# MODIFICATION AND EVALUATION <br> of SENTRE ${ }^{\text {em }}$ IMPACT ATTENUATION DEVICES 



MARCH, 1990
RESEARCH AND DEVELOPMENT DIVISION
OKLAHOMA DEPARTMENT OF TRANSPORTATION

TECHNICAL REPORT STANDARD TITLE PAGE

| 1. REPORT NO. <br> FHWA 90(02) | 2. GOVERNMENT ACCESSION NO. | 3. RECIPIENT'S CATALOG NO. |
| :---: | :---: | :---: |
| 4. TITLE AND SUBTITLE <br> "Modification and Evaluation of SENTRE Impact Attenuation Devices" |  | 5. REPORT DATE |
|  |  | 6. PERFORMING ORGANIZATION CODE Item NO. 2719 |
| 7. AUTHOR(S) Gary G. Williams, P.E. |  | 8. PERFORMING ORGANIZATION REPORT |
|  |  | 10. WORK UNIT NO. |
| 9. PERFORMING ORGANIZATION AND ADDRESS <br> Oklahoma Department of Transportation Research \& Development Division 200 N.E. 21 st Street, Room 2A2 Oklahoma City, Oklahoma 73105 |  |  |
|  |  | 11. CONTRACT OR GRANT NO. |
|  |  | 13. TYPE OF REPORT AND PERIOD COVERED Final Report 1985 to 1988 |
| 12. SPONSORING AGENCY NAME AND ADDRESS |  |  |
|  |  | 14. SPONSORING AGENCY CODE |
| 15. SUPPLEMENTARY NOTES <br> Done in cooperation with the Federal Highway Administration. |  |  |
|  |  |  |  |
| 16. ABSTRACT <br> This report covers a study of SENTRE Impact Attenuation Devices, done to identify potential design or installation improvements, to make these improvements, and evaluate performance of the devices once the indicated modifications were made. <br> During the study, a total of 21 SENTRE devices were installed on I-40 in Oklahoma City. Ten accidents involving SENTREs were documented. Analysis of these accidents led to modifications in amount of torque applied to anchor bolts, type of clips holding posts to base plates, and depth of topsoil covering the redirecting cable. <br> The limited number of SENTRE installations, and the even more limited number of accidents precluded a statistical comparison of accidents involving SENTREs to those with exposed guardrail, ends or other types of impact attenuation. In all of the accidents occurring after the modifications were made, the SENTRE units performed as the designers intended, suggesting that they were effective in reducing impact severity. |  |  |
|  |  |  |  |
| 17. KEY WORDS <br> Impact Attenuation Devices End Treatment, Guardrail Terminals |  | 18. DISTRIBUTION STATEMENT <br> No restrictions. |
| 19. SECURITY CLASSIF. (OF THIS REPORT) NOne. | 20. SECURITY CLASSIF. (OF THIS PAGE) None。 | E) 21. NO. OF PAGES ${ }^{\text {22. PRICE }}$ |

This publication was printed and issued by the Oklahoma Department of Transportation as authorized by Neal A. McCaleb, Director 125 copies have been prepared and distributed at a cost of $\$ 0.60$ each.

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the offical views of the Department of Transportation or the Federal Highway, Administration. This report does not constitute a standard, specification, or regulation. While company and product names are used in this report, it is not intended as an endorsement.

## EXECUTIVE SUMMARY

The SENTRE impact attenuation device was evaluated by the Oklahoma Department of Transportation with two separate objectives. The first objective of the study was to determine if the devices were operating as their designers intended, to reduce accident severity when struck by vehicles, and if not, make the modifications necessary to "make the SENTRE's work".

As units were struck, their performance was analyzed, and areas where improvement was needed were identified. Modifications in installation procedure or unit design were then made to improve their performance. Modifications made under this objective included: changing torque requirements on anchor bolts, adding reinforcing clips to post bases, and specifying the amount of cover required over redirecting cables.

The second objective consisted of evaluating SENTRE performance, once necessary modifications were made. A total of 10 accidents involving the SENTRE units were documented during the study. The first five accidents included situations where performance of the units indicated the need for design or installation changes. The remaining five accidents were cases where the units performed as intended, suggesting that they were effective in reducing the accident severity.

## TABLE OF CONTENTS

Page
INTRODUCTION ..... 1
INSTALLATION ..... 6
Site Preparation ..... 6
Pad Construction ..... 6
Rear Cable Anchor Unit ..... 7
Slip Base and Cable Anchor Installation ..... 7
MODIFICATIONS ..... 8
Anchor Footing Elevations ..... 8
Retro-Fitting. ..... 8
COLLISIONS INVOLVING SENTRES ..... 12
Repairs after Collisions ..... 15
Repair Costs ..... 15
ACCIDENT STUDY ..... 18
CONCLUSIONS ..... 20
RECOMMENDATIONS ..... 21
REFERENCES ..... 22
APPENDICES
Appendix A. Captioned Photographs ..... A-1
Appendix B. Original SENTRE Plans ..... B-1
Appendix C. Accident Study ..... C-1
Appendix D. ODOT Special Provisions ..... D-1

## LIST OF ILLUSTRATIONS

Figure No. Page1.
SENTRE Unit ..... 2
2. SENTRE Unit Locations ..... 5
3. SENTRE Unit, Straight and Flared ..... 6
4. Types of Posts ..... 7
5."EASI" Reinforcing Clips9
6.MP3 Anchor Installation10
LIST OF TABLES
Table No. Page1.SENTRE Unit Locations4
2. Accident Statistics ..... 12
3.Collisions Involving SENTRE Units.13
4. SENTRE Component Costs ..... 16
5. Replacement Components Used ..... 17
6.Guardrail Accidents18

## INTRODUCTION

The Insurance Institute for Highway Safety reports that in 1988, 1,229 deaths could be attributed to collisions with guardrails. ${ }^{1}$ With the trend toward smaller cars, untreated guardrail ends pose a very serious threat.

Energy Absorption System's SENTRE end treatment had been tested under federal standards for impacts by light and heavy cars before ODOT's investigation began. ${ }^{2}$ ODOT's investigation was conducted with the intent of satisfying two objectives: (1) identifying any design or installation characteristics which could be modified to achieve better unit performance, making these modifications, and (2) evaluating SENTRE performance under actual roadway conditions.

A typical SENTRE unit installation is illustrated in Figure 1. The SENTRE reduces impact severity using a system of telescoping panels connected to the exposed end of a guardrail or barrier.* The system gently slows an impacting vehicle while a redirecting cable guides the panels and the vehicle sideways, away from the guardrail "hard spot". Posts supporting the SENTRE unit are on slip bases which allow them to slide with the impact when hit. Also, SENTRE units have plastic sand containers
*NOTE: This evaluation began in 1985. At that time, SENTRE units were used for protection on ends of both barriers and guardrail, with different transition rails used between the units and the protected structures. Since then, Energy Absorption Systems has developed the TREND unit to be used on barriers, while SENTRE units are now used only as end protection on guardrails.
mounted on the first three posts facing the traffic. These rupture during impact, which helps to dissipate the collision energy.

A total of 21 SENTRE units were installed on I-40 in Oklahoma City, at the locations shown in Table l. Bid price per unit, which included installation by the contractor was $\$ 4,100$ each ( $\$ 86,100$ total). This amount could probably be lowered somewhat on projects where larger numbers of SENTREs were installed.

Maintenance and repair of the units has been done by the ODOT Interstate Maintenance Unit, 2901 East Reno, Oklahoma City.

Figure I. SENTRE Unit.


## Table 1. SENTRE Unit Locations

## SENTRE Units on I-40 Eastbound

1. Entrance ramp onto eastbound I-40 from northbound I-44.
2. Immediately west of May Avenue Underpass.
3. Immediately east of May Avenue Underpass.
4. Agnew/Villa Avenue exit ramp.
5. Immediately west of Agnew/Villa Avenue Underpass.
6. Agnew/Villa Avenue entrance ramp to eastbound $I-40$.
7. Immediately west of Pennsylvnia Avenue Underpass.
8. Virginia Avenue entrance ramp to eastbound $I-40$.
9. Immediately west of Western Avenue Underpass.
10. Western/Reno Avenue exit ramp (north side of ramp).
11. Western/Reno Avenue exit ramp (south side of ramp).
12. Reno Avenue entrance ramp to eastbound I-40.

## SENTRE Units on I-40 Westbound

13. Immediately east of Western Avenue Underpass.
14. Immediately west of Sheridan Avenue ramp to westbound I-40.
15. Immediately east of Virginia Avenue underpass.
16. Pennsylvania Avenue entrance ramp to westbound $I-40$.
17. Immediately east of Agnew/Villa Avenue Underpass.
18. Agnew/Villa entrance ramp to westbound I-40.
19. May Avenue exit ramp.
20. Immediately east of May Avenue underpass.
21. Exit ramp from westbound $\mathrm{I}-40$ to northbound $\mathrm{I}-44$.

## INSTALLATION

## Site Preparation

The appropriate location for a SENTRE guardrail/barrier end treatment includes an area extending forward from the end of guardrail or barrier, (see Figure 3 below) in the direction of oncoming traffic, for a distance of 20 feet. The site area should be level and free of obstruction. Any guardrail or posts extending into the site area should be removed. ${ }^{3}$

Figure 3. Straight and Flared SENTRE Unit Locations.


Flared Unit
Edge of roadway

## Pad Construction

Each SENTRE unit is constructed on a $4^{\prime}-0^{\prime \prime} \times 18^{\prime}-0^{\prime \prime} \times 0^{\prime}-7^{\prime \prime}$ reinforced concrete pad. Pad design is illustrated in Appendix $B$. The first $3^{\prime}-0^{\prime \prime}$ on the exposed end of the pad is $3^{\prime}-0^{\prime \prime}$ thick, the purpose of the thickened section is to furnish the weight and physical shape necessary for the pad to resist the collision forces specified in the Special Provisions, (Appendix F). Also, one end of the redirecting cable is anchored in the thickened section. Reinforcing steel must be placed accurately, (as shown in Appendix B), to avoid interference with concrete anchor bolts.

## Rear Cable Anchor Unit

The rear cable anchor is located as shown in Figure 1. Although the original plans (Appendix B) show this embedded anchor set in concrete in a rectangular hole, this was later modified. The anchor unit har ware remains the same, but it is embedded in concrete poured in a four foot diameter augered hole. The additional concrete furnishes greater mass, since depth remains the same. Also, the hole can be augered, where the rectangular hole originally called for, had to be dug by hand.

## Slip Base and Cable Anchor Installation

The SENTRE unit may be installed on either straight guardrail or on guardrail that has been flared away from the traffic (see Figure 3).

Two different types of slip bases are specified for SENTRE units (Figure 4). The slip bases for posts 1 and 2 have flared slots, allowing for easier slip if hit at an angle. Posts 3, 4, and 5 have straight slots.

During installation, the bases are arranged next to the proper post locations before proceeding to the anchoring process. The slip bases should be installed so that the ramp ends touch the slab.

Figure 4. SENTRE Post Identification.


## MODIFICATIONS

## Anchor Footing Elevations

During the evaluation period, some SENTRE units failed to operate properly because the posts did not slide along the directing cable as the designers intended. Investigation determined that this was due to the rear footings of many units being installed at improper elevations, leaving the cable buried under one foot or more of soil.

This problem resulted from footings being poured to existing shoulder elevations at the time they were constructed. Later, as shoulders and slopes were "dressed" to their final elevations, the footings and cables were buried with whatever depth of soil was needed to shape the slope. Experience during the study, (after corrections were made), indicated that one to three inches of cover would not affect the performance of the units. To prevent the cables from interfering with maintenance mowing operations, this depth of cover should be provided.

## Retro-fitting

Early in the evaluation period, many of the collisions involving the SENTRE units resulted in a failure of the anchor bolts to hold the base plates to the concrete pad. This was eliminated by a design change, made by the manufacturer. The "Molly Wedge" anchor bolts originally used, were replaced with Hilti MP3 anchors set in drilled holes, with "C-10" a two-part epoxy system. "EASI" reinforcing clips were installed on the
slip bases at the same time the MP3 anchors were installed. "EASI" clips, and instructions for their installation, are shown in Figure 5 on the following page. All SENTRE units being evaluated received these modifications. Instructions for installing MP3 anchors are reproduced in Figure 5. Another factor which contributed to unit failures early in the evaluation period, was that pinch bolts were frequently over-torqued by the installation crews, making it impossible for the slip bases to function as intended. Pinch bolts should have been torqued to between 60 and $70 \mathrm{ft}-1 \mathrm{bs}$. In most cases, they were uniformly torqued to $125 \mathrm{ft}-\mathrm{lbs}$. This was corrected during the retro-fit phase. This effect can be seen from the collision listing, Table 3, page 13.

Figure 5. Typical SENTRE Reinforcing Clip Installation.


Step 1: Thoroughly clean area surrounding posts to expose a flat concrete surface and post base plate.
Step 2: Remove nuts and washers on the (4) existing expansion anchors through base plate. (Do not remove slip base bolts.)
Step 3: Position reinforcing clips over the edges of the base plate so that the slotted holes fit over the existing expansion anchor studs then push the clips as close to the base plate as possible.
Step 4: If possible, replace the expansion anchor washers and nuts and torque them down to hold the clips firmly in position.
Step 5: Using a rotary impact concrete drill with a $7 / 8^{\prime \prime}$ bit drill through the large holes in the clips to a depth of $6+/-1 / 4^{\prime \prime}$ as measured from the surface of the concrete. Drill the holes at an angle to avoid interfering with the existing fender panels and sand boxes. The holes must be drilled to a depth of $53 / 4^{\prime \prime}$ minimum, cutting through rebar may be required.
Step 6: Throroughly blow out the concrete dust from the hole, brush the hole and then blow it out again. Install the 7 1/2" long 3/4" diameter Grade 5 HD galvanized studs with the polyester chemical, carefully following the instructions on the package. Under no circumstances should the studs project more than $2^{\prime \prime}$ above the concrete surface.
Step 7: When the polyester chemical has cured (see package instructions) torque the anchors to $125+/-5 \mathrm{ft} / \mathrm{lbs}$ to firmly secure the reinforcing clips.
Step 8: Conduct steps 1-7 for all 5 posts on the SENTRE.


CAUIIRN I) No mot allow contact vith skin or eyes (uear protecrion). Use in vell ventilated area. 2) in hot veather, over 90 dey. $f$, keep kit col until immediately before use, 1) in oold tenperacures, belou 60 der, $F$, keepkit warm until inmediately before use (pot life at 90 deg. F 15 min , at 75 deg. $F=30 \mathrm{~min}$, at 61 dey. $\varepsilon-60$ min, dt as deg. $F=130 \mathrm{~min}$ )


Pour MP3 MIX down into the clean hol Chrough the part to be dichored, fill the hole approximately $1 / 3-1 / 2$ fall
Do not over or under f 11


Position the part to be maxhred accurding to the plans supplied with the unit. Dcall the holes to the correct saze and deptn $1 / 8^{-}$larger than anctor dianeter) following the recommerndtions on the plans. (ixtre de not use o diamond drill as tull stremth may not be achievedl Cherk tu be part to be anchored


Force the stud througn the part being ancheret down into the groutet hole leaving enough stud exposed to attach the nut and washer. Gave the itud several twists to vet the thro.nds
h


IMPORTANT: Brush the hole with a stil bristled brush and blow it clean with o1-frece compressed atc to remove the
te dust

Place a flat washer onto the stud then thread a nut on until it is flush with the top of the stud. Do not disturb the sud until the material has hardened.


Renove the lids frem the MP3
3 part A - Hesin and part D - Hardener containers. Pour part B-Hardener and rhoroughly for 30 mix uigs (As anchor atud makes a suicable stumem rad)

ance the material has hardened, torque the nut to the values indicated in the plans

Figure 6. How to Use MP3 Anchors.

## COLLISIONS INVOLVING SENTRES

Individual collisions in which SENTRE units were hit during the study are listed on Table 3, page 13. Observations regarding the accidents and performance of the units, which led to corrective actions taken during the retro-fit phase, are included, as are actions taken.

Statistics regarding the ten accidents occurring during the study are listed in Table 2 below. It is the opinion of the author that dollar amounts for damages to attenuators could be lowered with installation of a greater number of units.

Table 2. Accident Statistics - Damages Due to Vehicle Impacts

> ESTIMATED DAMAGE
> TO IMPACTING
> VEHICLE (1)

Average $\quad \$ 3,800$

Median $\quad \$ 5,000$
Minimum $\quad \$ 1,150$
Maximum
\$8,000

DAMAGE TO ATTENUATOR (2)
$\$ 950$
\$ 566
$\$ 169$
\$2,665
$\$$

TOTAL DAMAGE
$\$ 4,750$
$\$ 4,165$
\$1,669
\$8,300
(1) Estimated by Oklahoma Highway Patrol Trooper investigating accident.
(2) From ODOT Maintenance Crew records. Includes labor.

NOTE: Average, Median, Minimum and Maximum damages to vehicle and attentuator did not occur during the same accidents.

Table 3. Collisions Involving SENTRE Units

| DATE | DESCRIPTION | SENTRE PERFORMANCE | CORRECTIVE MEASURES |
| :---: | :---: | :---: | :---: |
| 4-26-85 | Unit at Virginia St. \& I-40 (east bound) hit. | Posts did not come off slipbases as intended. Pinch bolts were overtorqued. | Manufacturer had anchor bolts on all units torqued to $65 \mathrm{ft}-1 \mathrm{bs}$. |
| 12-13-85 | Unit at May \& I-40 (eastbound) hit. | Posts did not come off slipbases. lst post was torn off anchor plate. | None. This was considered to be due mainly to the angle of the collision. |
| 8-25-85 | Unit at Air Depot \& I-40 (eastbound) hit. | Posts did not come off slipbases. Anchor plate was pulled out of concrete pad. | Manuafacturer was notified that earlier corrections didn't solve the problem. |
| 8-17-86 | Unit at Engle Rd. \& I-40 (eastbound) hit. | Anchor bolts failed. | Manufacturer notified. They decided to retrofit at this point. |
| 4-26-87 | Unit at Klein \& I-40 (eastbound) hit. | Slipbases performed as intended, but cable was buried too deeply for posts to slide down it. | ODOT Mainten. crew will raise cables when their workload allows. |
| 5-12-87 | Unit at Klein \& I-40 (eastbound) hit. | Car hit unit on nose \& rolled down backslope. Only the lst two posts came off the slipbases. Both posts were bent. | None. Angle of impact appears to be the reason unit performed as it did. |
| 7-4-87 | Unit at Virginia Ave. \& I-40 (east bound) hit. | Unit was hit on nose. Car rolled over after hitting it. Unit collapsed as intended. Front 2 posts bent, but did slide off bases. Six anchor bolts pulled out. | None. |

# Table 3. Collisions Involving SENTRE Units (Continued) 

| DATE | DESCRIPTION | SENTRE PERFORMANCE | CORRECTIVE MEASURES |
| :---: | :---: | :---: | :---: |
| 8-24-87 | Unit at Sunnylane Rd. \& I-40 (east bound) hit. | Unit collapsed as intended. Two posts were bent. | None . |
| 12-15-87 | Unit at Reno \& I-40 (westbound) hit. | Unit collapsed as intended. Two posts were bent. | None . |
| 12-15-87 | Unit at Klein \& I-40 (eastbound) hit. | Unit collapsed as intended. Three posts were bent. | None . |

## Repairs After Collisions

When the evaluation began, it was thought that maintenance costs might be lowered with the use of SENTRE units. This was based on the assumption that most principal components could be repositioned and reused after most impacts. According to the ODOT maintenance crew who did the repair work after collisions involving the units, and their records, their experience did not show this.

Except for the pad, redirecting cable, and cable anchor which were not damaged during any of the accidents, all components actually involved in the collisions had to be replaced with new parts. Essentially, the only reuseable parts were those located far enough from the point of impact (i.e. Post 5, when first impact occurred on the nose), so that they were not affected.

Typically, fender panels and posts bend, even when they do telescope and come off slip bases as designed.

Also, a crew of three to five men is required for repairs, which in our experience, took approximately half a day. This amount of time is required because units must be disassembled for repairs, then reassembled with new componenents replacing those which are damaged.

## Repair Costs

Components of a single SENTRE unit, and their cost, as of April 21,1988 , the date of ODOT's last replacement parts order, are listed in Table 4 on the following page. Nuts, bolts, washers, etc. are not listed. For a complete listing, including all hardware, see Appendix B.

Table 4. SENTRE Component Costs

| NO. | COMPONENT | UNIT COSTS | TOTAL COSTS |
| :---: | :---: | :---: | :---: |
| 1 | Nose Cover | \$ 65.00 ea . | \$ 65.00 |
| 1 | Post, No. 1 | \$ 95.00 ea . | \$ 95.00 |
| 1 | Post, No. 2 | \$ 85.00 ea. | \$ 85.00 |
| 1 | Posts, No. 3, $4 \& 5$ | \$ 65.00 ea. | \$ 195.00 |
| 5 | Blockouts | \$ 20.80 ea. | \$ 104.00 |
| 4 | Sand Containers, 100 Lb . | \$ 45.50 ea . | \$ 182.00 |
| 2 | Sand Containers, 150 lb . | \$ 58.50 ea. | \$ 117.00 |
| 2 | Base Plates, No 1 \& 2 | \$ 31.50 ea . | \$ 63.00 |
| 3 | Base Plates, No. 3, 4 \& 5 | \$ 19.50 ea. | \$ 58.50 |
| 5 | Bolt Keeper Plates | \$ 11.70 ea. | \$ 58.50 |
| 1 | Redirecting Cable, 25' (threaded both ends) | \$299.00 ea. | \$ 299.00 |
| 5 | Thrie Beam Fenders | \$279.50 ea. | \$1,397. 50 |

NOTE: Based on prices as of April 21, 1988.

Numbers of individual components actually used for replacement during the study (other than nuts, bolts and washers), are tabulated on page 12. Note that 14 nose covers and hazard markers were used when only 10 collisions were reported. Also, some of the sand containers replaced were damaged by vandalism in addition to those damaged by vehicle impacts.

Table 5. Replacement Components Used

NUMBER USED

## COMPONENT

100 1b. Sand Containers
150 1b. Sand Containers
Blockouts
Nose Covers
Hazard Markers
Fender Panels
Post No. 1
Post No. 2
Posts No. 3, 4, \& 5
Base Plates

## ACCIDENT STUDY

In an attempt to compare accident history prior to installation of the SENTRE devices to that after installation, a study of fixed object accidents covering the area where the SENTREs were installed was requested from the ODOT Traffic Engineering Division. Time periods used in compiling this information were: April 25,1982 through April 25, 1985, and April 26, 1985 through April 26, 1988. This represented roughly three years before SENTRE installation, and three years after. These tabulations are shown in Appendix E.

Information regarding guardrail accidents, extracted from this study, is summarized in Table 6 , below.

Table 6. Guardrail Accidents

|  | TOTAL NO | TOTAL | NO. OF | NO. OF |
| :---: | :---: | :---: | :---: | :---: |
| TIME | OF GUARDRAIL | PROPERTY | ACCIDENTS | ACCIDENTS |
| PERIOD | ACCIDENTS | DAMAGE | W/INJURIES | W/FATALITIES |

4-25-82
to
4-25-85
64
$\$ 220,675$
23 (35.9\%)
$2(3.1 \%)$
4-26-85
to
4-26-88
21
$\$ 70,565$
11 (52.4\%)
0

It should be noted that construction was in progress during most of the 1985 - 1988 study period, on various parts of the study area. Speeds were lowered on some sections, some exits were closed, and some traffic was rerouted. These factors contributed to less traffic, and less accident exposure over much of the
second half of the study period. These factors are the likely reason for the marked reduction in property damage, injuries, and fatalities.

As can be seen from Table 6, the percentage of the guardrail accidents resulting in injuries actually increased, although the number of accidents decreased.

The first five accidents involving SENTRE units ocurred during the phase of the study when the units were being developed, and modifications discussed earlier, were made after accidents ocurred. The next five accidents ocurred after all modifications had been made and no corrective action was required. Although the accident study could not show this statistically, it is the opinion of the author, that the SENTRE's did reduce accident severity. During the last five accidents (those ocurring after modifications), the units operated as the designers intended during every impact.

## CONCLUSIONS

The modifications to the installation procedure, discussed earlier, are now addressed in the current version of the manufacturer's installation manual. The changes in the type of anchor bolts and reinforcing clips used are now standard features.

It is an important point that pinch bolts must be torqued to between 60 and $70 \mathrm{ft}-1 \mathrm{bs}$, or slip bases will not function properly. This has also been addressed in the current installation manual.

Although the number of collisions occurring after modifications was limited, SENTRE unit performance during those collisions suggests that the SENTREs do contribute to reducing accident severity.

Repair of the units, once a collision has occurred, can be expected to require approximately four hours, for a three to five-man crew. Also, repairs done during the study indicate that any components actually involved in the collision must be replaced. With the exception of the pad, redirecting cable, and cable anchor, the only reuseable parts are those located far enough from the point of impact so that they are not affected. To repair a SENTRE, the entire unit must be disassembled, the damaged parts replaced, then the unit must be reassembled.

## RECOMMENDATIONS

1. Consideration should be given to using SENTRE units on future projects where guardrail end protection is desired.
2. Installation of SENTRE units should be planned, and then checked by construction inspectors, to insure that the redirecting cable anchors are placed at the proper elevation, so that the cable has 1 to 3 inches of cover.
3. A torque wrench should be used during installation of slip bases. Nuts holding slip bases should be tightened to between 60 and 70 ft - 1 bs torque. This should be checked by inspectors during construction.
4. Maintenance forces attempting to estimate numbers of components for repair stockpiles should consider:
a. Nose covers and hazard markers can be expected to require replacement in $100 \%$ of the accidents involving SENTREs.
b. Sand containers may be damaged by vandalism as well as by vehicle impacts.
c. Components placed toward the end of the unit facing traffic are more likely to sustain damage, and require replacement than those on the "transition" end.

## REFERENCES

1. IIHS Facts 1989, Insurance Institute for Highway Safety, July, 1989.
2. SENTRE (Safety Barrier End Treatment), NCHRP 230 Certifications Report, Energy Absorption Systems, Inc., May, 1983.
3. SENTRE Guardrail End Treatment, Installation Manual, Energy Absorption Systems, Inc., 1984.
4. Drawing Number 80-04-03, Concrete Pad Detail, Energy Absorption Systems, Inc., 1980.
5. MP3 Anchor Instructions, Hilti Corporation. 1984

## APPENDIX A

PHOTOGRAPHS


Figure 1. SENTRE unit after installation on guardrail end.


Figure 2. SENTRE unit after installation on barrier end


Figure 3. Drilling holes for 'MP-3" anchors during retrofit


Figure 4. Placing 'MP-3" anchors after cleaning hole - retrofit phase


Figure 5. Reinstallation of slip base, retrofit phase


Figure 6. Slip base retrofit, "MP-3" anchors rethreaded


Figure 7. After collision - unit functioned as intended


Figure 8. Unit after collision - unit functioned as intended


Figure 9. After impact, first three slip bases performed as intended.


Figure 10. SENTRE unit after impact. Slip bases failed to work due to over-torqued pinch bolts.


Figure 11. Slip base after impact, base did not perform


Figure 12. SENTRE unit after impact, unit generally performed as intended, but anchor bolts were pulled out of slab

## APPENDIX B

## SENTRE PLANS


PLAN




Customer Prints an
STANLAFLD SENTPE CGMPONENTS AFE SIIADED

| Aevistones <br> द्रह क्ता AKP65 DETAM 1 |  |  | $\begin{aligned} & \text { Cud } \\ & 1 \times n t \end{aligned}$ |  |  | Hetances |  | ENERGY ABSORPTION SYSTEMS, INC. encmetnano momsenace ocratiment |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Orionod - Eal |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | SENTRE |  |  |
|  |  |  |  |  |  |  |  | W/ |  | SITION TO N.J. |  |  |
|  |  |  |  |  | Anato |  |  |  |  |  |  |  |
| Moriotel |  |  |  |  |  |  |  | \% | c | .80-00-03 | 产 | B |



DETAILF
TUSNROOM BOLT
ASSEMBLY)
STANDARD SENTRE COMPONENTS ARE SHADED

| Roviotome | Dos. | Ro. | $B_{7}$ | crd | App | aviliol c: <br> ist toace on anckup <br> siave tunt $\qquad$ nirs |  | EIEIENCII <br> Poiov No $\qquad$ sot. 0.4., no $\qquad$ <br> Sercal 1'0. $\qquad$ Celor $\qquad$ |  | ENEROY ABSORPTION SYSTIMS, INC. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 1 | 12 | 硈 | 嗉 |  |  |  |  |  |  |  |  |  |
|  |  | - |  |  | W |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 006000. ${ }^{\text {a }}$ | $\mathrm{S}_{41}$ |  |  |  |  |  |  |  |
|  |  |  |  |  | - | Onow. TJJ ancrsomp | $\frac{1111.84}{3.16}$ |  |  |  |  | SENTRE |  |  |
|  |  |  |  |  |  | Aperaved W. 6 Nade 1 | FPO1 |  |  |  |  |  |  |  |
|  |  |  |  | - |  | 10toromex. <br> - Angulor |  |  |  |  |  |  |  |  |
| Menociol: |  |  |  |  |  | Unowil Oinor wio Noiod |  |  |  | $\cdots 1 \cdot c^{\circ}$ | ${ }^{3}$ | - 80-00-03 | $\left[\begin{array}{c}298 \\ 29\end{array}\right.$ | $\bar{B}$ |








APPENDIX C

## ACCIDENT STUDY

OKLAHOMA OEPARTMENT OF TRANSPORTATION ANALO1O.PRINT
COUNTY: (55) OKLAHOMA I-40 MAINEINE ACCIDENT CONCENTRATION LISTING FOR IN-HOUSE USE
CS INT MI DIAG LOCATION SOS COECIAL
CITY CODE DESCRIPTION FEATURES

| 70 | 68 | 00 | 0029 | 00000 | N. CANADI AN | R I | BRIDGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | 68 | 00 | 0029 | 00000 | N. CANADI AN | RI | BRICGE |
| 70 | 68 | 00 | 0029 | 00000 | N. CANADIAN | RI | BRIDGE |
| 70 | 68 | 00 | 0029 | 00000 | N. CANAOI AN | RI | BRIDGE |
| 70 | 68 | 00 | 0029 | 00000 | N. CANADIAN | RI | BRIDGE |
| 70 | 68 | 00 | 0029 | 00000 | N. CANAOI AN | RI | BRIDGE |


| INT |  | PEC |  |
| :--- | :--- | :--- | :--- |
| REL D1 D2 | VE | IN- |  |
| NO NW NW | 2 |  |  |
| NO E | E | 2 |  |
| NO E | 1 |  |  |
| NO W | 1 |  |  |
| NO W |  |  |  |
| NO $E$ |  | 1 | 1 |

E PROP TYPE
$T$ OMG ACCIDENT

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| NO $E$ | 1 |  |  |
| NO W | 1 | 1 | 3 |
| NO $E$ | 1 | 1 | 1 |


| 1650 | $F-O(B R$ POST) | UNSAF-SPO |
| :--- | :--- | :--- |
| 2675 | $F-O(R E T N ~ W A L L)$ | UNSAF-SPD |
| 5050 | $F-O(R E T N ~ W A L L)$ | UNSAF-SPD |
| 3050 | $F-O(B R$ RAIL) | UNSAF-SPD | $3050 \mathrm{~F}-\mathrm{O}(\mathrm{BR} \mathrm{RAIL})$ UNSAF-SPD $2850 \mathrm{~F}-\mathrm{O}($ RETN WALL) UNSAF-SPO $800 \mathrm{~F}-\mathrm{O}($ RETN WALL) UNSAF-SPD

700 F-O(RETN WALL) INATT $3450 \mathrm{~F}-\mathrm{O}(\mathrm{GD}$-RAIL) DEF-VEH. 1150 F-C(RETN WALL) UNSAF-SPD

2500 F-O(RETN WALL) UNSAF - SPD $2500 \mathrm{~F}-\mathrm{O}($ RETN WALL) UNSAF-SPD DARK WET PD O9-28-86 $1200 \mathrm{~F}-0(R E T N$ WALL) UNSAF-SPD DARK IC-S PD O2-16-87 1200 FIXED-O(OTHER) NO-IMP-ACT DYLGT DRY PD O3~24-88

| NO | E | 1 | 2500 | F-O(RETN | WALL) | UNSAF-SPD | DARK | WET | PD | 09-28-86 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO | W | 1 | 1200 | F-O(RETN | WALL) | UNSAF-SPD | DARK | IC-S | PD | 02-16-87 |
| NO | E | 1 | 1200 | FIXED-O(O | (THER) | NO-IMP-ACT | OYLGT | DRY | PD | 03-24-88 |

NOE 12500 F-O(RETN WALL) UNSAF-SPD DARK WET PD 11-19-85

(70) OKLAHOMA CITY

| $\frac{70}{70}$ | 6800003000000 |
| :--- | :--- | :--- |
| 70 | 6800003000000 |

706800003000000
$\frac{\text { (70) OKLAHOMA CITY }}{70} 68$ I-40
$\frac{(70)}{70} 68$ OKLAHOMA CITY
$\frac{10000}{} \frac{I-40}{00003800000}$

2500 F-O(RETN WALL) UNSAF-SPD DARK
WET PD 11-19-85
$\frac{10)}{70} 6 \frac{\text { OKLAHOMA CITY }}{51005100000} \frac{I-4}{}$
$\frac{\text { (70) }}{10} 685 \mathrm{OKLAHOMA}$ C ITY $1-40$
NOE 12500 F-O(RETN WALL) UNSAF-SPD
CONSTRUCTION

(70) OKLAHOMA CITY I-40
$\frac{10}{70} 6851005900000$
$\frac{(70)}{70} 6 \frac{\text { OKLAHOMA CITY }}{51006800000}$
$70 \quad 68 \quad 51006800000$
$\begin{array}{lllll}70 & 68 & 51 & 10068 & 00000\end{array}$
$70 \quad 68 \quad 00 \quad 06800000$
$\begin{array}{lllll}70 & 68 & 51 & 0068 \quad 00000\end{array}$ $\frac{\text { (70) }}{70} 6 \frac{\text { OKL AHOMA CITY }}{810069 \text { 1-40 }}$
(15) DEL CITY 0000 $\frac{15}{15} 6800007800000$ $\frac{\text { (15) }}{15} \frac{\text { DEL CITY }}{80000}$ $\frac{\text { (15) }}{15} 6 \frac{\text { DEL CITY }}{8000080} 1-4$ 156800008000000
$\frac{(15)}{15} 6 \frac{\mathrm{DEL} \mathrm{CITY}}{800008300000}$ $\frac{(15)}{15} \frac{\mathrm{DEL} \text { CITY }}{00 \text { I-40 }}$

| $\frac{1}{15}$ | 68 | 00 | 0088 | 00000 |
| :--- | :--- | :--- | :--- | :--- |
| 15 | 68 | 00 | 0088 | 00000 |

15680000880000
(15) DEL CITY I-40

156800009500000
$-40$
(15) DEL CITY

NO 1 1 125 F-O(RETN WALL) NO-IMP-ACT DYLGT DRY PD O3-10-86

NO W W $W$ W $\quad$|  |  |
| :--- | :--- |
| NO | 1 |
|  | 550 |
| F-O (RETN WALL) UNSAF-SPD DYLGT IC-S PD O2-07-86 |  | 5OU F-O(RETN WALL) UNSAF-SPD OYLGT IC-S PD O2-07-86 2500 F-O(RETN WALL) UNSAF-SPD DYLGT IC-S PD 02-07-86 700 FIXED-O(OTHER) UNSAF-SPD DARK IC-S PD O2-16-87 3500 F-O(RETN WALL) NO-IMP-ACT DYLGT DRY PD O3-18-87


NOW 1 S 1 FOO F-O(GD-RAIL) UNSAF-SPD DYLGT WET INJ 11-27-87
NOE 15500 FIXED-O(OTHER) UNSAF-SPD DYLGT DRY PO O4-19-88
NOE 1 UOO F-O(RETN WALL) D-W-I OYLGT ORY INJ O5-20-86

| NO | E | 1 | 1 | 800 | F-O(RETN | WALL) | UNSAF-SPD | OYLGT | IC-S | INJ | 12-11-85 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO | E | 1 |  | 2500 | F-O(RETN | WALL) | OTHER | OYLGT | ORY | PD | 04-17-86 |
| NO | W | 1 | 1 | 1075 | F-O(GD-RA |  | UNSAF-SPD | DYLGT | WET | INJ | -06-04-86 |
| NO | $E$ | 1 |  | 700 | F-O(RETN | WALL) | NO-IMP-ACT | DARK | OT | PD | 09-12-85 |


|  |  | INT MI | DIAG | LOCATION | SPECIAL | INT |  |  | PEOPLE | PROP | TYPE | CAUSE OF | CONO I | IONS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CITY | * | * POST | CODE | DESCRIPTION | FEATURES | REL | D1 D2 | VE | IN-FAT | DMG | ACCIDENT | ACCIDENT | LIGHT | ROAD | SEV | DATE |
| (70) OKLAHOMA CITY I-35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 70 \\ & 170 \end{aligned}$ |  | $\begin{aligned} & 000613 \\ & \text { KLAHOMA C } \end{aligned}$ | $\begin{aligned} & 00000 \\ & 1 T Y \\ & \hline \end{aligned}$ |  |  | NO | E MILE | 22 | 1 | 3125 | $F-O(G D-R A I L)$ | UNSAF-SPD | DYLGT | IC-S | INJ | 02-08-86 |
| $\begin{aligned} & 70 \\ & 170 \end{aligned}$ | $\left\{\begin{array}{l} 15 \\ 0 K \end{array}\right.$ | $\begin{aligned} & 000614 \\ & \text { KLAHOMA } 0 \end{aligned}$ | $\begin{aligned} & 00000 \\ & \text { ITY I } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { MILE } 127 \\ & 1-35 \\ & \hline \end{aligned}$ |  | NO | E | 1 |  | 1400 | F-O(GO-RAIL) | UNSAF-SPD | DARK | DRY | PD | 02-07-87 |
| (70) OKLAHOMA CITY I-35 |  |  |  |  |  | NO | $N$ | 1 | 1 | 600 | F-O(BARRIER) | UNSAF-SPD | DARK | DRY | INJ | 11-03-86 |
| (70) OKLAHOMA CITY I-35 |  |  |  |  |  | NO | W W | 2 |  | 3450 | F-O(RETN WALL) | UNSAF - SPD | OARK | IC-S | PD | 12-03-86 |
| 70 |  | 000641 | 00000 |  |  | NO | $w$ | 1 |  | 2500 | F-O(GD-RAIL) | NO-IMP-ACT | DYLGT | ORY | PD | 04-10-86 |
| 70 |  | 000641 | 00000 |  | CONSTRUCTION | NO | W | 1 | 1 | 4900 | F-O(RETN WALL) | D-W-I | DYLGT | ORY | INJ | 06-27-87 |
| $\frac{(70)}{70} \frac{\text { OKL AHOMA CITY }}{}$ - 0635 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (70) OKLAHOMA CITY I-35 |  |  | 00000 |  |  | NO | W | 1 |  | 2000 | $F-O(G D-R A I L)$ | UNSAF-SPD | DYLGT | DRY | PD | 08-30-87 |
|  |  |  | 00000 |  |  | NO | E | 1 |  | 2500 | FIXED-O(OTHER) | D-W-I | DARK | DRY | PD | 09-14-85 |
| 70 | 15 | 000661 | 00000 |  | CONSTRUCTION | NO | W | 1 |  | 2500 | F-O(RETN WALL) | UNSAF-SPD | LIGHT | WET | PD | 11-25-86 |
| 70 |  | 000661 | 00000 |  | CONSTRUCTION | NO | W | 1 |  | 1000 | F-O(RETN WALL) | UNSAF-SPD | DYLGT | ORY | PD | 11-06-87 |
| $\frac{\text { (70) }}{70} \frac{\text { OKLAHOMA CITY }}{1500066500000}$ I-35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | NO | E | 1 |  | 3450 | F-O(RETN WALL) | UNSAF-SPD | DYLGT | DRY | PD | 07-19-86 |
| (70) OKLAHOMA CITY I-35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{10} 1500067000000$ <br> (70) OKLAHOMA CITY I-35 |  |  |  |  |  | NO | W | 1 | 1 | 1250 | $F-O(G D-R A I L)$ | INATT | OYLGT | DRY | INJ | 12-19-85 |
| 70 |  | 000672 | 00000 |  |  | NO | E | 1 |  | 700 | F-O(RETN WALL) | NO-IMP-ACT | OYLGT | WET | PD | 04-29-85 |
| 70 |  | $000672$ |  |  |  | NO | E | 1 |  | 2500 | F-O(RETN WALL) | UNSAF-SPD | DYLGT | DRY | $P D$ | 07-24-85 |
| (70) OKLAHOMA CITY I 35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 70 |  | 000673 | 00000 |  | CONSTRUCTION | NO | w | 1 |  | 750 | F-O(RETN WALL) | FOL-CLOSE | OYLGT | DRY | PD | 04-22-87 |
| (70) OKLAHOMA CITY I-35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 70 | 15 | 000674 | 00000 |  |  | NO | $E$ | 1 |  | 1000 | F-O(GD-RAIL) | NO-I MP- $\triangle$ CT | OYLGT | WET | PD | 07-17-87 |
| 70$(70)$ |  | 000674 | 00000 |  |  | NO | $E \quad E$ | 2 | 1 | 2800 | FIXED-D(OTHER) | NO-IMP-ACT | OYLGT | WET | INJ | 07-17-87 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | NO | E | 1 |  | 700 | F-O(RETN WALL) | UNSAF-SPD | OYLGT | WET | FD | 06-05-85 |
| (70) OKLAHOMA CITY I-35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 70 | 15 | 000691 | 00000 |  |  | NO | W | 1 |  | 500 | F-O(RETN WALL) | UNSAF-SPD | DYLGT | ORY | PO | 09-09-85 |
| 70. | 15 | 000631 | 00000 |  |  | NO | W W | 2 |  | 3050 | F-O(RETN WALL) | UNSAF-SPD | DYLGT | DRY | PO | 03-07-86 |
| $70 \quad 15$ |  | 000681 | 00000 |  |  | NO | W W | 2 |  | 2850 | F-O(RETN WALL) | NO-IMP-ACT | DYLGT | WET | PO | 04-03-86 |
| $70 \quad 1$ | 15 | 000681 | 00000 |  |  | NO | E | 1 | 1 | 1250 | F-O(GD-RAIL) | NO-IMP-ACT | OYLGT | DRY | INJ | 05-19-86 |
| $\begin{aligned} & 70 \\ & 170 \\ & \hline \end{aligned}$ | 15 | 000681 | 00000 |  | CONSTRUCTION | NO | W | 1 |  | 400 | F-O(RETN WALL) | NO-IMP-ACT | DYLGT | WET | PD | 07-17-87 |
|  |  | LAHOMA C | ITY I | 1-35 |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | 15 | 000691 | 00000 |  |  | NO | W | 1 | 1.1 | 2600 | F-O(BR PIER) | UNSAF-SPD | LIGHT | DRY | FAT | 07-29-86 |
|  | 15 | 000691 | 00000 |  | CONSTRUCTION | NO | W | 1 | 1 | 2600 | F-O(RETN WALL) | IMP-LN-CHG | DUSK | ORY | INJ | 12-19-86 |
| 70170 | 15 | 000691 | 00000 |  |  | NO | E | 1 |  | 600 | F-O (GD-RAIL) | NO-IMP-ACT | DILGT | ORY | PD | 12-02-87 |
|  |  | LAHOMA | ITY I | 1-35 |  | H-77 | RENO | AVE | OP | 32* |  |  |  |  |  |  |
| 70 | 15 | 520699 | 00000 | RENO AVE. OP | BRIDGE | NO |  | 1 | 1 | 4100 | F-O (GD-RAIL) | UNSAF-SPD | OARK | WET | INJ | 10-30-87 |
| $\begin{aligned} & 70 \\ & 170 \\ & \hline \end{aligned}$ | 15 | 520699 | 00000 | RENO AVE. OP | BRIDGE | NO | S | 1 | 1 | 1500 | F-O(RETN WALL) | O-W-I | DARK | DRY | FAT | 12-13-87 |
|  |  | L AHOMA C | ITY I | 1-35 |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 70 \\ & 170 \end{aligned}$ | 15 | 110721 | 00000 |  |  | NO | W | 1 |  | 2500 | F-O (GD-RAIL) | NO-IMP-ACT | DARK | WET | PD | 12-15-86 |
|  |  | L AHOMA | ITY I | I-40 |  |  | N.CAN | ADI | AN RIV | BR |  |  |  |  |  |  |
| 706 | 68 | 000029 | 00000 | N. CANADIAN RI | BRIDGE | NO | W | 1 |  | 2850 | F-O(GD-RAIL) | INATT | DARK | ORY | PD | 05-04-85 |
| 7070 | 68 | 000029 | 00000 | N. CANADIAN RI | BRIDGE | NO | W | 1 |  | 500 | F-O(RETN WALL) | NO-IMP-ACT | OYLGT | ORY | PO | 05-04-85 |
|  | 68 | 000029 | 00000 | N, CANADIAN RI | BRIDGE | NO | W | 1 |  | 900 | F-O(RETN WALL) | UNSAF-SPD | DYLGT | IC-S | PD | 11-27-85 |

OKLAHOMA DEPARTMENT OF TRANSPORTATION

## ANALO1O.PRINT

COUNTY: (55) OKLAHOMA

ACCIDENT CONCENTRATION LISTING FOR IN-HOUSE USE



OKLAMOMA DEPARTMENT OF TRANSPORTATION ANALO1O.PRINT
COUNTY: (55) OKLAHOMA

I-40 MAINLINE FIXED OBUECT ACCIDENTS FROM I-44 EAST TO SUNNYLANE



HIGHWAY TABULATION
ACCIDENT CONCENTRATION LISTING FOR IN-HOUSE USE



ACCIDENT TYPE \& DAMAGE CAUSED

| COLLISION |  |  | 885 |  |  |  | 86 |  |  |  | 987 |  |  |  | 888 |  |  |  | 989 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE | FAT | INJ | P-D | TOTAL |
| OVR-TRN( IN-RD) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PEDESTRIAN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PARKED-VEHICLE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RAILROAD-TRAIN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANIMAL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FIXED-OBJECT | 1 | 9 | 31 | 41 | 1 | 16 | 49 | 66 | 1 | 24 | 44 | 69 |  | 7 | 9 | 16 |  |  |  |  |
| RAN-OFF-ROAD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| S-S(SAME-DIR) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| REAR-END |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HEAD-ON |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| S-S(OPP-DIR) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANGLE ( TURN ) I |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANGLE (TURN)NI |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANGLE (I) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANGLE (NI) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OTHER |  |  |  |  |  |  |  |  | \$208,990 |  |  |  |  |  |  |  |  |  |  |  |
| TOTAL(P.D.) | \$79.275 |  |  |  | \$137.875 |  |  |  |  |  |  |  | \$34.510 |  |  |  |  |  |  |  |

STUDY TOTAL(ACCIDENT TYPE)

|  | FATAL | PERCENT | INJURY | PERCENT | PROPERTY DAMAGE | PERCENT | TOTAL | PERCENT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVR-TRN(IN-RD) |  |  |  |  |  |  |  |  |
| PEDESTRIAN |  |  |  |  |  |  |  |  |
| PARKED-VEHICLE | , |  |  |  |  |  |  |  |
| RAILROAD-TRAIN |  |  |  |  |  |  |  |  |
| ANIMAL |  |  |  |  |  |  |  |  |
| FIXED-OBUECT | 3 | 100.0 | 56 | 100.0 | 133 | 100.0 | 192 | 100.0 |
| RAN-OFF-ROAD |  |  |  |  |  |  |  |  |
| S-S (SAME-DIR) |  |  |  |  |  |  |  |  |
| REAR-END |  |  |  |  |  |  |  |  |
| HEAD-ON |  |  |  |  |  |  | , |  |
| S-S(OPP-OIR) |  |  |  |  |  |  |  |  |
| ANGLE (TURN) I |  |  |  |  |  |  |  |  |
| ANGLE (TURN)NI |  |  |  |  |  |  |  |  |
| ANGLE ( I ) |  |  |  |  |  |  |  |  |
| ANGLE(NI) |  |  |  |  |  |  |  |  |
| OTHER |  |  |  |  |  |  |  |  |
| TOTAL | 3 | 100.0 | 56 | 100.0 | 133 | 100.0 | 192 | 100.0 |

SPEED CONDITIONS

| TYPE OF VEHICLE | OPERATING SPEED |  |  |  |  |  |  |  |  |  | TOTAL | PERCENT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-9 | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 | 60-69 | 70-79 | $80+$ | UNKNOWN |  |  |
| SINGLE UNIT (NORMAL) | 5 | 11 | 17 | 23 | 52 | 59 | 15 | 3 | 1 |  | 186 | 88.1 |
| SINGLE UNIT (LARGE) | 1 | 1 | 2 |  | 1 | 1 |  |  |  |  | 6 | 2.3 |
| DUAL UNIT |  |  | 1 | 3 | 6 | 9 |  |  |  |  | 19 | 9.0 |
| OTHER |  |  |  |  |  |  |  |  |  |  |  |  |
| TOTAL | 6 | 12 | 20 | 26 | 59 | 63 | 15 | 3 | 1 |  | 211 | 100.0 |
| PERCENT | 2. 8 | 5.6 | 9.4 | 12.3 | 27.9 | 32.7 | 7.1 | 1.4 | 4 |  | 100.0 |  |

ACCIDENT OCCURRENCE

| DAY | HOUR OF THE DAY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | PERCENT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 | 10 | 111 | 12 |  | 1 |  | 2 | 3 | 4 |  | 5 | 6 | 7 | 18 | 9 | 10 | 11 | 12 | TTOTAL |  |
| MON | 1 |  |  |  | 2 | 2 |  | 2 | 1 | 1 | 1 | 1 | 1 |  |  |  | 1 | 1 | 3 |  |  | 4 | 1. | 1 |  |  | 1 | 1 | 25 | 13.0 |
| TUE | 1 |  |  |  | 1 | 3 |  | 1 | 4 | 1 | 1 | 1 | 1 |  |  |  | 1 | 3 | 5 |  | 1 | . | 1 | 2 | 2 | 2 |  |  | 31 | 16.1 |
| WED |  |  |  |  |  | 7 | 7 | 1 | 2 | 2 |  | 1 | 1 |  |  |  | 3 | 6 |  |  | 2 | 1 | 1 | 2 |  |  |  |  | 29 | 15.1 |
| THU |  |  | 1 | 1 |  | 1 | 1 | 3 | 4 | 1 | 1 | 1 | 3 |  |  |  |  | 1 | 1 |  | 2 |  | 3 |  |  | 2 | 1 | 1 | 27 | 14.0 |
| FRI |  |  | 1 |  | 1 | 4 | 4 |  | 3 | 3 |  | 4 | 1 |  | 2 |  | 3 | 2 | 1 |  | 6 | 1 |  |  |  | 2 | 2 |  | 36 | 18.7 |
| SAT |  | 2 | 2 |  | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  | 2 | 1 |  | 2 | 2 | 1 | 24 | 12.5 |
| SUN | 1 | 2 |  | 1 | 1 |  |  |  |  | 2 | 3 | 2 | 1 |  | 1 |  |  |  | 2 |  |  |  | 1 |  | 1 |  | 2 |  | 20 | 10.4 |
|  | EARLY MORNING-SUNRISE |  |  |  |  |  |  | RNI | G | AK | MID | MORN | İNG | -MI | I |  | TE | NOON |  | FT | ERN | ON | PEAK | EVENING-LATE NIGHT |  |  |  |  | TOTAL | 100.0 |
| TOTAL | 37 |  |  |  |  |  | 35 |  |  |  | 53 |  |  |  |  |  |  |  | 30 |  |  |  |  |  |  | 3 |  |  | 192 |  |
| PERCENT | 19.2 |  |  |  |  |  | 18.2 |  |  |  | 27.6 |  |  |  |  |  |  |  | 15.6 |  |  |  |  | 19.2 |  |  |  |  | 100 |  |

POTENTIAL INFLUENCING CONDITIONS

| ROADWAY | LIGHTING CONDITIONS |  |  |  |  | TOTAL | PERCENT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CONDITIONS | DAYLI GHT | DARKNESS | TWILIGHT | LIGHTED | \| UNKNOWN |  |  |
| DRY | 66 | 23 | 3 | 5 |  | 97 | 50.5 |
| WET (WATER) | 33 | 13 | 4 | 4 |  | 54 | 28.1 |
| WET(ICE OR SNOW) | 18 | 14 | 6 | 2 |  | 40 | 20.8 |
| MUDDY |  |  |  |  |  |  |  |
| NOT REPORTED |  | 1 |  |  |  | 1 | 5 |
| TOTAL | 117 | 51 | 13 | 11 |  | 192 | 100.0 |
| PERCENT | 60.9 | 26.5 | 6.7 | 5.7 |  | 100 |  |
|  |  | ATHER CON | ITIONS | TOTAL | PERCENT |  |  |
|  |  | EAR |  | 63 | 32.8 |  |  |
|  |  | RTLY CLOU |  | 48 | 25.0 |  |  |
|  |  | ERCAST |  | 23 | 11.9 |  |  |
|  |  | IN ING |  | 44 | 22.9 |  |  |
|  |  | HER |  | 14 | 7.2 |  |  |
|  |  | TAL |  | 192 | 100.0 |  |  |



## APPENDIX D <br> ODOT SPECIAL PROVISION <br> March 28, 1984

# OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS <br> FOR 

EXPERIMENTAL SAFETY BARRIER END TREATMENT (SENTRE)

ON
FEDERAL AID PROJECT IR-40-4 (304)147
OKLAHOMA COUNTY

These Special Provisions revise, amend, and where in conflict, supersede applicable Sections of Standard Specifications for Highway Construction, Edition of 1976.

DESCRIPTION. The SENTRE unit shall consist of interlocking collapsible thrie beam fender panels, wide flange posts, slip bases, sand containers, and a redirecting cable. These components shall form a crashworthy end treatment which shall meet the minimum test requirement specified in the National Cooperative Highway Research Program (NCHRP) report 230:

1. Impact at 25 degrees into the beginning of length of need (i.e., beginning of tensioned guardrail and/or concrete parapet) at 60 mph with a 4500 lb . car.
2. Impact at 0 degrees into center nose of the device ( 0 " offset from centerline of vehicle) at 60 mph with a 4500 lb. car.
3. Impact at 15 degrees into side of the device midway between nose and beginning of length of need at 60 mph with an 1800 lb . car.
4. Impact at 0 degrees into nose of the device (with 1.25 ft . offset from centerline of vehicle) at 60 mph with an 1800 lb. car.

When hit head-on, the unit shall be capable of simultaneously collapsing and moving laterally to re-direct an impacting vehicle away from the end of the downstream traffic barrier.

The redirecting cable shall be anchored at both ends with anchors that are capable of withstanding a minimum pullout force of $50,000 \mathrm{lbs}$.

The base plate of each SENTRE post shall be rigidly held in place by anchors that are capable of withstanding a $15,000 \mathrm{lbs}$. shear and $26,500 \mathrm{ft}-1 \mathrm{bs}$ moment in the longitudinal axis of the SENTRE and 27,000 lbs. of shear and $49,500 \mathrm{ft}-\mathrm{lbs}$ of moment in the lateral axis of the SENTRE.

MATERIALS. (a) General. All SENTRE components shall be assembled in accordance with the manufacturer's standards and require ents.

1. Fender Panels. The fender panels shall be fabricated from 10 gauge steel triple corrugated guardrail sections which meet AASHTO-Guide M-180 specifications. Each fender panel shall
be drilled and slotted in accordance with the manufacturer's specifications. When assembled in the field, all fender panels shall be bolted to a break away post by means of two bolts. The back end of each triple corrugated fender panel shall overlap and be connected to the fender panel of the next bay by means of a bolt and mushroom washer which fits through the long horizontal slot in the forward fender panel and the short vertical slot in the underlying panel. This connection method shall permit movement, front to back, of one set of fender panels relative to the panels in the underlying section.
2. Redirecting Cable. The front post of the SENTRE shall have one $7 / 8^{\prime \prime}$ diameter, 6 x 19 galvanized steel, wire rope passing through it. The wire rope material shall be made from improved plow steel with a minimum load limit of $71,000 \mathrm{lbs}$.
3. Sand Containers. The front three posts shall be fitted with sand containers which hold either 100 or 150 pounds of sand. Two small (100 pound) sand containers shall be fastened to each of the front two posts. Two large ( 150 pound) sand containers shall be fastened to the third post. The sand containers shall be molded from a black plastic having sufficient U.V. stabilizers and anti-oxidants to provide good weatherability. Each sand container shall have a hinged plastic lid which snaps firmly in place after the containers have been filled with sand. Sand mass for the containers shall meet the requirements of Subsection 701.05 and shall contain not more than two percent moisture by dry weight of the aggregate at the time of placement.
4. Nose Cover. The front of the SENTRE shall be fitted with a grey plastic "bull nose". The nose shall be molded from a plastic having sufficient U.V. stabilizers and anti-oxidants to provide good weatherability. The nose shall interface to the front triple corrugated fender panel. The nose shall have a flat surface on its forward section which shall be suitable for mounting reflective sheeting.
5. Fasteners. All bolts, nuts, and washers used to assemble the SENTRE shall be zinc coated, commercial quality "American National Standard" unless otherwise specified.
6. Metal Work. All metal work shall be fabricated from either M1020 Merchant Quality or ASTM A-36 steel. After fabrication, all metal work shall be hot dipped galvanized in accordance with ASTM A-123. All welding shall be done by or under the direction of a certified welder.
(b) Materials Certification. A type "D" Materials Certification shall be required in accordance with Subsection 106.12 .

CONSTRUCTION METHODS. Installation of the SENTRE shall be accomplished by experienced workmen in accordance with the recommendations of the manufacturer. As a replacement supply, the Contractor shall furnish a spare parts package. The quantity and materials of this package will be as shown on the Plans. These unassembled materials will become the property of the Oklahoma

> SPECIAL (c)
> $3-28-84$

Department of Transportation and shall be delivered to the Department Warehouse designated by the Engineer. METHOD OF MEASUREMENT. Each SENTRE installation will be measured by the unit for each installation as shown on the Plans. Replacement packages will be measured by the unit delivered to the designated warehouse in accordance with these Specifications. BASIS OF PAYMENT. Accepted SENTRE and replacement packages, measured as provided above, will be paid for at the contract unit price for:

| SP. | SAFETY BARRIER END TREATMENT |  |
| :--- | :--- | :--- |
|  | (SENTRE) |  |
| SP. | SAFETY BARRIER END TREATMENT |  |
|  | (SENTRE) (REPLACEMENT PACKAGE) |  |
|  | EA. |  |

which shall be full compensation for furnishing all containers, guardrails, posts, and all other materials, equipment, labor and incidentals to complete the work as specified.

