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CHAPTER I 

INTRODUCTION 

1-1. General Discussion of the Problem 

In the July 1970 issue of the IEEE Spectrum, Marc Elecion (1), 

quoted the following from J. L. Flanagan's editorial in the special 

issue on Communication Aids for the Handicapped, IEEE Transactions on 

Audio and Electroacoustics, December 1969: 

Among the gratifying aspects of engineering work are 
the opportunities to apply scientific knowledge to the 
betterment of man. Such opportunities are nowhere better 
represented than in the area of communication aids for the 
handicapped. 

Flanagan also wrote that: 

••• very often the engineer - the man best equipped to de­
vise useful communication aids is ignorant of the capabil­
ities of the handicapped individuals whom this technology 
might serve. On the other hand teachers and therapists who 
are generally quite familiar with the human factors are not 
skilled in electronic design. Obviously each group may learn 
from and help each other. In many cases the successful 
development of a sensory aid - from the identification of a 
problem susceptible to solution through engineering concep­
tion and implementation to testing under field or classroom 
conditions requires a close partnership of interested 
professionals from both camps. 

Flanagan's words might well have been applied to the whole field 

of electronic and electromechanical aids for the handicapped. For in 

this fertile field, often the engineers who are capable of developing a 

given device ~o not know the need for such a device and the man who has 

a need for the device does not know that such a device is feasible. 



It is apparent that the development of electronic and electro­

·mechanical aids for the handicapped will require the services of 

dedicated engineers. 

Many of the devices now contain and in the future will involve 

sophisticated electromechanical systems. Others will involve only the 

bare minimum of instrumentation. 

Regardless of the degree of sophistification required, the engi­

neer is in an excellent position to make a meaningful contribution to 

the betterment of the handicapped segment of America's society. 

Another facet of the problem concerns the economics of the devel­

opment of devices to aid the handicapped. It does very little good 
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for one to develop a very useful device for the handicapped if the price 

of the device is so high that it mitigates against the widespread 

acceptance and use of the device. 

It appeared that the area of electronic and electromechanical aids 

to the handicapped was worthy of attention and it was selected as a 

topic for this thesis. 

The thesis considers two main areas. The first is a literature 

survey of electronic and electromechanical aids for the handicapped. 

In order to limit the scope of the survey, only the following topics 

were considered: 

Electronic and electromechanical aids for the blind. 

Electronic and electromechanical aids for amputees. 

Electronic and electromechanical aids for the training of the 

mentally retarded. 

System and bandwidth considerations of the feedback paths employed 

by electronic and electromechanical aids for the handicapped. 
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Because of special interests, the design, construction, and testing 

of electronic teaching aids for the mentally handicapped were chosen 

for an in-depth study. 

1-2. Delineation of the Problem 

Despite the often well-publicized so-called, 11breakthroughs 11 , in 

the area of electronic and electromechanical aids for the handicapped, 

one notes that in his everyday life, he rarely comes in contact with a 

handicapped person who has benefited from the use of such a device. 

This immediately raises the question as to whether or not legit­

imate rtbreakthroughs 11 have been made and if so why they are not in more 

general usage. 

Thus, it seemed that a comprehensive literature study of electronic 

and electromechanical aids for the handicapped was in order. The survey 

should answer such questions as: what are the present types of elec­

tronic and electromechanical aids for the handicapped? What are the 

present trends in the development of such devices? What are the 

economics involved? Why are these aids not in general usage? 

The results of a preliminary literature survey indicated that very 

little work had been done in the development of low cost training aids 

for the mentally handicapped. 

The major developments in this area consisted of complicated and 

relatively expensive teaching machines. 

The concept and application of teaching machines are fine except 

for the fact that their cost and, thus, subsequent scarcity mitigated 

against their widespread use. 



It was, therefore, decided that the development of a simple in­

expensive training aid was in order and that such a device would fill 

a need in today's society. 

Thus, after the design and construction of the training aid, a 

suitable experiment must be designed in order to evaluate the effective­

ness of the device. 

Simplicity and economics must not be the only criteria for the 

training aid, it must also fulfill a need of society. 

It is at this point that the engineer is at a disadvantage, since 

he has been trained to expect nice orderly solutions to problems. 

At the onset of the problem it became painfully apparent that, as 

is true in most learning processes, the process of evaluation was a slow 

one and that there would not in general be concise answers. 

As a matter of fact, the device may well turn out to fulfill a need 

in society that the engineer did not know existed at the time he con­

ceived the device. 

1-J. Organization of the Thesis 

Chapter II contains the results of a literature survey of past, 

present, and proposed electronic and electromechanical aids for the 

blind. 

Chapter III contains the results of a literature survey of past, 

present, and proposed electronic and electromechanical aids for 

amputees. 

Chapter IV contains special topics on man~machine interfaces 

related to the special feedback requirements imposed on electronic 

and electromechanical aids for the blind and the amputees. 



Chapter V contains the results of a literature survey of past, 

present, and proposed electromechanical aids for the mentally retarded. 

Chapter VI discusses the design and construction of the 

audiograph. 

Chapter VII outlines the experimental procedures used in the 

evaluation of the audiograph. 

Chapter VIII contains the summary and conclusions. 

5 



CHAPTER II 

ELECTRONIC AND ELECTROMECHANICAL 

AIDS FOR THE BLIND 

One of the more widely publicized facets of aids to the handi­

capped concerns electronic and electromechanical aids for the blind. 

It was inevitable that man would attempt to externally compensate for 

the loss of the important sense of sight. 

These devices have in general~followed two major paths of develop­

ment. The first, which is still in the very early stages of develop­

ment, makes use of auxiliary devices to sense the surroundings which 

are then injected directly into the nervous system of the user. At the 

present time, these devices have had no serious development (2). 

The second path, and the one that has to date proved to be the most 

fruitful, utilizes other physical senses to convey the necessary infor­

mation to the brain. The skin is the only other part of the body that 

matches the eye in transmitting sensory information to the brain. It 

does not have the eyes resolution, but it can give a reasonable repro­

duction of an object traced by point-to-point methods. The hearing 

sensory organ is also used to convey information to the brain. It has 

been most useful, of course, in transmitting the spoken word to the 

brain. It also finds application as a final detector in those devices 

used in terrain avoidance. 



This is accomplished by changing the physical characteristics of 

the terrain into an electrical signal which is used to modulate a 

carrier. The pitch and the amplitude of the carrier signal are varied 

in accordance with the terrain controlled modulation. The output 

device is either a speaker or a set of headphones. 

Prior to discussing electronic and electromechanical aids for the 

blind it is in order to mention those aids which are not of an elec­

tronic or electromechanical nature. 

The first and probably the most widely used device to aid the 

blind came in the form of a cane which is used by the blind to avoid 

obstacles in their path and to aid in staying on the correct course. 

The modern long cane is still the most useful device in conveying 

information to the user concerning the nature of his surroundings. 

The seeing eye dog finds widespread use and has freed many of the 

blind from the confines of his home and are of great value from a 

physical and psychological standpoint. 

The above mentioned aids to the blind have widespread usage and 

serve as a reference point in the evaluation of electronic and 

electromechanical aids for the blind. 

The electronic and electromechanical aids for the visually handi­

capped may be lumped into three broad categories. First, there are 

those devices which are intended to aid the blind to read or otherwise 

assimulate information from the printed page. Second, there are those 

devices which may be broadly classed as direction following and terrain 

avoidance devices. Third, there are those devices which attempt to 

enable the blind to 11 see 11 through the use of their skin. The latter 
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devices are useful in reading as well as giving the user a two­

dimensional picture of his surroundings. 

The advent of microelectronics has given new hope to the visually 

handicapped by spurring attempts to develop more compact, lightweight, 

and economical devices. 

The first general category of devices or systems are those that 

are used to convey information from the printed page to the blind, and 

have their roots in the Braille system which was invented by Louis 

Braille in 1829. The Braille system is one in which the characters are 

represented by raised dots and the information is transmitted to the 

brain by the finger through the use of the tactile sense. It is 

interesting to note that none of the most modern developments have 

enabled the blind to approach the reading speed of those blind who use 

the Braille system. With this system a properly trained person can 

read 200 words per minute. The paramount disadvantage of the Braille 

system is that only about 10 per cent of the blind have learned to use 

this system (J). 

The second obvious disadvantage is that the printed word must be 

translated into Braille characters. 

When one considers that the normal Braille translator operates at 

a speed of 12 words per minute and that an ordinary 400 page novel, 

when translated into Braille becomes four volumes, each the size of a 

volume of the Encyclopaedia Britannica, it becomes apparent that the 

translation problem is a serious disadvantage of the Braille system. 

The advent of high speed computers and printing devices have to a 

large extent helped to overcome this disadvantage. Although a glance 

at almost any local library will reveal that their supply of books 

8 



translated into Braille is extremely limited. The need to translate 

the printed page into Braille has led to the development of various 

devices. 

9 

The first was Fournier D1 Albers optophones of 1912 and 1920, which 

converted the printed words into tones or clues(~). Most of the modern 

reading devices utilize the basic idea of the optophones. One such de­

vice is the visotactor which converts the printed word by means of 

optical scanning devices into either a tactile stimulation by way of 

vibrating reeds or into a nine tone code. The duration of the tones 

are a function of the blackness of the image. The accuracy of the 

visotactor is about 90-95 per cent in converting the printed word to 

information that can be understood by the blind. 

A device which is related to the one given above was invented by 

John Linvill, head of the Electrical Engineering Department at 

Stanford (5). He invented the device for his blind daughter, Candy. 

This device consists of an array of pizeo electric bimorph reeds about 

the size of a pencil point that are activated by photo cells contained 

in an optical probe that is moved over the printed page. The probe 

uses eight photoreaders for height and five photoreaders for width and 

picks up the variations in the letters and, thus, controls the vibra­

tions of the reeds which transmit the image to the fingers. 

After fifteen hours of practice one can learn to read at a rate of 

about 25 words per minute. This compares to 100 words per minute by the 

Braille system. But, it has the obvious advantage that the book need 

not be translated into Braille. 

One other device that is related to this system of conveying 
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information is the Visograph which scans the original page and produces 

a large embossed replica in metal foil. 

A different approach to the problem has been taken by the American 

Foundation for the Blind of New York City (6). They have taken the 

route of the talking books and have attempted to overcome one of the 

basic disadvantages of talking books, namely, that the speaking rate is 

approximately 170 words per minute while the reading rate is normally 

about 280 words per minute. They accomplish this by means of harmonic 

compression, which operates in the following manner. 

The sighted reader reads the text into a microphone and amplifier. 

The speech is then fed into a parallel bank of 36 bandpass filters 

which separates it into its different frequency components. The output 

of the filter bank is sent to 36 frequency dividers which divide the 

frequencies from the narrow band filters by one-half. The signals are 

then sent to filter networks to remove the distortion. They are then 

combined into a single signal and are recorded on magnetic tape. The 

frequencies of this signal are one-half of those contained in the orig­

inal signal. The tape is then replayed at double the recording speed; 

thus, the frequencies are returned to the original values. Conse­

quently, the syllabic rate is doubled but the voice pitch is the same 

and one avoids the typical Donald Duck chatter that one obtains when you 

play normal speech at a rapid rate. There was at the time this article 

was published (1967) only one of these machines in existence and there 

were no plans of building another. The current model would cost approx­

imately $25,000 to duplicate and, since there is as yet no commercially 

oriented application, the device will not be duplicated. 



John J. Depress (7) reported that the comprehension of the con-

stant frequency compressed speech becomes difficult at about the same 

rate as the Donald Duck effect reaches a discomforting level in the 

same speech. 

The second class of devices, better known as terrain avoi~ance 
\· 

devices, in general consist of a sensing device which is carried by 

the blind person and which converts information concerning the terrain 

to either tactile or audio stimulation. 

The first such device was reported by V. Twerskey in a 1941 edi-

11 

tion of Electronics (8). These devices either use light or ultra sonic 

sound as the carrier. Changes in the terrain modulate this carrier and 

the returned signal is demodulated and the information is presented to 

the blind person through use of an audio or a tactile signal. They are 

very useful in the detection of objects, but do not give indications of 

. 
the presence of sudden drops in the terrain. Some of the devices sound 

warnings whenever the object is six feet away, the amplitude increases 

as the object is approached, and at two and one-half feet a beep is 

added to the warning of the individual. 

On January 4, 1971, a brief article in the Wichita Eagle announced 

the formation of Adams Enterprises, a company that will specialize in 

the production of aids for the handicapped (7). The article indicated 

that Mr. Adams had designed, tested, and was ready to go into the pro-

duction of a sonar cane. 

The stem of the device consists of a hollow aluminum cane about 

five feet long. At the bottom of the cane a sonar transmitter is 

mounted. The sonar receiver is mounted near the handle of the cane. 

The sound is transmitted to the operator of the cane by means of 
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stereophonic earphones. The operator locates and determines the shape 

of objects in his path by swinging the cane from side to side. The 

maximum possible range of the unit is about 15 to 20 feet. However, 

the average range of the test models has been in the neighborhood of 

eight feet. The cane is powered by six penlight batteries. It is 

expected that the production models will weigh less than two pounds and 

that they will cost in the neighborhood of $75.00. 

To my knowledge, this is the first such device to go into pro­

duction and to be placed on the market. 

Stanford Research (10) Center in Melo Park and the Presbyterian 

Medical Center in San Francisco are developing tactile image convertors 

in which pictures from a videocon camera or a group of photocells are 

reduced to a simple dot-by-dot sketch on a particular area of the skin. 

As was true in the Linvill device, the dot pattern is transmitted to 

the skin by means of reed ticklers which are activated by the photocells 

or the videocon camera. 

Both suffer the disadvantage that the picture is two dimensional 

and considerable interpretation is required of the individual. Stanford 

is using the Linvill fingertip array while the Presbyterian Medical 

Center is using a 20 x 20 array on a man's back (:1.1). 

Some recent developments in this area have indicated that three 

dimensional vision may be to a limited extent possible (12). In this 

experiment a television camera was used as the sensing system and the 

man-machine interface consisted of four ten-by-ten matrices of biomorph 

reeds. The subjects involved were able to make three dimensional pre­

dictions of familiar objects. They were also able to sense which object 

was in front of another. The subjects were both blind and sighted. 



13 

The results of the experiment showed no significant differences in their 

performance. The author reported that this device had a visual acuity 

of 20/600. 

It should be noted that the experiment was conducted under labora­

tory conditions and that this device is not portable. If, however, 

further experiments indicate that it is of sufficient value to the 

blind, it seems reasonable to expect that a way will be found to make 

a portable unit of this nature. 

Mr. J.C. Swail, noting the many attempts made to develop travel 

aids for the blind, became concerned that these items would give the 

user information concerning his surroundings, but would not give the 

user information as to the direction of his travel (13). For example, 

suppose an individual wished to walk across a large open field, a 

parking lot, etc. Mr. Swail was motivated by the fact that many reports 

had reached him concerning the use by blind people of certain transistor 

radios in aiding them to walk in a straight line. He investigated and 

found that the people were using the antenna pattern of the ferrite 

antenna in ordinary radios as a nulling device. The signal source is 

the radio station that the radio is tuned to. The radio is held in the 

hands then rotated until a null is reached. The null is sensitive to 

the direction that the person is traveling and, thus, may be used as a 

direction sensing device. He converted a number of radios to this type 

device by installing a special circuit in the IF section which detected 

the presence or absence of a carrier which, in turn, was used to vary 

the pitch of an audio tone or was used to change the tactile stimulation 

of a reed vibrator. 



The device was tried out in Montreal and Ottawa, and, after the 

trial, was modified to alleviate many of the complaints that he re­

ceived. The device was capable of discriminating in direction to five 

degrees. It was not really very successful in the test and could be 

used only after some training. 
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At this point, the author of this thesis became curious as to why 

it was necessary to have the radio as a direction finder. A much sim­

pler device could be devised through the use of a compass with direc­

tional alarms which would sound whenever one deviated. from the preset 

course. It should be noted that the blind person first had to make the 

choice of his course which he would presumably do based upon past knowl­

edge of the terrain. He would then set this course into his direction 

seeker prior to beginning his walk. Whenever he strayed beyond the 

tolerances of deviation he would be given a suitable alarm. 

Another device used to aid the blind and deaf was the special 

doorbell, which was developed in England (14). Basically, the special 

doorbell consisted of many loops of wire strung throughout the house 

which were activated at a given frequency whenever the doorbell was 

rung. The tone was detected and presented to the user by means of a 

tactile vibration and told the person whenever his bell was rung. 

It appears at the present time that much of the effort in this 

area has been based on "seat of the pants" engineering, and that much 

more basic research into the problem needs to be done (3). 

The bloom seems to be off of the bush as a number of people in 

the area have given up trying to compete. The market is at best margi­

nal and, as true in other fields, low cost, reliability, durability, 
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and utility remain supreme. The requirement of low cost seems to 

mitigate heavily against some of the more elaborate schemes which were 

mentioned. 



CHAPTER III 

BIO-ELECTRIC PROSTHETIC CONTROL SYSTEMS 

Electronic and electromechanical aids to amputees have developed 

along the line of bio-electric prosthetic control systems. Initial 

work in this area showed great promise and a number of prosthetic 

control systems have been developed. 

By and large the devices which have been developed are concerned 

with arm and wrist amputees. 

A casual glance might indicate that the movement of one's limbs 

is a rather simple act. However, more insight as to the complexity of 

the system may be gained by viewing it from the control system stand­

point. For example, consider the human upper extremities as shown in 

Figure 1. 

One notes the presence of various parallel feedback paths. One of 

the more noticeable components of the feedback is the visual feedback. 

The eye transmits information to the brain which gives positional and 

velocity information concerning the limb. One notes that even when this 

important feedback path is disrupted (blindness for example) the human 

is still capable of operating his limbs with a great deal of dexterity. 

The feedback that describes kinesthetics (sensation of movement, 

position, touch, temperature, and pressure) is comprised of sensory 

nerve receptors in the skin muscles and tendons. It is apparent that 

the degree of amputation controls the number of feedback paths that 
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remain. Visual information becomes very important in these cases, 

since a hook or other such device would not have any other feedback 

path except the visual. 
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The first step in the direct control of prosthetic devices con­

sisted of sensing the bio-electric potentials from the skin and then 

using these signals to drive the device. The major source of trouble 

with this type of control is the man-machine interface. An electrode 

jelly is used to reduce the impedance between the electrode and the dry 

skin. Unfortunately, in many cases continued use of the jelly causes 

skin irritation. In addition, the exact nature of the signals required 

to produce even simple movements is not known. 

To date, several types of control systems have been developed to 

stabilize the response of the prosthesis by velocity and force feed­

backs. But, one area that needs more attention is the use of feedback 

that is directly coupled to the human. For example, an amputee that 

picks up an object can only tell if he has grasped it properly through 

the use of visual feedback. This area is still relatively new and the 

current push in micro-electronics is sure to influence developments in 

this field. 

The first working model of a bio-electric controlled prosthesis 

was produced in 1955 by C. K. Battye, J. Whillis, and A. Nightingale in 

London, England, at Guys Medical School (15). No attempt was made to 

commercialize the device, it was used only to prove feasibility. The 

system was essentially a bang, bang control system with hysteresis 

being a desirable feature of the system. A fairly large signal is 

required to activate the system but a less signal will hold it in the 

activated position and a signal whose amplitude is below the lower 



threshold will deactivate the device. See Figure 2. One notes that 

this is an open loop system. No attempt was made to include any 

feedback other than visual. 
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The Russians, in 1957, developed the Russian myo-electric powered 

hand (16). It was designed for use by a medium below the elbow amputee. 

The device had two functions available, the grasp and the release. The 

drive mechanism, located in the hand, operated at a fixed speed and the 

force of grasp was changed only by timing. The index finger, middle 

fingers and thumb are motor driven to give a three-way chuck type grasp. 

Friction rings allowed the hand to be rotated passively about the long 

axis of the forearm. A block diagram is shown in Figure 3. 

The amplifiers receive inputs from either the extensor or flexor 

muscle groups remaining in the arm. The outputs of the amplifiers are 

used as inputs to a bang, bang control system. There is no velocity or 

force feedback; thus, no means of preventing excessive current drain in 

the motor stall position. The grasp between the tip of the thumb and 

index finger is 35.3 to 52.9 ounces. 

A three-yaw-chuck type hand prosthesis was developed in 1962 by 

the Manchester College of Technology in England (17). See Figure 4. 

Note that this is an external type feedback system with the feedback 

mechanism incorporated in the driving unit. The feedback signal is 

derived through the use of carbon bonded rubber on all palm surfaces. 

This material changes resistance in proportion to the force applied. 

This signal is looped into external feedback of the system, thus, 

requiring more effort from the amputee for a large closing force than 

for a small closing force. 
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The grasping function is performed by a small stepping motor which 

moves backwards or forward depending upon the intput signal. The motor 

is attached to a cable which draws the hand to the closed position. The 

hand is returned to the open position through the use of springs. 

Springs are also used in the fingers to allow the handling of irregular 

objects. 

In 1965, the Boston arm was developed by Dr. Ralph Alter and R. N. 

Rothchild (18). They used muscle potentitals from the biceps and 

triceps to control an above-elbow prosthesis. The control system (see 

block diagram Figure 5) does not control the terminal unit but merely 

drives the elbow unit. The signals from the biceps and triceps are 

picked up by electrodes and are used as inputs to differential ampli­

fiers. The output of the differential amplifiers are sent to a demodu­

lator, which is essentially an absolute magnitude circuit. The two 

signals are then subtracted and sent to a low pass filter. The output 

of the filter is used as the input to a control system which has both 

velocity and force feedback. The force feedback is derived from strain 

gages which are applied to the elbow of the prosthesis. A clutch is 

placed in the drive train of the arm, thus allowing the motor to move 

the arm up and down, locking it into position whenever the motor is off. 

One quickly notes as he examines the various systems used for bio­

electric control of prosthetic devices that almost all of the feedback 

provided is of an external nature; i.e., acts on the device rather than 

on the man. One primary reason for this is the type of signal available 

to activate the devices. 

When the cerebral cortex of the brain sends a message down the 

nerve fibers, nerve impulses or action potentials are developed across 
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the cell membrane. When the impulse reaches a motor and plate, a 

chemical substance is released and the muscle contracts. Since the 

contraction of the skeletal muscles create skin potentials, these poten­

tials may be used as the bio-electric signals. The EMG signals are 

collected, amplified, and smoothed to provide an imput to a servo con­

trol system. The control systems are of necessity of the bang, bang 

type. In most instances any feedback applied is used to stabilize the 

external system and 7 thus, is not too helpful to the amputee in deter­

mining the position or the correctness of the grasp of his device. 

Thus, though the technology has advanced to the stage where it is 

feasible to construct an electromechanical prosthetic device that would 

duplicate the degrees of freedom of the movements of the normal limbs, 

the technology has lagged in the all important man-machine interface. 

Much of the work in this area should be concentrated on defining the 

signals that may be derived from the man. Another area of interest is 

the development of better types of feedback to aid the amputee in the 

control of the device. Special interest will be shown to those types 

of feedback that act on the man rather than upon the device. 



CHAPTER IV 

MAN-MACHINE INTERFACES AND BANDWIDTH 

CONSIDERATIONS 

4-1. The Transfer Function 

The exact configuration of the biological control systems of the 

body are not known. Certain flow diagrams may be drawn based upon the 

assumption of a Jumped parameter system. These diagrams do not tell the 

full story and much more basic research will be needed to develop a 

satisfactory model for the biological system (14). 

Consider the information flow diagram of the skele-tal-muscJ.e con­

trol system as shown in Figure 6. 

One notes that there are two control inputs to the system. One is 

the r-efferent path which serves as the input when an accurate position 

control is required. 

The other path is the ~-efferent path. This path enters into the 

loop ahead of the spindle units, thus, is capable of fast response. 

This path is used for skilled tasks and for the avoidance reflex. 

The control system has an overload control in the form of the 

Tendon Golgi Afferents. These units have a high threshold and, thus, 

perform the function of overload protection. 

The action of the loop when viewed in block diagram form is decep­

tively simple. One must recall that very little is known of the dynamic 

responses of the various portions of the loop. 
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The engineer's basic approach to a control system design problem 

traditionally has been to first determine the required transfer func­

tion, then to design a system whose transfer function is identical to 

the desired transfer function, and finally to implement the required 

transfer function. 

Biological control systems present several unique problems to the 

engineer. The chief one is the fact that it is no simple matter to 

define the transfer function of a biological system. Unlike the phys­

ical systems, biological systems do not readily yield to the Bode plot 

or the frequency response method of generating the transfer function 

from experimental data. 
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The second major problem area concerns the manner in which the 

external physical system is to be interfaced with the biological system. 

In a biological system, one is not able to break the loop at any con­

venient point and insert external physical systems. 

The prosthesis problem is an interesting example of the marriage 

between the physiologist and the engineer. 

From the systems standpoint, it is an easy matter to obtain the 

required transfer function of the prosthesis. However, one must recall 

that such a determination is based upon a model that is not completely 

accurate. 

As an example of the fact that the design of a physical system to 

interact with a biological system to perform a given task requires 

special considerations, consider the lumped parameter model of a bio­

logical control system shown in Figure 7. In this model, the inner 

feedback loops have been lumped into a single feedback loop. 
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It has further been assumed that the present transfer function up 

to the point of a future amputation is G1 (s). The transfer function 

from the point of amputation to the output of the limb is G2(s). 

H1 (s) is the feedback loop from the output of the limb to the point of 

amputation. H2 (S) is the feedback loop from the point of amputation to 

the control center. The output C(S) represents the performance of some 

desired task. 

C(S) 
The transfer function of this system r(S) is given by: 

C(S) 
r(S) 

( l.t:-1) 

Now, assume that the limb has been amputated such that the remain-

ing loop is as shown in Figure 8. 

Now in order to perform the same function with the same dynamics 

the transfer function of the prosthesis and the remaining portion of 

the limb must be the same as given in Equation (l.t:-1). 

Assume that the prosthesis has a transfer function given by G3 (s) 

and a feedback function given by H3(s). A block diagram of the combined 

prosthesis and body control system is shown in Figure 9. 

by: 

For the system shown in Figure 9, the transfer function is given 

C(S) 
r(S) 

(l.t:-2) 

Equation (l.t:-2) shows that one should not try to set G3 (s) equal to 

G1 (s) and H3 (s) equal to H2 (s), since it is apparent from an examination 



G1 (s) G2 (s) C(S) 

H2 (S) H1 (s) 

Figure 7. Lumped Parameter Biological Control System 

G1 (s) c 1 (s) 

H2 (s) 

Figure 8. Lumped Parameter Limb Control System 
After Amputation 

R(S) G1 (S) 

H2 (s) . HJ (S) 

Figure 9. Lumped Parameter Limb and Prosthesis Control 
System 

C(S) 

\...) 

9 



31 

of Equations (4-2) and (4-1) that this will not make the transfer 

functions equal. 

One possible solution is to set G3 (s) equal to G2 (s) then H3 (s) 

may be expressed as: 

G2 (S)H1(s) - 1 

1 + G1 (S)H2(s) (4-J) 

Now, in order to be useful, H3 (s) must be physically realizable. 

Further note that due to the manner in which the feedback is 

inserted into the system, it is not possible to make the transfer func-

tion of the prosthesis exactly the same as the transfer function of the 

limb it replaces even if this process were physically realizable. 

The example given above has been greatly simplified, but it does 

point out the difficulty of matching a biological transfer function when 

it is not physically possible to directly tie into the biological 

system. 

In addition, recall that it is very difficult to devise experiments 

by which meaningful data concerning the dynamics of the biological sys-

tern can be obtained (14). 

4-2. Present Interface Systems 

Most of the bio controlled prosthesis utilize electrical probes 

to obtain the myo-electric drive signals. 

These units have the disadvantage that a conducting jelly is needed 

in order to reduce the resistance of the skin in the pickup area. It 

is an unfortunate fact of life that the conductive jellies act as a skin 

irritant when used over long periods of time. 
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Attempts have been made to implant pickup probes in the stump. 

These probes are used to FM modulate a carrier which is transmitted to 

and detected by the prosthesis and is then processed in the conventional 

manner. 

The direct feedback to the body from the prosthesis takes the form 

of a tactile stimulation, an audio signal, or visual feedback. To date, 

these have been the only paths available for insertion of feedback 

information into the body. 

One notes the similarity between this feedback problem in the 

prosthesis and the various systems which have been used to aid the 

blind to 11 see11 • In the latter case only the audio and the tactile 

paths are available for exploitation. 

4-J. Bandwidth Considerations 

There is evidence that many of the early models of the tactile 

stimulation reading devices were bandwidth limited, thus, suffering a 

degradation of performance (15). 

Most of the early tactile stimulation reading devices contained 

8 to 12 vertical sensors to sense vertical information. Experimental 

evidence has indicated that the bandwidth of pica type referred to the 

page is 75 Hertz per inch. Thus, using the sampling theorem one notes 

that to read pica type one requires 150 samples per inch, referred to 

the page. 

The largest letter height encountered in pica type is 160 mills. 

Each photo sensor typically has a 7 mill coverage; thus, allowing for 

blank spaces, 24 vertical sensors are required in order not to lose 

vertical information. 



The 2~ required channels are well within the percentual capabili­

ties of the human system. 

Horizontal information is normally obtained by 6 columns of photo 

sensors. Recall that the page is scanned in the horizontal direction, 

thus, sufficient samples will be obtained with which to identify the 

letters. 

A second experiment related to bandwidth considerations are per­

formed by Taenzer (16). 

His experiment utilized a computer controlled neon bulb array. 

His letter size was 12 vertical columns high and 8 columns wide. 

He determined that at a reading rate of 24 words per minute and 

at 60 words per minute that a display time of 150 milliseconds was 

required for a person to correctly identify a letter 95 per cent of 

the time. 

This data was obtained with a window width of 6 columns. 
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He also performed experiments concerning reading rate, accuracy, 

and window width. As was expected, whenever the window width approached 

the letter width the person began to read at his normal rate. Recall 

that this reading is accomplished one letter at a time, thus, not making 

use of the parallel entry capabilities of the visual system. 

Extrapolating Taenzer's results, one notes that a display time of 

150 milliseconds gives rise to a reading rate of 400 letters per minute. 

This rate is based upon a single letter window width. Thus, one notes 

that in the case of a sighted person reading text in which one letter 

is exposed at a time his speed would approach 80 words per minute, 

assuming an average of 5 letters per word. 
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The above does not account for the time spent in scanning and in 

correction of the alignment of the scanning window whenever one makes a 

change in lines. 

Taenzer (16) also determined that the tactile stimulation devices 

also required 150 millisecond exposure time in order for the subject 

to identify a letter. 

Thus, it would appear that neglecting scanning time the upper limit 

to the reading rate of the single letter devices would be approximately 

80 words per minute. 

The engineer normally expresses bandwidth in Hertz and not referred 

to as a page of print. When one considers Taenzer's results, he notes 

that a single letter requires 150 milliseconds of display time. Bliss 

(15) has noted that pica type requires 24 samples in order to correctly 

identify the given letter. The number of samples per second required is 

160. One then concludes that the bandwidth of the system used in single 

letter heading is 80 Hertz. 

Collins (17) has suggested that the input capacity of the skin on 

a man's back is 4m Hertz. 
2 

His calculations were based on 4000mm of 

skin on the back. Each tactile stimulator required .4mm2 • This gives 

a maximum rate of 4oO Hertz, thus, he obtains 4m Hertz as the input 

capacity of the skin. 

One should not confuse the term input capacity with bandwidth. An 

analogy to the situation would be the case where one has 10,000 ideal 

low pass filters whose cutoff frequencies are 400 Hertz. Thus, if one 

connects them in parallel, he may pass 10,000 signals each one having 

a maximum frequency of 4oo Hertz. The bandwidth of the system from an 

engineering standpoint is still 400 Hertz. However, since the filters 
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are independent one may process 10,000 different signals. The input 

capacity is obtained by multiplying the number of independent channels 

available times the cutoff frequency of the channels. In this case all 

of the channels have the same cutoff frequency eliminating the need for 

channel-by-channel summation. 

4-4~ Experimental Reading Rates 

Troxel (18) in a series of experiments concerning the reading rate 

via the visual and tactile reading channel experimentally determined 

that the reading rate whenever letters were exposed one letter at a 

time was approximately 20 words per minute. 

In this experiment, the visual rate was determined by using a com­

puter controlled device that exposed the letters one at a time upon 

command of the subject. 

The tactile reading rate was approximately the same as the visual 

reading rate. Troxel concluded that the rate was channel limited rather 

than comprehension limited. 

J.C. Bliss (20) has obtained results that disagree with those 

obtained by Troxel although with the same size of samples used disagree­

ments are certain to occur. He has obtained tactile reading rates at 

60 words per minute. 

~-5· Experimental Reading Rates - Discussion 

of the Experiment 

No experimental data was found in the literature concerning the 

reading rate of individuals when they were required to read a text 



with a device that allowed them to scan and observe only one letter at 

a time. This is essentially the case in tactile stimulators. 
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This seems to be a good method for obtaining the necessary feel as 

to how good the progress,.±n tactile stimulator reading devices has been. 

It seems more logicaL·,,.to require the individual to do his own 

scanning rather than havingJhe computer perform this function. Since 

in the final analysis, the blind individual must be able to scan the 

page at his own rate. 

Thus, the following expiriment was devised. Five subjects were 

chosen. These subjects were required to read an article from a magazine 

or paper that they had not previously read. They were given a cardboard 

scanner which had a single slit in it. They were told to read the 

article aloud as they scan it one letter at a time. Their reading was 

recorded and later compared to the printed text. If at least 95 per 

cent of the words were correct, no special notation was made on the 

data. 

The data is presented in tabular form and compared to the results 

obtained from the tactile devices. 

4-6. Experimental Results 

The subjects were required to read aloud passages from a magazine 

which they had not previously read. The length of the reading period 

was 5 minutes. At the end of 5 minutes the subjects were given the 

signal to stop and the total number of letters they had read were 

tabulated. 

The subjects' reading rate was computed by taking the total number 

of letters they had read and dividing them by 5. In this case 5 letters 
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has been ass~med to be the length of the average word. 

The subjects were required to perform this task on five consecutive 

days. After an initial adjustment period, very little difference was 

noted in their reading rates as a function of time. 

Subjects A, B, and C were college graduates. Subject Dis a 

Junior in college. 

Subject Eis an eight year old boy. He, of course, was not re­

quired to read the same magazine that the other subjects. 

The average reading rates obtained by these subjects is given in 

Table I. 

TABLE I 

AVERAGE READING RATES OF THE SUBJECTS 

Subject Average Reading Rate 

A 36 wpm 

B 35 wpm 

c 32 wpm 

D 25 wpm 

E 22 wpm 

One notes that this data lies between that obtained by Troxel (18) 

(20 wpm) and that obtained by Bliss (20) (60 wpm). 
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Each of the subjects complained of being nervous as a result of 

reading in this manner. The reading rate was so slow that it made them 

uncomfortable. 

4-7. Experimental Conclusions 

The data obtained in Section 4-5 when considered in light of 

Bliss's (20) data suggests that the people who are able to read at a 

I 

rate of 20 wpm with the tactile reading devices are performing rather 

well. Those who read at a rate of 60 wpm are reading at a remarkable 

rate. 

It further suggests that this type of reading will be rather un-

comfortable and that the subject will need a training period to become 

acclimated to this slow rate of reading. 

Note that in this particuliil' experiment no graticules were used; 

thus, the full bandwidth of the type was transmitted to the subject. 

In order to evaluate the effects of limiting the bandwidth, graticules 

would have to be devised that would expose samples of the letter rather 

than the full letter to the subject. It was noted that whenever the 

,subject lost scan synchronism, i.e., slipped to the wrong line, very 

little time was required for him to get back on target. 

It might be argued that requiring the subject to read aloud may 

have slowed him down. However, when evaluating their speaking rate on 

a subjective basis it seemed that the reading rate was the dominant 

factor rather than the speaking rate. 



CHAPTER V 

ELECTRONIC AND ELECTROMECHANICAL AIDS FOR THE 

TRAINING OF THE MENTALLY HANDICAPPED 

5-1. Teaching Machines 

In early 1966, the outlook for electronic teaching aids for general 

use was very promising. Market researches had indicated that this would 

be fruitful and various companies were standing in the wings waiting to 

market their particular product (18). 

However, in 1969, it became apparent that too many of the devices 

have been designed for a particular task with no real communication 

between the engineer and the educator. Too many of the products were 

too costly, not reliable, and contained many defects that could have 

been avoided if a closer contact had been maintained between the educa­

tor and the engineer (19). 

The basic thrust in the area was in that of manufacturing teaching 

machines. These devices were, in general~ of such a nature that they 

allowed the student to proceed at his own rate and provided instant 

feedback in case that the student had made an error or failed to grasp 

a particular point. 

In general, most of the teaching machines used the process of mul­

tiple choice in testing the student. Many educators diagreed with this 

type of testing and felt that the student should have an option of 

inserting his own answer (18). 



In response to this request, Valdimer Stephan, of Prague, 

Czechoslovakia, designed a teaching machine that allowed the student 

to make a free choice of his answer. The machine was still capable of 

grading the student's response and would indicate to him whether he 

should proceed with the lesson or be given a review lesson. 
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The basic idea of the teaching machine seemed to be to relieve the 

teacher of the necessity for pacing his class in response to the abili­

ties of pupils that he may have enrolled in that class. The machine, 

in principle, would let each student proceed at his own pace, provide 

testin~ and make data available to the teacher as to the progress of a 

particular pupil. 

The teaching machines appear to have two basic problems. The first 

is that the machine that is truly adaptive will normally be connected to 

or be an integral part of some type of computer. Thus, the cost of the 

device becomes a barrier to its widespread use. 

The second is that the machine which does not make use of a comput­

er becomes much less flexible and requires changes in its program to 

adapt to its various classes. Thus, it seems that there is a direct 

trade off between utility and price. 

5-2. Use in the Training of the Retardees 

The retardee presents very special requirements to the educator. 

He is in need of training that is of a highly repetitious monotonous 

type. He requires immediate feedback and a great deal of guidance in 

the accomplishment of a given task. 

It would seem, that since a good deal of the training of the 

retardee is of a one-to-one nature, this would be a case where teaching 



machines would be extremely useful. Black.man and Capobianca (20) have 

indicated that teaching machines should do a very good job in teaching 

retardees. 

The teaching machine is characteristic of an immediate response to 

the correctness of an answer or a task is particular suited to the 

retardee's needs. 

Teaching machines become especially useful from the standpoint that 

a retardee is at a particular disadvantage in a classroom, even though 

the classroom is specially designed for the retardee. The retardee has 

very little chance of correctly performing a given task. Thusj has 

little chance of gaining a personal reward. The teaching machine would 

be especially useful in the home environment. 

However, again one is reminded of the cold hard fact of reality 

that teaching machines are too expensive to become a part of each 

retarded child's home. The cost of teaching machines are such that even 

the state institutions have trouble obtaining the teaching machines. 

When they do obtain them, they are not in sufficient quantity to allow 

the students to have full access to them. 

5-J. Devices Other Than Teaching Machines 

Tape recorders, video recorders, and other special purpose audio 

equipment have been used in the training of retarded children. These 

include the language master and talking typewriter as devices that 

appeal to the audio as well as the visual information channel. 

It should be pointed out that a good deal of the training is indi­

vidualized and requires a great deal of effort on the part of the 

teacher to tailor the subject to fit a particular student's need. 



No simple electronic devices are available which could be used to 

develop the basic visual muscular coordination skills of the retardees. 

An outline of the various programs used in the training of retardees is 

found in Loves' book on the teaching of the mentally retarded (21). 

5-~. Future Needs 

It seems that the training of retardees would be particularly 

suited to the use of electronic feedback devices, but very little effort 

has been expended in the area of low cost, safe, and reliable devices. 

This could be due to a lack of knowledge of the nature of the problem or 

due to the tact that market researches have indicated that such devices 

are not economically feasible. It appears that there exists a real need 

for the engineer to design cheap, reliable training aids for the teach­

ing of basic skills to the mentally retarded. 



CHAPTER VI 

THE AUDIOGRAPH 

6.1. Background Information 

The area of electronic and electromechanical aids for the mentally 

retarded has a special appeal for the author. First, the results of the 

literature survey indicated that very little has been done in the devel­

opment of training aids in this area except in the realm of teaching 

machines, tape recorders, and talking typewriters which are reliable 

but not cheap. 

Secondly, the author has developed many contacts over the past ten 

years with workers who were concerned with the training of the mentally 

retarded. These contacts were willing to furnish guidance in their own 

particular specialty and were willing to supply subjects for the eval­

uation of the devices. 

Blackman and Capobianca (20) have indicated that teaching machines 

should do a very good job in the training of retardees. The fact that 

the machines upply an immediate indication of the correctness or incor­

rectness of a student's answer or his performance of a given task is 

particularly suited to the needs of the retardee. They felt that the 

teaching machine would be especially useful in the home environment. 

However, once again, the cost of the machine mitigates against this use 

of the machine. 



On the spot observations and conversations with the teachers of the 

retardees indicated that the general area of the development of eye­

muscular coordination was a prime candidate for an electronic teaching 

aid. The development of the eye-muscular coordination is necessary in 

order that the students may learn to write. Quite often the student is 

fully aware of the shape of a particular letter or a geometric figure 

but he is unable to effectively control his fingers, hand, and arm. 

Typically, the student is given intensive training in order to prepare 

him to write. This training is of a boring repetitious nature. ..The 

student traces over a particular figure and letter until he devel0ps the 

mental and eye muscular coordination patterns by which he can print on 

his own. The teacher must closely supervise this task since in many 

cases the retardee is perfectly happy not following the outlined figure 

or letter. 

In particular, a student was observed who had been trying to learn 

to print his name for a long period of time. He was having extreme dif­

ficulty in mastering the task and had become so bored that he had 

decided to quit trying. It was at this point that the basic idea for 

the audiograph was born. 

The audiograph fits into the general category of devices which are 

keyed to visual and audio stimuli. An extensive review of the litera­

ture indicated that the audiograph approach was unique. A patent search 

conducted in December 1970, indicated that there was at that time, no 

devices under patent that duplicated or even approached the proposed 

applications of the audiograph. Further evidence that the audiograph 

was unique was obtained from conversations with the administrators and 

teachers of various training centers for the mentally handicapped. 



It has been argued, Ames (22), that perceptual performance and 

development are closely related, apd that many of the tests which 

measure developmental level depend upon perceptual functioning which, 

in turn, depends upon how far the child has developed. 

The audiograph leans heavily upon the audio stimulus; thus, it is 

reasonable to inquire as to whether or not the children it would be 

used on would be able to hear the tone. A recent experiment by Doehring 

and Rabinovitch (23) led them to conclude that children with learning 

disabilities were within normal limits in thresholds for pure tones and 

speech. This conclusion is in agreement with conversations this writer 

has had with the teachers in this field in which it was stated that the 

music center of the brain is one of the last places to be damaged in the 

case of brain damage. 

Initially, the scope of the device was very broad; the first scheme 

consisted of a system such that the child was made aware of his position 

on the writing pad by means of an audio signal whose frequency varied as 

a function of the position of the stylus upon the writing surface. 

Vertical information was sensed by a change in frequency. Horizontal 

motion was sensed by a warble tone in addition to the change in fre­

quency. The warble tone was necessary since at least two positions on 

the given surface were at the same potential, which meant that they 

would cause the oscillator to produce a signal of the same frequency. 

The heart of this system was a voltage controlled Wein bridge 

oscillator. The variable resistive elements were diodes whose resist­

ances were changed by varying the bias on the diodes. 

Teledeltos resistance paper was used as the element with which to 

vary the voltage as a function of position. Fixed voltages were applied 
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to the edges of the teledeltos paper, thus making any two symmetrically 

opposed points on the paper assume a particular voltage level. 

This initial audiograph had several features that made it less than 

ideal. The first objection was that it was difficult and relatively 

expensive to construct. The cost was approximately $100, thus violating 

one of the initial assumptions of this thesis. 

Secondly, the writing surface was of teledeltos paper, with the 

appropriate pattern inscribed, and this had a tendency to wear out 

under hard usage. 

Primary power was supplied to the unit from the 110-volt line. 

Safety considerations dictated the use of dry cell batteries as the 

primary power source rather than the AC line. 

The last and most profitable observation on this unit was that the 

children did not seem to be too interested in the change in pitch, but 

rather were listening for the presence or absence of the tone. 

It was then apparent that the initial unit was too sophisticated 

and that the proposed application for the unit could be satisfied with 

a simpler scheme. 

6-2. The Audiograph 

After numerous trial and error sessions, the audiograph evolved to 

its final configuration which consists of a simple relaxation oscilla­

tor, a converted clipboard which is used as the writing surface, a probe 

or stylus, interchangeable training templates, and either a loud speaker 

or an earphone. The units are powered with two conventional 1.5 volt D 

cells, thus reducing to nill the possibility of an electrical shock. 

See Figures 10 and 11. 
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The audiograph functions in one of three modes depending upon the 

nature of the task and the template. 

If the mode selector switch is in position one and the pattern 

that the student is required to trace on the template is of insulating 

material, the audiograph functions as an error detector and will give a 

stimulus consisting of an audio tone whenever the student makes an 

error. An error here is interpreted to mean that the student has 

strayed from the confines of the desired pattern. When the student 

strays from the desired pattern, the audio oscillator is activated 

and the student is given an audio torte. 

In the second mode of operation, the base of the transistor switch 

is forward biased and the audio oscillator will not be activated as long 

as the stylus is in contact with the prescribed pattern. See Figure 11. 

In this second mode of operation, the desired pattern is made of con­

ducting material surrounded by an insulator. This mode is particularly 

useful when one is engaged in a timed test or task such as tracing 

mazes. 

Operation in mode three functions in the reverse of mode one by 

using a template with the pattern inscribed on conducting material. In 

this mode, the student is given an audio tone as long as the stylus is 

in contact with the prescribed pattern. An error in mode three is 

detected by the absence of the audio tone. 

The present templates consist of conventional copper clad printed 

circuit boards. If the template is to be used for operation in mode 

number one, the desired pattern is etched into the copper. This gives 

rise to a copper pattern surrounded by fiberglass. The templates are 

easily changed. This is accomplished by raising the spring loaded 
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clip on the clipboard, removing the old template, and inserting the 

new one. 

The probe consists of a conventional voltmeter probe and a flexible 

wire. The probe is·, shaped such that it does not have a sharp enough 

point to be consider~;a as a hazard to the operator. The electronic 

portion of the unit is·housed in a minibox. For ease of replacing the 

batteries, they are mounted in a battery clip on the outside of the 

minibox. The total cost of the components of the unit, including a loud 

speaker but not the earphone, is in the neighborhood of five dollars. 

The construction of the uni ts requires no particular skill except 

that of drilling and soldering. The units are reliable. The skill 

used in constructing the units is visible only as an external effect. 

The basic unit will function even with the most crude attempts at 

fabrication. 

6-J. Functional Description of the Audiograph 

A block diagram of the audiograph is shown in Figure 12. 

The operation of the unit is as follows: 

A. When Used in Mode Number 1 

The mode selector switch is in position number 1 which 

removes the transistor switch from the circuit. The template 

used in this mode has the desired pattern inscribed on an in­

sulator surrounded by a conductor. The negative side of the 

three volt power supply is connected to the spring loaded clip 

on the clip board. Contact to the template is made through 

this spring loaded clip. The student traces the pattern on the 

template and, if he remains within the prescribed limits, power 
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to the audio oscillator is cut off and he will not receive an 

audio tone. If the student strays from the prescribed pattern, 

the probe touches the conducting portion of the template com­

pleting the path for the power supply through the probe to 

the audio oscillator thus the student receives an audio tone. 

B. When Used in Mode Number 2 

The mode selector switch is placed in position number 2. 

The transistor switch is closed. 

Power is supplied to the audio oscillator whenever the 

probe is not in contact with the prescribed pattern. The tem­

plate used in mode 2 has the desired pattern inscribed in 

copper surrounded by an insulator. 

The student will receive an audio tone as long as he is 

off target. The audio tone will cease whenever the student is 

on the prescribed pattern. When the probe is in contact with 

the target, the transistor switch opens removing the power to 

the audio oscillator. 

This mode is especially useful when requiring students to 

trace mazes or to eliminate any attempts to speed up progress 

by moving the stylus from the beginning to the end without 

contacting the pattern. 

C. Operation in mode 3 is accomplished by placing the selector 

switch in position number 1. This removes the transistor 

switch from the circuit. In mode 3 the template is the same 

as that used in mode number 2. However, in this mode the stu­

dent is given an audio tone only if he remains on target. The 

probe contacts the conducting material of the desired pattern 



completing the circuit from the positive side of the power 

supply to the audio oscillator. This circuit is broken if 

the student strays from the confines of the desired pattern. 

6-4. Eye-muscular Coordination Game 
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The initial users of the Audiograph indicated that it served to 

motivate the students to engage in eye-muscle coordination exercises. 

Further investigation revealed that the addition of a spiral wound wire 

and a loop to the basic Audiograph provided another eye-muscular coordi­

nation exercise with little or no increase in the cost of the basic 

unit. 

The spiral wound wire is so constructed such that it plugs into a 

banana plug on the Audiograph unit. The metallic loop and the spiral 

wound wire act as a switching device which activates the oscillator 

whenever the wire and loop come in contact with each other. See 

Figures 13 and 14. 

The object of the game is for the student to thread the metallic 

loop around the spiral wound wire without touching the loop to the wire. 

Thus, the student may practice 3-D eye-muscular coordination exercises 

with the assurance of immediate detection if he makes an error. This 

portion of the Audiograph is similar to the game of pick-up sticks in 

its eye-muscular coordination requirements except in this case there is 

an impartial referee who makes an immediate decision in case of an 

error. 
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Figure 1J. Picture of the Eye-Coordination Game 
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CHAPTER VII 

EXPERIMENTAL RESULTS 

7-1. The Audiograph Experiment 

In cooperation with the Starky Developmental Center at Wichita, 

Kansas, six students were chosen to participate in this experiment. The 

following experiment was devised to aid in the evaluation of the 

Audiograph. 

The subjects were given the task of learning to draw and identify 

basic geometric shapes consisting of the square, circle, and the tri­

angle. The subjects were so selected that the task of learning to draw 

and name the basic geometric figures presented a real challenge to them. 

The subjects were divided into three groups and approached the task 

in accordance with the following group assignments: 

Group #1 practiced tracing the figures on the Audiograph and were 

given an audio stimulus whenever they made an error. Group #2 

practiced tracing the figures on the Audiograph, but were not 

given the audio stimulus whenever they made an error. Group #J 

practiced tracing the figures on a dittoed sheet and were~ of 

course 9 not given the audio stimulus. 

The length of the task was governed by the instructor. She halted 

the training of a particular subject whenever she felt they had mastered 

the task. The instructor was also given the prerogative of changing 

subjects from the ditto and no audio groups to the audio group if she 



felt that the audio tone would aid the subject. Such cases are noted 

in the data section of this chapter. 
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The evaluation sheet used in this experiment required that the 

subject trace the figures prior to and after the training session. The 

first tracing was to note the day-by-day retention of the subject and 

the second tracing served to evaluate the results of a particular train­

ing session. The instructor entered comments in the evaluation sheet 

concerning the actions of a particular subject and his apparent motiva­

tion. The subjects were given the training and evaluated at least twice 

a week. 

7-2. The Subjects 

The subjects used in this experiment were given coded identities 

and will be referred to in this thesis by a code name rather than by 

their given name. 

The groups referred to in section 7-1 consisted of two students 

each. The composition of the groups were as follows: 

Group #1: Subjects 1-A and 1-B were brain damaged children with 

poor coordination. Subject 1-B is unable to prevent her hands 

from shaking. 

Group #2: Subject 2-A is a brain damaged child. He has coordina­

tion problems but his coordination is superior to that of the other 

subjects used in this experiment. Subject 2-A is also judged to 

have more learning potential than the other subjects utilized in 

this experiment. Subject 2-B is a child with cerebral palsy and 

has poor coordination. 



Group #J: Subject J-A is a brain damaged child with poor coordi­

nation. Subject J-B is a brain damaged child with poor coordina­

tion and limited speech ability. 

7-J. The Evaluation Sheet 
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A copy of the evaluation sheet is shown in Figure 15. The nominal 

time of each training session was from 5 to 10 minutes. This time 

varied since all subjects were given their conventional training while 

simultaneously participating in this experiment. The order of the geo­

metric figures was varied on the sheet in order that the student would 

not associate a particular figure with a given space. 

Each of the subjects were required to trace the geometric figures 

prior to and at the end of each training session. The answers were 

recorded by the teacher. In case the student named a geometric figure 

other than a square, circle, or a rectangle, this answer was noted by 

the teacher. 

In the case of subjects with limited speech capability, the teacher 

would have the subject point to the geometric figure that the teacher 

named. The reverse side of the evaluation sheet was reserved for com­

ments by the teacher. These include comments on the nature of the 

subject's progress, his attitude that particular session and his 

apparent motivation. 

Any variations from the experimental procedure were noted in the 

comments section. For example in the case of subject 2-B, the subject 

was very reluctant to practice without the benefit of the audio tone; 

thus, he soon learned to activate the tone and if left to himself would 

do so during the training session. 
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DATE STUDENT NO. AUDIO TONE USED YES NO 

DITTO USED YES NO 

Approximate training ti~e this session 
~~~~~~~~-

Have the student trace the figures shown below. 

Prior to training session. 

J 
After training session 

Students Answers 
Check One 

1. 
Square 

Circle 

Triangle __ 

2 

J 

2. 
Circle 

Square 

Triangle 

Teachers comments on revers.e side. 

Figure 15. The Evaluation Sheet 

1 

1 

J. 
Triangle __ 

Circle 

Square_ 
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7-4. Method of Scoring 

The data was scored in the following manner. The tracing made 

prior to and after the training session will be scored by means of a 

template (Figure 16). The template consists of the basic geometric 

figure and several superimposed figures. The sizes of the superimposed 

figures are related to the basic figure by integral multiples of 1/16 

inch. 

The template will be matched to the reference figure on the data 

sheet. The tracing will be scored in the following manner. If the 

subject's tracing is within 1/16 inch of the nominal size of the ref­

erence figure, he will be given a zero. If it is between 1/16 inch and 

1/8 inch of the nominal size of the reference figure, he will be given 

a one. The remainder of the scale is scored in a similar fashion; i.e., 

if the subject's tracing is between n/16 inch and n+1/16 inch of the 

nominal size of the reference figure, he will be given a score of n. 

Each side of a particular figure will be scored. In the case of 

the circle, 90 degree segments will be used. The score, thus, will re­

flect the magnitude of the maximum distance that the student strayed 

from a given side of the reference figure as he attempted to trace the 

reference figure. 

The total score of the subject as pertains to a given geometric 

figure will be computed by summing the scores that the subject obtained 

on the particular segments of that geometric figure. 

The freehand sketch was not scored using the above procedure, but 

a copy of the subject's sketches during the first training session, the 

middle of the training sessions, and the last training session will be 

presented in the section 7-5. 
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7-5. Results of the Audiograph Experiment 

The subjects• scores on the tracings are presented in Figure 17 

through Figure 38. In each case, a straight line has been passed 

through adjacent points of the data. The figures are arranged in 

ascending orders of subjects. In some cases the subject did not trace 

the figure such that it could be scored. In these cases, no data is 

presented. If there is a deviation from the experimental procedure, 

it is noted on the score sheets. 
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One notes that, in general, the circle presented the most difficult 

task to the subjects. Arcs proved more difficult for the student to 

trace than the straight lines of the square and triangle. 

The nature of the data is such that a subject-by-subject presenta­

tion is warranted. 

Subject 1-A is a brain damaged child with poor coordination. 

Subject 1-A already knew the names of the figures, but had great diffi­

culty in attempting to trace or sketch them. This subject's results 

are shown in Figures 17 through 20. 

In the case of the circle, one notes a marked improvement in his 

performance after the first two training sessions. He continued to 

improve up to the twelfth training session at which time his score 

began to oscillate around a value of~. His performance on the tracing 

of the square and triangle shows similar results. The instructor 

terminated the training sessions for this subject at number 18. 

The initial attempt of Subject 1-A to sketch the figures is shown 

in Figure 20. One notes that the size of the figures are considerably 

larger than the reference figure. His triangle and circle are fairly 

good; however, his square has three sides instead of four. This 
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Figure 20. Subject 1-A Sketches After Session-.1 

Figure 21. Subject 1-A Sketches After Session 9 
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subject's nineth sketch (Figure 21) shows the triangle and circle are 

fairly good. The square is approaching a four sided figure. The final 

sketch of the figures by this subject (Figure 22) shows the figures 

with the proper number of sides; however, the triangle is truncated 

somewhat. One would conclude that subject 1-A benefited from the train­

ing session as pertains to the tracing and sketching of geometric 

figures. 

Subject 1-B is a brain damaged child with poor coordination. 

Subject 1-B is unable to prevent her hands from shaking. 

The results obtained for this subject are shown in Figures 23 

through 28. This subject was bothered by the audio tone. The instruc­

tor felt that it was good for her since it immediately prompted the 

subject whenever she made an error. The subject learned to identify 

the figures. The results of the tracing show that the subject could 

trace the figures fairly well even at the onset of the experiment. She 

showed very little improvement in the tracing of the figures. This 

subject had a one month break in training between session four and five 

one notes that her performance has deteriorated. 

The subject's initial attempts at sketching the geometric figures 

are shown in Figure 26. One notes that the figures all have arcs 

including the square and the triangle. The basic form of the circle 

is approximately correct. The sixth training session (Figure 27) shows 

very little improvement in the subject's ability to sketch the figures. 

Once again, they are composed of arcs rather than straight lines. The 

sketch of the figures by the subject after the last training session 

are better (Figure 28), but the square and triangle are composed of two 

straight lines and one arc rather than all straight lines. This subject 
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was very good in tracing the geometric figures which from an engineering 

standpoint indicates that this system must have a reference before it 

can operate properly. 

Subject 2-A is a brain damaged child with poor coordination. 

However, his coordination was superior to that of the other subjects 

utilized in this experiment. He was judged to have more learning 

ability than the other subjects involved in this experiment. 

This subject does a good job whenever a task holds his interest. 

It is very difficult to keep him interested in a task and he had to be 

prompted to change figures. One notes on his tracings that he tends 

to get into a 11 do loop" and will trace the figures over and over. 

Subject 2-A results are shown in Figures 29 through 34. One notes 

that, in all cases, this subject was proficient at tracing the figures. 

The training sessions did very little in the way of improving his score 

on the tracing portion of this experiment. 

The subject's sketches at the start of the training session are 

shown in Figure 32. One notes that, in the case of the triangle and 

square, they do not represent the desired figure. The circle is fairly 

good. 

The subject's sketches at the end of the fourth training session 

(Figure 33) indicate a definite improvement in his sketching ability. 

The triangle, square, and circle are fairly good. 

The subject's sketch at the end of the last training session 

(Figure 34) show that he does a fairly good job in sketching the 

geometric figures. 

The instructor commented that this subject was very restless 

during the training session and thinks that the audio tone might have 
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0 
Figure 32. Subject 2-A Sketches After Session 1 
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Figure 33. Subject 2-A Ske.tches After Session 4 

Figure J4. Subject 2-A Sketches After Session 6 



been helpful. The subject was very disappointed that he was not given 

the audio tone. 
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Subject 2-B has cerebral palsy and poor coordination. This subject 

was very reluctant to practice without the aid of the audio tone. At 

the start of trraining session number 7, the student was allowed to use 

the tone. 

This subject could already identify the figures prior to the start 

of the training. He is fully aware that his sketches are not correct 

and is quite frustrated that he cannot sketch the figures as he knows 

they ought to be. 

The results of this subject are shown in Figures 35 through 40. 

His performance in the tracing of the circle varied widely during the 

initial training periods. He did a better job on the square and tri­

angle, but did not show any consistent improvement. After the intro­

duction of the audio tone during session 7, his performance improved 

although he was having trouble tracing the square. The subject's 

initial sketches are shown in Figure 38. They are very poor. However, 

the subject is aware that his sketches are poor. 

The subject's sketches at the end of session 8 show some improve­

ment (Figure 39). The square and circle are reasonably close to the 

shape of a square and circle. He has drawn a right triangle rather than 

an isosceles triangle. The subject's sketches at the end of the train­

ing sessions indicate an improvement (Figure 40). The square, circle, 

and triangle are fairly close to the proper shape. 

Subject 3-A is a brain damaged child with poor coordination. This 

subject was given training sessions on dittoed sheets. Subject 3-A 

results are given in Figures 41 through 46. This subject had a very 
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difficult time in tracing the figures. The sheet is not scored in 

those cases where the subject did not do sufficient work to merit a 

score. Very little or no improvement is noted in the subject's ability 

to trace the geometric figures. In the case of the circle, the subject 

reached a minimum score of 5 then shortly thereafter went to a score 

of 20. 

The subject's initial attempts at sketching the geometric figures 

did not at all resemble the geometric figures. See Figure 44. The 

subject's sketches at the end of the sixth training session show im­

provement, but still do not closely resemble the geometric figures. 

The subject's final sketches indicate that he is able to draw a circle 

that faintly resembles a circle; however, the sketch of the square and 

the triangle do not resemble a square and a triangle (Figure 46). The 

student did learn to identify the figures. 

Subject J-B is a brain damaged child with poor coordination and 

limited speech ability. 

The instructor would point out the figure and ask 11is this a tri­

angle, square, or a circle'?" The student learned to identify the 

figures. 

The subject's results are given in Figures 47 through 52. During 

session number 8 of this student, the instructor constantly reminded 

the student to stay on the lines. 

The instructor decided to use audio on this subject at training 

session number 10. One notes that apparently the audiograph is acting 

as an error detector since its effects and the instructor reminders 

seem to have the effect of aiding the subject to stay on target. 
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One notes an improvement in the tracing of the geometric figures 

after session 8. This subject had a great deal of difficulty in trac-

ing the arcs of the circle. She did, however, show improvements as the 

training progressed. The subject's initial sketches are shown in 

Figure 50. One notes that all of the figures are combinations of arcs. 

The subject's sketches after training session number 6 show that the 

sketch of the circle although elliptical does resemble a circle (Figure 

' 
51). The square and triangle are composed of arcs but are starting to 

take shape. The subject's final sketches show improvement in the case 

of the circle (Figure 52). The square and triangle are still composed 

of arcs instead of straight lines. 

In order to establish a control group to judge the nature of the 

subject's sketches, an experiment was conducted in the Altamont Public 

School system at Altamont, Kansas. In this experiment, three first 

grade children of average ability (as judged by their teachers) were 

given the task of learning to sketch and name the basic geometric fig-

ures including the square, circle, and the triangle. 

Subject number 8 was given a 10-minute training session on the 

Audiograph with ~udio and then asked to sketch and name the geometric 

figures. 

Subject number 9 was given a 10-minute training session on the 

Audiograph without audio then was asked to sketch and name the geometric 

figures. 

Subject number 10 was given a 10-minute training session using 

ditto and then was asked to sketch and name the geometric figures. 

Subjects 8, 9, and 10 had good coordination and, thus, had very 

little difficulty in tracing the figures either before or after the 
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Figure 50. Subject J-B Sketches After Session 1 

Figure 51. Subject 3-B Sketches After Session 6 

D 
Figure 52. Subject J-B Sketches After Session 11 
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training session. Their average score on the tracings was 1. Their 

sketches are shown in Figures 53, 54:, and 55. One notes in general 

that they are fairly good representations of the figures. However, it 

is noted that the circles tend toward ellipses and that the sketches 

are not the same size as the reference drawings. Subjects 8, 9, and 

10 all learned to identify the geometric figures. 

Table II is a comparison of the scores of the subjects while per-

forming the task of circle tracing. The task of circle tracing was 

chosen for construction of this table since the data indicated that the 

arcs of the circle were the most difficult for the subjects to trace. 

Subject 
No. 

1-A 

1-B 

2-A 

2-B 

3-A 

3-B 

TABLE II 

A COMPARISON OF THE SCORES OF THE SUBJECTS WHILE 
PERFORMING THE TASK OF CIRCLE TRACING 

Part 
1 2 3 ,;_, ·':~/ 1 

Type of Training Before 

Audio graph with Audio 21 10 5 9 

Audio graph with Audio 12 19 1 11 

Audio graph without Audio 3 5 3 4: 

Audio graph without Audio 32 20 8* 15 

Dittoed Sheets 10 19 32 30 

Dittoed Sheets 36 38 20* 38 

Part 
2 3 

After 

7 4: 

7 8 

6 1 

20 11* 

51 

34: 16* 

*Indicates that audio was used during this part of the training 
sessions. 

--Indicates that performance was so erratic that no score was 
computed. 



Figure 53. Subject 8 Sketches After 
Training 

Figure 51±. Subject~ Sketches After 
Training 

Figure 55. Subject 10 Sketches After 
Training 

0 
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The total number of training sessions has been divided into three 

equal parts. The entries in the table indicates the average score of 

the subject prior to and after training during a particular part of 

the training sessions. 

One notes from Table II that subject 1-A seemed to benefit from the 

use of the audio tone. Subject 1-B also benefited from the tone. One 

notes the effect of the one-month break in the training sessions for 

subject 1-B. This resulted in a higher score during the before portion 

of Part 2. However~ it is noted that the student quickly adapted to 

training and the after score represented a decrease over Part 1. 

Subject 2-A was given training on the Audiograph, but not given 

the audio tone. He also seemed to benefit from the training but in 

general, had more coordination than the other subjects. 

Subject 2-B was given training on the Audiograph but was not given 

the audio tone. His performance improved and even greater improvement 

was noted whenever he was shifted to the audio tone. 

Subject 3-A was given training on dittoed sheets. One notes that 

he has not benefited from this training. 

Subject J-B was given training on dittoed sheets. One notes that 

during the first two parts of the session that he had made little or no 

improvement in his tracing capabilities. During part three of the 

training sessions this subject was transferred to the Audiograph with 

the audio tone. One notes a dramatic drop in his score during the 

latter sessions. 



7-6. Comments on the Results 

In general, all the subjects seemed to benefit from training re­

gardless of the group they were assigned to. 

The subjects• performance markedly improved if they were supplied 

with an error detector. The Audiograph served this function and, thus, 

resulted in an improvement in performance. One notes that whenever 

the instructor acted as an error detector the students• performance 

also improved. 

The Audiograph served as a motivator. Some of the subjects were 

quite disappointed when they found out that they were in a group that 

was not to be given the audio stimulus. 

The Audiograph appears to be useful as a device to motivate the 

students and to act as a one-on-one error detector. One notes that 

similar results could be obtained from a one-on-one instructor to 

student scheme. The later procedure is not feasible from an economic 

standpoint. 

From an engineering standpoint, one notes that feedback appeared to 

be of great importance in the performance of the system. In the case 

of the freehand sketches one noted the need for a reference input 

especially in the case of subject 2-B. This subject was quite capable 

of tracing lines, but was unable to freehand sketch the geometric 

figures. 

7-7. The Coordination Experiment 

The purpose of the coordination device was to enable the student 

to practice eye muscular coordination exercises with the device 
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providing instant feedback in case the subject made an error. The 

feedback used in this case was a stimulus in the form of an audio tone. 

The experiment was intended to evaluate the effects of the audio 

stimulus on the subject's performance and to note any changes in his 

eye muscular coordination. 

7-8. The Subjects 

Three subjects were used in this experiment. All of the subjects 

were students at the Starky Developmental Center at Wichita, Kansas. 

The subjects were given code names and will be referred to in this 

thesis by the code name rather than their given names. 

Subject number 5 is a mongoloid with poor coordination. 

Subject number 6 is a mongoloid with poor coordination. 

Subject number 7 is a mongoloid with poor coordination. 

7-9. The EXPeriment 

In this eXPeriment, the subjects were required to thread a loop of 

3/~ inch diameter over a 1/16 inch diameter wire shaped into a slight 

spiral. The instructor would count the number of times that the audio 

signal would sound as the student attempted to thread the loop over the 

wire. If the count exceeded 10, the instructor quit counting and marked 

a score of 10+ in the evaluation sheet, Figure 15. At least two counts 

of the students performance were made during the training session. The 

nominal time of the training session was 5 to 10 minutes. A count was 

normally made near the start of the training session and at the end of 

the training session. The subjects were given training and evaluated at 



least twice a week. The instructor made such comments as she deemed 

appropriate in the space provided on the evaluation sheet. 

The evaluation of this experiment is based upon the instructor 

comments since they lay the ground rules for a particular subject and 

expose items that cannot be covered by a simple count. 

7-10. Results 

A subject-by-subject discussion of the results will be given. 

Subject number 5 is a mongoloid with poor coordination. This sub­

ject used both hands during the experiment and was sitting down. This 

subject was left handed and the instructor noted in session number 4 

that the subject performed better if the loop was initially pointed to 

the left. Subject number 5's results are given in Table III. 

TABLE III 

SUBJECT NUMBER 5 RESULT.S 

Session 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1st Count 10+ 9 8 9 7 8 7 8 3 6 5 4 4 0 2 0 1 

2nd Count 10+ 10+ 8 7 5 0 8 6 5 0 2 5 2 3 2 0 0 

Subject number 6 is a mongoloid with poor coordination. This 

subject's results are given in Table IV. 
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TABLE IV 

SUBJECT NUMBER 6 RESULTS 

Session 1 2 3 4 5 6 7 8 9 10 11 12 13 

1st Count 

2nd Count 

10+ 10+ 10+ 7 8 10+ 10+ 10+ 10+ 10+ 9 10+ 10+ 

10+ 10+ 10+ 9 8 5 7 10+ 10+ 8 10+ 6 10+ 

Subject number 7 is a mongoloid with very poor coordination. This 

subject on his initial tries continually touched the loop, thus, 

receiving a continuous audio tone. The subject then stood up and 

seemed to have better control over his actions. 

The results of this subject are given in Table V. It is apparent 

that, in the case of this subject, a higher number than 10 should have 

been chosen for an upper limit since most of his scores were 10+. 

However, the instructor noted in her comments that the subject was 

improving in his performance. 

TABLE V 

SUBJECT NUMBER 7 RESULTS 

Session 1 2 3 4 5 6 7 8 9* 10 11 

1st Count 10+ 10+ 10+ 10+ 10 10+ 10+ 10+ 10+ 10 10 

2nd Count 10+ 10+ 10+ 10+ 11 10+ 9 9 10+ 7 8 

*The instructor noted that the subject was hyperactive this day 
and was not doing his work in his usual manner. 
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7-11. Comments on the Results 

Each subject that participated in this experiment showed an im­

provement in the eye muscular coordination required by the coordination 

game. 

Subject number 5 made the most dramatic improvement and it is 

expected that in the future he will be required to use a smaller loop 

than the 3/~ inch utilized by the coordination game. 

The coordination game seems worthwhile from the standpoint of 

motivation. The subjects enjoy trying to thread the loop and as a 

byproduct are doing an eye muscular coordination exercise. 

The game acts as an impartial reference and gives an audio stimulus 

whenever an error is made. 

The difficulty of the task may be programmed to fit the needs of 

a particular subject. For example, subject number 5 apparently needs a 

smaller loop in order to make the task more challenging to him. Subject 

number 6 and subject number 7 apparently needed a larger loop. 

The difficulty of the task should be such that it challenges the 

student, but is not so difficult that the student feels that it is 

hopeless for him to attempt the task. 



CHAPTER VI II 

SUMMARY AND CONCLUSIONS 

8-1. Summary 

A comprehensive literature survey into the existing electronic and 

electromechanical aids for the handicapped indicated that a great deal 

of progress has been made in the area of electronic and electromechan­

ical aids for the visually handica~ped and for the physically 

handicapped. 

In the case of electronic and electromechanical aids for the vis­

ually handicapped, the aids fell into three broad classes. Those 

devices that are intended to enable the blind person to read printed 

material, those devices that are used to enable the blind person to 

follow a path and have knowledge of that path when he is walking, and 

those devices that are intended to enable the blind person to 11 seeH. 

The advent of micro-electronic and dependable battery supplies has 

aided the development of these devices. 

Each of the above mentioned aids for the visually handicapped make 

use of other senses to convey information to the handicapped individual. 

Typically, the channels used are the auditory channel and the tactile 

channel. Evidence exists indicating that many of the earlier tactile 

reading devices were bandwidth limited, i.e., did not have sufficient 

bandwidth to effectively convey the necessary information. The reading 

rate using the tactile devices varied from 15 words per minute to 60 
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words per minute. This rate, while certainly is much better than 

nothing, is still so slow that it is uncomfortable for the person doing 

the reading. 

An experiment was conducted in which five sighted individuals were 

required to read aloud a passage from a book under the conditions that 

only one letter of word was exposed at a time and the individual was 

required to do his own scanning. The reading rate obtained under these 

conditions ranged from 22 to 36 words per minute. Each of the subjects 

complained that this reading rate was so slow that it was very 

uncomfortable. 

This indicated that those subjects using single letter scanning 

tactile devices who read at a rate of 20 words per minute were doing 

quite well. In addition, the reading rate of 60 words per minute were 

performing at a remarkable rate. 

The devices utilized to enable the blind to see are still in the 

laboratory stage. They involve a videocon camera and use a rather large 

area of the back as the point of tactile stimulation. The vision is to 

a great extent 2-D although there is some evidence that 3-D vision is 

possible. The visual acuity of this device is 20/600 and when one con­

siders that a person is considered legally blind whenever his vision is 

20/200 he begins to appreciate the magnitude of the problem. 

Bio-electric prosthetic control systems were investigated and it 

was noted that there has been progress in this area. The matter of the 

man-machine interface is still the primary problem. Those systems that 

tie directly into the nervous system are still in the very early 

experimental stages. 



A great deal of research has gone into the area of the pick-up 

probes. By and large the conductive probes are unsatisfactory due to 

the irritation caused by the conductive jelly. Work is proceeding in 

the area of capacitive pick-up probes. 
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More basic research is needed in the definition of the nature of 

the bio-electric signals. For example, what is the nature of the signal 

that causes one to twitch a finger as opposed to the signal that causes 

the hand to grasp an object? 

The systems engineer, in dealing with prosthetic devices, is faced 

with a problem involving a lumped and a distributed parameter system. 

The exact dynamics of the biological system are not well defined indi­

cating that more basic experimentation is needed in this area. 

The development of electronic and electromechanical aids for teach­

ing the mentally handicapped has been primarily concentrated in the area 

of teaching machines. Teaching machines are uniquely applicable to the 

training of the mentally handicapped; however, their price has mitigated 

against their widespread use. Teaching machines would be especially 

useful in the home of the retarded child, but again this is not eco­

nomically feasible with most of the present day devices. 

The Audiograph, a teaching aid for the mentally retarded, was 

developed in conjunction with this thesis. This device is designed to 

aid in the development of the visual muscular coordination skills needed 

by the retardee in order to be able to write. The student is required 

to trace a template with a probe and if he makes an error is given an 

audio stimulus. 

An evaluation of the Audiograph at the Starkey Development Center 

at Wichita, Kansas, indicated that the device has merit. It is 
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especially useful in motivating the students to practice the repetitious 

boresome exercises that develop the necessary eye-muscular coordination 

used in the task of writing. The Audiograph serves the purpose of an 

error detector and gives the student an audio stimulus whenever he 

strays from the confines of a prescribed template. 

It was noted that often the students were unaware that they were 

making a mistake when tracing a figure or letter. In addition, they 

often started the task without being on the lines of the figure they 

were required to trace. 

The coordination game developed in conjunction with the Audiograph 

was useful in motivating the students to practice eye-muscular coordi­

nation exercises. In this case, the exercise consisted of trying to 

thread a loop over a spiral wound wire. If the student touched the 

wire with the loop, he was given an audio tone to indicate that he had 

made an error. 

The difficulty of the task involved in using the Audiograph can be 

varied to fit the capabilities of a particular student. If the student 

has very poor coordination, he would be started out on a template with 

wide grooves and in the coordination game a large loop and a wire that 

is nearly straight. The limits of the acceptable error region would be 

narrowed as the student's performance improved. 

The price of the Audiograph in kit form is less than five dollars 

making it well within the reach of most of the handicapped children. 

This device could be used in the home by the relatives of the handi­

capped child and would act as an important adjunct to the in-school 

training of the child. 



8-2. Observations 

It was noted that although the retarded subjects seemed to have 

difficulty in learning to perform routine tasks, they seemed to have 

very little difficulty in learning how to operate the Audiograph. In 

particular, they quickly learned how to connect the Audiograph such 
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that it would give them an audio tone whenever they touched the template. 

Secondly, it was noted that most of the subjects were fully aware 

that they were not sketching the geometric figures in the proper fash­

ion. They seemed to have a mental picture of how the figure should look 

but were unable to command their visual-muscular coordination system 

well enough to create the geometric pattern. 

In particular, one subject started to sketch a triangle from the 

left hand corner up but could not get the line from the right hand 

corner to intersect with the line from the left hand corner. He then 

in desperation placed his left hand such that it intersected the right 

hand line and traced along his hand in order to close the figure. 

It is noted from a consideration of Figures 53, 5~, and 55 that the 

sketches of subject are nearly equal in size to the reference figures. 

The sketches of subjects 8 and 9 while correct geometrically are not 

the same size as the reference figure. Subject 7 was given instruction 

on the Audiograph. 

8-J. Conclusions 

The development of electronic and electromechanical devices to aid 

the handicapped has made some important strides during the last ten 

years. The advent of integrated circuits and dependable battery sup­

plies has been responsible for a good deal of this progress. 
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It appears that a good deal of the effort in the development of 

electronic and electromechanical aids for the handicapped has been 

based on "seat of the pants engineering" and that a good deal of basic 

research needs to be done. 

A number of the more sophisticated devices mentioned in this thesis 

are still in the laboratory stage and exist only as laboratory 

prototypes. 

The primary factor that retards the production of electronic and 

electromechanical aids for the handicapped is the fact that the market 

at best is marginal. 

For example, in the case of the visually handicapped person, the 

data taken in 1970 indicated that there were 1,090,000 severely visually 

handicapped persons in the United States. Of these persons, 56 per cent 

have an annual income of less than $J,OOO and 75 per cent have an annual 

income of less than $7,000. Thus, when one considers the number of 

visually handicapped people and their annual income, it becomes apparent 

that the market for expensive electronic aids is going to be marginal 

if the handicapped individual is required to purchase his own device. 

The engineer's role in the development of these aids for the handi­

capped is somewhat different than his traditional role. He will have 

to learn to communicate with the physiologist and the psychologist. The 

best design from a hardware standpoint may not be the best when con­

sidered from a human standpoint. As is true in most other fields 

reliability, durability, utility, and price are factors that determine 

the success or failure of a particular device. 

The Audiograph experiment indicates that this device has merit as 

a training aid for the mentally retarded. It serves to motivate the 
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student to practice boresome repetitious tasks. It acts as an impartial 

error detector and will give an audio stimulus whenever an error is 

made. Finally, in the words of an instructor at the Starkey Development 

Center, 11 At the very least, it serves the purpose of constructive busy 

work. 11 

Thus, the Audiograph has demonstrated that it is possible to 

develop a device that serves a particular need at a price consistent 

with realities of the economic situation. 

In the future, the engineer may decide to design, build a proto­

type, test it, then offer the plans or kits to the relatives of the 

persons who have need of a particular device. 

At first glance, it may seem that JO devices costing $5 each and 

that have different functions are just as expensive as one multifunction 

device costing $150. However, the fact is that JO different people can 

simultaneously use the single function devices while only one or two can 

simultaneously use the multifunction device. Thus, in a training insti­

tution it may be more practical to consider several single function 

devices rather than one multifunction device. 

8-4. Suggestions for Future Study and 

Development 

As a result of the literature survey into travel aids for the 

blind, it will be noted that the device proposed to aid the blind to 

cross a parking lot or open area in a straight line involved the use of 

a radio tuned to a local station. The ferrite antenna of the radio 

acted as a nulling device and enabled the user to travel a straight 

line within five degrees of nominal. 
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It would seem that a much simpler more straight forward unit could 

be devised by using a compass with directional alarms which would sound 

whenever the user strayed from a preset direction. 

In connection with the Audiograph, .one could use it in a testing 

situation by installing counters and timers to record the total time 

required to perform a prescribed task, the number of errors made in 

the performance of the task, and the time involved in each error. 

An experiment could be performed to test the merits of the Audio­

graph in the public school system. In particular, it would be of 

interest to determine whether or not the use of the Audiograph influ­

enced the size of the freehand sketches of the students as compared 

to the reference sketch. 

The Audiograph made use of the audio tone as a stimulus to the 

subject whenever he or she made an error. The author of this thesis is 

presently engaged in an experiment in which the audio stimulus is used 

in connection with the training of industrial workers to operate punch 

presses. In connection with this experiment, a punch press was stimu­

lated and error detectors were so connected that it is possible to 

record the total number of parts that the operator produces, the total 

number of bad parts that he produced, and the number of accidents that 

the operator had during the training session. 

The press is so constructed that having an accident does not cause 

the trainee to lose a finger or hand but instead he is given a loud 

blast on a horn whenever the situation indicates that he would have 

been involved in an accident. 

It would seem that the above mentioned area would be a fertile 

field for future study. For example, one of the problems facing the 
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present society is the retraining of individuals to perform other jobs. 

It appears that it would be helpful if there were reasonably priced 

training aids available that would eliminate the danger from the per­

formance of the task, yet places the trainee in a realistic training 

environment. 

Another possible use for such devices would be in pre-employment 

screening tests. It would be most helpful to have some idea of the 

workers manual dexterity and his attitude toward safety prior to employ­

ing him for a potentially hazardous position. 

Speaking from the standpoint of an engineer and not a physiologist, 

one cannot help but notice that the uncontrollable movement of a 

spastic's hands very closely approximates the result one obtains by 

removing the velocity feedback from a high gain servo system. One 

wonders what the result would be if accelerometers were placed on the 

hands and a tactile or auditory feedback as a function of the motion 

were given to the spastic. The results of velocity feedback are quite 

remarkable in the case of high gain physical servo system. One can 

only hazard a guess as to what the results would be when external 

velocity feedback is coupled to the biological system. 

Engineers working in the area of electronic and electromechanical 

aids for the handicapped should remember that the device should only be 

sufficiently sophisticated to accomplish the intended purpose. It 

should be reliable, easy to operate, and safe. Its price should be 

consistent with the realities of the proposed market. 

In conjunction with the price criteria one is forced to conclude that 

the handicapped people will need external financial aid if they are to 

be given a chance to :reap the rewards of the technological developments. 
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