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Abstract
This investigation examined the acute effects of continuous whole-body vibration (CWBV) and intermittent whole-body vibration
(IWBV) on neuromuscular and functional measures in women with sarcopenia and nonsarcopenic women. Continuous whole-
body vibration was one 6-minute exposure, while IWBV consisted of six 60-second exposures to rest intervals (30 Hz, 2-4 mm
amplitude). Factorial analyses revealed group � exposure � time interactions for jump height (JH; F ¼ 10.8, P ¼ .002), grip
strength (GS; F¼ 15.5, P < .001), timed up and go test (F¼ 11.7, P¼ .002), and sit and reach test (S&R; F¼ 9.7, P¼ .004). Both JH
and GS significantly improved post-WBV in women with sarcopenia (P < .001), with post-IWBV significantly greater (P < .001)
than post-CWBV. Timed up and go test and S&R significantly improved post-IWBV in both the groups (P < .001) with post-IWBV
significantly better than post-CWBV (P < .001). Bench press power at 20% one repetition maximum (1RM) revealed an exposure
� time interaction (F¼ 4.6, P¼ .04) illuminating that IWBV significantly improved muscular power (P < .001). Bench press power
at 40% 1RM revealed group� exposure (F¼ 6.4, P¼ .016) and exposure� time interactions (F¼ 5.8, P¼ .022). Individuals with
sarcopenia significantly increased power output (P < .001) post-IWBV which was significantly greater than post-CWBV (P¼ .037).
Bench press power at 60% 1RM revealed an exposure � time interaction (F ¼ 8.6, P ¼ .006), indicating that power was sig-
nificantly improved post-IWBV (P ¼ .027) and decreased post-CWBV. Berg Balance scale revealed a time main effect (F ¼ 6.64, P
¼ .015), and pain discomfort was significantly lower post-IWBV. These data indicate IWBV may provide a more efficacious
exposure pattern in older women when compared to CWBV.
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Introduction

Age-related reductions in skeletal muscle mass are linked to

decreased quality of life (QOL), mobility, and an increase in

adverse health events.1,2 The reductions in skeletal muscle

mass are quantified through a decrease in muscle quantity and

quality characterized as sarcopenia. Sarcopenia displays a

directly proportional relationship with age, with previous liter-

ature revealing reductions in muscle quantity and quality

occurring at rates of 1% to 2% and 1.5% to 3% per year after

50 years of age, while corresponding functional impairments

become most evident in the seventh decade.3,4 Although a

precise understanding of the mechanisms involved in the pro-

gression and onset of sarcopenia remain ambiguous,

compelling evidence exists suggesting alterations in the num-

ber, size, and remodeling of muscle fibers as well as reduced

mitochondrial function, decreased protein synthesis, and
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diminished neuromuscular integrity,3,5 all contribute to a clini-

cally diagnosable loss of fat free body mass.

The number of individuals classified as having sarcope-

nia is expected to increase, as the proportion of older indi-

viduals continues to grow. Estimates suggest that sarcopenia

affects more than 50 million people and will affect more

than 200 million by 2050.5 Therefore, there is an urgent

need for the development of interventions that possess the

ability to combat sarcopenia. Resistance exercise (RE) with

light or heavy loads appears to have the capacity to mediate

the age-related effects on muscle; however, training with

heavier loads provides larger increases in muscular adapta-

tion6 and may provide benefit to the skeletal system. Since

it may not be feasible for older individuals to perform heavy

RE, alternative interventions, such as whole-body vibration

(WBV), are being evaluated as potential interventions to

counteract sarcopenia.

Whole-body vibration imparts high-frequency mechanical

stimuli that is transmitted through the body.7 The mechanical

stimulus is referred to as the acceleration, which is a product

of the frequency and amplitude during an exposure. Previous

literature suggests that the mechanical stimuli stimulates end-

ings of muscle spindles which leads to an activation of alpha

motor neurons facilitating muscle contraction.8,9 When com-

pared to RE, WBV provides a substantial advantage, allowing

the ability to potentiate muscular activity without the accom-

panying safety and adherence issues associated with RE.

Additionally, previous research indicates that WBV results

in comparable muscular adaptations as those observed from

RE.10-13 However, some research has reported contradictory

results,14-16 which could be attributed to differences in WBV

methodology. The exposure stimulus (Hz) and duration have

received thorough evaluation; however, the pattern of expo-

sure is often overlooked. Whole-body vibration protocols uti-

lize 2 exposure patterns, intermittent whole-body vibration

(IWBV) and continuous whole-body vibration (CWBV).

Intermittent whole-body vibration provides exposures in pre-

determined exposure to rest intervals, while CWBV provides

a single exposure for a predetermined time.7 Although

evidence exists regarding older individual’s response to WBV

interventions, there is a dearth of literature evaluating the

immediate effects of WBV. Therefore, this deficiency in lit-

erature impedes the ability to progress toward forming an

optimal vibration protocol to maximize benefits for the

elderly individuals. Immediate benefits post-WBV in young

individuals include increased muscle function, flexibility, and

balance.17-22 If similar effects are observed in older individ-

uals, the ability to perform activities of daily living (ADLs) or

RE may become easier and may lead to reducing the effects of

sarcopenia and improving QOL. Currently, no investigation

has compared the acute effects of IWBV and CWBV on neu-

romuscular and functional measures. Therefore, the purpose

of this investigation was to examine the acute effects of

IWBV or CWBV on neuromuscular and functional measures

in elderly women.

Methods

Participants

Older women (50-70 years) were recruited to participate in the

present study. Participants completed a written informed con-

sent form, and all methodology was approved by a university

institutional review board. Participant inclusion criteria

included �50 years of age, no self-reported falls within the

previous year, absence of unmanaged cardiovascular disease

or diabetes, and the ability to perform strength and power test-

ing. Forty-one women met the inclusion criteria and were

enrolled in the investigation. Six women did not complete the

investigation for reasons not related to the study; therefore, 35

(N ¼ 35) participants were included in statistical analyses.

Research Design

During the first visit, each participant completed informed con-

sent, and health status questionnaires (HSQs) were required to

perform submaximal familiarization trials of each included

measure, become familiar with the body composition analysis

positioning, and were provided with medical clearance forms.

Once medical clearance was obtained, participants returned to

the laboratory and underwent body composition analysis, then

performed a 5-minute cycle warm-up (<50 Watts), followed by

neuromuscular and functional measures testing without vibra-

tion exposure in the following order: vertical jump (VJ) height,

bench press 1 repetition maximum (1RM), Berg Balance Test-

ing, grip strength (GS), timed up and go (TUG), sit and reach

flexibility testing, and bench press power (BPP) testing. Fol-

lowing the initial testing visit, each participant performed 4

total testing visits encompassing neuromuscular and functional

measure testing. The 4 visits were randomized into 2 testing

visits per exposure (Figure 1) and included a 5-minute cycle

warm-up (<50W) prior to testing. During each WBV visit,

participants performed the neuromuscular and functional mea-

sures, rested for 30 minutes, underwent WBV (IWBV or

CWBV), and then reperformed the measures. Vibration proto-

cols were randomly selected before each visit and then

removed to ensure no duplication.

Questionnaires

Each participant completed a physical activity scale for the

elderly (PASE) and a HSQ. The PASE consists of a brief sur-

vey to assess physical activity in older individuals combining

activity from leisure, household, and occupational activities.

The HSQ was a laboratory designed questionnaire collecting

information regarding demographics, current and past medica-

tion history as well as current and past musculoskeletal injuries.

Body Composition Analyses

Height was measured to the nearest 0.1 cm using a wall-

mounted stadiometer (Novel Products Inc., Rockton, Illinois),

and body mass was measured to the nearest 0.1 kg by a digital
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scale (Tanita, Arlington Heights, Illinois). Dual energy X-ray

absorptiometry (GE, Lunar Prodigy, Madison, Wisconsin) was

used to assess body composition. One qualified technician per-

formed all scans, analyses of scans, and quality assurance pro-

cedures prior to each scan. Precision coefficients of variation of

1.31%, 0.67%, 1.18%, and 0.84% for percentage of body fat,

bone free lean body mass, fat mass, and lean body mass,

respectively, have been determined from the laboratory. Sarco-

penia was determined by a skeletal muscle index <0.512, which

was calculated as the quotient of appendicular skeletal mass

over body mass index. Appendicular skeletal mass was calcu-

lated using the sum of lean tissue mass from the arms and legs

determined by regions of interest positioned bisecting the gle-

nohumeral joint and femoral neck, respectively.23

Whole-Body Vibration Exposure

Whole-body vibration was applied using a Power Plate plat-

form (Northbrook, Illinois) with a frequency of 30 Hz and

amplitude of 2 to 4 mm. The CWBV consisted of one

6-minute bout of WBV, while the IWBV consisted of six

1-minute exposures separated by a 1-minute rest interval.

Exposure durations and frequencies were selected based on

previous research.24-26 During each exposure, participants

stood bare foot on the platform, legs shoulder width apart,

knees flexed to a 30� angle, and their arms placed equidistant

on the device handles.

Grip Strength

Grip strength was assessed using a hand-held dynamometer

(Takei Instruments, Japan). Participants stood with the

shoulder adducted, elbow flexed to 90�, and were instructed

to provide maximum effort for several seconds and then relax

on verbal command. Measurements were taken 3 times on the

dominant hand separated by 60 seconds, and the average of the

trials was included in the analyses.

Vertical Jump

Jump height (VJ) was determined from 3 countermovement

jumps performed on a Just Jump mat (Just Jump; Probotics Inc,

Huntsville, Alabama). Participants were instructed to descend

into a comfortable, self-selected countermovement depth,

incorporating their naturally synchronized arm swing action,

immediately jump straight up in one continuous motion, refrain

from bending their legs in the air, and ultimately land with both

feet on the mat. Three jump trials were performed, separated by

60 seconds, and the average was included in the analyses.

Bench Press One Repetition Maximum Testing

Bench press 1RM testing began with each participant perform-

ing 1 set of 10 repetitions with a polyvinyl carbon pipe. Fol-

lowing 60 seconds rest, participants performed 1 set of 5

repetitions with a 10-pound barbell. After 2 minutes rest, the

load was increased in 5 to 10 pound increments until a maxi-

mum effort to failure was achieved, with each 1RM test deter-

mined within 5 attempts.

Bench Press Power

Bench press power at 20%, 40%, and 60% bench press 1RM

were measured using a FitroDyne analyzer (Tendo Weightlift-

ing, Trencin, Slovak Republic). Participants were instructed to

Figure 1. Participant testing design.
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push the barbell with as much force and as fast as possible.

Each participant performed 3 repetitions at 20%, 40%, and 60%
of 1RM in randomized order, with 60 seconds between subse-

quent trials, with the average value for each intensity included

in the analyses. Percentages were determined from 1RM testing

during the initial testing visit, and participants were provided

1-minute rest between repetitions.

Timed Up and Go Test

The TUG consisted of participants starting in a seated position,

rising from the seat, moving as quickly as possible to a cone

placed 3 m in front of the chair, and returning to the seated

position. Test times were recorded using a stopwatch and

started upon the participant’s first movement and time stopped

when the participant returned to the original seated position.

Participants were instructed to only use their upper body to rise

from the chair only when absolutely necessary. Three trials

were performed separated by 60 seconds, and the average value

was included in the analyses.

Berg Balance Scale

The Berg Balance scale (BBS) consists of 14 items that are

scored on a scale of 0 to 4. The BBS is a commonly employed

clinical evaluation used to assess an individual’s static and

dynamic balance, providing insight into their capacity to per-

form balance and mobility tasks, which include measures of

single and double leg performance, weight transfers, and body

control. A score of 0 is given if the participant is unable to

perform the task, and a score of 4 is given if the participant is

able to complete the task as described. The maximum achiev-

able score is 56, and the BBS testing order was identical for

each participant.

Sit and Reach

The sit and reach test (S&R) was administered using an Accu-

flex Tester (Gym Closet, Inc, Temperance, Michigan) and

completed according to the American College of Sports Med-

icine guidelines.27 Each participant performed 3 trials sepa-

rated by 60 seconds, each measurement was recorded to the

nearest half centimeter, and the average of the 3 trials was

included in the statistical analyses.

Rating of Perceived Discomfort

Following each WBV exposure, participants were asked to

rank their discomfort. The Numeric Rating Scale for Discom-

fort is a segmented numeric version of the visual analog scale

which requires the participant to rate their discomfort from 0 to

10. A score of 0 indicates no discomfort while a score of 10

indicates the most discomfort the participant can endure.

Statistical Analyses

Three-way repeated-measures analyses of variance (ANOVA;

group [sarcopenia and nonsarcopenia] by condition [CWBV

and IWBV] by time [pre-WBV and post-WBV]) were used

to test the main effects and interactions between the group,

condition, and time for each variable. Whenever a significant

3-way interaction was observed, separate 2-way repeated mea-

sures ANOVA for each group were conducted, and post hoc

comparisons with Bonferroni correction were examined. Relia-

bility of neuromuscular and functional measures was assessed

using intraclass correlation coefficients (ICC) between the ini-

tial testing visit and all pre-WBV exposures. An a level of .05

was used, and analyses were conducted using Statistical Pack-

age for Social Sciences (SPSS, version 21, Chicago, Illinois).

Sample size was calculated a priori with an estimated effect

size of 0.25 which required a sample size of N ¼ 30 to achieve

a statistical power of 0.80.

Results

Thirty-five women completed the study with 15 participants

classified as sarcopenic (Table 1).28,29 Each outcome measure

revealed moderate to excellent30 reliability (ICC: 0.71-0.95)

across all trials and were not significantly different across test-

ing days. Significant differences were observed across all time

points for the neuromuscular and functional measures between

the sarcopenic and nonsarcopenic groups. Percentage change

post-WBV for functional measures are presented in Figures 2

and 3 for the sarcopenic and nonsarcopenic groups, respec-

tively, and neuromuscular measures for both groups are

reported in Table 2. Discomfort scores reported immediately

post-WBV revealed a significantly lower score post-IWBV

when compared to post-CWBV. Finally, all participants were

able to complete each exposure pattern while maintaining the

instructed position on the vibrating platform.

Analysis of the VJ data revealed a significant group �
intervention � time interaction (F ¼ 10.8, P ¼ .002,

Table 1. Physical Characteristics.

Total, N ¼ 35
Sarcopenic,

n ¼ 15
Nonsarcopenic,

n ¼ 20

Age 57.6 + 5.6 58.2 + 6.4 57.3 + 4.9
Height, cm 160.1 + 5.0 158.1 + 4.7 161.6 + 4.8a

Weight, kg 64.1 + 6.2 62.6 + 6.7 65.2 + 5.6
BMI, kg/m2 25.0 + 2.2 25.0 + 2.3 24.9 + 2.1
SBP, mm Hg 136.1 + 4.1 136 + 3.8 136.1 + 4.3
DBP, mm Hg 75.6 + 6.7 77 + 7.6 75.3 + 6.6
Body fat, % 37.2 + 4.6 37.6 + 6.5 37.1 + 3.9
ASM, kg 14.6 + 2.3 12.4 + 1.2 16.3 + 1.3b

ASM/BMI 0.554 + 0.07 0.492 + .04 0.621 + .05b

Abbreviations: ASM, appendicular skeletal muscle mass; BMI, body mass index;
cm, centimeters; DBP, diastolic blood pressure; SBP, systolic blood pressure;
mm Hg, millimeters mercury; kg, kilograms.
aSignificantly different between groups at P < .05 level.
bSignificantly different between groups at P < .001 level.
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Z2: 0.89). There were significant main effects for intervention

(F¼ 76.7, P < .001, Z2: 0.85) and time (F¼ 86.8, P < .001, Z2:

0.86) as well as a significant intervention � time interaction

(F ¼ 81.2, P < .001, Z2: 0.85) for the sarcopenic group. Ver-

tical jump significantly increased post-IWBV (P < .001) and

was significantly higher than post-CWBV (P < .001). No sig-

nificant main effects (intervention P ¼ .08; time P ¼ .5) or

interactions (intervention by time interaction, P ¼ .8) were

observed in the nonsarcopenic group.

There was a significant group � intervention � time inter-

action (F ¼ 15.5, P < .001, Z2: 0.31) for GS. Women with

sarcopenia revealed significant intervention (F ¼ 53.8, P <

.001, Z2: 0.79) and time (F ¼ 27.1, P < .001, Z2: 0.57) main

effects and an intervention � time interaction (F ¼ 27.1, P <

.001, Z2: 0.65). Grip strength significantly increased post-

IWBV (P < .001) and was significantly stronger than post-

CWBV (P < .001). No significant main effects (intervention

P¼ 0.21; time P¼ .83) or intervention� time interaction (P¼
.57) were observed in nonsarcopenic individuals. Berg Balance

scale had a significant time main effect (F ¼ 6.64, P ¼ .015,

Z2: 0.17), and the post hoc analyses indicated that BBS were

significantly improved post-WBV (P ¼ .015).

A significant group � intervention � time interaction (F ¼
11.7, P ¼ .002, Z2: 0.26) was observed for TUG. Individuals

with sarcopenia revealed significant main effects for interven-

tion (F ¼ 27.5, P < .001, Z2: 0.66) and time (F ¼ 57.2, P <

.001, Z2: 0.80) as well as a significant intervention � time

interaction (F ¼ 45.8, P < .001, Z2: 0.77). Post hoc analyses

revealed significant decreases post-WBV (CWBV P ¼ .02;

IWBV P < .001). Significant differences were observed

between post-WBV TUG scores revealing that TUG time was

significantly faster (P < .001) post-IWBV. Nonsarcopenic indi-

viduals displayed main effects for intervention (F ¼ 5.8, P ¼
.026, Z2: 0.23) and time (F ¼ 8.9, P ¼ .008, Z2: 0.32). Further-

more, IWBV significantly improved TUG time (P ¼ .014),

while CWBV did not.

The S&R revealed a significant group� intervention� time

interaction (F ¼ 9.7, P ¼ .004, Z2: 0.23). For women with

sarcopenia, the main effects for intervention (F ¼ 29.3, P <

.001, Z2: 0.68) and time (F ¼ 41.6, P < .001, Z2:0.75) and a

significant intervention � time interaction (F ¼ 22.4, P < .001,

Z2: 0.62) were observed. Both exposures (CWBV P ¼ .001;

IWBV P < .001) significantly improved S&R, with post-IWBV

producing a significantly greater (P < .001) S&R than post-

CWBV. In nonsarcopenic individuals, a significant main effect

for time (F¼ 5.9, P¼ .025, Z2: 0.24) indicated improved S&R

scores post-WBV.

Bench press power at 20% 1RM (BPP20%) revealed a main

effect for time (F ¼ 16.2, P < .001, Z2: 0.33) and a significant

intervention � time interaction (F ¼ 4.6, P ¼ .04, Z2: 0.12).

Bench press power at 20% was significantly greater post-

IWBV (P < .001) but not post-CWBV (P ¼ .133). Bench press

power at 40% 1RM revealed a significant time main effect (F¼
8.6, P ¼ .006, Z2: 0.21) and significant group � intervention

(F ¼ 6.4, P ¼ .016, Z2: 0.16) and intervention � time interac-

tions (F ¼ 5.8, P ¼ .022, Z2: 0.15). Pairwise comparisons

indicated the BPP40% was significantly greater post-WBV

(P ¼ .006). Women with sarcopenia significantly increased

power (P < .001) post-IWBV, and the power post-IWBV was

significantly greater (P ¼ .037) than post-CWBV. Significant

main effects for time (F ¼ 13.9, P ¼ .001, Z2: 0.29) and

intervention (F ¼ 5.4, P ¼ .027, Z2: 0.14) were observed and

an intervention� time interaction (F¼ 8.6, P¼ .006, Z2: 0.21)

for bench press power at 60% 1RM (BPP60%) indicating that

BPP60% was significantly greater (P ¼ .001) post-WBV.
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Figure 2. Functional measure percent change following IWBV (solid
bar) and CWBV (gray bar) for sarcopenic group. Significance as fol-
lows: a, P < .001 between vibration patterns; b, P < .001 pre- to
postvibration; d, P < .05 pre- to postvibration. BBS indicates Berg
Balance Scale; CWBV, continuous whole-body vibration; IWBV, inter-
mittent whole-body vibration; S&R, sit and reach flexibility test; TUG,
timed up and go test; VJ, vertical jump.
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Figure 3. Functional measure percent change following IWBV (solid
bar) and CWBV (gray bar) in nonsarcopenic group. Significance as
follows: d, P < .05 pre- to postvibration. BBS indicates Berg Balance
Scale; CWBV, continuous whole-body vibration; IWBV, intermittent
whole-body vibration; S&R, sit and reach flexibility test; TUG, timed
up and go test; VJ, vertical jump.
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Discussion

Given the magnitude of change in neuromuscular and func-

tional performance and post-WBV discomfort ratings, the pres-

ent findings indicate that IWBV may be a more advantageous

exposure pattern for older women compared to CWBV. Addi-

tionally, the present data provide novel evidence that upper

body muscular performance can be augmented following

upright WBV application. Finally, older women classified as

having sarcopenia experience a greater improvement post-

WBV when compared to those not classified as sarcopenic;

thus, WBV could potentially be prescribed as a form of ther-

apeutic intervention in women with sarcopenia and may aug-

ment a carefully designed RE program.

The novel design and inclusion of older individuals in the

present study creates a challenge to compare our findings with

those previously reported in young participants. The present

data indicates that IWBV may be a more efficacious exposure

pattern. For example, the nonsarcopenic women revealed no

significant improvements post-CWBV; however, TUG time

and BPP were significantly improved post-IWBV. Women

with sarcopenia significantly improved in each assessment

measured, with the exception of the BBS post-IWBV, while

only TUG time, S&R, and BPP20% were significantly

improved post-CWBV. Finally, both groups of women

reported lower discomfort scores post-IWBV, thus indicating

a more tolerable exposure pattern.

Previous research provides compelling evidence advocating

IWBV as an intervention to combat the effects of sarcopenia.

Wei et al31,32 employed 4 IWBV frequency/duration combina-

tions with 5-minute rest intervals and observed significant

improvements in functional and neuromuscular measures fol-

lowing 12 weeks of IWBV training. Additionally, Chang et al33

employed an IWBV design exposing participants to ten 60-

second exposures with 30-second rest intervals 3 times a week

for 12 weeks and observed improved skeletal muscle index,

physical fitness, and QOL. Interestingly, the aforementioned

study consisted of institutionalized participants, while the pres-

ent study and those of Wei et al31,32 were community-dwelling

seniors. Although this study examined healthy older women, it

should be mentioned that WBV interventions have been shown

to be an effective training modality in clinical populations,

such as the oldest old (80þ years)34 and those with type 2

diabetes.34-36 Cumulatively, these data suggest that IWBV pos-

sesses the ability to acutely and chronically augment neuro-

muscular and functional indices as well as enhance QOL in

sarcopenic and clinical populations.

In an attempt to isolate the ideal exposure pattern, we

employed a study design that equated volume between expo-

sures. It could be speculated that greater change post-IWBV

may be due to the balance of potentiation and fatigue.37,38

Previous literature indicates that WBV can preferentially sti-

mulate fast-twitch muscle fibers39; however, the CWBV expo-

sure may have reached its peak application with the participant

on the platform allowing fatigue to set in, whereas IWBV

potentiated performance without fatigue accumulation. Future

research should examine the influence of exposure time on

subsequent performance and the underlying mechanism(s)

associated with each exposure pattern.

The observation of improved neuromuscular performance

following a bout of WBV is supported by previous research,

with most of these observations in young partici-

pants.17,21,22,38,40,41 However, Giombini et al25 examined the

influence of vibration frequency on power output of the lower

limbs in older women using an IWBV protocol. The study

employed a 60-second rest to interval paradigm with a similar

frequency as the present study and observed increased power

output. The authors speculated that different frequencies may

be required to facilitate neuromuscular augmentation for dif-

ferent areas of musculature; however, the present data reveals

Table 2. Neuromuscular Measures for Sarcopenic (n ¼ 15) and Nonsarcopenic Groups (n ¼ 20).

Pre-CWBV Post-CWBV ES Pre-IWBV Post-IWBV ES

Grip, kg
Sarcopenic 14.9 + 0.6 15.0 + 0.7 0.15 14.9 + 0.6 16.0 + 0.8a,b 1.61
Nonsarcopenic 28.7 + 6.2 28.6 + 6.3 0.02 28.9 + 6.3 29.0 + 6.5 0.02

BPP20%, W
Sarcopenic 162.8 + 15.1 163.6 + 13.7c 0.06 163.6 + 15.1 168.6 + 13.5a 0.36
Nonsarcopenic 180.9 + 11.6 183.9 + 12.1 0.26 179.3 + 11.5 187.3 + 11.3a 0.72

BPP40%, W
Sarcopenic 181.7 + 16.9 182.3 + 17.4 0.04 181.8 + 16.8 186.4 + 17.2a,b 0.28
Nonsarcopenic 213.9 + 7.3 215.3 + 7.9 0.19 211.6 + 6.7 214.2 + 9.5d 0.31

BPP60%, W
Sarcopenic 196.8 + 15.6 197.6 + 15.8 0.05 197.6 + 15.8 202.1 + 16.1a,b 0.29
Nonsarcopenic 215.2 + 7.7 219.6 + 10.9 0.45 214.4 + 10.8 224.5 + 10.9d 0.95

Abbreviations are as follows: CWBV, continuous whole-body vibration; IWBV, intermittent whole-body vibration; ES, effect size; kg, kilogram; BPP20%, bench
press power at 20% one repetition maximum (1RM); BPP40%, bench press power at 40% 1RM; BPP60%, bench press power at 60% 1RM; W, watts.
aStatistical significance pre to post: P < .001 between exposures.
bStatistical significance pre to post: P < .001 between exposures.
cStatistical significance pre to post: P < .01 between exposures.
dStatistical significance pre to post: P < .05 between exposures.
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that IWBV also possessed the ability to significantly increase

upper body power, thus contradicting the speculation.

Upper body neuromuscular performance was significantly

improved post-IWBV in women with sarcopenia. The same

measures, with the exception of GS in nonsarcopenic women,

were improved post-IWBV with the only measure significantly

improved post-CWBV being BPP20% in women with sarco-

penia. Based on the data from the current study, CWBV does

not appear to augment upper body neuromuscular perfor-

mance.17,42,43 The present observations are novel and may pro-

vide the basis for future studies. Given age-related flexibility

and mobility impairments, the present data advocate maintain-

ing upright posture, which reduces the requirement for partici-

pants to assume incommodious positions during WBV. These

improvements may allow ADL to become less labor intensive

and may increase independence or QOL.

Timed up and go test time and S&R significantly improved

following both exposures in women with sarcopenia; however,

post-IWBV produced significantly better scores than post-

CWBV. Previously, Tsuji et al44 examined the effects of IWBV

and observed significant decreases in TUG time as well as a

nonsignificant increase in S&R. Decreased TUG time is mean-

ingful, as the test evaluates an integration of strength, agility,

coordination, and power of the lower limbs. The present data

revealed significant improvements in S&R following either

exposure in women with sarcopenia and nonsignificant

improvements in nonsarcopenic women; thus, the data from

both studies indicate that flexibility can be improved post-

WBV. Furthermore, Carlucci et al45 employed a 9.5-minute

CWBV exposure and reported no changes in postural control

in elderly women, which is in agreement with the present data

for both exposure patterns. Therefore, the combined findings

suggest that WBV can be safely administered without compro-

mising stability post-WBV.

The current study was not without limitations. First, the

study was designed to compare the acute effects of CWBV and

IWBV. Therefore, we cannot discuss or allude to an “optimal”

protocol, only suggest which exposure pattern may progress the

development of an “optimal” protocol. Second, the selected

duration may not have elicited the most profound improve-

ments. Although many of the included measures revealed sig-

nificant improvements, we cannot rule out that moderate

increases or decreases in exposure duration may have produced

different results. Third, the study design only evaluated neuro-

muscular and functional measures once after the exposure;

thus, we are not able to discuss how long the improvements

were maintained post-WBV or the effects of a WBV training

program. Finally, our results may not be generalized to older

men since the study consisted of only women.

Conclusions

In conclusion, WBV appears to be a possible intervention for

augmenting neuromuscular and functional measures in elderly

women. Furthermore, IWBV appears to be a more efficacious

exposure pattern, and we recommend that IWBV be

implemented in health care or assisted living facilities to garner

improvements in neuromuscular and functional performance in

attempt to reduce the difficulty in ADL while increasing inde-

pendence and QOL.
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Pozo-Cruz B, Sañudo B. A primary care-based randomized con-

trolled trial of 12-week whole-body vibration for balance

improvement in type 2 diabetes mellitus. Arch Phys Med Rehabil.

2013;94(11):2112-2118. doi:10.1016/j.apmr.2013.05.030.
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