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Abstract 

Resting state networks (RSNs) have been found in human brains during awake 

resting states. RSNs are composed of spatially distributed regions in which spontaneous 

activity fluctuations are temporally and dynamically correlated. In contrast to task-related 

brain activities, RSNs reflect intrinsic functional organizations and rhythms of the human 

brain when it is not engaged in any task and/or disturbed by external stimuli. To date, 

RSNs have been widely studied using functional magnetic resonance imaging (fMRI), 

which has identified various RSNs associated with different brain functions. More 

recently, due to the advantage of millisecond temporal resolution, both 

electroencephalography (EEG) and magnetoencephalography (MEG) have been used to 

investigate RSNs and their electrophysiological underpinnings. Despite these advantages, 

current RSN studies using EEG/MEG, as compared with those using fMRI, are still at 

their infant stage in many aspects, such as the quality of spatial pattern reconstructions 

and the reliability of detections. These limitations require further studies to obtain 

accurate reconstructions of RSNs directly from EEG/MEG data. 

My research aims to develop, optimize, and validate a variety of computational 

and analytical frameworks to reconstruct and investigate RSNs based on EEG data. In 

this dissertation, several studies have been conducted as outlined below. Firstly, a 

comparison in defining RSNs at the sensor space and at the source space was performed 

to evaluate the accuracy in reconstructing RSN spatial patterns. Results from both 

simulated and experimental data indicated that the analysis in the source space performed 

better in reconstructing various features of RSNs. Secondly, a new computational 

framework for reconstructing RSNs with human EEG data was developed. The proposed 
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framework utilized independent component analysis (ICA) on short-time Fourier 

transformed inverse source maps imaged from EEG data and statistical correlation 

analysis to generate cortical tomography of electrophysiological RSNs. The proposed 

framework was validated using three sets of experimental data. The results indicated that 

the framework is reliable and efficient in the reconstruction of RSNs. Thirdly, an 

advanced inverse source imaging (ISI) method was used in the established framework 

discussed above to improve the spatial estimation of RSNs. The comparison between the 

new and conventional frameworks suggested that the ISI method significantly improved 

the accuracy of spatial estimations of RSNs. Fourthly, an ICA-based framework was used 

to assess RSN alternations under different conditions, which has been the model to 

identify imaging biomarkers, for example, for diseased patients as compared with healthy 

control. The results from both simulated and experimental data indicated that the 

framework could detect RSN alternations due to condition differences. My results further 

suggest that the framework could provide a finer resolution in detecting RSN changes as 

a contrast for multi-level (more than 2) condition differences, which can be used to study 

the difference, for example, among patients with a long history of a certain disorder, a 

short history, and healthy control. Overall, the findings of this dissertation study provided 

insights into the underlying electrophysiological basis of RSNs. More importantly, this 

study developed new frameworks that can be used as powerful tools for future 

investigations of more characteristics of RSNs, in particular for those not available in 

fMRI, e.g., spectral patterns. 
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1 Introduction 

The human brain is a highly complex, interconnected structure with over 100 

billion neurons, which are anatomically organized into networks distributed within and 

between neural systems (Herculano-Houzel, 2009; Oh et al., 2014). Human brain 

networks facilitate efficient communication among distinct brain regions, enabling the 

global integration of information (Ward, 2003). The integrative architecture determines 

the underlying principles of how the neurons work synergistically to realize different 

brain functions (Park and Friston, 2013). Therefore, understanding and modeling human 

brain functions are based not only on the identification of brain regions but also on the 

investigation of functional networks.  

To date, there has been growing interest in probing structural and functional 

patterns of brain networks (Bressler and Menon, 2010; Castellanos and Proal, 2012; 

Menon, 2011). Recent research has shown that most of the cognitive and executive 

functions are dependent on brain networks, rather than on a single brain region (Bressler 

and Menon, 2010; Sridharan et al., 2008). In these task-related networks, different areas 

of the brain communicate efficiently in order to exchange information, perform their 

functions, and provide feedback for particular tasks. For instance, enhanced 

communication has been detected between the visual cortex and the somatosensory/motor 

cortex during associative learning (Miltner et al., 1999). 

Traditionally, studies of brain functions have focused on task-related networks. 

However, the brain is not always engaged in imposed tasks or external stimuli, and it is 

attractive to investigate brain networks during the resting state because they reflect 

intrinsic and fundamental characteristics of the brain. Through assessing brain activities 
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during the resting state, studies reported on the existence of resting state networks (RSNs), 

which are formed by the spontaneous fluctuations in distributed brain regions when the 

brain is awake but resting (Biswal et al., 1995; Biswal, 2012). In contrast to task-related 

networks, RSNs reflect brain functions beyond explicit tasks and represent the intrinsic 

functional architecture of the brain (Smith et al., 2009). The discovery of RSNs provides 

a novel perspective to investigate and understand the nature of brain, which is followed 

by a growing body of research regarding RSNs in the past two decades (Finn et al., 2015; 

Hipp et al., 2012; Yuan et al., 2016). So far, studies concerning RSNs have provided 

encouraging results, such as spatial distributions (Biswal, 2012; Yuan et al., 2016) and 

characteristics of network connectivity (Brookes et al., 2011b; Chen et al., 2013; Hipp et 

al., 2011). Despite these exciting advances, our understanding of RSNs is still preliminary, 

which requires further studies. 

In order to record brain signals during the resting state, different neuroimaging 

techniques have been used, including functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), and magnetoencephalography (MEG) (Biswal et al., 

1995; Brookes et al., 2011b; Yuan et al., 2016). Since the discovery of RSNs in 1995 

(Biswal et al., 1995), fMRI has been extensively used in RSN studies (Biswal et al., 1995; 

Biswal, 2012). fMRI offers high spatial resolution by measuring blood-oxygenation-

level-dependent (BOLD) signals. However, its temporal resolution is relatively low, 

precluding analyses on temporal information of fast neural oscillations (Logothetis, 2008). 

In the past decade, MEG and EEG have also been used to study RSNs (Brookes et al., 

2011a; Hipp et al., 2011; Sockeel et al., 2016). In contrast to fMRI, MEG and EEG 

directly measure the neural activity by recording the magnetic fields or the electrical 
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potentials generated by the neuron's electrical activity. Although MEG and EEG have a 

spatial resolution that is relatively coarse compared to fMRI, both techniques offer 

excellent temporal resolution, which provides insights into the temporal characteristics 

of RSNs (Cohen et al., 1990; da Silva, 2013; Klimesch, 1999; Michel et al., 2004; Mosher 

et al., 1999). Due to their advantages, MEG and EEG have been increasingly used in 

studies regarding RSNs (Brookes et al., 2011a; Hipp et al., 2011; Sockeel et al., 2016). 

Some of these studies generated spatial patterns with significant similarity to RSNs 

derived from fMRI data (Brookes et al., 2011b; Liu et al., 2017; Ramkumar et al., 2012; 

Yuan et al., 2016). More importantly, some of these studies revealed RSN characteristics 

that are beyond the capability of fMRI (Ding et al., 2014; Li et al., 2018).  

To detect and probe RSNs based on EEG and MEG data, earlier studies have 

proposed and adopted various frameworks consisting of multiple computational and 

analytical methods that served different purposes within the whole frameworks (Liu et 

al., 2017; Ramkumar et al., 2012; Sockeel et al., 2016). For instance, inverse source 

imaging (ISI) (Grech et al., 2008; Pascual-Marqui, 1999), which estimates underlying 

sources on the cortical surface based on MEG/EEG data, has been widely used in RSN 

studies in which analyses were conducted in the cortical space (Brookes et al., 2011b; 

Yuan et al., 2016). On the other hand, independent component analysis (ICA) has also 

been widely used to identify RSNs from both EEG/MEG data (Brookes et al., 2011b; 

Hipp et al., 2012). ICA is a data-driven method which decomposes data from linear mixed 

signals into components with maximal statistical independence (Lee et al., 1999). In 

frameworks using ICA, RSNs were generated based on independent components from 

ICA (Brookes et al., 2011b; Liu et al., 2017). Both ISI and ICA have been extensively 
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employed as analytical steps in frameworks concerning MEG/EEG RSNs. Among the 

previously developed frameworks, the advancement in frameworks mainly emerged from 

the collective contribution of these component methods, such as the adopted methods (i.e., 

what to use), the implementation of methods (i.e., how to use), and even the sequence of 

methods (i.e., when to use) (Calhoun et al., 2009; Li et al., 2017). For instance, ICA can 

be conducted either in the sensor space (Ding et al., 2014) or in the source space (Li et 

al., 2018) to derive RSNs in different domains. The combination and implementation of 

multiple computational methods have produced various frameworks for RSN studies, 

which enables the reconstruction of RSNs and the exploration of different aspects. 

Despite recent development and findings of EEG/MEG RSNs, there are several 

limitations to the developed frameworks.  

First, the sequence of different methods, which may affect the performance of a 

framework, has rarely been assessed regarding its influence on the reconstruction of 

RSNs. ISI and ICA, two critical methods used in current frameworks, can be used in 

either sequence. ICA can be applied to MEG/EEG data in the sensor space to generate 

topography of RSNs, which can be projected into the source space using ISI (Yuan et al., 

2010). Or, ICA can be applied to data in the source space that are generated via ISI 

(Brookes et al., 2011b). Both sequences have been followed to explore RSNs, and 

meaningful patterns have been successfully found (Brookes et al., 2011b; Yuan et al., 

2010; Yuan et al., 2012b). However, there has been no detailed investigation of their 

performance, which is required to give a direction in further improvement of 

computational frameworks for MEG/EEG RSNs. 
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Second, the strategy to explore the spectral characteristics of RSNs is limited. 

Spectral characteristics of RSNs are critical in the investigation of RSNs (Mantini et al., 

2007). Analysis over the spectral domain can yield informative features of RSNs that is 

necessary to achieve a deeper understanding of RSNs. Previous studies used pre-selected 

band-pass filters to probe spectral characteristics in specific frequency bands (Brookes et 

al., 2011b; Mantini et al., 2007). This strategy, however, precludes the insight into 

spectral features over a wider band, which is necessary for an unbiased investigation. To 

date, this limitation has not been comprehensively examined. 

Third, the group-level analysis on RSNs, which has been widely conducted in 

RSN studies, is not optimal to provide less-biased and convincing features of RSNs. 

Previous studies have only focused on group-level ICA, while group-level statistical 

analysis after ICA has not obtained enough research interest. For instance, the 

autocorrelation of signals, which determine the accuracy of the group-level analysis has 

been taken into consideration in fMRI studies (Honey et al., 2009; Rombouts et al., 2005; 

Roy et al., 2009; Woolrich et al., 2001). On the contrary, it has been largely overlooked 

in MEG/EEG RSN studies.  

Fourth, little research has been done to explore the role of ISI in RSN studies. 

Previous studies of MEG/EEG RSNs typically focused on the analysis of cortical data, 

e.g., ICA (Liu et al., 2017; Yuan et al., 2016). Surprisingly, there has been little 

advancement in the ISI step of frameworks for EEG/MEG RSNs; only conventional ISI 

methods such as the minimum norm estimation (Hamalainen and Ilmoniemi, 1994) were 

used in proposed frameworks. Given the critical role of ISI, the estimation accuracy of 

ISI can further determine the quality of reconstructed RSNs. Thus, further research is 
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needed in order to evaluate the influence of ISI and to provide improved mathematical 

solutions. 

The primary aim of this dissertation is to advance the reconstruction of RSNs from 

EEG data. In this dissertation, a comparison is conducted to evaluate the impact of method 

arrangement in computational frameworks; a new ICA method is proposed to probe 

spatial and spectral features of RSNs; advanced statistical analysis is developed to 

provide a statistical justification for spatial definition; a new ISI method is used in an 

RSN-reconstructing framework. Using both experimental EEG data and simulated data, 

comparisons are conducted to identify the performance difference, and proposed 

frameworks are evaluated from a different perspective. This study makes important 

contributions to multiple aspects of computational frameworks for RSN reconstruction, 

such as a new type of ICA and an advanced ISI method, which gives us a deeper 

understanding of RSNs. 

The overall structure of this dissertation takes the form of seven chapters. 

Chapter 2 gives a brief introduction about RSNs to help the reader understand 

where the contribution of each study fits into the big picture of RSN reconstruction. The 

section begins with background knowledge of RSNs, including the history, the 

characteristics, and some of current findings. Next, EEG, the technique used in my studies, 

is described regarding how resting-state data are obtained with this technique. Then, an 

overview of current computational frameworks to analyze EEG RSNs is provided. Finally, 

the advantages and limitations of these frameworks are discussed to demonstrate the 

necessity of proposing new frameworks. 
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Chapter 3 examines the influence of the sequence by which ISI and ICA are 

applied in a framework for the RSN reconstruction. In this chapter, RSNs are 

reconstructed using two frameworks: 1) ICA is used before ISI to decompose sensor-

space data. 2) ICA is performed after ISI to decompose source-space data. This study 

uses both experimental data and simulated data. Comparisons are conducted to evaluate 

the performance of two frameworks in terms of spatial, temporal, and spectral 

reconstructions. To our best knowledge, this study is the first attempt to determine an 

optimal sequence to apply ISI and ICA in RSN-reconstructing frameworks. This is an 

important study in this dissertation because it provides further justifications for 

employing one sequence over the other in later chapters. 

Chapter 4 introduces a new computational framework, time-frequency ICA-

based statistical correlation tomography, for reconstructing RSNs with EEG data. The 

proposed framework utilizes ICA on short-time Fourier transformed EEG data to include 

the spectral domain in RSN analyses. Besides, statistical correlation analysis is proposed 

to define the spatial coverage of RSNs. The spatial/spectral features, the spatial similarity 

to fMRI RSN templates and the robustness of the new framework are evaluated 

systematically using three sets of resting-state EEG data. The proposed framework 

significantly improves the spectral analysis of EEG RSNs. Moreover, it provides a 

statistical solution to the spatial definition of EEG RSNs, overcoming the shortage of 

statistical analyses confronting previous studies. 

Chapter 5 shifts the research interest from ICA to improving the accuracy of ISI. 

Previous studies only employed conventional ISI methods that are limited in estimation 

accuracy. In this study, an advanced ISI method, variation and wavelet based sparse 
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source imaging (VW-SSI), is used in a computational framework  to improve the 

reconstruction of RSNs, especially in the spatial aspect. This framework is similar to the 

one introduced in Chapter 4, but with the employment of VW-SSI in the ISI step. The 

performance of the framework is evaluated using both experimental and simulated data. 

The improvement is assessed by comparisons between this modified framework and a 

control framework that uses a conventional ISI method. This study sheds new light on the 

importance of ISI in RSN-reconstructing frameworks.  

Chapter 6 uses the framework introduced in Chapter 4 to assess RSNs in different 

conditions. In this study, RSNs reflecting different conditions or condition levels are 

evaluated together using the proposed framework, aiming to find the difference between 

two conditions and detect the relationship between RSNs and condition levels. Simulated 

data are generated in order to quantitatively examine the capability of assessing RSNs. 

The proposed framework is also applied to experimental data including both healthy 

controls and patients with a balance disorder, aiming to find biomarkers that indicate the 

change of RSNs and the relationship between RSNs and the symptom severity. 

Chapter 7 summarized and discussed the significance of the works and findings 

described in this dissertation. This chapter is subdivided into three sections. The first 

section gives a summary of the contributions made by the three studies, including the 

optimal ICA method, statistical correlation analysis, and the ISI method. The second 

section discusses the limitations of my studies and raises potential perspectives for future 

work. The third section provides the conclusion of this dissertation. 
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2 Background 

The discovery of resting state networks (RSNs) is perhaps the most significant 

breakthrough in the research field of human neuroscience in the past century. RSNs 

identified in the human brain are formed by spontaneous activity fluctuations in 

distributed brain regions when people are in task-free and awake states. In contrast to 

brain networks evoked by imposed tasks or external stimulus, RSNs reflect intrinsic 

connectivity and inherent architecture of the human brain. Since its discovery in 1995 

(Biswal et al., 1995), RSNs have been extensively studied in a large body of research, 

and the reported findings inform our understanding of the organizational and functional 

principles of the human brain. The exploration of RSN is promoted by the evolution of 

neuroimaging techniques and the advance of computational frameworks. To date, 

different neuroimaging techniques have been used to record brain activities during the 

resting state, including fMRI, MEG, and EEG (Biswal et al., 1995; Brookes et al., 2011b; 

Li et al., 2018). Each of these techniques has its advantages and disadvantages (Logothetis, 

2008). Fortunately, the technological progress is reducing their deficiency and enhancing 

their benefits, making these techniques more useful for RSN research. On the other hand, 

various computational frameworks have been developed in order to obtain different 

features of RSNs. These frameworks employed a wide range of computational and 

analytical methods, each of which serves specific purposes in the whole pipeline.  

The aim of this chapter is to introduce RSNs, neuroimaging techniques to record 

resting-state brain signals, and computational methods to study RSNs. In the beginning, 

the background knowledge of RSNs is provided. Then, EEG, the technique used in this 

dissertation, is introduced to explain the generation and the recording of signals. Finally, 
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a brief overview of current computational methods is given to help the reader understand 

how frameworks are developed and improved in this dissertation. 

2.1 Introduction to Resting State Networks 

The human brain can be approached as a complex network consisting of spatially 

distributed but functionally linked regions (Herculano-Houzel, 2009; Oh et al., 2014). 

When the human brain is engaged in imposed tasks or stimuli, networked brain regions 

process and integrate the external information cooperatively in order to give reasonable 

responses (Allison et al., 2000). Importantly, the interconnected architecture of the human 

brain persists in the absence of external disturbance. Previous studies have demonstrated 

that spontaneous neuronal activities in distributed brain regions are temporally correlated 

in the awake resting state, forming intrinsic networks known as resting state networks 

(RSNs) (Biswal et al., 1995; Brookes et al., 2011b; Greicius et al., 2007).  

RSNs are attractive and valuable for neuroscientists. From a functional point of 

view, RSNs reflects the intrinsic functional architecture of the human brain (Biswal et al., 

1995; Fox and Raichle, 2007; Vincent et al., 2007). Studies of RSNs provide an extensive 

understanding of the human brain. In terms of the experiment, RSN studies can be 

conducted on young children or patients who cannot finish complex tasks due to the age 

or disease. As a result of their significance and uniqueness, RSNs have become an 

indispensable part of neuroscience. 

Research into RSNs has a long and tortuous history. Investigations of resting-state 

brain activities can be traced back to 1950s. In 1955, the measurements of whole-brain 

blood flow and oxygen consumption obtained during the resting state were used in 

comparison with the task-performing state, which failed to detect any significant 
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difference in blood flow or oxygen consumption (Sokoloff et al., 1955). In 1988, using 

the technique of positron-emission tomography (PET), brain activities during the resting 

state were used as a control state to compare with brain activities during the stimulus, i.e., 

the vibration of the fingers on the left hand (Fox et al., 1988). This study, however, failed 

to reveal the significant role of resting-state data. In 1995, Biswal et al demonstrated that 

signals recorded by functional magnetic resonance imaging (fMRI) are temporally 

correlated within the somatomotor cortex, which revealed the existence of RSNs for the 

first time. However, the significance of the discovery of RSNs was not widely recognized 

in the early stage. A large amount of literature attributed the spontaneous connectivity to 

artifacts such as head motion or to the vasculature (Friston et al., 1996; Mitra et al., 1997). 

In 2003, Michael Greicius generated an image of default mode network (Greicius et al., 

2003), which significantly supports the validity of RSNs. Since then, RSNs have become 

an important area of neuroimaging. 

During the past two decades, considerable literature has grown up around the 

theme of RSNs. Researchers have detected multiple types of RSNs, such as the visual 

network, the frontoparietal network, and the default mode network (Brookes et al., 2011b; 

Fox and Raichle, 2007; Fox et al., 2005; Smith et al., 2009; Smith et al., 2012; Yeo et al., 

2011; Yuan et al., 2017). Besides, these studies on RSNs have revealed encouraging 

findings, which mainly characterize the spatial, spectral, and temporal features of RSNs.  

The spatial feature of RSNs indicates the interconnected brain regions included in 

a specific RSN, which provide an intuitive representation of the anatomical layout of a 

network. Previous studies have revealed distinct spatial signatures for different RSNs 

(Biswal et al., 1995; Calhoun and Adali, 2012). For instance, the default mode network 
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(DMN) (Figure 2.1(A)), the most attractive RSN, includes the medial prefrontal cortex, 

posterior cingulate cortex, inferior parietal lobules, and medial temporal regions (Greicius 

et al., 2003). On the contrary, the sensorimotor network (Figure 2.1(B)) includes 

somatosensory regions, motor regions, and the supplementary motor regions (Chenji et 

al., 2016). In a considerable number of previous studies, the spatial pattern of RSNs is an 

essential factor to categorize a specific RSN.  

 
Figure 2.1 Multiple Resting State Networks identified with fMRI 

(Figure as originally published in Heine L, Soddu A, Gómez F, Vanhaudenhuyse A, 

Tshibanda L, Thonnard M, Charland-Verville V, Kirsch M, Laureys S and Demertzi A 

(2012) Resting state networks and consciousness Alterations of multiple resting state 

network connectivity in physiological, pharmacological, and pathological consciousness 

states. Front. Psychology 3:295. doi: 10.3389/fpsyg.2012.00295, with permission) 

 

The spectral feature of RSNs represents the properties of RSNs, e.g., power or 

connectivity, in the frequency domain. A critical finding of the RSN spectral feature is 

that the connectivity in RSNs varies across the frequencies of signals (Hipp et al., 2012; 

Mantini et al., 2007). By calculating the correlation of signals between pre-selected seed 
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regions within RSNs (auditory, somatosensory, and visual), Hawellek, Hipp et al obtained 

distributions of correlation over different frequencies and showed that the correlation is 

strongest in the alpha and the beta bands (Hawellek et al., 2011). This finding indicates 

that the functional connectivity within RSNs prefers specific rhythms. 

The temporal feature of RSNs is mainly reflected in the temporal dynamics of 

connectivity. For a long time, the analysis of RSNs has been conducted under the 

assumption of temporal stationarity (Biswal et al., 1995; Greicius et al., 2003), i.e., the 

functional connectivity within RSNs is constant. However, recent research has shown that 

the functional connectivity within RSNs is variable over time (Chang and Glover, 2010; 

Chen et al., 2013). For example, Brookes, Groom et al. showed that the dynamics in 

attentional networks changes with age (Brookes et al., 2018). 

In addition to the features mentioned above, RSNs exhibit interesting features that 

implicate their significance in health and disease. Specifically, previous studies have 

demonstrated the consistency of RSNs in healthy subjects (Beckmann et al., 2005; 

Damoiseaux et al., 2006), alterations in patients with neuropsychiatric disorders (Agosta 

et al., 2012; Greicius et al., 2007; Rombouts et al., 2005; Sorg et al., 2007), and changes 

with cognitive tasks (Buckner et al., 2008; Greicius et al., 2003). These findings are 

important because they reveal critical characteristics of RSNs and shed new light on the 

potential clinical utility of RSNs. 

2.2 Resting-State Recording with EEG 

Various neuroimaging techniques have been used to obtain brain signals during 

the resting state, including functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), and magnetoencephalography (MEG) (Figure 2.2) 
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(Biswal et al., 1995; Brookes et al., 2011b; Yuan et al., 2016). In this section, the 

description and discussion focus on EEG rather than the other two techniques because it 

was used to obtain resting-state data for this dissertation (see the following section). 

Besides, an important computational method for EEG is also introduced.  

 
Figure 2.2 Schematic of fMRI, MEG, and EEG systems 

(A) fMRI system. (B) MEG system. (C) EEG system. 

 

2.2.1 Techniques for Resting-State Recording 

Before a detailed description of EEG can be provided, a brief overview of popular 

neuroimaging techniques for RSN studies (i.e., fMRI, MEG, and EEG) is necessary to 

justify the selection of EEG in this dissertation. fMRI is an important neuroimaging 

technique and plays a critical role in RSN studies. Not only it was used to detect the first 

RSN, i.e., the sensorimotor network, (Biswal et al., 1995), but also it has been employed 

in a considerable amount of research which characterizes RSNs from different 

perspectives (Agosta et al., 2012; Chang and Glover, 2010; De Luca et al., 2006; de 

Pasquale et al., 2010).  

Functional MRI measures the blood-oxygenation-level-dependent (BOLD) 

changes in the MRI signal that emerge when neuronal activity occurs in the brain. 

Increased neural activity in a brain region is accompanied by an increase in local blood 
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flow that meets the requirement of oxygen and other substrates in that region (Figure 2.3), 

which is more than the actual requirement. This, in return, results in a decrease in the 

concentration of deoxyhemoglobin. The changes in the oxygenation and blood flow, 

called hemodynamic changes, result in changes in the relative concentration of 

oxyhemoglobin and deoxyhemoglobin, which has a direct effect on the signals captured 

by fMRI. In particular, whether hemoglobin is saturated with oxygen affects its magnetic 

properties. When oxygen is bound to hemoglobin, forming oxygenated hemoglobin, it 

will be diamagnetic. However, when it is not bound to oxygen, forming deoxygenated 

hemoglobin, it becomes paramagnetic, which means it has significant magnetic moment 

that can affect the magnetization of the MRI machine. Thus, the changes in the 

concentration lead to an increase in the homogeneity of the static magnetic field which 

can be captured by BOLD fMRI. fMRI provides high spatial resolution on the order of 

millimeters, which is suitable for clinical and experimental practice. Due to its advantages, 

fMRI has been a major tool to study RSNs for a long time, which included a large body 

of research and a considerable number of findings. For example, Yeo, Krienen et al 

obtained multiple RSN templates using the fMRI data from over 1,000 participants, 

which offers compelling references for other studies with smaller sample sizes (Yeo et 

al., 2011). Because of the extensive and robust findings from this technique, RSN studies 

using fMRI guide research directions of studies using other techniques to a considerable 

degree, e.g., their analytical methods and research perspectives. 
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Figure 2.3 Physics of BOLD fMRI 

 

In spite of the advantage and popularity of fMRI, probing RNSs using other 

techniques is an attractive proposition because it offers new perspective to understand the 

underpinnings of RSNs, such as the temporal and spectral domains. Moreover, the RSNs 

analyses using different techniques provides compelling support to the findings from 

fMRI, which are still under debate to a certain degree networks (Cole et al., 2010; Friston 

et al., 1996; Mitra et al., 1997). More importantly, the combination of different techniques 

in RSN studies is of great value to provide a better understanding of the reported 

characteristics of RSNs. 

EEG and MEG are popular non-invasive techniques for mapping brain activities. 

In contrast to fMRI, EEG and MEG are direct measures neuronal activity (details are in 

the following section). Their excellent temporal resolution allows examination of 

neuronal dynamics on the millisecond timescale (Hämäläinen et al., 1993; Laufs et al., 

2003b). Over the past decade, EEG/MEG has been increasingly employed by RSN 

studies (Brookes et al., 2011b; Li et al., 2018; Liu et al., 2017; Yuan et al., 2016). The 

implementation of these techniques offers new perspectives to characterize RSNs, such 

as the spectral feature of RSNs.  
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Although MEG and EEG share the same advantages in terms of temporal 

resolution and direct measurement, the two techniques have some distinguishing 

properties. MEG is less sensitive to the volume conduction effect and more sensitive to 

deep neural sources, while EEG has better sensitivity to tangential sources (Baillet et al., 

2001; Hämäläinen et al., 1993). EEG offers lower cost and higher portability, which 

enables massive application. More importantly, EEG can be recorded simultaneously 

with fMRI, which can lead to the opportunity to understand the neurophysiological 

underpinnings of fMRI RSNs (Yuan et al., 2012a).  

Despite the advantages of EEG over fMRI and MEG, it should be noted that the 

three techniques are complementary in characterizing RSNs. Every neuroimaging 

technique requires considerably more work to obtain efficient and accurate recordings of 

brain signals, which lays the groundworks for RSN analyses. In this dissertation, EEG is 

used as the main neuroimaging technique to record resting-state data from participants. 

An introduction to EEG is provided in the following section. 

2.2.2 Introduction to EEG 

The human brain has approximately 100 billion nerve cells, called neurons, which 

transmit and process information through electrochemical signals. Neurons have three 

basic parts: a cell body, an axon, and dendrites (Figure 2.4A). Each part plays a critical 

role in neuronal function. The cell body contains the nucleus and produces the energy for 

the cell. The axon stretches away from the cell body and branches out into multiple axon 

terminals; it conveys electrical signals along the length of the cell. The dendrites receive 

signals from other neurons with their branch-like structures (Hämäläinen et al., 1993; 

Kandel et al., 2000).  
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When a neuron is excited, the apical dendritic membrane is temporarily 

depolarized by excitatory postsynaptic potentials (EPSPs), which are generated by the 

influx of Na+ or Ca2+ from the extracellular space. The potential difference between the 

cell body and the dendrites leads to intracellular electric current, called the primary 

current, flow in active neurons (Hämäläinen et al., 1993). Due to the parallel arrangement 

and orientation of neurons (Figure 2.4B), primary currents from tens of thousands of 

synchronously activated neurons can be accumulated. The accumulated primary currents 

are believed to be the primary contributor to EEG signals (Nunez and Silberstein, 2000). 

Different layers of brain structures, such as the cerebrospinal fluid (CSF), skull, and scalp, 

are conductive to the electrical signals generated by neurons (van den Broek et al., 1998; 

Wendel et al., 2008). Therefore, the signals from neurons can be measured by EEG 

sensors which are placed on the surface of the scalp. 

EEG is a non-invasive neuroimaging technique than has been used for over a 

century. While technology improvements have tremendously advanced this technique, 

the basic principle remains unchanged: measuring the electrical potentials on the scalp. 

In EEG measurements, electrodes are placed on the scalp (Figure 2.4C), with the gap 

between the scalp and the electrodes filled with conductive medium. Locations and names 

of EEG electrodes have been standardized by the International 10–20 system (Towle et 

al., 1993) for most clinical and research applications. The number of EEG electrodes 

varies in different EEG systems, ranging from tens to hundreds. The typical amplitude of 

EEG signals from human adults is around 10 to 200 microvolts, and an amplifier is 

required to capture and digitize the signal. By gathering recordings from all electrodes in 
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an EEG system, EEG data can be obtained to reflect the time-varying electrical potentials 

over distributed locations on the scalp. 

 
Figure 2.4 Structure of neuron and cortical generator of EEG signals 

(A) a typical neuron cell has three parts: the cell body, axons, and dendrites. (B) currents 

from a large number of synchronously activated neuron cells. (C) Schematic illustration 

of EEG electrodes and EEG signals 

 

2.2.3 Resting-State EEG 

EEG has emerged as a popular technique to record resting-state signals (Li et al., 

2018; Li et al., 2017; Liu et al., 2017; Yuan et al., 2016). Compared with task-related 

experiments, the resting-state EEG recording has similar recording environments. The 

recording takes place in a shielded room, which is built to block external electromagnetic 

interference, with a quiet environment, dim light, and normal room temperature. Before 

the recording, an EEG cap of suitable size is placed on the participant’s head, with 

conductive medium being applied under electrodes. The participant is informed about the 

experiment in details. Each participant is informed of the experimental protocol. The 
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resting-state EEG recording begins after all experimenters leave the room and close the 

door. 

During the recording, the participant is asked to keep still in a specific body 

position (e.g., sitting, standing, and supine) with their eyes open or closed. The participant 

is not allowed to fall asleep. Experimenters outside the room monitor the behavior of the 

participant using video cameras and record situations when the participant is not in the 

resting-state. Periods in which the participant is observed moving are rejected during the 

data pre-processing. The duration of the resting-state EEG recording varies across 

different experiments, ranging from several minutes to an hour. 

2.2.4 Inverse Source Imaging of EEG 

Resting state EEG data represent the time-varying electric potential on the scalp. 

Without further data processing, any analysis of the data would be confined to the space 

of the scalp, i.e., the sensor space. Nevertheless, the space of the cortex, i.e., the source 

space, is desirable for analyses of RSNs because the findings in the source space are 

directly associated with the anatomical structure of the human brain. Hence, inverse 

source imaging (ISI) is required to bridge the gap between the sensor space and the source 

space (Figure 2.5). 

There are two important problems in inverse source imaging: the forward problem 

and the inverse problem. In the forward problem, EEG signals at electrodes are predicted 

given known cortical sources. In the inverse problem, EEG signals are used to estimate 

unknown cortical sources. The forward problem can be expressed in the following 

equation: 

𝜱 = 𝑨 ∙ 𝑺 + 𝑵 
2-1 
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where Φ is a matrix of recorded EEG signals at electrodes each as a function of time, S 

is the unknown sources defined in the source space, A is the lead field matrix, which 

represents how the cortical sources contribute to scalp data. and N is the noise. In the 

forward problem, some key parameters are known, such as the geometry of the head, 

conductivity of tissues, and locations of sensors, providing significant information for 

calculating the lead field matrix. 

 
Figure 2.5 Schematic of inverse source imaging 

ISI locates the sources from recorded measurements 

 

The inverse problem is the procedure to estimate S using known Φ. Because the 

number of EEG sensors is far less than the number of cortical sources, the inverse problem 

is highly underdetermined and there are an infinite number of solutions. Fortunately, this 

conundrum is addressed with ISI methods, which provide unique solutions to the inverse 

problem. Different ISI methods have been developed to solve the inverse problem, such 

as minimum norm estimation (MNE) (Hämäläinen et al., 1993), low resolution brain 

electromagnetic tomography (LORETA) (Pascual-Marqui et al., 1999), and beamformer 

(Barnes and Hillebrand, 2003; Van Veen et al., 1997). As an example of ISI methods, a 

brief description of MNE is provided here. MNE is chosen here not only because it is a 

popular ISI method, but also because it is employed in the studies of this dissertation. 

Another advanced ISI method will be introduced in Chapter 5. 
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In order to obtain the lead field, it is necessary to build the source model. Using 

structural MRI data, the surfaces of the cortex and other layers of the anatomical structure 

are segmented into triangles. Each cortical source is placed at the center of a triangle on 

the cortical mesh and its orientation is perpendicular to the corresponding triangle. The 

volumes between different layers are assigned different conductivities (Lai et al., 2005). 

Based on the model and locations of EEG electrodes, the lead field can be calculated 

using the boundary element method (BEM) (Hamalainen and Sarvas, 1989). 

MNE is based on a search for the solution with minimum power and corresponds 

to Tikhonov regularization. 

𝒎𝒊𝒏⁡(‖𝜱 − 𝑨 ⋅ 𝑺‖𝟐 + 𝝀 ⋅ ‖𝑺‖𝟐) 
2-2 

where ||∙|| indicates the L2-norm and  is the regularization parameter. Minimization in 

Eq. 2.3 over Φ yields the MNE estimate of S, i.e., S', in the following form: 

𝑺′ = 𝑻 ⋅ 𝜱 
2-3 

and T is a linear inverse operator to measured signals expressed by 

𝑻 = 𝑨𝑻 ⋅ (𝑨 ⋅ 𝑨𝑻 + 𝝀 ⋅ 𝑰)−𝟏 
2-4 

where I is the identity matrix. The selection of the regularization parameter  was 

achieved using the generalized cross validation (GCV) method (Golub et al., 1979; 

Wahba, 1990). After obtaining the linear inverse operator, the estimated cortical sources 

can be calculated. 

Different ISI methods have been used in recent RSN studies (Brookes et al., 2011b; 

Hipp et al., 2012; Liu et al., 2017). In this dissertation, MNE is selected as the primary 

ISI method due to its promising performance in previous research (Yuan et al., 2016). 

Besides, an advanced ISI method is employed in the study of Chapter 5. 
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2.3 Methods for Analyzing Resting State EEG 

The previous section introduced how to obtain resting-state data in the cortex from 

EEG, which is only the initial phase of EEG RSN research. In order to analyze RSNs 

based on the data, computational and analytical methods are required. In previous EEG 

RSN studies, two types of methods were commonly used: seed-based connectivity 

analysis (SCA) and independent component analysis (ICA). 

2.3.1 Seed-based Connectivity Analysis 

The aim of seed-based connectivity analysis (SCA) (Fox et al., 2005) is to 

investigate the functional connectivity in the human brain, which represents a 

fundamental aspect of brain physiology and psychology. Over the past two decades, SCA 

has emerged as a popular method to explore RSNs, regardless of the neuroimaging 

technique used. To conduct SCA, a particular seed, i.e., a small region of interest (ROI), 

is selected on the cortex. Then, connectivity is quantified by calculating the correlation 

between the time course of the seed with every other region within the cortex (Figure 2.6). 

After the statistical significance is evaluated, regions showing significant connectivity are 

considered to be functionally connected to the seed (Brookes et al., 2016; Chang and 

Glover, 2010; Finn et al., 2015). 

SCA has two critical aspects: the seed and the connectivity. According to the aim 

of a study, the seed can be spatially defined as a single voxel, a set of voxels in an enclosed 

area, or a brain region defined by a brain atlas. Besides, a seed can also be selected based 

on statistical significance in prior studies. The selection of seeds is challenging because 

it requires prior knowledge of both anatomical and functional aspects of the human brain. 

It should be noted that a slight shift of seed location may have a significant impact on the 
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resultant connectivity (Cole et al., 2010). In terms of connectivity, a variety of metrics 

have been developed, such as amplitude envelope correlation (AEC), absolute coherence 

(Coh), and phase lag index (PLI) (Colclough et al., 2016). These metrics evaluate 

connectivity from different perspectives; their performances also vary (Colclough et al., 

2016). 

SCA has been used extensively to study RSNs. (Brookes et al., 2011a; Brookes et 

al., 2011b; Hipp et al., 2012; Siems et al., 2016; Stam et al., 2007). These studies revealed 

the characteristics of the connectivity in RSNs, which are critical for understanding the 

functional linkage among networked regions. In addition, SCA has been used to 

investigate the RSN change caused by different conditions (Cao and Slobounov, 2010; 

Di Martino et al., 2008; Ku et al., 2014; Zhang et al., 2017). 

 
Figure 2.6 Schematic of seed-based connectivity analysis 

SCA quantifies the connectivity between the seed node and other nodes on the cortex. 

 

2.3.2 Independent Component Analysis 

Another popular method for investigating RSNs is the independent component 

analysis (Hyvärinen et al., 2004; Hyvärinen and Oja, 2000). ICA was originally 

developed to solve the cocktail party problem, which separates underlying speech 

patterns from multiple speakers using recorded data from a few recording devices. The 

goal of ICA is to find a linear representation of non-Gaussian data from multivariate 
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statistical data so that the components are statistically independent. In ICA, the 

observation is assumed to be a linear mixture of independent components (ICs), which 

can be expressed as: 

𝑿 = 𝑨 ⋅ 𝑺 
2-5 

where A is the mixing matrix. X is the observed data and S are independent components. 

In order to determine A, a critical principle is that the components in S are statistically 

independent, which means each component has no contribution or influence on another 

component. After obtaining A, the unmixing procedure can be formulated as 

𝑺′ = 𝑨−𝟏 ⋅ 𝑿 2-6 

ICA has been used extensively for artifact rejection in EEG studies. Recently, 

ICA has also been used to investigate RSNs given its capability to identify underlying 

factors (Brookes et al., 2011b; Liu et al., 2017; Sockeel et al., 2016; Yuan et al., 2016). 

In practice, ICA is usually implemented at the group level in which data from all 

participants are concatenated into a single matrix (Figure 2.7). Two types of ICA are 

mostly used in previous EEG-RSN studies: temporal ICA (TICA), where ICs are 

temporally independent (Brookes et al., 2011b; Yuan et al., 2016), and spatial ICA 

(SICA), where ICs are spatially independent (Liu et al., 2017; Sockeel et al., 2016). In 

addition, new types of ICA have been developed for RSNs. For instance, temporal Fourier 

ICA (TFICA) sought to obtain components that are statistically independent on both the 

temporal and the spectral domains (Ramkumar et al., 2014).  

In contrast to SCA, ICA is data-driven and does not require a priori structural 

knowledge. Additionally, ICA provides a broad view of RSNs over the whole cortex, 

rather than focusing on a few seed points. From a research point of view, ICA was mainly 
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used to explore spatial patterns of EEG RSNs. Through ICA, previous studies have 

successfully derived RSN patterns from EEG data, which showed remarkable similarity 

to fMRI RSNs.  

 
Figure 2.7 Schematic of temporal group-ICA 
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3 Resting State Networks in the Sensor Space and the Source Space 

3.1 Introduction 

Over the past decade, a variety of computational frameworks have been developed 

in order to reconstruct and analyze resting state networks (RSNs) based on MEG/EEG 

(Brookes et al., 2011b; Hipp et al., 2012; Yuan et al., 2016). Among these proposed 

frameworks, independent component analysis (ICA) (Hyvärinen and Oja, 2000; Makeig 

et al., 1996) plays a critical role in the identification of RSNs and has been widely adopted 

in different studies (Ding et al., 2014; Liu et al., 2017). ICA is used to decompose 

electrophysiological signals into multiple components that are statistically independent, 

and RSNs are identified from these components according to their characteristics such as 

spatial patterns (Brookes et al., 2011b). Previous studies have demonstrated that ICA can 

be applied to the data either in the sensor space, i.e., the scalp surface (Ding et al., 2014; 

Jann et al., 2010; Scheeringa et al., 2008), or in the source space, i.e., the cortex (Yuan et 

al., 2016). Although both options have demonstrated the capability in finding RSNs from 

EEG/MEG data, few studies have systematically investigated the performance difference 

between them. Since the major aim of this study is to develop and improve computational 

frameworks for the reconstruction of EEG RSNs, selecting an optimal space for RSN 

analysis is an important prerequisite for the establishment of other studies in this 

dissertation. To eliminate this confusion, a quantitative comparison is carried out to 

evaluate the performance of the two ICAs in this chapter, aiming to determine which 

space is more suitable for RSN analysis. 

RSNs have been extensively studied using the neuroimaging technique of 

functional magnetic resonance imaging (fMRI) (Beckmann et al., 2009; Biswal, 2012; 
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De Luca et al., 2006; Di Martino et al., 2008). Because fMRI measures blood oxygen 

level-dependent (BOLD) signals from the cortex, RSNs derived using fMRI data RSNs 

are in the cortex, which can be called as the source space. Recently, novel frameworks to 

reconstruct RSNs from MEG (Brookes et al., 2011b) and EEG (Yuan et al., 2012b) have 

also been developed to investigate electrophysiological aspects of RSNs. In these 

frameworks, the inverse source imaging (ISI) technique (Hamalainen and Ilmoniemi, 

1994; Pascual-Marqui, 1999) is an essential step in the process because it can project the 

sensor-space information such as MEG/EEG signals or topographies into the source space. 

Due to the function of ISI, the anatomical and structural information of MEG/EEG RSNs 

can be investigated and evaluated with fMRI RSNs as references. 

Depending on the sequence to apply ICA and the ICI technique, the ICA-based 

frameworks can be split into two categories in the literature: the sensor-space ICA and 

source-space ICA. In the sensor-space ICA, ICA directly operates on the sensor-space 

data (Yuan et al., 2010). Following ICA, a specific ISI technique is applied to IC 

topographies to obtain spatial patterns in the source space. On the other hand, the source-

space ICA is performed on source-space data (Yuan et al., 2012b), which are obtained 

through ISI techniques that are applied on EEG/MEG sensor-space data (Brookes et al., 

2011b; Yuan et al., 2012b). Both ICAs have been used to explore RSNs, and meaningful 

patterns have been successfully found (Brookes et al., 2011b; Yuan et al., 2010; Yuan et 

al., 2012b). Nonetheless, there has been no comparison of the two ICAs, and little is 

known regarding the performance differences between them. It is, therefore, of interests 

to compare the sensor-space and source-space ICAs directly to evaluate their capacity 

and accuracy in studying RSNs. 
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The aim of the present study was to investigate the performance of both ICA 

procedures on the reconstruction of RSNs from EEG data. Simulated data with distributed 

sources were used and the ICs from both were compared with the ground truth. Their 

spatial and temporal reconstructions were evaluated through statistical analysis. With real 

resting-state EEG data obtained from seven healthy participants, their results, in reference 

to five RSN templates from fMRI data, were also compared to further evaluate the 

difference between two ICA procedures.  

3.2 Materials and Methods 

3.2.1 Simulated EEG Data 

A head model segmented from a structural magnetic resonance imaging (MRI) 

dataset by FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) was used in the simulation. 

The sensor positions from the 128-channel EGI EEG system (Eugene, OR) were co-

registered to the model by aligning three landmarks, i.e., nasion, left and right pre-

auricular points. Two dimensional (2D) cortical surface was generated by segmenting the 

white matter/gray matter interface from the same MRI data, and it was triangulated into 

small triangles, each of which was modeled as a dipole source with its moment 

perpendicular to the triangle surface. Finally, the forward lead field, which links dipole 

sources with EEG measurements, was calculated using the boundary element method 

(BEM) (Hamalainen and Sarvas, 1989). 

In order to quantitively compare the performance of two ICAs, a simulation with 

200 iterations was proposed as follows. In each simulation, three distributed sources were 

generated on the cortical surface (Figure 3.1A). The three sources included three, two, 

and one cluster(s), respectively. And each cluster encompasses a surface region with the 
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diameter of ~20 mm without overlap. The envelopes of simulated time courses, which 

were obtained from experimental resting-state EEG data, were independent of each other. 

The duration of the envelopes are 5 minutes and the sampling frequency is 250 Hz. To 

simulate the realistic EEG data, different carrier frequencies were selected for each cluster 

of each source: 8 Hz, 10 Hz, and 12 Hz for the three clusters of the first source; 9 Hz and 

11 Hz for the two clusters of the second source; 15 Hz for the single cluster of the third 

source. To obtain amplitude-modulated signals, the carrier waveforms were multiplied 

with the corresponding envelopes to generate six time courses for the six clusters. Then, 

the simulated time courses were projected to the sensor space using the lead field, and 

white Gaussian noise was added to simulate the measurement noise, achieving a signal-

to-noise ratio at 10 dB. Simulations were repeated 200 times, each time with randomly 

selected locations for clusters.  

3.2.2 Experimental EEG Data 

Seven healthy participants (age 41-65) were recruited for the study. This study 

was approved by Western IRB, and all participants were informed about the protocol of 

the study and signed a written informed consent form prior to the experiment. A 128-

channel EEG system with the BrainAmp amplifier (Brain Products GmbH, Munich, 

Germany) was used in this study. Resting-state recordings were obtained for five minutes 

for each participant while they were asked to keep still and have their eyes closed. The 

electrode at AFz was chosen as the ground electrode, and all electrodes were referenced 

to FCz. The impedance was kept below 10 KΩ. The sampling frequency for EEG 

recording was 1000 Hz.  
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After obtaining resting-state EEG data, data were pre-processed with an 

established pipeline including rejection of bad segments, interpolation of bad channels, 

and re-reference to common average. Then data were down-sampled to 250 Hz and band-

pass filtered from 4 Hz to 30 Hz. ICA was used to remove artifacts caused by eye and 

muscle movements and heart noise. 

For each participant, structural MRI data were obtained using a 3D MPRAGE 

sequence (124 contiguous axial slices with 1.2 mm slice thickness; matrix size = 256×256; 

FOV = 220 mm × 198 mm; TR/TE/TI/TD = 5 /1.98 /725 /1400 ms, flip angle = 8 degree; 

sampling bandwidth = 31.25 kHz, SENSE acceleration = 2). The head models and the 

source models were generated using FreeSurfer, and the corresponding lead field was 

computed as described in the previous section. 

3.2.3 Sensor-space ICA and Source-space ICA 

Previous studies regarding MEG/EEG RSNs have employed different ISI 

techniques, such as minimum norm estimation (MNE) (Hamalainen and Ilmoniemi, 

1994) and beamformer (Barnes and Hillebrand, 2003), and different ICA techniques, such 

as Infomax ICA (Lee et al., 1999) and FAST ICA (Nolan et al., 2010), to construct various 

computational frameworks (Brookes et al., 2011b; Ding et al., 2014). In this study, MNE 

and Infomax ICA were used in both sensor-space ICA and source-space ICA, aiming to 

be consistent with the previous works in terms of techniques (Ding et al., 2014; Yuan et 

al., 2016).  

Minimum Norm Estimation: In ISI, the forward model can be expressed as: 

𝛷 = 𝐴 ⋅ 𝑆 + 𝑁 
3-1 
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where Φ is a matrix of recorded EEG signals at electrodes each as a function of time, S 

is the unknown matrix of amplitudes of dipole sources at triangles on CCD each as a 

function of time, and A is the lead field. N is noise.  

A minimum-norm estimate (MNE) (Dale and Sereno, 1993; Hämäläinen and 

Ilmoniemi, 1984) of dipole amplitudes was obtained by 

𝑚𝑖𝑛⁡(‖𝛷 − 𝐴 ⋅ 𝑆‖2 + 𝜆 ⋅ ‖𝑆‖2) 
3-2 

where ||∙|| indicates the L2-norm and  is the regularization parameter. Minimization over 

Φ yields the MNE estimate of S, i.e., S', in the following form 

𝑆′ = 𝑇 ⋅ 𝛷 
3-3 

and T is a linear inverse operator to measured signals expressed by 

𝑇 = 𝐴𝑇 ⋅ (𝐴 ⋅ 𝐴𝑇 + 𝜆 ⋅ 𝐼)−1⁡⁡⁡⁡⁡⁡ 
3-4 

The selection of the regularization parameter  can be achieved using the 

generalized cross validation (GCV) method (Golub et al., 1979; Wahba, 1990). 

Independent Component Analysis: The Infomax ICA (Lee et al., 1999) from 

EEGLAB (Delorme and Makeig, 2004) was applied to the data S to obtain independent 

components (C), as: 

𝐶 = 𝑊−1 ⋅ 𝑆⁡ 
3-5 

where W is the mixing matrix.  

Sensor-Space and Source-Space ICAs: Other than ISI and ICA, the processing 

of data is built upon previously published research (Ding et al., 2014; Yuan et al., 2016). 

In the sensor-space ICA, the Infomax ICA was applied to the envelope of sensor-

space data, either simulated or real. Then the mixing matrix was projected into the source 

space using MNE. In the source-space ICA, EEG data were firstly projected from the 

sensor space to the source space using the MNE, followed by the Infomax ICA on the 
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envelope of the source-space data. Fifteen ICs were obtained from simulated data, and 

twenty-five ICs were obtained from real EEG data. For real data, both ICA procedures 

were applied on group-level EEG data, which was obtained by the temporal concatenation 

of normalized data from all participants.  

3.2.4 Evaluation of Simulation Results 

ICA generated two matrices: the mixing matrix, which contains the spatial 

information, and the IC matrix, which represents the time courses of each IC. Within the 

fifteen ICs generated from simulated data, only three are associated with the ground truth. 

The three components were selected based on their spatial and temporal correlation with 

the ground truth. The Pearson’s correlation coefficients (CCs) between the fifteen spatial 

maps and the three simulated patterns in the source space were calculated. Similarly, CCs 

between the fifteen estimated time courses and the three simulated envelopes were also 

calculated. The absolute values of spatial CCs and temporal CCs were then summed, and 

the component with the maximal sum was selected as the best match to a simulated source. 

In order to compare the two ICAs, the difference between the sensor-space and source-

space ICAs was then examined by a paired t-test for each simulated source on both spatial 

and temporal patterns and p < 0.001 was selected as the significance level. 

3.2.5 Evaluation of Experimental Results 

Similar to simulations, twenty-five spatial maps from both ICA procedures were 

obtained. The CCs between the time course of each IC and time courses of all dipoles in 

source space were computed to formulate twenty-five EEG RSNs on the cortical surface 

for both ICA procedures. The spatial maps were converted to z-scores and thresholded 

with a Z-score of 2.0. 
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Besides spatial maps, the spectra of ICs were also calculated and analyzed. Since 

the time courses of ICs only reflected envelopes instead of the original data, real time 

courses for ICs were obtained by multiplying the ICA un-mixing matrix with original 

data. After that, short-time Fourier transform (STFT) was applied to data from non-

overlapping 1-s window to compute power spectra. In the present study, only power 

spectra within 4~30 Hz were kept for comparison. 

Since the ground truth of real RSNs is unknown, cortical RSN templates 

constructed mainly from resting-state fMRI data (Yeo et al., 2011) were used as 

references to evaluate results. Multiple RSNs, including the dorsal attention, visual, 

sensorimotor, default mode and frontoparietal networks, were selected for further 

evaluation. Corresponding ICs from two ICA procedures were selected based on the 

spatial CC to these templates. Moreover, it was observed that some EEG RSNs were 

lateralized to one hemisphere while the RSN templates were always symmetric on both 

hemispheres. In such conditions, one EEG RSN with major patterns on the left 

hemisphere and one with major patterns on the right hemisphere (total two) were selected 

for one RSN template.  The spatial CCs of selected patterns were compared to assess their 

spatial similarity to the templates. 

3.3 Results  

3.3.1 Simulation Results 

Figure 3.1 shows the reconstruction from one example of the 200 simulations, 

including the ground truth and the reconstructions from the sensor-space and source-

space ICAs. The patterns from the sensor-space ICA (Figure 3.1B) provide similar 

regions and locations in comparison with the ground truth. Figure 3.1C shows the source-



35 

space patterns from the source-space ICA. For both ICAs, the results all showed great 

similarity with the ground truth. However, patterns from the source-space ICA seems less 

widespread than those from the sensor-space ICA. This phenomenon was most obvious 

in the reconstruction of the third source. 

 
Figure 3.1 An example of simulated sources and the reconstruction from two ICA 

procedures 

(A) Three simulated sources. (B) The reconstruction using the sensor-space ICA. (C) The 

reconstruction using the source-space ICA. 

 

The summary of spatial and temporal CCs between simulated and reconstructed 

data from 200 simulations is shown in Figure 3.2. In terms of spatial CCs, the 

performance of the source-space ICA is significantly better (p<0.001) than the sensor-

space ICA in all three sources. Regarding temporal CCs, the source-space ICA also 

indicates significantly higher similarity (p<0.001) to simulated temporal patterns than the 

source space ICA in all three sources. However, among the three sources, the performance 

on the temporal aspect of the source-space ICA decreases from the first source to the third 
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source. A similar tendency is also observed in the spatial results, but not as obvious as 

the temporal results. Some extremely low CCs are observed in both spatial and temporal 

aspects, indicating both ICA procedures failed to reconstruct simulated sources in some 

simulations. 

 
Figure 3.2 Spatial and temporal correlation coefficients of two ICA procedures 

 

3.3.2 Experimental EEG Data 

For five selected RSN templates, seven corresponding ICs from either ICA 

procedure were matched (Figure 3.3). These results were consistent with our previous 

studies obtained from a different dataset (Ding et al., 2014; Yuan et al., 2016). Both ICA 

procedures found bilateral network nodes in the parietal cortex for the dorsal attention 

network, but not the nodes in the frontal cortex. For the sensorimotor network, both ICA 

methods identified left and right sensorimotor areas but in separate ICs. The default mode 

network from the source-space ICA consists of nodes from both frontal and occipital 
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cortices while the sensor-space ICA only detected nodes in the frontal cortex. The 

frontoparietal network was also reflected in two ICs in both approaches. However, the 

sensor-space ICA mainly recovered the nodes in the parietal cortex while the source-

space ICA revealed the nodes in the frontal cortex. In terms of spectra, evident alpha 

peaks were detected in all selected ICs. Beta peaks were also observed in many ICs, e.g., 

IC 13 from the source-space ICA peaked at 20 Hz. 

These EEG RSNs exhibited the spatial similarity to the RSN templates from fMRI 

to a certain degree. In seven IC pairs from both procedures, five ICs from the source-

space ICA have higher spatial CCs than those from the sensor-space ICA. Though visual 

inspections, the source-space ICA seems better in reconstructing distributed brain 

activations, such as IC 4 and IC 3. 
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Figure 3.3 Spatial and spectral patterns of RSNs from two ICA procedures 

Left: fMRI RSN templates. Middle: spatial patterns and spectral patterns of RSNs 

reconstructed by two ICAs. Right: Spatial correlation coefficients between the 

reconstructed spatial patterns and the templates. 
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3.4 Discussion and Summary 

Due to the advancement in modeling and computation, it has been demonstrated 

that the reconstruction of various properties of RSNs from EEG is feasible (Yuan et al., 

2010; Yuan et al., 2012b). The further research on this topic is extremely significant since 

EEG can potentially characterize the dynamical and spectral features of RSNs that cannot 

be achieved by fMRI. Therefore, it is also of significance to further improve the 

performance of modeling and computation techniques in recovering RSNs from EEG. 

ICA and ISI techniques have been two important steps in recovering EEG RSNs in 

literature (Yuan et al., 2012b). In the present study, the performance on deriving RSNs 

using ICA either before or after ISI was compared and evaluated. The spatial, temporal 

and spectral patterns of EEG RSNs obtained through two ICA approaches were examined 

using both simulated and real data. 

In the simulation, the source-space ICA achieved significantly better (p<0.001) 

spatial and temporal feature estimations and slight better spectral estimation. All these 

results suggest the use of ICA after ISI is more reliable in recovering RSNs. The 

performance degradation of the source-space ICA from Source 1 to 3, especially in the 

metric for the temporal pattern, might be due to the difference in signal to noise ratios for 

three sources since Source 1 has three clusters and potentially generate stronger scalp 

signals than other two sources. 

For real data, spatial patterns from both procedures showed similarity with the 

RSN templates from fMRI. But these spatial correlations are significantly lower than 

those from simulations. This might be due to the fact that real resting states are probably 

more complex than what has been simulated (only three networked activities simulated). 
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However, it is important to note that RSNs identified from EEG might be intrinsically 

different from RSNs from fMRI since EEG and fMRI are different signals and reflect 

different aspects of coordinated brain networks (Brookes et al., 2011b; Yuan et al., 2012b). 

As an example, neuronal events recorded in EEG are much faster (millisecond or tens of 

milliseconds) than hemodynamic responses in fMRI (seconds). The symmetric and wide 

spread fMRI RSNs might be captured due to the averaging effect of the convoluted 

process from neuronal events to hemodynamic response. As a fact, both sensorimotor and 

frontoparietal EEG RSNs are recovered in different ICs in the present study. It is further 

noted that the CCs calculated in real data were in reference to templates, where 

amplitudes are ignored that can significantly lower down CC values. However, if only 

ICs from two approaches are being compared, those from the source-space ICA seems 

relatively better in terms of spatial CC values to fMRI RSN templates and distributive 

nature of RSNs. 

In the present study, only one ICA technique (i.e., Infomax ICA) and one ISI 

technique (i.e., MNE) were used to conduct the comparison. There are, however, more 

ICA methods (e.g., FASTICA (Hyvärinen and Oja, 2000)) and more ISI techniques (e.g., 

eLORETA (Pascual-Marqui, 2007)) that are available to further improve the performance 

in retrieving EEG RSNs. It is worth investigating them in the future. On the contrary, the 

present study focuses on the sequence of two data-driven and shows that the source-space 

ICA outperforms the sensor-space ICA. The findings suggest that the reconstruction of 

RSNs can be improved by applying ISI before ICA. Therefore, ICA will be used after ISI 

in the frameworks developed in later studies. 
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In summary, this study provided a quantitative evaluation of the source-space ICA 

and the sensor-space ICA. The simulation and experimental results demonstrated the 

performance differences in RSN reconstruction between two ICAs. The findings of this 

study narrowed down the optimal framework among two possible options and thus laid 

the foundation for my following studies. As a result, ICA will be used after ISI in my 

following studies. 
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4 Frequency Domain and Statistical Correlation Tomography of 

Resting State Networks 

4.1 Introduction 

The study in the previous chapter has compared the sequences in applying ISI and 

ICA. The results show that applying ICA after ISI can generate RSNs with better 

accuracies. With this sequence of applying two key algorithms in the framework to 

reconstruct RSNs being determined, further innovations and developments are to 

establish new and novel computational frameworks with better performances. In this 

chapter, a new framework is established based on the framework introduced in the 

previous chapter. Following the results from the previous Chapter, the new framework 

implemented the step of ICA after the step of ISI. Moreover, the new framework 

introduced new analytical methods, aiming to address multiple limitations of the 

conventional frameworks and to achieve more efficient analyses beyond preivous 

frameworks. 

Among various methods probing resting-state brain signals, independent 

component analysis (ICA) has been widely used to identify RSNs from both EEG/MEG 

and fMRI data. To achieve better computational accuracy of ICA, the sample domain has 

been taken in one large dimension (Hyvärinen et al., 2004). In particular, spatial ICA is 

often used on fMRI data (Beckmann et al., 2009; Calhoun et al., 2009) because the spatial 

dimension of fMRI data is relatively larger than its temporal dimension. Temporal ICA 

is widely performed on EEG/MEG data (Brookes et al., 2011b; Yuan et al., 2016) because 

of their relatively large temporal dimensions. In efforts to spatially define RSNs on the 

cortical surface from EEG/MEG, i.e., the same domain of fMRI RSNs, ICA has been 
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used in combination with EEG/MEG inverse source imaging (ISI) techniques (Grech et 

al., 2008; Mosher et al., 1999; Pascual-Marqui, 1999; Yuan et al., 2016). Resting state 

EEG/MEG data are subject to the inverse reconstruction of underlying sources on the 

cortical surface. Resulted cortical source data are analyzed by ICA to reconstruct a 

network-level organization of activities. It is noted that these techniques make it feasible 

to directly compare fMRI RSNs and EEG/MEG RSNs in a common spatial domain, 

providing new insights to the electrophysiological basis and hemodynamic aspects of 

RSNs, especially when fMRI and EEG data can be simultaneously recorded (Goldman et 

al., 2002; Goncalves et al., 2006; Yuan et al., 2016).  

Despite these new advancements, methods to derive EEG/MEG RSNs are still 

limited in many ways. First, the mathematical principle of ICA favors the detection of 

non-Gaussian distributed components, making it a very successful tool in finding artifacts 

rather than components related to brain activity (Hyvärinen and Oja, 2000; Vigário et al., 

2000), which is certainly not optimized for separating networks of organized neural 

activity. Second, spatial patterns defined with linear mixing weights of ICA for 

independent components (ICs) have been shown less optimal than those obtained through 

an extra correlation analysis between source time series and IC time series (Brookes et 

al., 2011b; Yuan et al., 2016). Third, ICA mixing weights are lack of statistical meanings 

to be systematically assessed in defining the spatial coverage of an RSN. Fourth, most 

brain activity is rhythmic in nature, and spectral characteristics of individual RSNs have 

been assumed a priori using pre-selected band-pass filters (Brookes et al., 2011b; Mantini 

et al., 2007). However, such a strategy is not always optimal and could introduce bias, 

especially when an RSN has a wide power spectral pattern and various power spectra 
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among different individuals. Finally, in group analysis with multiple individuals, inter-

individual variance exists in resting state analysis (Goncalves et al., 2006), but it has not 

been addressed when data from all individuals are just simply concatenated to be analyzed 

by the ICA routine. 

In the present study, a new framework termed as time-frequency ICA-based 

statistical correlation tomography (TFICA-SCT) is proposed to identify RSNs from EEG 

data by combining ISI, a unique time-frequency ICA method, and statistical correlation 

analysis. ISI was performed on complex EEG data after a short-time Fourier transform 

(STFT) to reconstruct cortical source maps. Instead of conventional temporal ICA 

(TICA), TFICA was implemented by applying an ICA algorithm on the time-frequency 

representation of cortical source data from ISI. The correlation analysis between IC time 

series and source time series from ISI was further used to obtain optimal spatial patterns 

of RSNs. A series of steps were further developed and conducted to reconstruct genuine 

tomography of RSNs, which included processes to address inter-individual variance, 

conversion to a statistical metric using the Fisher’s z-transform, correction of false cross-

correlation from autocorrelation, and thresholding by a cluster-based statistical approach.  

The present study examined the performance of TFICA-SCT using three sets of 

experimental data from both healthy and symptomatic participants. Derived tomographic 

maps were compared with templates from resting-state fMRI to evaluate their consistency 

with RSN definitions from an independent neuroimaging modality. The robustness of the 

method in identifying RSNs in both spatial and spectral patterns was evaluated by 

comparing results obtained from three datasets. In each data set, there were two 

conditions (i.e., eyes-open vs. eyes-closed; healthy persons vs. patients; and before vs. 
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after treatment) and their comparisons were used to examine the resolution and capability 

of the proposed framework in identifying condition-specific differences. 

4.2 Materials and Methods 

4.2.1 Cortical Statistical Correlation Tomography of RSNs  

Forward models and lead field computation: The cortical current density (CCD) 

source model (Dale and Sereno, 1993) was used in the present study, in which the source 

space was represented numerically by continuously distributed triangular elements over 

the cortical surface (Figure 4.1). The anatomical cortical model of each participant was 

obtained by segmenting the white matter/gray matter interface from the participant’s head 

magnetic resonance imaging (MRI) using FreeSurfer (Fischl, 2012). The cortical surface 

was triangulated into a high-resolution mesh of 40,960 triangles (Figure 4.1). Each dipole 

source was placed at the center of a triangle on the cortical mesh, and its orientation was 

perpendicular to the corresponding triangle. Boundary element (BE) volume conductor 

models were used to represent the realistic geometrical shape of the human head and 

major conductivity profile (e.g., the scalp, skull, and brain) for the forward problem 

calculation. The BE models have 10,240 triangles in each of three surface meshes, which 

were obtained by segmenting the surfaces of the scalp, skull, and brain from structural 

MRI and were assigned different conductivities (0.33/m, 0.0165/m, and 0.33/m, 

respectively) (Lai et al., 2005). Co-registration of BE models and electrodes was 

implemented by aligning three landmarks, i.e., nasion, left and right pre-auricular points.  

The forward model can be expressed in the following equation: 

𝛷 = 𝐴 ⋅ 𝑆 + 𝑁 
4-1 
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where Φ is a matrix of recorded EEG signals at electrodes each as a function of time, S 

is the unknown matrix of amplitudes of dipole sources at triangles on CCD each as a 

function of time, and A is the lead field matrix linking dipole sources with EEG recordings, 

which was calculated using the boundary element method (BEM) (Hamalainen and 

Sarvas, 1989) based on the defined source model, volume conductor model, and co-

registered EEG electrode locations. N is noise.  

 
Figure 4.1 Diagram of TFICA-SCT 

(A) Inverse source imaging, including EEG preprocessing, STFT, volume conduction 

modeling, BEM forward calculation of lead field, and MNE inverse solution. (B) Group-

level TFICA on the cortical source domain. (C) Statistical correlation tomography 

derived by correlational analysis of time courses between ICs and sources. (Figure as 

originally published in Li, Yuan, Shou, Cha, Sunderam, Besio and Ding (2018). Front. 

Neurosci. 30 May 2018. doi: 10.3389/fnins.2018.00365) 

 

Inverse Source Imaging: ISI was performed in the complex domain of recorded 

EEG data to prepare inverse source data for the analysis by TFICA. The short-time 
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Fourier transform (STFT) was applied on non-overlapping 1-second epoch EEG data, 

resulting in a 3D time-frequency representation (TFR) of EEG data, i.e., channel, 

frequency, and time (or epoch). Twenty-seven frequency bins from 4 to 30 Hz were kept 

with a resolution of 1 Hz. The 3D TFR was then reshaped into a 2D matrix by 

concatenating the dimensions for frequency and epoch.  

Since STFT is a linear transformation, it does not change the relationship between 

dipole sources and EEG recordings in Eq. (1), while it leads to two values, i.e., real and 

imagery parts, for each measurement at an electrode. Therefore, Eq. (1) was re-arranged 

as: 

[
𝛷𝑟𝑒𝑎𝑙

𝛷𝑖𝑚𝑎𝑔
] = [

𝐴 0
0 𝐴

] ⋅ [
𝑆𝑟𝑒𝑎𝑙

𝑆𝑖𝑚𝑎𝑔
] + [

𝑁𝑟𝑒𝑎𝑙

𝑁𝑖𝑚𝑎𝑔
] 

4-2 

The lead field matrix is the same for both real and imaginary parts. Φ and S were 

redefined as 𝛷 = [
𝛷𝑟𝑒𝑎𝑙

𝛷𝑖𝑚𝑎𝑔
] and 𝑆 = [

𝑆𝑟𝑒𝑎𝑙

𝑆𝑖𝑚𝑎𝑔
]. Since the number of discrete sources was 

larger than the number of measurements (i.e., the number of electrodes), regularized 

solutions were needed to produce stable results (Michel et al., 2004). In the present study, 

a minimum-norm estimate (MNE) (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 

1984) of dipole amplitudes in the sense of L2-norm at each time-frequency point was 

obtained by 

𝑚𝑖𝑛⁡(‖𝛷 − 𝐴 ⋅ 𝑆‖2 + 𝜆 ⋅ ‖𝑆‖2) 
4-3 

where ||∙|| indicates the L2-norm and  is the regularization parameter. Minimization in 

Eq. (3) over Φ yields the MNE estimate of S, i.e., S', in the following form 

𝑆′ = 𝑇 ⋅ 𝛷 
4-4 

And T is a linear inverse operator to measured signals expressed by 
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𝑇 = 𝐴𝑇 ⋅ (𝐴 ⋅ 𝐴𝑇 + 𝜆 ⋅ 𝐼)−1⁡⁡⁡⁡⁡⁡ 
4-5 

The selection of the regularization parameter  was achieved using the 

generalized cross validation (GCV) method (Golub et al., 1979; Wahba, 1990). 

Group-level TFICA: After obtaining source data from all subjects, ICA analysis 

was carried out at the group level. First, amplitudes of source data at individual time 

points were obtained as absolute values of complex time courses. Then, data from 

individuals were normalized using a z-transform to reduce inter-individual variations, 

yielding normalized source amplitude data, i.e., S*. Afterward, individual source data 

from a group of participants were concatenated in the tempo-spectral domain, leading to 

a group-level 2D source matrix S*
g (channels X (participants, epochs, frequency bins)), 

in which the subscript g indicates the group-level matrix. The Infomax ICA (Lee et al., 

1999) from EEGLAB (Delorme and Makeig, 2004) was applied on S*
g to obtain group-

level independent components (Cg), each representing a cortical map of brain activities 

involving multiple regions (nodes) mutually dependent and forming a network, as: 

𝐶𝑔 = 𝑊−1 ⋅ 𝑆𝑔
∗
 

4-6 

where W is the mixing matrix. The number of underlying sources had been suggested to 

be around 30 (Abou‐Elseoud et al., 2010; Ramkumar et al., 2014; Smith et al., 2009). 

A relatively larger number of ICs (i.e., 40) was pre-selected in the present study. Each 

column in Cg represents the linear mixing weights from all dipole source points (i.e., 

40,960), and each row represents concatenated time-frequency courses from all 

participants for the corresponding IC.  

Statistical Correlation Tomography: To define spatial patterns of each IC on the 

cortical surface, columns of Cg were first segmented to form the Ci matrix for each 
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participant, as in Eq. (8). Correlation coefficients (CCs) between the time-frequency 

course of each IC (i.e., each row of Ci) and the time-frequency course of each source on 

the CCD model (i.e., each row of S*
i) were calculated for all individual participants in the 

group, as in Eq. (9). CC values were converted into z-values using the Fisher’s z-

transformation (Fisher, 1915) according to Eq. (10). 

𝐶𝑔 = [𝐶1, 𝐶2, … , 𝐶𝑖, … , 𝐶𝑁], 

𝑖 = 1,…𝑁⁡𝑎𝑛𝑑⁡𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 
4-7 

 

𝐶𝐶𝑖(𝑗, 𝑘) = 𝑐𝑜𝑟𝑟(𝐶𝑖(𝑗), 𝑆𝑖
∗(𝑘)),⁡ 

𝑗⁡ = ⁡1, … ,40; ⁡𝑘⁡ = ⁡1, … ,40,960 
4-8 

 

𝑧𝑖(𝑗, 𝑘) =
1

2
𝑙𝑛 (

1 + 𝐶𝐶𝑖(𝑗, 𝑘)

1 − 𝐶𝐶𝑖(𝑗, 𝑘)
), 

𝑗 = ⁡1, … ,40; ⁡𝑘⁡ = ⁡1, … ,40,960 

4-9 

All correlation maps were then smoothed by an iterative smoothing algorithm, i.e., 

the heat kernel smoothing with Full Width at Half Maximum of 8 mm (Chung et al., 

2005), which has been widely used in fMRI (Chung et al., 2010; Hagler et al., 2006). It 

is known that cross correlations calculated in Eq. (9) are impacted by autocorrelations in 

either Ci(j) or S*
i(k) signals (Friston et al., 1994). Therefore, autocorrelations of Ci(j) and 

S*
i(k) were computed to correct z-values in Eq. (10) via adjusting the degree of freedom 

(DOF) according to the Bartlett’s theory (Bartlett, 1935): 

𝑁𝑖
′(𝑗, 𝑘) = 𝑁𝑖(𝑗, 𝑘) ⋅

1 − 𝜌𝐶(𝑗, 𝑘) ⋅ 𝜌𝑆(𝑗, 𝑘)

1 + 𝜌𝐶(𝑗, 𝑘) ⋅ 𝜌𝑆(𝑗, 𝑘)
, 

4-10 
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⁡𝑖 = 1,…𝑃⁡𝑎𝑛𝑑⁡𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 

where the ρC and ρS are the autocorrelation coefficients of Ci and S*
i, respectively. Thus, 

the square root of the theoretical variance of zi(j,k) is 1/√𝑁𝑖
′(𝑗, 𝑘) − 3. By dividing it, z-

values were converted into z-scores (that is, zero mean, unit variance, Gaussian 

distributions under the null hypothesis of no correlation) (Vincent et al., 2007) for each 

IC, the group-level z-score maps were calculated using an approach that had been 

suggested more effective on relatively small samples (Alexander, 1990; Silver and 

Dunlap, 1987). 

Cluster-based statistical thresholding: To quantitatively define brain regions that 

belong to an RSN (i.e., an IC), statistical correlation coefficient (SCC) maps obtained 

after Eq. (12) need to be thresholded. This was done by applying a t-test against zero on 

z-scores from all participants in a group at each source on the CCD model. The threshold 

was set at p<0.01 to create a binary mask with 1 for locations of significant correlations. 

To address the multiple comparisons problem, a cluster-based correction method was 

employed (Hagler et al., 2006). Specifically, in a Monte Carlo simulation, random brain 

signals were generated on the CCD model and then the steps starting from Eq. (9) to Eq. 

(11) were followed to create pseudo-SCC maps thresholded at p<0.01 as in real data. The 

process was repeated for 1,000 repetitions to create a histogram for the size of clusters 

(connected areas on the CCD mesh) under the null hypothesis. From the histogram, the 

threshold of cluster size for real data was identified at p<0.01 and used to remove small 

clusters to reduce false positives (i.e., removing clusters on binary masks smaller than the 

threshold). The same procedure was performed on all ICs to create SCT for each RSN. 
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4.2.2 Experimental Protocols 

To evaluate the performance of the proposed TFICA-SCT, systematic evaluations 

were conducted in three sets of experimental datasets acquired from both healthy 

individuals and individuals with a balance disorder called mal de debarquement syndrome 

(MdDS), which is described below. The datasets included 1) resting EEG in seven healthy 

individuals in eyes-closed (EC) and eyes-open (EO) conditions, termed as the EC/EO 

dataset; 2) resting EEG in seven healthy controls (HC) and seven individuals with MdDS 

termed as the HC/MdDS dataset; and 3) resting EEG in seven MdDS individuals before 

and after receiving treatment of repetitive transcranial magnetic stimulation (rTMS), 

termed as the Pre-/Post-rTMS dataset. The study protocol and acquisition settings of these 

experimental data have been detailed in our prior work (Ding et al., 2014; Yuan et al., 

2017) and they are briefly described below.  

Participants: Written informed consent was obtained from all participants before 

the study. All study procedures were approved by the Western Institutional Review Board 

(www.wirb.com). To examine the proposed tomography, the present study included data 

from seven healthy controls (all females; age: 51.1+/-8.0 years) and seven patients  (all 

females; age: 53.1+/-12.1 years) with MdDS (Cha, 2009; Ding et al., 2014). The 

recruitment of participants of MdDS did not exclude male participants, but the prevalence 

of females is much higher than males in MdDS (Cha, 2009). Thus, the matched healthy 

control population only included female participants as well. 

MdDS is caused by exposure to oscillating environments such as a flight or a 

cruise, leading to a persistent sensation of rocking dizziness (Cha, 2009; Cha et al., 2012; 

Cha et al., 2013; Cha, 2015). It is the unnatural persistence of the natural phenomenon of 
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motion entrainment. rTMS treatment had been demonstrated with therapeutic effects in 

MdDS (Cha et al., 2013; Cha et al., 2016a; Cha et al., 2016b; Ding et al., 2014). All 

MdDS patients in the present study received five consecutive days with one session on 

each day. The rTMS target in all patients was the dorsolateral prefrontal cortex (DLPFC), 

which was located by the Localite TMS Navigator (Localite GmBH, Germany) frameless 

stereotaxy system. The Magventure MagPro X100 stimulator (MagVenture A/S, Farum, 

Denmark) was used to generate magnetic stimulation pulses including 1 Hz right DLPFC 

stimulation of 1200 pulses followed by 10 Hz left DLPFC of 2000 pulses. The treatment 

effects were evaluated using a clinical visual analogue scale (VAS) (Cha et al., 2013; 

Shou et al., 2014; Yuan et al., 2017). 

EEG recording: A BrainAmp amplifier (Brain Products GmbH, Munich, 

Germany) was used to record resting-state EEG signals from 126 channels at a sampling 

frequency of 1000Hz. The ground electrode was placed at AFz and FZ was chosen as the 

recording reference channel. Participants were recorded while lying quietly with eyes 

closed. Participants in the HC group performed two 5-min sessions of simultaneous 

fMRI-EEG recordings with their eyes open and closed, respectively. It should be noted 

that only EEG data were analyzed in the present study. Participants with MdDS 

underwent two 5-min sessions of EEG, one before the first TMS session (Pre-TMS) on 

the first day and the other 4 to 5 hours after the last TMS on the 5th day (Post-TMS). Since 

the effect of rTMS on MdDS patients has been investigated in our previous study (Ding 

et al., 2014), the inclusion of EEG data from MdDS patients before and after rTMS in the 

present study served as a contrast to examine the sensitivity of the proposed approach.  
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MRI: Structural magnetic resonance images of participants’ heads were obtained 

using a General Electric Discovery MR750 whole-body 3-Tesla MRI scanner (GE 

Healthcare, Milwaukee, Wisconsin) through a T1-weighted magnetization-prepared 

rapid gradient echo (3D MPRAGE) sequence. The parameters for imaging were: FOV = 

240 mm, axial slices per slab = 190, slice thickness = 0.9 mm, image matrix = 256×256, 

TR/TE = 5/2.012 millisecond, acceleration factor R = 2, flip angle = 8°, inversion time 

TI = 725 ms, sampling band-width = 31.2 kHz. 

4.2.3 Data Analysis Protocols 

Preprocessing of EEG: EEG data from each participant was preprocessed with 

the following pipeline. First, a band-pass filter of 0.5 to 100 Hz and a notch filter of 60 

Hz was used on EEG data. Second, bad channels were detected using the FASTER 

toolbox (Nolan et al., 2010) with visual inspection as a supplemental check, followed by 

interpolation from neighboring channels using EEGLAB (Delorme and Makeig, 2004). 

Third, EEG data were divided into non-overlapping 1-sec epochs (same as those being 

analyzed using STFT in section of “Inverse Source Imaging”). Bad epochs were rejected 

using the FASTER toolbox. During detections of bad channels and bad epochs, a 

threshold at z-score > 3 was selected. Fourth, the Infomax ICA  (Lee et al., 1999) was 

utilized to decompose time-domain EEG data concatenated from all epochs into 64 ICs. 

Basing on visual inspection of spatial and spectral features of all ICs, ICs linked to ocular, 

cardiac and muscular activities were removed. Finally, denoised EEG data were re-

referenced to a common average and down-sampled to 250 Hz. For EEG data collected 

with fMRI, the same framework of preprocessing was employed as in our previous 

studies (Yuan et al., 2016; Yuan et al., 2012a), and an additional notch filter of 26 Hz was 
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used to reject vibration noise from the MRI system (Mayeli et al., 2016; Ritter and 

Villringer, 2006).   

Analysis by TFICA-SCT: To directly compare tomography from different 

conditions, the TFICA step in the proposed framework was performed on combined EEG 

data from the two compared conditions for each group: eyes open vs. eyes closed in HC, 

HC vs. MdDS, and pre-TMS vs. post-TMS in MdDS. Three SCT analyses were 

performed on grouped data of participants in both conditions included, and averaged 

SCTs of ICs were obtained.  

Spectral Powers of ICs: Spectral powers of all ICs were calculated in each 

participant by reshaping the 2D matrix Cg into a 3D matrix (channelfrequencyepoch), 

squaring all values, and averaging over epochs. These steps resulted in 40 power spectra 

for 40 ICs at 27 frequency bins ranging from 4 Hz to 30 Hz. 

Selection of ICs: Brain activity-related ICs were selected from all 40 ICs based 

on their spatial-spectral features. Specifically, the corresponding SCTs of ICs were 

compared with RSNs defined from resting-state fMRI data (Yeo et al., 2011). Based on 

the anatomic locations of fMRI RSNs, EEG RSNs were identified mainly for visual, 

auditory, somatomotor, frontoparietal, and default mode networks. In the spectral domain, 

theta, alpha, and beta peaks were analyzed with reference to spectral features of RSNs 

(Mantini et al., 2007) and/or the general 1/f spectra (Freeman et al., 2000; Robinson et 

al., 2001) were treated as reasonable patterns, while spectral patterns of sharp and narrow 

peaks and over-oscillations were used in rejecting ICs as artifacts.  
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4.2.4 Evaluation and Validation Protocols 

We conducted a series of validations steps on the performance of the TFICA-SCT 

method. First, RSNs defined through TFICA-SCT were compared with RSN templates 

derived from fMRI data (Yeo et al., 2011). Second, the SCTs from the three analyses 

were compared quantitatively to assess the spatial consistency of the obtained results. 

Third, SCTs from different conditions (i.e., EC vs. EO in the healthy, HC vs. MdDS group, 

Pre-rTMS vs. Post-rTMS in MdDS) were compared statistically in terms of both spatial 

and spectral patterns. Details are described below. 

Comparisons with fMRI RSN Templates: To evaluate spatial patterns of obtained 

EEG RSNs, cortical maps from TFICA-SCT were compared with the five RSN templates 

from fMRI (Yeo et al., 2011) including visual, auditory, somatomotor, frontoparietal, and 

default mode networks. For each binary fMRI template and each SCT, the comparison 

was quantified by a template-matching method (Greicius et al., 2007) with normalization 

as follows: 

𝑇𝐷(𝑡, 𝑐) =
𝑍𝑖𝑛(𝑡, 𝑐) − 𝑍𝑜𝑢𝑡(𝑡, 𝑐)

𝑍𝑖𝑛(𝑡, 𝑐) + 𝑍𝑜𝑢𝑡(𝑡, 𝑐)
 

4-11 

where TD is the template-matching degree; t is the index for the binary template and c is 

the index of the thresholded SCT. Zin is the averaged z-score from source points on SCT 

inside the fMRI template and Zout is the averaged z-score from source points outside. TDs 

were calculated for all possible pairs between selected RSNs and the five templates. The 

significance of 𝑇𝐷  was evaluated by a Monte Carlo simulation. Specifically, for a 

template-SCT pair, the z-scores on each source point were randomly shuffled 500,000 

times and the corresponding TDs were computed, generating a histogram of TDs. Based 

on the histogram, the p value was obtained for each pair and the significance level was 
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0.01, with Bonferroni correction. Positive TDs confirmed the spatial similarity between 

templates and SCTs. To investigate possible confusion in matching templates and SCTs, 

positive TDs within- and between-class were compared using t-tests across five networks 

and three analyses. 

Evaluation of Spatial Consistency in Multiple Datasets: To evaluate spatial 

pattern consistency of EEG RSNs obtained from multiple datasets, the spatial patterns of 

SCTs obtained from the three analyses (i.e., EC vs. EO in the healthy, HC vs. MdDS, 

Pre-rTMS vs. Post-rTMS in MdDS) were quantitatively compared in pairs using the 

metric of TD as follows, 

𝑇𝐷̅̅ ̅̅ (ⅈ, 𝑗) =
𝑇𝐷(𝑖, 𝑗) + 𝑇𝐷(𝑗, 𝑖)

2
 

4-12 

where in TD(i,j) the thresholded SCT i from one analysis was binarized and used as the 

template to calculate TD against the thresholded SCT j from another analysis. The same 

analysis was repeated after two SCTs were shifted where the thresholded SCT j was 

binarized. The TD between the SCTs i and j were taken as the average of two analyses, 

resulting in a TD map for all possible pairs. Since the SCTs were separated into five 

classes of RSNs, there were twenty-five large tiles in a TD map, each containing TD data 

for RSN-RSN pairs in one class. In the matrix representation of TD maps (see Figure 4.6 

for an example), the diagonal tiles represented within-class TDs while off-diagonal tiles 

contained cross-class TDs. As in the above section, positive TDs within- and between-

class were compared using a t-test. 

Difference in Statistical Correlation Tomography: To probe differences between 

two conditions in each dataset, the SCTs for data from two conditions were re-calculated 

separately (Eqs. (8) -(12)) based on the group-level TFICA results and then statistically 
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compared. In each dataset for each RSN (defined by an IC), regions with significant 

differences were detected by applying a two-tailed t-test at each source point between two 

SCTs within binary masks defined in the section “Cluster-based statistical thresholding”. 

The resulted clusters of difference on the CCD model were subject to the same cluster-

based correction method to control for false positives. For visualization, identified 

clusters of difference on the CCD model from two compared conditions were displayed 

as the difference of SCC values between two SCTs. 

Power Spectra Difference: Power spectra of individual ICs were used as the 

second metric to evaluate the difference between two compared conditions. At each 

individual subject and for each selected IC, a two-tailed t-test was used to compare 

specific band power at theta, alpha or beta bands between conditions over all epochs, 

determining whether there were significant differences between two conditions and in the 

direction of difference (i.e., increase or decrease). The analysis was only performed on 

two datasets (i.e., EC vs. EO in the healthy controls and pre-rTMS vs. post-rTMS in 

MdDS) since the third dataset (i.e., HC vs. MdDS) involved different subject groups 

precluding the direct statistical comparison. Significant increase/decrease was collected 

from all subjects for each IC at each frequency band and aggregated for each class of 

RSNs, yielding data for five RSNs and three frequency bands (Figure 4.2). For each RSN 

class at each band, the number of increase/decrease was tested against the number of total 

significant changes at the group level using a binomial test (hypothetical probability of 

increase/decrease = 0.5). 
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4.3 Results  

4.3.1 Spatial and Spectral Patterns of RSNs 

Figure 4.2-4.4 illustrate spatial and spectral patterns of identified RSNs from three 

datasets (i.e., the EC/EO, HC/MdDS, Pre/Post-rTMS datasets), which were further 

categorized into five groups, i.e., visual (V), auditory (A), somatomotor (M), 

frontoparietal (F), and default mode (DMN) networks, based on criteria described above 

(see the section “Evaluation and Validation Protocols”). These five groups of RSNs 

were detected from all three datasets with high spatial and spectral similarities, while 

some condition-dependent variations were also observed. 

In each RSN group, more than one EEG network was obtained by TFICA-SCT 

with significant spatial resemblance identified, each of which was termed as a subnetwork 

of the group. For the visual network, 4, 5, and 4 subnetworks were detected in EC/EO, 

HC/MdDS and Pre-/ Post-rTMS, respectively (Figure 4.2-4.4). They were generally 

associated with the primary visual cortex (i.e., V-d in EC/EO, V-e in HC/MdDS, and V-

b in Pre-/Post-rTMS), middle temporal visual area (i.e., V-a and V-b in EC/EO, V-b and 

V-d in HC/MdDS), V2/V3 (i.e., V-c and V-d in Pre-/Post-rTMS), and parts of the ventral 

stream of visual systems (other subnetworks in Figure 4.2-4.4) (Goodale and Milner, 

1992). Some of these subnetworks had bilateral symmetric distribution (e.g., V-d in 

Figure 4.2, V-e in Figure 4.3, V-c in Figure 4.4). Some showed the hemispheric 

dominance whereas the similar dominance was found on their symmetric hemisphere in 

other corresponding subnetworks (i.e., V-a and V-b in Figure 4.2, V-a and V-c in Figure 

4.3, V-b and V-d in Figure 4.4). In terms of spectral patterns, the visual RSNs were 

characterized with an evident peak in the alpha band.  
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For the auditory network, 4, 3 and 3 RSNs were detected in three datasets, 

respectively (Figure 4.2-4.4). These RSNs mainly covered the temporal cortex, with 

either lateralized distribution (i.e., A-a, A-b, and A-d in EC/EO, and A-a and A-b in Pre-

/Post-rTMS) or bilateral distribution (i.e., all in HC/MdDS and A-c in Pre-/Post-rTMS). 

Some were symmetric in their spatial patterns (e.g., A-a and A-b vs. A-c and A-d in 

EC/EO). Note that the bilateral symmetric subnetworks in HC/MdDS had opposite 

correlation values in the two hemispheres (A-a and A-b in HC/MdDS). Most RSNs had 

peaks in the alpha band while some showed additional peaks in the beta band.  

For the somatomotor network (Figure 4.2-4.4), 2, 4 and 3 subnetworks were 

detected in three datasets, respectively. Two subnetworks in EC/EO covered the premotor 

and primary motor cortices. Four subnetworks in HC/MdDS covered different areas, i.e., 

M-b over the primary motor and premotor cortices, M-c over the somatosensory cortex, 

and M-a and M-d over the lateral primary motor cortices. The subnetworks in Pre/Post-

rTMS had similar patterns compared to the subnetworks in HC/MdDS. Most of these 

subnetworks showed lateralized distributions (e.g., M-a and M-b in Figure 4.2, M-a and 

M-d in Figure 4.3, M-a and M-b in Figure 4.4) or lateralized dominance (e.g., M-b and 

M-c in Figure 4.3), while only one bilateral distribution was observed (i.e., M-c in Figure 

4.4 Pre-/Post-rTMS). In terms of spectral patterns, distinct from auditory and visual 

networks, somatomotor subnetworks showed more peaks and higher amplitudes in the 

beta band than in the alpha band.  

For the frontoparietal network (Figure 4.2-4.4), 6, 2 and 3 subnetworks were 

detected in three datasets, respectively. They mostly covered the prefrontal cortex with 

either unilateral (e.g., F-a and F-c in EC/EO) or bilateral (e.g., F-b in EC/EO) distributions. 
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For the unilateral subnetworks, symmetric pairs could be found in all three datasets (e.g., 

F-a and F-c in Figure 4.2, F-a and F-b in Figure4.3, F-a and F-b in Figure 4.4). Several 

unilateral subnetworks (F-a and F-b in Figure 4.2, F-a and F-b in Figure 4.3) and one 

bilateral subnetwork (F-b in Figure4.2) showed activity on both the lateral side(s) and the 

medial wall(s) of the hemisphere(s). Opposite correlation values were observed in F-d in 

EC/EO covering the left prefrontal cortex. These subnetworks had dominant peaks in the 

beta band with a few in the alpha band in their spectral patterns. 

For the DMN network (Figure 4.2-4.4), 1, 3 and 6 subnetworks were detected in 

three datasets, respectively. These subnetworks exhibited more complicated spatial 

patterns than the other four networks. The only one detected in EC/EO covered the 

bilateral posterior cingulate cortex (PCC). Three subnetworks in HC/MdDS covered the 

medial prefrontal cortex (mPFC) and the bilateral PCC. Six subnetworks detected in 

Pre/Post-rTMS (Figure 4.4) covered the mPFC (D-a, D-b, and D-c), the inferior parietal 

lobe (IPL, all subnetworks except D-a), and PCC (D-d and D-e). In addition, a subnetwork 

(D-c) showed strong negative correlations between the mPFC and both the right PCC and 

the left IPL. Negative correlations were also observed in D-b between the mPFC and the 

right IPL. The spectral powers of all these networks showed peaks in the alpha band. 

Some from the Pre/Post-rTMS dataset also had another peak in the beta band.  
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Figure 4.2 Spatial and spectral patterns of RSNs from the EC/EO EEG data 

(A) visual, (B) auditory, (C) somatomotor, (D) frontoparietal, and (E) default mode 

networks. Group-level SCT maps were thresholded at p<0.01, cluster-based correction. 

(Figure as originally published in Li, Yuan, Shou, Cha, Sunderam, Besio and Ding (2018). 

Front. Neurosci. 30 May 2018. doi: 10.3389/fnins.2018.00365) 
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Figure 4.3 Spatial and spectral patterns of RSNs from the HC/MdDS EEG data 

(A) visual, (B) auditory, (C) somatomotor, (D) frontoparietal, and (E) default mode 

networks. Group-level SCT maps were thresholded at p<0.01, cluster-based correction. 

(Figure as originally published in Li, Yuan, Shou, Cha, Sunderam, Besio and Ding (2018). 

Front. Neurosci. 30 May 2018. doi: 10.3389/fnins.2018.00365) 
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Figure 4.4 Spatial and spectral patterns of RSNs from the Pre-/Post-rTMS EEG 

data 

(A) visual, (B) auditory, (C) somatomotor, (D) frontoparietal, and (E) default mode 

networks. Group-level SCT maps were thresholded at p<0.01, cluster-based correction. 

(Figure as originally published in Li, Yuan, Shou, Cha, Sunderam, Besio and Ding (2018). 

Front. Neurosci. 30 May 2018. doi: 10.3389/fnins.2018.00365) 

 

4.3.2 TFICA-SCT derived RSNs vs. fMRI derived RSN templates  

TFICA-SCT derived RSNs were spatially compared to fMRI-derived RSN 

templates (Figure 4.5). Each EEG RSN was associated with an fMRI template RSN 

showing the largest TD. In general, all EEG RSNs in these five groups had significant 

TD values (p<0.01, Bonferroni corrected) to their corresponding fMRI template RSNs 

(marked with “X” in the boxes along the diagonal tiles in Figure 4.5A-C). Similar patterns 

of spatial similarity was observed across three datasets. This observation was supported 



64 

by the comparison of the within-class and the cross-class TD values, in which the within-

class TD values were significantly higher than the cross-class TD values (Figure 4.5D, t-

test, p<0.01) for all five network classes. For each dataset, the within-class TD values 

were always significantly higher than the between-class TD values when all network 

classes were considered together (Figure 4.5E, t-test, p<0.01). Among different groups of 

RSNs, the DMN and frontoparietal networks showed competing similarity to a certain 

extent (Figure 4.5A-C). 

 
Figure 4.5 Template-matching degree (TD) between RSNs and fMRI RSN 

templates 

(A) EC/EO; (B) HC/MdDS; (C) Pre-/Post-rTMS. (D) Bar-plots of the within-class 

(enclosed with thicker boundaries) and between-class positive TDs over five RSN classes; 

(E) Bar-plots of the within-class and between-class positive TDs over three datasets. Note 

that only positive TD values were considered since negative values indicate dissimilarity. 

(Figure as originally published in Li, Yuan, Shou, Cha, Sunderam, Besio and Ding (2018). 

Front. Neurosci. 30 May 2018. doi: 10.3389/fnins.2018.00365) 
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4.3.3 Consistency of RSNs across different datasets 

The results of pair-wise RSN comparisons from different datasets are shown in 

Figure 4.6A (for the comparison between EC/EO and HC/MdDS), Figure 4.6A B 

(between EC/EO and Pre/Post-rTMS), and Figure 4.6C (between HC/MdDS and 

Pre/Post-rTMS). It is noted that significantly high spatial similarity can be observed in 

RSNs belonging to the same classes among three datasets. This was reflected in more 

positive TD values in the diagonal tiles than in the off-diagonal tiles, which were of 

significant difference (Figure 4.6D, t-test, p<0.01) for the visual, auditory, somatomotor, 

and frontoparietal networks when all TD values Figure 4.6A-C) from three comparisons 

were included. For each pair-wise comparison, TD values in the diagonal tiles are higher 

than those in the off-diagonal tiles when all network classes were considered (Figure 4.6E, 

t-test, p<0.01).  

In terms of spectral powers, the alpha peak in the visual networks and the beta 

peaks in the frontoparietal networks were consistent across the three analyses. 

Additionally, peaks in both the alpha and the beta bands were consistently identified in 

both auditory and the somatomotor networks. The power spectra of the DMN revealed 

alpha peaks in all three analyses, though its amplitude in EC/EO was relatively low 

compared with the other two. The DMN in Pre/Post-rTMS showed more activity in the 

beta band as well, which was not obvious in the other two analyses, especially in those 

subnetworks including the posterior cortex. These results confirmed the similarity within 

the same classes of RSN in both spatial and spectral patterns.  
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Figure 4.6 TD between a pair of SCTs from two different datasets 

(A) EC/EO vs. HC/MdDS; (B) EC/EO vs. Pre-/Post-rTMS; (C) HC/MdDS vs. Pre-/Post-

rTMS; (D) Bar-plots of the within-class (enclosed with thicker boundaries) and between-

class positive TDs over five RSNs. (Figure as originally published in Li, Yuan, Shou, 

Cha, Sunderam, Besio and Ding (2018). Front. Neurosci. 30 May 2018. doi: 

10.3389/fnins.2018.00365). 

 

4.3.4 Contrast resolutions of EEG RSNs revealing condition differences 

The spatial differences of EEG RSNs in the three datasets (i.e., EC vs. EO in the 

EC/EO dataset, HC vs. MdDS in the HC/MdDS dataset, and Pre-rTMS vs. Post-rTMS in 

the Pre/Post-rTMS dataset) are illustrated in Figure 4.7. Their spectral power differences 

are summarized in Table 4.1. 

Differences of RSNs between eyes-closed and eyes-open: Four subnetworks 

associated with the frontoparietal (i.e., F-b, F-d, F-2) and somatomotor (i.e., M-b) RSNs 
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were detected with significant differences (p<0.01, cluster-based correction) (Figure 

4.7A). Among them, significantly higher SCCs were detected in both left and right lateral 

prefrontal cortices (i.e., F-b and F-d), and significantly lower SCCs were detected in 

mPFC (i.e., F-e) in EO than in EC. In addition, the SCCs in the right motor areas were 

lower in EO than in EC. Regarding the spectral power (Table 4.1), significantly reduced 

powers in the theta and alpha bands were detected in the visual and somatomotor 

networks (visual theta: p<0.001, visual alpha: p<001, somatomotor theta: p<001, motor 

alpha: p<0.005), significantly enhanced alpha power (p<0.001) in the frontoparietal 

network, and significantly enhanced beta powers (p<0.001) in the visual, somatomotor, 

frontoparietal, and DMN networks were detected in EO as compared to EC. 

Differences of RSNs between HC and MdDS: In the comparison of HC and 

MdDS patients, significant differences (p<0.01, cluster-based correction) (Figure 4.6B) 

were detected in two auditory subnetworks and one DMN subnetwork. MdDS patients 

indicated significantly higher SCCs in the right temporal cortex and significantly lower 

SCCs in the left temporal cortex (i.e., auditory RSNs). Significantly higher SCCs were 

observed over mPFC. The differences in spectral powers were not statistically compared 

since the paired t-test was not applicable to this dataset. 
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Figure 4.7 SCT differences between data from two conditions 

(A) EC/EO. (B) HC/MdDS. (C) Pre-/Post-rTMS. Maps were thresholded p<0.01, cluster-

based correction. (Figure as originally published in Li, Yuan, Shou, Cha, Sunderam, 

Besio and Ding (2018). Front. Neurosci. 30 May 2018. doi: 10.3389/fnins.2018.00365). 
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rTMS induced RSN changes: Three RSNs indicated significant rTMS induced 

changes between the Pre-TMS and Post-TMS conditions (Figure 4.7C). Specifically, 

following the rTMS treatment, it is observed with reduced SCCs in the bilateral mPFC 

nodes of a default-mode subnetwork (i.e., D-c) that showed negative connections between 

the frontal and parietal cortices, reduced SCCs in the bilateral IPL nodes of another DMN 

(i.e., D-d) that indicated positive connections between the frontal and parietal cortices, 

and enhanced SCCs in the right motor cortex in a somatomotor subnetwork showing 

bilateral patterns. Two classes of RSNs indicated significantly detected power changes, 

i.e., significantly enhanced theta power (p<0.05) in the auditory network and significantly 

reduced alpha power (p<0.001) in the DMN network, following rTMS treatment. 

 

 
Table 4-1 Summary of spectral power differences 

(A) EC/EO and (B) Pre-/Post-rTMS. BOLD: p < 0.05 at least. 

 

4.4 Discussion and Conclusion 

In the present study, a new data-driven analysis framework, termed as TFICA-

SCT, was developed to directly probe RSNs from EEG data. The proposed framework 
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combined EEG source imaging, ICA in the time-frequency domain and statistical 

correlation analysis, allowing the reconstruction of RSNs over a broad frequency range 

with unsurpassed high temporal resolution, as compared to RSN definitions from fMRI 

data of low resolutions in both time and frequency domains. Meanwhile, the method 

provided statistical power for subject-specific spatial patterns of RSNs. The proposed 

method was evaluated using three datasets of representative experimental conditions, i.e., 

eye-open vs. eyes-closed in healthy subjects, health controls vs. MdDS patients, and pre- 

vs. post-rTMS in MdDS patients. Various aspects of performance of the proposed 

framework, i.e., the capability of identifying multiple RSNs, their spatial and spectral 

properties, consistency, and robustness, were assessed. TFICA-SCT identified five 

groups of major resting-state networks, i.e., visual, auditory, somatomotor, frontoparietal, 

and DMN networks. These RSNs were found with significant and consistent spatial 

similarity to fMRI RSNs. Their spatial and spectral consistencies and detection 

robustness were suggested from comparisons among three different datasets. Identified 

RSNs further revealed condition-specific changes in both spatial and spectral domains 

for the three compared experimental conditions.  

It is noted that the proposed SCT introduces a statistical framework that includes 

correcting false cross-correlations from autocorrelation and cluster-based statistical 

thresholding in constructing the tomography of RSNs. Many of these have already been 

adapted in fMRI (Rombouts et al., 2005; Roy et al., 2009; Woolrich et al., 2001), but 

were used for the first time in creating EEG/MEG RSN tomography in our algorithm. 

The introduction of correlation-based statistical analysis provides two merits. First, it 

provides statistical quantitative metrics to be further evaluated using such a 
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nonparametric statistical test, thereby identifying regions that significantly belong to 

specific RSNs. Second, it provides a means to obtain subject-specific spatial patterns, 

which are not readily yielded by the group-level ICA. Based on subject-specific spatial 

patterns, a group-level inference can be made about spatial differences of RSNs because 

of different conditions. The effect of autocorrelation on generating false cross-

correlations has been considered in the present study, as in resting-state fMRI studies 

(Honey et al., 2009; Rombouts et al., 2005; Roy et al., 2009; Woolrich et al., 2001). This 

is particularly important for EEG RSN estimations since the oscillatory nature of EEG 

signals suggests potentially high autocorrelations. The nonparametric statistical test is 

based on Monte Carlo simulations (Smith and Nichols, 2009), which utilize a cluster-

based thresholding technique to address the multiple comparison problem. While the 

considerations behind these statistical and correlation analyses are similar to those used 

in 3D volumetric fMRI data, their implementation in EEG/MEG RSN estimations is new 

and distinct in terms of the data domain, which is a highly convoluted 2D surface, i.e., 

the cortex. 

Among three sets of experimental data, five major resting-state networks, 

including visual, auditory, somatomotor, frontoparietal, and default mode networks, have 

been identified and represented with different numbers of subnetworks (Figure 4.2-4.4). 

The spatial patterns of these identified RSNs indicate high spatial similarity to RSN 

templates from fMRI (Figure 4.5) (Yeo et al., 2011), as well as to fMRI RSNs reported 

in other literature (Liu and Duyn, 2013; Richiardi et al., 2015; Smith et al., 2009; Smith 

et al., 2012). These RSNs further indicate high spatial similarity among data from three 

experiments (Figure 4.6), while contrast-dependent variations can still be observed in 
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both spatial (Figure 4.7) and spectral features (Table 4.1). All these results demonstrate 

the effectiveness and robustness of the proposed framework in identifying the cortical-

level RSNs directly from EEG across different cohorts of individuals. These findings are 

in line with previous reports that found RSNs in EEG data (Liu et al., 2017; Yuan et al., 

2016) and/or MEG data (Brookes et al., 2011b; de Pasquale et al., 2010; Hipp et al., 2012). 

Previous EEG/MEG RSN research and advancements in TFICA-SCT indicate that RSN 

organizations can be retained from body surface recordings of brain signals via modeling 

and computation. The remarkable similarity between RSNs identified in fMRI and 

electrophysiological recordings (i.e., EEG/MEG) converges on the notion that RSNs as 

network-level organizations of distributed neural activity represent a fundamental aspect 

of brain physiology that are reflected in electrical and hemodynamic brain signals.  

It is observed that the detection of EEG RSNs suggests several differences as 

compared with fMRI RSNs. Our results (Figure 4.2-4.4) revealed both lateralized RSNs 

and bilateral RSN from EEG, with a greater number of lateralized than bilateral RSNs, 

while fMRI literature indicates more symmetric and bilateral RSNs (Agosta et al., 2012; 

Damoiseaux et al., 2006; De Luca et al., 2006). However, this fact does not suggest 

inaccuracies in EEG RSNs results. First, lateralized RSNs from TFICA-SCT are 

consistent with resting EEG data analysis in the electrode domain, in which lateralized 

potential distributions toward either the left or right hemisphere have been reported (Ding 

et al., 2014; Yuan et al., 2012a). Second, while an EEG RSN is lateralized, another 

symmetric EEG RSN on the contralateral hemisphere can be found (Figure 4.2-4.4). This 

difference might be due to the intrinsic differences in brain electrical and hemodynamic 

signals, in which EEG is more dynamic and directly linked to underlying network 
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communication mechanisms than fMRI (Laufs, 2008; Mantini et al., 2007; Yuan et al., 

2012a). Multiple subnetworks detected for each RSN class from EEG in the present study 

might reflect the fact that the networking of multiple nodes (or regions) in an RSN is 

dynamic rather than stationary. This notion has been observed in fMRI RSNs as well 

(Chang and Glover, 2010; Hindriks et al., 2016), in which the architect of the whole brain 

network is dynamic. While most of these fMRI RSN studies reveal dynamics at the 

network level built on RSNs, the present study suggests that the intrinsic organization of 

individual RSNs are also dynamic (Deco et al., 2011; Fox et al., 2005; van den Heuvel et 

al., 2008). Furthermore, less lateralized RSN patterns in fMRI might be due to the 

convolution from the electrical response to the hemodynamic response, which can 

increase correlations among different RSNs (Yuan et al., 2016). It can be further 

promoted due to the global contribution of respiration and blood flow to the 

hemodynamic process (Birn et al., 2006; Shmueli et al., 2007; Wise et al., 2004).  

The second difference between fMRI and EEG RSNs is the observation of cross-

talk between EEG RSNs, especially between the frontoparietal and DMN networks. The 

confusion might be partially caused by the mismatch between the bilateral templates of 

fMRI RSNs and more lateralized EEG RSNs, as discussed above. The non-optimal 

selection of metrics (e.g., vectorized cortical maps for calculating spatial correlation) and 

protocol (e.g., unique paired match) in the analysis procedure might contribute to it as 

well. The cross-talk could also be partially due to the vicinity of the regions involved in 

these two networks. Lastly, cross-talk could be influenced by artifacts in EEG recordings 

and inaccuracies of modeling and computation processes in TFICA-SCT. As an example, 

the DMN identified from EEG is of less spatial similarity to the template compared to the 
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other four networks. DMN constitutes multiple key regions, include mPFC, PCC, 

bilateral IPL (Buckner et al., 2008). Additionally, lateral temporal cortex and 

hippocampal cortex are often observed to be engaged as well (Buckner et al., 2008; 

Damoiseaux et al., 2007). Signals from mPFC are likely to be corrupted by residual 

artifacts of eye movements and blinks after preprocessing (Ille et al., 2002; Joyce et al., 

2004). The inverse method, i.e., MNE, has limited penetration and accuracy in estimating 

deep sources such as those from the cingulate cortex (Gorodnitsky et al., 1995; Pascual-

Marqui, 1999), resulting in poor estimates of the PCC in DMN. This can be improved 

with more advanced ISI techniques (Liao et al., 2013; Zhu et al., 2014). The spatial 

smoothing effect (Babiloni et al., 2005; Baillet and Garnero, 1997; Pascual-Marqui, 1999) 

in the ISI process might further obscure multiple regions of DMN that are close to each 

other. 

The high temporal resolution of EEG signals over fMRI signals enables the 

investigation of spectral properties of individual RSNs, which is significant in 

understanding human brain communication mechanisms in both healthy and sick persons 

(Klimesch, 1999; Kounios et al., 2008; Mantini et al., 2007; Rangaswamy et al., 2002) 

since invasive electrical recordings have suggested different functional roles of different 

brain rhythms in communication (Canolty et al., 2006; Crone et al., 1998; Crone et al., 

2006). Results in the present study show dominant alpha band activity in visual networks, 

which have been observed in MEG studies (Brookes et al., 2011b). The somatomotor 

networks have typically shown both alpha and beta spectral peaks while the frontoparietal 

networks have shown a strong peak in the beta band, which is consistent with MEG RSN 

studies (Brookes et al., 2011b; Mantini et al., 2007). Strong beta activity has been reported 
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in DMN (Brookes et al., 2011b; Laufs et al., 2003b; Mantini et al., 2007), especially in 

mPFC (D-b and D-c in Figure 4.3). Furthermore, power spectra changes have been 

observed due to different conditions, e.g., reduced alpha power in the visual and 

somatomotor networks, enhanced beta power in the frontoparietal network when eyes are 

open (Figure 4.2), and reduced alpha power in DMN in MdDS patients after rTMS 

(Figure 4.4) (see detailed discussions below). While data are preliminary, evidence 

behind them attest to the value of spectral powers of RSNs beyond spatial distributions 

(such as from fMRI) in understanding fundamental communication mechanisms in 

healthy brains and altered ones in patients. Future studies can use this additional RSN 

property, together with their spatial property, to investigate clinical problems in more 

depth.  

The present results are generated based on unbiased and wide spectrum EEG data, 

whereas other approaches reported with MEG (Brookes et al., 2011b) or combined EEG 

and fMRI (Goldman et al., 2002; Laufs et al., 2003a) exploit pre-determined, narrow 

band-passed data. The advantage of using wide-spectrum data is to give unbiased weights 

to activity in all frequency points, which is essential in a data-driven approach. 

Furthermore, many RSNs in the present study suggest activity in more than one frequency 

band (e.g., alpha and beta in the frontoparietal network). While the present study only 

includes three frequency bands (i.e., theta, alpha, and beta bands), more bands, e.g., the 

gamma band, which may play an important role in functional connectivity (Kounios et 

al., 2008; Ossandón et al., 2011; Rutter et al., 2009), can be included in future studies as 

necessary. 
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The present study further demonstrates the capability of TFICA-SCT in detecting 

contrast differences in conditions involving both healthy and sick persons and both at 

baseline and after treatment. Contrast differences are reflected in two metrics. One is the 

thresholded SCC value after Eqs. (8)-(11), which indicates the affinity of a source point 

to an RSN (significant SCC: affinity to the RSN; non-significant SCC: no affinity to the 

RSN; the level of affinity indicated by the significant SCC value). The other metric is the 

spectral power at theta, alpha, or beta band for an RSN, which indicates the strength of 

an RSN that could change depending on the number of source points affined to the RSN 

and the accumulated strength from all affined source points.  In the comparison between 

the eyes-closed and eyes-open conditions, the metrics of spatial affinity and spectral 

power indicate reduced activities in the visual and somatomotor networks with eyes open, 

especially in the low-frequency band (including the alpha band). The phenomenon has 

been well documented in literature (Fox and Raichle, 2007; Jao et al., 2013; Marx et al., 

2004; Raichle et al., 2001; Yang et al., 2007). These two metrics also suggest increased 

beta band activities with eye open in the frontal and motor areas, which is consistent with 

previous EEG literature (Barry et al., 2009; Barry et al., 2007). Frontal areas are more 

active when persons are awake according to fMRI findings (Corbetta et al., 1998; Marx 

et al., 2004). Individuals with MdDS showed reduced spatial affinities in the left auditory 

RSN, which suggest hypo-connectivity that is consistent with hypo-metabolism from 

fMRI and PET studies, both in location and direction of abnormal connectivity (Cha et 

al., 2012). In the MdDS patients who responded to the treatment of rTMS, reduced spatial 

affinity and alpha power in the DMN RSNs were observed, lowering their hyper-

connectivity in DMN (Figure 4.4B), which suggests the potential reason behind the 
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responsiveness of these patients to rTMS. Reduced alpha power in DMN following rTMS, 

indicative of the treatment effect, has been similarly revealed in our previous study based 

on sensor-level EEG data (Ding et al., 2014). Enhanced theta power in the auditory RSNs 

(Figure 4.6) might compensate hypo-connectivity observed in MdDS patients (A-b, 

Figure 4.6B).  

In conclusion, a new framework termed as TFICA-SCT, integrating inverse 

source imaging, data-driven method, and statistical correlation analysis, is proposed to 

probe resting-state networks from scalp recordings in human brain electrical signals. The 

present study has evaluated the proposed framework in three experimental datasets to 

reconstruct, study, and compare resting state networks in both healthy persons and sick 

individuals. Results of the present study showed that the proposed framework could 

reconstruct large-scale, network-level organization of spontaneous brain activity that 

significantly resembles the spatial patterns of fMRI RSNs. Reconstructed EEG RSNs are 

able to reveal condition-dependent variations in both spatial and spectral domains. Its 

capability in estimating RSN spectral properties is further beyond the capability of fMRI 

in studying RSNs and the present results suggest that these spectral properties could be 

used to segregate healthy individuals with those with a clinical diagnosis. Since EEG can 

be recorded simultaneously with fMRI, the combination of EEG and fMRI suggests a 

more powerful tool in understanding human brain networks, with unsurpassed spatial, 

temporal, and spectral resolutions. Clinical uses of these technologies are of significant 

potential values in identifying biomarkers for various neurological and psychiatric 

disorders, both for diagnosis and for treatment monitoring.  
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In summary, I demonstrated in this study that TFICA-SCT was a promising 

technology to reconstruct and investigate RSNs based on EEG data only. It integrated a 

new ICA method, i.e., TFICA, and a new statistical processing step, i.e., SCT. Results of 

the present study showed that the proposed framework can reconstruct large-scale, 

network-level organization of spontaneous brain activity that significantly resembles the 

spatial patterns of fMRI RSNs.  
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5 An Advanced Inverse Source Imaging Method for Reconstructing 

EEG Resting State Networks  

5.1 Introduction 

In my previous studies, research was mainly focused on the development of ICA. 

On the contrary, the ISI step was not given research attention. Specifically, the 

conventional MNE was adopted in the ISI step due to its satisfactory performance in our 

previous study (Yuan et al., 2016). In this study, the research attention was paid to the ISI 

step, which has been largely overlooked by previous studies. An advanced ISI technique 

was adopted in the computational framework introduced in the preivious chapters. The 

aim of this study is to investigate if the new ISI technique can advance the reconstruction 

of RSNs using the framework developed in the previous Chapter. 

EEG/MEG data are recorded by sensors at the scalp surface, which cannot be directly 

linked with anatomical and structural substrates in the human brain. As a solution to this 

problem, various inverse source imaging (ISI) techniques have been developed to map 

EEG/MEG measurements to the domain of the cortex (Grech et al., 2008; Pascual-Marqui, 

1999). More recently, with the progress in modeling and computational techniques 

(Brookes et al., 2011b; Ding and Yuan, 2013; Ding et al., 2013; Liao et al., 2013; 

Ramkumar et al., 2014), many studies have successfully reconstructed cortical maps of 

RSNs from EEG/MEG. Not only results with significant spatial similarity to fMRI RSNs 

have been revealed, but also temporal and spectral characteristics that are beyond the 

capability of fMRI have been reported (Brookes et al., 2011b; Liu et al., 2017; Ramkumar 

et al., 2012; Yuan et al., 2016). These efforts have provided new insights, in parallel and 

complementary to fMRI, into the neural mechanism underlying RSNs. On the other hand, 
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comparisons and cross-validations between fMRI RSNs and EEG/MEG RSNs also 

provided a means to interpret electrophysiological underpinnings of fMRI RSNs, given 

the unsettled debate regarding origins of these intrinsic networks (Cole et al., 2010; 

Friston et al., 1996; Mitra et al., 1997). 

In these recent studies of EEG/MEG RSNs (Brookes et al., 2011a; Li et al., 2018; 

Liu et al., 2017; Yuan et al., 2017), both ISI techniques (Grech et al., 2008; Mosher et al., 

1999; Pascual-Marqui, 1999) and data-driven methods (Hyvärinen and Oja, 2000; Lee et 

al., 1999) play crucial roles in the reconstruction of RSNs from EEG/MEG data. In these 

frameworks, ISI was used to achieve data projection from the sensor space to the source 

space, which lays the groundwork for and define the anatomic space of data from 

subsequent analyses. In resting conditions, there are no stimuli or behavioral references 

as found in task conditions when assessing EEG/MEG data. Therefore, data-driven 

methods are needed to recognize patterns or extract features from resting-state EEG/MEG 

data. In the majority of EEG/MEG RSNs studies, data-driven methods have been applied 

to data processed by the ISI and then, to identify patterns in the source space, where fMRI 

RSNs have been studied (Allen et al., 2012; Beckmann et al., 2009; Calhoun and Adali, 

2012). 

Independent component analysis (ICA) is the most popular data-driven method in 

RSN studies for both EEG/MEG and fMRI. Different ICA algorithms, such as infomax 

ICA (Lee et al., 1999) and FastICA (Hyvärinen and Oja, 1997), have been used to 

reconstruct RSNs (Liu et al., 2017; Yuan et al., 2016). Despite the difference in ICA 

algorithms, ICA has been implemented in various ways on data as well. In particular, the 

spatial ICA, widely used on fMRI data (Beckmann et al., 2009; Calhoun et al., 2009), 
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aims to discover spatially independent components. Temporal ICA, widely performed on 

EEG/MEG data (Brookes et al., 2011b; Yuan et al., 2016), searches independency in the 

temporal domain. Recently, a new ICA method, termed as time-frequency ICA, has been 

proposed to obtain components that are statistically independent in the tempo-spectral 

domain (Li et al., 2018; Shou et al., 2012). To define EEG/MEG RSNs on the cortical 

surface, i.e., the same domain of fMRI RSNs, both spatial and temporal ICAs have been 

used in combination with EEG/MEG ISI techniques (Grech et al., 2008; Mosher et al., 

1999; Pascual-Marqui, 1999; Yuan et al., 2016). The way to implement ICA is largely 

determined by the property of data, in which the large dimension (either spatial or 

temporal) is selected as the sample domain in ICA to obtain reliable ICA analysis 

(Hyvärinen et al., 2004; Hyvärinen and Oja, 2000; James and Hesse, 2004). 

In contrast to various versions of ICAs, only a few conventional ISI algorithms have 

been used in EEG/MEG RSN studies, including minimum norm estimation (MNE) (Yuan 

et al., 2016), beamforming (Brookes et al., 2011a), and low-resolution electromagnetic 

tomography (LORETA) (Liu et al., 2017). These conventional ISI techniques are not 

desirable due to the limited accuracy in estimating spatial patterns, in particular, the 

problem of spatial smoothing (Pascual-Marqui, 1999). It usually leads to overestimated 

spatial extents of activated cortical sources from EEG/MEG, which is crucial to many 

clinical applications (Ding et al., 2007; Zhu et al., 2013). At the same time, many 

advanced ISI algorithms beyond these conventional ones have been reported (Ding et al., 

2013; Liao et al., 2013; Liao et al., 2012; Zhu et al., 2017), which either demonstrate 

better performance in reconstructing spatial patterns of cortical activities or in estimating 

their temporal fluctuations. In the previously reported studies, RSNs have been obtained 
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by applying ICA to outcomes of ISI. Therefore, the performance of ISI methods is of 

particular importance since any discrepancy in ISI solutions can be propagated to ICA 

and be amplified in subsequent analyses. Taken all together, it is crucial to improve the 

performance of ISI solutions in order to obtain more reliable and accurate estimations of 

cortical RSNs from EEG/MEG. 

A recently developed ISI algorithm, i.e., sparse source imaging (SSI) (Chang et al., 

2010; Ding and He, 2008; Ding et al., 2013; Uutela et al., 1999; Zhu et al., 2013), has 

been demonstrated to be a promising technique for cortical source estimation. SSI utilizes 

the L1-norm regularization technique to address the non-uniqueness and ill-posedness of 

the inverse problem, which makes it different from algorithms using the L2-norm 

regularization such as MNE and LORETA (Grech et al., 2008; Mosher et al., 1999; 

Pascual-Marqui, 1999). The L1-norm regularization allows accurate and optimal inverse 

reconstructions in under-sampled conditions when source signals to be estimated are 

sparse as compared with the number of measurements and measurements are incoherent 

against the support of signals (Candes and Tao, 2005; Donoho, 2006). The sparseness of 

signals in the source domain has been explored to reconstruct brain activities using 

EEG/MEG under task conditions (Ding and Yuan, 2012, 2013), which is reasonable 

considering brain areas evoked by tasks are expected much smaller than the whole brain, 

i.e., the entire source domain. However, such an assumption may not be valid in studying 

resting-state brain networks since, as revealed in fMRI data, brain activities associated 

with multiple RSNs are widely distributed over the whole brain (Beckmann et al., 2005; 

De Luca et al., 2006). Recently, SSI algorithms have been improved to utilize sparseness 

in a transform domain, e.g., the variation domain (Ding, 2009) and the wavelet domain 
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(Ding et al., 2013), instead of the original source domain. The wavelet transform has been 

demonstrated to be an efficient method in compressing signals without losing accuracy 

(Chang et al., 2010), and therefore it can be used to reconstruct widely distributed brain 

activities in RSNs. One of our previous studies has demonstrated that inverse solutions 

can be improved by enforcing sparseness in both variation and wavelet domains, as 

compared with algorithms considering sparseness in a single transform domain (Zhu et 

al., 2014). In spite of its promising performance, this technique has never been employed 

in any RSN studies. Therefore, a computational framework with the use of this new ISI 

method is expected to achieve further improvement in RSN reconstructions. 

In the present study, the novel ISI method, i.e., variation and wavelet-based SSI 

(VW-SSI) (Zhu et al., 2014) was employed into our previously reported framework (Li 

et al., 2018) for estimating cortical RSNs from resting-state EEG data. The performance 

of the proposed method was evaluated using both simulated and experimental EEG data, 

and it was compared with the same framework but using MNE in the step of ISI. The 

performances of both VW-SSI and MNE in our previously reported framework (Li et al., 

2018) were accessed regarding spatial and temporal accuracy with statistical analysis. 

Their results were further compared using five RSN templates defined with fMRI data as 

references. 

5.2 Materials and Methods 

5.2.1 Variation and Wavelet-based Spare Source Imaging 

From a methodological point of view, source imaging of EEG/MEG is an inverse 

problem, in which EEG/MEG measures are used to estimate the cortical sources. In order 
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to solve the inverse problem, an appropriate model is required for the forward problem, 

which can be expressed as: 

𝛷 = 𝐴𝑠 + 𝑛 
5-1 

where Φ is the EEG measurement; s is the cortical source; n is the noise; A is the lead 

field, which links the measurement and the source. Its inverse problem has infinite 

solutions to a given set of measurements because the number of sources is much larger 

than the number of measurements (Baillet et al., 2001). To obtain unique solutions to the 

inverse problem, L1-norm regularizations have been proposed as a regularization method 

by enforcing sparseness in the source domain (Ding and He, 2008; Uutela et al., 1999) or 

the transform domain (Ding, 2009; Ding and He, 2008; Liao et al., 2012). L1-norm 

regularizations can be expressed as:  

𝑚𝑖𝑛‖𝐻𝑠‖1 ⁡𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡‖𝛷 − 𝐴𝑠‖2 < ⁡𝜀 
5-2 

where H is either an identity matrix or a transform matrix. ε denotes the regularization 

parameter which confines the discrepancy between the measurements and the model.  

A variety of L1-norm regularizations have been introduced with the use of different 

transform matrix H, such as variation based sparse source imaging (V-SSI) and wavelet 

based sparse source imaging (W-SSI) (Ding, 2009; Liao et al., 2012). Both techniques 

have their advantages: V-SSI has excellent capability in reconstructing source extents; 

W-SSI can provide a  much sparser representation of more distributed cortical activities 

(Ding, 2009; Liao et al., 2012). A recent study has proposed a new method, variation and 

wavelet based SSI (VW-SSI), which integrates the advantages of V-SSI and W-SSI (Zhu 

et al., 2014) and is used in the present study.  

The L1-norm regularization of VW-SSI method is based on both variation and 

wavelet transforms and result in the optimization problem 
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𝑚𝑖𝑛(‖𝑉𝑠‖ + 𝜆‖Ws‖)⁡⁡𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡ ‖𝛷 − 𝐴𝑠‖2 < 𝜀 
5-3 

where λ > 0 is a hyper-parameter to balance the penalties of the variation and the wavelet. 

What follows is a brief overview of the variation and wavelet transforms. More details 

can be found in the study by Zhu et al. (2014). 

Variation Transforms: The variation transform is obtained by calculating 

variations between two neighbored triangles on the cortical surface (Ding, 2009) 

𝑉 = [

𝑣11 𝑣12 ⋯ 𝑣1𝑁

𝑣21 𝑣22 ⋯ 𝑣2𝑁

⋮ ⋮ ⋱ ⋮
𝑣𝑝1 𝑣𝑝2 ⋯ 𝑣𝑃𝑁

] 

{
𝑣𝑖𝑗 = 1;⁡𝑣𝑖𝑘 = −1; 𝑖𝑓⁡𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠⁡𝑗, 𝑘⁡𝑠ℎ𝑎𝑟𝑒⁡𝑡ℎ𝑒⁡𝑠𝑎𝑚𝑒⁡𝑒𝑑𝑔𝑒

𝑣𝑖𝑗 = 0;𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where P is the total number of triangular edges in the cortex model. 

Wavelet Transform: To design wavelet functions on the cortical surface, a multi-

resolution model of the cortical surface was obtained as follows. The original cortical 

surface segmented from MRI data (see section Construction of Models below) was used 

as the finest mesh for this multi-resolution model in order to generate lower-resolution 

meshes. A seed triangle on the fine level mesh (starting with the original mesh), which 

was arbitrarily selected, and its three neighbored triangles were merged into one triangle 

on the coarse level mesh. The merging was repeated until all triangles on the fine level 

were processed, leading to a new coarse mesh. By recursively merging the meshes, a set 

of multi-resolution cortical surface model was generated.  

With the multi-resolution model, wavelet transform matrix is defined as (Liao et al., 

2012): 
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𝑊𝑚 =

[
 
 
 
 
 (𝐺𝑚

)
1
2𝐴𝑚−1𝐴𝑚−2 ⋯𝐴0

𝐵𝑚−1𝐴𝑚−2 ⋯𝐴0

⋮
𝐵1𝐴0

𝐵0 ]
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where superscript denotes the level of the multi-resolution cortical model. 𝐺𝑚
 is the 

Gram-Schmidt matrix (Bonneau et al., 1996) in which the diagonal elements are areas of 

triangles on the cortical mesh at level m. 𝐴𝑚 represents the proportion between the area 

of a triangle at level m+1 and the area of the four corresponding triangles at level m. 𝐵𝑚 

has the property of semi-orthogonality in basis functions (Bonneau et al., 1996), and it is 

obtained by solving, 

{
𝐴𝑚

(𝐺𝑚
)
−1

(𝐵𝑚
)
𝑇

= 0

𝐵𝑚
(𝐺𝑚

)
−1

(𝐵𝑚
)
𝑇

= 1
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After obtaining the variation transform and the wavelet transform, the problem in Eq. 

3 can be solved using the second-order cone programming (SOCP) technique (Ben-Tal 

and Nemirovski, 2001) from the Matlab toolbox Self-Dual-Minimization (SeDuMi) 

(Sturm, 1999). More details about the conversion of the optimization problem in Eq. 3 

into a SCOP problem and the SOCP solver can be found in the study of Zhu et al. (2014). 

5.2.2 Computational Framework to Reconstruct RSNs 

In the present study, the computational framework for RSN reconstructions was 

built upon previously reported frameworks (Ding et al., 2014; Li et al., 2018; Yuan et al., 

2016) with minor modifications. It should be noted that MNE was used to solve the 

inverse problem in our previous study, while the present study employed VW-SSI to map 

sensor-space EEG data into the source space. Then, envelopes of source-space data were 

calculated through the Hilbert transform (Brookes et al., 2011b), which was followed by 
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the normalization using a z-transform to reduce inter-individual variations when data 

from multiple subjects were used. Afterward, the normalized envelopes from 

experimental data (see section Experimental Protocols) were concatenated in the 

temporal domain, yielding group-level data. However, the temporal concatenation was 

not conducted on the simulated data (see section Simulation Protocols). Then, the 

Infomax ICA (Lee et al., 1999) from the EEGLAB toolbox (Delorme and Makeig, 2004) 

was applied to the data to obtain multiple independent components (ICs). 

After ICA, statistical correlation analysis (Li et al., 2018) was applied to all ICs as 

briefly described as follows. First, correlation coefficients (CCs) between the time course 

of each IC and the time course of each dipole source were calculated for all individual 

participants in the group. CC values were converted into z-values using the Fisher’s z-

transformation. All correlation maps were then smoothed by an iterative smoothing 

algorithm, i.e., the heat kernel smoothing with Full Width at Half Maximum of 8 mm 

(Chung et al., 2005). The group-level z-score maps were calculated by averaging across 

participants (Alexander, 1990; Silver and Dunlap, 1987) with autocorrelation being used 

to correct the degree of freedom (Bartlett, 1935). To quantitatively define brain regions 

of ICs, the averaged correlation maps were further thresholded. The thresholding was 

achieved by applying a source-wise t-test against zero to z-scores from all participants, 

and source points that achieve the significant threshold of p < 0.01 was kept. To address 

the multiple comparison problem, a cluster-based correction method was employed 

(Hagler et al., 2006) to remove small clusters in order to reduce false positives, where 

clusters were defined as regional active sources that were spatially connected (i.e., 

triangular elements of clusters were connected on the cortical surface model). Each RSN 
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usually consisted of multiple regional sources, which was similar to the definition of RSN 

nodes in fMRI RSN literature (Li et al., 2018; Zhu et al., 2013).  

5.2.3 Construction of Models 

Structural MRI data from FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) 

(Fischl, 2012) were used to build the source model, i.e., the cortex where s was defined, 

and the volume conductor model for the calculation of A in Eq. 1. The surfaces of the 

cortex and other layers of the anatomical structure (the brain, skull, and scalp) were 

extracted and segmented. In the volume conductor model, the volumes between different 

layers are assigned different conductivity values (the scalp: 0.33/m, the skull: 

0.0165/m, and the brain: 0.33/m ) (Lai et al., 2005). In the source model, the cortical 

surface was meshed and triangulated into 40,960 triangles, each of which represents a 

dipole source at its center with the orientation being perpendicular to its surface. The 

sensors were then co-registered to the volume conductor model by aligning three 

landmarks, i.e., nasion, left and right pre-auricular points. Based on the model and 

locations of EEG electrodes, the lead field, A in Eq. 1, can be calculated using the 

boundary element method (Hamalainen and Sarvas, 1989). 

5.2.4 Simulation Protocols 

In order to quantitatively evaluate the performance of VW-SSI, a simulation with 

100 iterations was proposed as follows. In each simulation, three clusters of multiple 

distributed sources were generated on the cortical surface to mimic connected regions of 

networks. Three clusters were formed by three, two, and one source(s), respectively. Each 

source encompassed a surface region with the diameter of ~20 mm without overlap 

(Figure 5.1).  

https://surfer.nmr.mgh.harvard.edu/
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Figure 5.1 Schematic of the simulation 

(A) The location and extent of three simulated clusters in different simulations. (B) 

Envelopes and carrier frequencies of the simulated clusters. 

 

To mimic spontaneous fluctuations of RSNs, amplitude-modulated signals were 

generated based on the protocol of the study by Ramkumar et al (2014), where cortical 

activities were modeled being driven by thalamic origins, as briefly described below. In 

the first place, a binary spike train was generated with 1% of the elements being 1’s, 

aiming to simulate a thalamic pacemaker signal (Steriade and Llinás, 1988). The 

sampling frequency of the signal was 150 Hz, and the duration was 2 minutes. To simulate 

the thalamic drives arriving at the cortex, six Gaussian functions were generated with 8 

sec temporal support and standard deviation ranging from 4/15 to 8/5 in steps of 4/15. 

After obtaining the Gaussian functions and the spike train, the Gaussian functions were 

convolved with the spike trains, and then the convolved signals were summed to mimic 

the temporal summation of multiple thalamic drives. The envelopes of the three clusters 

were independent of each other, which met the requirement of independence in the ICA 
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analysis (see section Computational Framework to Reconstruct RSNs). In terms of 

carrier signals, six sinusoids of different frequencies were generated for the sources. 

Specifically, 8 Hz, 10 Hz, and 12 Hz were for the three sources of the first cluster; 9 Hz 

and 11 Hz for the two sources of the second cluster; 15 Hz is for the only source in the 

third cluster. Uniformly distributed noise with a standard deviation (SD) 5% of the SD of 

the waveform was added to the sinusoids. Then carrier signals were multiplied with 

corresponding envelopes to generate simulated time courses for all clusters. In order to 

mimic brain noise on the cortical surface, pink noises were added to the whole cortical 

surface (Ramkumar et al., 2014) with the standard deviation (SD) of noise 10% of SD of 

simulated signals. Afterward, simulated cortical signals were mapped to the sensor space 

by multiplying the lead field. Finally, Gaussian white noises with a SD 5% of the 

averaged SD of sensor-space signals were added to simulate measurement noises. In each 

iterative of simulation, locations for sources were randomly selected. 

5.2.5 Experimental Protocols 

Twenty healthy participants (all females; age: 48.8 ± 7.2 years) and forty patients 

(all females; age: 51.8 ± 12.5 years) of mal de debarquement syndrome (MdDS) (Cha et 

al., 2012; Ding et al., 2014) were recruited in the study. Here, only resting-state data from 

healthy participants were reported. It should be noted that only female participants were 

included because the prevalence of females is much higher than males in MdDS (Cha, 

2009), and the healthy group was matched to the patient group in terms of gender. This 

study was approved by Western IRB (www.wirb.com). All participants were informed 

about the protocol of the study and signed a written informed consent form prior to the 

experiment. A 126 channel EEG system with a BrainAmp amplifier (Brain Products 

http://www.wirb.com)/
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GmbH, Munich, Germany) was used in the present study. The ground electrode was 

placed at AFz in the international 10-20 system, and FZ was chosen as the reference 

channel. Resting-state recordings were obtained for five minutes for each participant 

while they were asked to keep still and have their eyes closed. 

For each participant, structural MRI data were obtained using a 3D MPRAGE 

sequence (124 contiguous axial slices with 1.2 mm slice thickness; matrix size = 256×256; 

FOV = 220 mm × 198 mm; TR/TE/TI/TD = 5 /1.98 /725 /1400 ms, flip angle = 8 degree; 

sampling bandwidth = 31.25 kHz, SENSE acceleration = 2). 

5.2.6 Data Analysis Protocols 

Simulation: The computational frameworks were applied to the simulated data, 

using six as the number of assumed ICs (as compared with three actual simulated ICs). 

To find three ICs that matched the simulated clusters, the spatial and temporal correlation 

coefficients (CCs) between the ICs and the simulated clusters were calculated for all 

possible pairs, resulting in two three-by-six matrices. Specifically, the spatial CC was 

calculated between the cortical map of an IC and the simulated cortical maps of the cluster. 

The temporal CC was calculated between the time course of an IC and the simulated 

envelopes of the cluster. Then, the spatial and temporal CC matrices were normalized by 

dividing the maximal CCs of each row, which was followed by the summation of the two 

normalized CC matrices. The IC with the largest sum in each row was matched to the 

corresponding simulated cluster.  

Experimental Data Analysis: After obtaining resting-state EEG data, data were 

pre-processed individually with an established pipeline including rejection of bad 

segments, interpolation of bad channels, and re-reference to common average (Ding et 
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al., 2014). Then data were down-sampled to 250 Hz and band-pass filtered from 4 Hz to 

30 Hz. ICA was used to remove artifacts caused by movement, eye movement, and noise. 

By applying the framework to the experimental resting state data, forty ICs were 

obtained. The thresholded spatial patterns were assessed with fMRI-RSN templates (Yeo 

et al., 2011) as references. RSNs were selected from the ICs according to their spatial 

features such as spatial distributions and spatial coverages. Furthermore, based on the 

template matching metric (see section Evaluation Protocols), these ICs were categorized 

into five groups, including visual, auditory, somatomotor, frontoparietal, and default 

mode networks. 

Other than the spatial patterns, the present study also investigated the spectral 

features of RSNs. In order to obtain spectral powers for the selected ICs, amplitude-

modulated time courses of ICs were reconstructed by multiplying the unmixing matrix 

obtained from the group-level ICA with original cortical data obtained by VW-SSI in 

individual participants. Given the time courses for each IC, short time Fourier transform 

(STFT) was performed with 1-second non-overlapping window, resulting in time-

frequency representation with a resolution of 1 Hz. Frequency bins ranging from 4 Hz to 

30 Hz were kept as the bands of interest, i.e., theta, alpha, and beta bands. After STFT, 

the power at each frequency bin was calculated, averaged over epochs, and then averaged 

over participants, resulting in the power spectra of selected ICs. 

5.2.7 Evaluation Protocols 

In order to evaluate the performance of VW-SSI in reconstructing RSNs, a control 

framework was proposed with VW-SSI replaced by the minimum norm estimation (MNE) 

(Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1984), which had been adopted in 
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the previous studies of reconstructing RSNs from EEG and/or MEG (Li et al., 2018; Yuan 

et al., 2016). In parallel with the frameworks using VW-SSI, the control framework 

repeated the data analysis for both simulated and experimental data. The results from the 

control framework were compared with the results from VW-SSI for the purpose of 

evaluation. 

A series of evaluation protocols were conducted to assess the performance of 

frameworks using different ISI methods in reconstructing EEG RSNs. First, 

reconstructions from simulated data were compared with the ground truth through the 

matching process as discussed above (see section Data Analysis Protocols). Second, 

RSNs obtained with the use of VW-SSI and MNE were compared with fMRI RSN 

templates as the references (Yeo et al., 2011). Third, the region sizes of cortical RSN 

maps were quantitatively compared. 

Simulation: Reconstructions of RSNs with the use of VW-SSI and MNE were 

compared in terms of spatial and temporal accuracies. Regarding the spatial pattern, 

spatial CCs between simulated clusters and matched reconstructed RSN maps 

(unthresholded) were used to quantitatively evaluate the accuracy of results. Besides, area 

under the receiver operating characteristic (ROC) curve, i.e., AUC (Grova et al., 2006), 

was also calculated and compared between these RSN maps to evaluate the accuracy of 

source locations and extents. Moreover, the similarity between these maps was quantified 

by a template-matching method (Greicius et al., 2007) with normalization as follows: 

𝑇𝐷(𝑡, 𝑐) =
𝑍𝑖𝑛(𝑡, 𝑐) − 𝑍𝑜𝑢𝑡(𝑡, 𝑐)

𝑍𝑖𝑛(𝑡, 𝑐) + 𝑍𝑜𝑢𝑡(𝑡, 𝑐)
 

5-7 

where TD referred to the template-matching degree; t is the index for the simulated cluster 

and c is the index of the IC. Zin is the averaged value from source points inside simulated 
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clusters and Zout is the averaged value from source points outside. The temporal accuracy 

was assessed using the metrics of temporal CC and root mean square error (RMSE) 

between estimated time courses of ICs and simulated envelopes (Molins et al., 2008). A 

paired t-test was performed on all five metrics to evaluate whether there were statistical 

differences between the two sets of results with the uses of VW-SSI and MNE. 

Experiment: To evaluate spatial patterns of obtained EEG RSNs, cortical maps 

obtained with the use of both VW-SSI and MNE were compared with the five fMRI RSN 

templates (Yeo et al., 2011) as references, including visual, auditory, somatomotor, 

frontoparietal, and default mode networks. TD values were calculated for all possible 

pairs between the reconstructed cortical RSN maps (thresholded) from selected ICs and 

the five fMRI RSN templates, generating a confusion matrix for both VW-SSI and MNE 

methods. To assess the confusion of RSNs, TD values for the within-class group and the 

between-class group were compared using unpaired t-tests across five networks. To 

evaluate the spatial similarity to fMRI RSN templates, within-class TD values from both 

VW-SSI and MNE were compared using a t-test. The same test was performed on 

between-class TD values from VW-SSI and MNE as well to evaluate the capability of 

two methods in distinguishing different RSNs. Furthermore, the above tests involving 

between-class TDs were repeated using only positive between-class TDs (still use all 

within-class TD values) since between-class TDs tended to have more negative TD values, 

which might lead to overlooking few but significant existing confusions (usually 

indicated by positive TD values). 

To examine whether VW-SSI could help addressing the problem of spatial 

smoothing as found in conventional ISI methods, spatial extents of RSN regional sources 
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were used as an indicator to study the overall spatial sizes of reconstructed cortical 

sources in RSNs. The spatial extents were calculated as the numbers of triangular 

elements of regional sources in thresholded maps for RSNs (see section Computational 

Frameworks to Reconstruct RSNs). The spatial extents of all regional sources in all 

reconstructed RSNs from both VW-SSI and MNE were compared. An unpaired t-test was 

performed on values of the metric from VW-SSI and MNE. 

5.3 Results 

5.3.1 Simulation 

Figure 5.2 illustrates spatial and temporal patterns of the selected RSNs and the 

simulated clusters from examples out of 100 simulations. In each simulation, the locations 

of simulated clusters/sources were different due to the random selection, while the 

simulated envelopes of the clusters were the same across simulations. In the examples, 

the three simulated clusters were detected by both VW-SSI and MNE with high spatial 

and temporal similarities. In the detection of individual clusters, residual patterns from 

other clusters were observed in results from both methods. For instance, the red cluster 

showed residue patterns in the estimated pattern for the green cluster, the middle column 

in Figure 5.2A in both VW-SSI and MNE. However, such residue patterns seemed more 

common in results from MNE than VW-SSI (e.g., the red cluster showed negative residue 

patterns in the estimated pattern for the green cluster, the middle column in Figure 5.2C, 

for MNE but not obvious for VW-SSI; the green cluster showed negative residue patterns 

in the estimated pattern for the red cluster, the left column in Figure 5.2C, for MNE but 

not for VW-SSI). Furthermore, the results from MNE seemed more widely spread, while 

the results from VW-SSI were more focused in areas of simulated sources and their 
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neighborhoods. This phenomenon was prominent in Figure 5.2A, in which VW-SSI 

results exhibited high spatial contrast while MNE results were overspread. In the 

detection of temporal envelops of individual clusters, both methods had their advantages 

in different aspects. VW-SSI was better in depicting general tendencies of these 

envelopes. For instance, the high amplitude for the red cluster close to the end of the time 

course was better reconstructed in VW-SSI than MNE (especially in the left column of 

Figure 5.2D). On the contrary, MNE was better in catching subtle fluctuations of these 

envelopes. For example, the valley immediately after 20 s in the red cluster was better 

reconstructed in MNE than VW-SSI (especially in the left column of Figure 5.2C). 



97 

 
Figure 5.2 Spatial and temporal reconstruction of the simulation 

Left: spatial and temporal patterns of simulated clusters. Right: the reconstruction of 

spatial and temporal patterns. 
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The summary of metric values for both spatial and temporal accuracies of 100 

simulations was shown in Figure 5.3. As indicated by the metric values of spatial CC 

(Figure 5.3A), TD (Figure 5.3B), and AUC (Figure 5.3C), the performance of VW-SSI 

is significantly better than MNE (i.e., spatial CC: p<1e-10; TD: p<1e-10; and AUC: 

p<5.02e-4) in reconstructing the spatial properties of simulated networks. With regard to 

temporal CCs (Figure 5.3D), MNE performed significantly better than VW-SSI (p<1e-

10). On the other hand, VW-SSI exhibited much better temporal RMSE values than MNE 

(p<1e-10). For both MNE and VW-SSI, there were large variations across 100 

simulations (e.g., large value ranges of the metrics in Figure 5.3A and 5.3C for both MNE 

and VW-SSI; more outliers in Figure 5.3A, 5.3B, 5.3D, and 5.3E for MNE). The fact 

indicated the performances of both methods were location dependent (since source 

locations were randomly selected over the entire cortical source model). It is worth to 

note that VW-SSI was better in terms of variations and therefore more robust since it 

exhibited fewer outliers than MNE.  

 
Figure 5.3 Performance of VW-SSI and MNE in the simulation 
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5.3.2 Experiment 

Spatial and Spectral Patterns of RSNs: Figure 5.4 and 5.5 illustrates spatial and 

spectral patterns of identified EEG RSNs from both VW-SSI and MNE. According to 

their spatial similarity to five fMRI RSN templates (Yeo et al., 2011), they were 

categorized into five RSN groups: visual (V), auditory (A), somatomotor (M), 

frontoparietal (F), and default mode (D) networks. 

 
Figure 5.4 Spatial and spectral patterns of RSNs from VW-SSI 

(A) Visual. (B) Auditory. (C) Somatomotor. (D) Frontoparietal. (E) Default 
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Figure 5.5 Spatial and spectral patterns of RSNs from MNE 

(A) Visual. (B) Auditory. (C) Somatomotor. (D) Frontoparietal. (E) Default 

 

Each RSN group is consisted of more than one EEG RSN subnetworks with 

significant spatial resemblance identified. For the visual network, five subnetworks were 

detected using VW-SSI and four subnetworks were detected using MNE. The areas in 

these subnetworks were mainly found in the primary visual cortex (i.e., V-2, V-4 from 

VW-SSI, Figure 5.4, are same as V-2, V-3, V-4 from MNE, Figure 5.5) and the V2/V3 

cortex (i.e., V-1, V-3, V-5 from VW-SSI, Figure 5.4, are same as V-1 from MNE, Figure 

5.5). Some of these networks had bilateral symmetric distribution (e.g., V-1 in Figure 

5.5). Some showed hemispheric dominance whereas the similar dominance was found on 

their symmetric hemispheres in other subnetworks (i.e., V-2, V-3 in Figure 5.5). In terms 
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of spectral patterns, the visual RSNs were characterized with evident peaks in the alpha 

band for both methods. 

For the auditory network, both VW-SSI and MNE detected two subnetworks. 

These RSNs mainly covered the temporal cortices, with lateralized but symmetric 

distribution (i.e., A-1 and A-2 in Figure 5.4, are same as A-1 and A-2 in Figure 5.5). All 

auditory subnetworks had peaks in the alpha band while A-1 from MNE showed a peak 

in the beta band as well. 

For the somatomotor network, three and four subnetworks were detected using 

VW-SSI and MNE, respectively. Three subnetworks from VW-SSI covered the premotor 

and primary motor cortices. Furthermore, M-2 and M-3 showed hemispheric dominances 

on symmetric areas. In MNE, M-4 covered the premotor and primary motor cortices while 

M-1, M-2, and M-3 covered lateral primary motor cortices, which were not detected in 

VW-SSI. M-1 and M-3 were symmetric, and M-4 showed bilateral symmetric distribution, 

which covered similar areas of M-2 and M-3 in VW-SSI. In terms of spectral patterns, 

two somatomotor subnetworks (i.e., M-1 and M-3) from MNE showed dominant peaks 

in the beta band while other subnetworks only had peaks in the alpha band. 

For the frontoparietal network, both methods detected three subnetworks. They 

mostly covered the prefrontal cortex with either unilateral (e.g., F-1, F-3 in Figure 5.4 

and F-1 in Figure 5.5) or bilateral distributions (e.g., F-2 in Figure 5.4; F-2 and F-3 in 

Figure 5.5). F-3 from VW-SSI covered the similar area as F-1 from MNE. F-1 and F-2 

from VW-SSI covered the similar areas as F-2 and F-3 from MNE. These subnetworks 

all had the largest peaks in the alpha band while F-1 from MNE (Figure 5.5) also showed 

a peak in the beta band. 
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For DMN, four and five subnetworks were detected from VW-SSI and MNE, 

respectively. In comparison with the other four RSNs, the subnetworks of the DMN 

exhibited more variations. The subnetworks covered the medial prefrontal cortex (mPFC) 

(e.g., D-1 in Figure 5.4; D-2 and D-5 in Figure 5.5), the inferior parietal lobe (IPL) (e.g., 

D-3 in Figure 5.4; D-3 in Figure 5.5), and PCC (e.g., D-2 in Figure 5.4; D-4 in Figure 

5.5). Symmetric patterns were available in results from both methods (e.g., D-1 in Figure 

5.4; D-1 in Figure 5.5). In the comparison of two methods, D-2 and D-3 from VW-SSI 

covered the similar areas as D-3 and D-4 from MNE, respectively. D-1 from VW-SSI 

covered the similar areas as D-2 and D-5 from MNE in the frontal cortex, while D-2 from 

MNE had wider distributions over posterior cortices as well. All subnetworks from both 

methods exhibited the spectral peaks only in the alpha band. 

Spatial patterns vs. fMRI RSN templates: Spatial patterns of RSNs derived using 

VW-SSI and MNE were further compared to fMRI-derived RSN templates using the 

concept of confusion matrix (Figure 5.6). The diagonal elements of the matrix represent 

the TD values of the same classes of EEG RSNs and fMRI RSNs, while the off-diagonal 

elements of the matrix represent the TD values of different classes of EEG and fMRI 

RSNs. Each EEG RSN was associated with an fMRI template RSN showing the largest 

TD. Similar patterns of spatial similarity indicated by the confusion matrices were 

observed for both methods, where diagonal elements in the confusion matrices showed 

much higher values than off-diagonal elements (Figure 5.6A and 5.6B). Furthermore, 

more negative values were observed in the off-diagonal matrix for VW-SSI (Figure 5.6A), 

which suggested the fact that the between-class differences in RSNs from VW-SSI were 

much larger than those from MNE. These observations were supported by the statistical 
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comparisons of the within-class and between-class TD values (Figure 5.6C). The within-

class TD values were significantly higher than the between-class TD values (Figure 5.6C, 

t-test, p < 0.001) for both methods. The within-class TD values for VW-SSI are 

significantly higher than the within-class TD values for MNE (Figure 5.6C, t-test, p = 

0.0062). The between-class TD values of VW-SSI are significantly lower than those of 

MNE (Figure 5.6C, t-test, p = 2.8e-5). In five classes of RSNs, visual and auditory 

networks exhibited relatively higher TD values than other networks while DMN showed 

relatively low TD values. For DMN, it was observed that the TD values were higher in 

results from VW-SSI.  

Spatial extents: Figure 5.6D illustrates the statistics of the spatial extents of RSN 

node sources calculated from all reconstructed EEG RSNs showed in Figure 5.4 and 

Figure 5.5. The data indicated that VW-SSI had significantly smaller sizes of cortical 

sources reconstructed in all RSNs than MNE (p<0.0024). 
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Figure 5.6 Spatial TD between spatial patterns and fMRI RSN templates 

(A) Spatial TD of VW-SSI. (B) Spatial TD of MNE. (C) Bar-plots of the within-class 

(enclosed with thicker boundaries) and between-class positive TDs over five RSN classes. 

(D) Cluster size. 

 

5.4 Discussion 

In the present study, a novel ISI method, i.e., VW-SSI, was used in our previously 

reported framework (Li et al., 2018) with the purpose of better estimating cortical RSNs 

from EEG data. In the original framework (Li et al., 2018), the reconstruction of EEG 

RSNs was achieved in three steps: mapping data from surface EEG/MEG recordings to 
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the cortical surface using ISI (i.e., MNE), extracting temporally co-activated spatial 

patterns using the data-driven approach (i.e., ICA), and generating thresholded cortical 

maps of RSNs through statistical correlation analysis. This study aims to improve the 

performance of the previously reported framework through adopting an advanced ISI 

technique (Zhu et al., 2014). The modified framework, together with a control framework 

that used MNE, were evaluated using both simulated and experimental resting-state EEG 

data. In the simulation, the reconstruction of multiple networked brain activities with the 

use of VW-SSI showed significantly better accuracies in estimating spatial patterns than 

results with the use of MNE (as indicated by all metrics). Meanwhile, VW-SSI was much 

better in estimating the coarse temporal scale and major temporal patterns than MNE (as 

indicated by the metric RMSE), while MNE is slightly better than VW-SSI in depicting 

detailed fluctuations (as indicated by the metric temporal CC). Using resting-state EEG 

data from healthy participants, it was demonstrated that the framework using VW-SSI 

could reconstruct RSNs that showed significantly higher spatial similarity to the fMRI 

RSNs templates than those obtained by the control framework. Results from VW-SSI 

further showed reduced spatial smoothing as those from MNE. 

In contrast to the advancement of ICA in recent research (Brookes et al., 2011b; 

Li et al., 2018; Sockeel et al., 2016; Yuan et al., 2016), the critical role of ISI methods in 

the computational frameworks has been largely overlooked. Given the function (i.e., 

source mapping) and the implementation (i.e., before ICA) of ISI, it is believed that ISI 

largely determines the reconstruction accuracy of RSNs, especially in spatial estimations. 

While different aspects of spatial estimations have been considered in conventional ISI 

methods, the extents of distributed sources and the sparseness are two key features that 
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require research attention. The extents of estimated sources are the major factor in the 

association with specific anatomical structures and the definition of RSN regional nodes. 

In our previous study that used MNE (Li et al., 2018), the spatial patterns were diffused, 

making it difficult to localize regional nodes of RSNs. Regarding the sparseness, the 

whole-brain distribution of RSNs, as revealed in fMRI data (Beckmann et al., 2009; De 

Luca et al., 2006; Yuan et al., 2016), contradicts the assumption of sparseness of brain 

activities in the original source domain. Such an assumption is only valid under certain 

task conditions (Ding and He, 2008). Motivated by this limitation, recent studies have 

developed new SSI algorithms to explore sparseness in transform domains (Ding, 2009; 

Ding et al., 2013; Mihcak et al., 1999). Wavelets are well-established techniques to 

compress signals without the compromise of accuracy and have been successfully 

implemented in many areas (Dang and Chau, 2000; Thayaparan et al., 2007). The 

wavelet-based SSIs have been developed for EEG/MEG neuroimaging (Chang et al., 

2010), which significantly compresses source signals for their better sparse 

representations in the wavelet domain, and the improvements in inverse imaging results 

have been reported (Chang et al., 2010). At the same time, the variation-based SSI 

promotes sparseness at boundaries between active and inactive brain regions and, 

therefore, it can be used to estimate extents of brain activities. However, it does not 

constrain the overall norm of source signals that allows the flipping of active and inactive 

brain regions, which leads to estimation ambiguities (Zhu et al., 2014). The VW-SSI 

algorithm integrates the variation and wavelet, which therefore combines the advantages 

of both transforms in reconstructing distributed brain activities with their extent 

information. 
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The expected improvements in estimated cortical data from the novel ISI 

algorithm are indicated in the enhanced spatial reconstruction of RSNs, which are 

suggested in both simulations and experimental results. In the simulation, it is observed 

that spatial patterns from VW-SSI suggest several differences as compared with results 

from MNE. Regions revealed by VW-SSI had clearer boundaries, less smoothed 

distributions, and smaller source node sizes, while sources from MNE are in general 

spatially diffused and cover relatively large areas. These observations were further 

confirmed by data from quantitative metrics (Figure 5.3). Among the quantitative metrics, 

the spatial CC is more affected by accuracies of estimated source locations and extents. 

Using VW-SSI, the spatial CC is significantly improved as compared with results from 

MNE (p<1e-10). It is noted that some spatial patterns of estimated clusters from both 

MNE and VW-SSI both show residue patterns of sources from other simulated clusters. 

This is because, although temporal envelopes of clusters were independent among 

different clusters, simulated noises could change such independences. Since the residue 

pattern is not observed in all simulated cases, it might also be explained by errors induced 

in the process of ISI since more errors are expected in some simulated cases, for example, 

these with simulated sources from deep brain areas (Acar and Makeig, 2013; Lin et al., 

2006). The fact also suggests the importance of advancing ISI methods in better 

estimating EEG RSNs. 

The experimental results further confirmed the improvement in spatial 

reconstructions. Five major resting-state networks, including visual, auditory, 

somatomotor, frontoparietal, and default mode networks, have been identified and 

represented with different numbers of subnetworks. The spatial patterns from both 
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methods showed remarkable similarity with the RSN templates from fMRI (Yeo et al., 

2011). However, the spatial reconstructions from VW-SSI and MNE still exhibited 

several different features. Specifically, the thresholded regions of RSNs from VW-SSI 

showed high-contrast boundaries. Besides, regional source extents from VW-SSI was 

significantly smaller than those from MNE. These observations were further confirmed 

by statistical comparisons using quantitative metrics. With the fMRI RSN templates as 

references, the spatial patterns of RSNs from VW-SSI showed significantly higher TD 

than MNE. The between-class TDs from VW-SSI were significantly lower than MNE. 

These important results might be explained by the fact that the small spatial extent from 

VW-SSI can reduce the spatial confusion and overlaps across different anatomical 

structures. These findings suggest that the purpose of VW-SSI is fulfilled in the 

reconstruction of RSNs: its advantage in recovering cortical sources can be propagated 

to the outcome of the computational framework, bringing about accurate estimations of 

RSN locations and extents. 

Besides the spatial reconstruction, the temporal and spectral estimations of RSNs 

are two significant aspects that influence the characterization of RSNs. VW-SSI, however, 

did not exhibit obvious advantages in these two aspects. It is difficult to conduct an 

experimental evaluation of the temporal and spectral reconstructions of RSNs because 

there is no compelling reference at resting-station conditions. The simulation results 

showed that VW-SSI generated significantly better results in the metric of the temporal 

RMSE (p<1e-10) but worse results in the metric of the temporal CC (p<1e-10) than MNE. 

VW-SSI seems better in catching the scale and the general structure of temporal 

fluctuations, while MNE seems better in catching fluctuation patterns with more details. 
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The general and detailed features of fluctuations are both crucial to investigate RSNs 

because they directly affect the analysis of the RSN dynamics (Chen et al., 2013). In the 

analysis of experimental data, temporal data were not presented (while available) due to 

the lack of reference points to evaluate them. Instead, the power spectra were derived 

from temporal data and presented for all RSNs (Figure 5.4 and 5.5). The present results 

indicate that different RSNs have different spectral features (Li et al., 2018; Mantini et 

al., 2007). In the results of VW-SSI, the power spectra mainly exhibited peaks in the alpha 

band while peaks were also observed in the beta band in the results from MNE.  

The simulations in the present study were featured with the consideration of 

several realistic aspects of the human physiological processes, including realistic models 

for the generation of neocortical electrical activity (Ramkumar et al., 2014) and modeling 

of noise at different levels of neurophysiological processes and measurements (Pijn et al., 

1991; Teplan, 2002). Also, the locations of simulated sources and clusters were randomly 

generated, which made simulation results more generalizable over the whole human brain. 

However, the simulations in the present study were still simplified in aspects of the 

number of RSNs (i.e., three clusters) and the numbers of nodes within each RSN (i.e., 

one, two, and three in three clusters, respectively). Another limitation is the assumption 

of stationary independences among three simulated clusters, while dynamic functional 

connectivity has been suggested in previous studies (Chen et al., 2013; de Pasquale et al., 

2010). The efforts of simulations in the present study were aimed mainly for the 

comparison between VW-SSI and MNE, as well as to provide a reference for the 

comparison of VW-SSI and MNE in experimental data. While the present study used 

fMRI data as references, it should be noted that RSNs identified from EEG might be 
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intrinsically different from fMRI RSNs since EEG and fMRI measure distinct signals 

generated by different physiological processes with the human brain and human brain 

networks (Brookes et al., 2011b; Yuan et al., 2012b). The use of fMRI RSN templates as 

references (Yeo et al., 2011) because the ground truth of RSNs for EEG is unknown and 

fMRI data are the best available references so far. 

In the present study, we studied a new computational framework for the 

reconstruction of EEG RSNs by implementing a new sparse source imaging algorithm 

for the ISI step. The new framework yielded significantly enhanced reconstructions of 

spatial features of RSNs. It also showed improved accuracies in reconstructing large 

temporal fluctuations and their amplitudes, while its performance in catching the 

temporal patterns of fluctuations on smaller timescales needs to be further improved. 
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6 Assessing EEG Resting State Networks Changes in Different 

Conditions 

6.1 Introduction 

In the previous chapters, we have developed and improved the computational 

frameworks for the reconstruction of EEG RSNs from multiple perspectives, including 

the data-driven method, the statistical analysis, and the ISI method. The proposed 

frameworks have been demonstrated to be effective, accurate, and robust to identify 

different RSN characteristics such as the spatial pattern and the power spectra. The 

findings revealed by these frameworks inform our understanding of the mechanism of the 

human brain function and organization during the resting state. Despite the significance 

of the findings, an attractive proposition for these studies is to reveal the potential of 

RSNs in the diagnosis of neurological disorders, which requires assessing RSNs in 

different conditions, e.g., healthy controls and patients. However, previous studies in this 

dissertation mainly focused on detecting RSNs of healthy participants but did not 

comprehensively investigate the frameworks’ capability of assessing RSN alterations of 

diseased persons. This study aims to probe RSNs in different conditions using the 

computational frameworks discussed in the previous studies, which investigates the 

capability of these frameworks in clinical conditions. 

Recently, a growing interest has been drawn to assessing RSN alterations in 

different conditions, which is partially due to recent findings showing that conditions, 

e.g., disease and age, may modulate specific RSNs (Bassett et al., 2012; Brookes et al., 

2018; Cao and Slobounov, 2010; Chen et al., 2016). Specifically, by comparing between 

healthy controls and patients, previous studies have reported the alternations of RSNs in 
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different neurological disorders, such as Alzheimer’s disease (Agosta et al., 2012; Sorg 

et al., 2007) and epilepsy (Pereira et al., 2010; Voets et al., 2009). These studies mainly 

used seed-based connectivity analysis (SCA), which needs pre-selection of regions of 

interest based on some prior knowledge. However, the selection of seeds confines the 

findings of SCA to a limited number of brain nodes or regions, limiting its potential in 

revealing RSN differences beyond prior knowledge. Other than SCA, independent 

component analysis (ICA) is another important and popular method to study RSNs, in 

particular, the spatial feature of RSNs. All studies in this dissertation employed ICA to 

investigate RSNs from EEG data. In contrast to the SCA, ICA is data-driven and does not 

require a priori structural knowledge. Despite its advantages over SCA, ICA has rarely 

been used to assess RSNs in different conditions.  

In the study of Chapter 4, we conducted comparisons of RSNs between healthy 

controls and patients of a balance disorder, aiming to find RSN differences that may be 

explained the by the disorder. That research, however, was limited by the number of 

subjects, i.e., seven patients vs. seven healthy controls, which led to insufficient statistical 

power of the results. Moreover, the RSN differences had not been systematically 

interpreted or quantitatively assessed, which limited the understanding of the RSN 

changes. Therefore, a further study with larger sample sizes and comprehensive 

investigations is needed to draw valid conclusions on the RSN differences.  

In this chapter, data reflecting different conditions (i.e., a neurological disorder 

and the symptom severity) are analyzed together in a previously reported ICA-based 

framework (Li et al., 2018), aiming to obtain the RSN difference between conditions (e.g., 

healthy vs. patients) and the relationship between RSNs and condition levels (e.g. the 
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symptom severity). Simulated EEG data are used to test the framework and provide 

quantitative evaluation of the outcome. Moreover, experimental data from twenty healthy 

controls (HCs) and twenty patients with a balance disorder were employed to further 

assess its performance in terms of detecting of potential biomarkers. We test two 

hypotheses: 1) The proposed framework can detect RSN differences between different 

conditions, which are associated with changes in the functional connectivity in networks. 

2) Different levels of conditions (such as diseased conditions) are significantly correlated 

with different levels of RSN changes, and such a relationship can be detected using the 

proposed framework. Here, both different conditions and different condition levels were 

considered in the investigation of RSN changes. To the best of our knowledge, this is the 

first study to provide extensive and quantitative evaluations of RSN changes using ICA-

based frameworks, regardless of the employed neuroimaging technique.  

 

6.2 Materials and Methods 

6.2.1 Assessing RSN Changes in Different Conditions 

The computational framework to assess RSNs was built upon previously reported 

frameworks (Ding et al., 2014; Li et al., 2018; Yuan et al., 2016) with minor modifications. 

As a result, the framework needed to reconstruct RSNs from EEG data in the first place, 

which was followed by the comparison of different conditions and the detection of 

relationship between RSNs and different condition levels. 

Reconstruction of RSNs: First, in order to conduct subsequent analyses on the 

cortex, the sensor-space EEG data were mapped to the source space using the minimum 

norm estimation (MNE) (Hamalainen and Ilmoniemi, 1994). Then, Hilbert envelopes of 
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the source-space data were calculated and normalized using a z-transform in order to 

reduce inter-individual variations (Brookes et al., 2011b),. Afterward, the normalized 

envelopes from different conditions were concatenated in the temporal domain. 

Specifically, in the comparison of different conditions, data of two conditions (e.g., HCs 

and patients) were analyzed together regardless of the difference of condition levels (e.g., 

the symptom severity of patients). In the detection of relationships, the condition level 

was taken into consideration in subsequent analyses. After obtaining the group-level data, 

the Infomax ICA (Lee et al., 1999) from the EEGLAB toolbox (Delorme and Makeig, 

2004) was applied to the data to obtain multiple independent components (ICs). 

After the ICA, statistical correlation analysis (Li et al., 2018) was applied to all 

ICs as described below. First, correlation coefficients (CCs) between the time course of 

each IC and the time course of each source on the cortex were calculated for all individual 

participants in the group. CC values of each source point were further converted into the 

z-value using the Fisher’s z-transformation, resulting in normalized correlation values, 

termed as independent component correlation (ICC). After obtaining ICC maps from all 

individuals, ICC maps were then smoothed by an iterative smoothing algorithm, i.e., the 

heat kernel smoothing with Full Width at Half Maximum of 8 mm (Chung et al., 2005). 

Then, the group-level maps were calculated by averaging across participants (Alexander, 

1990; Silver and Dunlap, 1987) with autocorrelation used to correct the degree of freedom 

(Bartlett, 1935). To provide a statistical definition of brain regions from these ICs, the 

averaged correlation maps were further thresholded by applying a source-wise t-test 

against zero to ICCs from all participants. The significance level was set at p < 0.01, and 

significant source nodes were kept to form clusters on the cortex. To address the multiple 
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comparison problem, a cluster-based correction method was employed (Hagler et al., 

2006) to remove small clusters in order to reduce false positives. The t-test and the cluster-

based correction resulted in binary masks to represent the significant regions of each ICC. 

By applying the binary masks to the averaged ICC maps, thresholded ICC maps were 

obtained.  

Comparison of RSNs: One of the aims of this study was to compare RSNs in 

different conditions. To detect regions with significant differences, a two-tailed t-test was 

performed to compare ICC of each source between two conditions. The t-test was 

repeated across all source points in all ICs, generating maps showing significant 

differences between two conditions (p < 0.01). The multiple comparison problem was 

solved by the cluster-based thresholding as described above. Because the spatial region 

of each IC was defined using a binary mask in the previous step, the difference maps were 

further thresholded by the corresponding masks in order to reject differences that were 

not significant in the derived RSNs. 

Detection of Relationships: Another important aim of this study is to detect the 

relationship between RSNs and different condition levels. To detect regions with 

significant relations, ICCs were plotted as a function of condition levels, i.e., functional 

connectivity (see Section 6.2.2) or symptom severity (see Section 6.2.3). Relationships 

between ICCs and covariates were tested through a model fit, in which a linear model 

was employed to regress condition levels against ICCs across all source nodes. With the 

significance level at p < 0.01, regions with significant relationships were detected. The 

cluster-based thresholding (see Reconstruction of RSNs) was adopted to control the false 
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positive rate. Similar to the previous section, the significant maps were spatially filtered 

using the binary masks that defined the region of RSNs. 

6.2.2 Simulation Protocols 

In order to quantitatively evaluate the performance of the proposed framework, a 

simulation with multiple iterations was proposed. To meet the data requirement of the 

proposed framework, i.e., different conditions and condition levels, networks with 

different connectivity but the same spatial distributions were simulated. Therefore, two 

datasets with different connectivity can be used to test the capability of comparisons, and 

multiple datasets with different connectivity can be used to examine the detection of 

relationships. 

To simulate a network consisting of distributed brain regions, two source regions 

with the diameter of 20 mm were placed on the cortical surface as shown in Figure 6.1B, 

and they are fixed across simulations. The time courses of the two sources, which were 

randomly generated in each simulation, were modeled as amplitude-modulated signals 

including the envelope and the carrier signal. The connectivity between two sources was 

reflected in the envelope while the carrier signal was employed to mimic the fast dynamic 

of brain activity. The sampling frequency of the signals was 150 Hz, and the duration was 

2 minutes. In order to simulate different connectivity between two sources, the envelope 

was divided into non-overlapping 4-second windows, in each of which envelopes of two 

sources were either same (i.e., correlation coefficient = 1) or independent (i.e., correlation 

coefficient = 0) (Figure 6.1A). The proportion of same envelopes, P1, varied across 

simulations, ranging from 0 to 1 with the step of 0.1. The envelope in each window was 

generated using the protocol reported by Ramkumar, Parkkonen et al (2014) (Ramkumar 
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et al., 2014), which has also been described in Chapter 5.2.3. In brief, the envelopes were 

generated by convolving Gaussian functions with binary spike trains. After obtaining the 

envelopes for all thirty windows, carrier signals, which were sinusoids with 8 Hz for the 

left source and 10 Hz for the right source, were multiplied with the envelopes. In order to 

mimic brain noise on the cortical surface, pink noises were added to the whole cortical 

surface (Ramkumar et al., 2014) with the standard deviation (SD) of the noise 10% of SD 

of simulated signals. Afterward, the simulated cortical signals were mapped to sensor 

space by multiplying the lead field (see Section 5.2.3). Finally, Gaussian white noises 

with an SD 5% of the averaged SD of sensor-space signals were added to simulate 

measurement noises. For a specific P1, the simulation was repeated 50 times, each time 

with fixed source regions but randomly generated time courses. The simulation provided 

550 datasets, Dp (where the subscript p = P1), which are subject to the following analysis. 



118 

 
Figure 6.1 Schematic of the simulation 

(A) Envelope and carrier signals of simulated time courses. (B) Source locations (C) 

Connectivity at different P1. (D) Concatenation of data for the comparison (E) 

Concatenation of data for the detection of relationships 
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6.2.3 Experimental Data 

Twenty healthy controls (HCs) (all females; age: 48.8 ± 7.2 years) and twenty 

patients (all females; age: 51.8 ± 12.5 years) of mal de debarquement syndrome (MdDS) 

(Cha et al., 2012; Ding et al., 2014) participated in this study, which was approved by 

Western IRB (www.wirb.com). All participants have been fully informed about the study 

and have signed the informed consent form before the experiment.  

A 126 channel EEG system with a BrainAmp amplifier (Brain Products GmbH, 

Munich, Germany) was used in the present study. The ground electrode was placed at 

AFz in the international 10-20 system, and FZ was chosen as the reference channel. 

Resting-state recordings were obtained for five minutes for each participant while they 

were asked to keep still and have their eyes closed. For each participant, structural MRI 

data were obtained using a 3D MPRAGE sequence (124 contiguous axial slices with 1.2 

mm slice thickness; matrix size = 256×256; FOV = 220 mm × 198 mm; TR/TE/TI/TD = 

5 /1.98 /725 /1400 ms, flip angle = 8 degree; sampling bandwidth = 31.25 kHz, SENSE 

acceleration = 2). Other than EEG and structural MRI recordings, patients of MdDS rated 

the degree of their symptoms on a visual analogue scale (VAS) of 0-100, where 0 

indicated free of rocking sensation. Here, VAS represented the symptom severity which 

would be used as covariates in subsequence analyses. 

6.2.4 Analysis and Evaluation Protocols 

Simulation: The simulation aimed to determine whether the proposed framework 

can detect the connectivity difference. To evaluate this capability, two datasets, Di and Dj 

(where i > j), were concatenated and analyzed using the proposed framework, with three 

ICs generated (Figure 6.1D). In order to select the IC corresponding to the simulated 

http://www.wirb.com/
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sources, spatial and temporal correlation coefficients (CCs) were calculated between the 

ICs and the simulated sources. The IC with the highest sum of spatial and temporal CCs 

was chosen as the reconstructed network. Because only a single dataset was selected in 

either condition, statistical comparisons cannot be conducted in each simulation. 

Consequently, the proposed framework cannot be used to localize the difference. 

However, since regions with different connectivity were already known (i.e., the 

simulated sources), ICCs in the simulated regions were compared in the analysis of each 

simulation. By repeating the comparison 50 times, ICCs in the simulated regions can be 

statistically compared between two conditions using a paired t-test, with the significance 

level at p < 0.05. Since different connectivity was simulated and every two datasets with 

different connectivity could form a comparing pair, all possible pairs were compared 

using the above method, resulting in 55 comparisons. 

The simulation also aimed to test the relationship between ICC and connectivity. 

To evaluate this capability, 11 datasets, Di (where i = 0, 0.1, 0.2, …,1), were selected and 

analyzed using the proposed framework, with three ICs generated (Figure 6.1E). The 

selection of ICs followed the same strategy as described above. Also, the ICCs in the 

simulated region were averaged to generate the averaged ICC which was used as the 

covariates for the model fit. In the analysis of each simulation, a linear regression was 

conducted between averaged ICCs and P1’s, with the significant level at p < 0.001. This 

was repeated 50 times and the times with significant relationship were summarized to 

evaluate the performance. 

Experiment: After obtaining resting-state EEG data, data were pre-processed 

with an established pipeline including rejection of bad segments, interpolation of bad 
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channels, and re-reference to common average. Then data were down-sampled to 250 Hz 

and band-pass filtered from 4 Hz to 30 Hz. ICA was used to remove artifacts caused by 

movement, eye movement, and noise (Ding et al., 2014). 

The preprocessed data from twenty healthy controls (HCs) and twenty MdDS 

patients were concatenated and processed using the proposed framework, with 40 ICs 

generated. RSNs were selected from the ICs according to their spatial features such as 

spatial distributions and spatial coverages, with fMRI RSN templates as references (Yeo 

et al., 2011). In the comparison of two conditions, i.e., HCs vs. patients, the patients’ 

symptom severity, i.e., VAS, was not taken into account. Hence, HCs were treated as the 

control condition while all MdDS patients were treated as the comparison condition. In 

the detection of relationships, only ICC maps from the MdDS patients were considered, 

and a linear regression was performed between ICC and VAS of the patients. 

6.3 Results  

6.3.1 Simulation 

To evaluate the framework, networks with different connectivity were simulated. 

To simulated different connectivity, the time courses were divided into multiple windows 

with the binary state, i.e., identical or independent. Figure 6.1C shows the relationship 

between connectivity and P1’s. It can be observed that increased P1 is associated with 

increased connectivity. Meanwhile, for each P1, variation of connectivity can be 

observed, which may be explained by the randomization of envelopes.  

The comparison of simulated data contained 55 possible pairs, each of which 

included 50 iterations. Figure 6.2A illustrates six examples of the comparisons. Each plot 

represents the information of two paired conditions. The bar plots show the mean and the 
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standard deviation of ICCs in the simulated sources, and the spatial patterns show the 

corresponding ICC maps. In the spatial patterns, relatively higher ICC can be observed 

around the simulated sources. In the comparison of ICCs, differences were detected 

between two compared conditions. In general, the condition with higher P1 exhibited 

higher ICCs. One exception in the fourth example in which P1, = 0.5 shows higher ICCs 

than P1 = 0.8.  

Figure 6.2B shows the summary of 50 simulations. The left figure illustrates the 

mean and standard deviation of ICCs for one condition, and the right figure shows the 

same information for the second condition. The color represents the amplitude of the 

mean. It can be observed that ICC increased with P1 for both conditions regardless of the 

P1 of the compared condition. Also, for the same P1, the averaged ICCs are relatively 

consistent, with small variations observed. The result of the statistical analysis over 50 

simulations is displayed in Figure 6.2B. Among all 55 pairs, differences can be 

significantly detected in 54 pairs. The condition with higher P1 exhibits higher ICC than 

the condition with lower P1. The pair of P1, = 0.5 and 0.4 does not show significant 

difference but reaches a p-value of 0.079. 

Figure 6.3A shows five examples out of 50 simulations of the linear regression. 

The bar plots show the mean and standard deviation of ICCs in the simulated sources, 

and the spatial patterns depict the ICC distributions over the cortex. In each bar plots, the 

blue line represents the best fit of linear regression, which is significant (p < 0.01). All 50 

simulations exhibit significant linear relationship at the significance level of p < 0.01. 
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Figure 6.2 Simulation results of comparisons 

(A) Six examples of comparisons. (B) Bar plot of ICCs in two conditions in 50 

simulations. (C) T-test results of all 55 pairs. * p < 0.05; ** p < 0.005 
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Figure 6.3 Examples of Simulation Results of linear relationships 
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6.3.2 Experiment 

Spatial Patterns of RSNs: Before assessing RSNs in different conditions, it is 

necessary to obtain spatial patterns of RSNs. Figure 6.4A-E illustrates spatial patterns of 

identified RSNs from the experimental data including both HCs and MdDS patients. The 

spatial patterns were further categorized into five groups, i.e., visual, auditory, 

somatomotor, frontoparietal, and default mode networks. For each group, multiple RSNs 

are selected according to their spatial distributions. 

In the selected RSNs, four, four, four, three, and five RSNs were selected for the 

five classes of RSNs, respectively. As shown in Figure 6.4A-E, these spatial patterns are 

remarkably similar to fMRI RSNs templates. Also, their spatial features are in agreement 

with the results in previous chapters. Specifically, both bilateral (e.g., V-1) and lateralized 

(e.g., V-2) patterns can be observed in each RSN class. Moreover, some show the 

hemispheric dominance whereas the similar dominance can be found on their symmetric 

hemisphere in other corresponding RSNs. For example, M-1 and M-2 are dominant on 

the motor cortex of one hemisphere, but their spatial patterns are symmetric. In all five 

classes of RSNs, the DMN exhibit the most complicated spatial features. Different brain 

regions, including the prefrontal cortex, the parietal cortex, and the posterior cingulate 

cortex (PCC), are covered by multiple components.  
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Figure 6.4 Spatial patterns of RSNs 

(A) Visual. (B) Auditory. (C) Somatomotor. (D) Frontoparietal. (E) Default.  

 

Comparison of RSNs: The framework was used to compare all derived RSNs of 

HCs and MdDS patients. Four RSNs show significant differences as shown in Figure 6.4, 

including V-2, V-3, A-1, and D-5 (Figure 6.5). The spatial patterns show the regions and 

the difference values of the detected differences. The blue color represents that the ICC 
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is lower in MdDS patients. The bar plot shows the mean and the standard deviation of 

ICCs in corresponding regions.  All five results show decreased ICC in the patient group. 

Specifically, in the two visual subnetworks (i.e., V-2 and V-3), significantly lower ICCs 

are detected in the right primary visual cortex. In the auditory network (i.e., A-1), 

significantly lower ICCs are detected in the left auditory cortex and left inferior motor 

cortex. In the DMN (i.e., D-5), significantly lower ICCs are detected in the inferior 

parietal lobe (IPL). Although some RSNs cover multiple regions (e.g., D-5), significant 

differences are only detected in one of the regions instead of all regions. 

Relationship between ICC and VAS: Figure 6.5 shows the five RSNs with 

significant linear relationships between ICC and VAS, including one auditory network, 

one sensorimotor network, and three DMNs. The spatial patterns show the brain regions 

and the fit parameter of significant linear relationships. Red represents that VAS increases 

when ICC increases; blue represents that VAS decreases with reduced ICC. In the 

auditory network (i.e., A-2), a negative linear relationship is found in the right auditory 

cortex. In the auditory network (i.e., A-2), a negative linear relationship is found in the 

right auditory cortex. In the sensorimotor network (i.e., M-3), a positive linear 

relationship is found in the left motor cortex. The three DMNs exhibit distinct linear 

relationships: D-1 shows a positive linear relationship in three areas in the prefrontal 

cortex; D-2 shows negative linear relationship; D-3 shows a positive linear relationship 

in the right prefrontal cortex while negative linear relationship in the right tempo-parietal 

cortex. 
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Figure 6.5 RSN differences between HCs and MdDS 
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Figure 6.6 Linear relationships between ICC and VAS 
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6.4 Discussion and Summary 

A number of recent studies have shown that the change of RSNs may reflect the 

alternation of conditions or the degree of quantified status, such as functional brain 

disorders and the degree of symptoms (Brookes et al., 2018; Buckner and Vincent, 2007; 

Chen et al., 2015; Fox and Raichle, 2007). The relationship between RSNs and the 

conditions can be characterized by assessing RSNs in different conditions or condition 

levels. In previous studies regarding RSN differences, RSNs are only assessed in a 

relatively small number of nodes, which limits the localization of RSN changes. From a 

methodological point of view, ICA can overcome this limitation and therefore offers more 

flexibility. However, ICA has been mainly used to reconstruct the spatial patterns of 

RSNs while its capability of comparing RSNs has not been extensively investigated. In 

the present study, an ICA-based framework was developed to compare RSNs from 

different conditions and detect underlying relationships between RSNs and participants’ 

condition level. The framework included data from different conditions in a single 

implementation and statistically compared RSNs of different conditions. Its capability to 

assess RSNs was validated using simulated data. More importantly, using experimental 

data from HCs and MdDS patients, the proposed framework successfully detected RSN 

differences in MdDS patients and revealed the relationship between RSNs and the degree 

of symptoms.  

MdDS is caused by exposure to oscillating environments such as a flight or a 

cruise, leading to a persistent sensation of rocking dizziness (Cha, 2009; Cha et al., 2012; 

Cha et al., 2013; Cha, 2015). It is the unnatural persistence of the natural phenomenon of 

motion entrainment. In the analysis of experimental data, resting-state EEG data from 
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patients of MdDS were used in the comparison to healthy participants. The comparison 

revealed reduced ICC in multiple RSNs, including the auditory network, the visual 

network, and the DMN. In particular, the hypo-connectivity in the left temporal cortex 

and in the left tempo-parietal cortex are consistent with hypo-metabolism from fMRI and 

PET studies regarding the same disorder, in terms of the location of the differences and 

the direction of changes (i.e., decreased) (Cha et al., 2012). Moreover, resting-state fMRI 

studies have found that MdDS patients show an increased functional connectivity in the 

primary visual cortex (Cha et al., 2012). The finding is in agreement with the results of 

visual RSNs regarding the spatial location. However, the direction of change of the two 

studies is the opposite, which warrant further research in the future. 

Significant linear relationships between ICC and VAS have been detected in the 

present study. The results showed that a linear relationship exists in the prefrontal cortex 

(i.e., D-1 and D-3), which is consistent with the functional connectivity changes revealed 

by previous PET studies (Cha et al., 2012). It is noteworthy that the relationship has been 

found in the right temporal cortex. Although this brain area has not been reported in 

previous studies regarding MdDS or our comparison results, it is on the symmetric 

hemisphere of the results of A-1, as reported in both PET study and our comparison 

results. The negative fit parameter suggests that the connectivity decreases as the 

symptom increases. Among the five results, D-5 is the only result that has been reported 

in both the comparison and the linear regression. However, the significant regions are 

different in two analyzes. Specifically, the left posterior cortex was reported in the 

companion while the right prefrontal cortex and the right posterior cortex were reported 

in the linear regression. Moreover, the fit parameters for the two brain regions were 
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different, indicating the symptom may have an opposite effect on the connectivity in 

different regions. 

In this study, the comparisons and the linear regressions are both based on ICC, 

which represents the correlation between the IC activation and the envelope of sources. 

The implementation of ICA is based on the assumption of stationary functional 

connectivity in RSNs (Brookes et al., 2011b). Therefore, the time courses of ICs represent 

the common activations of networked regions. By calculating the correlation coefficients 

between the common activation and the actual activation, ICC indicates the proportion of 

the common activation, which further reflects the strength of connectivity. This inference 

is supported by the results of the simulation, in which ICC increases with the increasing 

connectivity. Hence, ICC can be used as an indicator of the functional connectivity. 

Notably, the quality of results from the simulated data and the experimental data 

is distinct. Specifically, the simulation results revealed bilateral areas of the simulated 

sources, while most of the experimental results only showed a single area. This can be 

explained by the simplicity of the simulation. In the simulation, we only simulated one 

network with two interconnected sources. Although noise was added to mimic the 

realistic recordings, the simulation cannot represent the real RSNs, which include 

multiple networks with complicated connectivity. On the other hand, the comparison of 

experimental data was confined by the spatial patterns of reconstructed RSNs (see Section 

6.2.4), which exhibited dominance in a single area. This problem has been observed in 

our previous studies (Li et al., 2018; Li et al., 2017), and it can be explained by the fast 

sampling frequency of EEG and the dynamic of RSNs. Taken together, the complexity 
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of real RSNs causes the limitation of the results, which warrant further investigations in 

the future. 

In summary, a computational framework was used to compare RSNs in different 

conditions and detect relationships between RSNs and condition levels. A major 

advantage of this framework is that it provides more flexibility in the detection of RSN 

differences or relationships, which allows us to find the contrast in the whole brain. This 

study paves the way for further research assessing the relationship between RSNs and 

neurological disorders. It also sheds new light on the potential of RSNs in clinical 

diagnosis and evaluation.  
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7 Discussion and Conclusion 

Resting state networks (RSNs), which reflect the intrinsic functional architecture 

of the human brain, have drawn growing research interest to probe their 

neurophysiological underpinning (Finn et al., 2015; Hipp et al., 2012; Yuan et al., 2016). 

To date, several studies have developed different computational and analytical 

frameworks to characterize RSNs using the technique of EEG, with interesting features 

of RSNs revealed from multiple perspectives (Ding et al., 2014; Liu et al., 2017; Yuan et 

al., 2016). These studies, however, have limitations that require further studies. Therefore, 

there is abundant room for more research effort and further improvement.  

This dissertation presents novel frameworks that overcome some of the 

limitations of current frameworks used to investigate RSNs using EEG. The proposed 

frameworks are illustrated and evaluated in different studies, with each study focusing on 

solving one or two limitations. First, the study in Chapter 3 reported that studying RSNs 

in the source space can provide accurate estimations of RSNs. This finding provides an 

important direction for the frameworks in later studies. Second, the study in Chapter 4 

develops a new computational framework to provides insights into the spatial and spectral 

characteristics of RSNs. Third, the study in Chapter 4 improves the spatial definition of 

RSNs by applying new statistical correlation analysis to spatial patterns of RSNs. Fourth, 

the study in Chapter 5 uses an advanced ISI method to improve the RSN reconstruction 

accuracy. Although the studies are illustrated separately in each chapter, their 

development and invocation are largely interdependent. In this chapter, some discussion 

of the proposed frameworks is provided to highlight the significance of each contribution 
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and summarize limitations to my studies and provide important directions for further 

research.  

7.1 Summary of the Findings 

RSNs can be reconstructed either in the sensor space, i.e., the scalp surface, or in 

the source space, i.e., the cortex (Ding et al., 2014; Liu et al., 2017; Yuan et al., 2016). 

Surprisingly, little research has compared the quality of reconstructed RSNs in the two 

spaces to determine an optimal option to generate more accurate RSNs. In the study of 

Chapter 3, the performances of the sensor-space ICA (i.e., using ISI after ICA) and the 

source-space ICA (i.e., using ISI before ICA) in deriving RSNs were compared using 

both simulated and experimental data. Notably, this is the first study to our knowledge to 

investigate performance differences between these two ICAs. Both compared 

frameworks used identical ISI and ICA methods, while the only difference is the sequence 

to apply ISI and ICA. The results from simulated data showed that the source-space ICA 

achieved significantly better (p < 0.01) spatial and temporal feature estimations. For the 

real data, spatial patterns from the source-space ICA exhibited higher spatial similarity to 

the fMRI RSN templates. These findings suggest that analyzing RSNs in the source space 

(i.e., ISI then ICA) is preferable in computational frameworks for RSNs because it can 

provide more accurate estimations of RSNs. This study, therefore, determines the 

sequence to use ISI and ICA in later studies.  

To reconstruct RSNs from the data in the cortical space, a larger number of studies 

have used ICA as the primary tool in computational frameworks (Brookes et al., 2011b; 

Liu et al., 2017; Sockeel et al., 2016; Yuan et al., 2016). In previous studies, ICA is used 

to detect RSNs under the assumption of either spatial independence, i.e., spatial ICA, or 
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temporal independence, i.e., temporal ICA. In the study of Chapter 4, we propose a new 

type of ICA, time-frequency ICA (TFICA), for the reconstruction of RSNs. In TFICA, 

the temporal data are firstly transformed into time-frequency representation using STFT. 

Then, ICA is applied to the transformed data to derive components that are statistically 

independent in the time-frequency domain. The aims of the new method are threefold. 

First, the transformation by STFT makes the components non-Gaussian distributed, 

which meets the mathematical principle of ICA (Hyvärinen and Oja, 2000). Second, the 

transformation by STFT reduces the computational loads for ICA. In our study, the 

temporal data from one second contain 250 sample points, while in STFT, only 27 sample 

points are selected to represent the spectra from 4 to 30 Hz. Hence, the data for ICA are 

largely down-sampled. Third, the usage of STFT brings the spectral domain into RSN 

analysis. The spectral analysis was mostly achieved by applying a band-pass filter in 

earlier studies (Hipp et al., 2012). In contrast, TFICA provides an efficient way 

investigation of spectral features over a broad frequency band.  

The identification and characterization of RSNs were mostly based on the group-

level analysis (Ding et al., 2014; Liu et al., 2017; Yuan et al., 2016). Previous studies 

overlooked the critical role of group-level statistical analysis after ICA, making the results 

lack statistical meanings. In the study of Chapter 4, we propose statistical correlation 

analysis to process the ICA output. In statistical correlation analysis, subject-specific 

spatial patterns are obtained to represent the spatial feature of RSNs at the individual 

level. Then, spatial patterns are averaged and statistically thresholded. The averaging step 

reduces the influence of inter-subject variance, which has not been taken into 

consideration of in prior studies. The statistical thresholding, which is achieved by the 
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voxelwise t-test, refines the spatial localization of RSNs. In addition, the effect of 

autocorrelation on generating false cross-correlations has been considered in the study, 

as in resting-state fMRI studies (Honey et al., 2009; Rombouts et al., 2005; Roy et al., 

2009; Woolrich et al., 2001). This is particularly important for EEG RSN since the 

oscillatory nature of EEG signals suggests potentially high autocorrelations. Moreover, a 

cluster-based thresholding technique was used to address the multiple comparison 

problem. Its implementation in EEG RSN estimations is new and distinct in terms of the 

data domain, and it provides an alternative solution to the conservative Bonferroni 

correction for multiple comparisons.  

The statistical correlation analysis proposed in Chapter 4 also extends the 

capability of ICA-based frameworks. RSNs from participants in different conditions, e.g., 

heathy control and patients of MdDS, are compared to detect contrast differences, which 

is achieved by performing a t-test on subject-specific spatial patterns of different 

conditions. The significant differences revealed by our study are consistent with the 

findings observed in previous literature in terms of locations and directions of changes 

(Fox and Raichle, 2007; Jao et al., 2013; Marx et al., 2004; Raichle et al., 2001; Yang et 

al., 2007). Importantly, this method is data-driven while previous studies have widely 

used SCA, which requires pre-selection of regions of interest. Therefore, the statistical 

correlation analysis shed new light on the detection of RSN differences induced by 

different conditions (tasks, neurological disorders, brain injuries, etc.).  

ISI plays a critical role in current computational frameworks for EEG RSNs. The 

performance of ISI can substantially affect the reconstruction of RSNs. Despite the 

development of studies regarding EEG RSNs, little progress has been made in improving 
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ISI, and only conventional ISI methods such as minimum norm estimation (Hamalainen 

and Ilmoniemi, 1994) have been used in previous frameworks. In the study of Chapter 5, 

a novel inverse source imaging method, termed as variation and wavelet based sparse 

source imaging (VW-SSI), is used in the ISI step of the framework, aiming to improve 

the reconstructed RSNs. This modification was evaluated by comparing with the 

framework using conventional MNE. Results from both simulated and experimental EEG 

showed that VW-SSI improves the accuracy of spatial estimation. These findings suggest 

that the reconstruction of RSNs can be advanced by the development of ISI methods. On 

the other hand, the temporal estimation by VW-SSI does not give better performance than 

MNE. This is an important issue for further research because the temporal feature is a 

crucial aspect of RSNs. 

One major aim of the proposed frameworks is to reconstruct the spatial patterns 

of RSNs. In all the studies in this dissertation, spatial patterns were obtained for different 

classes of RSNs, including visual, auditory, somatomotor, frontoparietal, and default 

mode networks. The spatial patterns of these identified RSNs indicate high spatial 

similarity to RSN templates from fMRI (Yeo et al., 2011), as well as to fMRI RSNs 

reported in other literature (Liu and Duyn, 2013; Richiardi et al., 2015; Smith et al., 2009; 

Smith et al., 2012). Moreover, spatial patterns from all the studies in this dissertation 

further indicate similar features across studies. Specifically, each class of RSNs (defined 

by fMRI) have multiple EEG RSNs. Also, regardless of the RSN class, EEG RSNs exhibit 

bilateral or unilateral distributions in different components. These findings demonstrate 

the effectiveness and robustness of proposed frameworks in identifying RSNs from EEG. 

The remarkable similarity between RSNs identified in fMRI and EEG supports the notion 
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that RSNs represent a fundamental aspect of brain physiology that can be reflected in 

hemodynamic and electrical brain signals. 

It also should be noted that differences have been observed when comparing the 

spatial patterns from fMRI and EEG. A great proportion of EEG RSNs are lateralized, 

while fMRI RSNs exhibit more symmetric and bilateral patterns (Agosta et al., 2012; 

Damoiseaux et al., 2006; De Luca et al., 2006). This fact, however, does not challenge 

the contribution of EEG RSNs. This difference can be explained by the intrinsic 

differences in brain electrical and hemodynamic signals, in which EEG is more dynamic 

and directly linked to underlying network communication mechanisms compared to fMRI 

(Laufs, 2008; Mantini et al., 2007; Yuan et al., 2012a). Furthermore, bilateral patterns in 

fMRI might be due to the convolution from the electrical response to the hemodynamic 

response, which can increase correlations among different RSNs (Yuan et al., 2016).  

7.2 Limitations and Future Works 

A number of limitations need to be noted regarding the studies in this dissertation. 

First, the categorization of SCTs into RSNs was not fully quantitative and not fully 

objective. While fMRI templates were used, the quantitative metric, i.e., vectorized 

spatial correlation, and the protocol of unique matching were not optimal and, therefore, 

visual inspections were still used. Fully automated procedures need to be established in 

defining various classes of RSNs in the future. Second, our experimental data had 

relatively small numbers of participants and only included female participants. Some of 

the findings in the present study might not be generalizable to males because of the gender 

differences in resting states (Gur et al., 1995; Kilpatrick et al., 2006; Tian et al., 2011). 

The proposed frameworks need to be tested in data from a larger population with equal 
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gender distributions to enhance the statistical power of findings and eliminate potential 

gender biases. Third, no direct comparisons between our proposed framework and other 

existing works are performed in the present study, especially those from MEG studies 

(Brookes et al., 2011b; Liu et al., 2017; Nugent et al., 2015). This is because such 

comparisons are very complicated since our current framework involves three major 

components: ISI, ICA, and correlation analysis, and each component has a group of 

variants in their implementations. Furthermore, the statistical correlation analysis is 

introduced to the current framework from fMRI, which is relatively new and has not been 

used in EEG/MEG RSN studies (Brookes et al., 2011b; Yuan et al., 2016). Nevertheless, 

the comparisons with other methods will be conducted in future studies. Last, the current 

studies do not comprehensively explain why fMRI RSNs and EEG RSNs exhibit different 

spatial features to a certain degree, despite being observed in all studies in this dissertation. 

A quantitative investigation is required to address this issue. 

In this dissertation, the proposed frameworks were mainly used to probe the 

spatial and spectral properties of RSNs. On the contrary, the temporal property of RSNs 

has not been reported in any of the studies. The lack of the temporal property is due to 

the spontaneous nature of RSN fluctuations. The temporal activations of RSNs can hardly 

be interpreted because there are no stimuli or behavioral references as found in task 

condition. However, recent studies have raised the notion of the temporal dynamic, i.e., 

the networking of RSNs is dynamic rather than stationary (Chang and Glover, 2010; 

Hindriks et al., 2016). This finding provides a new perspective to characterize RSNs using 

EEG. Importantly, it should be noted that the proposed frameworks may not be suitable 

for analysis of RSN dynamic because current ICA-based frameworks are under the 



141 

assumption of stationary connectivity. Therefore, further research might explore new 

frameworks to investigate the temporal dynamic of RSN. 

7.3 Conclusion 

The aim of the study was to develop, optimize and validate computational 

frameworks for the reconstruction of RSNs from EEG data. With both simulated and 

experimental EEG data, the spatial, temporal, and spectral estimations of RSNs 

reconstructed from the sensor space (scalp surface) and the source space were compared. 

The study demonstrated that the source space is preferable to generate an accurate 

reconstruction of RSNs. By integrating ISI, ICA, and statistical correlation analysis, we 

proposed a new computational framework, TFICA-SCT, for reliable and robust 

reconstruction of RSNs from EEG. Besides, it has also been demonstrated that TFICA-

SCT can be used to detect spatial and spectral differences of RSNs induced by different 

conditions such as a balance disorder. Moreover, an advanced ISI method, VW-SSI, was 

used to replace the conventional ISI methods (e.g., MNE) in the above-mentioned 

frameworks, and the comparison of results demonstrated that the modification 

significantly improved the spatial reconstruction of RSNs. Taken all together, the 

proposed frameworks and analysis contribute to our understanding of the underlying 

electrophysiological basis of RSNs. This study not only addresses the limitations in the 

previous studies but also establishes new perspectives for detecting RSNs from EEG. The 

findings of this study extend our knowledge of the characteristics of RSNs in multiple 

aspects: different RSNs have distinguishing spatial and spectral patterns; neurological 

disorders can alter the property of specific regions of RSNs. A key strength of the present 

study is that all proposed frameworks are data-driven, which break the constraint of 
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conventional seed-based connectivity analysis. Being limited to spatial and spectral 

analysis, this study lacks the investigation into the temporal dynamic of RSNs due to the 

assumption under which the frameworks were proposed. Further studies need to be 

carried out in order to extend our understanding of the human brain networks. Despite its 

limitations, the study certainly contributes to the research methodology of EEG RSNs.  
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