 
RETURN 
ENO 

SUBRUUTINE FCTIX,Y,OERYl 
IMPLICIT RHL*BIA-H,0-ZI 
UIHENSION AUXll6,Bl ,DERYIBI ,Y(Bl ,PRHT15l 
COMMON CDEFWl4,4,4,41, 

SIGXBl2,3,3l ,SIGYBI 2, 3, 31,SIGXMl2, 16, 161, 
SIGYHI 2 ,16 ,161 ,FF 116 ,161 ,FFF 116 ,161, W 13 ,3 l ,WNAI 3, 31, 

* fCOEfFI 16, 161, COEFl 16, 161, 
2 fWWl3,31,AEff(3,31, ffWll61, fWWW(4l, Pl 1001,XXI 3l,YYl31,fW( 161 
3,PR,E ,OT,BRAT ,NRl,NL,ML,JMl ,NC,NMULT,JL,KL,NPl ,NPZ 

C DEFINITIONS Ylll=WI l, ll ITS OERIVATIVE=YI 21 
C Yl3J=Wll,31 ITS DERIVATIVE=Yl4l 
C Y(5J=W13,ll ITS DERIVATIVE=Yl61 
C Yl7 J=Wl 3,31 ITS DER IVA Tl VE=YI BJ 
C CALCULATE PRESSURE BY LINEAR INTERPGLAT ION 

IP=X/DTH 

c 
c 
c 

fR=X/DT-lPH 
PRESS=PllPJ+FR*IPIIP•ll-PIIPll 

CH ECK If ONLY SINGLE MODE MODEL IS TO BE USED 

IF IHL-111, 2, l 
CGNTINUE 
DERY(ll=Yl2i' 
DER YI 3 l=YI 41 
DERYl51 =Y 161 
DER YI 71 =YI 81 
FW 11 l=Y ( 11 
F 1<121 =Yl31 
fWI 3J=YI 51 
fW l4J=Yl7 J 

C GENERATE NONLINEAR TERMS FOR THE DifF EQUATIONS 
00 30 l=l,NPl 
FWWW I 11=0 • 00 
DO 30 J=l ,NPl 
DO 30 K=l,NPl 
DC 30 L=l , NPl 

30 FWWWlll=FWWWlll+CUEFWll,J,K,ll*FWIKl*FWIJl*fWILl 
DERYl21=AEFFI l, ll*PRESS-WNAI 1, ll*YI ll+FWWlil 11 
DERYl4l=AEff(l,31*PRESS-WNAll,31*Yl31+fWWWl21 
DER YI 6 l=A EfFI 3, 11 *PRE SS- WNAI 3, 11 *YI 51 +FWWW ( 31 
DERY 16 J=AEff 13 ,3 l*PRESS-WNAI 3, 31 *Yl7 J+fWWWI 4l 
GO TO 3 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

2 DERYlll=Yl2J 
UER YI 21=AEfF( 1,ll *PRESS-WNAll ,ll*Y 11 J+COEFW 11,l ,1,1 J *YI l l*Y 11 l 

l *Y ( 11 
3 CCNTINUE 

RE TURN 
END 

FUNCTION SCSIM,N,J,ABJ 
J2=2*J 
If IH-Nll,2,1 
lf(IH+NI.NE.J2.AND.IM-NI.NE.J2.AND.1"4-HJ.NE.J21 GD TO 3 
IFIIM-NI.EQ.J21 GO TO 5 

4 SCS=AB*0.2500 
RETURN 
SCS=-0. 2500*AB 
RETURN 
lf(H-J13,4,3 
SCS=O. 000 
RETURN 
ENO 

FUNCTION C2JSQLIJ,L,ABI 
IHPllCIT REAL*BIA-H,O-ZI 
lflJ-Lll,2,l 
C2JSQL=O. DO 
RETURN 

2 C2JSQL=-AB*O .2500 
RE TURN 
ENO 

fUNCT ION CCSQIM,N,J,A.81 
IHPllC IT REAL*B IA-H, 0-ZI 
J2=2•J 
lflH-Nll,2,1 
lfllH+NJ.NE.J2.ANU.(H-NJ.NE.J2.AND.(N-MJ.NE.J2J GU TO 3 
CCSQ=-0.125DO*AH 
?ETURN 
IFIM.NE.Jl GC TC 4 
CCSQ=0.125DO*AB 
RETURN 
CCSQ=0.25DO*A8 
RETURN 
ccsi.=o.oo 
RE TURN 
ENO 

FUNCTION SSSQIM,N,J,Aol 
IMPLICIT REAL*BIA-H,0-ZI 
J2=2*J 
IFIH-Nll,2,1 

'° '° 



c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

3 

4 

2 
5 

4 

3 

2 
5 

b 

IFIIH+NI.NE.J2.AND.(M-NJ.NE.J2.ANO. (N-MI.NE.J21 GO TO 3 
lfl(M+NI.NE.12*JIIGO TO 4 
SS SQ=O. 125DO*AB 
RETURN 
SSSQ=O. 00 
RETURN 
SSSQ=-0.125DO*AB 
RETURN 
!fl M--JI 5,b,5 
SSSQ=O .25DO*AB 
RETURN 
SSSQ=O. 375DO*AB 
RETURN 
END 

FUNCTION CSS(J,H,N,Aol 
IMPLICIT REAL*B I A-H, 0-l I 
J2=2*J 
IF(M-NI 1, 2, l 
IFIIH+N).NE.J2.AND.IM-NI.NE.J2.AND.(N-MI.NE.J21 GO TO 3 
IF((M+NI.NE.!2*JII GO TO 4 
CS S=-0. 2 50 O*AB 
RETURN 
CSS=0.25DO*AB 
RETURN 
CSS=O. 00 
RETURN 
IF(M-JI 5,6,5 
CSS=O. 00 
RETURN 
CSS=-0.25DO*AB 
RETURN 
ENO 

SUBROUTINE MATINV 

PURPOSE 
INVERT A MATRIX 

USAGE 
CALL MATINV(A,N,B,M,DETI 

DESCRIPTION Of PARAMETcRS 
A = GIVEN COEFFICIENT MATRIX; 'A' INVERSE Will BE STORED 

IN THIS MATRIX. 
N = ORDER OF MATRIX A 
B = MATRIX OF CONST• VECTOR, USED FOR SOLUTION OF 

SIMULTANEOUS EQUATIONS ONLY. 
H = THE # OF COL. VECTORS IN THE MATRIX OF CONST. VECTORS 

(M=O IF INVERSE IS THE SOLE AIM; M=l,2, ••• FOR 
SOLUTION IF SIMULTANEOUS EQUATIONS I. 

OET = VALUE Of DETERMINANT IA j. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

REMARKS 
MATRIX A MUST BE A GENERAL MATRIX 

SUBROUTINES AND FUNCTION SUBPROGRAMS RE~UIRED 
NONE 

MET HOD 
THE STANDARD GAUSS-JORDAN HETHOO WITH NORMALIZATION IS uSED. 
THE DETERMINANT IS ALSO CALC,ULATED. A DETERMINANT OF ZERO 
INDICATES THAT THE HATRIX IS SINGULAR. .................................................................. 

~OTE----THE USUAL SUBROUTINE CARD HAS BEEN CHANGED FOR THIS PROBUM. 
SlJBROUTINE MATINVIA,N,d,M,OETJ 
SUBROUTINE MATINVIM,DETI 

l~PLICIT REAL*B IA-H,0-Zl 
Dl~ENSION IPVOT(20I ,INOEXl20,21,PIVOT(20l 
COMMON COEFW(4,4,4,4J, 

S IGXB( 2,3, 31, SlGY8( 2, 3, 3J, SIG XM( 2, 16 ,l 6J t 

SIGYMl2,16,l6), A(l6,l61, 8(16,16), it(3,3J,WNA(3,3J, 
* FCOEFF( 16,161, COEFl16,lbl, 
2 Fwl<U,31,AEFF(3,31, FfWllbl, fWWwl41, P( 1001,XXl3l,YY(3) ,FW( 161 
3,Pl<,E ,DT,liRAT ,-P'tRl ,NL,HL,N ,NC,NHULT,JL,KL,NPl 

EQUIVALENCE IIROW,JROWl,IICOL,JCOll 
REAL*B DABS 

FLJLLOWING 3 STATEMENTS FOR !NI TIALIZATIGN 
57 CET=l• 

00 17 J=l,N 
17 IPVOTIJ )=O 

CO 135 l=l, N 
FOLLOWING 12 STATEMENTS FOR SEARCH FOR PIVOT ELEMENT 

T=O. . 
DO 9 J=l ,N 
IFIIPVOTIJl-11 13,9,13 

13 CO 23 K=l,N 
IFIIPVOTIKJ-11 43,23,81 

s3 IFIDABSITI-DABSIAIJ,KI II 83,23,23 
83 IRGW=J 

ICOL=K 
T=AIJ,KI 

23 CONTINUE 
9 CUNT! NUE 

IPVOT(ICOLl=IPVOTIICOLl•l 
FCLLOW ING 15 STATEMENfS TD PUT PIVOT ELEMENT ON DIAGONAL 

IFIIROW-ICDLI 73,109,73 
73 OET=-DET 

ca 12 L=l,N 
T=A II ROW ,LI 
AIIROW,Ll=AIICOL,ll 

12 AIICCL, Ll=T 
IFIMI 109,109,33 

33 DO 2 l=l,M 
f=BIIROW,ll 
BIIROW,Ll=BIICGL,LI 

2 BIICOL,U=T 
109 INDEXll,ll=IROW 

INDEXll ,21 =!COL 
PIVOTI I l=AI ICOL,ICOLI 
CET=uET*PIVOTIII 

FCLLOWING 6 STATEMENTS TO DEVIDE PIVOT ROW BY PIVOT aE~E~T 

>--' 
0 
0 



Al ICGL ,ICDLl=l. 
DD 205 L=l ,N 

205 Al ICOL,L l=A( ICOL,L 1/P IVOTI 11 
IFIMI 347,347,66 

66 DD 52 L=l,M 
52 BIICOL,Ll=BIICDL,LI/PIVOTIII 

C FOLLOWING 10 STATEMENTS TO REDUCE NON-PIVOT ROWS 
347 DD 135 LI= 1,N 

IFILI-ICDLI 21,135,21 
21 T=AI LI, !COLI 

AIL 1, !COL l=O. 
DO 89 L=l,N 

E9 AILI,Ll=AILl,LI-AIICOL,Ll*T 
IF(MI i35,135,1B 

18 DO 68 L=l ,M 
fE B(Ll,Ll=B(Ll,LI-BIICOL,Ll*T 

135 co~ T !NU E 
C FOLLOWING 11 STATEMENTS TO INTERCHANGE COLUMNS 

222 DD 3 I= 1,N 
L=~-1 •l 
IF IINDEX(L,ll-INDEXIL,211 19,3,19 

19 JRDW=INDEXIL,11 
JCCL= INDEX I L,21 
00 549 K=l ,N 
T=AIK,JRDWI 
AIK, JROW I= A !K,J COL I 
AIK,JCDLl=T 

549 CONTINUE 
3 COhT !NU E 

El RE TURN 
END 

//GC.SYSPUNCH DD SYSDUT=B 
//GO.StSIN OD* 
II 
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0 ...... 
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