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ABSTRACT

ON THE RELATION BETWEEN ENVIRONMENTAL WIND VEER 

AND CIRCULATION IN SEVERE STORMS

It h a s  b e e n  o b se rv ed  that  c i r cu la t io n  is re la ted  to the environment 

of severe  s torms .  Forecas t ing  te chn iques  u s e  ve r t ica l  varia tion of the 

environment a s  a fo recas t in g  pa rameter ,  A simpli fied  model of the growing 

storm is u s e d  to d e sc r ib e  a tm ospher ic  cond i t ions  which are evaluated  

to find c h a r a c t e r i s t i c  ra t io s  for u se  in the a n a l y s i s .  The early morphology 

of the sev e re  storm is  cons ide red  q u a n t i t a t i v e ly ,  wherein a b a lan ce  occurs  

be tween the converged  low leve l  momentum and the obs t ruc ted  momentum 

of the middle l ev e l  a ir  f low.

M ath em a t ica l  formulations  are  de r ived  for the s to rm's  motion and 

indiv idual func t ions  are  p resen ted  to r e p re se n t  various  individual  physica l  

factors  tha t  may contr ibu te  to the motion.  D e ta i led  cons ide ra t ion  is given 

to  two of th e se  f a c to r s ,  whi le  the remain ing fac to rs  a re  desc r ibed  for future 

u s e .

The e f fec t  of environmenta l  wind veer  with he igh t  on the motion of 

the storm is con s id e red  through ana logy  with  a hydrodynamic exper iment 

of curving motion of an  immersed cy l in d e r .  Q u a l i t a t iv e  agreement with 

the theory is  shown in an  exper iment  in which a cy l inder  is  moved in a
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curved  path through a s ta t ionary  flu id .  The force  that  provides  ro ta tion 

about  the swivel  is  ana logous  to the ambien t  a i r  tha t  ch an g es  d i rec t ion  

wi th  he igh t  and fozces the storm to move in a curved pa th .  For paths 

cu rved  a n t icy c lo n ica l ly  the vort ici ty  imparted to the storm is  c y c lo n ic .  

C a lc u l a t i o n s  of a tmospheric  c i rcu la t ion  induced in this manner are  shown 

to be s ign i f ican t  and comparable  to tornadic  c i rcu la t ion .

Comparison  of the theore t ica l ly  computed s t reak  leng ths  with the 

exper imenta l ly  measured  va lues  shows tha t  c i rcu la t ion  of the correct  s ign 

i s  p re sen t  in the fluid; however ,  a non-uniform d is t r ibu t ion  of i l l -de f ined  

s t r e a k s  due to a  combinat ion of exper imenta l  d i f f icu l t ie s  precluded 

e x a c t  quan t i ta t ive  ve r i f ica t ion .  Development  of be t te r  f luid tracers  a s  

wel l  a s  be t ik :  photography techn iques  will  provide further ver if ica tion of 

the  ana logy .

The eddy v i s co s i ty  in f luences  the drag on the storm which c a u s e s  

the  storm to curve during i ts  growth. The in c re a se d  mixing a t  the 

per iphery  of the storm between ambient  a ir  and storm air  i n c r e a s e s  the 

s to rm 's  r e s p o n se  to momentum a t  h igher a l t i t u d e s ,  which re s u l t s  in i t s  

curved  pa th .  If  the hydrodynamic ana logy  be tween  the curving cyl inder  

exper iment  and the curving storm path i s  v a l id ,  then the curved path due  

to a veer ing environment c a u s e s  cyc lon ic  c i rcu la t ion  to e x i s t  about the 

s torm of a magnitude  comparable to twice  the vort ic i ty  of the curving path.  

The vor t ic i ty  induced at the periphery of  the storm is the vort ici ty  due 

to the curvature  of the pa th ,  and the source  of this vort ic i ty  is the
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environmenta l  w inds  tha t  veer with he igh t .
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ON THE RELATION BETWEEN ENVIRONMENTAL WIND 

VEER AND CIRCULATION IN SEVERE STORMS

I -  INTRODUCTION

A. General  D i s c u s s i o n  of Storm Growth 

The environment in which  seve re  storms deve lop  i s  charac te r ized  

by complexity of the a tm osphere .  It is  d iv ided  into layers  of differing 

wind ve loc i t i e s  and moisture d i s t r ib u t io n  varying with  he igh t .  The v a r ia ­

t ion of moisture is  re la ted  to the  veer ing (turning c lockwise)  and s h e a r ­

ing ( increasing in speed) of the  lower a tm o sp h ere ,  with the l a rg e s t  

varia tion found in the two lower layers  of converg ing  a i r .  The moisture  

d is t r ibut ion  var ies  abruptly from mois t  to dry through a temperature  in ­

vers ion  that  c ap s  the moist a ir  in the lower l e v e l s .

Although each  c a s e  of s ev e re  storm environment will  undoubtedly 

have  differing environmenta l  tempera ture  and  m ois tu re ,  the genera l  

c h a r a c te r i s t i c s  of wind and mois tu re  d is t r ibu t ion  appea r  in models useful 

for fo recas t ing .  To make the s ev e re  storm amenable  for s t u d y , a model of 

the  storm in an environment con ta in ing  only  the e s s e n t i a l s  is  d e sc r ib e d .

In th is  simplif ied environment the wind is a ssum ed  to be inc reas ing  in 

speed  with height (shearing) and  changing  d i rec t ion  in a c lockw ise  s e n s e
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with he igh t  (veer ing) . The mois ture  d is t r ibu t ion  has a d i s c o n t in u i ty ,  an 

invers ion  layer ,  where warm and very dry a i r  caps  the moist  a i r  be low .  

Through the invers ion the wind d i rec t ion  changes  abruptly  from sou ther ly  

to w es te r ly  (usua lly  SSE to SSW) . The top of the environmenta l  a tm osphere  

governed by the  s tab i l i ty  a s s o c i a t e d  with  the s t ra to sphe re ,  d e c e l e r a t e s  

the  upward motion of the storm a i r  and l im i t s  i t s  ex tens ion  into the 

s t r a to sp h e re .  This environment  r e s em b le s  the Great Plains  cond i t ion  in 

the  sp r ing ,  the place and time when most severe  storms occur .

As the cloud grows in the simpli fied environment,  souther ly  

momentum from low le v e l s  is con t inuous ly  transported upward w ith in  the 

c lo u d .  An accompanying downdraft  may transport  w es te r ly  momentum 

downward s im u l t a n e o u s ly , As the  cloud extends  to h igher a l t i t u d e s  the 

w es te r ly  momentum mixes  with the  sou ther ly  momentum in the c loud to 

give a r e su l tan t  motion vec to r  in the w e s t  of  south d i rec t ion .  As the 

c loud grows deepe r  into the w es te r ly  curren t ,  the westward  component  

i n c r e a s e s ,  giving the storm a pa th  curved  an t icy c lon ica l ly .

In it ia l  movement will be from the south  in the same d i re c t io n  a s  

the a i r  below the cloud b a s e , As the cloud grows upward ( inc reas ing  in 

height) and outward (increasing  in  diameter)  it beco/nes more in f luenced  

by the  upper level  a i r .  The change  in motion serves  to in c re a s e  the 

r e la t iv e  inflow, which in c r e a s e s  convergence  of the low level a i r .  If 

condi t ions  are suff ic ient for continued growth and movement in a  curved 

pa th ,  c i rcu la t ion  may be imparted so tha t  the s torm's  d irec tion  of motion



dif fers  from the d i rec t ion  of any ambient wind within  i t s  dep th .

During th is  s t a g e  of deve lopm en t ,  when the s to rm 's  motion is  

d if ferent from the  wind in any layer  with in  the depth  of i t s  environment,  

the storm is in a q u a s i - s t e a d y  s t a t e  and  has  the  following c h a r a c t e r i s ­

t ic s :

(a) It con ta in s  a s in g l e ,  g ia n t  c i rcu la t ion  c e l l  which is i t s  
s im p le s t  s t ru c tu re .

(b) It u su a l ly  l a s t s  for a number o f  hours .

(c) In te n se  ra in s h o w e rs ,  g ian t  h a i l s t o n e s , and  to rnadoes  are 
frequently  o b se rv ed .

Although the m ech an ic s  of the breakup of a seve re  storm are  not 

well  known, g enera l  agreem ent  e x i s t s  that  there  i s  a d e c r e a s e  in the 

upward flux of mois t  a i r  which a l lows  the top of  the storm to be carried  

away (blown off) by h i g h - s p e e d  w es te r ly  w in d s .  The most obvious  c a u s e  

of a d e c r e a s e  in upward flux of moist  air  is  a d e c r e a s e  in av a i lab le  

potentia l  in s ta b i l i ty  in the lower leve l s  where a ir  is  converged  into the 

storm, and a d e c r e a s e  in m ois tu re ,  or temperature  of converged  air  which 

may be su f f ic ie n t  to e l im ina te  the n e c e s sa ry  product ion of la ten t  h ea t  by 

condensa t ion  tha t  suppor ts  the updra ft .



B. The Scope of this Study 

This s tudy will  t r ea t  the storm from the time i t  becomes  influenced 

by the  air above  i ts  c loud b a s e  to the time vort ici ty  i s  imparted to i t .

Examples  of storm growth and motion will be g iven  as wel l  a s  an 

a t tem pted  e x p lana t ion  as  to why some s torms move in a curved pa th .

The e f fe c t  shown through exper imenta l  ana logy  is  how the curved 

motion of the storm cloud manifes ts  a c i r cu la t ion  in the environment 

about the  s to rm .



II -  DEVELOPMENT OF THE STORM MODEL

A . D e sc r ip t io n  of the Cyl indr ica l  Storm Model  

In n a tu re ,  the s to rm is probably composed of one  major and one  

or more minor ve r t ica l  c i r cu la t io n  c e l l s .  I t  is  s impli f ied  in th is  s tudy to 

one ver t ica l  c i r c u la t io n  c e l l  throughout i t s  depth  with minor v e r t ica l  c i r ­

cu la t io n s  at  the  b a se  and  top .  This simplif ied model i s  supported  by much 

d e sc r ip t iv e  w ork ,  Goldman (1962), Fuji ta (1963), and Browning (1964) , 

which shows tha t  the m o s t  seve re  storms conta in  the s m a l l e s t  number of 

c e l l s .  The minor c i r c u la t io n  c e l l s  a t  the bottom are  the  cumulus and smal l  

towering cumulus  that  surround the major v e r t ica l  motion and are  u sua l ly  

connec ted  a t  the b a s e .  This  g ives  the storm the a p p ea ran ce  of hav ing  a 

larger d iam e te r  a t  i t s  b a s e  than a t  the top.  These  minor c i rcu la t ions  a l s o  

ra i s e  the inve rs ion  around the major storm updraft .

The c i r c u la t io n s  a t  the top are  due to the a ir  sp read in g  a s  it is  

kep t  from penetra t ing  far in to  the s t r a to sp h e re .  These  c i r c u la t io n s  a re  

v is ib le  a t  the edge of the  "anv i l  top" on the u p w in d ' s id e  where  the 

abundance  of dry ambien t  a i r  he lps  to de l in ea te  the boundary  of the c loud  

by evap o ra t io n .  The wind en h an c e s  the ver t ica l  c i rcu la t io n  by i t s  h igh  

speed  r e l a t iv e  to the s p e e d  of c loud elements  (caus ing  overturn ing a t  the 

edge of the c loud  m a s s ) . If there were no ambient a i r f low ,  c i r cu la t io n
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a t  the top would be similar to the hydrodynamic ana logy  o f  a je t  im­

pinging on a  hor izonta l  wail a s  ske tched  in Figure 2.1.  The overturning 

tha t  mixes  the v e lo c i t i e s  is not included as  part  of the model even  though 

the  r e s u l t  (a mixed profile) is included.

A de ta i led  model of the ambient flow c o n s i s t i n g  of five layers  of 

differing motion c h a r a c t e r i s t i c s  and two a d jac e n t  layers  of differing 

mois tu re  has  been developed to r e p re se n t  the sev e re  storm. (See 

Goldman,  1968) This model i s  c o n s i s t e n t  with the storms that  occur in 

the  Great Pla ins  a r e a ,  the geographic  locat ion  of the maximum frequency 

of severe  s to rms. In this model ,  the inflow layers  c o n s i s t  of a layer  of 

mois t  a ir  covered  by a layer of dry a ir  tha t  combines  to  d eve lop  the ra in  

coo led  a i r ,  co ld  a i r  outflow. Since our principal conce rn  is with  the 

s to rm 's  motion,  the dep ic t ion  of the storm will  be  s impli fied  by neglecting 

the dry a i r  inflow layer  that provides  the cold  a ir .  A further s im pl i f ica t ion  

will  be made by asc r ib ing  a cy l indr ica l  shape  with v a lu es  to the  o ther­

w ise  genera l  model.

The depth  of the storm (from b a s e  to top) i s  15 k m. *  I t s  lower,  

middle ,  and upper diameters  a re  30 km, 10 km, and  80 km, re sp ec t iv e ly .T h e  

genera l  shape  of the storm Is cy l indr ica l  in the middle  layers  with the top 

and bottom resembling  the ends  of a spool with a plume s treaming out of

* For s implic ity  the storm dimensions  a re  ch o sen  to be to the n e a r e s t  5 km 
of  tha t  which is u su a l ly  observed v i s u a l ly ,  pho tographed ,  or measured  by 
the various  w eather  radars .



Figure 2 .1  Ske tch  of a j e t  impinging on a w a l l .  This is  analogous  to 
the flow near  the storm top,  in the anv i l ,  for a neg l ig ib le  horizonta l  
ambient  wind v e lo c i ty .



80km

10 km —

.....

INVERSION

Ground

Figure 2 .2  P e rspec t ive  view of the simpli fied  storm model.  Inve rs ion  
i s  broken through a t  the storm. See text for de f in i t ion  of s y m b o l s .



the  top. The shape  of the top  is  somewhat e l l i p t i c a l  in front with the major 

a x i s  o r ien ted  para l le l  to the ambient  wind d i rec t ion  (and a s t ream er  out the 

b a c k ) . The term "an v i l  top" b e s t  d e sc r ib e d  the s id e  v iew of the storm top. 

The loca t ion  of the cy l in d r ica l  shape  ex tending  down to the  low leve l s  is 

approx im ate ly  a t  the  upwind focus of the e l l i p t i c a l - s h a p e d  top.  Figure 2 .2  

is  a p e r s p e c t iv e  view of the s implif ied s to rm, and Figure 2 .3  is the top 

view. A few large storms v iew ed  from a i rc ra f t  veri fy  this  de sc r ip t ion .

W ith  this simple  g e n e r a l i z e d  form of the  storm c loud  e s t a b l i s h e d ,  

we c a n  add a few d e ta i l s  t h a t  will be usefu l  in eva lua t ing  terms in the 

equa t ions  of motion of the storm. The lower por tion (30 km) and the upper 

portion (80 km) are c o n s id e red  hydrodynamical ly  rough b e c a u s e  of their  

obvious  eddy  a c t i v i t y ,  while  the middle portion  is  c ons ide red  to be r e l a ­

t ive ly  smooth .

B. C o n s id e ra t io n  of Environmental  Flow Around Storm

Flow around a barr ie r  is deve loped  (as in most hydrodynamics)  as  

a  pure flow of f lu ids  a s  if no barrier e x i s t e d .  In fixed c o o rd in a te s  the  in­

s t a n t a n e o u s  s t ream-l ines  for a moving c y l in d e r  are the same a s  those  for 

a  double t  ( s o u rc e - s in k  combination) .  The double t  a s  shown in Figure 2 .4  

h a s  a ve loc i ty  vector  v everywhere  on a c e r t a in  c i r c le  and the  flow inside  

th a t  c i r c le  c a n  be rep laced  by  a solid  cy l in d e r  (or barrier)  moving a t  speed
• 4

V .  (The sam e flow r e s u l t s  o u ts id e  the c i r c l e  with e i the r  the  double t  or the 

cy l inder) .
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UPPER CLOUD BOUNDARY
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Figure  2 . 3  Top view of the storm.
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The double t  f low may be unfamiliar because  the flow around a 

cy l in d e r  Is u su a l ly  s tud ied  re la t iv e  to the  cy linder (or In re la t ive  c o -  

o rd ina tes) .  If  a  ve loc i ty  vec to r  v Is subtracted  from the doublet  flow 

everywhere ,  the flow In Figure 2. 5 r e s u l t s .  In the re la t ive  coord ina tes  

moving with the cy l inder  the  double t  Is confined to the Inside of the 

c i rc le  and the  flow around the  c i r c le  Is the familiar flow around a cy l in d e r  

or a ir  foil. This  flow can  be c re a te d  by ju s t  s treaming fluid p a s t  a d o u b l e t , 

but It Is more common to c r e a t e  the flow outs ide the cyl inder by moving 

a cy l inde r  In a fluid (in a tow tank) or streaming fluid past  the cy l inder  

(in a wind tunnel) .  In e i the r  c a s e  the flow seen from the cy l inder  Is the 

r e la t iv e  flow In Figure 2 . 5 .  If  the cy l inder  Is moving, then the flow in 

fixed (non- re la t ive )  c o o rd in a te s  Is a s  In Figure 2 . 4 .

In th is  s tudy most of  the motion will be d i s c u s s e d  re la t ive  to 

a moving " c y l i n d e r "  , the g ian t  thunderstorm cloud.

Logic d ic t a t e s  tha t  an  Iso la ted  severe storm be trea ted a s  a barr ie r  

with am bien t  a ir  f lowing around It. This logic c a n  b e s t  be accep ted  by c o n ­

s ider ing  a s imple  ana logy .  Suppose  we have a long trough of ke rosene  and 

we allow colored  water  from a hose  to flow Into It. The flow ra te  of the 

water Is suf f ic ien t  to a s s u r e  a con t inuous  stream. Now move the hose 

from one end of the trough to the other.  Since the  kerosene  Is d i sp laced  

by the " c y l in d e r "  of water from one end of the trough to the other,  there 

mus t be hydrodynamic barr ie r  flow of kerosene around the wate r ,  I. e .  ,
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Figure 2 . 4  Flow around a cy l inder  with  veloci ty  v s e e n  in fixed 
c o o r d i n a t e s .
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Figure 2 .5  W hen  a ve loci ty  v is su b t ra c te d  from the f low,  to put it  
into re la tive  c o o r d in a t e s ,  the t rad i t iona l  picture of flow around a 
cylinder r e s u l t s .  The double t  flow is now in s ide  the cy l inde r .
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the  ho se  could be ex tended through the  k e ro s e n e  and a lm os t  the same 

flow would r e s u l t .

In a very rea l  s en se  a la rge ,  s t rong  updraft ,  s eve re  thunders torm 

im i ta te s  the w a te r -k e ro se n e  flow. The m ois t  a ir  r i s e s  unti l  it  is warm 

and becom es  a j e t  of upward flowing m ois t  a i r  through dry a i r .  This 

m ois t  a ir  r i s e s  to the tropopause  and s p r e a d s  out.  The mois t  j e t  moves 

re l a t iv e  to the middle level dry a ir  and  mus t  serve  a s  a hydrodynamic 

b a r r i e r .

C .  The Descr ip t ion  of the Storm's  Motion 

As is  shown in Figure 2 . 2 ,  the  storm v e lo c i ty ,  (^ , is d i rec ted  

b e tw een  the  upper and lower v e l o c i t i e s .  We define a l l  of the a ir  ve loci ty  

r e l a t iv e  to the storm by

U = V -  ( /  (2.1)

where V is  the ve loci ty  re la t ive  to the ground. All motion is formulated 

to be re l a t iv e  to the storm. A s ta t ionary  o b je c t  would have  a re la t ive  

ve loc i ty  - (Z r e la t iv e  to the storm. A wind normal to the vector  Qf would 

have  a -(% added to i t  and the r e s u l t a n t  would be d i rec ted  toward the storm 

of the front s id e .  The u se  of r e la t iv e  co o rd ina tes  a l lo w s  motion to be 

co r re la ted  with obvious  fea tures  of the storm such  a s  the cloud plume 

(top v iew of s to rm ) .
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U sing  the  s u b s c r ip t s  P, D ,  W for the  upper (plume level — the 

l eve l  of the  anvil  top  where the plume o c c u r s ) , middle (dry level)  , and 

low (wet level)  r e s p e c t i v e l y ,  we can  draw a hodograph of the undis tu rbed 

environmenta l  flow re la t iv e  to the storm. This is  shown in the i n s e t  of 

Figure 2 .2  with the re l a t iv e  s t ream l ines  drawn on the p e r sp ec t iv e  view of 

the  storm.

W e now d i s c u s s  the a n te c e d e n t s  of the a ir  a f fec t ing  the c loud

motion. A c o n s id e ra b le  amount of v e r t i c a l  sh ea r  e x i s t s  be tween  the

a i r - f low  j u s t  be low  the inve rs ion  and the s u b - in v e r s io n  a i r  near  the ground,

The air  a f fec t ing  the  c lo u d 's  motion by momentum mixing a t  the c lo u d ' s

edge  is  in the c loud (occurring from the c loud b a s e  to the inve rs ion  l e v e l ) ,

and the a ir  that  a f f e c t s  the motion by conse rv ing  i ts  momentum is  below

the  c loud .  If we de f ine  U . (velocity  of the su b - in v e r s io n  air) a s
sia

the ve loc i ty  of th a t  a i r  tha t  will  be drawn into the storm, and a s  the 

ve loc i ty  of that  a i r  in and ju s t  be low the invers ion  and in the c loud ,  then 

most of the  air th a t  mixes  with  storm air  a t  the  cloud boundary a s  it  r i s e s  

h a s ' a m b ie n t  v e lo c i ty ,  U ^ .

In th i s  s im ple  model the re la t ive  s p e e d s  of lower,  middle and 

upper w inds  are  10,  3,  and 30 m s e c " ’" r e s p e c t iv e ly .
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P .  Formulation of the Forces  

The ex i s t en c e  of the  storm in the complex multi - layered env i ron­

ment c a u s e s  momentum exchange  through inflow layers  and forces in  the 

o the r  layers  tha t  control  the s to rm 's  motion. In order to solve  the motion 

problem,  we formulate the  a c c e le r a t i o n  of the storm as  be ing the re su l t  of 

a  combina tion of a l l  the forces  tha t  could a c t  and a re  s ign i f ican t  in the 

s to rm 's  motion. Both d e sc r ip t iv e  and a n a ly t i c a l  symbols  are  used t o  r e p re ­

s e n t  the fo rces .  The a cc e le r a t i o n  of the storm is g iven  by

+ + —  diff .  (2 . 2 )
rK p

w h e re  0  is the s to rm 's  ve loci ty  and i ts  time ra te  of  ch an g e ,  ^  , is the

a c c e l e r a t i o n .  The terms on the  right s ide  of the  eq u a t io n ,  multiplied by

— expl ic i t ly  (for the f i r s t  three) and implic it ly  (for the  l a s t  two),  rep resen t  the 
m

time r a te  of change of momentum of the storm, the  drag fo rce ,  the l i f t  force ,  

t h e  propagat ion  e f fe c t s ,  and the p ressu re  d i f fe ren t ia l ,  (m is the mass o f  the 

storm) re sp ec t iv e ly .  Each of the  five terms is def ined  be low ,  separa te ly .
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The f i r s t  two terms a re  t rea ted  in detail  while  the  o the r  terms are  d i s ­

c u s s e d  and g iven  a s u g g e s te d  formulation .for future u s e .

1. Change of Momentum Term 

Since  the storm is fueled from the c o n v er s io n  of water  vapor to 

l iqu id  in  the  r is ing  converged  s u b - in v e rs io n  a ir ,  the imparting of  this  a i r ' s  

momentum to the storm would have  some effec t  on the en t i re  s to rm 's  motion.  

If r e p r e s e n t s  the ve loci ty  of the su b - in v e rs io n  air  that  i s  converged  

in to  the s to rm, then there  is a contribution to the a c c e le r a t i o n  of the storm 

due to the l o s s  in hor izonta l  momentum of th is  a i r  wh ich  can  be r ep re sen ted  

by . where  0  is  the  m ass  of a i r  taken in to  the storm per uni t  t ime.
S i d

Note  tha t  U . is  ve loc i ty  r e la t iv e  to the storm. Since U . is  a function 
s i a  s ia

of bo th  the ambient f low re la t ive  to the ground and the storm motion,  then 

i t  c h an g e s  wi th  e i the r  the low le v e l  environmenta l  a i r  motion or the source  

s t r e n g th .

This momentum is transferred  to the storm b e c a u s e  the a i r  has  no 

hor izonta l  ve loc i ty  r e la t iv e  to the storm as it moves upward with in  the 

moving column of updraft  toward the  t ropopause ,  n ea r  the  storm top.  In 

the a b s e n c e  of com pensa t ing  forces  the storm would a c c e l e r a t e  in the 

d i rec t ion  of this r e la t iv e  v e loc i ty .

I t  wi l l  be  shown that  the storm can move a t  a  c o n s ta n t  ve loc i ty  

under c e r t a in  c o n d i t io n s ,  but in order to do this we formulate the 

a c c e l e r a t i o n  and show i t  is  ze ro .  Thus
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= ^ s i a ^  (2 .3)«

would be true and we would have  a n  acce le ra t ion  If there  were no other 

" fo rces"  acting on the storm.  Is the storm a c c e l e r a t i o n ,  D a n d  h are 

the d iameter  and he ight of t h e  cy l in d e r  represen t ing  the storm vo lum e,  

and p Is the a ir  dens i ty .

2. Drag Force

The e f fec t  of the  drag of the  ambient a i r  on the storm is the  

In tegra ted  e f fec t  throughout the  dep th  of the storm c lo u d .  The en t i re  

e f fec t  of drag is rep re sen ted  by the  Integral  of the fo rce ,  F,  per d e p th ,  h ,  

of the c loud over the entire dep th  from the c loud base  l e v e l ,  W, to the 

top l e v e l ,  P. The force per unit  depth  Is given by

( 2 .4 )

where p Is the dens i ty  (cons idered  to be different c o n s ta n t s  In e a c h  of the 

th ree  l a y e r s ) ,  U Is the ambien t  v e lo c i ty  re la t ive  to the storm at  th a t  p a r t i ­

c u la r  l eve l  and Is the  drag c o e f f ic ien t  which Is expec ted  to be  re la ted

’i' The term U drops out b e c a u s e  we only c o n s id e r  U = 0,  which Is

the  v a lue  a t  the Init ial t ime.
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to the  pa r t icu la r  eddy v i s c o s i t y  a t  that  leve l .

3 .  Lift Force

The th ird  term is the  in tegral  of the t r a n s v e r se  force  t h a t  a r i s e s  

due to  c i rcu la t ion  about  the storm. This force is due  to the Kutta-Joukowski 

law th a t  is  the  p r inc ip le  behind the  l if t force in ae ro d y n am ics .  The t r a n s ­

verse  force (per un it  length) is given by

Fĵ _j = —pr U (2 .5)

where p is  the  a i r  d e n s i t y ,  U is the  r e la t iv e  v e lo c i ty ,  and F i s  the c i r c u la ­

t ion abou t  the  storm.

Just a s  the  d rag  force  w as  in tegra ted  throughout  the  s to rm 's  

d ep th ,  the  l if t  force  is a l s o  in tegra ted  throughout the  th ree  di ffering  lay e r s ,  

taking the varying d e n s i t y  and re la t ive  ve loc i ty  into accoun t .  The varying 

c i rcu la t ion  abou t  the  storm in e a c h  of the  three layers  is a l s o  t a k en  into 

accoun t .  Depending  on the method by which c i rcu la t io n  is induced in the 

ambient a i r ,  the d i s t r ib u t io n  of c i rcu la t ion  with he igh t  c an  vary from large 

pos i t ive  in the  W layer  to  large nega t ive  in the P layer .  Some of the  pro­

c e s s e s  by which  c i rc u la t io n  c a n  be induced in the  am bien t  a i r  a re :  ( 1 ) c o n ­

servat ion  of an g u la r  momentum as  the a i r  is converged in the lower l a y e r s ,  

(see Goldman,  1966), (2) d if fusion  of vor tic i ty  outward from a c en t r a l  up­

draft in so l id  ro ta t ion  (Browning and Fu j i ta ,  1965), and (3) c i r cu la t io n  (in 

the form of sh ea r  f low or "curving f lo w " ) in the ambien t  a i r  ups t ream  from
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the  storm (Goldman, 1966, Darkow, 1969) .

4 .  Propagation Effec ts

The fourth term is  the a c c e l e r a t i o n  due  to propagation e f f e c t s .

T h ese  e f fe c t s  a re  c a u s e d  by genera t ion  toward  the reg ion  of maximum

thermodynamic  in s ta b i l i ty  ( including mois ture  source) and decay  in the

op p o s i te  d i re c t io n .  This is  s e e n  most commonly in eas tw ard  moving squa l l

l i n e s  where the genera t ion  occurs  on the sou th e rn  end and decay  on the

nor thern  end .  Newton and Fankhouser  (19 64) have  d e sc r ib e d  th is  motion

toward the source  of mois tu re  and have  formula ted a funct ion that  is b a se d

on the knowledge  of the moisture  s o u r c e .  For our pu rposes  the function

should  be r e l a t ed  to the dynamic m echan ism  tha t  fo rces  the storm to move

in tha t  d i re c t io n .  Although this function  i s  y e t  to be  formulated ,  some

n e c e s s a r y  requ irements  may be l i s t e d .

The term for propagat ion  e f fec t s  is  c a l l e d  a r e s id u a l  a c c e le r a t i o n ,

R We e x p e c t  that  the term is made up of a number of factors  tha t  co n -  rK

tr ibute  to convec t ion  such  as  m ois tu re ,  s t a b i l i t y ,  l o w - le v e l  convergence  

and  even  su r face  r o u g h n e s s .  These  terms c a n  be w r i t t en  a s  K 9 Q where 

Q is  the quan t i ty  tha t  con tr ibu tes  to c o n v e c t io n .

Empirical  ev idence  derived from fo r e c a s t  ve r i f ica t ions  h a s  shown 

us  tha t  the a x i s  of maximum i n s t a b i l i t y ,  the a x i s  of maximum low level  and 

high  l ev e l  wind flow (the s o - c a l l e d  " low l e v e l  je t"  and  the " je t  s t r e a m " ) ,. 

and the middle leve l  a x i s  of maximum mois tu re  are important  for locat ing
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the  in i t ia t ion  of s e v e re  storms (Miller,  1967) . The geographic  loca t ion  

of  the  i n t e r s e c t io n  of  these  ax es  makes up the lo ca t ion  of the  fo rec a s t  

c en te r  of c o n v e c t iv e  a c t i v i t y . Just  a s  the in i t ia t ion  of co n vec t ion  has  

been  shown to be r e l a t e d  to th e se  a x e s ,  the propaga t ion  (or in reb ir th  

of convection)  is  e x p ec te d  to be re la ted  to g ra d ie n ts  a s s o c i a t e d  with  the 

a x e s  of t h e s e  q u a n t i t i e s .  The re s idua l  term may be formulated  as:

RpR = s + K 3 7 .M + K3 7 Up

+ K 7  U . (2.6)
4 S ia

where s i s  the s t a b i l i ty  index ,  M is the  middle l e v e l  mois ture  and Up and 

U . r e p r e s e n t  the j e t  stream ve locity and the converged  part  of the lowSlâ

leve l  j e t  r e s p e c t i v e l y .  The coef f ic ien ts  through a re  de termined  em­

p ir ica l ly  and  are  n o t  re s t r i c ted  to be c o n s t a n t s .

5.  Pressure  D if fe ren t ia l  

B ecause  of the  veer ing environment in which  most  s ev e re  storms 

a re  em bedded ,  the  d is t r ibu t ion  of hydros ta t ic  p re s su re  abou t  the storm is 

not sym m etr ica l .  In  an environment su ch  as  the  Great P la ins  where  the 

r e la t iv e  wind from th e  south a t  cloud b a s e  veers  to the w e s t  a t  the top,  

the p re s su re  m easu red  a t  the ground, due to the in teg ra ted  p res su re  

throughout the s to rm 's  dep th ,  is lower on the forward s id e  of the storm.

The p r inc ipa l  contributor to th is  asymmetr ic  p re s su re  d is t r ibu t ion  

a t  the ground may b e  the low pressure  a s s o c i a t e d  with the sm al le r  a i r
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densi ty  in  the anvil  c loud  (see  Figure 2 .6 ) .  This would then c au s e  an 

a cc e le r a t i o n  of the storm in the d i rec t ion  of the low p re s su re .  The magni­

tude of the  a c c e le r a t i o n  would be dependen t  on the th ic k n e ss  of the anvil  

c loud ,  and  to a l e s s e r  e x t e n t ,  the ve r t ica l  acce le ra t ion  of the a i r  in the 

c lo u d s .  A d esc r ip t ion  of the p re s su re  d is tr ibution of th is  type ,  but on a 

la rger s c a l e ,  is given by Bonner (1962).  The pressure  would be lo w es t  

benea th  the anvil  c loud  ex tending  in the direction of the upper w inds .

The momentum con se rv a t io n  term and the drag force term in com ­

bination c a n  provide an  inf in i te  number of cons tan t  v e lo c i t i e s  for the 

storm embedded in an environment in which the wind changes  d i rec t ion  

and sp eed  with  h e ig h t .  As s e e n  ab o v e ,  the drag is an  important  c o n t r i ­

buting fac to r  to the r e s u l t in g  v e lo c i ty .  When applying the c l a s s i c a l l y  

developed  re l a t io n s h ip s  of drag on a cy lindrica l  body,  we a re  r e s t r i c ted  

to the empir ica l  e v id en ce  that  t re a t s  the atmosphere  a s  a turbulent 

medium re p re se n te d  by su p e rc r i t i c a l  Reynolds numbers .  However ,  we 

a re  cons ide r ing  that  the  updraft  of the storm system manifest  by the 

v isua l  c loud a c t s  l ike  a cy l ind r ica l  barr ier to the horizonta l  motion of the 

ambient a i r .

E. C ons ide ra t ion  of the Balance  of Drag and Momentum Change  

During  the in i t ia l  developm ent  of the storm, when the cloud is
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Figure 2 . 6 .  Schemat ic  of the Bernoulli  p ressure  a t  three leve l s  of the storm 
for the top view of Figure 2 . 3 .  The s i z e  of the h ighs  (H) and lows (L) a t  the 
various  l ev e l s  ind ica te  comparable  magnitude .  The d a sh e d  high a t  the P 
leve l  r ep resen ts  t h e 'c o n s id e r a t i o n  that  a i r  densi ty  of c loud may contr ibute  
to low pressure  the re .
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forming, the  f i r s t  term in the  a c c e l e r a t i o n  equat ion  is  probably  the most 

s ig n i f i c a n t .  As the storm c o n t in u e s  growing upward into the  middle layer  

where  the ambient a i r  flow va r ie s  s ign i f ic an t ly  from the lower layer ,  the 

s ig n i f ic a n ce  of the second term, the  drag fo rce ,  i n c r e a s e s .  During this  

t ime the p re -s to rm  c loud (in i t s  ear ly  s tag e  of  development) moves under 

th e  inf luence  of th e se  te rm s .  We therefore  c o n s id e r  how th e s e  terms may 

b a la n c e  each  other and the c o n s e q u e n c e s  of th is  b a la n c e .

The time ra te  of change  of momentum is g iven  a s  in  equat ion  (2.3) 

and the drag force i s  rewri t ten  as

hD (2 .7 )

where  is  the r e la t ive  ve loc i ty  of the middle layer  a i r .

The storm column is  moving a t  speed  ^  which is  c o n s id e red  in 

re l a t iv e  c o o rd in a te s ,  with ,  U . , the re l a t iv e  ve loc i ty  of  lower moist  a i rS1&

and ,  Uj^, the average  r e la t iv e  ve loc i ty  of middle layer  a i r ,  moving at  

c o n s ta n t  speed  (X^ = 0) .

%
hD (2 .8)

If  we s e t  = 0,  then  one obvious condi t ion  for a s te a d y  s t a t e  (a 

storm moving at co n s tan t  speed)  i s  tha t  the v ec to r s  and oppose  

e a c h  o ther .  This condit ion forces  a r e l a t io n sh ip  tha t  f ix e s  the d i rec t ion  of
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"f
U . and  U , ,  once the low leve l  and upper level  am bien t  wind s p e e d s  are  

s ia  M

known in fixed coo rd ina tes  (the l ine a long which the  v ec to r s  a c t  is  f ixed).  

Since  the  fixed coord ina te  v e lo c i t i e s  a re  given by

and

V . = U . + 0  (2 .10 )s ia  s ia

then  th e  condit ion

“ m -  = V  -  ’ s i a

fixes  the  a lignment of flow of U . . and U . . (See s k e t c h  of v ec to r s  inM sia

Figure 2 . 7 . )

We now c o n s id e r  %, the mass  of a ir  t a k en  into th e  storm per 

uni t  t i m e , a s

^  — p . w (2 . 1 2 )
4  s ia

where  w is a function of the  tem pera ture  lapse  ra te  in the  middle l ayer  air 

and is  r e l a t ed  to the  mean upward ve loc i ty  of a ir .  Thus e q u a t io n  (2 .8 )  b e ­

comes

hD (2 .1 3 )0 = w D ^ K U  . + U.s ia M
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^  = STORM VELOCITY  

0  = RELATIVE WIND

^  = AMBIENT WIND

Sia

Vsio

FLOW ORIENTATION OF 

RELATIVE WINDS

Figure 2 . 7  Ske tch  of the  re la tion^between ambient w in d ,  V, and
re la t ive  wind ,  U. Storm m o t ^ n , ^ , beginning a t  any  point a long
the d a sh e d  l in e ,  de te rm ines  U . .  and Ü . 'M s i a .
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We now define

where p ^  a re  the  average  d e n s i ty  for the s u b - in v e rs io n  laye r  and

middle layer  r e s p e c t iv e ly ,  and i s  the drag co ef f ic ien t .

By th is  de f in i t ion  of K, we require  that  w rep resen t  the mean mass  

weighted  upward flux of a ir  in  the s to rm .

"4 -4
W ith  the d i rec t ion  of U , , and U , shown to be p a ra l le l ,  and theM s ia

d i rec t ions  o f  the re l a t iv e  flows determined by the storm motion and the 

ambient f low ,  a l l  d i r e c t io n s  can be de termined. We now d i s p e n s e  with  

the vec to r  no ta t ion  and c o n s id e r  the magnitude (scalar)  of the combination 

of the middle  l ev e l  with  lower leve l  f low.

Let P r e p re se n t  the magni tude  of the d i f fe rence  of m easu rab le  

q u a n t i t i e s  in  the a tm o sp h e re .

and from (2 . 11 )

U, = U . + P (2 .16)
M s ia

subs t i tu t ing  into (2 . 13) we have

KwD Usia  + ( u | i a  + 2P Usia +
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Let

2 h

then  in equat ion (2 . I 7 )

Y = ^  (2 .18)

+ 2U . (y + P) + = 0 (2 . 1 9 )s ia  s ia

Solving the quadra tic  equat ion  of (2, 19) y ie lds

Usia = - ( y + P) ± V 2 T p +Y^ ( 2 . 2 0 )

If

P >

the  rad ica l  becomes n e g a t iv e ,  w h ich  can be in terpreted a s  a n  impossib le  

condit ion.  This r e su l t s  in the  condi t ion  tha t  the lower flow is g rea te r  than 

the middle level flow by

" s i a  '  " M  + T

Evaluating K for the rea l  a tm osphere  where the air  dens i ty  a t  the  top of the

t roposphere  Is about  one half  i ts  surface  v a lu e ,  we es t imate  the ra t io  

of  d e n s i t i e s

Pm 4 P s ia  (2 . 2 2 )
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then  from (2 .1 4 )

K = ^  (2 .23)

and for a cy l in d r ica l  body

0 . 4  s  ^ 1 (2 .24 )

The inward flux of a i r  be low the invers ion  is  g iven  by

= «=sla

where  the p , and  U , r e p re se n t  th e  mean d e n s i t y  and r e la t iv e  v e lo c i ty  s ia  s i a

of the  s u b - in v e r s io n  a i r  tha t  is  converged  upward  into the  s torm,  i  is  the  

wid th  of the  c h an n e l  of th is  a ir land Z is the invers ion  he ig h t  which  r e p re ­

s en t s  the d ep th  of the inflowing a ir .

The upward flux ins ide  the  storm is  rep re sen ted  by

'u  = " m  4 (Z-Z6 )

where  p ^  is  the  mean a i r  d e n s i t y  of the  middle layer ,  D is the d iam e te r  of 

the upward motion,  and w is the mean mass w e ig h ted  v e lo c i ty  of the upward  

motion.  This r e la t io n  is i l lu s t ra ted  in Figure 2 . 8 .

C ons ide r  a n  example where

w = 1 0 m sec~^
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INVERSION

SIDE VIEW

PLAN

Figure 2 . 8 .  The inward  flux of s u b - in v e rs io n  air  (plan view) and the  
v e r t i c a l  flux of storm a i r  (side v ie w ) .
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and where  the  ra t io  of d iameter to he ight  is  within the range

‘ ^ h" ^ 2 

From (2.18) and  (2.23)

Y = —  ^  (2.27)
D

then  from (2.24)  the range  in y  is given by

5 m s e c " ’' ^ y ^ 25 m s e c " ’’

In the a tm osphere  storm c louds  c an  have d ia m e te r s  (D) as  large 

a s  20 km and c a n  ex tend  to heights  of  20 km. The he igh t  of the  top of 

the  i n v e r s io n ,  Z,  is  u s u a l ly  below 2 km. Although the wid th ,  JL, of  the 

channe l  of inflow has  not yet  been  m e a s u re d ,  con s id e ra t io n  of continuity  

of f low into the  storm s u g g es t s  that  i  be a t  l e a s t  a s  large  as  the  d iam eter  

of the  cloud a t  i t s  b a s e .  Therefore we a ssum e:

D = 5 km

h = 10 km

Z = I km

I  = 2D

For the  l imit ing drag co e f f ic ien ts  and  d iam eter  to depth  ra t io s ,  

the v a lu e s  of  the  middle layer  flows (U ^ )  are  computed using equation  

(2 .21)  and ,
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in u n i t s  of m sec   ̂ , are

25

(2.28)

(2.29)

The re s t r ic t ing  c a s e s  of  middle  l ev e l  winds a s  a function of 

s e l e c t e d  lower level re la t ive  w inds  a re  computed from equat ions  (2.28) 

and (2.29) and the re su l t s  are shown in Table  2 .1 .

TABLE 2 .1

Ratio of non -a l low ed  va lues  of middle level  re la t ive  winds

U . t o  lower l ev e l  w inds  U . M sia

\ p / h
1/2 1 /1

0, 4 ^ 10.0
7.5
20.0

1. 0 7.5
10.0

15.0
20.0

As i s  shown, with the condi t ions  of  D / h  = 1 /2  and = 0 . 4 ,  for a lower 

l eve l  wind of 10 m s e c ' i  the upper l eve l  wind cannot be l e s s  than 4 m s e c " i  

and r e ta in  a cons tan t  storm s p e e d .

* The range in drag coef f ic ien ts  i s  taken  from Hoerner (1958).
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In order for r e a l i s t i c  e s t im ates  of v e lo c i t i e s  to be  made,  the con­

tinu ity  of mass  mus t be  s a t i s f i e d .  To sa t i s fy  th is  requ irement  (2.25) and 

(2.26) must be eq u a l .  Thus

"sia %—  t i »Sia

I f  we a s s u m e  that  for cumulus (Cu) c louds  

D -  4, with D the order of km 

and for towering cumulus  or cumulonimbus (Cb) c lo u d s  

2D ~ i ,  w ith  D the order of 10 km 

and for both Cu and Cb 

Z = - ^  km

and

= IT *sla '
then f o r C u ,  equat ion  (2.30) becomes

ind for towering C u  and  C b ,  equation (2. 30) becom es

^ s t a  “  (Z.32)

Thus from consider ing  the continuity  requirements  of the model and testing 

the r e s u l t s  on cumulus  and cumulonimbus c l o u d s ,  a function  of the  mean 

m ass  weigh ted  ve loc i ty  (w) can  be subs t i tu ted  for re l a t iv e  ve loc i ty  of the 

Inward a i r  flow in the fi rst  term of the a cc e le r a t i o n  equat ion .



Ill -  THE APPLICATION OF MODELED STORM MOTION

M ost  severe  s torms whose  c i rcu la t ion  may be computed from e i the r  

c i rcu la t ing  rada r  e l e m e n t s ,  chaff t r a j e c t o r i e s ,  or other means have  some 

change  in environmental  wind d i rec t io n  with  he ight .

Figures 3 .1  and 3 .2 are  t ak en  from the Browning and  Fuji ta  (1965) 

a n a ly s i s  of a  group of seve re  s to rm s  with  c i rcu la t ion .  Path curva ture  is  

prominent in Figure 3 . 1 .  Figure 3 . 3  is  the ver tical  d is t r ibut ion  of wind 

a t  the  time of in i t ia l  rada r  e c h o e s . The wind is both veer ing and s h e a r ­

ing with  he ight  during the ear ly  s t a g e  of development of s ev e re  s to rm s .  

Figure 3 .2  shows  the t ra ck s  of the e ch o e s  prior to 1500 GST, during 

the i r  ear ly  developm ent  s t a g e .  Although dif f icul t  to s e e ,  there is  some 

curv ing of the path during this  e a r ly  t ime .

Achtmeyer 's  s tudy  (1969) o f  severe  storms exhibit ing c i rcu la t in g  

e lem en ts  a l so  con ta ined  an environment tha t  veered and shea red  with  

h e ig h t .  Both his  ex t rapo la ted  wind soundings (Figure 3 .4a)  and his  

a c tu a l  rawinsonde  (Figure 3.4b) for that  time show a marked in c re a s e  

in sp eed  and a c lo ck w ise  change  in  d i rec t ion  with he ight.  Most  of the 

radar  echoes  had pa ths  (Figure 3 .5 )  that  were curved during the in i t ia l  

part  of  their  t r a j e c to r i e s .

34
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STORM TRACKS
o I5C0 CST 
a I GOO 
A 1700
V leoo
•  1900

Figure 3 .1  Tracks  of s to rms A through K, derived using data 
from the WSR-57 rada r  a t  WRL, at  the cen te r  of  the range  r ings .  
Tracks  of seve re  storms w i th  hook e ch o e s  are deno ted  by thick 
l i n e s .  (After Browning a n d  Fu j i ta ,  19 65).
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the  dry  l ine .

D EVELOPMENT OF STORM G

c e l l :
C E L L ! C E L L S

C ELL!

(a) Same a s  above  bu t  show ing  on ly  the th ree  c e l l s  com pr is ing  Storm G .  L ines  a re  drawn 
c o n n e c t in g  the c e n t e r  of e a c h  c e l l  from one t ime to the ’ n e x t .  The s h a d e d  a r e a  d e p ic t e d  a t  t ime 
1521 show s  the t im e - in t e g r a t e d  e x t e n t  of h a i l  in the s u r f a c e .d u e  to Storm G dur ing  i t s  d e v e l o p ­
m ent  p h a s e ,  (b) T racks  of the  c e n t e r s  of the Storm G c e l l s .

0 3
cr>

Figure  3 .2  Radar t r a c k s  of storm c e l l s .  (After Browning and  F u j i t a ,  1965).
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RELATIVE 
WINDS  
OKC 1420

8 | 0
Ai 12 ,000  FT.

lOm sec

Figure 3 . 3 .  Vert ical  d is t r ibu t ion  
of wind a t  in i t ia l  time of radar e c h o e s .  
(After Browning 1965).
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F i g u r e  3 . 4 b  R a w i n s o n d e  o b s e r v a t i o n
a t  P eo r ia ,  111. a t  1800 CST,  25 August 
1965, i l l u s t r a t i n g  the v e r t i c a l  d i s ­
t r ibu t ion  of t e m p e ra tu re ,  dew p o in t ,  
and  wind v e l o c i t y .  (After A ch tm eyer ,  
1 9 59b) .
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T r a j e c to r i e s  of 72 group B ra d a r  e c h o e s  o b s e r v e d  
b e tw e e n  1530 an d  2100 CST,  25 Augus t  1965.

T r a je c to r i e s  of 22 group A ra d a r  e c h o e s  o b s e r v e d  
b e tw e e n  1500 and 2100 CST,  25 Augus t  1965.

Figure  3. 5. T r a je c to r i e s  o f  r a d a r  e c h o e s .  (After A ch tm eyer ,  1969b)
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There  is  an inheren t  d if f icul ty  in  trying to verify pa th  curvature  

us ing  rad a r  during the ear ly growth and development  s t a g e  of a  storm.

Since  th e  radar  d e te c ta b le  drop s i z e s  a re  u s u a l ly  developed a f te r  about 

10 minutes  of  storm growth , there  remains  l e s s  than 20 m in u te s ,  accord ing 

to our a s s u m p t io n ,  during which  the  storm a t t a in s  its more w es te r ly  motion.  

For the a n t i c y c lo n ic a l ly  curved  path length  of 18 km, the l e s s e r  amount

o f  curv ing pa th  occurs  during the la t te r  12 km of the s to rm 's  h is to ry .

Since m os t  rada r  d i s p la y s  a re  a t  20 to 50 mile  range m arks ,  the  re so lu t ion

n eeded  to  d i s c e rn  whe ther  the 12 km path i s  curved or s t r a ig h t  is  most

d i f f icu l t  u n l e s s  the storm path  h a s  a lready  begun to respond  to t r an sv e r se

f o r c e s .

Short  wave leng th  rada rs  will  d e t e c t  sm al le r  drops and thereby 

a llow a po ten t ia l ly  ea r l i e r  t ime for the cu rved  pa th  to be d e t e c t e d .  How­

ev e r ,  u n l e s s  the r ad a r s  con ta in  a much la rger  than normal power output,  

they a re  unab le  to d e t e c t  a t  long range ,  thereby d ec rea s in g  the  probability 

tha t  the in i t i a l  s t ag e  of the storm will be  d e t e c t e d .

An example  of an oppor tune  d e tec t io n  by short w ave  leng th  radar 

i s  con ta in ed  in the c a s e  study of the square  c lo u d .  The W ic h i t a  Fa lls  

radar  (SPS) d e tec te d  e ch o e s  a t  1305 CST a t  a d is tance  of approx imate ly  

50 m i l e s .  A carefu l a n a l y s i s  of these  e c h o e s  revealed an an t icyc lon ic  

curving of t r a j e c to r i e s  during the s to rm 's  development s t a g e .  A composi te  

of th e s e  e ch o e s  for approx imate ly  a two hour period is shown in 

Figure 3 . 6 .  Almost a l l  of the  echoes  on the  southern part  of the  l ine had



41

curved  paths  tha t  co inc ided  with  the shea r ing  and veer ing environment 

shown in Figure 3 . 7 .  The two cha r t s  correspond  to 10 ,000  ft and 

4 0 ,0 0 0  ft a l t i t u d e s  n ea r  the storm e c h o e s .  The storm sys tem  continued 

to  grow and had  numerous tornadoes  a s s o c i a t e d  with i t .

Perhaps the  b e s t  example  of a d e tec te d  curving of pa th  was  that  

shown in Figure 3 . 8 ,  taken  from the Thunderstorm Pro jec t .  In th is  c a s e  

i t  i s  c l e a r  from the  echo  that  the  storm re sp o n d ed  to the w es te r ly  momentum, 

bu t  when the su r fa ce  was more exposed  to the  nor thwes te r ly  momentum, 

the  echo  region  re sp o n d ed  to tha t  while re ta in ing  some of i t s  w es te r ly  

momentum. Although i t  is  not e x p l ic i t  in th is  c a s e  s tudy how the c loud, 

w hose  b a se  is  probably  below 8 ,000  ft ,  can  en tra in  the nor thwes ter ly  

momentum into i t  and transport  the momentum forward and  downward, we 

may a s su m e  tha t  th is  i s  e i ther  through entra inment  at  the periphery or by 

tu rbu len t  mixing a t  the b ounda r ie s .  If it  is  mixing,  then eddy mixing of 

momentum a t  the c loud edges  will  al low it  to be  a c c e l e r a t e d  by the ambient  

f low a t  each  le v e l  and the g rea ter  diameter wil l  serve  to en h an ce  the drag 

e f fe c t .

A number of c a s e  s tu d ie s  of ear ly  echo developm ent  have  been  

s e l e c t e d  for s tudy  in differing environmenta l  veer  and s h e a r  co n d i t io n s .  

How ever ,  b e c a u s e  of the poor r e so lu t ion  of the curved pa ths  of the 

deve lop ing  radar  e c h o e s ,  th e se  c a s e s  exh ib i ted  wavy motion and could 

not be c o n s id e red  conc lus ive  ev idence  that  the i r  pa ths  curved in the 

manner  pos tu la ted  in this t h e s i s .  What is  needed  is a capab i l i ty  to measure
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Figure  3 . 6 .  C o m p o s i t e  t ime p lo t  of the r e d u c e d  SPS ra d a r  e c h o e s .  Time i n c r e a s e s  from le f t  to r igh t ,  
The i n t e r s e c t i o n s  of the  h o r i z o n ta l  w i th  the v e r t i c a l  l i n e s  d en o te  the p o s i t io n s  of SPS r e l a t i v e  to the 
co r re sp o n d in g  e c h o e s .  The v e r t i c a l  l i n e s  po in t  to  true n o r th .  S p ace  s c a l e  is  va l id  s y n o p t i c a l l y . 
(After G o l d m a n , 1962)
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e c h o e s  a t  a b o u t  1500 CST s u p e r im p o se d  a t  th e i r  lo c a t io n  on the  Red River .
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and  the c h a n g e  in c l o u d - e c h o  m ovem ent  du-e to - the  v e r t i c a l  t r a n s fe r  of 
h o r iz o n ta l  momentum by th e  updraf t  and  the  downdraf t .
(a) Wind  s p e e d  and  d i r e c t io n  a t  e a c h  2 , 0 0 0 - f o o t  l e v e l .  W ind  v e c to r s  
a re  m ean s  of s e v e n  o b s e r v a t i o n s  t a k e n  ove r  th e  Ohio  ne twork .  No 
b a l lo o n  a p p ro a ch e d  n e a r e r  th an  four  m i le s  to  th e  r a d a r  e cho .
(b) and  (c) O u t l in e s  of the  c r o s s  s e c t i o n  of the  r a d a r  c loud  a t  the  
5 , 0 0 0 - f o o t  l e v e l  for s u c c e s s i v e  t im e s .  The maximum he igh t  g iv e n  is 
for th e  top of  the  e ch o .  Note  th a t  the  m ovement  w as  toward  th e  no r th ­
e a s t  during the  f i r s t  t ime in te rv a l ,  during w h ich  the  e c h o  w as  in c re a s in g  
i ts  h e ig h t .  As the  e c h o  d e c r e a s e d  in h e ig h t ,  the  e c h o  moved more toward 
th e  s o u t h e a s t .  (After Byers and  G raham ,  1949) .
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the  re f rac t ive  index g ra d ie n ts  a t  the c loud edge  and to map th e se  grad ien ts  

in  th ree  d im ens ions  and  with t im e .  According to Atlas  (private  communi­

c a t i o n ,  1970),  this i s  now p o s s ib le  in two d im ens ions  and t ime u s ing  a 

r e c en t ly  d eve loped  LIDAR with a h igh p u ls e  r epe t i t ion  f r eq u en cy .  The 

d eve loped  un i t  re sponds  to l iqu id  water  and  not vapor,  whi le  leav ing  

su f f ic ien t  power and p u ls e  r e p e t i t io n  f requency to provide near  cont inuous  

mapping c ap ab i l i ty  s im i la r  to p re s en t  w ea the r  r a d a r s .



IV -  A CONSIDERATION OF CIRCULATION IN THE SEVERE STORM

The thi rd  term in the  formulation of the a cc e le r a t i o n  of the  storm 

( s e e  e q u a t io n  2 .2 )  r e p r e s e n t s  the  c i r cu la t ion  about the  storm and i ts  

r e s u l t i n g  t r a n s v e r se  e f f e c t s  on the storm path.  This chap te r  will  be c o n ­

c e r n e d  with  the  c i r c u la t io n  which may be induced a t  the periphery of the  

c lo u d  due to the  cu rva tu re  of i t s  pa th .

A. G e n e ra l  Descr ip t ion  

The e x i s t e n c e  of vortex c i rcu la t ion  about s ev e re  storms in the a t ­

m osphere  ha s  been  made app a ren t  by the de ta i led  f indings  of Browning and  

Fuj i ta  (1965). Although ear ly  inves t iga to r s  have recogn ized  tha t  s ev e re  

s to rms  such  a s  the to rnado  have  a large c i rcu la t ion  a s s o c i a t e d  with  th em ,  

i t h a s  b een  only  re c en t ly  tha t  the c i rcu la t ion  has b een  ex tended  to  the 

la rge r  s c a l e  of the c l o u d ,  to which  the tornado is r e l a t ed .  The o b s e r v a ­

t ions  and d e s c r ip t i o n s  of  Browning and Fuji ta (1965) were of a la rge  number 

of s e v e r e  s to rms tha t  had to rnadoes  and g iant hail a s s o c i a t e d  with  them. 

T h e se  s to rms occurred  in the veer ing  and shearing environment  of the 

G r e a t  P l a i n s ,  the  reg ion  of maximum severe  storm a c t iv i ty  in the Uni ted  

S t a t e s .  Evidence  of c i r c u la t io n  w as  found in the mot ions  of e lem en ts  of  

the  r a d a r  e ch o  moving about  the  m a ss  of storm echo a t  and near i t s  e d g e .

46
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Inves t iga t ion  such  a s  Fan k h o u se r ' s  (1968) has verified tha t  c i r c u ­

la t ion  e x i s t s  away from the radar  echo  edge of severe  thunders to rms.  His  

computa t ions  of chaf f  t r a j e c t o r i e s ,  r e l e a s e d  near  the storm at middle l e v e l s ,  

show a c i rcu la t ion  to e x i s t  about  the storm a t  a s ig n i f ic an t  d is tance  from 

the c loud boundary ,  which  should  be farther than  the rada r  echo edge .

These  storms were in the veer ing environment of the G rea t  P la ins .

Wind sh ea r  has  long been  recogn ized  to be re la ted  to severe  

storms through la rg e -h a i l  formation p r o c e s s e s .  The work of Fos te r  and 

Bates  ( 1 9 5 6 ) which culmina ted  in a pred ic t ion  method for l a r g e - s i z e  h a i l ­

s to n e s  was ba sed  on wind shear .  The role of wind veer was recognized  

and  popularized by Browning and Ludlam (1962) in the ir  study of the wind 

f ie ld  tha t  would support  the  growth of g ian t h a i l s to n e s .  They found tha t  

wind veer  in the p re sen c e  of wind s h ea r  would prolong the res idence  

t ime of  the growing h a i l s to n e .  Browning la te r  showed the  wind veer  to be 

a s s o c i a t e d  with storms he s tud ied  in both England and the  Great P la ins  of 

the  United S ta tes .

The impor tance of c i rcu la t ion  was demonstra ted  theore t ica l ly  in 

Kuo's (1966) development tha t  t re a ted  perturbation type vor t i ce s .  He showed 

tha t  small  s c a l e  v o r t i c e s ,  such  a s  a to rn ad o ' s ,  can  develop  from medium 

s c a l e  v o r t i ce s ,  such  a s  la rge  storms conta in ing  c i rcu la t ion ,  in a s tab ly  

s t ra t i f ied  a tmosphere  with  ce r ta in  condi t ions  tha t  have been observed  

in the Great P la in s .  He showed a n e c e s s a r y  condition  for development 

to be the  presence  of an  in i t ia l  c i rcu la t ion  of a s c a le  la rger than the s c a l e
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of t h e  In tense  vor tex .

Since  both theory and obse rv a t io n  have shown tha t  the  s ev e re  

storm can  and does  e x i s t  in an environment conta in ing  wind veer  and 

s h e a r  with height and  c i r c u la t io n ,  it would seem l ike ly  th a t  c i r c u la t io n  

a bou t  the storm is c l o s e l y  r e l a t e d  to wind veer with height in the e n v i ­

ronment .  Barnes (1968) c o n c lu d e s  tha t  ver t ical  shear  in the  low a tm o­

sphere  is a source  of ro ta t ion  tha t  the storm re c e iv e s  through the t i l t ing  

e f f e c t  in the vor t i c i ty  tendency  equa t ion .  His  condi t ions  requ i re  a low 

l ev e l  je t  to induce vo r t i c i ty ,  which is  then t i l ted  into the  appropr ia te  

o r ien ta t ion  so  tha t  a i r  with th i s  c i rcu la t ion  can  be converged  toward the 

c loud  at  low l e v e l s .  Tang (at  the  1967 AMS-AG U Spring M eet ing  in 

W ash in g to n ,  D. C . )  p roposed  a  s imilar method of providing init ial  c i r c u ­

la t ion ;  however ,  he  u sed  the pola r  j e t  stream to  induce vor t i c i ty .  Both of 

t h e s e  methods require  a mechanism tha t  t i l t s  the  g enera ted  vor tex tube  and, 

to a  l e s s e r  ex ten t  in Tang 'is p ro p o sa l ,  do not require  the  wind to v e e r  with 

he igh t .

Although theory  on the  coupl ing  of the upper and lower  momenta  is 

not y e t  c o m p le te ,  sp ec u la t io n  le a d s  us  to couple  the upper and lower  flows 

via  ve r t ica l  motion.  During the ear ly  s tage  of deve lopm ent ,  the lower  

l eve l  part of the storm con t inuous ly  feeds  the upper part th a t  is trying to 

come into equil ibr ium with the upper level f low. This con t in u a l  feeding  

of souther ly  momentum keeps  the  storm from moving e n t i r e ly  with the  w e s t ­

e r ly  flow a loft .  To keep  the bottom of the  storm from be ing  sheared  off.
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some of  the  w es te r ly  momentum from above is t ranspor ted  downward 

through the p re c ip i ta t io n  in te ract ing with the  mixture of c loud  a i r  and 

dry a i r  at middle  l e v e l s .  The mixed a i r  ev en tua l ly  becom es  the  cold  

downdraf t .  The w e s te r ly  momentum from the  middle l e v e l s  is t ransm i t ted  

downward d i rec t ly  in th i s  way; however ,  tha t  momentum is very  small  

s in ce  the wind v e lo c i ty  re la t ive  to  the  storm a t  middle l e v e l s  is lower 

t h an  the  re l a t iv e  v e lo c i ty  of the upper and lower l e v e l s .  I t  is  the  p re ­

c ip i ta t io n  p a r t i c l e s  (moving hor izon ta l ly  with the w es te r ly  storm motion) 

from the  uppe r  par t  of the  storm tha t  t ransm i t  horizonta l  momentum to the  

middle  l e v e l s  ins ide  the  storm. This momentum is t r a n sm i t te d  to the 

lower l ev e l s  and combined  with the  momentum of the middle l e v e l s  a s  the  

p rec ip i ta t io n  pa r t i c le s  evapora te  in th e  mixed air .  This evapora t ion  in 

the  mixed a i r  c a u s e s  the  a ir  to become nega t ive ly  buoyant.

1. Sta tement  of the Problem 

Does  the a n t icy c lo n ic  curv ing of the  path make the  environment ,  

some of which is even tu a l ly  converged  into the storm a t  low l e v e l s ,  have  

p o s i t iv e  c i r c u l a t i o n ?

2 . Approach

This problem w as  approached  using a hydrodynamic ana logy  to the 

cu rved  path o f  the  c lo u d .  Assuming tha t  th e  storm c loud a c t s  a s  a c y l i n ­

d r ica l  barr ie r  to the f low ,  a cy l inder  was  moved in a curved  p a th ,  and the 

e nsu ing  pa t te rn  of f luid m ot ion ' revea led  whether c i r c u la t io n  w as  induced
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In the  flu id .  By photograph ic  m easurement  of s t r e a k l i n e s  in the  f lu id ,  

both  th e  s ign of the  c i r c u la t io n  and an  e s t im ate  of i ts  m agn i tude  c a n  be 

c a l c u l a t e d .

3. D e sc r ip t io n  of the Experiment 

As with a l l  hydrodynamic  ex p e r im en t s ,  s o p h i s t i c a t io n  of the  equ ip ­

ment and techn ique  c a n  make  simple  exper imenta l  r e s u l t s  seem  ins ign i f i ­

c a n t .  To avoid  t h i s ,  the d e s ig n  of th is  exper iment  was  con f ined  to  tha t  

of  a cy l inde r  mounted on a  swivel arm with a  camera  pho tograph ing  s t r e a k ­

l i n e s ,  with the  a id  of a mirror mounted above  the cy l in d e r .  The cy l in d e r  

was kep t  from ro ta t ing  by a  connec t ion  with the swive l  a rm ,  th u s  avoid ing  

the e f fec t  of a ro ta t ing  c y l in d e r  in the fluid ( i . e .  , the  c y l in d e r  r e ta in s  the 

same or ien ta t ion  with  r e s p e c t  to a f ixed d i rec t ion) .  For c o n v e n ie n c e  of 

d es ign  the camera  w as  in a  s ep a ra te  ro ta ting frame of r e f e r e n c e  re la t ive  

to  the  moving cy l inde r .  Any ro ta t ion  which e x i s t s  in th e  sys tem  could  be 

computed  from the motion of a c ro s sb a r  in the  c y l in d e r ,  s in ce  the c r o s s b a r  

would change  o r ien ta t ion  be tw een  photographs .  Although a  motor was  u sed  

to a ch iev e  a c o n s t a n t  angu la r  ve loc i ty  a s  the  arm r o t a t e d ,  the shor t  arc 

length  of cy l inde r  pa th  a l lo w ed  only the average  an g u la r  s p e e d  of motion 

of the  cy l inder  to  be m easured  a t  each  tr ial .

The r e su l t in g  data  was s t r eak l in es  on pho tographs .  The length  of 

the  s t reak l ine  is  a func t ion  of its d i s tan ce  from the c e n t e r  of ro ta t ion  of 

the  a rm,  and the a c tu a l  leng th  is based  on the  in it ia l  m e asu re m e n t  of the 

cy l in d e r  d iameter  ap p ea r in g  in e ac h  photograph. The e x p o su r e  t ime of
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e a c h  photograph de termined  th e  s t reak  leng th  a s  a  function of ro ta t ion  

s p e e d .  The d i f ference  in l eng th  of s t r e a k s  about  the cy l inder  (other than 

th a t  produced by the  ro ta t ing  sys tem)  is a  m easure  of the c i r c u la t io n .

B. Theore t ica l  C o n s id e ra t io n s  of the Experimental  Analogy 

The exper iment  c o n t a i n s  an  o u ts ide  fo rce ,  namely that  force which 

g iv e s  r i s e  to  the  an g u la r  v e lo c i ty  a t  the  sw ive l .  We now c o n s id e r  the 

con t r ibu t ion  of the ro ta t ion  abou t  the sw ive l  to the  c i rcu la t ion  abou t  the  

cy l inde r .

As shown in Figure  4 . 1 ,  for a cy l in d e r  of radius  r^ a t  a d i s t a n c e

R + Tg from the s w i v e l ,  the  a rc  length  a t  the c l o s e s t  point  to the swive l

is  g iven  by

S; =R 8 (4. 1)

where 0 is the  ang le  of ro ta t io n  a t  the s w iv e l .

At the  f a r th e s t  d i s t a n c e  from the s w iv e l ,  a t  R + Zr^,  the arc length  

is  g iven  by

Sa = (R + 2r^) 9 (4 .2 )

The d if ference  in th e s e  arc  l e n g t h s ,  Sg -  S^, is g iven  by

6 S = (R + 2r^ -  R) 9 = 2r^9 (4 .3 )

M easu red  along the c i rcum fe rence  of the  c y l in d e r ,  th is  is given by

LS = r a  (4. 4)
c
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Figure  4.  1. C oord ina te  s y s t e m  for moving cy l inde r  exper iments
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where a  is the  c e n t r a l  ang le  sub tended  by arc LS.

In the  d i rec t ion  shown in the figure (counte rc lockwise)  & S i s  th a t  

arc  length through which the c y l in d e r  would ro ta te  in order  to coun te r  th e  

ro ta t ion  ra te  ü of the sw ive l  arm, or to remain nonrotating with r e s p e c t  to 

the  c en te r  of the  c y l in d e r  or any f ixed  coord inate  sys tem .  From equa t ions  

(4. 3) and (4 .4 )

a = 2 8  (4.5)

The c i r c u la t io n  abou t  any  c lo sed  pa th  is given by the c y c l i c  in te ­

gra l  o f  the v e lo c i ty ,  a long the pa th  3.

= § V  • dS (4.6)

For th is  c i r c u l a r  c y l in d e r  the  tang en t ia l  ve loc i ty  is

V = r c - ^  (4 .7 )

and the  pa th  is the c i rcum fe rence .  Therefore

r  = (4 .8 )

In terms of 0 ,

r  A 2 ^
r = 4":= dt (4.9)
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The vor t ic i ty  is de f ined  as  the c i r cu la t io n  per unit  a rea ;  th e n  a t  

th e  cy l inde r

^ "  n P  (4 . 1 0 )

and from equa t ion  (4. 9)

. ( 4 . 1 1 )

If we p rescr ibe  the  ve loc i ty  of the  c en te r  of the cy l inde r  to  be

Vg a s  shown in Figure (4. 1) a t  a d i s t a n c e ,  R + r ,  from the  s w iv e l ,  then

dÔth e  angu la r  ve loc i ty  of the  sw ive l  -gp- is given by

and from equa t io n  (4. 11) we s e e  that  the vor tic i ty  a t  the  cy l inde r

;  = 4 0  (4 .13)

where Q is the  angu la r  v e lo c i ty  a t  the swivel.

The vor t i c i ty  a t  the  swive l  is given by

Co = 's
tt(R . (4.  14)

where is  the c i rcu la t ion  abou t  the swivel  a t  the  rad ius  (R + r) and  

is  g iven by

Fg = 2tt(r + r ^ )  Vc (4 .15)
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Therefore  the vo r t i c i ty  a t  the sw ive l  is

C3 = —  (4.  16)

Since

Vc
Q = --------- (4 . 17 )

R + r c

the  angular ve loc i ty  a t  the  s w i v e l ,  then  from equat ions  (4. 13) and  (4. 16)

Gg = 2 G (4 .18)

The e f fec t  of having the  c y l in d e r  remain in a nonrota ting frame with 

r e s p e c t  to a f ixed di rection while  t raveling a curved pa th  is to impart  tw ice  

the  vort ici ty  of the whole sys tem  to the  region about the cy l in d e r  i t s e l f .

The o u ts id e  force tha t  p rov ides  ro ta t ion  about  the  sw ive l  is a n a l o ­

gous  to the ambien t  wind tha t  v ee r s  with he igh t  and forces  the storm to 

move in a curved pa th .  This pa th  is curved a n t i c y c lo n ic a l ly  and the vor­

t i c i t y  that  is imparted is c y c lo n ic .

In the veer ing  and shear ing  environment of the  a t m o s p h e r e , the 

storm cloud grows in both he ight  and d iameter .  As shown in Figure 4 ,2  

the  ambient  winds a t  each  he igh t  leve l  (thin arrows) a f fec t  the  c lo u d ' s  

motion through the re la t ive  winds  (bold a rrows).  Drag (by the  r e la t iv e  

w inds  that  shea r  with height)  in c re a s e s  a s  the  c loud d iam eter  i n c r e a s e s ,  

an d  the  re sp o n se  to the drag is the curved  path  (shown d a sh e d  in Figure 

4 . 2 ) .  The magnitude  of the c i r c u la t io n  induced for the  ind ica ted  path  of
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tt/ 2  r a d ia n s  arc leng th  which occu rs  during the  time period  to to tg can  be 

computed  If we sp e c i fy  the t ime per iod  and the a rea  of the c loud .  The 

a rea  of the growing c loud Is t ak en  a t  Its f inal  s ize  a f te r  growing for an 

a s s u m e d  time per iod  of 30 minutes  to a  d iam e te r  of 10 km.

The c i r c u la t io n  , T, about  the cu rv ing  c loud Is g iven  by Its  vor­

t i c i ty  t imes  its a r e a .  From equat ions  ( 4 .1 6 ) ,  (4. 17) and ( 4 .1 8 ) ,  we c o n ­

c lu d e  th a t  the  v o r t i c i ty  a t  the c loud  Is 4 t imes  the angu la r  v e lo c i ty ,  n. 
The c i rcu la t io n  Is g iven  by vor tic i ty  t im es  the a rea  a s

r  = 4Q X — (4, 19)

C ons ide r ing  a curv ing  of path th a t  Is r e p re s e n te d  by an arc leng th  tha t  Is 

1/3 of tha t  shown In Figure 4. 2 and which  occurs  during a per iod of 30 

m in u te s ,  then th e  angu lar  ve loc i ty

TT , _ -3  - 1n = ---------------  X 10 s e c
3 X 3 .6

For a d iam e te r ,  D ,  of 10 km, the c i r c u la t io n  becomes

r  = 9 X 10“̂ m^ sec"^

C i rc u la t io n s  computed  from tornadlc  w in d s ,  100 m sec"^ a t  a  r a d iu s  of 150 

m e te r s ,  are approximate ly  10® s e c “ ^. Therefore the  c i r c u la t io n  Induced 

by the curving motion Is s ign i f ican t  and  comparable  to  tornadlc  storm c i r ­

c u la t io n .  The com par ison  Is not p r e s e n te d  to Imply a mechanism for to r ­

nado g e n e r a t io n ,  but only to show the s ig n i f i c a n ce  of the magnitude  of c i r ­

c u l a t i o n .
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Figure  4 . 2 .  A n t icyc lon ic  cu rv ing  of a  growing storm c lo u d  In vee r in g  and  sh e a r in g  e n v i ro n m e n t ,  w i th  
c i r c u l a t i o n  a t  the  l a s t  s t a g e .  C lo u d  Is In i t i a l ly  a po in t  a t  t ime  to (not shown) and  grow s  r a d i a l l y  a t  
r a t e  of 1 km per  t ime per iod  and  v e r t i c a l l y  to  l e v e l  5 by  t^. C lo u d  m o t io n .  In d ica ted  by  a rrow  a t  c e n ­
t e r  of c y l i n d e r s ,  d i f f e r s  a t  e a c h  t ime a s  the  c lo u d  Is a f f e c t e d  by  th e  co m b in a t io n  of In d ic a ted  w inds  
t h a t  e x t e n d  th roughou t  I ts  dep th .  Thin  a r row s  r e p r e s e n t  a m b ie n t  w inds  a n d  bold  a r ro w s  r e p r e s e n t  
w inds  r e l a t i v e  to  moving s to rm.
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C ,  R esu l t s  of the  Experiment

Photographs tak en  of the  flow abou t  the cy l inder  a t  varying r o t a ­

t ion  s p e e d s  indica te  q u a l i t a t iv e  ag reem ent  that  vort ic i ty  e x i s t s  about the 

cy l inde r .

F igures  4.  3 and  4 .4  show s t reak l in es  with g rea ter  cu rva tu re  on 

the  s id e  c l o s e s t  to the  c e n t e r  of  curva ture .  Some p ic tu res  show  a g rea te r  

number of v or t ices  shed  on the  outer s i d e ,  Indicating a la rger vortex 

shedding  ra te  due to a h igher  ve loc i ty  on that  s ide.  In t h e se  photographs 

the  cy l inder  revo lves  abou t  the  swivel In a coun terc lockw ise  d i rec t ion  

a n d ,  a s  Is Indicated  by the  c r o s s b a r ,  the  cy l inder  does  not ro ta te  abou t  

Its own a x i s .

In a previous  exper iment  using a long cy l inder  a s im i la r  flow 

f ie ld  r e s u l t e d .  In Figure 4 . 5 ,  the cy l inder  Is revolving c lo c k w is e  abou t  

the  swive l  and  the s t r e a k l i n e s  seem to have grea te r  curvature  on the  s ide  

c l o s e s t  to the  cen te r  of cu rva tu re .

Average tan g en t ia l  v e lo c i t i e s  have  been  recorded for e ach  t r ia l  

In both exper iments .  The theo re t ic a l  s t r e ak  lengths  have b e en  computed 

for e ac h  tr ial  using the  exposu re  time of the photograph. The lack of a 

more d i s t in c t  tracer ha s  p rec luded  the measurement of s t r eak l in e  lengths  

with  a c c u ra c y  suff ic ien t  for computa t ion  of vort ic i ty .
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1. Data  and  Resu l ts  of Streak Length Computa t ions  

Streak leng ths  were measured  on photographs  from th ree  t r i a l s  of  

the  December  6 , 1968 exper iment .  In th e s e ,  a s  in other tr ials ,  a number 

o f  v a r i a b le s  was m easured  and recorded .  The a v e r a g e  angular  ve loc i ty  

with t h e  c lo c k w is e ,  c ,  or co u n te r  c lo ck w ise ,  c c , s e n s e  of revo lu t ion  

abou t  the  swivel  were recorded for each  tr ial .  The rad ius  of cu rva tu re ,  

g iven  by  the d i s t a n c e  from the c en te r  of the c y l in d e r  to the c en te r  of the  

s w i v e l ,  was  measured  and recorded  a t  each c h an g e  in length .  The pho to ­

graph s e t t in g s  of exposure  t i m e , t ^ ,  aperature and  focal length  of the 

l e n s e  u sed  were a l l  r e co rded ;  however ,  only the  exposure  t ime was u sed  

in the c a l c u l a t i o n s .

In Table 4.  1 a re  l i s ted  measurements  n e c e s s a r y  for comparing 

th e o re t ic a l  with exper im enta l  r e su l t s  from three di f ferent  t r i a l s .
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TABLE 4. 1

M easurem ents  of exper imental  v a r iab les  for s t r e ak  length  

computa tions  for experiment of D ecem ber  6, 1968.

Tr ia l  Number II III V

Photo Number 11 16 26

Radius of Curvature  (cm) 4 3 .  1 43. 1 63 .5

Average Angular Velocity  ( s e c “ )̂ 0 .4 2 0 . 3 5 0.256

Exposure  Time (sec) 1 /4 1 /4 1/4

Enlargement Factor 1 .27 1 .25 1.28

Two measurements  were made on the photographs :  the  loca t ion  of 

the  s t r e ak s  and the length  of the  s t r e a k s .  The s t r e a k s  were loca ted  re la t ive  

to  the c e n te r  of the cy l inder .  The d i s t a n c e  be tw een  the  c e n te r  of the s t reaks  

and  the perpendicu la r  to the curved  pa th  of the  c y l in d e r  was  recorded with 

the  s t reak  length on each  photograph.  These  m easurem ents  a re  l i s ted  in 

Tab les  4 .2  through 4 . 4  with the  r e l a t ed  com puta t ions  t h a t  correct  the  lengths  

for photographic en largement .  The nega t ive  d i s t a n o e s  refer to s t reaks  

l o c a t e d  be tween the c y l in d e r ' s  pa th  and the c e n t e r  of cu rv a tu re ,  the swive l .

The d is tr ibution of s t reak  le n g th s ,  an  example  of which is shown in 

Figure 4. 8,  measured  on the th ree  photographs  is  far from uniform s ince  

the  d i s t in c t  s t reaks  were not a lw ay s  d is t r ibu ted  uniformly. The beginnings
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TABLE 4. 2

Theoretically computed, S ,̂ and experim entally m easured, S ,

streak lengths (cm) for photo 11

STREAK
NUMBER R Rs rc ' s Sr S

1 43 . 1 3 9 .79 2. 5 7 . 4  - 5 .4 8 5 .3 2

2 40. 19 5 .0 5 .7 4 5 .9 1

3 40 .46 4 . 9 5 .7 7 6 . 0 9

4 \ / 41.  13 > 8. 1 5 .6 0 5 .0 5

5 4 2 .23 5 .7 5 .7 2 4 .2 7

6 44. 99 4 . 0 5 .6 4 5 .7 3

7 4 5 .7 8 3 .8 5 .4 8 7. 08

8 4 6 .2 9 4 . 4 5 .6 2 9 .0 9

9 45. 82 5 .3 5 .7 8 5 .8 2

10 46 .41 4 . 9 5 .7 4 5. 56

11 46. 80 4 . 6 5 .6 4 5 .8 9

12 4 7 .00 4 .6 5 .6 4 5 .3 0

13 4 7 .7 4 4 . 7 5 .6 5 5 .7 3

14 48. 14 8 . 4 6 .1 6 4 . 9 5

15 49 .00 6 . 4 6. 06 3 .6 0

16 5 0 .00 7 .3 6 .2 2 3 .4 8

17 4 9 .6 7 6 .6 6 .1 4 4 . 8 4

18 4 9 .7 9 7 . 4 6 .2 4 6. 08

19 50 .70 7 .6 6 .3 5 4. 03
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TABLE 4 .3

Theoretically  computed, S ,̂ and experimentally measured, S,

streak lengths (cm) for photo 16

STREAK
NUMBER R Rs rc r s 8r S

1 43. 1 39 .6 8 2 . 5 6 . 4 4 .5 5 7 . 4 5

2 4 0 .7 0 7 . 2 4 .5 5 6 . 8 0

3 3 9 .7 4 7 . 4 4 .5 0 5 . 9 5

4 \ / 3 9 .4 6 5 . 2 4 .5 5 6 . 1 6
r

5 3 9 .9 8 5 . 0 4 .71 7 . 4 2

6 4 0 . 7 4 4.  7 4 .7 4 6 . 9 5

7 4 0 .0 2 3 . 7 5 .0 0 8 . 0 0

8 4 1 .2 0 4 .  7 4 .7 4 6. 19

9 4 2 .1 4 6 . 4 4 .6 5 6 . 0 0

10 4 4 .9 0 5 . 6 4 .7 5 6 . 9 2

11 4 4 .7 4 6 . 8 4 .7 9 6 . 5 0

12 46 .2 6 7 . 3 4 .9 5 4 . 9 4

13 4 6 .6 2 3 . 7 4 .3 8 6 . 8 5

14 4 5 .7 0 6 . 1 4 .8 0 8 . 3 9

15 4 7 .3 4 5 .9 4 .8 4 5 . 2 4

16 4 7 .6 2 4 . 5 4 .5 6 6 .0 1

17 4 7 .9 8 7 .2 4 .9 8 5 . 9 5

18 4 8 .4 6 5 .7 4 .8 4 5 . 5 8

19 4 8 .3 4 5 .5 4 .8 0 5. 05

20 4 7 .8 6 7 .6 5,01 4 . 8 0

21 4 9 .1 4 8 .8 5 .1 5 6 . 4 8

22 50 .06 7 .3 5 .1 5 5 . 5 5

23 4 9 .7 0 7 .6 5 .13 6 . 3 0
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TABLE 4. 3 
(cont.  )

STREAK
NUMBER R Rs rc Sr S

24 43 . 1 50 .6 6 2. 5 10. 1 5 .3 4 5 .0 0

25 50 .82 9 .4 5 .3 2 5. 83

26 5 1 .0 2 8 .3 5 .2 6 4 . 9 7

27 \ / 50 .92 \ / 8 .0 5 .2 5 4 .  00

28 5 1 .0 6 10.0 5 .3 6 7. 05
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TABLE 4 .4

Theoretically  computed, S ,̂ and experim entally m easured, S ,

streak lengths (cm) for photo 26

STREAK
NUMBER R «3 r r s Sr S

1 63 .5 61 .35 2 5 4 .6 1 5 .2 5 6 .90

2 59 .95 5 .0 0 5 .2 0 6 . 6 0

3 60 .22 3 .3 2 5 .3 0 5 .80

4 \ 6 1 .99 \ / 6 .2 8 5 . 6 7 7.95

5 61 .08 5 .8 2 5. 15 8.03

6 64 .42 4 . 8 4 5 .2 0 4 .08

7 65.  96 4 .7 7 5. 17 4 .95

8 66.  12 5 .93 5. 19 3.83

9 6 7 .39 4 .3 7 5. 10 5.67

10 68. 76 8. 16 5 .4 5 4.00

11 68 .85 5 .5 5 5 .2 8 6. 54

12 6 7 . 97 4 .4 9 5. 13 6.21

13 69 .43 5 .93 5 .33 4 .97

14 68 .80 7.41 5 .4 3 6.22

15 71. 04 7 .7 5 5 .5 7 4 .98

16 70.52 7 .0 7 l 4 9 5.20

17 70.98 7 .7 0 5 .5 5 4.75

18 72.37 9 .8 0 5. 73 6 .15

19 71.68 8 .9 5 5. 66 4 .85
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Figure  4 . 3 .  R e s u l t s  of s e c o n d  curv ing  c y l in d e r  e x p e r im e n t .  Pho tograph  of motion  r e l a t i v e  to the 
c y l in d e r  on a pa th  of  c o n s t a n t  c u r v a tu r e .  S t reak  l i n e s  formed by a luminum powder  t r a c e r .  C y l in d e r  
e x t e n d s  from n e a r  the bottom of the c h a n n e l  to a b o v e  the s u r f a c e .  C y l in d e r  motion from r igh t  to 
l e f t .
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Figure  4 . 4 .  R e s u l t s  of  s e c o n d  curv ing  c y l in d e r  e x p e r im e n t  fo l lowing  F igure  4 .3  a t  s a m e  tr ia l  ( taken  
a p p ro x im a te ly  1 /2  s e c o n d  l a t e r ) .  C y l in d e r  motion from r igh t  to l e f t .
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Figure  4 . 5  R e s u l t s  of f i r s t  s u c c e s s f u l  cu rv ing  c y l in d e r  e x p e r i m e n t .  Same e x p e r im e n ta l  s e t  up  e x c e p t  
for the  lo n g e r  c y l in d e r  (which  o b s c u r e d  m os t  of the boundary  la y e r  flow) and  la rge r  t r a c e r  e l e m e n t s .  
C y l in d e r  mot ion  from loft  to r i g h t .  N o te  the r e s e m b l a n c e  in s t r e a k l i n e  cu rva tu re  to  the  c l o c k w i s e  
motion a b o u t  the s w i v e l .
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and end ings  of the s t r eak s  were h ighly  dependen t  on judgement ,  making 

the i r  m easu rem en ts  far from the a c c u r a c y  de s i red  for e s ta b l i sh in g  quan­

t i t a t ive  r e l a t io n s .

In  Figure 4 . 6  the leng th  of the  s t reaks  Is p lo t ted  ag a in s t  the i r  

lo c a t io n s  with r e s p e c t  to  the  c y l in d e r  pa th .  The loca t ion  is  measured  a s  

the  d i s t a n c e  from the cu rved  path to  the middle of the s t r e ak s  with  neg­

a t ive  v a lu e s  for s t r e ak s  th a t  are  lo c a t e d  be tween  the c y l in d e r  and the 

swive l .

The poin ts  on the  s t reak  leng th  v s .  d i s t a n ce  diagrams were s c a t ­

te red .  I f  we fi t a s t ra igh t  l ine  be tw een  the s c a t t e r  of  p o in ts  and the  c e n ­

te r  of c u rv a tu re ,  where the  s t reak  leng th  is th e o re t i c a l ly  ze ro ,  we find 

tha t  the  poin ts  a t  nega t ive  d i s t a n c e s  (indica ting a lo c a t io n  be tw een  the 

cy l inde r  and the c e n te r  of curva ture)  are  genera l ly  d i s p l a c e d  above the 

l ine  indica ting they  have  g e n e ra l ly  la rger  s t r e a k  le n g h t s .  This is d e f i ­

n i te ly  true for two of the p ic tu re s  while  the third shows the s t ra igh t  

l ine  s lo p e  to  r ep re sen t  a lm o s t  al l  the  po in ts .

The th eo re t ic a l  s t r e ak  leng ths  were derived assum ing  that  the  

m easured  s t reak  length  Is the  r e s u l t  of two co n t r ib u t io n s ,  the ro ta t ion  of 

the sys tem  abou t  the  swive l  and the  c i rcu la t io n  about  the  cy l inde r .

As shown in Figure 4.  7, the  contr ibu t ion  due to  the  t angen t ia l  

motion abou t  the  c y l in d e r ,  S^, is g iven  by the  product of the  t angen t ia l  

ve loc i ty  about t h e 'c y l i n d e r ,  Vg , and  the exposure  t im e ,  t^ .  The c o n t r i ­

but ions  due to motion of the  cy l inde r  about the  sw iv e l ,  S^ ,  is  g iven  by
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Figure  4 . 6  P lo t  of m e a s u r e d  v a l u e s  of s t r e a k  leng th  v s  d i s t a n c e  from th e  s w i v e l ,  Rg. R Is 
th e  d i s t a n c e  from th e  s w i v e l  to  the  c y l in d e r  c e n t e r .  N e g a t iv e  v a l u e s  of R -  Rg In d ica te  l o ­
c a t i o n s  b e tw e e n  th e  c y l in d e r  a n d  th e  s w i v e l .  N o t e ,  g e n e r a l ly  l a rg e r  s t r e a k  l e n g th s  a t  
t h e s e  l o c a t i o n s .
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Figure 4 . 7  Geometry  of the con t r ibu t ion  to s t r e ak  leng th ,  S^, due to 
c i r cu la t io n  abou t  the  c y l in d e r  and  ro ta t ion  abou t  the swivel ,  0  Is the  
an g le  be tw een  the c o m p o n en t s ,  , due to the  c ircu la t ion  abou t  the 
c y l in d e r ,  a n d ,  S^,. due to  the  ro ta t ion  about  the  swivel .  Rg a n d  r are 
the  r a d ia l  d i s t a n c e s  to  the  s t r e a k s  from the swivel and c y l in d e r ,  r e ­
sp e c t iv e ly .
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the  product of the  t a n g e n t i a l  v e lo c i ty ,  Vg^, due to ro ta t io n  a b o u t  the  

sw ive l  and the exposu re  t im e ,  t^ .

The tangen t ia l  ve loc i ty  of a n y  poin t about th e  sw ive l  is g iven  by

(4 .20)

where is  the d i s t a n c e  from the  po in t (in th i s  c a s e  the midpoin t of the 

s t r e a k s )  to the sw ive l .

Then the  contr ibution to the  s t reak  leng th  by the motion abou t  the  swivel  

is  g iv e n  by

= R n t  (4 .21 )0 s e

If the  c y l in d e r  imparts c i r c u la t io n  to the  env ironment ,  t h en  the 

impar ted c i r cu la t io n  m e asu re d  a t  a d i s t a n c e  from th e  c y l in d e r  edge  canno t  

be  g re a te r  than  the  amount  tha t  would r e s u l t  from t h e  c o n s e r v a t io n  of 

angu lar  momentum. We a s s u m e  tha t  the contr ibution  to  s t r e ak  leng th  

made by the  induced c i r c u la t io n  d e c r e a s e s  inversely  with d i s t a n c e  from 

the c y l inde r .

The c i rcu la t io n  a t  the  c y l in d e r  edge is re la ted to the  t a n g en t ia l  

v e lo c i t y ,  Vg , a t  a d i s t a n c e ,  r ,  from the c e n t e r  of t h e  c y l in d e r  by

=  r V g  ( 4 . 2 2 )

where ou is the  an g u la r  v e lo c i ty  a t  the  cy l in d e r  of r a d iu s  r^ , which was
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shown to be equal  to  four t im es  the angu la r  ve loc i ty  a t  the  swive l ,  Q.

Then the con tr ibu t ion  of the c i r cu la t io n  around the  cylinder to  the 

s t re ak  length  in the  proximity  of the  c y l in d e r  is 

r ^
S = U) t  (4.23)
(u r  e s

where r  is  the  d i s t a n c e  from the  s t r e a k ' s  midpoin t to  the  cen te r  of the  
s

cyl inder .

The con t r ibu t ions  are  com bined  vec to r ia l ly  a s  shown in Figure 4 .7  

to  yield the  th e o re t ic a l  s t r e a k s  l e n g th ,  S^, a s

S = ( + 8  ̂ -  2 8 ^ 8  c o s  (4 .24). r n (I) 0 u) ^

where 0  is  the  ang le  desc r ibed  by the two rad i i  r^ and a t  the  midpoin t 

o f  the s t r e a k s  a s  s e e n  in Figure 4 .7 ,

After subs t i tu t ing  from eq u a t io n s  (4 .21)  and  (4 .23)  in terms of 0 

while cons ide r ing  the  law of c o s i n e s ,  equa t ion  (4 .24) r e d u c es  to

8 = n tr  e

r 4 r ^
R /  + 16 -%- - 4 ^  

® ' ŝ s

( r   ̂ + R  ̂ -  R^ )1 (4 .25)s s j

R esu l t s  of computa t ions  of th eo re t ic a l  s t reak  leng th  8  ̂ using 

equat ion  (4 .25)  are  shown in T ab les  4 . 2  through 4 . 4 .  The measured 

v a l u e s ,  a f te r  accoun t ing  for pho tographic  en la rg em en t ,  a re  a l s o  l i s t e d  

for compar ison .
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In  Figure 4 .8  the th eo re t ic a l  and exper imenta l  v a lu es  are  plotted 

to the left  and right ,  r e s p e c t iv e ly ,  o f  the point r e p re sen t in g  the midpoint 

of  the  s t r e ak .  Each s t r eak  is  numbered and the  v a lu e s  correspond to the 

t a b u la ted  va lues  for e ac h  plot .

The measured s t r eak  le n g th s  are c o n s id e rab ly  la rge r  than would 

be expec ted  if  the fluid were responding  only to ro ta t io n  about the sw iv e l .  

A lso ,  the percent in c re a s e  in s t reak  length  nea r  t h e  c y l in d e r ,  p rogress ing  

toward the swivel (toward the bottom, in the figure) ,  genera l ly  approximates  

the  percent  i n c re a se  in the th eo re t ica l  s t reak  len g th s  in th a t  d irec tion  (see  

e . g .  s t reaks  1 through 14). There i s  no doubt tha t  the measured  s t reaks  

a re  la rger  toward the sw iv e l  s ide  o f  the cy l inde r  (the bottom s ide  in the 

figure) .  Photographs 11 and 26 show the genera l  d i s t r ibu t ion  but conta in 

fewer  measureab le  s t r e a k s .

The va lues  computed theo re t ic a l ly  con ta in  no a l lo w an c e  for fr ic t ional 

l o s s  of c ircu la t ion  in the fluid .  The va lues  a re  therefore  cons idered  high 

and are  expec ted  to be g rea te r  than measured s t r e ak  l e n g th s .  However,  

s in c e  the exper imenta l  va lues  of s t reak  leng ths  m easured  on the photographs 

are  genera l ly  h igher than the corresponding  th eo re t ica l  v a lu e s ,  the d if ference

i s  a t t r ibu t ib le  to d i f f i cu l t i e s  in de termining d i s t i n c t  s t reak  beginnings  and 

e n d i n g s .

The d i fference  be tween  measured  and th e o re t ic a l  va lues  i s  genera l ly  

about  20 percent.  Future re f inem en ts  in exper imenta l  techn iques  are e x ­

p e c te d  to reduce tha t  d i f fe rence .
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Figure  4 . 8 .  T h e o re t i c a l  a n d  e x p e r im en ta l  s t r e a k  l e n g th s  for pho tograph  16. M e a s u r e d  v a l u e s  p lo t t e d  
on  r i g h t  of po in t  a n d  t h e o r e t i c a l  v a l u e s  on  l e f t .  Each p o in t  l a b e l e d  be low for Id e n t i f i c a t io n .



V -  CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

At th e  in i t i a l  deve lopm en t  the storm cloud is  in f luenced  by the 

converged a i r  and by the ambient flow that  i t  o b s t r u c t s .  The ba lan ce  of 

t h e s e  two e f f e c t s  con t ro ls  storm motion whi le  enhanc ing  i t s  development 

to a  severe  storm by con t r ibu t ing  toward in c re a s in g  the  c o n v e rg en ce .  

Atmospheric drag makes  the c loud curve in the d i rec t ion  of ve r t ica l  wind 

s h ea r  and v e e r ,  and c a u s e s  c i rcu la t ion  to be  induced  about the  c loud.

This  may contr ibu te  to t r a n s v e r s e  forces which c a u s e  the storm to inc rease  

i t s  motion toward the inflowing low level a i r  an d ,  th e reb y ,  contr ibute  

toward inc reas ing  the c o n v e r g e n c e .  Where c i r cu la t io n  is  induced  and 

s ign i f ican t  t r a n s v e r s e  fo rces  a re  ope ra t ing ,  the storm con ta in s  the n e c e s ­

sary  ing red ien ts  to suppor t  i t s  s ever i ty .

The c i rcu la t io n  th a t  could  be induced  by a storm cloud growing in 

a  veer ing and  shear ing  env i ronm ent ,  whose  path is  curved in r e sp o n se  to 

the  drag e f fec t s  of the am b ien t  a i r ,  is  s ign i f ic an t  s in ce  it is  equivalent  

to tornado c i r c u la t io n .  I f  there  were some mechanism to con cen t ra te  the 

vor tici ty  a t  the c loud edge  into the area of a tornado vortex (diameter about 

1 km) while conse rv ing  a n g u la r  momentum, then p re su m ab ly ,  tornadic  

v e lo c i t i e s  could  be a c h i e v e d  by suff ic ien t  curving of the c loud a long its 

pa th .
75
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Combining the low le v e l  momentum e f fec t  w ith  the middle  l e v e l  drag 

e f f e c t ,  the f i r s t  two te rms in the  m athem at ica l  formulation for storm motion,  

has  r e s u l t e d  in some r e s t r i c t i o n s  in the to ta l  number of combinations  of 

lower and middle l a y e r  a i r  v e lo c i t i e s  tha t  can  e x i s t  for c o n s ta n t  storm 

m ot ion .  In  the fu ture,  c o n s id e r in g  the c i r c u la t io n ,  the third te rm,  in 

com bina t ion  with the f i r s t  two,  should  r e s t r i c t  the number o f  com bina t ions  

further  and u l t imate ly  l ead  to a c c u r a t e  p red ic t ion  of storm m ot ion .  The 

a d d i t iona l  te rm s ,  su ch  a s  the p re s su re  d i f fe ren t ia l  term and the r e s i d u a l  

propaga t ion  term sh o u ld  be in v e s t ig a te d  as  m easurements  becom e more 

p l e n t i f u l .

The b a s i c  hydrodynamic  exper im ent has  b e en  performed and ,  a l ­

though it ha s  not ve r i f ied  the q u a n t i t a t i v e  r e la t io n  that  will a l lo w  a d e ta i l ed  

com puta t ion  of c i r c u la t io n ,  we c an  now be more a s s u r e d  than before  tha t  

the  exper im en ta l  a n a lo g y  to the  a tm osphere  e x i s t s .  This m eans  tha t  

pe r fec t ing  exper im en ta l  ap p a ra tu s  and techn ique  should  be e m p h a s iz e d  

and more exper iments  should  b e  under taken .

Hydrodynamic exper im en ts  of curving c y l in d e r  motion m ade  in a 

f lu id  tha t  is veer ing  an d  shear ing  with h e ig h t ,  would be more c l o s e l y  

r e l a t e d  to a  seve re  storm environment.  These  exper iments  sh o u ld  be made 

a l s o  us ing  cy l in d e rs  w h o se  ro u g h n e s s  v a r ie s  with depth in th e  veer ing  and 

shea r ing  fluid.  It is hoped  t h e s e  exper im ents  will  provide bo th  renew ed  

Impetus and encouragem en t  to s e e k  information in exis t ing d a t a  in add i t ion  

to provid ing g u id e s  for future c a s e  s tu d ie s  inves t iga t ing  the induced
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r e s p o n s e  of the  fluid  to  the  curved motion of the  cy l inder .

In the  p a s t ,  hydrau l ic  a n a lo g ie s  to exp la in  measured  phenomena 

have  b een  u sed  s u c c e s s f u l l y ,  e s p e c i a l l y  in the c a s e  of p ressu re  jumps.

The inc reas ing  number of measurem ents  of storm motions that  d if fer in 

d i rec t ion  on both  s id e s  of the  d i rec t ion  of the mean wind throughout the 

storm d ep th  ha s  led some in v e s t ig a to r s  to pos i t  hydrodynamic an a lo g ie s  

wi th  barr ie r  f l o w .

Goldman (1962) reco g n ized  the  s imilari ty  be tw een  the motion of 

storm rada r  ech o es  and the  hydrodynamic source  plus  pure t r a n s l a t i o n .  He 

e xp la ined  the e f fec t  of c i r cu la t io n  (1966) and la te r  (1967,  1968) developed 

a  model of three  d im en s io n a l  ai rflow in a s ev e re  storm, ba sed  on  the 

ana logy  to ba rr ie r f low.  Sasak i  and Syono (1966) u sed  a double t  to r e p re ­

s e n t  the  low le v e l s  of a moving hurr icane .  The same analogy  w as  u sed  by 

Charba  and Sasak i  (1968) to exp la in  the anomalous motion of s ev e re  s torms 

on  a p a r t icu la r  d a y .  This  same c a s e  was s tud ied  by Fuji ta and G randoso  

(1968) with  a re su l t ing  model deve lopm ent ,  b a se d  on  Karman vor tex theory .  

Although their  deve lopm ent  did not d i s t in g u i s h  be tw een  free (Karman) 

v o r t i ce s  and bound v o r t i ces  (in s torms with s u b s ta n t i a l  updraf ts  and c i r ­

c u la t ion  abou t  them ) , the i r  approach is in the d i rec t ion  of hydrodynamic 

a n a l o g i e s .  More r e c e n t l y ,  Darkow (1969) su g g es te d  cons ide r ing  hor izon ta l  

sh ea r  to a cco u n t  for t r a n s v e r s e  fo rces  on a severe  storm'. Barnes  (1969) 

u s e d  bar r ie r  f low c o n c e p t s  accompanying  h is  d e sc r ip t ion  of a r ad iosonde  

a s c e n t  within an  updra f t .  In his  desc r ip t io n  of  the seq u en ce  of ev en ts  he



78

Inc luded  the  an t lcyc ion lc  curving of radar  echo  pa ths  during the i r  ear ly  

s t a g e  of developm ent  in the veer ing environment.

W ith  the s e e d s  of hydrodynamic barrier flow theory  being p lanted 

somewhat m.ore firmly in the minds of e m p i r i c i s t s ,  pe rhaps  more s tu d ie s  

will  inc lude inves t iga t ion  of the ear ly  s tage  of storm deve lopm ent  to c h ec k  

the e f fec t  of a veer ing environment on the s to rm 's  pa th  a g a i n s t  the  even tua l  

deve lopm ent  of c i rcu la t io n  abou t  the storm.
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LIST OF SYMBOLS

Symbol Definition

A a re a  of cy l inder

A storm a cc e le r a t i o ns

0  storm ve loci ty

drag  c o ef f ic ien t

dÇZ' t ime ra te  of change  of the s to rm ’s
d t  m o t ion ,  a cc e le r a t i o n

D d ia m e te r  of upward motion,  d iamete r  of
c y l in d e r  rep resen t ing  storm volume

F force

h  h e ig h t  of cy linder rep resen t ing  storm
volume

J. inward  flux of a ir  below the invers ion
c onverged  into the storm

J- upward  flux of a ir  in s ide  stormu

K curva ture

S, wid th  of inflowing channel of air

m m a ss  of storm

M middle  l eve l  mois ture

P d i f f e ren ce  in ambient  ve lo c i t i e s

dlff .  g ra d ie n t  of d if ferentia l  p ressu re

82
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Symbol Definition

0  c o n v ec t io n  contr ibuting quanti ty

r r a d iu s

r^ r a d iu s  of cy l inder

r d i s t a n c e  from c en te r  of the cy l inder  to
s t r e a k ' s  midpoint

R r a d iu s  of sw ive l  arm

Rp^ r e s id u a l  a c c e le r a t i o n

Rg d i s t a n c e  from sw ive l  to s t r e a k ' s  mid­
point

s s t ab i l i t y  index

th e o re t i c a l  s t reak  length  at  any d i s ta n ce  
r

Ŝ  ̂ con t r ibu t ion  to s t r eak  length due  to
motion of cy l in d e r  about the sw ive l

0  m a s s  of a ir  taken  into storm per unit
time

S contr ibu t ion  to s t r eak  length due  to
(U c ircu la t io n  about  the cylinder

tg e x posu re  time

U ve loc i ty  of am bien t  air re la t ive  to
moving storm

V ve loc i ty  of ambien t  air re la t ive  to
ground

V tang en t ia l  ve loc i ty  about  the cy linder 
9

Vgg t a n g en t ia l  ve loc i ty  about swivel

V v e lo c i ty  vecto r
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Symbol Definition

w the  v e lo c i ty  r e p re se n ta t iv e  of the mean
m ass  weighted  v e r t i c a l  f lux

z dep th  of  inf lowing a i r ,  to height of
invers ion

^ angle  sub tended  at  cy l inder  by rota tion

i  vort ic i ty

8 angle  sub tended  by cy l inder  revolv ing
a t  swivel

P mean den s i ty  of  air

0  angu la r  ve loc i ty  a t  sw ive l

U) angu la r  ve loc i ty

rff angle  d e sc r ib e d  by the two radii  r__
and Rs

r  c i rcu la t ion  about the storm
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SUBSCRIPTS

Symbol D ef in i t ion

c a t  cy l inder

D middle (dry level)

e exposure

M middle  layer

P upper (plume level)

PR propagation

s a t  s w iv e l ,  or s t reak

S. inner arc  leng th

8 . oute r  arc  leng th

s ia s u b - in v e r s io n  layer

W low (wet level)

AS S .  -  s .

e in the d i rec t ion  theta

n contr ibu t ion  due to  Q

(Ü contr ibution  due to

0s ta n g en t ia l  ve loc i ty  at


