THE NONLINEAR TRANSIENT RESPONSE
 OF THIN RECTANGULAR PLATES

By
GANESH RAJAGOPAL
/
Bachelor of Technology
Indian Institute of Technology
Madras, India
1964
Master of Engineering
Indian Institute of Science
Bangalore, India 1966

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements of the Degree of DOCTOR OF PHILOSOPHY July 1972

OKLAHOMA
 STATE UNIVERSITY
 LIBRARY

AUG 161973

THE NONLINEAR TRANSIENT RESPONSE OF THIN RECTANGULAR PLATES

Thesis Approved:

ACKNO WLEDGMENTS

During the course of this study, I received guidance, help and encouragement from many persons and organizations, and I thank them all. To some I owe a special word of gratitude.

I am indebted to Dr. R. L. Lowery, my thesis adviser, for his able counsel and understanding which made this study possible. It has been a rewarding experience to have taken part in his research and teaching programs.

My thanks to Drs. D. E. Boyd, W. B. Brooks, W. P. Dawkins, and A. H. Soni for serving on my doctoral committee and for editing this thesis.

The author received financial assistance from Oklahoma State University and NASA, Langley Research Center (NGR-37-002-051), during the course of this work. The Watumull Foundation provided a grant for the preparation of this the sis. My thanks to them for their support.

The very thin glass plates used in this study were generously supplied by the Lustron Corporation, a subsidiary of ASG Industries Inc.

As a graduate student, I have done a good amount of learning from my colleagues in the laboratory. My thanks are due to Jack

Bayles, Curtis Ikard, Stan Taylor, and Bob Maffeo for their many hours of advice and assistance during this study and to Grady Cook, Bill Smith, C. P. Rao and B. N. Murali for the many useful and stimulating discussions I have had with them.

I am especially grateful to my parents and my sister for their faith and encour agement.

My thanks to Mr. Eldon Hardy for his drafting and to Mrs.
Judy Lambert for typing the manuscript.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION l
II. LITERATURE REVIEW 4
Large Deflections of Plates 4
Dynamic Loading of Plates 7
Whole Field Experimental Techniques 7
Window-Room-Door Response 9
III. EXPERIMENTAL METHOD 10
The Plate 10
The Pressure Load 12
Moiré Method of Determining Whole Field Response 18
Pressure, Deflection and Strain Measurements 23
Simulation of a Window-Room-Door System 24
IV. THEORETICAL SOLUTION 26
Finite-Difference Method 26
Lumped Parameter Solution 29
V. EXPERIMENTAL RESULTS 34
Moiré Fringe Data 34
Strain Data 43
Deflection Response 57
Window-Room-Door Simulation 57
VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 65
Chapter Page
BIBLIOGRAPHY 72
APPENDIX A 75
APPENDIX B 90
APPENDIX C 95

LIST OF TABLES

Table PageI. Maximum Pulse Pressure as a Function of
Tank Pressure 15

LIST OF FIGURES

Figure Page

1. Layout of Equipment Used in Tests 11
2. Details of Plate Support and Location of Pickups 13
3. Pulse Generator 14
4. Operating Principle of Pulse Generator 16
5. Pressures at the Center and 1 in. From the Corner on a $3 / 4 \mathrm{in}$. Plywood Plate ($1 \mathrm{~cm}=0.005 \mathrm{sec}$.) 17
6. Pressure at the Surface of Thin Glass Plate (1 cm . $=$ 0.005 sec.$)$ 17
7. Principle of Moiré Method 19
8. Model of Window-Room-Door System 25
9. Moiré Fringes in the y Direction of a Rectangular Plate Subjected to Static Pressure 35
10. Moiré Fringes in the x Direction of a Rectangular Plate Subjected to Static Pressure 35
11. Static and Dynamic Deflection Profiles of the y Center- line of the Plate by Moiré and Finite-Difference Methods 36
12. Static and Dynamic Deflection Profiles of the x Center- line of the Plate by Moiré and Finite-Difference Methods 37
13. Moiré Fringes in y Direction at 0.0025 sec 39
14. Moiré Fringes in x Direction at 0.0025 sec 39
Figure Page
15. Moiré Fringes in x Direction at 0.0040 sec 40
16. Moiré Fringes in \times Direction at 0.0044 sec 40
17. Moiré Fringes in y Direction at 0.0094 sec 41
18. Moiré Fringes in \times Direction at 0.0094 sec 41
19. Moiré Fringes in y Direction at 0.010 sec 42
20. Moiré Fringes in \times Direction at 0.010 sec 42
21. Deflected Surface of Plate at 0.0025 sec 44
22. Deflected Surface of Plate at 0.0040 sec 45
23. Oscilloscope Traces for Response Correspondingto Max. Center Displacement to Thickness Ratioof 5.6 (1 cm . $=0.002 \mathrm{sec}$.46
24. Oscilloscope Traces for Response Correspondingto Max. Center Displacement to Thickness Ratioof 2.6 (1 cm . $=0.002 \mathrm{sec}$.)46
25. Strain at the Center of the Front Surface in the yDirection for Max. Displacement to ThicknessRatio of 5.647
26. Strain at the Center of the Front Surface in the yDirection for Max. Displacement to ThicknessRatio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, $\mathrm{J}=$$K=4)$47
27. Strain at the Center of the Front Surface in the yDirection for Max. Displacement to ThicknessRatio of 2.648
28. Strain at the Center of the Front Surface in the yDirection for Max. Displacement to ThicknessRatio of 2.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, $\mathrm{J}=$$K=4$)48
29. Strain at the Center of the Front Surface in the y
Direction for Max. Displacement to Thickness
Ratio of 0.85 49
30. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 0.85 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, $\mathrm{J}=\mathrm{K}=4$) 49
31. Strain at the Center of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6 51
32. Strain at the Center of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, J = K = 4) 51
33. Strain at the Quarter Diagonal Point of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6 52
34. Strain at the Quarter Diagonal Point of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$) 52
35. Strain at the Quarter Diagonal Point of the Back Surface in the y Direction for Max. Displacement to Thickness Ratio of 5.6 53
36. Strain at the Quarter Diagonal Point of the Back Surface in the y Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$) 53
37. Total Strain in the y Direction on the Front Surface of the Plate at 0.0065 sec 54
38. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 5.6 58
39. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=$ 3, $\mathrm{J}=\mathrm{K}=4$) 58
40. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 2.6 59
41. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 2.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=$ 3, $\mathrm{J}=\mathrm{K}=4$) 59
42. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 0.85 60
43. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 0.85 (Galerkin model, $\mathrm{M}=\mathrm{N}=$ 3, $\mathrm{J}=\mathrm{K}=4$) 60
44. Oscilloscope Traces of Test on Window-Room-Door
Model With Small Room (1 cm $=0.005 \mathrm{sec}$.) 62
45. Oscilloscope Traces of Test on Window-Room-Door
Model With Large Room ($1 \mathrm{~cm}=0.005 \mathrm{sec}$.) 62
46. Strain in y Direction at Center of Front Surface of Plate in Window-Room-Door System (Small Room, Volume = $1.8 \mathrm{cu} . \mathrm{ft}$. 63
47. Strain in y Direction at Center of Front Surface of Plate in Window-Room-Door System (Large Room, Volume $=3.66 \mathrm{cu} . \mathrm{ft}$.) 63
48. Plate Center Displacement for Window-Room-Door Model With Small Room 64
49. Plate Center Displacement for Window-Room-Door Model With Large Room 64

CHAPTER I

INTRODUCTION

Large amplitude vibrations in plates occur in practice in large glass windows, in skin panels of aircraft, in flexible roof structures, and in the walls of containers and cartons of various types. The present study is mainly concerned with the response of large glass windows to pressure pulses such as sonic booms. During the last seven years there have been several studies made at Oklahoma State University,on various aspects of structural response to the sonic boom. The latest study dealt with a finite-difference solution to the nonlinear Von Kármán plate equations for the transient response of thin, rectangular, elastic plates with various boundary conditions. There are no known exact solutions to the Von Kármán equations with which the finite-difference solutions may be compared. A major purpose of the experiments described in this report was to compare the experimentally observed response with that predicted by the finitedifference solution. Thin glass plates with simply supported edges were used to model the response of large glass windows. A plate is generally considered to be loaded into its nonlinear range when its center deflection exceeds half the plate thickness. The maximum
center deflection recorded during the present tests was of the order of five and a half times the plate thickness.

The response of a continuous structure like a plate should ideally be measured over its entire surface. The reflected Moire technique was applied to measure the deflection of the plate over its whole area at several instants during its transient response. A continuous record of the surface strains and the deflection at the center was also obtained experimentally.

In some of the previous studies on the linear response of glass windows, it has been pointed out that the response of a window set in a room with an open door can be larger than that of a glass window alone. This important practical case was simulated experimentally by coupling a thin glass plate to a Helmholtz resonator and subjecting it to pressure pulses such that large amplitudes were excited. The finite-difference program was suitably modified to accommodate this type of loading.

Another objective of this study was to compare the measured response of thin plates with the response predicted by lumpedparameter models for the plate. Lumped-parameter models are described by ordinary differential equations which are generally less costly to integrate than partial differential equations. In this report several models for the plate derived by Galerkin's method and involving both single and multiple plate modes are compared with
the experimental data and the finite-difference results. The single mode model is also applied to the case of a plate coupled to a Helmholtz resonator. In the determination of the critical response of such systems, the finite-difference solution is prohibitively costly and the use of a reasonably accurate single mode model is necessary.

The objectives of this study are as follows:
(1) To design and construct apparatus to subject thin, simply supported elastic plates to pressure pulses such that large amplitudes result.
(2) To develop an experimental technique for obtaining the dynamic response of a plate over its whole surface. To compare the experimentally observed plate response with the theoretical response predicted by the finitedifference solution of the Von Kármán equations.
(4) To compare the experimental response with the theoretical nonlinear response obtained from lumped parameter models.
(5) To determine, experimentally, the transient response of a plate coupled to a Helmholtz resonator and compare the results with the theoretical response predicted by finitedifference and lumped parameter solutions.

CHAPTER II

LITERATURE REVIEW

The scope of the present study indicated that a literature survey in the following areas was required: (1) theoretical and experimental work on plates undergoing large deflections with special reference to dynamic response studies, (2) experimental methods of subjecting plates to transient pressure pulses, (3) whole field, experimental techniques for determining the dynamic response of plates, (4) dynamics of mechano-acoustical systems with special reference to window-room-door interactions.

Large Deflections of Plates

The equations most commonly used to describe the large deflections of thin, elastic plates were derived by Th. Von Kármán (1) in 1910 and are named after him. The maximum relative deflection for which these equations are valid has not been established. Tadjbakhsh and Saibel (2) have derived a more general set of equations for a thin plate which include the effect of rotatory and in-plane inertias and transverse shear. However, no solution is available for these equations.
R. L. Penning (3) has reviewed the theoretical and experimental work done up to 1970 on the static, large deflection behavior of plates, The theoretical methods used to solve the nonlinear partial differential equations fall under the general categories of finite-difference methods, perturbation, finite elements and Fourier series solutions. The experimental methods generally made use of deflection transducers for point by point deflection measurements and standard strain gages.

The pertinent literature on the large deflection dynamic response of plates has been reviewed by D. J. Bayles (4) for the period up to 1969. The theoretical solutions up to that time were based on a lumped-parameter representation of the plate which was derived by various approximate methods and which was based on assuming that the plate deflected in its fundamental, linear mode shape. Bayles solves the Von Kármán equations by the finite-difference method for rectangular plates with different types of boundary conditions and compared his results with those obtained from lumped-parameter models derived by Yamaki (5). He found that the lumped-parameter model and the finite-difference solution were in good agreement at relatively small nonlinear deflections but differed considerably from each other at larger deflections. The finite-difference solution appears to be the most accurate theoretical solution that is available at present.

Since 1969 several papers have appeared that deal with the dynamics of plates undergoing large deflections. Ventres and

Dowell (6) used Galerkin's method on the Von Kármán equations to study the nonlinear flutter of clamped rectangular plates subjected to a static pressure differential. For the case of zero in-plane edge restraint, they assumed a series of functions for the deflection and for the stress function and reduced Von Kármán's equations to a set of ordinary differential equations. The assumed functions satisfied all the boundary conditions. They obtained good correlation between experimental and theoretical flutter boundaries for plates exposed to a static pressure differential. It was found that four to six modes must be used in the modal expansion for the deflection to obtain accurate results. A similar approach has been taken by Farnsworth and Evan-Iwanowski (7) in determining the resonance response of nonlinear circular plates subjected to a uniform static load. Bennett (8) has recently extended this method to the study of nonlinear vibration of simply supported, angle ply, laminated plates. It is apparent, from a study of the literature, that Galerkin's method is widely used in solving nonlinear plate vibration problems. This approach has not yet been applied to transient response problems. A comparison of the solutions obtained by Galerkin's method with finite-difference solutions should yield some insight into their relative accuracies, ease of application, and cost.

Dynamic Loading of Plates

Edge and Hubbard (9) have recently reviewed various sonic-boom simulation methods. Most of the methods described by them are specifically for generating a sonic boom type of pressure signal. One of the devices, described by Tomboulian (10), permits a wide variety of pulse shapes to be generated in a diverging tube. The test objects are placed directly inside the diverging tube, or, as in the case of glass panels, on one the walls of the tube. The reflections from the end of the tube were reduced by means of a special absorber. Some of the basic features of Tomboulian's design have been incorporated in the pulse generator used in the present study.

Whole Field Experimental Techniques

Since a plate is a continuous structure, an adequate experimental measurement of the plate response should ideally yield continuous data on a significant variable over the whole surface of the plate. A brief review of the methods reported in the literature for determining whole field response of plates is next given.

Photoelastic methods for plates have been studied by Goodier (11), Mindlin (12), Drucker (13) and Bednar (14). The methods suggested involve either bonding of two birefringent materials of different stress optic coefficients, or initially freezing a direct stress in the plate, or sandwiching a reflecting aluminum foil between two sheets of
birefringent material. These methods have not been applied to vibrating thin plates.

Several Moiré grid methods have been developed for measuring plate deflections. Ligtenberg (15) has described a method in which the reflection on the plate surface, of a coarse grid of straight lines is photographed and contours of equal partial slope are obtained by superposing the images of the grid before and after loading the plate. This method has been applied by Nickola (16) to determine the dynamic response of thin membranes. A Moiré grid method, using finer grids, in which the shadow of a reference grid on the deflected surface of the plate interferes with the reference grid to produce fringes which directly indicate the deflection contours of the plate has been applied by Hazell (17) to vibrating plates. Some other techniques are described in the books on the Moiré method written by Theocaris (18) and Durelli and Parks (19).

Photogrammetric methods have been used by Merchant et al (20) to measure the dynamic displacements of plates. Holographic techniques were applied, for the first time, to obtain the deflection contours in steady state vibration by Powell and Stetson (21). Since then there have been several papers on this method. For the case of transient motion, pulsed lasers have been used. The principal disadvantage of the holographic method, in the context of the present study, is that its application is limited to very small motions (of the order of microinches).

For the experiments described in this report, the Moire grid method used by Nickola (16) was chosen because it was simple, applicable to large deflections, required nothing in close proximity to the plate (so that the pressure field near the plate was not affected), and it did not require a perfectly flat plate.

Window-Room-Door Response

Previous studies at Oklahoma State University $(22,23)$ have indicated that the maximum center deflection of a window subjected to a N wave type of pressure pulse is larger when it is coupled to a room and an open doorway than when it is by itself. This is the case whether the deflections are in the linear or in the nonlinear range. In the analysis of such coupled systems, it is essential that the simplest analytical models be used to represent the distributed physical systems. Not much experimental work has been done in this area to verify the validity of the models used. Clarkson and Mayes (24) have recently reviewed the literature on building structure response to sonic booms. Usually windows are coupled to other windows and to several rooms and doorways. It was decided to confine the present study to the case of one window coupled to a room and an open doorway.

CHAPTER III

EXPERIMENTAL METHOD

Figure 1 shows the general layout of the equipment used in the tests. A pressure pulse was produced at the pulse generator, sent down the plane wave tube and reflected off the simply supported glass plate mounted at the other end of the tube. The plate was instrumented to record the Moiré pattern of the deflected plate, strains at the surface of the plate, center deflection and pressure acting on the surface of the plate. Details regarding each of the elements in the test are given below.

The Plate

The plate used in the experiments had the following properties and dimensions:

Size	$14 \mathrm{in} . \times 9.35 \mathrm{in}$.	$\pm 1 / 32 \mathrm{in}$.
Thickness	$0.037 \pm 0.001 \mathrm{in}$.	
Material	Glass plate	
Modulus of elasticity	9.0×10^{6}	$\pm 0.2 \times 10^{6} \mathrm{psi}$

[^0]
overall view of plane wave tube

Figure 1. Layout of Equipment Used in Tests

Poisson's ratio	0.220	± 0.004
Density	153.0	$\pm 0.5 \mathrm{lbm} / \mathrm{cu} \mathrm{ft}$

The plate was mounted in an aluminum box whose supporting edges had been beveled to approximate a simply supported boundary condition. (Figure 2) The box was designed to accommodate various sizes of plates ranging from a maximum size of 14 in . x l4 in. to 14 in. $x 7$ in.

The Pressure Load

The plate was subjected to an uniform, transient pressure load which approximated an N wave. The actual shape of the load was not critical for the tests so long as it was accurately known for use as input for the theoretical methods. However, a pulse with its fundamental frequency component close to that of the plate was desirable so that larger plate deflections could be excited for a given amplitude of the pressure pulse。

The pressure load was produced by a pulse generator based on a basic design due to Tomboulian (10). Figure 3 gives some details of the pulse generator. This is based on the principle that the pressure at a given radius from an ideal compressible fluid flow source is proportional to the rate of change of the mass rate of fluid flow. In the pulse generator, the mass rate of flow is controlled by varying the exit area of a converging nozzle through which choked

Figure 2. Details of Plate Support and Location of Pickups

PULSE GENERATOR

Figure 3. Pulse Generator
flow is taking place. The exit area is varied by pulling a sliding orifice plate across a fixed orifice. A slider crank mechanism is used to pull the sliding orifice plate at approximately constant velocity. The orifice in the sliding plate was shaped to nominally produce an N wave. In Figure 4, the idealized variation of nozzle exit area (and hence, mass rate of flow) with time and the corresponding variation of pressure with time are shown. Figure 5 shows the pressures measured using B \& K l/4in。microphones at two different points at the surface of a 3/4 in. plywood plate at the end of the plane wave tube. The pressure measured using a Photocon 514-3997 microphone with the thin plate in position is shown in Figure 6. The maximum pulse pressure was varied both by using different sliding orifice plates and by varying the tank pressure. The possible variation in pressures is shown in Table I for one sliding orifice plate. The pulse duration is varied by changing the speed of the motor driving the slider mechanism.

TABLEI
MAXIMUM PULSE PRESSURE AS A FUNCTION OF TANK PRESSURE

Tank Pressure [psig]
20.0
30.0
40.0
60.0
80.0

Max. Pulse Pressure [psf]
18.0
30.0
36.0
45.0
54.0

Figure 4. Opexating Principle of Pulse Generator

Figure. 5. Pressures at the Center and
1 in. From the Corner on
a $3 / 4$ in. Plywood Plate
(1 cm . $=0.005 \mathrm{sec}$.)

Figure 6. Pressure at the Surface of Thin
Giass Plate $(1 \mathrm{~cm}$.
0.005 sec)

A pulse effect is created by mounting the plate to be tested at one end of a 32 ft . long, 14 in . x 14 in . square, plane wave tube and, the pulse generator, at the other end. The plate thus experiences a single pulse and then almost no pressure during the time the pulse takes to retrace its path. The uniformity of the pressure pulse was checked and the variation of the pressure between different points on the surface of the plate was less than 7%.

Moiré Method of Determining
 Whole Field Response

The arrangement for the reflected Moire method used in the tests described here is shown in Figures 1 and 7. It consists of a plane grid of alternate black and white lines of equal width in front of the plate under test and a 35 mm . camera facing the plate. One side of the plate is silvered so that the camera sees the reflection of the plane grid on the surface of the plate. The fringe patterns were obtained by taking one exposure of the reflected grid with the plate undeflected and then taking a second exposure at a specific deflection of the plate during its response to the pressure pulse. The second exposure was controlled by small, flexible contacts at the center of the plate. Distinct black and white fringes are formed on the film in the camera wherever black and white lines during the second exposure are superposed on black and white lines from the first exposure. To

PRINCIPLE OF METHOD

Figure 7. Principle of Moiré Method
a first approximation, the fringes obtained by this method represent lines of constant partial slope with respect to a chosen direction on the plate. For example, this direction can be either along the x or y reference axis for the plate depending on whether the grid lines are perpendicular to the x or y axis.

The relationship between plate deflection, slope and fringe order are derived next. In Figure 7, let S be a particular point on the film in the camera. With the plate in its undeflected state, the image of a point Q on the plane grid is formed at the point S. When the plate deflects, and the film is exposed a second time, the image of a point R on the plane grid is formed at the same point S on the film. A distinct fringe occurs at the point S when the distance $R Q$ on the grid is an integral multiple of the pitch of the grid. Thus the fringe order N may be obtained from

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{QR}}{\mathrm{P}} \tag{1}
\end{equation*}
$$

where P is the pitch of the grid. From Figure 7,

$$
\begin{align*}
Q R & =O R-O Q \\
& =X^{\prime}+\left(A 1-W\left(X^{\prime}\right)\right) \tan \left(\theta+2 \Phi^{\prime}\right)-(X+A 1 \tan \theta) \tag{2}
\end{align*}
$$

where Φ^{\prime} is the slope $\partial W / \partial X$ at X^{\prime} and $W\left(X^{\prime}\right)$ is the deflection of the plate at X^{\prime}.

The other symbols are defined in Figure 7. In order to get a tractable expression for $Q R$, the following approximations are made. $W\left(X^{\prime}\right)$ is neglected in comparison with $A l, \Phi^{\prime}$ is taken to be the same
as Φ which is the slope of the plate at the point X. Also, 2Φ is assumed to be sufficiently small to allow the approximation,

$$
\begin{equation*}
\tan 2 \Phi \approx 2 \Phi \tag{3}
\end{equation*}
$$

It may also be noted from Figure 7 that

$$
\begin{equation*}
\tan \theta=\mathrm{X} / \mathrm{A} 2 \tag{4}
\end{equation*}
$$

The fringe order N is then given by

$$
\begin{equation*}
N=\frac{1}{P}\left[2 A 1 \Phi \frac{\left(1+\frac{X^{2}}{A 2^{2}}\right)}{\left(1-\frac{X}{A 2} 2 \Phi\right)}\right] \tag{5}
\end{equation*}
$$

This equation may be solved for Φ as a function of N and X .

$$
\begin{equation*}
\Phi=\frac{\partial W}{\partial \mathrm{X}}=\frac{\mathrm{N}}{(2 \mathrm{~A} 1 / \mathrm{P})+2 \mathrm{~A} 1(\mathrm{X} / \mathrm{A} 2)^{2}+2 \mathrm{XN} / \mathrm{A} 2} \tag{6}
\end{equation*}
$$

In order to get the deflection of the plate surface, equation (6) is integrated numerically when the fringe order is known as a function of X. The starting point for the integration is taken at the edge of the plate where the deflection is known to be zero. The relation between N and Φ may be linearized by dropping the nonlinear terms, $\mathrm{X} / \mathrm{A} 2$ and $2 \mathrm{X} \mathrm{\Phi} / \mathrm{A} 2$, from Equation (5). For (X/A2) equal to 0.25 the linearized equation gives a slope Φ that is about 6% larger than the actual value. The data presented in this study were all obtained by integrating the complete Equation (6)。

The reflected Moire method gives information only on the deflection of the plate, W, and its derivatives. One of the main considerations in design is the stress distribution in the structure. The
second spatial derivatives of W may be used to determine the bending moments and, hence, the bending stresses. However, in a large deflection problem, membrane stresses are also present and the maximum stresses have to be determined by adding the membrane and bending stresses. The reflected Moire method does not yield any information on the in-plane deformations of the center plane of the plate. Except for the case of bonded plates, the center plane is inaccessible. One possible approach to this problem is to use the standard Moiré method for determining surface strains to determine the strains on the two faces of the plate. This method has been applied by Durelli (19) to statically loaded plates. A 1000 lines/in. grating was printed on the surface of a plexiglass plate. The master grating of 1000 lines/in. was placed in contact with the printed surface of the plate using a thin layer of paraffin oil between the two surfaces to ensure uniform contact. This method, as described above, is not suitable for dynamic studies because of the added mass of the master grating and the shear layer of paraffin oil. If it is possible to make a double exposure of the printed grating on the plate surface, this method can be used in conjunction with the reflected Moiré technique to determine the complete state of strain in the plate at large deformations.

The pitch of the grid used in this study was $0,0960 \mathrm{in}$. with a standard deviation of 0.0023 in . The distances A1 and A2 were 30.0 in. and 31.5 in. respectively. The grid was illuminated by a
single Chadwick-Helmuth Strobex strobe light with an approximate flash duration of 50 micro sec. The strobe was placed at a distance of 6 ft. from the grid. The film used was Kodak Tri-X. The 35 mm . camera was set at f 8 . The exact instant at which the second exposure of the film occurred was recorded on the storage oscilloscope by means of a photocell. A modified Brashear process was used to silver one side of the thin glass plates. The silver coating added an average value of $0.25 \mathrm{lbm} / \mathrm{cu}$. ft. to the density of the glass plate and thus was negligibly small.

Pressure, Deflection and
Strain Measurements

The pressure at the surface of the plate was measured by a Dynasciences Photocon 514-3996 microphone. It was calibrated before tests by means of a piston phone over a frequency range of 3 to 30 Hz and at an amplitude of 23.7 psf . The output at 3 Hz was 3% below that at 30 Hz .

The deflection of the center of the plate was measured by a DCDT with flat response from DC to a first order corner frequency of 170 Hz . Its output was not entirely linear at the maximum plate amplitudes. The DCDT was calibrated before and after each test by means of a micrometer attachment. The DCDT data was corrected for both its nonlinearity and lack of high frequency response by
computational methods. The DCDT core assembly attached to the plate weighed 3.5 gms . Tests run with and without the DCDT affixed to the plate showed no significant difference either in the period or in the amplitude of strain at the center of the plate.

The strains were measured on the front and back surfaces of the plate in the x and y directions at the center of the plate and at a point on the diagonal midway between the center and the corner. Standard foil gages were used with Ellis BAM-1 strain meters. All data were recorded on a Tektronix 564 storage oscilloscope with four channels. The scope traces were photographed and then enlarged for data processing。

Simulation of a Window-Room-Door System

The response of a window set in a room with an open doorway subjected to a pressure pulse was simulated experimentally by means of the arrangement shown in Figure 8. This is basically the same arrangement as for the plate tests except that a rigid wooden box has been added to form a "room" and the wooden closure in Figure 2 has been removed to form a "door." Two room sizes were used in the tests. The test arrangement is such that the same pressure acts on both the plate and on the open door. The physical parameters of this system are given below:

$$
\begin{array}{ll}
\text { Room sizes: } & 1.80 \mathrm{cu} . \mathrm{ft} . \text { and } 3.66 \mathrm{cu} . \mathrm{ft} . \\
\text { Area of door: } & 0.357 \mathrm{sq} . \mathrm{ft}_{\text {. }} \\
\text { Length of door: } & 0.25 \mathrm{ft} .
\end{array}
$$

Figure 8. Model of Window-Room-Door System

CHAPTER IV

THEORETICAL SOLUTION

Finite-Difference Method

The observed experimental data is compared with solutions to the Von Kármán plate equations which describe large deflection response of elastic, isotropic, thin plates. These equations are of the form:

$$
\begin{align*}
\nabla^{4} F & =E\left[W_{\rho_{x y}}^{2}-W,{ }_{x x} W,{ }_{y y}\right] \tag{7}\\
D \nabla^{4} W & +\rho h W,{ }_{t t}=P(t)+h\left[F, y_{y y} W,{ }_{x x}\right. \\
& \left.+F,_{x x} W,_{y y}-2 F,{ }_{x y} W,{ }_{x y}\right] \tag{8}
\end{align*}
$$

where
$F=$ Airy stress function
$\mathrm{W}=$ deflection of plate. The commas stand for differentiation with respect to the subscripts which follow them.
$D=E h^{3} / 12\left(1-\nu^{2}\right)$ plate stiffness
$E=$ Young's modulus
$\mathrm{h}=$ plate thickness
$\nu=$ Poisson's ratio
$\rho=$ plate density

$$
\begin{aligned}
& P(t)=\text { pressure acting on plate } \\
& \nabla^{4}=\text { biharmonic operator }
\end{aligned}
$$

The above equations do not include damping, in-plane and rotatory inertia and transverse shear effects. The boundary conditions for a simply supported plate with stress-free edges, with the origin of the coordinate system at one corner of the plate, are

$$
\begin{align*}
& X=0, a \quad W=0, \quad W,_{x x}=0, \quad F,_{x y}=0, \quad F,{ }_{y y}=0 \\
& Y=0, b \quad W=0, \quad W,{ }_{y y}=0, \quad F, X_{x y}=0, \quad F,_{x x}=0 \tag{9}
\end{align*}
$$

Equations (7) and (8) have been solved by the method of finitedifferences by Bayles (4) for uniform transient pressure loads and for several boundary conditions. He also established the conditions to be satisfied by the spatial step size and by the time step in order to obtain a stable solution. A listing of the finite-difference program is given in Appendix A. For the particular plate used in the experiments described in this report, a grid of 9×6 was used for one quarter of the plate. The integration step time was chosen as 0.000018 (sec). The measured pressure at the surface of the plate was used as input to the program.

The response of the plate in the simulated window-room-door system was calculated by the finite-difference method by modifying the net pressure acting on the plate. The pressure acting on the plate for this case is (refer to Figure 8)

$$
\begin{equation*}
P(t)=P_{e x t}(t)-K_{v o l} \cdot\left(\iint_{S} W d x d y-A_{d} W_{1}\right) \tag{10}
\end{equation*}
$$

where $\quad P(t)=$ net pressure acting on the plate and on the air mass in the door.
$P_{\text {ext }}(t)=$ External pressure acting on the outside surface of the plate and door.
$K_{\text {vol }}=$ stiffness factor of room $=\rho_{0} C^{2} / V$
$\rho_{0}=$ density of air
$C=$ speed of sound
$\mathrm{V}=$ volume of room
$A_{d}=$ area of door
$W_{1}=$ displacement of air mass in door. (Displacement into the room is negative.)

Equation (10) is based on lumping the stiffness of the room and the inertance of the air mass (22). An additional equation for the displacement, W_{1}, has to be solved simultaneously with Equations (7), (8), and (10):

$$
\begin{align*}
& \rho_{0} L^{\prime} A_{d} \ddot{W}_{1}=-2 \xi \omega \rho_{0} L^{\prime} A_{d} \dot{W}_{1}-A_{d} P(t) \tag{11}\\
& L^{\prime}=\text { effective length of door } \\
& \xi=\text { effective damping factor at door } \\
& \omega=\text { natural frequency of room-door system }
\end{align*}
$$

The finite-difference program listed in Appendix A has the window-room-door case built in as an option.

The lumped parameter models used in this study are a single mode model derived by Yamaki (5) and a multimode model that is derived in this section.

Bayles (25) has also developed a lumped parameter model of a rectangular plate by assuming fundamental mode solutions and using Hamilton's principle to set up the differential equation of motion for the system. The functions assumed by him are

$$
\begin{aligned}
& F=F_{11}(t) \sin ^{2} \frac{\pi x}{a} \sin ^{2} \frac{\pi y}{b} \\
& W=W_{11}(t) \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}
\end{aligned}
$$

These satisfy all the boundary conditions (9). The resulting differential equation is then of the form

$$
\begin{equation*}
M_{e q} \ddot{W}_{11}+K_{e q} W_{11}+\varepsilon K_{e q} W_{11}^{3}=A_{e q} \cdot P(t) \tag{12}
\end{equation*}
$$

where $\quad W_{11}=$ plate center displacement

$$
M_{e q}=\rho a b h / 4
$$

$\mathrm{a}, \mathrm{b}=$ plate length and width
$\mathrm{h}=\mathrm{plate}$ thickness

$$
K_{e q}=\frac{\pi^{4} D}{4 a b}\left(\beta^{2}+\frac{1}{\beta^{2}}+2\right)
$$

$$
\mathrm{A}_{\mathrm{eq}}=\frac{4}{\pi^{2}} \mathrm{ab}
$$

$$
\begin{aligned}
& \varepsilon=\frac{3(1-\nu)}{8 h^{2}\left(\beta^{2}-\frac{1}{\beta}+2\right)}\left[2\left(\frac{\pi^{2}}{3}+2\right)-\frac{C_{1}^{2}}{C_{2}}\right] \\
& C_{1}=\left(\beta^{2}+\frac{1}{\beta^{2}}\right)\left(\frac{\pi^{2}}{3}+4\right)-4 \nu \\
& C_{2}=3(1-\nu)\left(\beta^{2}+\frac{1}{\beta^{2}}\right)+\left(\frac{\pi^{2}}{3}+\frac{5}{2}\right)\left(\beta^{4}+\frac{1}{\beta^{4}}\right)-2 \nu+9 \\
& \beta=a / b
\end{aligned}
$$

The stress function coefficient F_{11} is determined from

$$
F_{11}=\frac{-C_{1} E}{8 C_{2}} W_{11}^{2}
$$

The lumped parameter model derived by Yamaki (5) has been found to be more accurate than that due to Bayles. A computer pro'gram for integrating Equation (12) using either Bayles' or Yamaki's model is listed in Appendix B.

As the amplitude of the response becomes relatively larger, it has been found that there is very poor agreement between the finitedifference and the fundamental mode, lumped parameter solutions. It was surmised that the inclusion of higher modes in the lumped parameter solution would increase its accuracy. The approach followed here in deriving this lumped parameter model is to assume suitable functions for the deflection and the stress function and then to determine the differential equations for the unknown coefficients by Galerkin's method.

The following functions, which satisfy all the boundary conditions (9), are assumed for the deflection W and the stress function F :

$$
\begin{align*}
& W=\sum_{\substack{m=1 \\
m}} \sum_{n=1}^{N} W_{m n}(t) \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{13}\\
& F=\sum_{j=1}^{J} \sum_{k=1}^{K} F_{j k}(t) \sin ^{2} \frac{j \pi x}{a} \sin ^{2} \frac{k \pi y}{b}
\end{align*}
$$

Only odd values of m and n are used in the assumed functions for W since a uniform pressure is assumed.

The assumed functions (13) and (14) are first substituted into Equation (7). Following Galerkin's procedure, weighted residuals are obtained by multiplying the resulting equation by each of the terms in the assumed function for F and integrating over the entire area of the plate. The residuals are then set equal to zero. This results in J x K simultaneous, linear, algebraic equations for F_{jk} in terms of $W_{p q} \cdot W_{r s}$. These equations may be written as

$$
[F F]\left\{F_{j k}\right\}=[C O E F]\left\{\mathrm{w}_{\mathrm{pq}} \cdot \mathrm{w}_{\mathrm{rs}}\right\}
$$

where [FF] is a $J \times K$ by $J x K$ matrix of coefficients, $\left\{F_{j k}\right\}$ is a column matrix of $J \times K$ elements from Equation (14), [COEF] is a $J \times K$ by $(M+1) \times(N+1) / 4$ matrix of coefficients of the products $W_{p q}$. W_{rs} with W_{pq} and W_{rs} as defined in Equation (13).

The above equations may be solved to obtain the coefficients $F_{j k}$ if the values of the deflection components are known.

$$
\begin{align*}
\left\{\mathrm{F}_{\mathrm{jk}}\right\} & =[\mathrm{FF}]^{-1}[\mathrm{FCOEF}]\left\{\mathrm{W}_{\mathrm{pq}} \cdot \mathrm{~W}_{\mathrm{rs}}\right\} \\
& =[F C O E F F]\left\{\mathrm{W}_{\mathrm{pq}} \cdot \mathrm{~W}_{\mathrm{rs}}\right\} \tag{15}
\end{align*}
$$

The functions for W and F are next substituted into Equation (8) and the Galerkin method is again applied, this time using the elements of W as the weighting functions. Finally, the coefficients of $F_{j k}$ are expressed in terms of W using Equation (15) and the resulting ordinary differential equations take form

$$
\begin{align*}
& \frac{\rho a b h}{4} \stackrel{\circ}{W}_{m n}+D\left[\left(\frac{m \pi}{a}\right)^{4}+2\left(\frac{m n \pi^{2}}{a b}\right)^{2}+\left(\frac{n \pi}{b}\right)^{4}\right] W_{m n} \\
& +\frac{2 \pi^{4} h}{a^{2} b^{2}} \sum_{\bar{p}}^{M} \sum_{q}^{N} \sum_{r}^{N} \sum_{s}^{N} \sum_{t}^{N} \sum_{u}^{N}(\text { Coef } w)_{m n}^{p q r s t u} W_{p q} \cdot w_{r s} \cdot W_{t u} \\
& =\frac{4 a b}{m n \pi^{2}} P(t) \tag{16}
\end{align*}
$$

These equations reduce to the exact linear case when the coefficients (Coefw) mqn matu are set equal to zero. The coefficients have to be generated only once for a given plate. It is possible to obtain a simple expression for ε in Equation (12) by this method when only W_{11} and F_{11} are used. The results for this fundamental mode case are given below.

$$
\begin{aligned}
& \varepsilon=\frac{1}{h^{2}} \frac{12\left(1-\nu^{2}\right)}{\left(\frac{1}{\beta^{2}}+2+\beta^{2}\right)\left(\frac{6}{\beta^{2}}+r+6 \beta^{2}\right)} \\
& F_{11}=-\frac{E}{\left(\frac{6}{\beta^{2}}+4+6 \beta^{2}\right)} \cdot W_{11}^{2}
\end{aligned}
$$

For comparison, the value of $\varepsilon \mathrm{h}^{2}$ obtained by the various methods for $\beta=1.5$ and $\nu=0.22$ are: above formula $=0.1207$, Yamaki $=0.1252$, and Bayles $=0.1755$.

The ordinary differential equations of the lumped parameter models are integrated numerically using a standard predictorcorrector method. Subroutine DHPCG in the IBM Scientific Subroutine Package was used for this purpose. The computer program for the multimode model is listed in Appendix C.

The fundamental mode model was also used on the window-room-door system. The equations to be solved for this case are (refer to Figure 8)

$$
\begin{align*}
& \frac{\rho a b h}{4} \stackrel{\circ}{W}_{11}+K_{e q} W_{11}+\varepsilon K_{e q} W_{11}^{3} \\
& \quad=\frac{4 a b}{\pi^{2}}\left[P_{e x t}(t)+\frac{\rho_{0} C^{2}}{V}\left(A_{d} W_{1}-\frac{4 a b}{\pi^{2}} W_{11}\right)\right] \tag{17}\\
& \rho_{0} L^{\prime} A_{d} \stackrel{\circ}{W}_{1}+2 \xi \rho_{0} L^{\prime} A_{d} \dot{W}_{1}+\frac{\rho_{0} C^{2}}{V} A_{d}^{2} W_{1} \\
& -\frac{4 a b}{\pi^{2}} \frac{\rho_{0} C^{2}}{V} A_{d} W_{11}=-A_{d} P_{e x t}(t) \tag{18}
\end{align*}
$$

W_{11} is the center deflection of the plate and W_{1} is the deflection of the air mass in the door. The other symbols have already been defined.

CHAPTER V

EXPERIMENTAL RESULTS

The plate was instrumented to obtain Moiré fringe data, strains in the x and y directions at the surface of the plate and the deflection at the center.

> Moiré Fringe Data

The support conditions at the boundary were first checked for symmetry and for free rotation by taking Moiré fringe photographs of the surface of the plate when it was subjected to a static pressure. Figures 9 and 10 show the static Moire fringes in the x and y directions for a plate center deflection of 0.039 in. The fringe lines represent contours of points which have, approximately, the same partial slope ($\partial W / \partial X$ in the x direction and $\partial W / \partial Y$ in the y direction). The static deflection profiles along the center lines of the plate are shown in Figures 11 and 12. These were obtained by integrating Equation (6) numerically using the measured fringe data. The fringe photographs indicated in a graphic manner that the boundary conditions of the plate were acceptable.

Figure 9. Moiré Fringes in the y
Direction of a Rectangular Plate Subjected to Static Pressure

Figure 10. Moiré Fringes in the x
Direction of a Rectangular
Plate Subjected to Static
Pressure

Figure 11. Static and Dynamic Deflection Profiles of the y Centerline of the Plate by Moiré and FiniteDifference Methods

Figure 12. Static and Dynamic Deflection Profiles of the x Centerline of the Plate by Moire and Finite-Difference Methods

A sequence of Moiré fringe photographs taken at different instants during the response of the plate when it is hit by a pressure pulse is shown in Figures 13 to 20. At smaller values of center deflection, fringes in both x and y directions are shown. For the larger deflection values (Figures 15 and 16) the fringes in the y direction were too close together to be resolved. This problem can be alleviated to a certain extent by moving the Moiré screen closer to the plate. The experimentally observed deflection profiles along the centerlines of the plate obtained by integrating the data from the fringe photographs are shown in Figures 11 and 12. The corresponding values obtained from the finite-difference solution are also shown in the same figures. The sequence of photographs was obtained by using separate pulses for each photograph. The pressure pulse was closely reproduced each time. The finite-difference data was obtained for only one pressure pulse which was characteristic of this series of tests (Figure 23). Generally, the same deflection magnitude was not obtained by the Moire method and the finite-difference solution at the same instant of time. The profiles were obtained by matching the experimental and theoretical center deflections. The value of a whole field method of visualizing the deflection response of the plate is best brought out in Figures 13 and 14 where the effect of the third

Figure 13. Moire Fringes in y
Direction at
0.0025 sec .

Figure 14. Moiré Fringes in x
Direction at
0.0025 sec 。

Figure 15. Moiré Fringes in x
Direction at
0.0040 sec .

Figure 16. Moiré Fringes in x
Direction at
0.0044 sec .

0.009 Sacc .

Figure 17. Moiré Fringes in y Direction at 0.0094 sec .

Figure 18. Moire Fringes in x Direc -
tion at 0.0094 sec.

Figure 19. Moiné Eringes in y Dixection at 0.010 sec.

Figure 20, Moiré E'ringes in x Direction at 0.010 sec.
mode is clearly displayed. The deflection measured by the Moiré method over one quarter of the plate is shown for two instants of time in Figures 21 and 22.

Strain Data

The strain was measured on the front and back surfaces of the plate (the back surface looks into the plane wave tube) in the x and y directions at the center and at the mid-point of the diagonal connecting the center and the corner. The magnitude of the pressure pulse was varied so as to get data ranging from the almost linear to highly nonlinear response. Two photographs of oscilloscope traces of tests in which the maximum center displacement to thickness ratio were 5.6 and 2.6 respectively, are shown in Figures 23 and 24 . The traces represent strain in the y direction at the center of the plate on the back surface, the deflection of the center of the plate (inverted), the pressure acting on the plate and the strain in the y direction at the center on the front surface of the plate, in that order from the top of the photographs downward.

The measured strain in the y direction at the center of the front surface of the plate is compared with the values calculated by the finite-difference method, the single mode lumped parameter model of Yamaki and the multimode lumped parameter model in Figures 25 to 30 for maximum deflection to thickness ratios of $5.6,2.6$, and 0.85 .

FINITE DIFF.
EXPT.

FINITE DIFF. -

Figure 23. Oscilloscope Traces for Response Corresponding to Max. Center Displacement to Thickness Ratio of 5.6 (1 cm . $=0.002 \mathrm{sec}$.)

Figure 24. Oscilloscope Traces for Response Corresponding to Max. Center Displacement to Thickness Ratio of 2,6 (1 cm . $=0.002 \mathrm{sec}$.)

Figure 25. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 5.6.

Figure 26. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$)

Figure 27. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 2.6

Figure 28. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 2.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$)

Figure 29. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 0.85

Figure 30. Strain at the Center of the Front Surface in the y Direction for Max. Displacement to Thickness Ratio of 0.85
(Galerkin model, $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$)

For all three cases, the density was adjusted empirically to 172.0 $\mathrm{lbm} / \mathrm{cu}$. ft. (measured density of glass was 153.0) to account partially for the reactive component of the radiation impedance faced by the front surface of the plate. This corrected value for the density is also obtained by an approximate analysis which is given in Lin (26). The correction for the density was not applied to the face of the plate looking into the plane wave tube because the pressure transducer gives the actual pressure acting on that face. The damping was considered to be zero for all theoretical calculations. The average measured value of the damping ratio was 0.03 .

The results shown for the multimode model are for the case, $J=K=4, M=N=3$ in Equations (13) and (14) for the assumed function. It was found that the results using a smaller number of terms for the stress function, $J=K=2$, were not much different from the results using $J=K=4$, but the latter case was closer to the finitedifference data。

In Figures 31 to 36, the measured strains on the back surface of the plate in the x direction at the center (the x axis is oriented along the longer edge of the plate) and in the x and y directions at the quarter diagonal location are compared with the theoretical solutions. As a final example of the strain data obtained in this study, the strain in the y direction on the front surface of the plate is plotted in Figure 37 over one quarter of the plate at about the time of maximum response.

Figure 31. Strain at the Center of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6

Figure 32. Strain at the Center of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$ 。 $J=K=4)$

Figure 33. Strain at the Quarter Diagonal Point of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6

Figure 34. Strain at the Quarter Diagonal Point of the Back Surface in the x Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model. $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$)

Figure 35. Strain at the Quarter Diagonal Point of the Back Surface in the y Direction for Max. Displacement to Thickness Ratio of 5.6

Figure 36. Strain at the quarter Diagonal Point of the Back Surface in the y Direction for Max. Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3, \mathrm{~J}=\mathrm{K}=4$)

Figure 37. Total Strain in the y Direction on the Front Surface of the Plate at 0.0065 sec .

The following observations may be made about the strain data. The expected error in the strain data is 5%, and this data is the most accurate of the various measurements that were made on the plate. The shapes of the measured and theoretical response curves (especially for the finite-difference and the multimode model) are almost identical for all three relative amplitudes of deflection. For the maximum deflection ratio, the amplitude of the third mode component of strain for the measured data is, at times, only about 45% of the theoretical amplitude. But the mean values are of the same magnitude. It is possible that higher modes are more severely damped than the lower modes. The other possible causes are non-uniformity of the pressure loads and the plate thickness and boundary conditions that are not perfectly symmetrical. The Moiré fringe photographs in Figures 17 and 19 indicate some asymmetry in the fringes in the y direction during the tail end of the response. The strain magnitudes are compared next. The magnitudes of special concern are the peak values. In almost all cases, the measured first maximum strains in the y direction are larger than the finite-difference values--7\% larger for the deflection ratio of $5.6,13 \%$ for the 2.6 ratio and 3% for the ratio of 0.85 . However, for the second maximum strains, the theoretical values are invariably larger than the measured values. It is possible that this behavior is at least partly due to the low frequency response characteristics of the microphone used to measure the pressure. The
pressure acting on the plate, which is a measured quantity and thus subject to error, is one of the major input quantities for the finitedifference and lumped parameter model computer programs. These programs also require the measured plate dimensions and the material properties. Thus, the theoretical results are also subject to deviations which are dependent on the deviations in the input quantities. It is difficult to give a numerical estimate of the maximum deviation possible in the theoretical results. If the theoretical results are assumed to be subject to no deviations, comparison with the strain data indicates that the finite-difference solution of the Von Kármán equations closely approximates the actual behavior of a thin plate undergoing large deflections up to as much as 5.6 times the plate thickness. The multimode lumped parameter model gives results similar to the finite-difference response. The single mode model is as good as the other two theoretical solutions for a deflection ratio of 0.85 . But for deflection ratios of 2.6 and 5.6 , the single mode model predicts a much larger strain than either the measured values or the other theoretical solutions.

From Figure 37 it is clear that the maximum strain, for nonlinear deflections, does not occur at the center. A large area of the plate is heavily stressed and the maximum strain occurs at a point approximately on the diagonal and closer to the corner than the quarter diagonal position. Since a larger area of the plate is heavily
strained for nonlinear deflections, the probability of failure of a glass plate with a given density of flaws per unit surface area is greater when it is loaded to a specified maximum strain in the nonlinear case than in the linear case where the maximum strain occurs only in a region localized around the center of the plate.

Deflection Response

The measured displacement of the center of the plate is compared with the theoretically predicted values in Figures 38 to 43 for maximum center displacement to plate thickness ratios of 5.6, 2.6, and 0.85 . Some of the reasons for the difference between experimental and theoretical values have already been discussed for the strain data. An additional factor contributing to the expected deviation for the deflection data was the inadequate high frequency response of the displacement pickup. The measured data was put through a Fourier transform program, corrected for its frequency response in the frequency domain and reassembled in the time domain by an inverse Fourier transform. The results indicate fair agreement between experiment and theory.

Window-Room-Door Simulation

Photographs of oscilloscope traces obtained during tests on the window-room-door model with the small room and the large room are

Figure 38. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 5.6

Figure 39. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 5.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, $\mathrm{J}=\mathrm{K}=4$)

Figure 40. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 2.6

Figure 41. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 2.6 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, $\mathrm{J}=\mathrm{K}=4$)

Figure 42. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 0.85

Figure 43. Plate Center Displacement for Maximum Displacement to Thickness Ratio of 0.85 (Galerkin model, $\mathrm{M}=\mathrm{N}=3$, $\mathrm{J}=\mathrm{K}=4)$
shown in Figures 44 and 45 respectively. In these photographs, the top most trace is strain in the y direction at the center of the front surface, followed by the pressure, center displacement, and y strain at the center of the back surface in that order.

The measured y strain at the center of the front surface of the plate and the theoretically calculated values are plotted in Figures 46 and 47. The lumped parameter model shown in these figures is the fundamental mode model of Yamaki. In the theoretical calculations, the density of the plate was kept at its measured value of 153.0 lbm/cu。ft. and plate damping was neglected. For the given dimensions of the room used in the test and the fundamental frequency of the response, the principal acoustic effect of the displacement of the window was to cause a net change in pressure inside the room that was proportional to the volume displaced by the movement of the plate. The effective length of the doorway was empirically set at 0.67 ft . and a damping factor of 0.05 was used for the door. The maximum center displacement to thickness ratio for both the small room and the large room was 4.2. The center deflection is plotted in Figures 48 and 49. Once again, the important contribution of the third mode to the response at large amplitudes can be readily seen. The agreement between measured and theoretical values is remarkable considering the complicated nature of the system.

Figure 44. Oscilloscope Traces of Test on Window-RoomDoor Model With Small Room (l cm. = 0.005 sec.$)$

Figure 45. Oscilloscope Traces of
Test on Window-RoomDoor Model With Large
Room ($1 \mathrm{~cm}=$
0.005 sec.$)$

Figure 46. Strain in y Direction at Center of Front Surface of Plate in Window-RoomDoor System (Small Room, Volume $=$ $1.8 \mathrm{cu} . f \mathrm{ft}$.)

Figure 47. Strain in y Direction at Center of Front Surface of Plate in Window-RoomDoor System (Large Room, Volume $=3.66 \mathrm{cu} . \mathrm{ft}$.)

Figure 48. Plate Center Displacement for Window-Room-Door Model With Small Room

Figure 49. Plate Center Displacement for Window-Room-Door Model With Large Room

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

An experimental study was made of the nonlinear, transient response of simply supported, thin, rectangular elastic plates subjected to pulse type loads. The reflected Moiré grid technique was used to obtain the deflection response of the plate over its entire surface at several instants during its motion. The strains at the surface of the plate at its center and at a quarter diagonal location were measured during its response.

The results of the experiments were compared with the theoretically predicted values. The theoretical values were obtained from a finite-difference solution, a single mode lumped parameter model, and a multimode, lumped parameter model based on the Von Kármán plate equations. The multimode lumped parameter model was derived as part of the present study, the other two solutions were already available。

The important practical case of a window coupled to a room and an open doorway was simulated experimentally on a small scale. Strain and deflection data at the center of the window was obtained
during its nonlinear response when both the window and the doorway were exposed to pressure pulses. The experimental results were compared with the finite-difference and the single mode lumped parameter model solutions for the plate which were suitably modified to account for the effect of the room and the doorway.

The following results were obtained:

1) Close agreement was obtained between the finitedifference solution of the Von Kármán plate equations and the experimentally measured response for maximum center displacement to thickness ratio of $0.85,2.6$ and 5.6.
2) The single mode, lumped parameter model for nonlinear plate response was sufficiently accurate at maximum deflection ratios of 0.85 and 2.6. However, at a deflection ratio of 5.6 the maximum strain predicted by the lumped parameter model was about 50% more than the experimental and the finite-difference values.
3) The multimode, lumped parameter model gave almost the same results as the finite-difference solution. The contribution of the higher modes increases as the amplitude of plate deflection increases. The presence of membrane stresses at larger deflections causes the shape of the deflected surface to deviate considerably
from a simple sinusoidal shape so that higher mode components are needed to describe the surface.
4) The cost of computation for the multimode, lumped parameter model was approximately one sixth the cost of the finite-difference solution.
5) At a deflection ratio of 5.6, the higher mode component of the experimentally measured strain was about 45% of the theoretically predicted values. This could be because the higher modes are most sensitive to damping and boundary conditions.
6) The reflected Moiré technique provided whole-field data on the deflection of the plate at several instants during its transient motion. The agreement between deflections measured by the Moiré method and the finite-difference values was within 10% except at 0.0094 sec . when the deviation was larger.
7) At large nonlinear deflections, a much greater area of the plate was found to be subjected to high stresses as compared to the linear case where the highest stresses occur only in the region around the center. The maximum stresses, for the nonlinear case, were in an area of the plate that was between the quarter diagonal point and the corner. In any predictions on the failure of glass windows
at large deflections, the effect of this stress distribution should be an important factor.
8) The finite-difference program for solving the Von Kármán equations was extended by applying it to the study of the transient response of a window coupled to a room and a doorway. Good agreement was obtained between experiment and finite-difference and single mode, lumped parameter solutions at a maximum center deflection to thickness ratio of 4. 2.

The major conclusions from this study are:

1) The pulse generator and plane wave tube system described in this study is a versatile tool for experimental studies on the transient response of plates and simulated window-room-door systems. Since the energy of the pulse is confined inside the tube it is an efficient way of generating pulses of sufficient strength to cause large deflections or failure in thin glass plates.
2) The reflected Moiré technique is a simple and reliable method of recording whole-field deflection data during the transient response of plates and it is applicable to large deflections. It should be particularly helpful when thin glass plates are loaded to failure.
3) Comparison with experimental data obtained during this study indicates that the finite-difference solution of the Von Kármán equations accurately represents the behavior of simply supported, thin glass plates undergoing large amplitude transient motion.
4) The single mode lumped parameter model is accurate for relatively small deflection to thickness ratios (DT ratio) up to about 1.5. At larger DT ratios, it tends to overpredict the strain. Therefore, it is not advisable to use the single mode model for stress and safety calculations at large deflections.
5) At large dynamic deflections, a larger area of the plate is heavily stressed than for the case of linear deflections for which the maximum stresses are localized at the center.
6) The multimode lumped parameter model obtained by Galerkin's method gives results comparable to those obtained by the finite-difference technique at much less cost.
7) Experimental results obtained in the present study show that the transient response of a window-room-door system subjected to pressure pulses, which cause large deflections, can be simulated accurately by a combination of the finite-
difference model for the window and the lumped parameter representation for the room and open doorway. Useful, but less accurate results are obtained by using the single mode lumped parameter plate model for this case.

The following recommendations are made for further study:

1) The finite-difference solution of the Von Kármán equations may be extended to studies on the response of thin plates to steady, sinusoidal pressures. The practical application of such studies would be in the areas of panel flutter and plate response to wind storms and jet noise.
2) A more detailed study should be made of multimode lumped parameter models for nonlinear plate behavior. The finite-difference program offers a ready check on the accuracy of such models.
3) The failure of glass windows subjected to large amplitude, transient motion may be further investigated taking into account the greater area of the window that is subjected to high stresses as compared to the linear case.
4) Further experiments on thin glass plates may be conducted to study the failure criteria governing glass breakage due to pressure pulses.
5) In the present study, the Moiré fringe photographs were obtained by repeating the test for each instant of time at
which fringes were desired. A reliable method of obtaining a sequence of photographs during a single test is desirable. Such a method will be of great value in tests in which the glass is loaded to failure.
6) The reflected Moiré method gives only the deflection response of the plate. At large amplitudes, the in-plane deformations are also important. The possibility of using in-plane Moiré techniques for determining the in-plane components during nonlinear deformation needs to be investigated.
7) The various methods described in this study, both theoretical and experimental, may be extended to the study of nonisotropic plates.

BIBLIOGRAPHY

1．Th．Von Kármán．Encyklopädie der Mathematischen Wissenschaften．Vol．IV，p．349， 1910.

2．Tadjbakhsh，I．，and E．Saibel．＂On the Large Elastic Deflec－ tions of Plates．＂ZAMM，Vol． 40 （1960），pp．259－268．

3．Penning，R。L．＂Elastic Stresses and Deflections of Flat Square Plates Under Uniformly Distributed Normal Pressure：A Critical Review．＂J1．of Strain Analysis， Vol．7．（1972），pp．23－32．

4．Bayles，D．J．＂Nonlinear Response of Thin Rectangular Plates Subjected to Pulse Type Loads．＂（Ph．D．Thesis，Okla－ homa State University̌，May l970）．

5．Yamaki，N．＂Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates．＂ZAMM，Vol．41（1961）， pp．501－510．

6．Ventres，C．S．，and E．H．Dowell．＂Comparison of Theory and Experiment for Nonlinear Flutter of Loaded Plates．＂ AIAA Journal，Vol． 8 （1970），pp．2022－2030．

7．Farnsworth，C．E．，and R．M．Evan－Iwanowski．＂Resonance Response of Nonlinear Circular Plates Subjected to Uniform Static Load．＂JAM，Trans．ASME，Vol． 94 （1970），pp．1043－1049．

8．Bennett，J．A．＂Nonlinear Vibration of Simply Supported Angle Ply Laminated Plates．＂AIAA Journal，Vol． 9 （1971），pp。1997－2003．

9．Edge，P．H．，and H．H．Hubbard．＂Review of Sonic Boom Simulation Devices and Techniques．＂JASA，Vol． 51 （1972），pp．722－728．

10．Tomboulian，R．＂Research and Development of a Sonic Boom Simulation Device。＂NASA－CR－1378（1969）．
11. Goodier, J. N., and G. H. Lee. "An Extension of the Photoelastic Method of Stress Measurements to Plates in Transverse Bending." JAM, Trans. ASME, Vol. 63 (1941), pp. A27-A29.
12. Mindlin, R。D. "Discussion of Above Paper." JAM, Trans. ASME, Vol. 63 (1941), pp. A187-A189.
13. Drucker, D. C. "The Photoelastic Analysis of Transverse Bending of Plates in the Standard Transmission Polariscope." JAM, Trans. ASME, Vol. 64 (1942), pp. Al61Al64.
14. Bednar, J. "Experimental Analysis of Plates Using the Method of Model Curing. " Exp. Mech., Vol. 7 (1967), pp. 85-90.
15. Ligtenberg, F. K. "The Moire Method--A New Experimental Method for the Determination of Moments in Small Slab Models." Proc. SESA, Vol. 12, No. 2 (1955), pp. 83-98.
16. Nickola, W. E. "The Dynamic Response of Thin Membranes by the Moire Method." Exp. Mech., Vol. 6 (1966), pp. 593-601.
17. Hazell, C. R. "Visualization of Lateral Displacements of Vibrating Plates by the Shadow Moire Method. " J. Mech. Engr. Sci., Vol. 11 (1969), pp. 214-219.
18. Theocaris, P. S. Moire Fringes in Strain Analysis. London: Pergamon Press, 1969.
19. Durelli, A. J., and V. J. Parkes. Moire Analysis of Strain. Prentice Hall, 1970.
20. Merchant, D. C。, B. A. Wasil, and J. J. Del Veschio, Jr. 'Photogrammetric Measurement of Dynamic Displacements." Exp. Mech., Vol. 5 (1965), pp. 332-339.
21. Powell, R. L., and K. A. Stetson. "Interferometric Vibration Analysis by Wave Reconstruction. " J. Opt. Soc. Am., Vol. 55 (1965), pp. 1593-1598.
22. Lowery, R. L. "Critical Structural Response to the Sonic Boom." NASA CR-66750 (Dec. 1968).
23. Rajagopal, Ganesh, T. V. Seshadri, and R. L. Lowery. "Critical Response of Some Multidegree of Freedom Mechanoacoustical Systems." Presented at the 81 st Meeting of the Acoustical Society of America, Washington, D. C., (April 20-23, 1971).
24. Clarkson, B. L., and W. H. Mayes. "Sonic-Boom-Induced Building Structure Responses Including Damage." JASA, Vol. 51 (1972), pp. 742-757.
25. Bayles, D. J., R. L. Lowery, and D. E. Boyd. "A Nonlinear Dynamic Lumped-Parameter Model of a Rectangular Plate." J. of Sound and Vibration, Vol. 21 (1972), pp. 329-337.
26. Lin, Y. K. Probabilistic Theory of Structural Dynamics. McGraw Hill (1967), p. 225.

APPENDIX A

The following computer program gives the finite-difference solution to the Von Kármán equations for the transient response of simply supported, thin, elastic plates with no in-plane edge restraints subjected to a uniform pressure pulse. It has the window-room-door system as an option. Its usage is given as part of the listing.
THIS PROGRAM COMPUTES THE RESPQNSE OF THIN, SIMPLY SUPPORTED
RECTANGULAR, ELASTIC PLATES SUBJECTED TC SYMAETRIC
RECTANGULAR P
PRE SOLVED BY THE METHCD OF FINITE DIFFERENCES
more details about the program can be found in
A THES IS BY D. J. BAYLES-'NONLINEAR DYNAMIC KESPONSE OF
thin rectangular plates subjected to pulse trpe loads'.
THE FOLLOHING PROGRAMS AND SUBROUTINES ARE REquIRED:
THE FOLLOH ING PROGR AMS AND SUGROUT IN
MAIN, PGML, DLINT, FDI A,COEFA, AGEA, PGMZ
JACK BAYLES,CURTIS IKARD AND GANESH RAJAGOPAL D.S.U.
the data cards should be in the following sequence
CARD 1 FORMAT (A4) IPGMS
IPGMS:- INSERT PGMI IF NEN SET OF OATA IS
TO BE CALCULATED
CALCULATED AND STORED ON DISK AND ONL
SOME PARTICULAR DATA POINTS ARE TO
BE OUTPUT. IN THIS CASE SEE
CARD
FORMAT (3015.B) TS,PL,TAU
TS: STOP TIME
TS: STIP TIME FOR THE INTEGRATION
PL: MAGNITUQE OF N WAVE
IF INPUT PRESSURE IS NOT A N wavE (SEC)
TF INPUT PRESSURE IS
TAN CAN BE LEFT BLANK
CARD 3: FORMATI4I51 IFTAB,NTAB,IFCDT,IFVOL
FTAB: $\quad 0$ IF INPUT DATA IS NOT TABULATED
a table of numbers.
$\begin{array}{ll}\text { NTAB: } & \text { NUMBER OF DATA PDINTS IN TABLE } \\ \text { IFCDT: } & 0 \text { IF TABLE IS NOT AT UNIFORH TIME }\end{array}$
if table is at uniform time intervals
O PLATE ALONE
1
WINDOW-ROOH-DOOR SYSTEM
$\begin{array}{ll}\text { CARD 4: } & \text { FURMAT(OI5.8) DTTAB } \\ \text { DTTAB: } & \text { (IFCOT=1) UNIFORM TIME INTERVAL OF }\end{array}$
tabulated input data.
CARD 5: FORMAICOL5.81 TTAB
(IFTABFI AND IFCDT ALE:0) UNITS (SEC)
IIFTAB=1 AND IFCDI .LEE.0) UNITS (SEC)
NTAB Values are renuired in sequence, one
value per card.
FORMAT(015.a) PSCALE
PSCALE: MULTIPLYING FACTOR FOR TABULATEU
PRESSURE VALUES TO CONVERT THEH INT
POUNDS PER SQUARE FOOT UNITS.
CARD 7: FORMATIOL5, 8) PTAB
PTAB: NTAB VALUES FOR THE INPUT PRESSURE
(IFTAB=1) ONE VALUE PER CARD

CARD 8:	FGRMAT (3CL5.8) AX, 日Y, H	
AX:		
br:	HidTh OF PLATE	(FT)
H:	thickness of plate	(1N)
CARD 9:	FURMAT (3DI5.8) E,PR,Sid material parameters	
E:	Youngs modulus	(PSI)
PR:	PDISSCNS RATIO	

CARD LO: FCRMATI215,2015.8) M.NiDX,OT

$\begin{array}{ll}\text { M: } & \text { NUMBER OF GRIO POINTS IN X DIRECTID } \\ \text { N: } & \text { AUMBER OF GRID PUINTS IN Y DIRECTIO } \\ \text { DX: } & \text { GRID LENGTH IFTI MUST BE SAME IN }\end{array}$ x ANO Y DIREC TIDNS.
INXEGRAT IUN STEP SILE (SECI MUST INYEGRATINN STEP SIIE THAN CRITICAL VALUE FOR STABILITY. (REFEK TO D.J. BAYLES' THESISI
OTES: M MUST BE GREAT ER THAN OR EQUAL TO 5
ALSO M. LE. N
DIMENSIONS HAVE BEEN SET UP FOR
A MAXIMUM OF $M * N=64$ GRID POINTS.

```
INTRODUCE NEXT CARD ONLY IF IFVOL=1
ARD 11: FORMAT (4D15.5)EL,AR,VOL,2 (IFT
    AR: AREA OF DOOR (FT**2)
```

 VOL: VOLUME OF RDOM (FT **3)
 2: EFFECTIVE DAMPING FACTOR AT DOOR
CARD 1I: FORMATISISI NSO,NMULT,NREC,NSKEC,IFSUP
UUTPUT INFGRMATION
ASD: NUMBER OF OUTPUT POINTS
NHULT: MULIPLES OF THE
MULTIPLES DF THE TIME INTERVALS AT WHICH DATA IS
STORED ON THE DISK AT WHICH STRESS-STRAIN UUTPGT
number of recurds on disk
STARTING RECORD FOK STRESS-STRAIN
CALCULATIONS
PARTICULAR RECORUS ONLY ARE
OTPUT. THESE KECORD NUMERS
ARE GI VEN UNERECORD NUMBERS

INTIME BY NMULT $=$ OT ARE TO BE
OUTPUT

NLTES: THis PROGRAM HAS BEEN SET UP TO STJKE
A MAXI NUH OF $2 B G$ KECORUS ON A UISK. EACH RECGRD
CONTAINS TIME; DEFLECTION ANiO STRESS FUNC TION
) EVERY LiNTEGMATION STEP IF
(TSADTI+1 E. 289
2) EVERY OTHER INTEGKAIIUN STEP IF

ITSMOTI+1 .GT.594.AND.LT.1188

4IEVERY TENTH INTEGRAT IOA STEP IF
SJPROGRAM सUITS IF ITSNDIH+1.6T.2376
for each of the cases above, the muhber
OF RECORDS, NREC, IS IHEN
$11 \mathrm{NREC}=(T S / O T)+1$
21
NREC= (TS/($2 * D r)$
3) NREC= TTS/($5 *$ DT $)$) 1
nmult is the multiple of the time intervals BETMEEN RECGROS
CAROL2: FORMATIIGI 53CIVRECEIV.I=1,NSOI
IVREC(I) $=$ THE IFSOPEO
I VREC(I) = The particular numbers cf the
CARD13:
 IOPV(I)= O NO PM INT DK PUNCH I NRIPNTIN
PRINT 2 PRINT AND PUNCH ThIS CONTROLS NATURE DF SIRESS, STRAIN, OEFE SEL ECTED NSD IMES AT HiCh DUTPUT is desired
punched output format:
FGRHAT (5015.7,I5) EPXB, EPXH, EPY B, EPYM, DER ECTION, I
EP XG: MENDING STRAININ X DIRECTION
EPYB: BENDNG STRAIN IN Y DIRECIION
EPYM: MEFLECTION: DEFLECTIUNTRAN IN Y DIRECTION
I:
THIS PROGRAM ALSO OUTPUTS PRESSURE AND CENTER DEFLEETION
AT EACH INTEGRATION STEP AND DEFLEEI IOH PROFILE INX X A Uirections at the center of the plate at every temtm
'usage - pgmz'
FUR IPGMS IN CAKO AL, PGMZ MAY BE
PUT ON DISK AHU INEDRMATIGN iS TO BE DUTPMT

following seguence of caíds is timen reiteired
CARC 1: FORHAT (A4)IPGHS
$P G M S=P G H 2$
FORMAT(4015
formar (2) 5 .al Eff.PRfox
CARD 4: FORMAT(5I5)NSD, MRULT, NREL, MSREC, IFSOP
FORMAT T1GIS HIVRECIIA, I=2,NSO
SyHBOLS HAVE SAME Henime AS befcre
maln

COMMON E:H,PR,DX,MPN,ID
10 FORMAT (4D15.8
2 C FORMAT (A4)

CATA IPGR2 / PGGM2:/
define a file for direct access hith up to 300 reciorus, each with A FIXES LENGTH OF 258 SILRAGE WOHDS. $1 T, W(641, F(64)=129$ UOUBLE fRECISIUN mORDS = 258 STCRAGE wORDS.

CEFINE FILE 4(300, 258, U,ID4
999 READ 15.201 IPGHS F TIPGAS EE. IPGH2I GU 10100 D $4=1$ CALL PGNL
GO TOPPL,TMI
200 0 GOTO 200

zCC CALL PGM2
WRITE 16,6991
GC TG 999
GE ${ }^{\text {END }}$
c
c
c
c
SUBROUT INE PGHI (IS, PL, TAU)
IMPLICIT REAL*B
(A-H,C-Z)
CUMALON E; H, PR;DX, M, N, ID 4

DIMENSION PGP(11)
DIMENSION EX2(12),PL(12)
$\mathrm{KR}=64$
C INPLT fCRMATS.
IAPLT FCRMATS.
101 FORMAT $1215,2015$. d
500 FORMAT (2215:
SCI format (D15.a)
$\stackrel{c}{c}$
cltput formats.

* $1 / 11 \times$, FROM A MALN PROGRAM BY JACK BAYLES MAY 1970:
* //11x,2FINAL CHANGES BY RUBERT C IKARD JULY 1971.
*//11X, ${ }^{\text {PBASIC PLATE INPUT DATA IS AS FOLLOHS }}$
* MIX, AX (LENGTH ----- Y-DIRECTIONI =, FI6.10;: FEET

* M11X,'SW (SPECIFIC WEIGHT) =:,F16.10, PCFI

121 FORMAT (///IIX, ©N-WAVE LDAD-TIME PRGFILE OPTIIN.

122 furmat $/ / / / 11 x$, ${ }^{2}$ time re spunse control parameters.

* //11X,iM (X-DIRECIION NODE POINTS) =:, IS
* M1X, N (Y-DIRECTION NODE POINTS $=: 15$
* / /11X, DX (GRID SILE - EQUAL X,Y $=$, ,F16.12.' FEET
occ furmat (:l number of time steps exceeds storage.' Secomos' ///
* //2X,'TTIME = '.012.4

*//5x.'TIME',11X,'PRESSURE'/1
603 FORMAT I $1 \times 1 \times 1,1$ PRESSUURE, CENTER DISPLAGEMENT AND STRESS FUNCTION FO *R A SET OF 10 TIME POINTS.
l'y CENTERLINE dISPLACEMENT AND STRESS FUNCTION AND X CTR LINE DISP fOR $1 \mathrm{TI} \mathrm{ME}=1, \mathrm{~F} 7.5$)
c
C
start at the first reccido on unit 4.
$104=1$
READ(5,500IIFTAB,NTAB, IFCOT, IFVOL
IF IIFTAB. LE. OI GO•TO 87
IF IIFCDI .LE. of GO TO 77
IF IFAD (5,501) DTTAB
75 TTAB $75=1$, NTAB
77 READ 78
77 READ $(5,501)$ (TTAB(I), $I=1$, NTAB)
Ta READ (5,501) PSCALE
READ $(5,501)$ (PTABI
DO 59 i $i=1$, NTAB
9 PTAB(I) $=$ PSCAL

WRITE(G,120) AX,BY,H,E,PPR,SW
IF IIFTAB. LE. O) GO TO 88
WRITE $(6,602)$ (TTAB(i), PTAB(I), $I=1, N T A B)$
GO TO
89
89 WRITEL6,
,1211 PL, TAU
$\nu=E * H * * 3 / 112.00 * 11.00-P R * * 211$
REAC $(5,101) \mathrm{M}, \mathrm{N}, D \mathrm{D}, \mathrm{DT}$
RRITE(6,122) M,N,DX, DT
TTIME $=T S$ / DT

IF(TTIME.LE.2376.DO) GO TO 15

5 GETE 90
15 IFGTTIME.GT.1188.001 GOTO 205 IFITIME.GT.594.00) GO TO 200
IF TTIME.GT INCR=1
201
INCR=2
GO TO
INCK
17
$205 \begin{aligned} & \text { GO TC } 17 \\ & \text { INCR }=10\end{aligned}$
17 THFLT=DFLOAT (INCR:
$\mathrm{THFLT}=D$
$\mathrm{~T}=\mathrm{C}=\mathrm{DD}$
$\mathrm{MR}=\mathrm{M}=\mathrm{H}$

$C 3=\Delta T * * 2 * 144.00 /(R Q *+1)$
${ }_{c}^{c}$ SEI UP (A) matrix
CALL

$\begin{array}{ll}\text { c } & \\ \text { c } & \text { SET } \\ \text { c }\end{array}$
UP INITIAL CONDITIONS
CHECK FOR WI NOOW-ROGH-DCOR UPT ION LFIIFVOL-11300,301,300
301
READ(5,G05)EL,AR,VOL,Z
6 E5
FORMAT(4D15.5)
EMR2=EL1*AR*1.4*14.7*144./(1100.*1100.1
EK22=1.4*14.7*144./VPL
OC6 FDKMATI $2 X$.
 EMTEM=ER2/IDTOOT)
ZTEM=2*WHMATEM2JOI

FACT $3=-A R /$ IENTEMOZ DEMI
$\mathrm{EJ} E M=\mathrm{OJ} * \mathrm{DT} / \mathrm{EMZ}$

3ce
Pl $121=0.0$
CONIINUE

3. $\mathrm{mIF}, 1 \%=0.00$

C calgulate ldad ai firsi time step
c. ineliar values.

PID $=P T$
GO Je 38
$\stackrel{c}{C}$


```
C
    STARTING FORMULA
    30 005 i=1,NN
        W(1,2)=.500*C 3*P(1)
    POP(1)= = PIL
C
    calculate load fur next lo time steps
c tabular values.
    IF (T .GT. TTAB(NTAB)) GO TO
    CD 56 J=2,11
    CALL DLINTL (TTAB,T,PTAB,PINT,NTAB)
    P(J) = PINT
    IF (T= CLE. TTAB(NTABI) GC TO 56
    56 P(J) = O
C A-wAVE
    M-WAVE
        l
        M(J) &PL*(1,00-2.D0*T/TAU)
        P(J)=0. DO
        CONTINUE
        co9 J=2,12
    TxT+0T
    P(J)=0.do
c
Cal culate w & F FOR 10 TIME STEPS
        CALL F
        1 AR,EX2,P1,DX,FACT1,FACT2,FACT3,IFVOL
        GRITE (6,110) TT,ID4
    4 7 9
        POP(I)= P(I)
        WRITE (0,111) (POP(I),I=1,10)
        POP(1) = P(11)
        # ITE(6,111) (W(MN,J),J=1,10)
        RITE(6,11); (F(MN,J),J=1,10)
    MMN = TT + 9.00*
        RRITE(6,111) (W(I,101,IIN,MN,M)
        NCAT=MN-M+1
        IF(IFvGL-1)302,303,302
            IFIIF VGL-
            Ex2(1)=Ex2(1)
            Ex2(2)=EX2(12
302 CONTINUE
```

 \(\mathrm{TH}=\mathrm{TT}\)
 $0020 \quad \mathrm{~J}=1,10, \mathrm{INCR}$

$20 \begin{aligned} & \text { WRITE (4:IU4) TH, (WI } \\ & \text { TM }=T H+T M F L T * D T \\ & \text { DOTII }\end{aligned}$
$F(1,1)=F(1,11)$
$k(1,1)=W(1,11$

sc CALL EXIT
$1 s 9 \begin{gathered}\text { RETUR } \\ \text { END }\end{gathered}$
c
c
c
c
c

SUBROUTINE FUIAL $M, N, M I N, W, F, A, d, C, B E, D C, P, C 1, C 2, L 3, E, K R, E K Z C, O T E M$,
IAR,EX2,P1,DX,FACT1,FACT 2, FACT 3, IFVOL)

DIMENSION EX2(1),Pl(1)
C SET UP CONSTANTS DNE TIME ONL
$M 1=\mathrm{H}+\mathrm{A}$
$M 2=2 * M$
$\mathrm{H}=3 * \mathrm{M}$
$\mathrm{H} 4=4 * \mathrm{M}$
$M N H=M N-H$
$L T=(A-2 I * M+1$
$\stackrel{\mathrm{L}}{\mathrm{N}=\mathrm{N}-2}$
$\angle N=N-2$
$\angle A=M-1$
$\angle L M=N=-3$
$\angle L M=M-2$
$\begin{array}{ll}L L M=M-2 \\ L T & =L T+2\end{array}$

$M 21=M 2+1$
$L S=(N-3) * M+1$
2 CONTINUE
2 COTOJ=2,11
${ }_{c}^{c}$ lise linear terms only fok very small n
IF(H(MN,J)*W(MN,J).GT.0.000100)GO TU 10
$003 I=1, M N$
$F(I, j)=0.00$
$8 B(I)=0.00$
$388(1)=0.00$
601050
10 GOTVINTVE
c
c
c
galculate constant vectur furi af=c iss er ci
$C(1)=(H(M+2, J) * * 2 / 10 . D 0-(-2.00 * W(1, J)+W(2, J 1) *(-2.00 * W(1, J)+$
$2^{C} W(M+1, J 1) i \neq E$
$C(M)=(-(2.00 * W(M-1, J)-2.00 * M(M, J)) *(M(M 2, J)-2 . D 0 * W(M, J) J) * E$
$C(M N)=1-12.00 * W(M N-1, J)-2.00 * W(M N, J) *(2 . D O * W(M N M, J)-2 . D O * W(M N, J)$ $1 \begin{aligned} & 11 * E \\ & K=M N M+1\end{aligned}$

 $1_{1}^{C(1)} 1=(-2,00 * W(1, J)+w(K, J) J) * E$

$11 \begin{gathered}11 \\ 0\end{gathered}$
$i \mathrm{M}=1+\mathrm{M}$
$\mathrm{I}=1-\mathrm{M}$
$12 C(1)=1(W(I M+1, J)-W(I L+1, J)) * * 2 / 16.00-1-2.00 * W(I, J)+W(I+1, J J) *$ $(W(1,, J)-2.00 * *(I, J)+W(I M, J)) 1 * E$
DO131 $=$ M2, ${ }^{2}$ NM, M
$I M=1+M$
$I L=I-M$

$K M=K * M, L M$
$=K{ }^{\mu+L}$
$1 M=1+M$
$M=1-M$
14 C(I)=I(WIIL-1,J)-W(IH-1, J)+W(IM+1,J)-W(1L+1,J))**2/10.00-1W(1-1, JI

perferm gauss el imination on ceit
$21 \mathrm{KK=C}$
$\mathrm{L}=2 * \mathrm{M}+1$
$\mathrm{~K}=1$
$22 \begin{array}{ll}22 \\ 23 \\ \mathrm{I}=\mathrm{K}=\mathrm{K}+1 \\ \mathrm{~K}\end{array}$
$C(1)=C(1)-O C(k K) * C(K)$
1F(1-L)24, 25.40
$24 \begin{aligned} & 1=1+1 \\ & \text { G0T023 }\end{aligned}$
25 IFハL.LT AMNJL=L+1
2E 27 IF $K=K+1 K+1) 27,31,40$

PERFORM BACK SUBSTITUTION FDR Fil
31 LL=RA-M2
$L=M N$
$F(L, J)=C(L) / A(L, L)$

$32{ }_{K=1+1}$
$S=0.00$
$S=S$
$33 S=S+A(I, K) * F(K, J)$
$34 \underset{K=K+1}{\mathcal{F}(K-L) 34,35,40}$

35 FII; JI $=(C(11-S) / A(1,1)$
IF(i-1) 40,40,36
$36 \begin{aligned} & \text { Ix I-1 } \\ & \text { GOTC32 }\end{aligned}$

CALCULATE NOMLINEAK TERMS FER SS OR̀ C
8B(1) $=(-2.00 * F(1, J)+F(M+1, J)) *(-2.00 * W(1, j)+W(2, J))+(-2.00 * F(1, J)+$ $\left.{ }^{F}(2, J)\right) *(-2.00+H(1, J)+m(M+1, J) 1-(F(M+2, J) * W(M+2, J 11 / 8.00$ UB(M) $=(-2.00 * F(M, J)+F(M 2, J)) *(2.00 *)\left(M-1, J H-2 . D 0 * W\left(M_{7} J\right) j+12 . D 0\right.$
1 F(H-1,j) $-2.00 * F(M, J)) *(-2.00 * H(M, J)+W(M 2, J))$

 $K=M N_{M+1}$
$B B(K)=(2.00 * F(K-M, J)-2.00 * F(K, J)) *(-2.00 * N(K, J)+K(K+1, J))+$
$1-2.00 * F(K, J)+F(K+1, J) *(2.00 * *(K-M, J 1-2,0)$

$\underset{\mathrm{K}=1+\mathrm{M}}{\mathrm{C}}$
eB $(1)=(-2,00 * F(1, J)+F(k, J)) *(w(I-1, J)-2,00 * N(I ; J)+m(1+1, J I)+$
1 $2(-F(K-1, J)+F(K+1, J) j)(-w(k-1, J)+N(K+1, J) 1 / 8.00$

$\lim _{1} \quad(F(K-1, J)-2.00 * F(K, j)+F(K+1, J)) *(W(K-1, J)-2.00 * *(K, J) * K(K+1, J))$

 $1 H=1+M$
$H=1-M$
 1 (-2.00*F(I,J)+F(I+1,J))*(WIL,J)-2.DO*W(I,J)+N(IM,J)I$(F I I M+1, J)-F(I L+1, J)) *(M(I M+1, J)-m(I L+1, J)] / 8.00$ $I M=I+M$

$12.00 * F i$
$C O 44 K=1, L N$

$\mathrm{DO} 44 \mathrm{~L}=2, \mathrm{LM}$.
$I=K M+L$
$I=K M+L$
$I M=I+M$
$I L=1-M$

${ }_{3}$ (FIIL-1,J)-F(IM-1,J)+F(IM+1,JI-F(IL+1,J)I*
c
caliulate del fuurth w fur simply supported

 1 WIM+3,JB) $+W(4, J)+n(M 2+2, J)$
$\mathrm{E}(\mathrm{H} 1)=19.00 *=1(M 1, J)-8=U 0 *(n(M+2, J)+m(M 2+1, J 1+\mathrm{m}(1, J))+2.00 *$
$1(m(M 2+2, J)+w(2, J) 1)+\infty(M+3, J)+m(M 3+1, J)$
$\theta(M+2)=20.00 * n(M+2, J)-8.00 *(m(M 1, J)+n(M+3, J)+n(M K+2, J)+n(2, J) J$
$12.00 *(H(M 2+1, J)+W(M 2+3, J)+M(1, J)+M(3, J J)+N(M+4, J)+N(M 3+2, J)$

E(M-1)=20.00*W(M-1,J)-8.00*(W(M-2,J)+W(M,J)+W(M2-1,J))+2.00*
($W(M 2-2, J)+W(M 2, J))+N(M-3, J)+W(M 3-1, J)$
$B(M)=19.00 * W(M, J)-8.00 *(2 . D 0 * W(M-1, J)+W(M 2, J) 1+4 . D 0 * W(M 2-1, J)+$
$1 \quad 1+2.00 *(W(M 3-2, J)+W(M 3, J)+W(N-2, N 1+H(M)(N 2, J)+W(M 3-1, J)+H(M-1, J)$

$1(W(M 3-1, J)+W(M-1, J))+2, D 0 * W(M 2-2, J)+W(M 4, J))$
$B(K)=20.00 * W(K, J)-8.00 *(W(K+1, J)+W(K+M, J)+(k)$
$1{ }_{K=K+1}(W(K+M 1, J)+W(K-L M, J I)+W(K+2, J)+W(K-M 2, J)$
$B(K)=21.00 * W(K, J)-8.00 *(W(K-1, J)+w(K+1, J)+W(K+M, J)+W(K-\mu, j) 1+2.00$
$1(W 1 K+L M, J)+W(K+M 1, J)+W(K-M 1, J)+W(K-L M, J))+W(K+2, J)+W(K-M 2, J)$
$B(K)=19.00 * W(K, J)-8.00 *(W(K+1, J)+2.00 * W(K-M, J))+4.00 * W(K-L M, J)$
$1 \mathrm{H}(\mathrm{K}+2, \mathrm{~J}+2.00 * H(K-\mathrm{M} 2, \mathrm{~J})$
$k=k+1$ $K_{K=M N M-1}(J)+W(K-L M, J) I+W(K+2, J)+2.00 * W(K-M 2, J)$
$B(K)=22.00 * W(K, J)-8.00 *(W(K-1, J)+w(K+1, J)+w(K+M, J)+W(K-M, J))+2.00$
1 $\quad W(K+L M, J)+W(K+M 1 ; J)+W(K-M 1 ; J)+W(K-L M, J))+W(K-2 ; J)+W(K-M 2, J)$
$B(K)=21.00 * W(K, J)-3.00 *(2.00 * W(K-1, J)+W(K+M, J)+W(K-H, J))+4 . D 0 *$
$1\left(W\left(K+L M_{0} J\right)+W(K-M 1, J)\right)+2.00 * W(K-2, J)+w(K-H 2, J)$
$B(K)=21 . D 0 * W(K, J)-8 . D 0 *(W(K-1, J)+N(K+1, J)+2 . D 0 * W(K-M, J))+4.00 *$
$1 \quad(W(K-M 1, J)+W(K-L M, J)+W(K-2, J)+2.00 * W(K-M 2, J 1$
$B(M N)=20 . D 0 * W(M N, J)-16, D 0 * W(K, J)+W(M N M, J) 1+8.00 * W(M N-M 1, J)+$
$1 \begin{gathered}2.00 *(W 1 ~ M N-2, J)+W(M N-M 2, J I) \\ 005 I I=3, L L M\end{gathered}$
$\left.\begin{array}{l}00511=3, \operatorname{LLM} \\ B(1)=19.00 * W(I, J)-8 . D 0 *(W(I-1, J)+W(1+1, J)+W(I+M, J)\end{array}\right)+2.00$
$1(W(I+L M, J)+W(I+M I ; J) i+W(I-2 ; J)+W(I+2, J)+W(I+M 2, J)$
$\left.51 \begin{array}{l}K=1+M \\ B(K)=20.00 * W(K, J)-8 . C 0 *(w(K-1, J)+W(K+1, J)+W(K+M, J)+W(K-M, J)\end{array}\right)+2.00 *$ $1(W(K+L M, J)+W(K+M 1, J)+W(K-M l ; J)+W(K-L M, J))+W(K-2, J)+W(K+2, J)+$ D052I=LLT,LL
$B(1)=21.00 * W(1, J)-8 \cdot 00 *(m(1-1, J)+W(1+1, J)+W(1+M, J)+W(1-M, J))+2.00 *$ $(H(1+L M, J)+W(1+M 1, J)+W(1-M 1, J)+W(I-L M, J) 1+W((-2, J)+W(1+2, J)+$ $\mathrm{m}=1+\mathrm{M}(1-\mathrm{M} 2, \mathrm{~J}$
$52 \theta(K)=20.00 * W(K, J)-8.00 *(H(K-1, J)+W(K+1, J)+2.00 * W(K-M, J))+4.00 *$ $1 \quad 1\left(N K-M_{1}, J\right)+N$
$\cos 3 \mathrm{I}=\mathrm{M} 21, L S, M \quad L K, J)+w(K-2, J)+W(K+2, J)+2.00 * W(K-M 2, J)$
$(W 1+M 1, J)+w(I-L M, J I)+W(I+2, J)+W(I+M 2, J)+W(I-M 2, J I)$ $\mathrm{k}=\mathrm{I}+1$
 $\frac{1}{2}(W(K+L M, J)+W(K+M 1, J)+w(K-M L, J)+W(K-L M, J))+W(K+2, J)+W(K+M 2, J)+$ $2 \begin{gathered}\mathrm{H}(\mathrm{K}-\mathrm{M} 2, J) \\ \mathrm{DO} 54 \mathrm{I}=\mathrm{M} 3, \mathrm{LS}\end{gathered}$
$B(I)=20.00 * W(I, J)-8.00 *(2.00 * W(1-1, J)+W(I+M, J)+W(I-M, J))+4 . D 0 *$
$1{ }_{K=1}(W(I+L M, J)+W(I-M 1, J I)+2.00 * W(I-2, J)+W(I+M 2, J)+W(I-M 2, J)$
$54 \quad 8(K)=21.00 * W(K, J)-8 . D 0 *(w(K-1, J)+w(K+1, J)+w(K-M, J)+W(K+M, J))+2.00$ $1(W(K+L M, J)+W(K+M 1, J)+W(K-M 1, J)+W(K-L M, J H)+W(K-2, J)+W(K+M 2, J)+$

0055K=2,LLN
$K M=K$ KH
$\operatorname{CO55L=3,LLM}$
5 B(I) $=20.00 * W(I, J)-8.0 C *(w(I-1, J)+w(I+1, j)+W(I+M, j)+w(I-M, J))+2.00$ $\frac{1}{2}(W(I+L M, J)+W(I+M 1, J)+w(I-M 1 ; J)+W(I-L M, J))+w(I-2, J i+W(I+2, J)+$
VOL=M1, J1*DX*DX/3.
DC $71 \quad I=1, L M$
VCL $=$ VOL
71 continue
DC $72 \mathrm{I}=1, \mathrm{LT}, \mathrm{M}$
VOL=VOL+(W(I,J)+W(I+M,JH)*DX*DX*O.25
CONTINUE

$L 1=(I-1) * H+1$
$W 1=w(L 1, J)$
$0073 \mathrm{~K}=1$, LM
$L 2=L 1+K-1$
$\mathrm{W} 2=\mathrm{w}(\mathrm{L} 2+1, \mathrm{~J})$
$14=H(L 2+M+1, J)$
VaL $=$ VOL $+0.25 *$ DX*DX* $(W 1+W 2+W 3+W 4)$
$\mathrm{H}=\mathrm{W} 2$
73
continue
ETVGL=AR*EX2(J)-VOL
P1(J)=EK22* ETVOL

CaLCulate w(1,J+1)
W(1,j+1I=2.*w(I, J1-w(1, J-1)-Ci*B(I)+C2*BB(1)+C3*PJ
$c^{1 C c}$

GOTO. 70
CONTINUE
C CALCULATE DEFLECTION for Plate
DO $102 \quad I=1, H N$
102 W(1, J+1)=2.DO*W(1, J)-W(1, J-1)-C1*B(1)+C2*BB(1)+C3*P(J)
RETURN
END
\mathbf{c}
\mathbf{c}
\mathbf{c}
\mathbf{c}
SUBROUT INE COEFA (A,M,N,KR)
IMPLICIT REAL*B (A-H,C-2)


```
MN=M*N
A(I,J)=0.DO
DO2K=1,M
2 A(K,K)=20.00
    MA(,N)=22*DO
    03K=2,
3 A(K,K)=21.00
A(M-1,M-1)=22.00
    A(M,M)=21
    CO4K=M,L,
    A(K+1,K+1)=21.D0
KK=K+M-1
4 A(KK,KK)=21,DO
A(LL-1,L1-1)=22.00
L=LI+M-1
5 A(K,K)=21.00
A(MN-M-1,MN-M-1)=22.00
    A(MN-1,MN-1)=21.DD
    OOOK=2,MN
G A(K-1;K)=-8.00
6 A(K-1,K)
COTK=M,MN4,M
A(K+1,K)=0.D
7 A(K,K+1)=0
A(k,k-2)=1.
& A(K-2,K)=1.00
    A(K K=M,MNM,M
    A(K+1,K-1)=0.00
    A(k-1,k+1)=0.00
9 A(K,K+2)=0.00
    COLOK=M,MN,M
10 A(K,K-2)=2.00
M,
    M1:K+1
    KM=K-M
    A(K,KM)=-8.00
    A(KM,K)=-8.00
11 A(K-1,KM)=2.00
NN =MN-1
DO 12K=N 1,MN1
A(K+1,K-M)=2.00
12 A(K-M,K+1)=2.00
MN1=MN+1
CO13K=Ml,MNL,M
A(K-1,KM )=0.00
13 A(KM,K-1)=0.D0
M2=2*M
```

$0014 K=M 2, M N H, M$
$K M=K-M$
$A(K+1, K M)=0 . D 0$
$\begin{aligned} & A \\ & A(K M+K+1)=0 . D O\end{aligned}$
 DO $15 K=A 21, M$
$K M 2=K-M 2$
$K M 2=K-M 2$
$A(K, K M 2)=1$
15 A $1 K M 2, K D=1 . D 0$ DOIEK=MZ,MN, H^{\prime}
$A(K, K-M-1)=4.00$
$A(K-H, K-1)=4.00$

DO17K=1, HN
$\mathrm{KK}=\mathrm{K}-\mathrm{H}$
A
K
KH
$A(K+K A)=-16.00$
$A(K, K K H+1)=4 \cdot 00$
$A(K, K M-1)=4 \cdot D D$
$17 \mathrm{~A}(\mathrm{~K}, \mathrm{~K} H-\mathrm{H})=2.00$
$A(L, M N-M Z)=0 . D 0$
$A(M N, M N-N-1)=$
$A(M N+L)=0.00$
AIMN.L
END
c
c
\mathbf{c}
\boldsymbol{c}
SUBROUTINE AGEA IA,OC, $H_{p} \mathrm{~N}_{2} \mathrm{KR}$
EMPLIEIT REM *B IA-ト, O-
C PERFDRA GAUSS ELIMINATION ON (A) MATRIX ANJ
C SET UP (DG) VECTOR FOR USE UN (C) VECTOR
C for siress free edges. simply supported or clamped $\mathrm{M} N=\mathrm{H}$
$\mathrm{K}=\mathrm{B}$
$\mathrm{KK}=\mathrm{C}$

$1 \begin{aligned} & \mathrm{l}=\mathrm{K}+1 \\ & 1=2 * M+K \\ & l\end{aligned}$
IFiLeGT.NWBL=m
$2 K K K K+1$
$\mathrm{CC}(K K)=A(I, K) / A(K, K)$

$4 \begin{gathered}\mathrm{J}=\mathrm{J}+1 \\ \text { GOIC }\end{gathered}$
5 IF(I-L)6,7,30
$1=1+1$
GOIC2
${ }_{3}^{1 F\{K-M N+1 / 8,30: 30}$
GUIC1

RETUKN
END

\mathbf{c}
\mathbf{c}
\mathbf{c}
inear interpolation routine. extrapolation is valio.
STICTION TO SINGLE VALUED DEPENDENT VARIABLE
ITEST IS IF ABSOLUTE VALUE OF DIFFERENE OF THC
VALUES OF THE INDEPENDENT VARIABLE (T) IS .GT. 1.0 - 10).
IN OTHER HORDS, ALL T(I),I=1,N MEST BE DISTINCT.
ARGUNENTS
T
$=$ INPUT VECTOR OF INDEPENULNT VARIABLE
TH = INPUT VALUE AT WHICH INTERPOLATED VALUE IS WANTED
$\mathrm{X}_{\mathrm{X}}=$ INPUT VECTOR OF DEPENDENT VARIABLE ICORRES. TO ti.
$\mathrm{N}=$ INPUT NUMBER OF PAIRS OF DATA points.
600 format 111 error in subroutine dlinti.
* /2x, 'Single valued oep endent variable is assumed

DO $10 \mathrm{I}=1, \mathrm{~N}$
 - (I+1) EEQ N 20

10 CONTINUE

 REIURI
END
subrout ine pgmz
REAL* E E,H,PR,DXI, SBC, SMC,TBC,TMC, WXX,WYY,W,F,T,

* SIGXB,SIGXM, SIGYE,SIGYM, TXYY,TXYM,

REAL*B DX , SXMMT, SY BMT, SYMMT, TXYBMT, TXYMMT
REAL*8 CS1,CS2,CS3,CS4, CS5,CSO,
*REAL*B NST,ONSB,PNT, PNB,SST,SSE,ST,

* REAL PNTMT, PNBMT, SSTMT, SSBMT

REAL*8 STRAIN,S1,S2,S3,S4
COMHON E,H,PR,DX,H,N,ID 4
DXI = 12.00 * DX
SONiC BOOM PROJECT.
 METHCD OF NONL INER PLATE DYNAM IC RESPONSE - CASE IA.

* DIMENSION Wi 64), F(64), SIGXB(64$),$ SIGXM(64$),$ SIGYB(64)

* DIMENS ION STRAIN(64, 4); 511 (64,4$), 52(64,4)$,
${ }_{c}^{c}$ input formats.
501 format 11615
c cutput furmats
format i' 1 Stress distribution for finite difference methou uf voy LINEAR PLATE DYNAHIC RE SPONSE - CASE IA*
* $/ 12 x, \operatorname{PFINAL}$ REVISIUNS BY ROBERT C IKARD JULY 1971
* $/ 1 / 2 \times$. BENDING STRESS IS CALCULATED AT $z=+H / 2^{\prime}$

*N NURMAL STKESS: $14 \times$ i ${ }^{\text {SHEARIMG SIRESS }}$

c2 FORMAT (5x

605 FORMAT ($37 \times$, BENDING COMPGNENT:
606 FURMAT $37 X$, HEHERANE COMPONENT:

6IC FORMAT IIOX, ©GRID POINT* SX, TTIME DF:, 26X, 'TIME OF:

611 FORMAT $(13 X, 13,215 x, F 12.6,4 \times, D 12.41)$
615 FORMAT $1 / 2 X, 1$ THE FiMLUWING RECURDS ARE TO BE PROCESSED BY LIREC FORMAT $/ 1 / 2 x, 1$ HE FESSH: FiHL
*

b20 format $/ / / 2 x$, 'folluming integer parameters were specified

G24 FORMAT (///2x,0GRIO POINT*,5x.'PRINCIPLE NUKMAL STRESS'

626 FURMAT (29X:"PRINCIPLE NORMAL STRESS AT $2=+H^{2 \prime} / /$)

```
627 FURMAT (29X,'PRINCIPLE NORMAL STRESS AT L=-H2' //)
$,
630 FORMAT (///2X:'GRID POINT, 4X,'X-DIRECTION NORMAL STRAINE,9X,'Y-DI
    *RECTION NORMAL STRAIN:
    f/4X,'NUMBER",2(4x,' BENDING
    O31 FORMAT (5F15.7,15)
    637 FCRMAT 132x,'OF STRAIN IN THE X-DIRECTION: // 
    638 FORMAT (32X,'OF STRAIN IN THE Y-DIRECTION* /N',
    * /l2x,'MUMBER',5x,'mAX STRAIN',5x,'mAX STRAI#0
    ** FORMAT (//, (lox,8D12.4)'MIN STRAIN'5X,MMIN STRAIN'*
C (/// (10x,8D12.4))
start the program.
    REAC (5,501) NSD,NMULT:NREC,NSREC,IFSOP
C if nMult calculate stresises for mrec consecutive times, but dutput owly
        THOSE RECORDS NSREC, NSREC + NMUT, NSREC + 2*NMURT....
        IN MULTIPLES OF NMULF, STARTING WITH NSREC.
```



```
    IN ThE IST CASE INMULT .NE, OI, NREC CONSECUTIVE VAlUES CAlculated,
    in the 2nd case {nmult eeq. Ol, nsd stress distributions calculated
    AND OUTPUT.
C in any CASE, NSD recordS will be dutput {Printed!.
    IN ANY CASE, NSD RECORDS NILL BE OUTPUILPRINTEDI. LH ROCDRD PROCESSED*
            T,
        IF (NMULT.GT. OJ go to 5
        REAU (5,501) (IVREC(I),I=1,NSO)
    G0TC7
    IVREC(1)=NSREC
    GVREC(I) = IVREC(I-I) + NMULT
continue
c
            MN=M*N
    CEFINE INTEGER OUTPUT CONTROL VECTOK, PRINT ALL IF IIFSOP -LE. O). 
        IOPV(I)=0 OON'T PRINT OR PUNCH DATA FOR ITH NODE,
        IOPV(I)=1 = PRINT DATA FOR ITH NODE PPINT. 
    max - min summaries will be printed for all points.
```

DO $8 \quad 1=1, M$
LOPV(I)

READ (5,501) IIOPV(I) $\mathrm{IL}=1$, MN $)$
c cefine constants needed in stress calculation loup and output themo
S SBC $=-E * H /(2 . D O *(1, D 0-P R * P R) * D X I * D \times I)$
SMC $=1$. DO/CDXI*OXI 1
TBC $=-E * 1 / 1 / 12.00 *(11, D 0+P R 1 * 4 . D 0 * D \times 1 * D \times 1)$
TMC $=-1.00 /(4.00 * 0 \times I * D X I)$
WRITE $(6,600)$ SBC, SMC, TBC, TMC
c
C
WRITE OUT INPUT DATA.
WRITE
$(0,620)$ Mi

C zerc cut maxmin-time matrices.
DO $10 \quad \mathrm{I}=1, \mathrm{MN}$
co $10 \mathrm{~J}=1,4$

$\operatorname{SYBMT(I,J)=0.DO}$
SYMAT $(I ; J=0.00$
TXYBMTI
SHM
TXYBMTII,$J=0.00$
TXYMATIT,$J=0.00$
CMT1(I: J)=0.00
CMT2\{1;J\}=0.00
MT 3 (1, J) $=0.00$

CMT6SI; Ji=0.00
PNTMTII, $3=0.00$
PNBMTII, $=0.00$
PNBMTII,J) $=0.00$
SSTMT $(1, J)=0.00$

$\operatorname{S1(1,J)}=0.00$
$\mathrm{S} 2(1, \mathrm{~J})=0.00$
$\mathrm{~S} 3(1, \mathrm{~J})=0.00$
.
c siress calculation loop.
ID $4=\mathrm{NSREC}$
AT IME
NREC
IF INMULT .EQ. O) NTIME=NSO
KOU $\mathrm{T}=1$
CU 300 LCOUNT $=1$, NTIME
IF INMULT EES O) IDA = IVRECILCGUNT 1
C_{C}^{C} stress at $I=1 ; J=1$ CCRNER. (1)
$I J=1$
$I R=I J+$
$I R=I J+1$
$I A=I J+M$
$I A R=I J+M+1$
$W X X=-2.00 * H(1 J)+W(I R)$
$h Y y=-2.00 * W(I J)+h(I A)$
hYY $=-2 . D 0 * W(1 J)+W(1 A)$
$S I G X(I J)=S B C(W X X+P R W Y Y$
$\operatorname{SIGXB(IJ})=S B C *(W X X+P R * W Y Y)$
$S I G Y B(I J)=S B C *(W Y Y+P R * W X X)$
SIGXM(IJ) $=$ SMC* ($-2 . D 0 * F(I J)+F(I A))$

```
    SIGYM(IJ) = SM(*)-2.DO*F(IJ) + F(IR)
    TXYBIIJ) = TBC*W(IAR)
    CSI(IJ) = SIGXE(IJ) + SIGXM(IJ)
    CS2(IJ) = SIGXB(IJ) + SIGXHIIJ)
    CS3(IJ)= SIGYBIIJ) + SIGYM(IJ)
    CSS(IJ)= IXYB(IJ) + TXYMMJJ)
    CSO{IJ)=-TXYB (IJ) + TXYM (IJ)
    ONST = (CSL(IJ - CS3HIJ) )/2.00
    ST=CS5(IJ)
    SH = CSG1[J]
    SST(IJ)= DSORT(DNST*DNST + ST*ST
    PNT(IJ) = {CSI[IJ) + CS3(IJ))f2.00 + SST{IJ)
    PNQ(IJ)= CSS2(IJ)+CS4(IJ))+2.00 + SSECIJ)
    STRAIN(IJ,I)=(SIGXBIIJ) - PR*SIGYB{IJ)/E
    STRAIN(IJ,2) = (SIGXM(IJ) - PR*SIGYM(IJ)) /E
    SIRAIN(IJ,3)=(SIGYBIIJ)-PR*SIGXBGIJI)/E
c
    TRES ALONG J=1 SIDE (I=2,M-1)
    DO
    IR=IJ+1
    ML=IJ-1
    IA = IJ N M
    IAL=I N+M-I
    WXX =W(IL) -2.00*W(IJ) +WIIRK
    MYY = (IJ)=-2.DO*W(IJ) +W(IAA
    SIGYB(IJ) = SBC*{WYYY + PR*WXX)
    SIGXM(IJ) = SMC* (-2.CO*F[{J) + F(IA))
    SIGYM(IJ) = SMC*IF(IL) -2.00*F(IJ) +F(IRI)
    TXYB(IJ) = TBC*(-W(IAL) + WIIAR));
    \XYM(IJ)= =TMC*(-FIIAL)+FFITAR
    CS2(IJ)=-SIGXB(IJ)+SIGXM(IN)
    CS3IJ) = SIGYa(IJ) + SIGYM(IJ)
    CS5(IJ) = TXYB (IJ) + TXYMM(IJ)
    CSG(IJ)=-TXYB (IJ) + TXYM (IJ)
    CNST = (C51(1J)-CS3(IJ))'2.00
    ONSB = (CS2(IJ)-cs4(IJ))/2.D0
    ST = CS5(IJ)
    SSTIIJ)= DSQRTIDNST*DNST + ST*ST
    PNT(IJ) = (CS1(IJ)+CS3(IJ))/S2.00 + SST(IJ)
    PNBIIJ) = (CS2(IJ) + CS4(IJ)) & 2.00% + SST(IJ 
    l
20 STRAIN(IJ,3) =(SIGYBIIJ)-PR*SIGXEIJH),
C ETRESS AT I=H,J=1 CGRNER (3)
\(\mathrm{I}=\mathrm{N}\)
corner
\(\mathrm{IL}=\mathrm{IJ}-1\)
HXX \(=2.00 *(H / I L)-\) W(IJ)I
WYY \(=-2.00 * W(I J)+W I I A)\)
SIGXB(IJ) \(=\) SBC*(WXX + PR*WYY)
SIGYB(IJ) \(=\) SBC*(HYY + PR*WXX)
SIGXM(IJ) \(=\) SMC \(*(-2 . C O * F(I J)+F(I A))\)
SIGYM(IJ) \(=2.00 * S M C *(F(I L)-\) F(İJI)
\(\begin{aligned} \operatorname{TXYB}(I J) & =0.00 \\ \operatorname{TXYA(IJ}) & =0.00\end{aligned}\)
\(\operatorname{CS11IJ})=\) SIGXB(IJ) \(\operatorname{CS} 2(I J)=-\operatorname{SIGXM(IJ})\)
\(\operatorname{CS2IIJ})=-\) SIGXB(IJ) + SIGXM(IJ)

\(\operatorname{CS5}(1 J)=\) TXYB (IJ) + TXYM [IJ]
CSG(IJ) \(=\)-「XY日 (1J) +TXYM (IJ)
DNST \(=(\operatorname{CS1}(I J)-\operatorname{cs3}(I J)), 2.00\)
ONSB \(=(\operatorname{CS} 2(I J)-\operatorname{cS4}(I J), 2.00\) \(\mathrm{ST}_{\mathrm{I}}=\operatorname{css}(1 \mathrm{~J})\)
SB = CS6(IJ)
SSTIJ) \(=\) OSQRT (ONST*ONST + ST*ST)
SSBIIJ) \(=0\) SRT(DNSH*ONS + SB*SB)
 PNo
 STRAIN(IJ,3) \(=(S I G Y B(J J)-P R * S G Q B(I J)) / E\)
STRAIN(IJ,4) \(=(S I G Y M(I J)-P R * S I G X M(I J)) / E\)
\(c\) STRESS \(\operatorname{ALONG} I=1 \quad\) SIOE \((J=2, N-1) \quad(4\)
\(00 \quad 30 J=2, N M 1\)
\(I J=1+K+1\)
\(I B=I J-M\)

\(1 A=1 J+M\)
\(I A=1 J+M+M+1\)
\(I A R=1 J+M+1\)
\(I B R=I J-M+1\)
\(\operatorname{WXX}_{W Y Y}=W(I B)-2 \cdot D 0 * n(I J)+W(I R)\)
\(W_{W Y}=W(I B)-2.000=(I J)+W(I A)\)
SIGXB(IJ) \(=S B C * W X X+P R * W Y Y)\)
\(S I G Y B(J)=S B C * G Y Y+P R * Y X)\)

SIGYM(IJ) \(=\) SMC* \(-2.00 * F(I J)+F(I R O)\)

TXYM(IJ) \(=\) TMC* \(\quad\) F(IAR)-F(IBR)

\(\operatorname{CS3}(I J)=\) SIGYaliJ) + SIGYM(IJ)
CSS \((1 J)=-\) SIGYBIIJ \()+\operatorname{SIGYM(IJ)}\)
\(\operatorname{CS5}(I J)=T X Y B(I J)+T X Y M\)
\(\operatorname{CS5}(I J)=\) TXYB (IJ) + TXYM (IJJ
\(\operatorname{CSG}[I J)=-\) TXYB \((I J)+\) TXYM (IJ)
CNST \(=\{C S I(1 J)-\) CS3 [1J) \(1 / 2.00\)

\(S T=\operatorname{Cs5}(1 J)\)
\(S_{B}=\operatorname{CS6}(1 J)\)
SST(IJ) \(=\) DSQRTIONST*ONST \(+5 T * S T\)
SSB(IJ) \(=\) DSORT(DNSE*ONSE + SB*SO
PNT(IJ) \(=(C S 1(I J)+C 53(I J)) / 2.00+\) S5T(IJJ)
PNB(IJ) \(=(C S 2(I J)+C 54 I J I), ~\)
\(2.00+5 S B(I J)\)
```

 STRAIN(IJ,N)={SIGXBIIJI - PR*SIGYB(IJ)) /E
 STAIN(IJ,2)=(SIGXH(IJ)-PRR*SIGYH(IJ)),E
 c
STRAIN(J,3) = ISIGYBIIJ)-PR*SIGXBIIJ);'/E
TRESS ALONG I=M SIDE (J=Z,N-1) (5)
OO 40 J=2,NM1
IJ=M+M*(J-
IB=IJ-M
IB=IJ-M
wxx = 2.00*(m(IL) - w(IJ))
WYY = N(IB) -2.DO*H{IJ) + WIIA)
SIGXE(IJ)=SEC*(WXX +PRR*YY)
SIGYB(IJ) = SBC*(HYY + PR*NXX)
SIGYM(IJ) = Z.DO*SMC*(F(IL) - F(IJ))
TXYB(IJ) =0.00
CSI(IJ) = SSGXB(IJ) + SIGXM(IS)
CS2(IJ) = -SIGXB(IJ) + SIGXHIIJ
CS3(IJ) = SIGYB(IJ) + SIGYM(IJ)
CS4(IJ) = -SIGYB(IJ) + SIGYMIIJ)
CSG(IJ)= -TXYB (IJ) + TXYM (IJJ
DNST = (CSI\IJ) - CS3(If))
ONSB = (CS2(IJ)-CS4(IJ)), 2.00
ST = CS5(IJ)
SST(LJ)= DSURT(DNST*ONST + ST*ST
SSB(IJ) = DSORT(ONS B*ONSB + SB*SB
PNT(IJ) = CSIIIJ) + CS3IIJI) {2.00 + SST(IJ)
STRAIN{IJ,I)=(SIGXB̈(IJ)-PR*SIGYB(IJJI/IE
STRAIN{IJ,N)=(SIGXB(IJ)-PR*SIGYBGIJJ)'E
STRAIN(IJ,3)=(SIGYB(IJ) - PR*SIGXBGIJ)/,E
40
Stress at I=1,J=N CORNER (6)
IN=1+M*(N-1);
IR=IJ+1
IB=IJ-M
MxX=-2.DO*W[(J) + h(IR)

```

```

 SIGYB(IJ)=SBC*(WYY +PR*WXX)
 SIGXM(IJ)=2.00*SMC*1F(IB)-F(IJI)
 SIGYM(IJ) = SMC*I -2.00*F(IJ) + FIIR)
 MXYB(IJ) = 0.00
 Csil[J] = Sigxz[IJ) + SIGXmitu)
 CS2[J])=-SIGXB(IJ) + SIGXHIIJ
 GS3(IJ) = SIGYB(IJ) + SIGYM(IJ)
 CS4IIJ)= - SIGYB(IJ) + SIGYH(IJ)
 CSS(IJ)= TXYB (IJ) + TXYM (IJ)
 DNST=(CSI(IJ)-CS3\[J)), 2.00
ONSB = (CS2(IJ)-CS4(IJ)// 2.00
ST = CS51(J)

```
\(\mathrm{SB}=\operatorname{cso}(1 \mathrm{~J})\)
\(\mathrm{SST}(1 \mathrm{~J})=05\)
SSTIIJ) \(=\) DSORTIDNST*DNST + ST*STI
SSB(IJ) \(=\) DSQRT(DNSE*CNSE + SE*SB

PNB(IJ) \(=(\operatorname{CSI}(I J)+\operatorname{CS3}(I J)) / 2.00+\operatorname{SST}(1 J)\)
STRAINITJ,I) =(SIGXBIIJ) -PR*SIGYB(IJ) / E


\(c\)
\(c\)
ESS ALONG \(J=N\) SIDE \((1=2, M-1) \quad\) (7)
\(0050 \quad I=2, M M 1\)
\(1 J=I+M *(N-1)\)
\(I R=1 J+1\)
11
\(1 L=1 \mathrm{~J}-1\)
\(1 B=1 \mathrm{~J}-\mathrm{M}\)
\(W X X=W(I L)-2.00 * W(I J)+W(I K)\)
hYY \(=2.00 *(W 11 B)-W(I J J)\)
SIGXBI
SIGXB(IJ) \(=\) SBC*(wXX + PK*WYY)
SIGYB(IJ) \(=\) SBC*(wYY + PR*NXX)
SIGXMIIJ) \(=2 . D 0 * S M C *(F(I b)-F(I J))\)
SIGYM(IJ) \(=\) SMC \(*\) (FIIL) \(-2.00 * F(I J)+F(I R 1) ~\)
TXYE(IJ) \(=0.00\)
\(\begin{aligned} \text { TXYE(IJ) } & =0.00 \\ \text { TXYM(IJ) } & =0.00\end{aligned}\)
\(\operatorname{CSI}(I J)=\) SIGXBI[J) \(+\operatorname{SIGXM}(1 j)\)
CSIM(IJ) \(=\) SIGXB(IJ) +SIGXM(IJ)
CS3 (IJ) \(=\) SIGYB(IJ) + SIGYM(IJ)
\(\operatorname{CS} 4(I J)=-S I G Y B(I J)+\) SIGYM(IJ)
CS4(IJ) \(=-\) SIGYB(IJ) + SIGYM(IJ

CSST
DNST
DNS \(=\) (CSI(IJ)
CS2IJ)
DNSB \(=\) (CS2(IJ) \(-\operatorname{CS4}(1 J J) / 2.00\)
\(S T=\operatorname{CSS}(I J)\)
\(\mathrm{ST}=\operatorname{CS5(IJ)}\)
\(\mathrm{Si}=\operatorname{CS6}(I J)\)
SSTIIJ \(=\) DSGRTIDNST*DNST + ST*ST)
SSBIIJ) \(=\) DSQRT(DNS \(B *\) DNSE + SE*SOBI
 PNB(IJ) = (CS2(IJ) + CS4(IJJ) \(\quad 2.000+\) SSE(IJ)


c
```

TRESS AT I=M,J=N CORNER (B
IS=MN
LIE IJ-M
WXX = 2.00*(W(IL) - W(IJ))
MYY=2.00*(HGIB)-WII NS)
SIGYB(IJ) = SEC*(HYY + PR*WXX)
SIGXM(IJ) = 2.DO*SMC*(F(IB)-F(IJ)]
SIGrM(IJ) = 2.00*SMC*(FIIL) - F(IJI)
TXYEIIJ) = 0.00
CSI(IJ)= SIGXB(IJ)+SIGXM(IJ)
CS2(IJ) = SIGXE(IJ) + SIGXM(IJ)
CS4(IJ)= SIGYB(IJ) + SIGYMIIJ)

```
```

 CS5(IJ)= TXYB (IJ) + TXYM (IJ)
 CS6{1J)=-TXYB {IJ}**TXYM (1J)
 ONSB={CS2{IJ;-CS4IIJ};
 ST = CS5(IJ)
 SST(1J)= DSURT(DMST*DNST + ST*ST%
 P*T(IJ)=(CS1(1J) + CS3(1J,)/:2.00 + SST(IJ)
 PNB(IJ) = CSS2\IJ) + CS4[IJJ) (2.00 + SSBIIJ
 STRAIN{IJ,L)=(SIGXBIIJ)-PR*SIGYBIIJI)/E
 STRAN{IJ,2}={SIGXMIIJ)-PR*SIGYM(IJ)),
 SIRAINIIJ,4)={SIGYBIIJ)-PR*SIGXB(IJ))',
 C Stress at interior points (general case)
(9)
O0 60 J=2,NH1
D0 60 I=2, MM2
IJ={+M*i (I
IL=IJ-1
IB=1 -M
IA = IJ +M
1BL=1J-H-
IAL=1 J+H-1
lAR=1J+M+1
kxx=w(IL) -2.00*\#\#11J) + w(IR)
WYY = \#(1B)
SIGXBIJ)=
SIGYB(IJ) = SBC*(WXX +PR*WYY)
SBC*(WYY + PR*HXX)

```

```

 TXYB{EJ) = TBC*(W(IBL! - H(IAL) + W(IAR) - W(IBR))
 TXYMIIJ) = TMC*(F(IBL) - F(INL)
 (S2{IJ)= SIGX8(IJ) + SIGXH(IJ)
 CS3(IJ) = SIGYB(IJ) + SIGYMIIJ)
 cs4(IJ) = - Sigma(IJ) + SIGrm(IJ)
 CSS(IJ)= IXYB [IJ) + IXYM (IJ)
 CS6(IJ)= -TXYB (IN) + TXYM (IJ)
 CNST = (CS1(1J)-CS3(1J)), 2.00
 CNSB={CS2{1
 ST = CS5(IJ)
 SST(IJ)= OSORT(ONST*DAST + ST*SI
 SSBIIJ) = OSQRIDNSSH*DNSB + SB*SB
 PNB(IJ) ={CS2(1J) + CS3(1J)} '2.00 + SST(IJ)
 STRAINIIJ,1) = (SIGXIG{IJ)-PR*SIGYB(IJ)),E
 STMRAN(IJ,2)=(SIGXHIN)-PRRSIGYB(IJ))'E
 STRAIN(IJ,3% = (SIGYBIIN)-PR*SIGXB(IJ))/E
 c
all stress values computed. dutput heading and space between rows.
4=104-
IF (NW4-.NE. IVRECIKDUT\) GO TO 90
WRITE (6,601) IsNW4,IN(MN)
DO BO J=1,N

```

00
10
\(I J=I+M *(J-1\)

WRITE ( 6,602 ) IJ, SIGXB(IJ), SIGXM(IJ), SIGYB(IJ), SIGYM(IJ).
\(7 C^{*}{ }^{\text {WR }}\)
c continue
continue
WRITE ( 6,689 ) (W (I), 1=1, MN)
(6,89) (FIL,\([=1, M N\)

D0 \(013 \mathrm{l}=1, \mathrm{M}\)
\(1 J=1+M *(J-1)\)
IJ \(=1+M *(J-1)\)
\(1 F(10 P V I I J)\)
MRITE (6,602) LJ, CSI(IJ), CS2(IJ), CS3(1J), CS4(IJ), CS5(IJ), CSO(IJ)
83 CONTINUE
E7 WRITE \((6\),
meite qut princtpal normal and maximum shear stresses.
WRITE \((6,624)\)
\(\begin{array}{ll}\mathrm{CO} \\ \mathrm{CO} \\ 88 & \mathrm{~J}=1 \mathrm{I}, \mathrm{N}\end{array}\)
\(1 J=1+M *(J-1)\)
HR1TE \((6,625)^{\circ} \mathrm{LJ}\), PRT(IJ), PNGIIJ),SST(IJ), SSB(IJ)
88 CONTINUE
C MRITE OUT STRAINS
WRITE \((6,630)\)
DO 92
\(J=1, N\)
DO G1 \(I=1, ~ M\)
IJ \(=1+4 *(J-1)\)

IF (IDPVIIJ).GT: LI WRITE (7,o31) (STRAINAIJ,K),K=1,4);N(MNI,IJ
91 CONTINUE
92 \&RITE (6,003)
90 CONTINUE
c
c
c
c check for maximum and mimimum values
\(00200 \quad 1=1\),
00
200
\(\mathrm{~J}=1\)
,
\(I J=1+M *(J-1)\)
IF (SIGXB(IJ) :LE. SXBMT(IJ,2)) GOTO 105 \(\operatorname{SXEMT}(\mathrm{IJ}, 2)=\operatorname{SIGXB(IJ)}\)
\(\operatorname{SXBMT}(J, 1)\)
\(=T\)
105 IF (SIGXBIIJ) .GE. SXBMT(IJ,4, GO TC 110



 5 IF (SIIXM(IJ) - - SEE SXMAT

\(\underset{\text { SYBMI (IJ, } 2 \text { ) }}{\operatorname{IF}}=\dot{s}\) LGYa(IJ)
SYBMT(IJ, \()=T\)

125 IF (SIGYB(IJ) .GE. SYBMT(IJ,4)) CO TO 130 SYBMT(1J,4) \(=\operatorname{SIGYBIIJ~}\)
\(\operatorname{SYBMT(IJ,3)}=\mathrm{T}\)
130 IF (SIGMMII = SYMMT(IJ, 2) = SIGYMIJJ
135 IF (SIGYHIIJ) -GE. SYMMTIIJ.41) GO TO 140 SYMMT(IJ,4) = SIGYMIIJ)
140
IF (TXYB(IJ) .LE. TXYBMTIIJ.21) GO TO 145 TXYBMT(IJ.2) \(=\) TXYBISJ)
 TXYBMT (IJ, 4\()=\) TXYBIIJ

15C IF (TXYM(IJ) -LE. TXYMMT(IJ,21d Go TO 155 TXYMMT (IJ, 2 ) \(=\) TXYA(IJ)
5 IF (TXYM(IJ) GGE. TXYM TIIJ,41) GO To 160 TXYMMT \((I J, 4)=\) TXYA(1JI
TYMMT
IF (CSIIIJ) =LE. CRTILIJ,21) GO TO 102 \(\mathrm{CMT}_{\mathrm{CMT}}(1 \mathrm{~N}, 2)=\mathrm{CSI}(\mathrm{CJ})\)
162 CMTICSIIJ) -GE. CMTI(IJ,4)I Co to 16

164
IF (CS2(IJ) LE. CMTz(IJ,2d) ©o To 16 CMT2(IJ,2) \(=\operatorname{CS2}(1 J)\)
CMT2(IJ.1)
166 IF ICS2(IJ) -GE. CNT2(1J,4)) \(\mathbf{C O}\) TO 168 CMT2 \(21 J, 4)=\) CS2(IJ)
CMT211J.3)
168 (F) CMT3 \(1 J, 2)=\)
CMT3(1J, 1\()=\)
170 IF (CS3(IJ) -GE. CMT3(IJ, 4) G GO TO 172 CMr3s(J, 4) \(=\) CS3 (IJ)
CMT3(IJ,
172 IF (CS4(IJ) -LE. CMT4(IJ.2)) GO TO 17 CMT4 (IJ,2) \(=\) CS4IIJ)
 CMT4(IJ,4) \(=\) CS4(IJ) CMT4(IJ. 3 ) \(=\)
176 IF (CSS(IJ) -LE. CMTSIJ,2) GO TO 178 CMTS(IJ,2) = CSS(IJ)
178 IF (CSS(IJ) .GE. CMTSIIJ,4) GO TO 180 CMTS(IJ,4) \(=\operatorname{CS5}(1 J)\)
\(\operatorname{CMTS}(I J, 3)=T\)


182 IF (CSG(IJ) .GE. CHTO(IJ,4)) GO TO 184 CMT6(IJ.4) \(=\) CSG(IJ)
184 IF (PNT (IJ) -LE P PNTMT(IJ, 2J) कि To 186
 PNTMT(IJ,4) = PNT(IJ)
 PNBMT \((I J, 2)=\rho_{N B L}[J)\)
PNBMT(IJ, 1\()=T\)
IF (PNB(IJ) \(\quad\).GE. PNBMT
 IF (SST(IJ) .LE. SSIM
SSTMT(IJ,21 = SST(IJ) SSTMTIIJ,1) \(=\mathrm{T}\) TS
194 SSTMT(IJ,4) =GESTSTMT(IJ,4)) Gu to 196 SSTMTIJ, 3 ) \(=T\)
IF (SSB(JJ) .LE. SSBMT(IJ,2) GL TO 198 SSBMT(IJ, 2) \(=\) SSBIIJI
SSBMTIJ,
19B

SSBMTIIJ, 3) \(=\mathrm{T}\)
IF (STRAIN(IJ, I) .LE.
IF (STRAIN(IJ,i) LLE. SiliJ,2 1 ) go ro 210 sillitil) \(=1\)
210 IF (STRAIN(IJ.1) .GE. SI(IJ.4) GO TU 220 Silld,4) = STRAINIIJ,1)
220
 S2 \(2(1 J ; 1)=\)
230 IF (STRAIN(IJ,2) .GE. S2(IJ,41) GO TO 240 S2 \((1 \mathrm{~J}, 3)=\mathrm{T}\)
240 IF (STRAIN(IJ,3) LE. S3(IJ.âl) GO TO 250 S3(IJ,2) \(=\) STRAINIIJ, 3 )
S3(IJ,1)
S3(IJ,1) = T
IF (STRALN(IJ,3) -GE. S3(IJ,4)) GO TC 260 \(\mathrm{S} 3(\mathrm{IJ}, 4)=\mathrm{S}\)
\(\mathrm{S3}(\mathrm{IJ}, 3)=\mathrm{T}\)
\(2 \in 0\) IF (STRAIN(IJ,4). LE. S4(IJ,2) GO TO 270

270 If \(\{\) STRAIN(IJ,4) \(.6 E \cdot 54(I J, 4)\) GU TO 200

\(-54(11 \mathrm{~J}, 3)=\)
200 CONTINUE
300 CONTINUE
6
\(c\)
write out maximum - minimum summaries. WRITE 16,004 ) WRITE \((6,605)\)
WRITE \((6,607)\) RRITE \((0,610)\)
DO \(310 L=1, M N\)
WRITE \((6,611) L,(S X B M T(L, J), J=1,41\)
WRITE \((6,604)\)
HRITE \((6,606)\)
WRITE \((6,607)\)

WRITE \((0,610)\)
RITE ( 6,011 ) L, (SXMMT(k,J), J=1,4)
WRITE \((6,004)\)
WRITE \((1,605)\)
WITE \((6,6081\)
WRITE 10,0101
330

WRITE \((6,604)\)
WRITE \((6,006)\)
WRITE \((6,608)\)
WRITE
( 6,610\()\)
DO \(340 \quad L=1\), MN
340 WRITE \((6,611)\) L, (SMMMTLL, JI, J=1,4)
WRITE \((6,604)\)
WRITE \((6,605)\)
WRITE \((6,605)\)
WRITE \((6,609)\)
WRITE \((6,609)\)
HRITE
W 5 . 610 )
DO \(350 \quad L=1, \mathrm{MN}\)
OWRITE ( 6,611 ) L, (TXYBMT(L, J), J=1, 4 )
WRITE \((6.604)\)
WRITE \((6,606)\)
\begin{tabular}{l} 
WRITE \(\quad(6,606)\) \\
WRIT \\
\hline 10,609\()\)
\end{tabular}
WRI TE ( 6,610 )
DO \(360 \mathrm{~L}=1, \mathrm{MN}\)
WRITE \((6,611)\)
L, ITXYMMT(L, J), J=1, 4
hrite out comained stress max-min summaries.
WRITE \((6,604)\)
WRITE \((6,622)\)
WRITE \((6,001)\)
WRITE 16,010 ,
D0 \(370 \quad \mathrm{~L}=1\); Mh
37 C WRITE \((6,611)\) L, (CMT1 (L,J), J=1,4)
WRITE \((6,604)\)
WRITE \((6,623)\)
WRITE \((6,607)\)
WRITE 16,610 )
DO \(380 \quad L=1\), \(k\)
WRITE ( \(6,(11)\) L, (CMT2 (L, J) \(1, J=1,4)\)
WRITE ( 6,064\()\)
WRITE \((6,622)\)
WRITE \((6,608)\)
WRITE
WRITE 60,610\()\)
ORITE \((6,611)\) L, (CMTS (L,J), J=1,4)
WRITE
WRIIE
\((0,6043)\)
WRIT
WRITE ( 6,623 )
WRITE \(\{6,600\) )
WITE
DO
\(400(0,010)\)
\(L=1, M N\)
400
WRITE \((6,611)\)
WRITE \(\quad(6,622)\)
WRITE \((6,609)\)
DC \(410 \quad L=1, \mathrm{MN}\)
410 kRITE ( 0.061 ) L, (CMTS (L,J), J=1,4)
```

 WRITE (0,604)
 WRITE (6,609)
 MRITE (6.610)
 420 WRITE (6,61:)L,ICMTG (L,J),J=1,4)
 c
hrite gut principal and shear stress max-min summaries.
WRITE (6,604)
WRITE (0,0610)
30 MRITE (0,611) L,(PNTMT(L,J),J=1,4)
WRITE (6,604)
RITE (0,027)
CO 440 L=1,MN
O WRITE (6,611) L,(PNBMT(L,J),J=1,4
MRITE (0,604)
KRITE (6,010)
50 WRITE (}0,611)\mathrm{ L,(SSTMT(L,J),J=1,4)
MRITE (0,604)
WRIEE (6,029)
60 WRITE (6,611) L,(SSBMTIL,J),J=1,4)
c mrite qut component strain summarles.
WRITE (6,604)
RITE 16,605
WRITE (6,640)
GE WRITE (0,611) L,ISI(L,J),J=1,4)
WRITE (6,604)
MRITE (0,606)
WRITE (6,637)
WRITE (6,640)
ON 470 L=1,MN ,(S2LL,N1,J=1,4)
WRITE (6,004)
\#RITE (6,005)
WRITE (6,638)
RITE (6,040)
45 WRITE (6,611)L,(S3(L,J).J=1,4)
WRITE (6,604)
WRITE (0,000)
WRITE (6,638)
WRITE 10,6401
80 WRITE (6,611) L,(S4IL,N),J=1,4)
RETURN

```

\section*{APPENDIX B}

The following computer program uses a single mode, lumped parameter model for a simply supported plate based on the results of either Yamaki (5) or Bayles (25). The transient response is obtained by numerical integration of the model differential equation using Subroutine DHPCG which is available as part of the IBM System/360 Scientific Subroutine Package, Version III. This program has the window-room-door system as an option. Its usage is given as part of the listing。
```

// EXEC FOR TGGLG,REGION.GUII27K
FORI SYSIN DD:*
this program computes ncNlinear plateresponse to pulse loads
USING BAYLES'S FIRST MODE MODEL OR YAMAKI\bulletS MDOEL AND
SUBRCUTINE CHPCG FOR NUMERICAL INTEGRATION. ITION.
GANESHRRAJAGOPAL HAS A RODM-WINDON-DOO
input oata:
ARD 1: FORMATITF1O.3IA,B,H,E,PR,RD,Z
A=PLATE LENGTH (FT)
8=PLATE WIOTH (FT)
H=PLATE THICKNESS IINS
E=YOUNG'S MODULUS OF PLATE MATERIAL (PSI)
R=DENSITY
RO=DENSITY ILBF/F
Z=DAMPING FACTOR (
dt=time interval between input pressure data points
PMT(3)=INITIAL INTEGRATION STEP SIZE
PSCALEICONVESION FACTOR TU CONVER INPUT PRESSURE INTO PSF
PRMT(3)
YAMAK=0. IF BA YLES'S MODEL IS TO BE USED
=1 IF YAMAKI'S MODEL IS TO BE USED.
FUNCTION.
IFROOM=O PLATE ONLY
CARD 3: FORMAT =1 WINDOH-ROOM-DOOR SYSTEM
XX(I)=X COORO OF POINT I AT WHICHSTRAIN IS REQUIREDIFT)
Y(I)=Yolv
Gards 4:FORMATII,F19.3)NSTOP,P(II
NSTOP IS USED TO IDENTIFY END OF INPUT DATA
IS USED TO IDENIIFY END OF INPUT OATA
NSTOP=1
P(II=PRESSURE \ITISS CAN BE ANY
NOTE***ONE DATA CARDIS NEEDED FOR EACH INTERVAL OF TIME DT
CARD 5:FORMATT4O15.0ISEAR,VOL,DAMP I I ITT
EL=EFFECTIVE LENGTH OF DO
VOL=VOLUME OF ROOM IFT**3\
CUTPUT
X,Y2,EPPSUMX,EPSUMY
x=TIME
Y2=CENTER DEFLECTION|IN
EPSYMK=TOTAL SURFACE STRINNIN X OIRECTION.
PUNCHED OUTPUT
FORMATIGF13. 7,I 2)X,EPXB,EPXM,EPYB,EPYM,Y2,
X=TIME
OPXB=BENDIMG STRAIN IN X DIRECTIN
EPXM=MEMBKANE STRAIN IN X DIRECT ION
EPXM=MEMBKANE STRAIN IN X DIRECTION
EPYM=MEMBRANE STKAIN INY OIRECTION

```

\section*{Y2=CENTER DEFLECTION (IN) \\ \section*{I=NSTRAIN VALUE}}

IMPLICIT REAL*B(A-H, O-Z)
SI RENSION DERY(4),Y(4), PRMT (5), AUX(16,4), P(200),XX(4), YY(4),
2EPSYB(4), XI(16)
CGMMON P, SIGXN,SIGYM,EPSXM, EPSYM,SIGXB, SIGYB, EPSXB
EPSYB, EK 1,EMI,EKLPNL,DAMP,C3,DT,PSCALE ,PRESS,ND ,NSTRAN
, NC, NMULT, EK21, EK22,EK2,C6, AR
(IDTP, FCI
- read all input data

CONTINUE
OC 11 NKOUNT \(=1,5\)
READ \((5,11 A, B, H, E, P R, R O, z\)
FORMAT (8F10.3)
100
READ(5,1001DT, PRHT(3),PSCALE,NSTRAN, NMULT, NYAMAK,N,IFROOM READI5,1)(XXII), YY(I),I=1, NSTRAN
READ 5,
\(N D=0\).
\(N D=N O+1\)
READI5,2JNSTOP,PIND
2 FERMAT(II,F14.3)
C CALCULATE SYSTEM PARAMETERS


\(E M 1=R O \quad * A * B * H(4, * 32.2 * 12\).
\(C 3=4 * A * B /(3.1416 * 3 * 1416)\)
D \(1=1\). - PR
\(02=3.1416 * * 2 / 3\).
BE TA \(=A / B\)
\(B 2=8 E T A * B E T\)
\(C 1=82+1,1 B 2\)
\(\mathrm{C} 2=\mathrm{B} 2 * \mathrm{~B} 2+1 \cdot /(\mathrm{B} 2 * \mathrm{~B} 2)\)
 C2*(02+2.5)-2.*PK+9.1) OKEGP=1EK1/EM1)** PERICD=6.2832/OMEGP
OMEG31=(9.+B2) *OMEGP \(/(1+B 2)\)
OMEG13=(1*+9.*B2)*OMEGP/(1+B2) \begin{tabular}{l} 
PER \\
PER \(13=6.2832 /\) OMEG31 \\
\hline \(6282 / O M E G 13\)
\end{tabular}
C CALCULAAE STRESS AND STRAIN Parameters
C \(11=\mathrm{C} 1 * 102+4.1-4\).*PR
C22 \(=3 . * 01 * C 1+(02+2.5) * C 2-2 . * P R+9\)
SIGX=02*0. \(75 * E * C 11(G * 2 * B)\)
SIGX \(=02 * 0.82\)
SIGY=SIGX/B2
SIGG=E* \(\mathrm{H} * \mathrm{OZ} * 1.5 /((1,-P R * P R) * 1 z\).
\(\mathrm{PR} O=\mathrm{P} R\)
C
CALL YAMAKIIN,BETA, X,EP2,PO1,PIO,PROI
\(P A=3.141600 / \mathrm{A}\)
\(P B=3.141600 / \mathrm{B}\)
Da 7 I=1,NSTRAN
```

 Xl=x\times{I)
 SX=DSIN(3.1416D0*X1/A)
 SY=DSIN(3.14160 C*Y1/8)
 SIGXB(I)=SIGB*((SX)(A*A))+(PR*SY/(B*B)))
 EPSXBTI)={SIGXB(I)-PR*SIGYB(I)I/E
 EPSYBIII=ISIGYB(I)-PR*SIGXBIIIIIE
 09,110,109
 110
 CONTINUE
 uSE yamaki's mcoel
 \ X =0.500*A-XX(I)
 Y Y =0.500*B-YY(1)
 S1GXM(I)=PO1*DCOS(PB*2.DO*Y1)
 P10=P10-(B2/32.00)
 SIGrm(I)=P10*DCOS(PA*2.DO*XI
 L=N/2
 OO 206 NP=1,L
 PBE=NP*3.141600/BETA
 DPP=DEXP(PBE)
 \MM=DEXP(-PBE)
 COSHP=(DPP+DPM)*0.5DO
 DO 107 NQ=1,L
 NSF=-1**NQ *NS*SINHP*SINHP/ ISINHP*CESHP*PSEI
 ACOE=NP*3.141600*ETA
 CATCH=4.00*BETA/(3.141600*((NP*NP+82*NQ*NQ)**2)
 DQM=DEXP(-QBE)
 OGP=OEXP(QBE)
 COSHQ=(OQM+DUP)*0.500
 BCOF=NG*NS Q*S INHO*S INHG/(S INHQ*COSHG+QBEI
 PUSH=DCOS(2.OO*NP*PA*X1)*OCOS (2.00*NQ*P&*Y1)*CATCH*(ACOF*X(NP)*
 1 BCOF*X(L+NQ)
 SIGYM(II=SIGYM(II) PUSH*NP*NP
 107
 continu
 SIGXM(I)=SIGXM(1)*E*4. DOFPB*PH
 EPSX
 EPSYM(I)=ISIGYM(I)-PR*SIGYM(I)
 ga to 111
 CONIINUE.SS'S MODEL
 SIGXM(I)=SIGX*SX*SX*OCOS(6.283200*Y1/B)
 SIGYH(I)=SIGY*OOSIG.2BIG:2*1/A)
 EPSXM(I)=1SIGXM(1)PR*SIGYM(1)I/
 111 CONTINUE
 EKS=EKIPN
 PRR=1.,PR *PR
 EP1=120*PRR/(C1+2.)*(6.*C1+4.0)
 EPl=1

```
    DAMP \(=2, * E M 1 * O M E G P * Z\)
EK \(1 P N L=(E P 2 / E P) * E K S\)
    PRMT ( 1 )=0.00
PRMT(2) \(=(\) ND -1\() * D T\)
\(\operatorname{PRMT}(4)=0.001\)
PRMT \((5)=0.00\)
\(\begin{array}{rl}Y(1) & =0.00 \\ Y & 0\end{array}\)
\(Y(2)=0.00\)
\(D E R Y(1)=0.5\)
\(\mathrm{DERY(1)}=0.5\)
\(\mathrm{OER} \mathrm{Y(2)}=0.5\)
OERY(
NDIN 22
\(H R I T E\)

NDIME2
WRITE
OUT
WRITE( 6,4 I A A PUT DATA


WRITE( 6,5 ) EM1, DAMP, EK1, EKIPNL,C 3
5 FORMATIS \(x\), SYSTEM OIFFERENTLAL EQUATION






format \(/\),5x, STRAIN is CalCulateo. at the folloning puints', \(2(/, 10\) \(1 \times, 12,5 \times, D 12,5,5 \times, 012,51,11\)
WRITE 6,81 CAL


\(\varepsilon\), ノ
- FRITE(6,9)(I,P(1),I=1;ND

610 the fullowing block of cards are for ruom window door response IF (IFRGCM-1)609,610,009 CONTINUE
605 FORMAT( 40 15. 8 I AR, VOL , DAMP
\(E L I=E L+1.45 * D S\) ORT \((A R / 3.1416)\)
\(E L 1=E L\)
\(E M 2=E L 1 *\)
\(E M 2=E L 1 * A R * 1.4 * 14.7 * 144 . / 11100 . * 1100\). EK22=1.4*14.7*144./VGL
606
FORMAT (1X, \(1,11 X\), INP, VCL, EM2, DAMPI

//11x, EFFECTIVE LENGTH OF DOOR
*/111X, 'AREA OF DOUR
*//IIX, 'effective mass of air in dour
//11X, 'EFFECTIVE DAMP ING FACTOR DOUR

 \(=\because\) F16.10, ALUGS .
\(=\) =, f16.10,' DIMENSIONLESS'/1 EK2 \(=\mathrm{EK} 22\)
EK21=EK2*AR*C 3/EM2
C6 \(=-\) AR/EM2
```

 EK12=EK2*AR*C3/EM1
 EK1R={EK2* C
 C3=C3/EN1
 EK1PNL=EKIPNL/EMI
 DAMP 2=-2.*DAMP 1*ISQRTIEK 2*AR*AR/EM2J
 WRITE (6,600) EK22, EX21,CS
 608
FORMAT(/, 2X,00RYI4)=4,D12.5,**Y(3)** ,D12.5,**Y(1)*",D12.5,**PIT
NOI',
Y(3)=0.00
Y(4)=0.00
DERY(1)=0.25
DERY(3)=0.25
DERY (3)=0.25
C
END GF ROOM WINGOW DOCR block
609
continue

```

```

 ALL OHPCG(PRAT,Y, OGRY,NDIM, IHLF,FCT,DUIP;AUXO
 CENTINUE
 STOP
 l
SUBROUTINE FCTIX,Y,DERY:

```

```

 SIGXH(4), SIGYM(4), EPSXM(4), ,EPSYH(4),SIGXB(4),SIGYB(4), EPSXB(4),
 2 EPSYB(4)
    ```

```

 3 EPSYG,EKI,EMI,EKIPNL,DAMP,C3,OT, PSCALE "PRESS,ND ,NSTRAM
 4.EK12,EKIR,DAMP2,IFRDOH
 OEK12,EKIR,D
 Cerrculate pressure by limear imterpolailion
 C
 PRESS=PSCALE*(P(IP)+FR*(P{EP*1)-P(IP)&)
 PRESS=PSCALE*{P(IP
 3 continue
 DERY(2)=C3*PRESS-DAMP*Y(2)-EK1PNL*Y(1)*Y(1)*Y(1)*EK 12*Y(3)
 1 -EKLR*Y(1)
 DERY (3)=Y (4
 DERY(4)=EK22*Y(3)+EX21*Y(1)+C6*PRESS
 1 +DAMP Z*Y(4)
 GOTD 4
 DERY(2)E{C 3*PRESS-DARP*Y(2)-EXI*Y(1)-EXLPNL*Y(I)*Y(I)
 1.*Y(1)1/EM
 CONTINGE
 END
 c

```

SURROUTINE OUTPIX,Y,DERY,IHLF,NDIM,PRMT IMPLICIT REAL*8(A-H, O-Z)
DIMENSION DERY(4), Y(4), PRMT(5),AUX(16,4), P(200), XX(4),YY(4),
SIGXM(4), SIGYM(4), EPSXM(4), EPSYM(4), SIGXB(4), SIGYB14),
EPSXB(4), EPSYB(4)
COAMON P,
SIGXM, SIGYM,EPSXM, EPSYM, SIGXB,SIGYB, EPSXB,
EPSYB, EKI , EMI, EKI FNL,DDAMP; C3; OT,PSCALE ,PRESS,ND ONSTRAN

:EK12,EK1R, OAMP 2, 1FROOM
NC \(=\) NC +1
\(Y 2=12\). \({ }^{\gamma}\) ( 11

SYM=SIGYM(I)
SXMSSIGXMII)*YI

SYBESIGYB( 1\() * Y(1)\)
\(E P X M=E P S X M(1) * Y 1\)
EP \(X M=E P S X A(I) * Y 1\)
\(E P Y M=E P S M(I) * Y I\)
EPX \(B=E P S X B(1) * Y(1)\)
EP \(Y B=E P S Y B(1) * Y(1)\)
\(E P S U M X=E P X B+E P X H\)
\(E P S U M Y \times E P Y B+E P Y M\)
WRI TE\{ \(6,31 X_{2}, Y 2, E P S U M X, E P S U M Y\)
3 FORMAT \(11 \mathrm{x}, 412 \mathrm{x}, 011,4\) )
WRITE \(T\), 4 ) \(X\), EPXB, EPX M, EPYB, EPYM,Y2,I
4 FORMATIGF13.7,12
IF(X.GE.PRMT(2))PRMT(5)=1.
RETURN
ENC
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
SUBROUTINE YAMAKIIN, BETA,X,EP2,POL, P1O,PROI
IMPLICIT REAL*8(A-H, O-2 \(),\)
DIMENSION A(16,16),C(16), X(16), D(5)
\(\mathrm{K}=1\)
\(\mathrm{~L}=\mathrm{N} / 2\)
\(\mathrm{L}=\mathrm{N} / 2\)
\(\mathrm{PI}=3.1416 \mathrm{DO}\)

1 A(I,J) \(=0.00\)
DO \(21=1, L\)
\(A(I+L, I)=1.00\)
\(A R+L, 1=1\)
\(D O \quad J=1, L\)
\(G=J / B E T A\)
ANG \(=P I * G\)
EX=DEXP(ANG)
\(E \times N=D E X P(-A N G)\)
HSIN \(=(E X-E X N) * 0.500\)
HCES \(=(E X+E X N) * 0.500\)
TF=HSIN**2/(PI*IHSIN*HCOS + ANGI)

TFC=-1.D0**J*4.DO*G*TF
\(A\left(M_{2} J\right)=-1.00 * * M * M * * 2 / 1 G * * 2+M * * 21 * * 2 * T F C\)
004
\(G=J * B E T A\)
\(J=1, L\)
ANG=PI*G
EX=DEXP(ANG)
EXN \(=0 E X P(-A N G)\)
HS INE (EX-EXN \() * 0.500\)
\(\mathrm{HCOS}=(E X+E X N) * 0.5 D 0\)
\(\mathrm{TF}=\mathrm{HSIN} * * 2 /(\mathrm{PI} * S \mathrm{HSIN} * \mathrm{HCOS}+A N G)\)
TFC=-1**J*4*G*TF
\(004^{4} \mathrm{M}=1 \mathrm{~L}\)
\(\mathrm{A}(\mathrm{M}+\mathrm{L}, \mathrm{J}+\mathrm{L})=-2 * * M * \mathrm{M} * * 2 /(\mathrm{G} * * 2+M * * 2) * * 2 * \mathrm{TFC}\)
\(005 \quad 1=1\) iN
\(C(1)=0.00\)
\(C(1)=1.00 / 32.00\)
\(C(L+1)=8 E T A * * 2 / 32 . D 0\)
\(\underset{A N G=P I * B E T A}{C A L L} \operatorname{BANDGE}(A, X, N, L)\)
ANG=PI*BETA
\(E X=D E X P\) (ANG)
EXN=DEXP(-ANG)
HS \(I N=(E X-E X N) * 0.500\)
HCOS \(=(E X+E X N) * O .500\)
\(C P B=H S I N * * 2 /(P I *(H S I N * H C O S+A N G))\)
ANG=PI/BETA.
\(E X=D E X P(A N G)\)
\(E X N=D E X P(-A N G)\)
HSIN=(EX-EXN)*0.5DO
CPCB=HSIN**2)(PI*(HSIN*HCOS+ANG) \() ~\)
\(B 2=B E T A * B E T A\)
\(P O L\)
PO1 \(=2.00 / 8 E T A * * 3 * C P B * \times(L+1)\)
P10 \(=2 * B E T A * C P O B * X(1)\)
\(D(K)=-24,00 * B 2 / 11 . C O+B 2) * * 2 *(P 01+P 10-(82+1 . / B 2) / 32 . D 0)\)
\(P R=P R O\)
PRC 1 -PR*PR
EP2 \(=0(\mathrm{O})\) \#PRC
WRITE \(6,10 / \mathrm{N}, E P 2, ~ B E T A\)
10 format (,ilox. © Nonlinear parameter for plate by vamakis methode,/ 1,5X,'NUMBER OF TERMS N=1,12,5X,'EP=1,012.5,5X,'日ETA=1,F4.2,11 RETUR
END

Subroutine bandge ( \(A, C, X, N, M\) )
IMPLICIT REAL*B (A-H,O-2)
IMPLICIT REAL*B (A-H, \(0-2)\)
OIMENSION A(16,16),C(16),
1
\(=M+K\)
\(I F(L . G T . N) L=N\)
\(D=A(I, K) / A(K, K)\)
\(D=A(1, K)=0.00\)
\(A(I, K)=0\)
\(J=k+1\)
\(A(I, J)=A(I, J)\)
\(A(I, J)=A(I, J)-D * A(K, J)\)
IF(J-L)4,5,20
END

4 \begin{tabular}{c}
\(\mathrm{J}=\mathrm{J}+1\) \\
GO TO \\
\hline
\end{tabular}
5 C(I)=C1I)-D*C(K
6 \(\quad=1+1\) L) \(6,7,20\)

\({ }_{8}^{7} \underset{\substack{1 F \\ K=K+1}}{ }(K-N+1) 8,11,20\)
\(11 \mathrm{GCTO} \mathrm{L}_{\mathrm{L}}^{\mathrm{L}=\mathrm{N}-\mathrm{M}}\)
\(L=N\)
\(x(N)=C(N) / A(N, N)\)
\(I=N=1\)
\(1 \overline{2}\) IfiI.LT.LLIL=L-1
\(J=1+1\)
\(S=0.00\)
\(13 \mathrm{~S}=\mathrm{S}+\mathrm{A}(1, J) * \times(J)\)
14 IF(J-L)14;15,20
\(14 \begin{array}{llll}\mathrm{J}=\mathrm{J}+1 \\ \mathrm{GO} & \mathrm{TO} & 13\end{array}\)
15 . \(\quad\) (f) \(=(1)(1)-5) / a(1, I\)
\(16 \underset{\substack{f=I-1}}{f(1)} 20,20,16\)
\(16 \begin{gathered}I=1-1 \\ \text { GO TO }\end{gathered}\)
20 RETURN
\begin{tabular}{c} 
RETUR \\
END \\
\hline
\end{tabular}
//GC. SYSPUNCH DD SYSOUT=B /GO.SYSIN DD *
-

\section*{APPENDIX C}

The following computer program generates and numerically integrates a multimode, lumped parameter model for a simply supported rectangular plate based on the Von Kármán equations. Its usage is given as a part of the listing.
```

// EXEC FDRTGCLG,REGICR.GG=IOOK
THIS PROGRAM COMPUTES THE NONLINEAR TRANSIE RESPONSE OF THIN
A MULI IMODE MOUEL DERIVED BY GALERKIN'S METH IS USED TO
REPRESENT THE PLATE: ISED FOR NUMERICAL iNTEGR, IUN.
GANESH RAJAGOPAL JUNE 1972 0.S.U.
InPUT dATA:
CARO 1: FORHAT (7F1O.3)A,B,HIE,PR,RO,Z
M=PLATE LENGTH (FT)
H=PLATE THICKNESS (IN
M=PLATE THICKNESS (IN)
PR=POISSON'S RATIO **3
MD=DEASITY LLBF/F
CARE 2:FORMATI 3F10.3,2I5IDT,PRMT(3),P SCALE,NSTRAN,NMULT
UT=TIME INTERVAL BETWEEN INPUT PRESSURE DATA FOINTS
PSCALE=COMERSION FACTOR TO COMYERT INPUT PRESSURE INTO
NSTRAIN=NUMBER OF POINTS AT HHICH STRAINS ARE TO BE COMPUTED
NMLLT=OUTPUT ONLY EVERY NMULTTIMES PR.MT(3)

```

```

 XY(I)=Y (........(FT)
 ****ORIGIN CF COORD SYSTEM IS AT CORNER OF PLATE
 CARDS 4:FURMATIIL,FI9.33NSTOP,P(I)
    ```

```

 TOP IS USEO TO IIENTIFY END OF INPUT OATA
 p!H=pressure lithis can be any Set of numbers
 = REPRESENTIMG INPUT OATAI%
 NUTE***LNE DATA CARDIS MEEOED FOR EACH INTERVAL OF tIME or
 CARD 5 :FORMAT I4IKJNL,ML,JL,KL
 NL=HGGESS ORERR ODD MIDE HO GE CONSIDEAED IN X OIRECIION
 ML=HIGHEST ORDER ODD MIDE TO BE CONSIORED IN Y OIRECTION.
 NL=HIGHEST NUMQER IN A
 for a givem plate the coefficients are constant and they need to
 FOR A GIVEM PLATE THE CO
 IFCOEF=0 COEFFICIENTS HAVE TO BE GENERATEO.
 additional explanations and definitions are:provided in the bjoy of
 the program.
 INPLICIT RENL*B(A-H,O-2)
 IMMENSIOM AUX115 81, DERYIO1 Y(8), PRMT (5)
 COMMON COEFN(4,4,4,4),SIGXB(2,3,3),SIGYB(2,3,3),SIGXH(2,16,16),
 1 SIGYM(2,16,16),FF(16,16),FFF(16,16),
FCOEFF116,161, COEFI16,16%.
(3,3),WNA(3,3),
FHE(4), P(100),XX(3),YY(3), FW(16)

```

    OC 120 IKOUNTII, 4
    100
    FORMA
    RURMACI \(5,10010.31\)
    FORMAT 3 F10.3.215) PSCALE: NSTRAN, NMULT
    READ(5,1)(XXIII,YY(I):I=1,NSTRAN
    NOADD+1
    READ(5, 21NSTOP, P(NO)
    \(P(N D)=P(N D) * P S C A L\)
        FDRMATIIL,F14.3)
IF(NSTOP.LT.IIGO TO 3
\(\mathrm{NC}=0\)
    CONTINUE
    READIS, \(101 \mathrm{JNL}, \mathrm{ML}, \mathrm{JL}, \mathrm{KL}\)
    READ(5,101) IFCOEF
\(c\)
\(c\)
\(c\)
c

    C 3 3 4.*A** \(113.1416 * 3.1410 * E M 11\)
ST IFFNESS AND NATURAL FREQUENCIES
OS \(=E *(H * 3) *(3.1416 * * 4) * A * B * 0.25 /(144 . *(1 .-P K * P R))\)
OO \(14 \mathrm{M}=1, \mathrm{ML}, 2\)
OC \(14 \mathrm{~N}=1, \mathrm{NL}, 2\)
SIIFF \(=0\) S \(*(1(1 M / A) *(M / A)+(N / W) *(N / B))=\# 21\)
WNA(M,N)=STIFF/EMI
WNAT \(\rightarrow\) DSQRT \((W A A(M, A))\)
FREQ \(=W N A T * O .5 / 3.1416\)
PERIDO=1./FREQ
    (RITEIG 15 Mm HMAT FKEQ PERIOD


    effective area divided ay the mass is aef
    \(A E F F(N, N)=C 3 /(M * N)\)
    14 CONTINUE
        NP \(1=0.25 *(\mathrm{NL}+1) *(\mathrm{NL}+1)\)
        JPl=JL*KL
        NRI \(=\) NPI
        NPLAFT
        \(N P 2=1\)
\(N P 2=N P 1\) \#NP 1

        CALCulate the necessafy terms for stress function
        \(p_{A=1} .00 / A\)
    PB=1.00/B
IF(IFCOEF-1)21,22,21
        RICES in
        FIRST FCOEFF
CONTINUE
    DO 23 I=1.JM
ECONO COEFK
\(\begin{array}{ll}\mathrm{OC} & 24 \mathrm{NUV}=1,4 \\ 20 \\ 24 \mathrm{NPQ}=1,4\end{array}\)
    DO \(24 \mathrm{NPQ}=1,4\)
DR
NR
        CONTINUE

        \(\begin{array}{ll}D O & 16 \\ D=1, k L \\ D C & 16 \\ J=1, J L \\ & 16=1, k L\end{array}\)
        JJ=JL*(N-1)+M
        \(J J=J L *(N-1)+M\)
\(K K=J L *(K-1)+J\)
        FF(JJ,KK)=((\{PA*J)*PA*J+PB*K*PB*K)**2)*C2JSQL(J,M,A)*C2JSUL(K,N,

    \(2 * 0.500 * A\)
    \(1 \epsilon^{2}\) CONTINUE
    GRITEE 6,105 )
FORMAT \(15 X\), FF
IS GIVEN BELOK')
    FORMAT \(15 X, 0\)
DO 103
\(I=1, j\) JM
        DO \(1031=1\)
        HRITE 6,1021 (FFII, J \(1, j=1, J M 1)\)
    102 FORMAT \(5 \mathrm{X}, 8(2 \mathrm{X}, 010.3), / 10 \mathrm{X}, 812 \mathrm{X}, \mathrm{D} 10.311\)
103 CONTINU
    DO \(113 \quad 1=1, J M_{1}\)
\(00113 \mathrm{Jx1}, \mathrm{JM1}\)
    113 FFF ( \(1, \mathrm{~J}\) )=FF(1,J)
        CALL MAT INV 10, DET
    106 FORMAT(5X, iff INVERSE IS GIVEN below')
    \(00104 I=1, J M 1\)
HRI TE( 6,102\()(F F(1, J), J=1, J M 1)\)
    CONTINUE INVERSION
        CHECK ON INVERSI
OO \(114 \quad \mathrm{I}=1, \mathrm{JMI}\)
        DO \(114 \mathrm{~J}=1\), JM1
        \(\operatorname{COEF}\{1, \mathrm{Jl}=0 . \operatorname{DO}\)
        \(00114 \mathrm{~K}=1\), JM 1

        formatidx, 'identity matrix shoulo be aelen':
        FORMATI2X, 'IDENTITY MATRIX SHOULO
OO \(116 \mathrm{I}=1, \mathrm{JMI}\)
        WRITE 6,102 ) (COEF (1, J), J=1, JM1)
CONTINUE TA CALCULATE PARAMETERS
        00 \(17 \mathrm{~J}=1\), JL
        OO \(17 \mathrm{~K}=1, \mathrm{KL}\)
    \(J J=J L *(K-11+J\)
\(0017 N P=1, N L, 2\)
    \(\begin{array}{ll}\mathrm{DO} & 17 \mathrm{NP}=1, \mathrm{NL}, 2 \\ \mathrm{DO} \\ 17 & \mathrm{NQ}=1, \mathrm{ML}, 2\end{array}\)
    \(N P G=(1(M L+1) *(N P-1) / 4)+(1 N A+1) / 2)\)
    DC \(17 \mathrm{NR}=1, \mathrm{NL}, 2\)
\(\mathrm{DO} 17 \mathrm{NS} 1, \mathrm{ML}, 2\)
    \(N R S=((M L+1) *(N R-1) / 4)+((N S+1) / 2)\)

NPGRS \(=4 *(N R S-1) * N P\)
CCEF (JJ,NPQRS)=E*36. *(PA*NP*PA*NR*PB*NQ*PB*NS*CCSQRSP,NR,J,A)
25,K,B1)

FCOEFF=FF INYERSE*COEF
\(001071=1\), JM1
OO 107 NP \(\cup R S=1\), JH1
DO \(107 \mathrm{~K}(\mathrm{I}, \mathrm{NPQRS})=0.0\)
\(\mathrm{~K}=1 \mathrm{~N}\)
\(c^{107}\)
FCCEFF(I,NPQRS) \(=F F(1, K) * \operatorname{COEF}(K, N P Q R S)+F C U E F F(I, N P Q R S)\)
\(\begin{array}{ll}u 0 \\ 00 & 108 \\ N U & =1, N L \\ N\end{array}, 2\)

DO \(10 \mathrm{~B}=1, \mathrm{ML}, 2\)
DC \(108 \mathrm{~N}=1, \mathrm{NL}, 2\)
NMN \(=M-1+(1(N+1) / 2)\)
DO \(108 \mathrm{~J}=1 \% \mathrm{NP}^{2}\)
\(\mathrm{LEFT}=1 \mathrm{~J}-1 \mathrm{~J} / \mathrm{API}\)

NPGEJ-NP \(1 * L E F T\)
COEFW(NUV,NPG,NRS, NMM) \(=0.00\)
DO \(1081=1 ; J M 1\)
LEFT \(=11-1 / 1 / J L\)
KK=LEFT+1



111 FORMAT411x,D15.8,21211
111 Formatrue
DC 110 NUV \(=1, N P\)
\(\begin{array}{ll}00 & 110 \mathrm{NPG}=1, \mathrm{NP} 1 \\ 00 & 110 \mathrm{NR}=1, \mathrm{NP}\end{array}\)
OO NR NR 1 I NP

109 FORMAT(4) 110 , D15.8.4111)
110 CCNTINUE
\(P B=3.1416 * P B\)
\(P A=P A * 3.1416\)
C SETUPPARAMETERS FUR STRESS CALCULATIONS
BEND=E*H*O.5*3.1416*3.1416/(11.-PK*PR1*12.
DO \(7 \quad 1=1\), NSTKAN
\(\mathrm{x}=\mathrm{x} \times(1)\)
\(\mathrm{rl}=\mathrm{ry}(1)\)
UO \(19 \mathrm{M}=1, \mathrm{ML}, 2\)
\(\mathrm{OD} 19 \mathrm{~N}=1, \mathrm{NL}, 2\)
OS \(=\) DS IN \((M * P A * X 1) * O S\) IN(N*PS*Y1)
SIGXBII,M,N)=BEND*(IM/A)*(M/A)+PR*(N/B)*(N/B))*OS
CGATINUE
OC \(20 \mathrm{~J}=1\), JL
```

 OC 20 K=1,KL
 SIGXM(I,J,K)=2,*PP*PB*K*K*\operatorname{Cosin (J*PA*X1)**2)*OCOS(2.*PS*K*Y1}
 CCATINUE
 conTINU
parameters neEded for ohpca
PRMTI1)=0.DO
PRMT(2)={ND-1)*OT
PRMT (4)=0.001D
PRMT(5)=0.00
SEI M=2*NP1
OD 18 I=1,NDIM
1\& OERY(I)=1.DO/NDIM
WRITE OUT INPUT DATA
FORMAT(1H1,IOX,'INPUT DATA FOR PLATE',//,5x,'A=',012.5,2X,'b='
\# D12.5,2X,'H=1,D12.5,//,5X,'E=',012.5,1X,PPR=',D12.5,1X,'RO=',
012.5,2x,'z=',012.5.1/1
WRITE(6,5)EM1
format (5x, ' EFFECTIVE MASS OF PLATE=4,012.5)
MRITEI6,12)(1,XX(IA,YY(I),I=1,NSTRAN)
lATIONS:,/,2(15x,11,D12.5,2X,012.5,N1)
, PSCALE
FORMAT(5x,'OTHER INPUT DATA',//,5x,:OD=1,D12.5,2X,'PRMT(3)=0
9 ,O12.5,2X,'TFRING=',012.5,1,5X,'NSTRAIN=',I2,5X,'PRESSURE SCALE
2FACTR=1,012:5./,// ,5X,INPUT PRESSURE DATA',//,5x,'I4,9X,"P(1):
,11
HRITE(6,9)(I,P(I),I=1,ND
FORMATIIX,15,5X,012.5)
WRITEIG;1IINL,ML,JL;KL
11. FORMAT(2X,'LARGEST MGUE CONSIDERED ',/,%,5x,'DEFLECTION=',I2,
,:,12,1/,5x
10 FORMAT(1H1,5X,' OUTPUT DATA',//,7X,'TIME',6X,'DEFLECTION',6X,
1 'EPSUMX',7X,*EPSUMY',I)
CALL DHPCG(PRMT,Y,OERY,NDIM,IHLF,FCT,OUTP,AUX)
12C CONTINUE
STCP
C
SUBROUTINE OUTPIX,Y,DERY,IHLF,NOIM,PRMT
IMPLICIT REAL*B(A-H,O-Z)
| SIGYM(2,16,16), FF(16,16IGXB(2,3,3),SIGYB(2,3,3),SIGXM(2,16,16),
| FCOEFF(16,16),FF(16,161,FFF(10,16),
* FCOEFF(16,16), COEF(16,16),' FWW(4), P(100),XX(3),YY(3),FW(16)
3,PR,E OUT PD,BRAT MULNRL;NL,ML,JM1,
If(X.LT.NC*NMSLT*PRMT131) RETURN
NC=NC+1

```
compute center deflection

6 IFIML-115.6.5
FOLLOHING THREE CARDS ONLY fuik using SAME FORMA \(\begin{aligned} Y(3) & =0.00 \\ Y(1) & =0.00\end{aligned}\)
\(Y(5)=0.00\)
\(Y(7)=0 . D\)
\(\quad(1,1)=Y(1)\)
\(Y(1,1)=Y(1)\)
\(Y 2=12.00 * Y(1)\)
GOTO 7
5 CUNTINUE
Y2=12*(Y(1)-Y(3)-Y(5)+Y(7)
\(\mathrm{FW}(1)=Y(1)\)
\(\mathrm{FW}(2)=Y(3)\)
\(F W(3)=Y(5)\)
\(F W(2)=Y(5)\)
\(F W(4)=Y(1)\)
\(W(1,1)=Y(1)\)
\(W(1,1)=Y(1)\)
\(W(1,3)=r(3)\)
\(W(3,1)=r(5)\)
\(w(3,3)=Y(7)\)
7 CONTINUE
compute stresses and strains
generate stress function elements.


\(\mathrm{J}=\mathrm{J}=\mathrm{L}-\mathrm{JL}+\) LEF T
FFF!JJ, KK \(=0.00\)
DO \(9 \quad J=1\), JM1
\(L E F \mathrm{~T}=(\mathrm{J}-\mathrm{i}) / \mathrm{N}\)
NRS \(=\) LEFT +1
S FFF(JJ,KK)=FFF(JJ,KK)+FCUEFF(I,J)*FW(NPQ)*FW(NRS) \(061 \quad 1=1\), NSTRAN
\(\mathrm{SXB}=0.00\)
\(\mathrm{SYE}=0.00\)
OC \(2 \mathrm{M}=1, \mathrm{ML}, 2\)
\(002 \mathrm{~N}=1, \mathrm{NL}, 2\)

2 CONTINUE
SXM \(M=0.00\)
\(S Y M=0.00\)
DU \(8 \quad J=1\),JL


8 CONTINUE
SX \(\quad\) K \(=5 \times M / 144.00\)
\(S Y M=S Y M / 144.00\)
\(E P X B=(S X B-P R * S Y)\)
PYB=(SYB-PR*SXB)/
\(E P Y B=(S Y B-P R * S X B)\)
\(E P X M=(S X M-P R * S Y M) / E\)
\(E P Y M=(S Y M-P R * S X M) / E\)

EPSUMX \(=\) EPXB + EPXM
EPSUMY=EPYB+EPYM
WRITE ( 7,4 I) \(X, E P\) XH, EP XM, EPYB ,EPYM, Y2,
4 FORMAT (6F13.7.12)
FORMATIXX,4( \(2 x\), 0 PSUMX.EPSUM
WRITEI6,10)Y(1),Y(3),Y(5)
0 FORMA T (10x, \(8(2 x, D 11,4), 1)\)
CCNTINUE
if(X.GE.
RETURN
END

SUBRUUTINE FCTIX,Y, DERY
IMENSION AUX(16;81, DERY( 8 ), Y(8), PRMT (5)
COMMON COEFK(4.4.4:4),

* FCOEFF(16,16), COEF(16),16),
2 FWW(3,3), AEFF(3, 3\(), ~ F F W(16), ~ F W W W(4), ~ P(100), X X(3), Y Y(3), F W(16)\)

DEFINITIONS \(\quad\) Y(illin(1, 1) IIS OERIVATIVE=Y(2)
\(Y(3)=W(1,3)\) ITS DER IVATIVE=Y(4)
\(Y(5)=W(3 ; 1)\) ITS DERIVATIVE=Y 61
\(Y(5)=W(3,1)\) ITS DERIVATIVE=Y(6)
\(Y(7)=W(3,3)\) ITS DERIVATIVE \(=Y(8)\)
CALCULATE PRESSURE BY LINEAR INTERPGLATION
\(P=x / D T+1\)
\(F R=X / D T-1 P\)
PRESS=P(IP)+FR*(P(IP+1)-P(IP))

1
IF(ML-1)1,2,
DERY(1) =
DERY(3)=Y(4)
DERY(5) \(=Y(6)\)
FW(1) \(=\mathrm{Y}(1)\)
\(F W(2)=r(3)\)
\(\operatorname{FW}(3)=Y(5)\)
FH(4) \(=\mathrm{Y}(7)\)
generate nonlinear terms for the diff equations CO \(30 I=1\), NP 1
FiWH (I) \(=0=00\)
DO \(30 \mathrm{~J}=1, \mathrm{NP}\)

30 FWWW(I)=FWW(I)+CUEFW(I,J,K,L)*FW(K)*FW(J)*FW(L) DERY \((2)=A E F F(1,1) * P R E S S-W N A(1,1) * Y(1)+F W\) WHI \((1)\) \(\operatorname{CERY}(4)=\operatorname{AEFF}(1,3) * \operatorname{PRESS}-\mathrm{KNA}(1,3) * Y(3)+F W W W(2)\) \(\operatorname{DERY}(6)=A E F F(3,1) * P R E S S-W N A(3) * Y,(1)+F W W(4)\) Go TO 3

2 DERY(1)=Y(2) DERY(2)=AEFF(1,1)*PRESS-WNA(1,1)*Y(1)+COEFW(1,1,1,1)*Y(1)*Y(1)
3 cCNTIN RETLR
END

FUNCTION SCS(M,N,J,AB
J2 \(2=2 * J\)
IF (M-N) (M+N), 2, I
IF \((1 \mu-N) \cdot E Q \cdot J 2)_{G O}\) TO 5
4 SCS=AB*O. 2500
RESURN
SCS \(=-0\).
5 SCS=-0.2500*A

SCS=0.000
RETUR
ENO

FUNCTION CZJSQL(J,L,AB)
IMPLICIT REAL*B(A-H,O-Z)
IMPLIC IT REAL*B(A-H,O-Z)
C2JSQL=0.00
RETURN
C2 JS \(\mathrm{CL}=-\mathrm{AB} * 0.25 \mathrm{DO}^{\mathrm{C}}\)
RETURN RETUR
        \(J 2=2 * J\)

1 IF (M-N) 1,2 ,
A.AND.(M-N).NE.JZ.AND.(N-M).NE.J2) GU TB 3 RETURN
2 IFIM.NE. J) GC TC 4
CCSG \(=0.12500 * A B\)
RETURN
\(\operatorname{CCSQ}=0.2500 * A B\)
RETURN
CCS \(C=0.00\)
RETURN
RETUR
c
\(c\)
\(c\)

FUNCTIUN SSSQ(M,N,J,AB)
IMPLICIT REAL*B(A-H,C-Z)
IF(M-N) 2, 2 ,

1 IF( \(M+N\) ).NE.J2.AND.(M-N).NE.J2.AND. (N-M).NE.J2) GO TO 3 IF(M+N).NE.(2*J)) IG TO 4
SSSQ \(=0.12500 * A a\)
\(3 \begin{aligned} & \text { RETURN } \\ & S S S Q=0 . D 0\end{aligned}\)
3 SSSQ=0.DO
4 SSSQ=-0.
2 IF(SHJ)5,6,5

6 SESSQ=0.37500*AB
RETUR
END
\(c\)
\(c\)
\(c\)
```

UNCTION CSSSJ,M,N,AB)
MPLICIT REAL*8(A-H,O-2
J2=2* J
1 IF((M+N).NE.J2.AND.(M-N).NE.J2.AND.(N-M).NE.J2) GO TO
F\!M+NI-NE.12*JI) GO TO 4
SS=-0.2500*AB
REIURN
4 CSS=0.2500*A
3 CSS=0.DD
2 IFIM-J)5,G,5
IF{M-J15.6
RETURN
6 CSS=-0.2500*AB
RETURN

```

\section*{subrdutine matinv}

\section*{purpase}
invert a matrix
uSAGE
Call matinv(a,n,B, m, DET)
description of parametirs
a = GIVEN COEFFICIENT MATRIX; 'A. INVERSE wILL be StORED in this matrix.
B \(=\) MATRIX OF CONST. VECTOR, USED for SOLUTION OF
\(M=\) THE OF COL. VECTORS IN THE
MATRIX OF CONST.
MM=0 IF INVERE IS THE SOLE AIM; \(=1,2, \ldots\) FOR


\section*{kemarks}
matrix a must be a general matrix
subroutines ano function susprugkams required none

The standard gauss-jordan method hith normalization is used
THE DETERMINAMI IS ALSO CALCULATED. A DETERMINANT OF ZERO THE DETERMINAAT IS ALSO CALCULATED. A
INDICATES THAT THE MATRIX IS SINGULAR.
 SUQRCUTINE MATINV(A,N,B,H, DEEI)
SUBROUTINE MATINVIM,OET)
IMPLICIT REAL*B (A-H,O-Z
IRPLICIT REAL* 8 (A-H,O-Z)
DIMENSION IPVOT(201,INDEX (20,2), PIVOT(20)
COMMON COEFW(4,4,4,4).

SIGYM(2,16,16), A(16,16), B(16,16), W(3,31,WNA(3,3),
FCUEFF(16,16), \(\operatorname{COEF}(16,16), ~\)
FCUEFF(3), 3 , AEFF(3, 31, FFW(16), FWWW(4), P(100),XX(3),YY(3),FW(16)

EQUIVALENCE (IROW,JROHI, (ICOL,JCOL)
REAL*B DABS
LOMING 3 STATEMENTS FOR INITIALIZAIIGN
57 CET=1.
\(17 \begin{gathered}\text { DO } \\ \text { IPVOT } \\ 17 \\ J=1, N \\ J=0\end{gathered}\)
 \(\mathrm{T}=0\).
DO
g
JF
\(\mathrm{J}=1 \mathrm{~N}\)
IF(IPVOT(J)-1) 13,9,13
13 CO \(23 \mathrm{~K}=1, \mathrm{~N}\)

83. IRCH=J
\(\mathrm{I} C O L=K\)
\(\mathrm{I}=\mathrm{A}\)
K
K
23 CONTINUE
FCLLOW ING 15 SIA
C FCLLOWING 15 STATEMENTS TO PUT PIVGT ELEMENT ON DIAGONAL
72 \(O E T=-0 E T\) (COL) 73,109,73
CO \(12 L=1\), N
\(\mathrm{T}=\mathrm{A}(\mathrm{IROW}, \mathrm{L})\)

IF (M) 109,109
\(33 \mathrm{DO}_{\mathrm{T}=\mathrm{B}}^{2} \mathrm{~L} \mathrm{~L}=1, M\)


\(109 \begin{aligned} & \text { INDEX }(1,1)=I R O W \\ & \text { INDEX }(1 ; 2)=I C O L\end{aligned}\)
PIVOTII)=A(ICOL;ICOL)
c following o statements to devide pivot rgh br pivat element

A IICCL, ICDL)=1.
205 AIICOL,Li=A(ICOL,L)/PIVOT(I)
if(M) 347,347,66
\(60 \mathrm{DO} 52 \mathrm{~L}=1, \mathrm{M}\)
\(52 \mathrm{~B}(1 C O L, L)=B(I C O L, L I / P\) IVOT(I) \()\)

IF(LI-ICOL) 21,135,21
\(1 \mathrm{~T}=\mathrm{A}(\mathrm{L}, \mathrm{I}\) ICDL)
CCO \(89 \quad L=1, N, N(L I=A(L I, L)-A(I C U L, L) * T\)
IF(M) \(135,135,18\)
\(180068 L=1 ; M\)
\(\epsilon E B(L I, L)=B(L I\)
135 COLT
c following ll statements to interchange columns
\(222 \underset{L=N-1+1}{ }{ }^{1}=1\),
IF INDEX(L,1)-INDEXIL,2)1 19,3,19
\(19 \mathrm{JROW}=\operatorname{INDEX(L)} 1)\)
D0 \(549 \mathrm{~K}=1\), N
\(\mathrm{T}=\mathrm{A}(\mathrm{K}, \mathrm{JROWI})\)
\(A(K, J R C H)=A(K, J C O L)\)
\(A(K, J C D L)=T\)
549 AKKJINOL
3 CONTINU
EL RETURN
RENO
//GC.SYSPUNCH DD SYSCUT=B
//GO.SYSINDD *

VITA \({ }^{\prime}\)

\section*{Ganesh Rajagopal}

Candidate for the Degree of
Doctor of Philosophy

\section*{Thesis: THE NONLINEAR TRANSIENT RESPONSE OF THIN RECTANGULAR PLATES}

Major Field: Mechanical Engineering

\section*{Biographical:}

Personal Data: Born September 10, 1943, in Madras, India, the son of T. N. Rajagopalan and Janaki.

Education: Graduated from the Lawrence School, Lovedale, India, in 1958; received the degree of Bachelor of Technology in Mechanical Engineering from the Indian Institute of Technology, Madras, India, in July, 1964; received the Master of Engineering degree in Mechanical Engineering from the Indian Institute of Science, Bangalore, India, in August 1966; completed the requirements for the degree of Doctor of Philosophy from Oklahoma State University in July 1972.

Professional Experience: Lecturer in Mechanical Engineering at the Indian Institute of Science, Bangalore, India, from August, 1966 to July, 1969; Graduate Research and Teaching Assistant at Oklahoma State University from September, 1969 to May, 1972.```


[^0]:    *Supplied by the American Saint Gobain Corp., Kingsport, Tennessee。

