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Abstract

The benefits of using polarimetric weather radar data to infer microphysical

properties of and processes within observed precipitation is becoming more widely

recognized. The quasi-vertical profile (QVP) technique has emerged as one way to

examine vertical profiles of precipitation, but is not ideal for investigations of finescale

polarimetric signatures. In this study, a new radar data processing technique, the

column-vertical profile (CVP) technique, is introduced as an alternative way to pro-

cess and present operational polarimetric radar data in a time-height format. Using

CVP data, polarimetric ice microphysical retrieval algorithms are used in conjunction

with aircraft in situ microphysical data to gain a deeper understanding of the ice mi-

crophysical structure of MCSs, and determine the usefulness and effectiveness of such

new ice microphysical retrieval algorithms and the CVP technique. In situ aircraft

microphysical data from two flights in both the MC3E and PECAN campaigns were

analyzed as the UND Citation and P-3 aircraft flew within the stratiform rain region

of four total MCSs. Vertical profiles of polarimetric variables were created following

the aircraft using the CVP technique, and compared to analogous profiles made with

GridRad radar data. CVP profiles were quite similar to those made with GridRad

data, except for the enhanced vertical resolution of CVPs, confirming the effective-

ness of the CVP technique in resolving vertical profiles of radar data along the flight

track.

Novel ice microphysical algorithms were applied to these CVPs to get retrievals

of Dm, Nt, and IWC. Extracting polarimetric radar data from the CVP along the

flight track, point-by-point comparisons of in situ aircraft and radar retrieved ice

microphysical data were made, and the effectiveness of the retrievals was examined in

regions of low ZDR, low KDP , large CVP distance from the radar, and small distance

above the melting layer. It was found that small distance above the ML was the best
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predictor of poor quality retrievals, with a distance of ≤ 1 km above the ML related

to worse estimates of all 3 variables.

Additionally, these retrievals were performed on QVPs of archetypal MCSs

from both midlatitude and tropical environments. In midlatitude MCSs, an increase

of Dm and decrease of Nt with depth, with a nearly constant IWC, suggest aggregation

through the depth of the cloud. In tropical MCSs, nearly constant Dm paired with

increasing Nt and IWC with depth suggest nucleation of new hydrometeors with much

weaker aggregation.
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Chapter 1

Introduction and Background

1.1 Microphysical Properties of Stratiform Regions of Mesoscale

Convective Systems (MCSs)

Mesoscale convective systems (MCSs) are one of the most pervasive thunderstorm

types in the United States. Houze (2004) broadly defines an MCS as “a cumulonim-

bus cloud system that produces a contiguous precipitation area 100 km or more in at

least one direction.” MCSs occur throughout large parts of the United States, often

producing severe weather (e.g., Parker and Johnson, 2004) such as damaging straight

line winds, hail, and tornadoes (e.g., Storm et al., 2007). Some of the first investi-

gations into MCSs included Newton (1950), Fujita (1955), and Pedgley (1962) in the

midlatitudes, and Hamilton and Archbold (1945) and Zipser (1969) in the tropics.

A thorough review of the internal structure, dynamics, and large-scale interactions

of MCSs beyond the general overview which is offered herein can be found in Houze

(2004) and Houze (2018).

MCSs typically consist of a leading convective line, a transition zone, and a trailing

stratiform region. Houze et al. (1990) found that two-thirds of mesoscale precipita-

tion systems contributing to major rain events during the springtime in Oklahoma

from 1977-82 could be classified as leading line-trailing stratiform types. Addition-

ally, Parker and Johnson (2000) found that, in May of 1996 and 1997, the trailing

stratiform mode of linear MCSs accounted for 60% of all MCSs observed. A widely

accepted conceptual model of the vertical structure of an MCS is presented in Houze

et al. (1989), shown as Fig. 1.1 herein. This model shows a “vertical cross section

(oriented perpendicular to the line of convective clouds) through a squall line with
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Figure 1.1: Conceptual model of a squall line with a trailing stratiform area viewed

in a vertical cross section oriented perpendicular to the convective line (i.e., parallel

to its motion). Taken from Houze et al. (1989).

trailing stratiform precipiation region.” The heavy black and light scalloped lines

indicate the extent of the cloud that is observed via weather radar and satellite ob-

servations, respectively. Stippled regions are indicative of enhanced radar reflectivity.

The trailing stratiform region dominates the horizontal area that the MCS covers,

with a cloud shield extending well beyond what is observed by the radar. Within

the trailing stratiform region on Fig. 1.1, there exists a region of enhanced radar

reflectivity at a nearly constant altitude and of limited depth. This band of enhanced

reflectivity indicates the level at which ice particles are melting into rain, referred

to as the melting layer (ML), with the enhancement itself referred to as the “bright

band” (e.g., Austin and Bemis (1950) and references therein). This enhancement

occurs because as the snowflakes melt, they acquire a thin water coating, enhancing

the particle’s dielectric constant as observed by the radar. This enhancement does

not extend to the ground, however, since as the ice particles melt and collapse into

raindrops, their terminal fall speed increases dramatically, reducing the total number

concentration of hydrometeors in a unit volume below the ML and therefore reducing

reflectivity.
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Aside from the MCS dynamics discussed in Houze et al. (1989) and Houze (2004),

another important area of study concerning MCSs is their microphysical structure.

A number of field campaigns have focused on gaining a deeper understanding of

the microphysical structure of MCSs, including the Bow Echo and MCV Experiment

(BAMEX; Davis et al., 2004), the Midlatitude Convective Clouds Experiment (MC3E;

Jensen et al., 2016), and the Plains Elevated Convection At Night Field Project

(PECAN; Geerts et al., 2017). Such campaigns and studies typically focus on the

trailing stratiform region, as that region is much safer to fly and collect measurements

in than the leading convective line. Of particular interest are regions such as the ML

and dendritic growth layer (DGL), a zone from -10 to -20 ◦C where particles can grow

quickly via diffusion and often grow in a highly anisotropic manner (e.g., Bailey and

Hallett, 2009).

A thorough understanding of the ice microphysical properties of the stratiform

rain region of MCSs is imperative for two main reasons. The first is that such regions

typically contain high concentrations of very small ice crystals, especially between

regions from -10 to -50 ◦C (e.g., Fridlind et al., 2015). This creates a serious risk

for commercial aviation due to possible engine power loss and damage from aircraft

engines ingesting ice in regions of low reflectivity (Z < 20 dBZ) where such aircraft

do not expect a high concentration of ice. The values of ice water content (IWC) in

the high ice water content (HIWC) regions can be as high as 3-4 g/m3, with typical

median volume diameters of ice particles less than 0.5 mm (Fridlind et al., 2015;

Strapp et al., 2016; Leroy et al., 2017).

The second reason why understanding the ice microphysical properties of these

regions is imperative is that modeling studies have yet to fully capture the structure of

the stratiform rain region of MCSs, especially at high altitudes. Fridlind et al. (2017)

modeled the microphysical structure of a midlatitude continental MCS observed on

May 20, 2011 during the MC3E field campaign, and found that the simulation they
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used overpredicted mean volume diameter of ice particles by a factor of 3-5 and

underpredicted number concentration by up to an order of magnitude. The simulated

radar reflectivity at high altitudes was about 20 dBZ higher than that measured with

radars. Fan et al. (2015) found a similar result for the same MCS, as did Stanford

et al. (2017) in for a tropical MCS near Darwin, Australia, using a C-band polarimetric

radar for observations and multiple microphysical parameterization schemes within

their model. Both studies showed that modeling attempts highly overestimated the

size of particles and reflectivity in the higher regions of the cloud. All of these studies

show a deficiency in the community’s ability to model microphysical processes and

properties of such stratiform rain, and a need for additional details about the ice

microphysical properties of MCSs.

The majority of the information collected about the microphysical structure of

MCSs has been done via the use of in situ instrumentation, especially aircraft in situ

probes. Aircraft in situ data, including IWC, total number concentration per unit

volume (Nt), and median mass diameter (Dmm) provide valuable information about

the properties of hydrometeors observed within a given volume. However, collecting

information in this manner is incredibly costly, primarily done only during large field

campaigns, and is only collected on a thin path where the aircraft flies. A more

effective way to gain a deeper understanding of the microphysical structure of these

regions would be to use data that are collected much more regularly, and on a much

larger scale. Weather radar data, particularly data collected by the United States

Weather Surveillance Radar, 1988, Doppler (WSR-88D) operational S-band weather

radar network, can potentially serve as those data. A total of 143 WSR-88D weather

radars exist all over the United States, and perform volume scans on the order of every

5 minutes (Crum and Alberty, 1993). Additionally, with the network’s recent upgrade

to dual-polarization capabilities, opportunities abound to further relate polarimetric

signatures to microphysical properties of different precipitation structures.
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1.2 Ice Microphysical Retrieval Techniques

To use weather radar data most effectively to further understand the stratiform

rain region of MCSs, first these data must be examined in conjunction with aircraft

in situ data to determine the meaning of various single- and dual-polarization signa-

tures observed within the WSR-88D data. The most notable example of retrieving

hydrometeor properties from polarimetric weather radar data is the development of

the WSR-88D hydrometeor classification algorithm (HCA; see Park et al., 2009, and

references therein). However, HCA output gives insight into what the dominant hy-

drometeor type likely is in a given radar volume (e.g., dry aggregated snow, graupel,

heavy rain, etc.), but does not offer any quantitative information on the particles’

shapes, sizes, or concentrations.

For specific information about the ice microphysical properties of radar observed

precipitation, ice microphysical retrieval techniques have been developed. Sassen

(1987) reviews ice microphysical retrieval techniques starting from the early 1970’s,

with a focus on using reflectivity (Z) to develop Z-IWC and Z-R (where R is rain rate)

relations, particularly for K-band weather radar. For decades, radar reflectivity was

the primary radar variable utilized for estimating IWC. A number of studies have

suggested various Z-IWC relations in clouds comprised of ice and snow, including

Sassen (1987); Atlas et al. (1995); Liu and Illingworth (2000); Hogan et al. (2006);

Delanoe et al. (2014); Heymsfield et al. (2005, 2016) and Protat et al. (2016). Hogan

et al. (2006) proposed perhaps the most widely used Z-IWC relation, with their

algorithm estimating IWC using a combination of Z and atmospheric temperature

T. One of the most recent studies employing a Z-IWC relation to retrieve particle

information was Tian et al. (2016), which used Z alone to estimate IWC and Dm,

or mean volume diameter. Relations that depend solely on radar reflectivity often

struggle because such a single parameter is unable to capture the variability of the

size distributions of ice and snow particles, their habits, and their densities. Simply
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using a single parameter to try and quantify the size, shape, orientation, density,

and concentration of particles, among other properties, will fail to capture the true

microphysical variability within one and across many precipitation structures.

To help rectify this problem, polarimetric radar data have shown promise for be-

ing the basis of quantitative retrievals of ice microphysical properties. As is often

noted, the basic premise of polarimetric radar data is to provide further informa-

tion on the size, shape, and orientation of hydrometeors within a volume beyond

what limited information is offered with single-polarization radar (e.g., Zhang, 2017).

However, polarimetric retrievals of ice microphysical properties remain largely un-

explored. Pioneering work was done in the late 20th century performing ice micro-

physical retrievals using polarimetric radar data by Vivekanandan et al. (1994), who

suggested using specific differential phase KDP to estimate IWC. Because KDP essen-

tially depends on the particle aspect ratio and orientation whereas IWC does not (see

subsection 1.3.5 for more information on KDP ), the use of KDP requires the a priori

knowledge of the particles’ shapes and orientations, which is not ideal. Following the

work on Vivekanandan et al. (1994), Aydin and Tang (1997) modeled ice crystals in

the shapes of hexagonal columns and plates, combining KDP and ZDR for estimation

of IWC, and producing relationships with biases and standard errors less than 5 and

15 percent, respectively.

Following the work of Vivekanandan et al. (1994) and Aydin and Tang (1997),

Ryzhkov et al. (1998) developed a polarimetric relation relating IWC to KDP and

ZDP , where ZDP is defined as the reflectivity difference and is expressed as

ZDP = Zh − Zv = ZH(1− Z−1
dr ) (1.1)

where Zdr is differential reflectivity expressed in linear scale. They found that the

ratio ZDP/KDP is very robust with respect to the variability of the particles’ aspect

ratios and their orientations. This is because particle aspect ratio and orientation

affect the values of ZDP and KDP in a similar way and, therefore, these effects are
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canceled out when the ratio of these two variables is used. Through testing of Eqn.

1.1 by Ryzhkov et al. (1998) and Nguyen et al. (2017), it was shown that such a

relation provides significant improvement over the conventional Z-IWC method when

the cloud is a mixture of small ice particles and large aggregates, with additional

tuning of the polarimetric relation potentially necessary. Bukovcic et al. (2018) in-

vestigated radar snow rate estimates using Z and KDP , using an extensive dataset of

2D-video-disdrometer (2DVD) measurements of snow in central Oklahoma to derive

polarimetric relations for liquid-equivalent snowfall rate S and IWC in the forms of

bivariate power-law relations. However, in situ validation of IWC estimates is neces-

sitated beyond ground observations possible with the 2DVD used in the study. For

validation of a given algorithm’s effectiveness, the ice microphysical values retrieved

by such algorithms must be compared to some measure of “truth,” typically in the

form of aircraft in situ measurements.

For the most exact comparison of such estimates to in situ measurements, po-

larimetric radar data must be collocated in time and space to the location of the

in situ measurements. This poses a considerable challenge, as operational weather

radar data are collected on the order of 5 minutes and over areas spanning hundreds

of kilometers in diameter via plan position indicator (PPI) scans, whereas aircraft in

situ measurements are often collected at frequencies at or below 1 Hz, along the very

thin path the aircraft flies. To date, little has been done to directly compare opera-

tional polarimetric radar data and in situ measurements at a specific point. Finlon

et al. (2016) related in situ measurements of ice particle habits, bulk cloud properties,

and measurements of particle morphology to polarimetric radar data collected by an

X-band dual-polarization radar within winter cyclones during the Profiling of Winter

Storms (PLOWS) campaign. However, the radar was operating in range-height in-

dicator (RHI) scanning mode when data collocation was performed, such that their

methodology as it relates to radar scanning strategy is inapplicable to comparisons
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of in situ microphysical and operational weather radar data. This was also the case

with Zrnic et al. (1993), where S-band polarimetric radar data were collected via RHI

scans along with aircraft in situ data in the stratiform rain region of MCSs during

the Cooperative Oklahoma P-3 Studies (COPS-89) campaign. Cazenave et al. (2016)

compared aircraft in situ data to X-band radar measurements collected using PPI

scans in the stratiform rain region of MCSs in the Sahel, but did so to verify a fuzzy

logic technique, not to directly collocate and compare data.

Therefore, there exists a rich opportunity to use in situ microphysical measure-

ments to validate ice microphysical retrieval algorithms optimized for S-band oper-

ational weather radar data, and gain a deeper understanding of the microphysical

structure of a number of phenomena, specifically MCSs, as a result. This is the goal

of this study–to utilize operational polarimetric radar data and polarimetric ice mi-

crophysical retrieval algorithms in conjunction with in situ aircraft data to gain a

deeper understanding of the ice microphysical structure of MCSs, and determine the

usefulness and effectiveness of such new ice microphysical retrieval algorithms and

radar data processing techniques.

1.3 Radar Polarimetry

The potential benefits of radar polarimetry for enhancing understanding of me-

teorological phenomena have been recognized as far back as nearly seven decades.

Kumjian (2013a) details some of the earliest work and advancements in radar po-

larimetry, dating back to the 1950’s and 1960’s in the United Kingdom, United

States, and Soviet Union. In the late 1970’s, Seliga and Bringi (1976) pioneered

the first investigation into calculating rainfall rates using “differential and absolute

reflectivity measurements at orthogonal polarizations,” introducing to the commu-

nity what is now known as differential reflectivity. Specific differential phase was

then introduced by Sachidananda and Zrnic (1986, 1987), again in an attempt to
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calculate rainfall rate. The interest in microphysical interpretation of polarimetric

radar data continued in a three-part paper by Jameson (Jameson, 1983a,b, 1985), in

attempts to deduce properties of the drops in the volume. Expanding these analyses

of the usefulness of dual polarization radar in inferring microphysical properties to

investigations of hail, Balakrishnan and Zrnic (1990a,b) explored using polarization

diversity to discriminate between regions of rain and hail. Although a non-exhaustive

list at best, such work focusing on radars transmitting waves at orthogonal linear

polarization (i.e., “dual-polarization” radars; Kumjian (2013a)) led to the upgrade

of the National Severe Storms Laboratory’s (NSSL) 10-cm S-band Doppler weather

radar, or Cimarron radar, to dual-polarization capabilities as detailed in Zahrai and

Zrnic (1993). The Cimarron radar measured three additional polarimetric variables,

specifically “differential reflectivity, differential phase, and the correlation coefficient

between copolar weather signals,” beyond what was already provided by the conven-

tional (non-polarimetric) WSR-88D radars.

Zrnic (1996) speculated on future trends and needs for radar polarimetry within

the radar meteorology community, giving particular focus to the potential operational

uses. He describes the significant but incremental improvements to the community’s

collective knowledge of radar meteorology, starting with the use of weather radar

to detect precipitation echoes using radar reflectivity, and advancements including

Doppler weather radar and polarimetry (Fig. 1.2). Following such extensive work

investigating the uses of dual-polarization radars, Doviak et al. (2000) outlined the

potential benefits of upgrading the WSR-88D radar system to have dual-polarization

capabilities. With the completion of the WSR-88D radar network upgrade to dual-

polarization capabilities within this decade, opportunities to further use polarimetry

to study a wide variety of precipitation structures and weather systems abound.

Polarimetry has been used extensively in the weather radar community since that

time, including polarimetric WSR-88D data, in work including but not limited to
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Figure 1.2: Relative benefit-cost in meteorological research and applications starting

with the first use of radar. Major enhancements over reflectivity measurements are

indicated. Taken from Zrnic (1996).
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tornadic debris signatures (e.g., Ryzhkov et al., 2002, 2005c; Kumjian and Ryzhkov,

2008; Van Den Broeke and Jauernic, 2014; Snyder and Ryzhkov, 2015), hydrometeor

classification (e.g., Zrnic and Ryzhkov, 1999; Straka et al., 2000; Zrnic et al., 2001;

Heinselman and Ryzhkov, 2006; Park et al., 2009; Elmore, 2011; Snyder and Ryzhkov,

2015), and quantitative precipitation estimation (e.g., Ryzhkov and Zrnic, 1996b;

Ryzhkov et al., 2005b; Giangrande and Ryzhkov, 2008).

Before transitioning to a discussion of radar data and how they have been and can

be utilized to gain a deeper understanding of the stratiform rain region of MCSs, a

thorough description of the polarimetric radar variables is necessitated. A large part

of the discussion of polarimetric variables herein reflects the information provided in

Kumjian (2013a), with that paper and the others in the series (Kumjian, 2013b,c)

serving as ideal references for additional commentary on and further understanding of

these radar variables, and of their uses in interpreting meteorological echoes. Ryzhkov

et al. (1998, 2018); Hogan et al. (2006, 2012); Rasmussen et al. (2003); Zhang (2017);

Bukovcic et al. (2018); Carlin et al. (2016) and Matrosov et al. (1996) were heavily

referenced for discussions related specifically to the polarimetric variables’ behavior

in regions of ice and snow.

The five polarimetric radar variables of interest in this study are radar reflectivity

factor (Z), differential reflectivity (ZDR), co-polar cross correlation coefficient (ρhv),

differential propagation phase shift (ΦDP ), and specific differential phase (KDP ). The

following subsections each offer a description of these variables.

1.3.1 Radar Reflectivity Factor

Radar reflectivity factor (Z) is one of the three moments measured by conventional

weather radars, with the other two being Doppler velocity and Doppler spectrum

width. These moments were all previously measured at only horizontal polariza-

tion before the WSR-88D network’s upgrade to dual-polarization capabilities, as the
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conventional WSR-88D radars only transmitted and received signals at horizontal

polarizations. Although different from radar reflectivity η, radar reflectivity factor

is typically referred to and will be herein referred to as radar reflectivity, or simply

reflectivity.

Doviak and Zrnic (2006) define Z at horizontal polarization as

Zh =
4λ4

π4|(εw − 1)/(εw + 2)|2
< |Shh|2 > (1.2)

where εw is the dielectric constant of water, λ is radar wavelength, and Shh is the

backscatter amplitude, with angular brackets denoting integration of the variable

over all particles. In the case of spherical scatterers, Van de Hulst (1981) shows that

simple analytical formulas can be obtained for the forward and backward scattering

amplitudes s
(0)
a,b and s

(π)
a,b :

s
(0)
a,b = s

(π)
a,b =

π2D3

6λ2
1

La,b + 1
ε−1

(1.3)

where a is the axis of rotation of the spheroid, D = (ab2)1/3 is the equivolume diameter

of the particle, ε is the dielectric constant, and La and Lb are shape parameters of

the particle. In the case of spherical particles (a = b),

s(π)a = s
(π)
b =

π2D3

2λ2
ε− 1

ε+ 2
(1.4)

Furthermore, if scatterers are spherical, then

< |Shh|2 >=< |s(π)a |2 >=< |s(π)b |
2 > (1.5)

and eqn. 1.2 can be written for spherical particles as

Zh =
< |(ε− 1)/(ε+ 2)|2D6 >

|(εw − 1)/(εw + 2)|2
(1.6)

In the case of raindrops, ε = εw and eqn. 1.6 can be simplified down to

Zh =< D6 >=

∫
D6N(D)dD (1.7)
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where N(D) is the particle number concentration. In the case of graupel and small

hail, where ε does not change with size, eqn. 1.6 can be rewritten as

Zh =
|(ε− 1)/(ε+ 2)|2

|εw − 1)/(εw + 2)|2

∫
D6N(D)dD (1.8)

For frozen particles whose dielectric constants are not constant across the size spec-

trum of particles (such as dry snow, whose density decreases with increasing size),

eqn. 1.6 can be rewritten as

Zh =
|Ki|2

|Kw|2ρ2i

∫
ρ2s(D)D6N(D)dD (1.9)

where Ki = (εi − 1)/(εi + 2), Kw = (εw − 1)/(εw + 2), εi is the dielectric constant of

solid ice with density ρi, and ρs is the density of snow which depends on D. Knowing

that ρs is nearly inversely proportional to particle diameter, for dry snow, Z is no

longer proportional to the 6th moment of the size distribution as with rain, but rather

is proportional to the 4th moment, due to how Z depends on the product of ρ2sD
6

within the integral of eqn. 1.9. Additionally, the ratio of |Ki|2 and |Kw|2 is less than

1, which further explains why Z in snow is typically much less than Z in rain for

volumes with comparable particle diameters and concentrations. These depressed Z

values are found in almost all volumes of snow when compared to equivalent volumes

of rain, except in the bright band, where large aggregates with thin water coatings

produce local maximum values of Z in the vertical.

Reflectivity data are most commonly converted from their native units of [mm6m−3]

to [dBZ], where

Z[dBZ] = 10log

(
Z[mm6m−3]

1[mm6m−3]

)
(1.10)

Often, Z is subscripted to denote at which polarization the signal was transmitted

and received, with lowercase subscripts denoting data with units of [mm6m−3], and

uppercase subscripts denoting data with units of [dBZ]. Since primarily reflectivity

data at horizontal polarization (ZH) are analyzed herein, the subscript will be dropped

and Z will denote reflectivity at horizontal polarization unless otherwise specified.
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Because of reflectivity’s relation to the 6th moment of the size distribution in

rain and 4th moment in snow, measurements of Z are highly affected by the largest

particles in the volume. For example, for a unit volume, the reflectivity from one

wet marble sized1 hailstone (D = 10 mm) is the same as the reflectivity from 100

relatively large drops (D = 4.6 mm). However, the total water content calculated

from these two volumes will be an order of magnitude larger for the volume containing

large drops compared to the volume containing the single hailstone.

Doviak et al. (2000) also noted that at the time, reflectivity was used exclusively

to estimate rainfall rate R, but such equations constrain the drop size distribution

to one having only a single parameter. Since, in general, the drop size distribution

of a volume is only described accurately by using multiple parameters, these equa-

tions would fail to capture differences in hydrometeors between two volumes of equal

reflectivity, such as in the two volumes described in detail above. Additionally, for

ice, Bukovcic et al. (2018) discussed past attempts to quantify liquid water equiva-

lent snowfall rate (S) in terms of Z, with most relations in the literature assuming

a power-law relation where Z ∝ S2. However, as with rain size distributions, snow

particle size distributions cannot be accurately quantified using only one variable, due

to the variability of particles’ size, shape, and orientation, to name a few. For that

reason, they found that of the Z−S relations in literature that they examined, there

exists roughly an order of magnitude difference in estimates of S using the same Z.

Estimates of IWC from Z also struggle, as was discussed in section 1.2. Reflectiv-

ity does not give any information on the shape or orientation of the particles, just

the concentration and size of hydrometeors, though it is not possible to separate the

contributions of size and concentration to the value of Z. These deficiencies show a

1The author recognizes that “marble sized” can be a misleading characterization of hail size,

since marbles vary widely in size, but chooses to describe hail in accordance with the qualitative

descriptors used by the Storm Prediction Center.
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need for additional measurements and therefore additional information collected by

operational weather radars.

1.3.2 Differential Reflectivity

The nature of the upgrade of the WSR-88D radar network to polarimetric capa-

bilities is that these radars are now equipped with the technology to send and receive

signals at both horizontal and vertical polarizations. This upgrade allows signals re-

ceived at both horizontal and vertical polarizations to be compared quantitatively.

Differential reflectivity (ZDR) is defined as the logarithmic ratio of the reflectivity

factors at H and V polarizations, expressed in [dB]:

ZDR[dB] = ZH − ZV = 10log

(
Zh
Zv

)
(1.11)

As mentioned in Kumjian (2013a), ZDR was first defined and used by Seliga and

Bringi (1976) for the precipitation measurements and estimation of rainfall rate. They

explained that non-zero ZDR in rain is a result of the oblate shape of raindrops falling

at their terminal velocities. The particles become larger in the horizontal as they

approach their terminal velocities, and therefore return more power at horizontal po-

larization than vertical, leading to a positive ZDR. For that reason, it is evident that

ZDR is directly related to the particles’ mean axis ratio within the sampling volume.

For a volume of randomly oriented particles, power is returned equally at both hor-

izontal and vertical polarizations, and ZDR = 0 dB. ZDR is independent of particle

concentration, but can be affected by radar miscalibration, as miscalibration biases of

Z in the two orthoganal channels are commonly different, leading to a miscalibration

of ZDR. It is related to the complex dielectric constant of the target, meaning that

ZDR values will be higher for a single raindrop than for an ice hydrometeor of the

same shape and size, similar to how Z differs between an analogous raindrop and ice

hydrometeor. Although ZDR is concentration independent, the ZDR value for a given

volume will be representative of the most abundant/dominant hydrometeor shape in
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that volume (e.g., a low concentration of highly anisotropic hydrometeors with large

ZDR values can mask a large concentration of more isotropic hydrometeors).

Beyond the information it can provide about the shape and size of raindrops,

ZDR also provides a wealth of information about ice hydrometeors. For a given

hydrometeor shape, the value of ZDR is strongly dependent on the dielectric constant.

For this reason, for a raindrop and snowflake of analogous shape and size, ZDR will

be higher for the raindrop. ZDR also depends on the orientation of particles as they

are falling. Magnitudes of ZDR can be incredibly high for pristine ice, which can have

preferred oblate (positive ZDR) or prolate (negative ZDR) orientations. Whereas large

raindrops typically fall with their major axis oriented vertically, producing positive

ZDR, snowflakes often fall in a more random and chaotic fashion, where the absence of

a preferred orientation decreases ZDR. After the onset of aggregation, large aggregates

typically have a very low density, further decreasing ZDR, as it is linearly proportional

to the density of dry snow ρs (Kumjian, 2013a).

Because ZDR is dependent both on particle axis ratio and density, it can be used

to infer the relative concentrations of isotropic and anisotropic ice particles within a

volume. Small ice hydrometeors produced at levels colder than the DGL are com-

paratively more isotropic than those produced within the DGL, and thus produce

low values of (still positive) ZDR. Within and just below the DGL, the dendrites in

this region are highly anisotropic (oblate) and quite dense, such that they can have

very high ZDR values, as high as 6-10 dB. Below the DGL and above the ML, indi-

vidual ice hydrometeors begin to aggregate, and the radar sample volumes start to

be dominated by isotropic, low-density aggregates. For this reason, ZDR is near zero

above the ML, usually around 0.2-0.25 dB (Ryzhkov and Zrnic, 1998; Ryzhkov et al.,

2005a). This is correlated with an increase in ZH in this region, as the particles are

becoming larger as they descend towards the top of the ML. Strong ZDR signatures in

the DGL were observed by Griffin et al. (2018) in their work exploring polarimetric
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signatures in winter storms, as well as in Andric et al. (2013) and Williams et al.

(2015). Such signatures may be absent, however, if the volume sampled by the radar

remains dominated by small, quasi-isometric ice hydrometeors falling into the DGL

from aloft, or if dendrites do not exist within the DGL. In the former case, the po-

larimetric signature expected of the anisotropic dendrites (i.e., high ZDR) is masked

by the presence of the much more abundant isometric ice.

1.3.3 Co-Polar Cross Correlation Coefficient

Whereas ZDR provides information on the shape and orientation of the most

dominant particle type in a sampling volume, co-polar cross correlation coefficient

(ρhv; henceforth referred to as correlation coefficient) gives information about the

diversity of particles within the sampling volume. As stated by Kumjian (2013a),

“ρhv is a measure of the diversity of how each scatterer in the sampling volume

contributes to the overall H- and V-polarization signals. This diversity includes any

physical characteristic of the scatterers that affects the returned signal amplitude

and phase. Thus, when there exists a large variety in the types, shapes, and/or

orientation of particles within the radar sampling volume, [ρhv] is decreased.” A

volume containing scatters of nearly analogous type (i.e., complex dielectric constant),

shape, and orientation will return values of ρhv near unity; any deviation from this

uniformity decreases the value. Particle size does not necessarily have to be uniform,

unless the values of the other three aforementioned particle characteristics change

across the size spectrum. ρhv is independent of particle concentration and is immune

to radar miscalibration, attenuation or differential attenuation, and beam blockage.

Values of ρhv in pure rain are near unity (ρhv > 0.98) at S and X bands, but

may drop down to values closer to 0.9 at C band due to the effects of resonance

scattering (occurs with drop sizes of 5-7 mm at C band; e.g. Carey and Petersen,

2015). Values are also high for dry snow aggregates (ρhv > 0.97) since their low
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density counteracts the effects of shape irregularity and increased wobbling, and in

pristine ice (ρhv > 0.96). The slight reduction in ρhv possible for pristine ice is due

to high anisotropy and lack of preferred crystal orientation giving the appearance of

a higher diversity of particle shapes in the sampling volume (i.e., a dendrite with a

canting angle of 0◦ will return power differently than a dendrite with a canting angle

of 40◦). When ice hydrometeors melt, a reduction of ρhv is often seen (< 0.90) due

to the addition of liquid meltwater on the particles contributing to a larger complex

dielectric constant, exaggerating any pre-existing variability in particle shapes and

orientations (Kumjian, 2013a).

1.3.4 Differential Propagation Phase Shift

As the H- and V-polarized waves travel through various media in the atmosphere,

the speed of each of the waves is affected by the type of medium they travel through.

In any medium other than a vacuum, the speed of each wave will be slower than

that of the speed of light, with waves traveling through ice or water more slowly than

those traveling through air. When a polarized wave encounters a hydrometeor, if the

horizontal and vertical dimensions of the particle are different, one wave (i.e., either

the H- or V- polarized wave) will travel a longer path through the particle than the

other. This means that that wave will travel at a lower rate of speed for a longer

time than the other, producing a phase shift between the two waves. This phase

shift will be greater the greater the difference between the hydrometeors’ horizontal

and vertical dimensions, and the higher the concentration of particles the waves pass

through. This concept is the premise of differential propagation phase shift (ΦDP ),

hereafter simply differential phase. Positive is defined as depolarization resulting from

the H-wave being slowed compared to the V-wave, and commonly, differential phase

is always positive with a few exceptions (e.g., in the presence of vertically oriented

crystals due to strong electrostatic fields in thunderstorms).
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As previously mentioned, ΦDP is related to the axis ratio of the particle (and

therefore often the particle size, as larger raindrops tend to be more oblate in size),

and the number concentration of the particles in the volume. The same applies for

ice hydrometeors; however, particle shape is not as directly related to particle size,

as small pristine ice crystals can produce much higher ΦDP than large, isotropic

aggregates. Therefore, particle orientation has a large impact on ΦDP , especially

for ice particles. As a phase measurement, ΦDP is attractive to use in a number

of capacities because it is not affected by attenuation, partial beam blockage, or

radar miscalibration, and is not biased by noise. This measurement is not often

used operationally and is used less so in research compared to its counterpart specific

differential phase (KDP ), which is explained in the next section.

1.3.5 Specific Differential Phase

A polarimetric variable derived from differential phase, specific differential phase

(KDP ) is half the range derivative of ΦDP , and therefore a quantity which “provides

a measure of the amount of differential phase shift per unit distance (usually given in

units of degrees per kilometer) along the radial direction” (Kumjian, 2013a). Because

it is derived from ΦDP , KDP is also related to particle axis ratio and concentration,

and is immune to attenuation, partial beam blockage, radar miscalibration, and biases

from noise. Whereas ΦDP values typically remain constant or increase downradial,

showing the total effect of phase shift as the polarized waves propagate, KDP shows

the effect of phase shift at each range gate. To determine KDP , a slope of the radial

dependance of ΦDP is determined over the range windows of 17 or 49 gates as a linear

fit, depending on whether or not ZH is greater than (17) or less than or equal to (49)

40 dBZ (Ryzhkov and Zrnic, 1996a; Ryzhkov et al., 2000).

Because KDP is related to hydrometeor concentration, it has proven itself to be

particularly useful in liquid water content (e.g., Doviak and Zrnic, 2006; Bringi and
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Chandrasekar, 2001) and ice water content estimation (e.g., Vivekanandan et al.,

1994; Ryzhkov et al., 1998; Bukovcic et al., 2018). However, relations using KDP

can suffer from the inherent noisiness of the variable (e.g., Kumjian, 2013a). While

a big advantage of KDP is that it is not biased by noise, attenuation, or radar mis-

calibration, the magnitude of KDP in ice and snow is relatively small, particularly at

longer radar wavelengths, so any noisiness of the variable is even more impactful in

microphysical calculations using KDP in ice. At S band, KDP in dry ice and snow

is usually smaller than 0.3 and typical values are below 0.05 deg/km in aggregated

snow at warmer temperatures (Ryzhkov and Zrnic, 1998; Griffin et al., 2018).

Normalized values of KDP , or the ratio of KDP for monodispersed size distribu-

tion with equivolume diameter D to the total concentration of raindrops, for frozen

precipitation such as dry graupel and small hail are about two orders of magnitude

less than normalized KDP values for raindrops of a similar size (Ryzhkov et al., 2013).

This reduction of KDP facilitates easier identification of regions of frozen hydrome-

teors among rain. It can be shown that, for dry aggregated snow, KDP ∝ ρ2sD
3.

Knowing that ρs is inversely proportional to particle diameter for snow, this means

that KDP is proportional to the 1st moment of the snow size distribution (i.e., the

mean diameter of particles in the volume; Bukovcic et al., 2018, see their eqn. A25).

This means that KDP for dry aggregated snow is typically quite low compared to

rain, where it is proportional to the 3rd moment of the size distribution. However,

for high density pristine crystals (such as plates, columns, and dendrites), KDP is

close to the 3rd moment of the size distribution (Bukovcic et al., 2018) and can be

quite large. This is a result of these crystals’ high density, very high or low aspect

ratio, and typically quite common alignment (e.g., Kumjian, 2013a, and references

therein).

In regions of ice hydrometeors, ZDR and KDP can be used in conjunction to

qualitatively determine the dominant ice hydrometeor type or particle habit within
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the region. For regions of spherical ice particle or aggregates, values of ZDR will be

low due to the nearly isotropic shape of the particles, but KDP can still be high due

to the large concentration of such particles. Conversely, in regions of pristine ice

crystals such as dendrites, ZDR can be quite high due to their anisotropy, but KDP

can remain fairly low due to the low concentration of particles. Griffin et al. (2018)

noted this apparent anticorrelation of ZDR and KDP magnitudes in the DGL within

a number of winter storms, attributing the signatures to the depth of the cloud and

relative impact of seeding of ice particles into the DGL from aloft. Such signatures and

other “polarimetric fingerprints” (Kumjian, 2012) can prove helpful in qualitatively

understanding the dominant hydrometeor type and microphysical structure of varying

precipitation systems.

1.4 Quasi-Vertical Profiles (QVPs)

Quasi-vertical profiles, or QVPs, have emerged as a novel way to view polarimetric

radar data in a time-height format. These plots are created by taking radar data

from PPI scans and processing it such that data collected at a single elevation angle

are displayed as one vertical column. The elevation angle is typically chosen as the

highest elevation angle scanned in one radar volume scan, with available elevation

angles contingent on the scanning strategy used. Such plots facilitate more direct

comparison of radar data to various meteorological data collected in a time-height

format, such as aircraft microphysical data.

The idea was first posed in Troemel et al. (2013), where quasi-vertical profiles of

Z, ZDR, ρhv, and ΦDP were created from PPI scans performed by JuXPol, a dual-

polarization X-band radar in Julich, Germany. These analyses were one-dimensional

in nature, as they analyzed data from a single elevation from only one volume scan,

giving information only in the range (height) dimension and no information regarding

temporal evolution of the system. Such analyses using these one-dimensional QVPs
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Figure 1.3: Conical volume representing azimuthally averaged quasi-vertical profiles

of radar variables. Taken from Ryzhkov et al. (2016).

were used primarily to propose new methods for estimating backscatter differential

phase δ in rain and in the melting layer. Kumjian et al. (2013) also employed the

use of such profiles to analyze instances of hydrometeor refreezing in winter storms

observed by a dual-polarization WSR-88D S-band radar and dual-polarization C-

band radar in central Oklahoma. Similar to Troemel et al. (2013), this study created

such profiles at a specific time using data from a single elevation angle scanned during

one volume scan. Such one-dimensional profiles are useful in observing polarimetric

signatures in precipitation at a given time, but are unable to diagnose any evolution

of polarimetric signatures in time.

Ryzhkov et al. (2016) expanded on these initial analyses to create a QVP that

spans over a specific length of time, allowing for analyses of the evolution of polari-

metric signatures that were absent in earlier studies. Such two-dimensional QVPs

(henceforth simply QVPs) are created analogously to one-dimensional QVPs, using

data from one elevation scan typically between 10-20◦ in elevation. However, these

profiles differ in that they use multiple scans at the chosen elevation, extracted from
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Figure 1.4: The height-vs-time representation of quasi-vertical profiles of (a) Z, (b)

ZDR, (c) ρhv, and (d) KDP retrieved from the KVNX WSR-88D radar. Data shown

were collected at elevation 19.5◦ in the case of an MCS observed in northern

Oklahoma on 20 May 2011 from 10:00-13:30 UTC. Overlaid are contours of Z.
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successive volume scans. The processing of data for QVPs, both one-dimensional and

two-dimensional, is fairly straightforward. As the beam goes out in distance from the

radar, it also increases in height due to expected beam propagation with a typical

atmospheric refractivity, such that radar data collected at ranges further from the

radar are located higher in the vertical than data closer to the radar. Therefore, data

at a given range are assigned a corresponding height to be used in plotting. To filter

out spurious data, QVPs exclude data points where Z < −10 dBZ and/or ρhv < 0.8.

Additionally, extra heterogeneity checks are implemented with regards to ΦDP . For

each radial, a five-point running mean of ΦDP is performed three times. That thrice-

averaged radial profile of ΦDP is considered the average value in calculations of the

standard deviation of ΦDP at each range gate along each radial, calculated over a

five-point interval surrounding the point in question. Data points where the standard

deviation of ΦDP is greater than 10◦ are excluded from the QVP calculation.

Data that were not filtered by aforementioned techniques at all distances in range

are averaged over the full 360◦ of the elevation scan, and those average polarimetric

radar data at each range gate are plotted at the altitude that correlates to that dis-

tance in range. Fig. 1.3 shows a conical volume representing azimuthally averaged

quasi-vertical profiles of radar variables. This data averaging is particularly advan-

tageous for examining KDP , as such averaging helps to smooth out the variable’s

inherent noisiness. Fig. 1.4 shows a QVP of an MCS passing over the Vance Air

Force Base, OK (KVNX) WSR-88D radar in north central Oklahoma on May 20,

2011. It is clear that QVPs provide a unique insight into and opportunity to gain

a deeper understanding of the vertical structure of various precipitation systems, in-

cluding MCSs, beyond what is offered by the data in its traditional plan-position

indicator (PPI) format.

In addition to the four standard dual-polarization variables plotted in QVPs (Z,

ZDR, ρhv, and ΦDP ), QVPs can also be made for KDP as explained in Griffin et al.
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(2018) and shown in Fig. 1.4, with appropriate special processing due to strong

contribution of δ to ΦDP in the melting layer (see also Troemel et al., 2014). For

cases where the radar experienced a ZDR bias, QVPs of ZDR are manually calibrated

such that values just above the ML are approximately 0.2-0.25 dB (Ryzhkov and

Zrnic, 1998; Ryzhkov et al., 2005a). QVPs have been used in a number of studies to

connect observed or modeled microphysical processes with what is observed by radar

(e.g., Van Den Broeke et al., 2017; Bukovcic et al., 2017; Kumjian and Lombardo,

2017; Sulia and Kumjian, 2017; Ryzhkov et al., 2017; Troemel et al., 2017). Analyses

to date have mainly focused on using the QVP technique with S-band radar data,

typically from the WSR-88D S-band radar network in the United States (Crum and

Alberty, 1993).
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Chapter 2

Column-Vertical Profile (CVP) Methodology

2.1 Motivation

The development of the QVP technique has led to a number of studies mentioned

previously investigating the microphysical properties and processes within different

meteorological phenomena. However, one main drawback of QVPs is that they as-

sume a degree of horizontal homogeneity in the sampled precipitation, as data are

averaged over the full range and azimuth sampled by the radar (Ryzhkov et al., 2016).

Therefore, QVPs struggle with accurately representing phenomena with considerable

heterogeneities across the area sampled by the radar. For systems such as MCSs, this

broad-brush azimuthal averaging of data has the potential to blur together polarimet-

ric signatures from distinct precipitation substructures such as the leading convective

line and trailing stratiform region. Fig. 2.1 shows the evolution of an MCS as it

passed through the KVNX radar domain in north central Oklahoma from 13-17 UTC

on May 20, 2011. It is clear that various precipitation structures, including leading

line convection and trailing stratiform, are present, such that azimuthal averaging

of the data over the entire 360◦ surrounding the radar would likely blur together

distinct polarimetric signatures from the various precipitation substructures, making

polarimetric analyses of such substructures difficult if not impossible.

For this reason, a more tailored method of processing operational polarimetric

radar data to be viewed in a time-height format is necessitated. This method should

restrict data sourcing to a specific region in the horizontal, allowing the user to select

specific precipitation substructures of interest to analyze, and removing the effects

of azimuthally averaging data from various precipitation substructures within the

horizontal area sampled by the radar. For such an approach, using a single elevation
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Figure 2.1: PPI images of radar reflectivity (dBZ) collected at the 0.5 degree

elevation angle by the KVNX radar from 13-17 UTC. Images were selected at

approximately half-hour intervals, with time increasing alphabetically and specific

times of data collection listed in each panel.
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angle is no longer feasible, since by limiting the radial extent of the region from which

data will be sourced, one single elevation angle will capture a very limited extent in

height.

Attempts at modifying the original QVP technique and using such modified tech-

niques to construct vertical profiles of polarimetric variables have been made in recent

studies. Bukovcic et al. (2017) employed the use of slanted vertical profiles (SVPs)

to analyze data over a disdrometer site to compare to disdrometer ice microphysical

measurements. A SVP is created using data from one elevation angle at a specific

azimuth, with the azimuth chosen as the one whose radar beam most closely passes

over the point of interest on the ground (in the case of Bukovcic et al. (2017), the dis-

drometer). A pair of ranges and azimuths are defined such that the point of interest is

roughly centered between the beginning and ending range and azimuth, respectively.

Then, all data between the beginning and ending azimuths are averaged azimuthally

along the entire radial extent between the beginning and ending range. After pro-

ducing this radial profile of the polarimetric variable in question, the data are then

projected on their native horizontal planes to the point of interest, producing a ver-

tical profile of radar data over that point. The authors state that the typical range

interval is up to 60 km and azimuthal interval is up to 20◦.

Such a profile provides useful data if analyses are restricted to a small vertical

extent, as was done in Bukovcic et al. (2017). However, as they mention, “the data

over such large-range intervals are likely inhomogeneous; hence, interpretation needs

to be very cautious.” Because of the large radial extent of the SVP, it is likely that

the profile can be sampling remarkably different precipitation substructures as the

beam propagates further from the radar within the prescribed radial extent (e.g.,

sampling the leading convective line of an MCS closer to the radar and trailing strat-

iform region further from the radar). The potential for sampling profoundly different

precipitation structures with radius and interpolating those data to a single vertical
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profile is problematic for situations where interest is in representing and analyzing

the entire depth of the vertical profile for a single prescribed location.

In addition, Bukovcic et al. (2017) proposed and used another technique, namely

that of enhanced vertical profiles (EVPs). This profile is initially different from the

SVP technique because it uses all available elevation angles. Starting 2.5 km upradial

from the point of interest, the median of all data spanning three azimuths and five

range gates from that point is taken. This is done for each point in range up to 2.5

km downradial of the point of interest. Those median values are then projected from

all elevations to the vertical, much like the SVP, to create a vertical profile over the

point of interest.

This technique produces a more representative profile of polarimetric radar data

over a given point, since data are sourced from a much more restricted extent in range.

However, due to the inherent noisiness of polarimetric variables, especially KDP (e.g.,

Kumjian, 2013a), using the median value of data around a single point may struggle

to eliminate noise, since data are not smoothed in any direct way. Additionally, the

limited azimuthal extent, even if mean values were used instead of median, may allow

for noise to still greatly influence the final values in the EVP.

A third modification on the original QVP technique was proposed by Tobin and

Kumjian (2017). They suggested the use of a “range-defined” QVP to examine the

occurrence and evolution of refreezing signatures during transitions from ice pellets

to freezing rain. They were motivated to modify the QVP technique since it censors

the first eight 250-m range gates, which can “partially or fully mask low-level (< 1

km) signatures such as refreezing when using higher elevation angles,” such as the

10-20◦ elevation angles typically used to construct QVPs. Range-defined QVPs use

data from all available elevation angles, defining a set range from the radar within

which the data will be used. QVPs are then created for all available elevation angles

within that restricted range from the radar, and those data are all interpolated to a
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Figure 2.2: Diagram explaining computation of the range-defined QVP and its

interpretation. Additional details available within and figure taken from Tobin and

Kumjian (2017).
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common vertical axis with 2-m resolution. These data are interpolated to such a fine

vertical grid by employing an inverse distance weighting technique, with the ability to

tune the technique to weight the output more and more heavily to the value closest

to the desired location in the vertical. Fig. 2.2 provides a conceptual depiction of the

range-defined QVP geometry.

This technique works well for the identification and monitoring of temporally-

evolving refreezing signatures, as it provides rich data near the ground surrounding

the radar. However, this technique does not allow for specific tailoring of the analysis

location as in Bukovcic et al. (2017), as the technique still produces a radar-centric

vertical profile as in the original Ryzhkov et al. (2016) QVP technique. The authors

noted this limitation of being radar-centric, stating that, “in principle, one could also

define two azimuths and two ranges to isolate a particular location.... This may be

especially useful in cases of spatially heterogeneous or widely scattered precipitation.”

2.2 Description of Technique

To further tailor the QVP technique to analyze more limited areas in the horizontal

within a large region sampled by a radar, the column-vertical profile, or CVP, tech-

nique was developed (Murphy et al., 2018). Similar to QVPs, CVPs offer novel insight

into the microphysical properties of various meteorological phenomena by providing

a simple and effective way to process polarimetric data and view it in a time-height

format. Whereas QVPs average radar data over the full range and azimuth of one

radar elevation scan, CVPs average data within a set sector in range and azimuth and

using multiple radar elevation scans performed during one volume scan. CVP data

analysis begins with selecting a specific location in range and azimuth from the radar

where the CVP will be centered. Next, a sector over which data will be sourced is

chosen, defined by a given distance upradial and downradial, and azimuth clockwise

and counterclockwise from the center point of the CVP analysis. Often this sector

31



spans 20 km in range and 20◦ in azimuth—specifically, 10 km up and downradial,

and 10◦ clockwise and counterclockwise from the CVP center. This is the sector size

used within all analyses shown herein. Fig. 2.3 shows a plan view of an arbitrary

CVP sector, spanning 20 km in range and 20◦ in azimuth.

For CVPs, because only data collected within a designated sector are included in

data processing and not data from every range gate and across all 360◦ in azimuth, a

single elevation scan cannot provide enough data to construct a full vertical profile.

Therefore, multiple elevation angles must be used to create the CVP. To create a

CVP, first a full volume scan is performed, and data that are collected from each

elevation scan within the analysis sector are averaged azimuthally. The averaged

data, existing at various distances along the radial (and therefore varying heights),

are projected along the horizontal to the center location of the CVP. The result is

that all data are located at varying heights at the same horizontal location in radius

and azimuth from the radar—namely, at the CVP center. This initial averaging and

projection of data from three dimensions to one dimension is done for each elevation

angle and without any weighting of data. Since volume scans are performed on the

order of 5 minutes, the times at which the data that are averaged and projected to

the CVP center are collected vary on the order of 5 minutes.

If two subsequent elevation scans have a sufficiently small elevation angle difference

and the range over which the CVP sector spans is sufficiently large, both elevation

scans may collect data at the same height within the analysis sector, leading to data

overlap when projected to the CVP center. To prevent overlap in projected data from

two subsequent elevation scans, for a given elevation angle, intermediate elevation

angles are defined as (imaginary) elevation scans inbetween the given elevation angle

and the elevation angles directly above and below (e.g., if a radar had elevation scans

at 0.5◦, 1.5◦, and 2.4◦, the intermediate elevation angles for the 1.5◦ elevation scan

would be 1.0◦ and 1.95◦). A restriction is placed such that data cannot be projected
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Figure 2.3: Plan view of a CVP sector (outlined in solid lines), spanning 20 km in

range and 20◦ in azimuth. The CVP center is represented by a dot in the middle of

the sector.
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in the vertical to the CVP center from that elevation scan at heights below the height

of the lower intermediate elevation angle at the CVP center, or above the height

of the higher intermediate elevation angle at the CVP center. Fig. 2.4 shows how

data from subsequent elevation scans are projected to the CVP center, including

limits on projection placed by intermediate elevation angles. This ensures data that

are collected closer are preferred over data collected farther from the CVP center in

range.

Once projected in the vertical dimension to the location of the CVP center, the

data are not regularly spaced in height, as an increase in the slope of the radar beam

as the radar scans higher in elevation creates a decrease in data density in the vertical

with height (see Fig. 2.4). To create a distribution of data in the vertical that are

evenly spaced with height, a Cressman averaging technique is employed (Cressman,

1959). This technique creates an evenly spaced array of data in the vertical by

searching for all data within a specified vertical distance from a given height, and

interpolating those data to that height via weighted averaging. This invokes the use

of a Cressman radius of influence, or how far away in the vertical from the specified

vertical location the algorithm will search for data to interpolate to that location. A

Cressman radius of influence of 100 m is typically used, meaning that the algorithm

will search vertically up and down 100 m for data to interpolate to a given height.

While the Cressman averaging technique and weighted interpolation of data to a

regular grid often fills data gaps due to its averaging in the vertical, it can still allow

for gaps in data if, for a given vertical location, there are no radar data within the

vertical distance of the Cressman radius of influence above or below that location.

Cressman averaging is typically done every 50 m from 0 to 15 km, resulting in vertical

profiles with data spacing of 50 m in the vertical. The distance from the radar at

which a CVP begins to have these gaps depends on the choice of the Cressman radius

of influence, the radar scanning strategy, and the range over which the CVP sector
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Figure 2.4: Visualization of how data are projected from different elevation angles to

the CVP center. Darker lines represent data collected at 1◦ (red), 2◦ (blue), and 3◦

(green) elevations, and lighter lines represent the native horizontal planes on which

the data are interpolated. Dashed lines represent intermediate elevation angles of

1.5◦ and 2.5◦. For visual simplicity, the figure suggests data are collected at 1 km

range resolution; WSR-88D data are actually collected at 250 m range resolution.
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spans. CVPs can typically be created at a range less than or equal to 110 km from the

radar when dealing with S-band radar data. Further investigation needs to be done to

determine the maximum distance in range from the radar CVPs can be created with

radars of different wavelengths. As with QVPs, for cases where the radar experienced

a ZDR bias, CVPs of ZDR are manually calibrated such that values just above the

ML are approximately 0.2-0.25 dB (Ryzhkov and Zrnic, 1998; Ryzhkov et al., 2005a).

The focusing of CVPs on a single location allows for tailoring of data selection

and processing to a unique feature or area of interest. As mentioned previously,

QVPs assume a certain degree of horizontal homogeneity in the observed precipita-

tion (Ryzhkov et al., 2016). While this can be appropriate for some analyses, for

applications such as comparison of polarimetric radar data to aircraft data, QVPs

can smooth out small mesoscale features that can lead to distinct microphysical char-

acteristics observable by the aircraft. For this reason, for intricate comparison of

polarimetric radar data to aircraft microphysical data, the detail offered by CVPs is

imperative. Fig. 2.5 shows a QVP and a CVP of Z from the same radar, date, and

time as in Fig. 1.4. During this time, an MCS was in the vicinity of the radar and

passed through the CVP’s analysis sector. Whereas in the QVP it is relatively unclear

what type of precipitating system is being sampled by the radar, in the CVP, one can

clearly pick out the leading convective line, transition zone, and trailing stratiform

region (e.g., Houze et al., 1989) of an MCS.

2.3 Modifications for Moving CVPs

The primary advantage of CVPs over QVPs is the ability to tailor the vertical

profile the technique creates to a specific location in range and azimuth from the

radar. This allows for analyses of polarimetric radar signatures and their trends over

a specific area, which could prove useful for a number of applications, including for

comparing aircraft microphysical data to polarimetric radar data, as will be the focus
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Figure 2.5: QVP (top) and CVP (bottom) of reflectivity for the same MCS case and

time as Fig. 1.4. The CVP is centered at 30 km and 90◦ from the radar, vertical

data spacing in the CVP is 50 m, and the sector size is 20 km in range and 20◦ in

azimuth.
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herein. Using the same methodology for creating a CVP at a fixed location, CVPs

can be created such that the CVP is centered on a different location for every single

volume scan. This moving CVP has the same sector size in range and azimuth for

every scan, the same vertical data spacing, and the same Cressman radius of influence

for each volume scan, and differs only in the location on which it is centered. This

technique can be used as a first step in collocating polarimetric radar and in situ

aircraft data by having the CVP move roughly in conjunction with the aircraft. Fig.

2.6 shows a conceptual model of how a CVP can be made to move in time with

the aircraft. The upper panel shows a 3-D model of an aircraft moving in time,

with different colored columns representing the location of the CVP sector and the

column from which data were sourced to create a CVP at that time and volume

scan. The lower panel shows how these data, collected at different locations and from

sequential operational volume scans, can be displayed in a time-height format much

like a traditional stationary CVP, with dark columns indicating data plotted in the

vertical, and graduated rectangles indicating how these data are visually smoothed

to create a cohesive image. The data themselves are not smoothed in time, and only

done so for the sake of the image, in the same manner as QVPs.

Figure 2.7 shows a CVP moving in time, using data from the KVNX S-band

WSR-88D operational radar located at Vance Air Force Base, OK, on May 20, 2011,

during the MC3E field campaign. On this day, the University of North Dakota (UND)

Cessna Citation II jet aircraft was flying within and on the periphery of the stratiform

region of a large mesoscale convective system passing over central Oklahoma, and was

within the requisite 110 km of the KVNX radar for the entire flight, from roughly

13-17 UTC. The CVP is centered on the location of the aircraft at the recorded start

time of the lowest elevation scan in each volume scan, with the black line on all

subpanels denoting the aircraft altitude at that time. Having the CVP move in such
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Figure 2.6: A conceptual model of how a moving CVP is created following the flight

path of an aircraft. The upper panel shows how data are sourced from different

regions for each sequential volume scan, and the lower panel shows how the data are

then plotted in a time-by-height format.
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Figure 2.7: Moving CVP using data from the KVNX radar on May 20, 2011 from

13-17 UTC. The CVP sector moved with the location of the research aircraft flying

during the MC3E campaign. Panels show (a) Z, (b) ZDR, (c) ρhv, and (d) KDP .

The black line overlaid on each panel represents the altitude of the aircraft with

time. Vertical data spacing in the CVP is 50 m, and the sector size is 20 km in

range and 20◦ in azimuth.

a manner results in vertical columns of data that are representative of the region in

which the aircraft is flying.
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Chapter 3

Methodology

Data from multiple field campaigns and a number of different intensive operation

periods (IOPs) are used in this study. The main focus will be on the May 20, 2011

MCS during the MC3E campaign, with additional analyses of the April 27, 2011

MCS during MC3E and July 6 and 9, 2015 MCSs during PECAN. Short descriptions

of these cases and the data collected during each are offered in sections 3.1 and

3.2, respectively. More extensive detail about the individual campaigns and their

observing platforms beyond what is relevant for this study is available in Jensen

et al. (2016) for MC3E and Geerts et al. (2017) for PECAN. Section 3.3 expands

on the aircraft and radar data collocation technique introduced in section 2.3, and

section 3.4 details a newly developed ice microphysical retrieval technique to be used

in this study.

3.1 Case Overviews

The MC3E campaign focused on obtaining measurements of convective clouds to

improve scientific understanding of convective processes, and utilize this knowledge

to improve their representation in models. The campaign was based out of the DOE

ARM Southern Great Plains (SGP) Central Facility (CF) (www.arm.gov/sites.sgp)

in north-central Oklahoma, “where an extensive array of both airborne and ground-

based instrumentation was deployed” (Jensen et al., 2016, see their Fig. 1). Op-

erational weather radar data were collected by the KVNX radar during the entire

campaign. Because of the fixed location of ground instrumentation, IOPs were teth-

ered in geographic location to northern OK.
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On April 27, 2011, while the southeastern United States was dealing with the

first of three deadly rounds of tornadoes, north central OK experienced persistent

stratiform precipiation from approximately 7-13 UTC. This stratiform rain appeared

to be the remnants of a small convective line that attempted to organize on the OK

panhandle late on April 26, 2011. This convection quickly fell apart, but its associated

shallow stratiform precipitation grew in spatial scale and persisted throughout most

of April 27th, passing right over the MC3E observing domain.

The MCS sampled during the May 20, 2011 MC3E mission resulted in a robust

dataset of ground, aircraft, and radar measurements. This was a particularly success-

ful case during the MC3E campaign, such that the data collected have been examined

in a number of different capacities within multiple publications (e.g., Van Lier-Walqui

et al., 2016; Fridlind et al., 2017; Marinescu et al., 2017). Discrete convective cells

formed in far southwestern OK/the southeastern TX panhandle around 4 UTC and

quickly grew upscale into a convective line by 7 UTC. The line developed a robust

stratiform region by 10 UTC as it approached central OK, and the leading line and

trailing stratiform persisted in intensity as the system traversed the state in a mainly

east-west fashion, decaying into disorganized convection embedded in stratiform on

and after 20 UTC over northern AK/southern MO. The archetypal structure of the

MCS on that day, the persistance of its stratiform region, and its path directly over

the MC3E observing domain made this a particularly attractive case to study.

The PECAN experiment utilized more mobile assets than did MC3E. A core

domain for IOPs was defined as an approximate 5 degree latitude by 6 degree longitude

box over southern NE, KS, and northern OK; however, the actual domain over which

IOPs were conducted stretched longitudinally from CO to IN, and latitudinally from

north TX to ND (Geerts et al., 2017, see their Fig. 1b). This experiment was

much more mobile in nature than MC3E because the ground instrumentation itself

was mobile, and not tethered to a specific location such as the ARM SGP CF in
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MC3E. Operational weather radar data were sourced from a number of different

radars nationwide for this campaign.

On July 6, 2015, just after 0 UTC, an MCS began to develop in southern SD.

Around 4 UTC, that convection started to merge with convection to its northeast and

southwest, with stratiform precipitation developing by 5 UTC behind the convective

line. Robust stratiform precipitation persisted as the convection began to decay, with

stratiform precipitation passing over the Grand Forks, SD (KFSD) WSR-88D radar

from approximately 5-9 UTC. The system progressed off to the ENE and began to

dissipate after this time.

At the other end of the PECAN domain, on July 9, 2015, an MCS was sampled in

the northern TX panhandle. Convection initiated in the far NW panhandle around

0 UTC, propagating to the SSE. Stratiform that was more parallel in nature (e.g.,

Parker and Johnson, 2000) formed around 3 UTC, transitioning to trailing stratiform

around 5 UTC and passing over the Amarillo, TX (KAMA) WSR-88D radar. The

MCS persisted to the SSE, decaying by about 14 UTC in the SE TX panhandle.

3.2 Aircraft In Situ Data

3.2.1 In Situ Probes

During MC3E, the University of North Dakota (UND) Cessna Citation II aircraft

housed all of the in situ microphysical instrumentation. The goal was to sample ice-

phase hydrometeors, such that flights focused on the region between the ML and cloud

top. The two probes of particular interest to this study are the 2D cloud imaging

probe (2D-C) and the high-volume precipitation spectrometer, version 3 (HVPS-3,

hereafter just HVPS). The 2D-C measured cloud and precipitation particle number

distribution functions, nominally measuring particles from 0.03 to 1.0 mm, whereas

the HVPS measured precipitation particle number distribution functions, nominally

measuring particles from 0.15 to 19.2 mm. On April 27, the aircraft flew a step
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down pattern into a single spiral up and down pattern, whereas on May 20, the

aircraft flew both a step up and step down pattern into a single spiral up and down

pattern. Although two probes sampling cloud particle distributions, the 2D-C and

Cloud Imaging Probe (CIP), were installed on the aircraft, the 2D-C data are used

because that probe had modified tips designed to reduce shattering, whereas the CIP

did not. For probes without anti-shattering tips, after a crystal bounces off the tip

or inlet, the shattered fragments may travel into the sample area and cause multiple

artificial counts of small ice (Korolev et al., 2013). Although the data processing

technique used for the in situ data herein has routines to eliminate shattered artifacts

(see section 3.2.2), for this reason, the 2D-C data are used to derive cloud particle

size distributions for MC3E.

During PECAN, the NOAA P-3 aircraft housed all of the in situ microphysical

instrumentation, concentrating on the study of MCS dynamics and microphysics.

For the cases analyzed herein, flights mainly focused on passes through the ML,

with the P-3 flying a combination of straight legs and spiral ascents and descents

in the trailing stratiform region. The two probes of particular interest to this study

are the CIP and Precipitation Imaging Probe (PIP). The CIP measured primarily

cloud particle spectra, measuring particles from 0.125 to 1.6 mm, whereas the PIP

measured precipitation particle spectra, measuring particles from 0.6 to 6.4 mm. The

P-3 performed a number of spirals during both IOPs, 4 in total on July 6 and 8 on

July 9.

During PECAN, the PIP malfunctioned fairly regularly, leading to a dataset that

is not of consistently good quality. For that reason, for analyses of in situ microphys-

ical data herein, the focus will be on the 2D-C and HVPS probes in MC3E, and the

CIP in PECAN.
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3.2.2 Data Processing and Bulk Properties

The data used in this study were processed using the University of Illinois/Oklahoma

Optical Array Probe (OAP) Processing Software (UIOOPS; McFarquhar et al., 2018).

UIOOPS is a collection of 22 total codes that are used to process data and compute

particle size distributions (PSDs) from optical array probe data. The code outputs

information on the morphology of individual particles and PSDs, as well as estimates

of bulk extinction, mass weighted terminal velocity, and ice water content. A general

overview of the processing technique is provided here; a wealth of information beyond

what is reproduced here is available in McFarquhar et al. (2018). There are three

steps that the software follows to generate PSDs from raw 2D optical array probe

data: processing OAP raw data, generating shape parameters for each particle, and

determining size distributions.

First, OAP raw data are processed. The first file produced in this step contains

raw image data of every frame recorded by the probe, and timing information about

the frame (from the year down to the millisecond of data collection). After the parti-

cle images and timing information are output, a netCDF file is generated containing

several descriptors (e.g. timing information, morphological description) of each par-

ticle. In generating this netCDF file, the software also accepts or rejects particles

based on a series of criteria designed to remove spurious stuck bits, splash artifacts,

blank records, and streaker particles (but not shattered artifacts).

In the second step, shape parameters for each particle are generated. These in-

clude parameters such as the particle’s projected area (Ap), the length of the particle

in the directions perpendicular and parallel to the photodiode array (L and W , re-

spectively), and several calculations of Dmax, or the particle’s maximum dimension.

These parameters can be used to eliminate shattered artifacts. If L/W > 5 (or 6,

if the particle touches the edge of the photodiode array), the particle is rejected, to

remove streakers and stuck bits with large aspect ratios. Additionally, a particle is
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identified as out of focus if it is a spherical hollow particle, and particle size for those

such particles is adjusted using a correction factor according to Korolev (2007).

Third, the particle shape parameters are used to determine the size distributions.

To check for streakers and stuck bits, the area ratio is defined as

Ar =
Ap

(π/4)D2
max

(3.1)

If Ar < 0.2, then the particle is removed. Additionally, the interarrival time, or time

difference between two successive particles passing through the probe’s sample vol-

ume (e.g., Korolev and Field, 2015), is used to eliminate shattered artifacts. Because

shattered particles are closely spaced, their interarrival time is typically much less

than that for naturally occurring particles. Therefore, when an interarrival time is

less than a given threshold (determined using one of multiple methods), the particle

and the preceding particle are removed. For PECAN, that threshold was determined

on a spiral-by-spiral basis, with an average value of 3.5∗10−5 across all spirals during

the project, and average values of 2.07 ∗ 10−5 and 5.09 ∗ 10−5 for July 6 and 9, 2015,

respectively (Stechman, 2018). For MC3E, the data suggested that few shattered ar-

tifacts were sampled by either the 2D-C or HVPS probes, and therefore no shattering

removal algorithm was used for either probe (Wu and McFarquhar, 2016).

After these final tests to remove artifacts are performed, size distributions and

bulk parameters can be calculated. The number of accepted particles in a size bin j

for each 1 s time interval is determined and represented as Nacc(j). Noting that Dj

is the midpoint of D in bin j with width ∆Dj, the 1 s number distribution function

N(Dj) can be calculated, where

N(Dj) =
Nacc(j)

(SA)(TAS)(1− td)
(3.2)

where SA is the probe sample area, TAS is the true air speed, and td is the deadtime

of the probe in the 1 s time period. The size distribution is then sorted into bins

according to Ar and Dmax, and is represented as N(Dj, Ark), where j represents the
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jth size bin with midpoint Dj and k represents the kth Ar bin with area ratio midpoint

Ark . This can be determined by replacing Nacc(j) in eqn. 3.2 with Nacc(j, k), to sort

particles by both size and area ratio.

To calculate IWC, two methods are used in the software. The first uses mass-

dimensional relationships, and was not used in this study. The second uses the cross

sectional mass-area relation of Baker and Lawson (2006), where

IWC =
∑
j

∑
k

a
(π

4
D2
jArk

)1.218
N (Dj, Ark) ∆Dj (3.3)

where a = 0.115 mg ∗ mm−2.436. After determining the PSDs for each second, the

median mass dimension, Dmm, is also calculated and is the primary measurement of

particle dimension used in most microphysical studies. It is defined as the diameter

for which half of the mass is given by particles with maximum dimensions smaller

than Dmm, and half of the mass is given by particles larger than Dmm (McFarquhar

and Heymsfield, 1998).

3.2.3 Particle Imagery

During the May 20, 2011 MC3E flight, the aircraft flew one spiral through the

entire depth of the DGL. This spiral provided an opportunity to examine particle

shapes and habits, and the relative concentrations of particles with these varying

shapes and habits, in this region in detail. As mentioned in Griffin et al. (2018), an

anticorrelation of ZDR and KDP signatures was often seen within the DGL in winter

storms. They postulated that this anticorrelation was related to the presence of

dendrites, and the relative concentrations of dendrites and isometric ice. Examination

of particle images from both the 2D-C and HVPS probes captured as the aircraft flew

the downward leg of its spiral through the DGL will give further information about

the relative concentration of dendrites and isometric ice in the DGL of MCSs, and

about the microphysical causes for any polarimetric signatures that are or are not

observed during the time of the spiral.
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3.3 Collocation of CVP and Aircraft Data

Employing the moving CVP technique allows for polarimetric radar data to be

collocated to in situ aircraft data in time, range from the radar, and azimuth; however,

the four-dimensionality of radar data means that these data still need to be collocated

to the aircraft location in the vertical. This presents a challenge, as the aircraft is often

moving vertically as the radar is performing the volume scan, and the exact time the

data in each vertical column of the CVP were collected cannot be definitively stated,

due to the nature of the vertical smoothing of data at each vertical level. To deal with

these challenges, we employ a collocation technique between the polarimetric radar

data and aircraft in situ data that includes a time-offset component for the CVP data.

The technique is as follows. For every full volume scan of data (and therefore every

column in the CVP), the start times of that volume scan and of the following volume

scan are recorded. Then, the data in the CVP column associated with the current

volume scan are assigned times that are linearly offset between the start times of the

current and next volume scans, with time increasing with increasing altitude in the

CVP column. In other words, data collected higher in the vertical are assumed to

have been collected later in time, with the time of data collection increasing linearly

with height in the CVP column, from the start time of the current volume scan to

just before the start time of the next volume scan.

After assigning approximate times of data collection for every data point in the

CVP, we assume that the data at that specific altitude are actually representative of

the region between that altitude and the altitude above (e.g., for a 50 m resolution

CVP, the data at 5.50 km in the CVP datafile are assumed to be representative of

the region from 5.50 to 5.55 km). This is done since the aircraft will rarely, if ever,

be located at the exact altitude CVP data are assigned at that exact time, and is

a reasonable assumption again due to the nature of the vertical smoothing inherent

to CVPs. For every region of CVP data in the vertical, the altitude of the aircraft
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Figure 3.1: Time series plots of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP collocated to

the aircraft location as it flew through the MCS represented in the CVP in Fig. 2.7.

Green shaded regions represent times where the aircraft flew within or below the

ML.

is found at the region’s estimated collection time. If the aircraft was within the

given CVP data region in the vertical at the region’s estimated collection time, the

CVP and aircraft in situ data are extracted and saved as collocated data for future

analyses. Data extraction is then suppressed for the next ten seconds, to prevent

data extraction from two nearly identical locations in the CVP and locations of the

aircraft. In analyses herein, we use CVPs with 50 m data spacing in the vertical.

Fig. 3.1 shows a time series plot of polarimetric radar data extracted from the flight

path shown on the CVP in Fig. 2.7, with green shaded regions representing times

where the aircraft flew within or below the ML. Looking qualitatively at Figs. 2.7

and 3.1, both figures in conjunction clearly show that the values extracted from along

the flight path match up quite well to the values where the aircraft was flying in the

images, corroborating the effectiveness of this technique.

49



3.4 Ice Microphysical Retrieval Technique

3.4.1 Development of Technique

As previously mentioned, polarimetric radar data provide a wealth of informa-

tion that can be used to improve existing ice microphysical retrieval algorithms and

develop even more sophisticated ones. The ice microphysical retrievals used in this

study were developed by Ryzhkov et al. (2018), and use ZDP , Z, Zdr, KDP , and

radar wavelength λ to estimate IWC, Nt, and mean volume diameter (Dm). Dm

differs from Dmm in that Dm is the ratio of the fourth and third moments of the size

distribution (Zhang, 2017), whereas Dmm is the “dimension for which half of the mass

is given by particles with maximum dimensions smaller than [Dmm]” (McFarquhar

and Heymsfield, 1998). Knowing that ZDP can be calculated from Z and ZDR, and

that Zdr is ZDR in linear scale, this algorithm truly uses three radar variables (Z,

ZDR, and KDP ) to estimate three microphysical variables. A short overview of the

development of the retrievals is provided herein. The majority of the text is sourced

from Ryzhkov et al. (2018), with more detail available therein. A typo in eqn. 18 in

Ryzhkov et al. (2018), herein eqn. 3.11, has been identified and rectified (Alexander

Ryzhkov, personal communication).

Ryzhkov et al. (2018) start the development of their retrieval techniques by ex-

plaining that multipliers in IWC(Z) power-law relations are almost entirely dependent

on the product αD2
m, where α is related to the density of snow (ρs) such that

ρs ≈ αD−1 (3.4)

and α is proportional to the degree of riming. They further showed that an analytical

expression for IWC in terms of Z can be obtained following derivations of Hogan

et al. (2006) and Bukovcic et al. (2018):

IWC = 3.09 ∗ 10−3

(
Z

αD2
m

)
(3.5)
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Therefore, the first step in determining IWC is calculating Dm. To do so, they

use KDP measurements, based on the fundamental fact that Z is proportional to

the 4th moment of the snow size distribution and KDP is proportional to the 1st

moment (given that snow density is inversely proportional to the diameter of the

snow particle). The ratio of Z to KDP is therefore approximately proportional to

D3
m.

The advantage of using the ratio of Z and KDP to estimate Dm is that it has

low sensitivity to size distribution variability, changes in snow density, and degree of

riming (due to the mutual proportionality of Z and KDP to α). However, such an

estimator does not account for the diversity of ice particle shapes and orientations,

both of which strongly affect KDP . This makes the estimator most appropriate for

irregular or aggregated snow, which are mostly isotropic and have little aspect ratio

variability. Therefore, this works well for regions near the ML, where aggregates

typically dominate sampling volumes, but poorly for ice regions aloft such as the

DGL, where highly anisotropic particles are most prevalent. Since the primary region

of interest for this study is high up in ice clouds, modifications to such an approach

must be made.

It is therefore imperative to develop a Dm estimator that is immune to variations

in particle shape and orientation. As mentioned in section 1.2, Ryzhkov et al. (1998)

developed a retrieval technique for IWC that depended on ZDP and KDP , whose ratio

is robust with respect to the variability of particle aspect ratio and orientation due

to how similarly particle aspect ratio and orientation affect the values of both. So,

a similar approach can be used here to estimate Dm. It can be shown that ZDP is

roughly proportional to the 3rd moment of the snow size distribution (Ryzhkov et al.,

2018), such that the ratio of ZDP and KDP is expected to be linearly dependent on

D2
m. Following this reasoning, the variable η is defined as:

η =

(
ZDP
KDPλ

) 1
2

(3.6)
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where ZDP is in linear scale and λ is radar wavelength in mm.

Ryzhkov et al. (2018) simulated the value of η andDm for 12 snow habits, including

irregular/aggregated snow with aspect ratio of 0.6, and 11 types of pristine ice crystals

as in Matrosov et al. (1996). All particles are modeled as oblate or prolate spheroids,

with aspect ratios dependent on particle size, approximated by the power-law relation

h = cLd (3.7)

for all 12 snow habits, where L is the larger and h is the smaller dimension of a

crystal, both expressed in mm. Table 3.1 offers more detail on the 11 snow habits

besides irregular/aggregates, and shows values of c and d for each. Using the results

of these simulations, they developed an equation for Dm dependent on η, such that:

Dm = −0.1 + 2.0η (3.8)

This equation approximates the average dependence of Dm on η for all 12 snow habits.

Crystal Habit c d

1) Dendrites 0.038 0.377

2) Solid Thick Plates 0.230 0.778

3) Hexagonal Plates 0.047 0.474

4) Solid Columns (L
h
< 2) 0.637 0.958

5) Solid Columns (L
h
> 2) 0.308 0.927

6) Hollow Columns (L
h
< 2) 0.541 0.892

7) Hollow Columns (L
h
> 2) 0.309 0.930

8) Long Solid Columns 0.128 0.437

9) Solid Bullets (L < 0.3 mm) 0.250 0.786

10) Hollow Bullets (L > 0.3 mm) 0.185 0.532

11) Elementary Needles 0.073 0.611

Table 3.1: Parameters c and d in Eqn. 3.6 for different types of crystals (as in

Matrosov et al., 1996).
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They next show that IWC can be determined from the combination of Z and Dm,

using γ, where:

γ = αD2
m (3.9)

It can be shown that γ is highly correlated with η2:

γ ≈ 0.78η2 = 0.78

(
ZDP
KDPλ

)
(3.10)

From Eqns. 3.5 and 3.10, an equation for IWC can be derived:

IWC ≈ 4.0 ∗ 10−3

(
KDPλ

1− Z−1
dr

)
(3.11)

Total concentration of ice particles Nt can be estimated from the combination of

Z and γ. Ryzhkov et al. (2018) show that log(Nt) can be estimated as such:

log(Nt) = 0.1Z − 2 log(γ)− 1.33 (3.12)

where Z is expressed in dBZ and Nt in L−1 to facilitate comparison to aircraft obser-

vations of Nt, which are typically expressed in L−1.

Before calculating these microphysical quantities, data are thresholded such that

retrievals are only performed for points where Z > 0.1 dB, ZDR > 0.1 dB, and

KDP ≥ 0.01 deg/km. For clarity, Table 3.2 lists the 3 equations that will be used in

ice microphysical retrievals herein.

Variable Equation Equation Number

Dm Dm = −0.1 + 2.0η 3.8

IWC IWC ≈ 4.0 ∗ 10−3
(
KDPλ

1−Z−1
dr

)
3.11

Nt log(Nt) = 0.1Z − 2 log(γ)− 1.33 3.12

Table 3.2: Summary of ice microphysical retrieval equations and their equation

numbers used in this study.
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3.4.2 Application to Moving CVPs

After a moving CVP is created for a particular flight and interval of time, the

data at each vertical level can be ingested into the aforementioned ice microphysical

retrieval algorithms. Only data above the ML, subjectively determined by examining

moving CVP images, are ingested into the algorithms, producing estimates of Dm, Nt,

and IWC at all altitudes above the ML on the moving CVP. Microphysical retrieval

data are then collocated to aircraft in situ data in the same manner in which CVP

and aircraft in situ data are collocated, explained in section 3.3. More detail and

examples of this technique are available in section 4.5.
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Chapter 4

Results

4.1 Moving CVPs

The first case of interest to this study is May 20, 2011, where the aircraft flew

through a robust region of stratiform cloud for approximately 4 hours. Shown in

Fig. 2.7, the aircraft remains within stratiform precipitation resolvable by the radar

until the very end of the flight. A robust ML from 3-4 km is visible in both Z

and ρhv, and hinted at via an enhancement of ZDR below 4 km, indicative of oblate

raindrops. Of note is that there is very little enhancement in the DGL of ZDR,

and slight enhancement of KDP , where the DGL is between approximately 6-7.5 km

(estimated from coincident aircraft altitude and air temperature measurements). A

lack of ZDR signature and presence of KDP signature is also seen in the QVP from

this day constructed using data before and just after the aircraft took off (Fig. 1.4).

This absence of a strong ZDR signature in the DGL could mean that it is dominated

by isometric ice, with little to no dendrites (Griffin et al., 2018).

There are a number of degrees of freedom when creating a CVP. One of the many

adjustable specifications is the vertical data spacing. In this study, a 50 m vertical

data spacing is employed, but the CVP algorithm can be tuned to create CVPs of

any vertical data spacing. Fig. 4.1 is analogous to Fig. 2.7, but with a vertical data

spacing of 10 m instead of the typical 50 m. Comparing the two CVPs, qualitatively,

it is extremely difficult to find any differences between the two. Just how fine the

vertical data spacing should be in a CVP to adequately resolve polarimetric signatures

is a topic of continuing work, and is also a highly subjective question, depending on

the goals of the project and type of precipitation. The remainder of the work shown

herein will use exclusively 50 m moving CVPs.
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Figure 4.1: As in Fig. 2.7, but with vertical data spacing of 10 m.

On April 27, 2011, the precipitation was much more shallow, with a freezing

level at only 2 km. Figure 4.2 shows a moving CVP for that case, with shallow

precipitation that extends only to a height of 5-6 km. Most notable about this case is

the prolific number of gaps in the CVP. Some of the small gaps in Fig. 4.2 could

potentially be smoothed by increasing the Cressman radius of influence, another

degree of freedom when creating a CVP. The Cressman radius of influence is how

far away in the vertical from each vertical level the algorithm will search for data to

interpolate to that location, using a weighted averaging technique. In this study, a

Cressman radius of influence of 100 m is used. As mentioned previously, this use of

a Cressman averaging technique often fills in data gaps due to its averaging in the

vertical, but can still allow for gaps in data if, for a given vertical location, there are

no radar data within the vertical distance of the Cresman radius of influence above

or below that location. Figure 4.3 shows a moving CVP analogous to Fig. 4.2, but

with a 250 m Cressman radius of influence. The gaps in the vertical are markedly

reduced, due to the larger window in the vertical from which data are being sourced
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Figure 4.2: Moving CVP using data from the KVNX radar on April 27, 2011 from

8-11:23 UTC. The CVP sector moved with the location of the research aircraft

flying during the MC3E campaign. Panels show (a) Z, (b) ZDR, (c) ρhv, and (d)

KDP . The black line overlaid on each panel represents the altitude of the aircraft

with time. Vertical data spacing in the CVP is 50 m, and the sector size is 20 km in

range and 20◦ in azimuth.
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Figure 4.3: As in Fig. 4.2, but with a Cressman radius of influence of 250 m.

for each vertical level. However, with this reduction in gaps in the data comes with

more smoothing in the vertical, potentially smoothing out fine scale polarimetric

signatures as a result. In a case such as this where the number of gaps in the vertical

severely impedes the ability to analyze the image, this additional smoothing via a

larger Cressman radius of influence may be warranted. Although some smoothing of

polarimetric signatures is visible between Figs. 4.2 and 4.3, upon close inspection,

there appears to be qualitatively little loss of information in this case. As the CVP

methodology is used more, the use of varying Cressman radii of influence and their

effect on the ability to resolve fine scale polarimetric signatures must be explored.

The storm was considerably deeper on July 6, 2015, where the P-3 flew through

MCS stratiform extending up to 14 km. In the moving CVP for this case (Figure 4.4),

a ML is visible in Z and ρhv, with an increase in ZDR clearly visible below it, as in Fig.

2.7. There are also strong signatures of KDP within the DGL (from approximately

6-8 km, estimated from aircraft altitude and air temperature measurements at the

bottom of the DGL and assuming a somewhat constant lapse rate). This region
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Figure 4.4: Moving CVP using data from the KFSD radar on July 6, 2015 from

5-7:15 UTC. The CVP sector moved with the location of the research aircraft flying

during the PECAN campaign. Panels show (a) Z, (b) ZDR, (c) ρhv, and (d) KDP .

The black line overlaid on each panel represents the altitude of the aircraft with

time. Vertical data spacing in the CVP is 50 m, and the sector size is 20 km in

range and 20◦ in azimuth.
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of high KDP is collocated with a region of low ZDR, which could indicate a high

concentration of predominantly isometric ice. Additionally, such strong signatures of

KDP are likely to result in more extreme ice microphysical retrieval estimates.

One peculiar quality about the July 6, 2015 moving CVP is its non-monotonic

time scale. This is the result of the aircraft flying near the 110 km range limit, where

at distances further, CVPs cannot be made. Out of 28 scans performed during the

time where the aircraft flew on July 6, 2015, 22 scans were within the required 110

km. The other 6 scans where the aircraft was beyond 110 km occurred not all at

once, but one to two at a time throughout the period for which the CVP was made.

On plots of CVP data, when the sector’s center is not close enough to the radar for a

CVP to be created for that volume scan, the processing technique does not insert data

to create a blank column. Rather, it simply skips that scan and moves on to the next,

such that no matter the length of time the CVP center was too far from the radar

to create a CVP, the data from the time immediately before and immediately after

the sector moved too far away will be plotted right next to each other on the x-axis.

This plotting technique suggests temporal continuity between those times before and

after the CVP was centered beyond 110 km, when in reality tens of minutes or even

hours could have passed between columns of CVP data. This is something that must

be taken into consideration when examining moving CVPs herein, and also when

examining microphysical retrievals performed on these CVPs in section 4.5. The fact

that scans are intermittently skipped when creating the July 6, 2015 moving CVP

has been taken into account when overlaying aircraft flight tracks.

The moving CVP for the July 9, 2015 PECAN case will not be analyzed herein,

due to the large number of gaps on that CVP as a result of the proximity to which

the aircraft flew to the edge of the stratiform region. However, bulk microphysical

properties of this system will still be examined in section 4.4.
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4.2 Comparison of CVP and GridRad Techniques

Another recently developed technique to examine radar data and vertical profiles

of radar data at any location in the United States is the GridRad technique (Bowman

and Homeyer, 2017). GridRad data are data sourced from 125 S-band NEXRAD

National Weather Service (NWS) radars (Crum and Alberty, 1993), merged together

to create a three-dimensional, high-resolution dataset of radar data covering most of

the contiguous United States. In publically available GridRad data, NEXRAD Level

II data from multiple radar sites are merged and gridded to a regular, high-resolution

(0.02◦ x 0.02◦ x 1 km), longitude-latitude-altitude grid. The data for this particular

study differ slightly in that the vertical resolution of the data is 500 m from 1-7

km, providing greater detail of radar characteristics of precipitation in lower levels.

GridRad data shown herein include Z, ZDR, ρhv, and KDP at 1-minute temporal

resolution. Due to how data from all WSR-88D radars are merged to create GridRad

data, polarimetric radar data are only available for cases occuring after the completion

of the entire WSR-88D network’s upgrade to dual-polarization capabilities, which

herein include only PECAN and not MC3E cases.

To create GridRad vertical profiles, first, the gridpoint closest to the aircraft’s lo-

cation at the beginning of each given minute is found. Then, data are smoothed over

nine gridpoints latitudinally and nine gridpoints longitudinally (i.e., an 81-gridpoint

region) surrounding and including the gridpoint closest to the aircraft location. This

process is repeated at the beginning of each minute of the flight. Averaging the

GridRad data in this sense mimics the azimuthal averaging of radar data performed

during the creation of CVPs. The main differences between GridRad vertical profiles

and CVPs following the aircraft are the enhanced horizontal resolution of GridRad

data, contrasted with the enhanced vertical resolution of the CVP data. In smooth-

ing the GridRad data over a nine-by-nine gridbox, some of this enhanced horizontal

resolution is eliminated; however, this averaging is paramount to reducing statistical
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noise of polarimetric radar variables, therefore proving especially important for inves-

tigations of (polarimetric) PECAN vertical profiles. Qualitative agreement between

the vertical profiles created using the GridRad and CVP techniques would instill con-

fidence that the CVP technique is accurately resolving the vertical profiles of radar

data at locations along the aircraft track, given that the GridRad technique has been

peer reviewed and used in a number of studies (e.g., Homeyer, 2014; Homeyer and

Kumjian, 2015; Solomon et al., 2016; Cooney et al., 2018).

For the MC3E campaign, although the KVNX radar was equipped with dual-

polarization capabilities, the entire WSR-88D network was not, so GridRad data

are limited to only Z. However, comparisons can still be made between CVPs and

GridRad vertical profiles to determine the CVP technique’s effectiveness in construct-

ing representative vertical profiles of Z at the aircraft’s location. Figure 4.5 shows

vertical profiles of Z following the aircraft on May 20, 2011, using the CVP and

GridRad techniques. At a first glance, these profiles look qualitatively quite similar,

increasing confidence that the CVP methodology is accurately resolving the vertical

profile of Z over the aircraft’s location. Beyond just a cursory look at both plots,

there are a number of differences between the two. The ML in the GridRad plot is

lower in peak magnitude than in the CVP, by about 5 dBZ. This is likely attributable

to the vertical resolution of the GridRad data, which is 500 m at the height of the

ML. Additionally, the CVP shows a cloud top height extending to near 10 km at the

beginning of the period, with a minimum in cloud top height of approximately 8 km

during the period. The GridRad technique shows a maximum in cloud top height

of only approximately 9 km, except for some spurious peaks to 10 km through the

period. The higher cloud top heights on the CVP are likely due to the finer vertical

data spacing when compared to GridRad (50 m vs. 1 km at that altitude). In the

GridRad profile, if the cloud top exists within a 1 km interval above 7 km, the data

from below and above cloud top are smoothed together, and cloud top can appear
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Figure 4.5: Vertical profiles of Z along the flight track during the May 20, 2011

MC3E flight, creating using the (a) CVP and (b) GridRad techniques. The black

line overlaid on each panel represents the altitude of the aircraft with time. Vertical

data spacing in the CVP is 50 m, and the sector size is 20 km in range and 20◦ in

azimuth. Vertical profiles of GridRad data are created using data averaged over a

nine-by-nine gridbox surrounding the closest longitude-latitude point to the aircraft

location at the beginning of each minute.
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lower on the GridRad profile than it actually is. In addition, the GridRad profile

does have a finer temporal resolution, which is evident in regions of additional detail

along the x-axis of Fig. 4.5b.

A similar analysis of CVP vs. GridRad vertical profile can be done for the April

27, 2011 MC3E case. Figure 4.6 shows vertical profiles of Z following the aircraft on

April 27, 2011, using the CVP and GridRad techniques. Again, qualitative similar-

ities between the profiles increase confidence that the CVP technique is accurately

resolving the vertical profiles of Z over the aircraft’s location. Although the CVP

in Fig. 4.6a is riddled with gaps, close inspection reveals a temporal collocation of

enhanced reflectively regions, similar vertical extents of various values of Z (i.e., sim-

ilar vertical extents of each color plotted), and a similar cloud top height. While

qualitative comparison is more difficult due to the number of gaps in Fig. 4.6a, one

interesting difference between the two profiles is that the GridRad profile has a higher

cloud top height after 9 UTC than the CVP. Whereas the CVP cloud top height hov-

ers around 5 km, occasionally reaching 5.5 km, the GridRad cloud top height is fairly

steady at 6 km. This difference likely suggests the opposite of what was occuring

in Fig. 4.5–that the finer vertical data spacing in the CVP is resolving a cloud top

height lower than the GridRad profile is. Additionally, gaps in the vertical may be

artificially decreasing CVP cloud top height. The GridRad cloud top height is, at

times, approximately 1 km greater than the CVP cloud top height, and the effects of

a more coarse vertical data spacing in the GridRad data should only result in a cloud

top height difference of less than 500 m at that altitude.

With the WSR-88D network upgrade to dual-polarization completed in 2013,

GridRad data after that time include the full suite of polarimetric variables used

to make CVPs. Therefore, comparisons of the techniques can go beyond just profiles

of Z, and include profiles of ZDR, ρhv, and KDP as well. Figure 4.7 shows CVPs and

GridRad vertical profiles of all four variables. Note that GridRad data have been
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Figure 4.6: Vertical profiles of Z along the flight track during the April 27, 2011

MC3E flight, creating using the (a) CVP and (b) GridRad techniques. The black

line overlaid on each panel represents the altitude of the aircraft with time. Vertical

data spacing in the CVP is 50 m, and the sector size is 20 km in range and 20◦ in

azimuth. Vertical profiles of GridRad data are created using data averaged over a

nine-by-nine gridbox surrounding the closest longitude-latitude point to the aircraft

location at the beginning of each minute.
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Figure 4.7: Vertical profiles of Z (a,e), ZDR (b,f), ρhv (c,g), and KDP (d,h) along

the flight track during the July 6, 2015 PECAN flight, creating using the (a-d) CVP

and (e-h) GridRad techniques. The black line overlaid on each panel represents the

altitude of the aircraft with time. Vertical data spacing in the CVP is 50 m, and the

sector size is 20 km in range and 20◦ in azimuth. Vertical profiles of GridRad data

are created using data averaged over a nine-by-nine gridbox surrounding the closest

longitude-latitude point to the aircraft location at the beginning of each minute.
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removed for time periods where there were temporal gaps in CVP data (explained in

section 4.1), so each subplot in Fig. 4.7a-d represents the same time period as the

corresponding subplot in Fig. 4.7e-h. Each variable shows interesting similarities and

differences between the CVP and GridRad vertical profile.

For profiles of Z, the CVP and GridRad profiles are fairly similar, except for

isolated periods of erroneously high extents of Z > 20 dBZ in the GridRad profile.

In profiles of ZDR, values of ZDR above the ML in the GridRad profile are slightly

higher than those in the CVP. The GridRad technique calibrates ZDR automatically,

whereas for QVPs and CVPs, ZDR must be calibrated by hand if the radar being

used has a ZDR bias. While the magnitudes are slightly different, the manual ZDR

calibration–calibrating the data such that values above the ML are approximately

0.2-0.25 dB, as in Ryzhkov et al. (2005a)–seems to perform well when compared to

the GridRad values for ZDR. However, for low values of ZDR, even small fluctuations

of ZDR values can cause large fluctuations in calculations ingesting ZDR values, such

as microphysical retrievals. The effects of low ZDR values on microphysical retrievals

are explored more in section 4.6.

The vertical profiles of ρhv in Figs. 4.7c,g show similar magnitudes of ρhv values

far above the ML, with values at or above 0.975. The depth of the ML is also quite

similar between the two plots; however, the magnitudes of ρhv in the center of the

ML are lower in the CVP than in the GridRad vertical profile for a majority of

the period, especially after 6 UTC. This is likely due to the more coarse vertical

resolution of GridRad data when compared to CVP data, resulting in a smoothing

out the minimum value of ρhv in the center of the ML.

Comparing the CVP and GridRad vertical profiles of KDP (Figs. 4.7d,h), both

show local enhancement of KDP from 6-12 km at the beginning of the period. Both

profiles show this local maximum, prolonged enhancement of KDP above the ML

through the flight period, and some localized enhancement of KDP below the ML
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near the end of the period. The GridRad vertical profile of KDP struggles to resolve

the ML, as shown by the dipole of high values just below low values of KDP straddling

4 km. The CVP technique, conversely, seems to handle the ML well, using techniques

from Griffin et al. (2018) as previously described. Strong contribution of δ to ΦDP

can prove problematic to calculations of KDP in the ML, and is discussed in more

detail in section 4.3.

Smoothing of GridRad data over a nine-by-nine gridbox proved incredibly impor-

tant for KDP in particular. A GridRad vertical profile of KDP for this case where data

was sourced from a single latitude-longitude point instead of smoothing over a nine-

by-nine gridbox (not shown) showed a much noisier vertical profile. Such smoothing

is recommended when GridRad data are used for applications such as vertical pro-

files of radar data and/or microphysical retrievals. However, CVPs likely remain the

preferred choice when examining vertical profiles of polarimetric radar data due to

their enhanced vertical resolution, as visible when looking at all variables in Fig. 4.7.

4.3 Comparison of QVPs Created with Various Wavelength

Radars

Since the creation of the QVP technique, data from a number of sources have been

analyzed via the use of QVPs. These include data from various wavelength radars,

including S- (Schrom and Kumjian, 2016; Van Den Broeke et al., 2016; Kumjian and

Lombardo, 2017; Troemel et al., 2017; Ryzhkov et al., 2017), C- (Kumjian et al., 2016;

Montopoli et al., 2017), and X-band radars (Sulia and Kumjian, 2017). However,

no investigations have been done about how QVPs of the same precipitation using

data collected from radars of different wavelengths compare. This cross comparison of

QVPs using data collected at different wavelengths is particularly interesting, because

it allows for better understanding of different signatures seen in QVPs at various
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wavelengths, and whether those signatures are a result of the different precipitation

structures sampled by, or of the different wavelengths of, these radars.

Cursory comparison of QVPs of the same precipitation using data collected by

radars of different wavelengths is the first step in understanding the differences be-

tween such QVPs. Data collected during PECAN provide a unique opportunity to

compare QVPs at multiple wavelengths, due to the variety of instrumentation and

radars deployed during the campaign. As long as the radars are primarily sampling

the trailing stratiform region and not the leading convective line, MCSs lend them-

selves well to doing this type of cross-comparison of QVPs.

An opportunity to compare QVPs from multiple wavelength radars presented it-

self during the MCS observed on July 6, 2015. Both KFSD and the dual-polarized

X-band mobile radar NOAA X-POL (NOXP) sampled robust stratiform precipitation

from 7-8 UTC, with a nearly horizontally homogeneous echo sampled by both radars.

Figure 4.8 shows PPI images of data collected at 0.5 degree elevation from two similar

times for both of these radars. The box in Fig. 4.8a-b shows the zonal and meridional

extent of Fig. 4.8c-d, with the location of NOXP denoted by the black dot. Although

some convection is evident in the S-band radar data, the majority of the echo sam-

pled by both radars was stratiform precipitation, making an analysis of the vertical

structure of such precipitation using the QVP technique appropriate. C-band radar

data from the Shared Mobile Atmospheric Research and Teaching radars (SMART-R;

Biggerstaff et al., 2015) were collected on this day but are not used for QVP analyses,

as SMART-R1 did not have dual-polarization capabilities, and SMART-R2 was not

collecting data during this time period. At the time of data collection, NOXP was

sited approximately 56 km southwest of KFSD. This means that the precipitation

that both radars were scanning was analogous, but cannot be assumed to be identi-

cal, even though the data were collected at the same time. Values of Z in Fig. 4.8

are considerably lower in PPIs of NOXP data than of KFSD data within the box in
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Figure 4.8: PPI scans of reflectivity at 0.5 degrees elevation from (a-b) KFSD and

(c-d) NOXP, at scan times closest to (a,c) 7:15 and (b,d) 7:45 UTC. Note that the

meridional and horizontal extents of the images are 300 km for (a-b) and 100 km for

(c-d), and that the colorbar is different from the QVP and CVP colorbar. The box

in (a-b) shows the zonal and meridional extent of (c-d), with the location of NOXP

denoted by the black dot.
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Figure 4.9: QVP of Z (a), ZDR (b), ρhv (c), and KDP (d) from 7-8 UTC on July 6,

2015, using data from the KFSD radar.

Fig. 4.8a-b where NOXP data were collected. This is likely due to beam attentuation

at X-band as the beam passed through regions of enhanced reflectivity (upwards of

35-40 dBZ as sampled by KFSD; Fig. 4.8a-b). Radar miscalibration could also have

played a role.

Figures 4.9 and 4.10 show QVPs of Z, ZDR, ρhv, and KDP using KFSD and NOXP

radar data, respectively. The KFSD QVP was created using data from the 19.50◦

elevation angle, and the NOXP QVP using 18.00◦ elevation angle data. For the KFSD

QVP, ZDR in Fig. 4.9 was calibrated such that values just above the melting layer

were approximately 0.2 dB (Ryzhkov and Zrnic, 1998; Ryzhkov et al., 2005a). For

the NOXP QVP in Fig. 4.10, ZDR and Z were calibrated such that values below the

melting layer were approximately equal to those for KFSD, requiring calibration of

+0.1 dB and +3 dBZ through the entire depth of the QVP, respectively. This allowed

for investigations of how attenuation through the ML affected Z and ZDR at X-band,

relative to how it affected those variables at S-band.
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Figure 4.10: QVP of Z (a), ZDR (b), ρhv (c), and KDP (d) from 7-8 UTC on July 6,

2015, using data from the NOXP radar.

A number of interesting signatures within and differences between these two plots

are immediately noticeable. First, the plots themselves show qualitative agreement in

the precipitation structures they resolve. Both show a melting layer at approximately

4 km, high KDP at 8 km that gradually decreases during the hour long time period,

and cloud top heights near 14-15 km at 7 UTC, gradually descending to closer to 13-14

km by 8 UTC. Despite these similarities, there are also a number of stark differences

between these plots. ZDR above the melting layer is considerably lower for the NOXP

QVP, despite correction of ZDR below the melting layer to be approximately equal to

that measured by KFSD. This is indicative of strong beam attenuation in the bright

band, preferentially attenuating the H-polarized beam and lowering ZDR above the

melting layer as a result. Also, above about 9 km, ρhv in the NOXP QVP is fairly

low, dropping to values near 0.95. This artificial decrease in ρhv is thought to be

due to low signal to noise ratio at distances farther from the radar. These signatures
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persist in these images because no correction of NOXP data was done for low SNR

or for attenuation.

Additionally, there are obvious issues with KDP in and around the melting layer

for NOXP. Just below the melting layer, KDP is incredibly high, above 0.4 deg/km,

while just above the melting layer, KDP drops dramatically down to below zero. This

dramatic change in KDP happens over the span of less than a kilometer, and is due

to high backscatter differential phase (δ) in the melting layer. Figure 4.11 shows the

vertical profile of ΦDP from the fifth volume scan performed by each radar during the

hour. Magnitudes of ΦDP are considerably higher for NOXP than KFSD, with peak

values of δ in the ML higher for NOXP as well. Also, while the local peak in ΦDP

for KFSD is quite limited in vertical extent, spanning only about 0.5 km, the peak

for NOXP has a much larger vertical extent. Calculations of KDP in and around the

ML for NOXP may be suffering from the much larger vertical extent of this peak, or

potentially from the concavity of the profile from approximately 4-5 km. Depending

on how KDP is calculated in this region, this concavity could be a main contributor in

the “dipole” of high and low KDP just below and above the ML. This problem with

appropriately calculating KDP in the ML for shorter wavelength radars is a concern

that needs to be addressed in the future.

Above the melting layer, however, KDP is fairly robust in both the NOXP and

KFSD QVPs. In the region from 6-10 km, KDP as measured by NOXP is approxi-

mately twice that measured by KFSD, just below the factor of 3 increase from S to

X band measurements of KDP predicted by theory. Because KDP is not affected by

radar miscalibration or attenuation, it remains a robust estimate despite calibration

and attenuation challenges.
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Figure 4.11: Vertical profiles of ΦDP from the fifth volume scan performed by the

KFSD (red) and NOXP (blue) radars. The approximate top of the melting layer is

denoted by the horizontal dotted line.
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Figure 4.12: Time series plots of altitude (black, in km) and temperature (red, in

◦C) along the flight tracks of IOPs from (a) April 27, 2011, (b) May 20, 2011, (c)

July 6, 2015, and (d) July 9, 2015. Dotted and dashed lines are placed at the -10

and -20 ◦C levels, respectively.
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4.4 Bulk Microphysical Properties of MCS Stratiform Precipitation

The flight patterns in MC3E and PECAN both included spiral ascents and de-

scents, but flights in MC3E targeted regions high above the ML (such as the DGL),

whereas flights in PECAN mainly flew transects through the ML. Figure 4.12 shows

time series plots of altitude and temperature along the flight paths for the full extent

of the flights performed during the 4 cases discussed in section 3.1. Because these

campaigns primarily sampled different temperature regions, an opportunity exists to

separately examine the vertical profiles of Dmm, Nt, and IWC through the ML and

DGL. It must be noted that Lagrangian sampling was not performed during these spi-

rals, so the following investigations are of vertical data trends, from which processes

are inferred. For investigations of the vertical structure of the DGL using MC3E data,

the focus will be solely on the downward spiral performed on May 20, 2011, since the

spiral on April 27, 2011 only reached temperatures as low as -15.5 ◦C (Fig. 4.12a),

making an examination of the full vertical extent of the DGL impossible.

To examine the vertical structure of the DGL, Fig. 4.13 shows box and whisker

plots of Dmm, Nt, and IWC using 2D-C data for the downward spiral on May 20,

2011, with data binned into 2 ◦C intervals from -5 to -25 ◦C, as well as a vertical

profile of relative humidity with respect to ice (RHi). Boxes show the 25th, 50th,

and 75th percentiles, with whiskers at the 5th and 95th percentiles. Data within each

temperature bin were analyzed if there were 40 or more samples (i.e., seconds of data)

in the bin, to ensure a large enough sample size (e.g., Murphy et al., 2017). A few

signatures stick out in these vertical profiles. First, IWC and Dmm increase through

the depth of the DGL, with median values of IWC increasing from 0.13 to 0.22 g/m3,

and Dmm from 512.5 to 750 µm from the -21 to -19 ◦C bin to the -13 to -11 ◦C bin.

From the top to the bottom of the DGL, however, Nt remains fairly constant, with

median values only increasing from 28.2 to 33.5 L−1 from the -21 to -19 ◦C bin to

the -13 to -11 ◦C bin, with a local maximum median value of 38.5 L−1 in the -15 to
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Figure 4.13: Box and whisker plots of (a) Dmm, (b) Nt, and (c) IWC from the 2D-C

probe for the downward spiral on May 20, 2011, with data binned into 2 ◦C

intervals from -5 to -25 ◦C. Boxes show the 25th, 50th, and 75th percentiles, with

whiskers at the 5th and 95th percentiles. Box and whiskers for each temperature

bin are shown only if there are 40 or more samples in the given bin. Dashed lines

are placed at -10 and -20 ◦C. Panel (d) shows the vertical profile of RHi through the

same temperature range. Temperature increases downward to mimic typical

atmospheric temperature structure.
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Figure 4.14: As in Fig. 4.13, but using data from the HVPS probe.
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-13 ◦C bin. At a first glance, these vertical profiles suggest particle growth via vapor

deposition in the absence of aggregation. However, looking at Fig. 4.13d, along the

flight track, values of RHi ranged from 70.6% to 83.3% within the DGL, indicating

subsaturated air with respect to ice. Therefore, sublimation, and not depositional

growth, is expected. Examining the 18 UTC sounding launched from Lamont, OK,

located just NW of the ARM SGP CF, strong southerly winds ranging from 46 to

55 knots were sampled between the -10 and -20 ◦C levels. This could indicate that

horizontal advection of ice crystals may be responsible for increasing IWC within the

DGL for this storm, as typical crystal fall speeds are approximately 1 m/s, which

pale in comparison to the observed southerly winds at near 25 m/s. This is one of

the dangers of using a Lagrangian-type interpretation of these data.

At the bottom of the DGL and just below, IWC values drop off sharply, with

median values dropping to 0.12 g/m3 in the -11 to -9 ◦C bin and 0.08 g/m3 in the

-9 to -7 ◦C bin. This occurs concurrently with a jump in median Dmm values to 1.1

and 1.3 mm, and a decrease in median Nt values to 9.0 and 4.7 L−1 in the same bins.

The marked increase in Dmm at temperatures warmer than -10 ◦C in conjunction

with a rapid decrease in Nt is potentially indicative of aggregation. Sublimation

of particles may also be occuring, preferentially sublimating the smallest particles,

therefore increasing Dmm, decreasing Nt, and decreasing IWC. This sublimation is

plausible, as the Lamont, OK 18 UTC sounding showed subsaturated air between

the bottom of the DGL and top of the ML, model soundings indicated the presence

of subsaturated air in the environment just ahead of the MCS at temperatures lower

than 10 ◦C (Xue et al., 2017), and values of RHi in Fig. 4.13 remain below 100%

through the depth of the profile. A decrease in IWC is also possible due to increased

fall speeds of larger hydrometeors. A similar trend is seen in the HVPS data (Fig.

4.14). From the -21 to -19 ◦C bin to the -13 to -11 ◦C bin, median IWC values increase

from 0.18 to 0.32 g/m3, and median Dmm values increase from 700 µm to 1.1 mm,
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while median Nt values are very similar at the top and bottom of the DGL, decreasing

from 19.6 to 17.3 L−1. Below the DGL, a decrease in IWC and Nt is observed, with

median IWC values dropping to 0.24 and 0.22 g/m3, and median Nt values dropping

to 4.4 and 2.0 L−1, in the -11 to -9 ◦C and -9 to -7 ◦C bins. In addition, Dmm increases

rapidly below the DGL, to values of 2.0 and 2.8 mm in the -11 to -9 ◦C and -9 to -7

◦C bins, and even further to 3.6 mm in the -7 to -5 ◦C bin.

Transitioning from an examination of the vertical structure of the DGL to that of

the ML, Figs. 4.15-4.20 show box and whisker plots of Dmm, Nt, and IWC using CIP

data for multiple downward spirals on July 6 and July 9, 2015, with data binned into

2 ◦C intervals from 10 to -10 ◦C. Boxes show the 25th, 50th, and 75th percentiles,

with whiskers at the 5th and 95th percentiles. These plots differ from Fig. 4.13 and

4.14 in that for profiles of RH, since these plots show data at temperatures both

above and below 0 ◦C, the vertical profile of RHi is plotted at temperatures below 0

◦C, and RH is plotted at temperatures above 0 ◦C, as in Fig. 2 in McFarquhar et al.

(2007). Again, only bins with 40 or more samples are included in Figs. 4.15-4.20.

Additionally, as these plots investigate regions at temperatures greater than 0 ◦C,

box and whiskers are only shown for bins at temperatures above 0 ◦C where median

IWC values are greater than or equal to 0.01 g/m3, to mitigate investigating regions

of predominantly liquid water and no longer of ice. For brevity, 2 of the 4 spirals

performed on July 6, 2015, and 4 of the 8 performed on July 9, 2015 are examined

here.

Spirals on July 6, 2015 show an increase of median values of Dmm from 1.175

to 1.325 mm and 950 µm to 1.325 mm from the -10 to -8 ◦C bin to the -2 to 0 ◦C

bin in Figs. 4.15 and 4.16, respectively. This increase in Dmm is concurrent with

decreases in Nt and IWC, with median values of Nt decreasing from 34.3 to 1.6 L−1

and IWC decreasing from 0.29 to 0.04 g/m3 from the -10 to -8 ◦C bin to the -2 to 0

◦C bins in Fig. 4.15, and median values of Nt decreasing from 65.0 to 3.6 L−1 and
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Figure 4.15: Box and whisker plots of (a) Dmm, (b) Nt, and (c) IWC from the CIP

probe for the second downward spiral on July 6, 2015. Data are binned into 2 ◦C

intervals from 10 to -10 ◦C. Boxes show the 25th, 50th, and 75th percentiles, with

whiskers at the 5th and 95th percentiles. Box and whiskers for each temperature

bin are shown only if there are 40 or more samples in the given bin. Panel (d) shows

the vertical profile of RHi at temperatures below 0 ◦C, and RH at temperatures

above ◦C, through the same temperature range. Dashed lines are placed at 0 ◦C and

100% RH. Temperature increases downward to mimic typical atmospheric

temperature structure.
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Figure 4.16: As in Fig. 4.15, but for the fourth downward spiral.
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Figure 4.17: Box and whisker plots of (a) Dmm, (b) Nt, and (c) IWC from the CIP

probe for the third downward spiral on July 9, 2015. Data are binned into 2 ◦C

intervals from 10 to -10 ◦C. Boxes show the 25th, 50th, and 75th percentiles, with

whiskers at the 5th and 95th percentiles. Box and whiskers for each temperature

bin are shown only if there are 40 or more samples in the given bin. Panel (d) shows

the vertical profile of RHi at temperatures below 0 ◦C, and RH at temperatures

above 0 ◦C, through the same temperature range. Dashed lines are placed at 0 ◦C

and 100% RH. Temperature increases downward to mimic typical atmospheric

temperature structure.
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Figure 4.18: As in Fig. 4.17, but for the fourth downward spiral.
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Figure 4.19: As in Fig. 4.17, but for the fifth downward spiral.
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Figure 4.20: As in Fig. 4.17, but for the sixth downward spiral.
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IWC decreasing from 0.63 to 0.08 g/m3 from the -10 to -8 ◦C bin to the -2 to 0 ◦C

bins in Fig. 4.16. The pattern of increasing Dmm and decreasing Nt is indicative of

particle aggregation with depth, while a decrease in IWC is likely indicative of particle

sublimation within dry air typically found in these types of systems. Looking at Fig.

4.15d, RHi was greater than 100% from approximately -7 to -2 ◦C. From the -8 to -6

◦C bin to the -4 to -2 ◦C bin where RHi was above 100%, IWC remains constant, with

a median value of 0.18 g/m3 in all three bins (even the bin from -6 to -4 ◦C, which

is not shown due to having less than 40 samples). This makes sense, as sublimation

would not occur in regions where RHi > 100%. However, during spiral 4 (Fig. 4.16),

a decrease in IWC values is seen even while the aircraft was sampling RHi values

above 100%. Although values dip below 100% around -4 ◦C, IWC decreases through

the entire vertical extent from -10 to 0 ◦C in Fig. 4.16c. Some potential reasons for

a decrease in IWC even in an environment with RHi > 100% could be an increase

in terminal velocity of the particles as they grow in size, falling faster as aggregation

continues through the -10 to -8 ◦C layer, and/or riming, with an increase in ice mass

significantly outweighed by the increase in terminal velocity. Additionally, horizontal

advection of ice hydrometeors out of the sample volume may be occuring, causing the

opposite effect as what was seen in Figs. 4.13 and 4.14, where IWC was increasing

in a subsaturated environment with respect to ice. The sounding from Aberdeen, SD

at 0 UTC showed westerly winds between 0 and -10 ◦C from 25 to 40 knots, and at

12 UTC from 40 to 45 knots. The exact reason is unknown at this time, and more

investigation must be done into what could be causing this decrease in IWC towards

the ML in an environment of RHi > 100%.

On July 9, across all spirals, there is an obvious increase in Dmm, decrease in Nt,

and decrease in IWC, again pointing toward aggregation occuring alongside particle

sublimation. Unlike July 6, values of RHi remain below 100% for almost the entire

vertical extent from -10 to 0 ◦C during each of the 4 spirals, supporting the idea
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of particle sublimation contributing to a decrease in IWC. There are a few regions

in which RHi exceeds 100%, however. During the third spiral (Fig. 4.17), Nt and

IWC are locally maximized in the -8 to -6 ◦C bin, with Nt increasing to 14.8 L−1

from 8.1 L−1 in the -10 to -8 ◦C bin, and decreasing again to 4.4 L−1 in the -6 to -4

◦C bin. Likewise, IWC increases from 0.07 g/m3 to 0.16 g/m3, and decreases back

down to 0.06 g/m3, in the bins from -10 to -4 ◦C. On that spiral’s profile of RHi,

there is a bump in RHi values near -7 ◦C where RHi increases to greater than 105%.

This supports the idea of particle growth via deposition and potentially new particle

nucleation in that region (as Nt increases and Dmm slightly decreases). Additionally,

during the sixth spiral (Fig. 4.20), IWC values have a local maximum in the region

from -8 to -4 ◦C, with values increasing from 0.08 g/m3 in the -10 to -8 ◦C bin to

0.11 and 0.10 g/m3 in the two bins from -8 to -4 ◦C, and back down to 0.05 g/m3 in

the -4 to -2 ◦C bin. That spiral’s RHi profile shows an increase of RHi to just above

100% near -6 ◦C. The increase in IWC in this spiral is different from that in Fig. 4.17

in that it is paired with a still-decreasing median Nt and increasing median Dmm,

so depositional growth is dominating over new particle nucleation, although 95th

percentile values of Nt are increasing in the -8 to -4 ◦C temperature region. However,

for all four spirals, aggregation remains the dominant particle growth mechanism from

the bottom of the DGL to the ML.

On both July 6 and July 9, 2015, there are a few spirals where IWC remained

above 0.01 g/m3 below the ML. While investigations of ice microphysical processes

far below the ML are not appropriate due to liquid hydrometeors dominating sample

volumes, one interesting signature does show up just below the ML. In profiles ofDmm,

specifically for spiral 4 on July 6 (Fig. 4.16) and spirals 3 and 4 on July 9 (Figs. 4.17

and 4.18), median values of Dmm in the 0 to 2 ◦C bin are slightly higher than those

in the -2 to 0 ◦C bin. This suggests continued aggregation in the ML/below the

freezing level. Heymsfield et al. (2015) also observed this behavior, concluding that
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aggregation was occurring starting at -4 ◦C and continuing to 1 ◦C. They noted that

as particles fall into the top of the ML and continue to aggregate, an enhancement of

the aggregation process may occur because the aggregates become “stickier” on their

exterior as they melt and acquire a water coating, more easily collecting particles as

they fall. They also found that melting continued to occur below the freezing level

down to 2 ◦C (i.e., frozen hydrometeors persisted in sample volumes up to 2 ◦C), with

smallest particles melting first and largest melting last. McFarquhar et al. (2007) also

observed melting persisting below the freezing level, continuing at temperatures as

warm as 3 ◦C. The conclusion that the largest particles melt last further supports

an increasing median Dmm below the ML, since both the effects of small particles

melting and large particles continuing to aggregate increase median Dmm.

4.5 Microphysical Retrievals of Moving CVPs

Microphysical retrievals can be performed on moving CVPs to get an estimate

of the microphysical structure the aircraft was flying through. These data can be

plotted much like the moving CVP data, taking into account that only data above the

subjectively determined ML are ingested into the retrieval codes. Figure 4.21 shows

microphysical retrievals performed on the MCS from May 20, 2011. Qualitatively,

the stratiform rain contained primarily particles with diameters at or below 1.0 mm,

except early in the flight near the ML. Particle concentrations were on the order of

10-100 L−1, and IWC values mainly spanned from approximately 0.3 to 1.5 g/m3.

Between 13 and 14 UTC, a signature of aggregation is visible in Fig. 4.21a-b, where

Dm increases and Nt decreases towards the ML.

Microphysical retrievals of moving CVP data can also be performed using data

from the other two cases whose moving CVPs were examined in section 4.1. Figures

4.22 and 4.23 show microphysical retrievals performed on the MCSs from April 27,

2011 and July 6, 2015, respectively. Due to how shallow the precipitation was on April
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Figure 4.21: Ice microphysical retrievals performed on the May 20, 2011 moving

CVP. Panels are of (a) Dm, (b) log(Nt), and (c) log(IWC). The height of the ML

was subjectively determined to be 4.5 km. Units are (a) mm, (b) log(L−1), and (c)

log(g/m3).
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Figure 4.22: Ice microphysical retrievals performed on the April 27, 2011 moving

CVP. Panels are of (a) Dm, (b) log(Nt), and (c) log(IWC). The height of the ML

was subjectively determined to be 2 km. Units are (a) mm, (b) log(L−1), and (c)

log(g/m3).
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Figure 4.23: Ice microphysical retrievals performed on the July 6, 2015 moving

CVP. Panels are of (a) Dm, (b) log(Nt), and (c) log(IWC). The height of the ML

was subjectively determined to be 4.5 km. Units are (a) mm, (b) log(L−1), and (c)

log(g/m3).
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27, 2011, Fig. 4.22 cannot resolve much of the vertical structure of the precipitation,

even with such a low ML. Additionally, the gaps in the moving CVP make it hard to

interpret not only the vertical structure of the precipitation, but also any temporal

evolution as the aircraft moves in time within the evolving precipitation system.

On July 6, 2015, however, the storm was quite deep (Fig. 4.23), although gaps

in the moving CVP again made it difficult to examine the microphysical structure of

the storm at times, especially at the beginning of the period. Retrievals suggested

a different microphysical structure than that of the May 20, 2011 MCS, estimating

smaller Dm values and larger Nt and IWC values. In fact, the retrievals suggest

incredibly high Nt aloft, estimating concentrations exceeding 3000 L−1, and IWC

values greater than 3 g/m3. The spiral that came the closest to penetrating the

region of highest Nt and IWC on Fig. 4.23 was the third spiral (Fig. 4.12), but Nt

values for that spiral (not shown) peak only near 100 L−1, and IWC values hover

around 0.5 g/m3. However, this spiral only reached altitudes of 6.5-7 km just before

6 UTC, whereas the region of highest Nt on Fig. 4.23 exists primarily at altitudes

above 7 km, so a deep penetration of this region of incredibly high Nt and IWC

retrieval values was not performed. So, it is possible that the aircraft flew only at the

periphery of the maximum in Nt and IWC observed in Fig. 4.23. One explanation

for such high values may be homogeneous freezing, as soundings performed by the

NWS office in Aberdeen, SD at 0 and 12 UTC on July 6, 2015 show temperatures

of -30 ◦C near 10.5 km and -40 ◦C near 12.3 km. Examining Fig. 4.4, the system’s

cloud top was near 14 km, making homogeneous freezing near cloud top possible, as

homogeneous freezing of cloud drops takes place at temperatures colder than about

-36 to -38 ◦C depending on drop size (Pruppacher and Klett, 1997).

The focus of the remainder of the study will be on the May 20, 2011 MCS, for a

number of reasons. First, this was a deep precipitating system, allowing for analyses

of ice microphysical properties in relatively cold regions beyond what is possible with
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the more shallow April 27, 2011 MC3E case. Additionally, the July 6th, 2015 flight

focused on making passes through the ML (Fig. 4.12), and collected little data

in temperature regions -10 ◦C and below, where the ice microphysical retrievals of

Ryzhkov et al. (2018) are postulated to be most effective. The May 20, 2011 flight did

fly at fairly cold temperatures, in and through the DGL, creating the best opportunity

to analyze the effectiveness of the ice microphysical retrievals used herein.

4.6 Collocated Aircraft In Situ and Radar Microphysical Data

The technique to collocate aircraft location with CVP data was first introduced in

section 2.3 as a three-dimensional collocation method in the horizontal and in time;

expanded to collocate data in the vertical, therefore creating a four-dimensional col-

location technique in section 3.3; and applied to ice microphysical retrievals in 3.4.2.

With this technique, aircraft in situ data can now be directly compared to ice micro-

physical retrievals performed on CVP data, collocated to the aircraft in four dimen-

sions. In this manner, the accuracy of equations 3.8, 3.11, and 3.12 can be tested

to determine how well they are able to predict the microphysical properties of a

midlatitude MCS. For these comparisons, while direct comparison of aircraft in situ

measurements and ice microphysical retrievals of Nt and IWC are possible, the mea-

sure of particle size derived from the aircraft in situ measurements is Dmm, whereas

for the ice microphysical retrievals it is Dm. While these variables are different, com-

paring them should still give an approximate measure of the effectiveness of the ice

microphysical retrieval technique.

Figure 4.24 shows a direct comparison of aircraft in situ data to ice microphysi-

cal retrievals performed on moving CVP data. Overall the retrievals performed well,

estimating the three variables within a factor of 2-3. However, there are periods of

time where the retrieval algorithms struggle to accurately quantify the ice microphys-

ical properties, such as near 15 and 16 UTC for Nt and IWC, and between 13:30
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Figure 4.24: Collocated aircraft in situ data (solid line) and ice microphysical

retrievals of moving CVP data (dots) collected on May 20, 2011. Panels are of (a)

Dm (radar) and Dmm (aircraft), (b) Nt, and (c) IWC. The height of the ML was

subjectively determined to be 4.5 km, and data collected below that level are not

shown. Units are (a) mm, (b) L−1, and (c) g/m3.
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Figure 4.25: As in Fig. 4.24, but where red dots signify retrievals performed in

regions where ZDR ≤ 0.3 dB.

and 14 UTC for Dm. The environments in which these aircraft in situ data and

radar observations were collected vary in their polarimetric signatures, CVP distance

from the radar, and distance above the ML, among other factors, and any one of

these uncontrolled variables could be contributing to the errors in the microphysical

estimates.

Therefore, the effects of the values of different variables must be tested to deter-

mine how the algorithm is or is not affected by high or low values of each. Low values

of ZDR are thought to negatively impact the algorithm’s performance, since as values

of ZDR trend to 0, the denominator in eqn. 3.11 grows smaller, amplifying the IWC

estimate. Additionally, ZDR is used in calculating ZDP , which is used in eqns. 3.8

and 3.12 to calculate Dm and Nt. Figure 4.25 is similar to Fig. 4.24, but points where

retrievals were performed in regions of ZDR ≤ 0.3 dB are flagged as red. Low ZDR

values do not seem to have an appreciable effect on Dm values, but some Nt and IWC

estimates with considerable error are characterized by low values of ZDR. This is also
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Figure 4.26: As in Fig. 4.24, but where red dots signify retrievals performed in

regions where KDP ≤ 0.05 deg/km.

possibly due to a proximity to the ML, as ZDR values tend to decrease towards the

ML, to values near 0.2-0.25 dB.

Another polarimetric variable included in the microphysical retrievals outlined in

table 3.2 is KDP . Values of KDP tend to drop dramatically just above the ML, and

are especially small in snow for longer wavelength radars like the WSR-88Ds. Much

like with ZDR, as KDP trends towards 0, estimates of all 3 polarimetric variables

are prone to large errors. Therefore, it is feasible that ice microphysical retrievals

with large errors could have been performed in regions with very low KDP . Figure

4.26 is similar to Fig. 4.24, but points where retrievals were performed in regions

of KDP ≤ 0.05 deg/km are flagged as red. In this case, a considerable amount of

the red dots in each panel are fairly close to the in situ aircraft measurements, and

many dots that stray farthest from that line are not flagged as red, except for near 14

UTC on Fig. 4.26a and a few near 14 and 14:30 UTC on Fig. 4.26b. It is important

to remember, however, that for both ZDR and KDP , thresholds are in place to filter
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Figure 4.27: As in Fig. 4.24, but where red dots signify retrievals performed in at

times when the CVP sector was centered ≥ 80 km from the radar.

out low confidence observations before microphysical retrievals are performed. So the

conclusion is not that low values of ZDR do not negatively affect Dm estimates, or that

low values of KDP are not strongly correlated to errors in microphysical retrievals.

Rather, it is that the thresholds on how large these polarimetric values must be to

be ingested into the algorithm may need further tuning, to improve estimates of Dm

in regions of low ZDR, and slightly improve estimates overall in regions of low KDP .

Of additional concern is the effect the distance the CVP sector is from the radar

can have on the estimates. As distance from the radar increases, the size of the

CVP sector increases in the azimuthal direction. This increase in sector size could

potentially smooth out finescale features that would have been resolved if the aircraft

was closer in radial distance from the radar. So, an investigation of the dependance

of algorithm accuracy to CVP sector distance from the radar is warranted. Figure

4.27 is again similar to Fig. 4.24, but points where retrievals were performed at

distances ≥ 80 km are flagged as red. Examining all three subplots, it seems that
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Figure 4.28: As in Fig. 4.24, but where red dots signify retrievals performed in

regions where the aircraft was flying ≤ 1 km above the ML.

CVP distance from the radar does not have a considerable effect of the retrieval

technique’s accuracy, especially for Dm, where some of the most accurate retrievals

happened when the CVP was ≥ 80 km from the radar. This statement holds for all

times except near 15 UTC for Nt and IWC, as was also seen in Fig. 4.25b-c, where the

aircraft was also flying in regions of low ZDR. However, as was previously mentioned,

this error may be related more to the aircraft’s distance above the ML.

As stated when discussing the effect of low ZDR values and large CVP distance

from the radar on the algorithm’s estimates, proximity to the ML can also be a

predictor of poor estimates, as polarimetric variables decrease toward the ML due

to aggregation. Figure 4.28 highlights points where retrievals were performed as

the aircraft flew ≤ 1 km above the ML. Many of the points with considerable error

are flagged as red, meaning that the algorithm struggled to accurately quantify the

microphysical properties of the precipitaiton in regions near the ML. Ryzhkov et al.

99



(2018) address this, stating “the method is expected to be more accurate at relatively

low temperatures (say, lower than -10 to -15 ◦C).”

4.7 Analysis of Particle Imagery

Particle images, taken by the 2D-C and HVPS probes on May 20, 2011, were an-

alyzed to determine the relative concentrations of isotropic and anisotropic particles

within the system. During this flight, the moving CVP does not show any enhance-

ment in ZDR above the ML in the region of the DGL (Fig. 2.7), which according

to in situ temperature measurements existed between approximately 6 and 7.5 km.

As mentioned by Griffin et al. (2018), strong ZDR signatures may be absent in the

DGL for two distinct reasons. First, such signatures may be absent if the volume

sampled by the radar remains dominated by small, quasi-isometric ice hydrometeors

falling into the DGL from aloft, masking the ZDR signature from the less abundant

dendrites. Second, dendrites may not exist within the DGL, eliminating the potential

for such a strong ZDR signature.

Particle images taken with the 2D-C and HVPS probes are shown in Figs. 4.29 and

4.30. These images are from the entire duration of the flight, and each panel shows

imagery taken during the second at which the temperature sampled was closest to

the temperature listed to the left of the panel, which increases downward in 1 ◦C

increments from -20 to -10 ◦C. Across all panels of particle imagery for temperatures

from -20 to -10 ◦C, the 2D-C imagery in Fig. 4.29 show very few dendrites, and

sampling volumes are consistently dominated by quasi spherical ice. McFarquhar

et al. (2007) examined particle imagery just below the DGL and above the ML for

the downward portion of 2 spirals executed during an MCS event sampled by the P-3

aircraft during BAMEX. They found that in this region (at temperatures equal to

and warmer than -10 ◦C, different from the DGL as is investigated here), ice was also

primarily quasi spherical, and no evidence of dendrites at the coldest temperatures
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Figure 4.29: Particle imagery from the 2D-C probe, with panels of images taken at

temperatures from -20 to -10 ◦C, in increments of 1 ◦C, increasing downward. Panels

show data collected during the second at which the sampled temperature was closest

to the noted temperature. Buffer width is 960 microns, and resolution is 30 microns.
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Figure 4.30: Particle imagery from the HVPS probe, with panels of images taken at

temperatures from -20 to -10 ◦C, in increments of 1 ◦C, increasing downward.

Panels show data collected during the second at which the sampled temperature was

closest to the noted temperature. Buffer width is 19200 microns, and resolution is

150 microns.

102



-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Te
m

pe
ra

tu
re

 (C
) Tem

perature (C
)

Figure 4.31: Particle imagery from the 2D-C probe, with panels of images taken at

temperatures from -20 to 0 ◦C, in increments of 1 ◦C. Panels show data collected

during the downward portion of the spiral performed at the end of the flight, with

each individual panel showing particle imagery taken during the second at which

the sampled temperature was closest to the noted temperature. Buffer width is 960

microns, and resolution is 30 microns.

shown was present. Although more difficult to see with the HVPS probe in Fig.

4.30, again, almost all of the ice sampled is quasi spherical, with little to no evidence

of dendritic growth. The finding that particles within the DGL of this storm are

primarily quasi spherical and few if any dendrites are present supports the lack of

ZDR signature in cold regions penetrated by the aircraft (Fig. 2.7).

Additionally, particle imagery from May 20, 2011 can be used to validate hy-

potheses about particle morphology and evolution throughout the downward spiral

performed on that day, as examined in section 4.4. Figs. 4.31 and 4.32 show par-

ticle imagery from the downward portion of the spiral performed at the end of the

flight, as was analyzed via box and whisker plots in Figs. 4.13 and 4.14. From the

latter two figures, it was hypothesized that aggregation was not a dominant process

until the aircraft sampled regions with temperatures greater than -10 ◦C, and that

potential sublimation of small particles was occuring concurrently with aggregation.
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Figure 4.32: Particle imagery from the HVPS probe, with panels of images taken at

temperatures from -20 to 0 ◦C, in increments of 1 ◦C. Panels show data collected

during the downward portion of the spiral performed at the end of the flight, with

each individual panel showing particle imagery taken during the second at which

the sampled temperature was closest to the noted temperature. Buffer width is

19200 microns, and resolution is 150 microns.
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Examining Figs. 4.31 and 4.32, both show a marked increase in average particle size

at temperatures greater than -10 ◦C when compared to temperatures less than -10

◦C, confirming that aggregation became a dominant process at these temperatures.

Smaller particles are also much less numerous in particle imagery at warmer tem-

peratures, which could be solely due to the collection of such particles during the

aggregation process, but also could be due to sublimation of small particles.

4.8 Comparison of Midlatitude and Tropical MCS Stratiform

Microphysical Structure

The final investigation into the vertical structure of MCSs as it pertains to micro-

physical quantities and polarimetric radar data involves a comparison of midlatitude

and tropical MCS stratiform regions. Currently, the ice microphysical retrieval tech-

nique described in section 3.4 has been applied only to midlatitude MCSs and a

handful of landfalling tropical cyclones (Ryzhkov et al., 2018). The analyses of MCS

stratiform regions in section 4.5 can be expanded to analyze a climatology of archety-

pal MCSs observed over the contiguous United States, and compare QVPs and micro-

physical retrievals from those cases to QVPs and retrievals of data collected within

tropical MCS stratiform. Analyzing the differences between polarimetric variables

and ice microphysical retrieval outputs from midlatitude and tropical MCSs will offer

insight into how the microphysical structures of these systems may differ.

A number of archetypal MCSs observed by the WSR-88D radar network during

2017 comprise a small climatology herein, and were chosen for their robust stratiform

regions and close proximity to a WSR-88D radar site. MCSs with well defined leading

convective lines, transition zones, and trailing stratiform regions were sampled by

KBMX in Birmingham, AL on April 3 from 12-18 UTC; by KLSX in St. Louis, MO

on April 29-30 from 19-3 UTC; and by KEAX in Kansas City, MO on October 22

from 4-10 UTC. QVPs of the MCSs sampled on these days and by these radars are
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Figure 4.33: QVP of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP from 12-18 UTC on April

3, 2017, using data from the KBMX radar.
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Figure 4.34: QVP of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP from 19-3 UTC on April

29-30, 2017, using data from the KLSX radar.
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Figure 4.35: QVP of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP from 4-10 UTC on

October 22, 2017, using data from the KEAX radar.

seen in Figs. 4.33-4.35. In all 3 of these QVPs, clear ML signatures in all 4 panels are

visible, and the QVPs themselves are visually quite smooth (except for the beginning

of Fig. 4.34), indicating that the QVPs are not heavily contaminated by convection.

Tropical MCSs were observed by S-band radar during the Dynamics of the MJO

(DYNAMO; Yoneyama et al., 2013) campaign over the Indian Ocean. DYNAMO

was executed as a part of the Cooperative Indian Ocean Experiment on Intraseasonal

Variability in the Year 2011 (CINDY2011) to study the Madden-Julian Oscillation

(MJO) and its influence on convective initiation in the tropics. The S-PolKa radar,

an advanced dual-polarimetric, dual-wavelength (10 cm for S-band, 0.8 cm for Ka-

band) radar (Lutz et al., 1995; UCAR/NCAR-Earth Observing Laboratory, 1996,

2012), was operating during this campaign. On October 24, 2011, robust stratiform

was sampled by the radar during the first half of the day, presenting an opportunity

to do a QVP analysis of tropical stratiform sampled by an S-band radar, as shown in
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Figure 4.36: QVP of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP from 0-23:59 UTC on

October 24, 2011, using data from the S-PolKa radar.

Fig. 4.36. These panels also show a strong ML signature, with the best QVP data

quality in the beginning of the period.

A number of MCSs were also been sampled over Darwin, Australia with the C-POL

radar (Keenan et al., 1998). Established as a part of the Tropical Rainfall Measuring

Mission (TRMM) to provide information on tropical rainfall, it operates October

through May annually and provides one volume scan of C-band (5 cm wavelength)

radar data every 10 minutes. Therefore, QVPs of tropical rainfall can also be made

using this data. MCS stratiform was sampled by C-POL on February 15, 2011 and

February 18, 2014, persisting for the entire day and primarily during the latter half

of the day for each case, respectively. Figures 4.37 and 4.38 show QVPs created using

that radar data. Again, the QVPs of C-POL data show a fairly smooth profile of

each polarimetric variable through the entire day for Fig. 4.37 and the latter half of

the day for Fig. 4.38, and distinct ML signatures in 3 of the 4 panels, excluding KDP .

Of note are the obvious issues with KDP near the surface/below the ML in Fig. 4.38,
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Figure 4.37: QVP of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP from 0-23:59 UTC on

February 15, 2011, using data from the C-POL radar.
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Figure 4.38: QVP of (a) Z, (b) ZDR, (c) ρhv, and (d) KDP from 0-23:59 UTC on

February 18, 2014, using data from the C-POL radar.
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from approximately 0.5-2 km. Additionally, it is slightly concerning that in Figs.

4.37 and 4.38, there is no clear KDP maximum within the ML as are seen in Figs.

4.33-4.36. Instead, for the C-POL QVPs, enhanced KDP extends from midlevels to

into the ML, whereas in the midlatitude cases and for S-PolKa, this is not observed.

Therefore, future work using this QVP data should investigate potential sources of

error or artifacts that may persist in the C-POL data, particularly in KDP and ΦDP .

However, data above the ML appear to be of good quality in all 4 panels for both

C-POL cases, and since the focus herein will be on the ice microphysical properties of

these midlatitude and tropical systems, despite the issues with KDP near the surface

and an absence of a KDP maximum in the ML, the data from these cases will still be

used.

To determine any potential differences in microphysical structure between midlat-

itude and tropical MCSs, microphysical retrievals were performed on the 6 aforemen-

tioned cases, for direct comparison of the vertical structures of Dm, Nt, and IWC.

Instead of creating figures displaying the 3 retrieved variables for each individual case,

Figs. 4.39-4.41 show the retrievals of Dm, Nt, and IWC, respectively, for all 6 of the

cases, organized into columns of midlatitude and tropical cases.

In Fig. 4.39, there appears to be a clear signature of aggregation in the retrievals

performed on midlatitude systems, with a marked increase of Dm from cloud top

toward the ML. Such a strong signature is absent, however, in the tropical retrievals.

Dm for those cases is much more constant in magnitude with depth in the cloud.

Apparently, aggregation of ice in tropical clouds is not a dominant process, in contrast

with midlatitudes, for the cases shown herein. Comparing the relative magnitudes

of midlatitude and tropical Dm, the average value for tropical is lower than that for

midlatitude, except near cloud top.

In retrievals of Nt (Fig. 4.40), the concentrations of ice in the tropical clouds

generally exceed those in the midlatitude clouds by an order of magnitude. The only
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Figure 4.39: Ice microphysical retrievals of Dm performed on (a-c) midlatitude and

(d-f) tropical MCSs, calculated from Figs. 4.33-4.38, shown in

numeric-to-alphabetical order. The height of the ML was subjectively determined

for each case, and units are in mm.
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Figure 4.40: Ice microphysical retrievals of log(Nt) performed on (a-c) midlatitude

and (d-f) tropical MCSs, calculated from Figs. 4.33-4.38, shown in

numeric-to-alphabetical order. The height of the ML was subjectively determined

for each case, and units are in log(L−1).
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Figure 4.41: Ice microphysical retrievals of IWC performed on (a-c) midlatitude and

(d-f) tropical MCSs, calculated from Figs. 4.33-4.38, shown in

numeric-to-alphabetical order. The height of the ML was subjectively determined

for each case, and units are in log(g/m3).
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exception is with Fig. 4.40b, which is the Nt retrieval from the April 29-30, 2017 case

sampled by KLSX. Magnitudes of Nt for this case match and sometimes even exceed

the concentrations seen in the tropical cases. In the midlatitude cases, it appears that

Nt is maximized near cloud top or just below, and decreases toward the ML. This is

not the case in the tropical cases, where Nt appears to increase steadily towards the

ML.

A similar pattern is seen in retrievals of IWC (Fig. 4.41). Values of IWC in

midlatitude clouds are less than those in tropical clouds by a factor of 2-3 on aver-

age. In tropical clouds, IWC values exceed 3 g/m3, whereas in midlatitude, values

rarely exceed 1 g/m3. Values of IWC in the midlatitude cases are maximized in the

midlevels, and stay fairly constant, decreasing somewhat towards the ML, whereas in

the tropical cases, peak values of IWC are found right above the ML, with a steady

increase in IWC through the depth of the cloud above the ML.

Analyzing the conclusions drawn for each microphysical variable for both midlat-

itude and tropical cases, it is evident that while there are magnitude differences for

each variable between the retrievals performed in midlatitude and tropical MCSs, the

most important story may be in the vertical gradients of these variables. The vertical

gradients of Dm, log(Nt), and log(IWC) were calculated for the April 29-30, 2017

KLSX (Fig. 4.42) and February 15, 2011 C-POL (Fig. 4.43) QVPs, to analyze the

vertical gradients of the 3 microphysical variables for one midlatitude and one tropical

case. To calculate these gradients, first, the retrievals were smoothed vertically using

a five-point running mean, performed if there were data in at least 3 of the 5 points

in the five-point window. The vertical gradient was then calculated for each point

using a central difference method, meaning that the gradient was calculated as half of

the difference between the points directly above and below the point of interest. The

vertical data spacing in each QVP is approximately 80 m, and an increase downward

is defined as positive, so these gradients are in units of [−∆[variableunits]/(80m)].
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in each variable.
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Figure 4.43: Vertical gradients of (a) Dm, (b) log(Nt), and (c) log(IWC) for the

C-POL QVP shown in Fig. 4.37 using retrieval data for that case shown in Figs.

4.39-4.41. Blue denotes a downward increase, and red denotes a downward decrease

in each variable.
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Note that the difference between a log(Nt) value of 2.1 and 2.0 is the same as the

difference between 0.6 and 0.5, so when Nt is represented in log space, it appears as if

the same change in concentration is occuring between points of 2.0 and 2.1 log(L−1)

and points of 0.5 and 0.6 log(L−1), when in linear space, this translates to changes of

25 and 0.8 L−1, respectively. For that reason, analyses of these figures should focus

on qualitative conclusions and not on quantitative changes in magnitude (particularly

of log(Nt) and log(IWC) values). If a quantitative understanding of these figures is

desired, analyses of these gradients should be paired with the microphysical retrievals

for each case to be able to understand the gradients in terms of the actual magnitudes

of Nt and IWC. Gradients are to be trusted most in regions far from cloud top and/or

the ML, as the microphysical retrievals work best far from the ML, and polarimetric

radar data can sometimes be spurious near cloud top.

In the midlatitude case (Fig. 4.42), Dm increases through the entire vertical profile

of the storm above the ML, with the increase strongest at lower altitudes. Physically,

this suggests aggregation of smaller particles aloft, where Dm increases only a small

amount from the aggregation of small particles. Lower in the cloud, where particles

are larger and radar sample volumes have a higher concentrations of aggregates, the

aggregation of these already sizeable aggregates produces a large average increase of

Dm. This is corroborated with the profile of Nt in Fig. 4.42. Except right at cloud

top, where the gradient of log(Nt) is positive likely due to particle nucleation, the

gradient of log(Nt) is negative through the entire depth of the cloud. This suggests

that particles are aggregating through the entire depth of the cloud, pairing well with

what is seen in the vertical profile of the Dm gradient. When the gradient of Nt

in linear space is calculated (not shown), the gradient of Nt is highly negative in

the upper levels of the cloud, increasing to near zero by 8 km and remaining near

zero from 8 km to the ML. This also corroborates the hypothesis that small particles

are aggregating aloft and large particles are aggregating near the ML, since a much
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larger number of particles exist at the onset of aggregation, such that aggregation

of these particles greatly decreases the concentration with depth, and progressively

less particles exist as aggregation persists, such that aggregation of these particles

decreases the concentration only slightly. By using the gradient of log(Nt) instead

of Nt, small decreases in regions of lower Nt are much more visible. Finally, the

vertical gradient of IWC is slightly negative through the depth of the cloud except

right at cloud top, but overall is very close to zero. This qualitatively agrees with the

concept that particles are falling and aggregating through the depth of the cloud, and

no new ice mass is being added via particle nucleation or depositional growth. The

slight decrease in IWC could be due to particles falling faster as they aggregate and

grow in size and mass, contributing to the visible decrease in log(Nt) with depth, or

sublimation of small particles, also contributing to decreasing log(Nt) and increasing

Dm.

In the tropical case (Fig. 4.43), gradients of Dm are weak, with values remaining

nearly consistent with depth. From this alone, it appears that aggregation of ice in

tropical clouds is not a dominant process, in contrast with midlatitudes. A different

story than what was told with the midlatitude case is told mainly by the profiles of

log(Nt) and log(IWC). Both of these profiles show a steady increase through the

depth of the cloud. Physically, this suggests an upward shift of the particle PSD,

with mean size of the particles in each sample volume remaining nearly the same,

but the number concentration across the PSD increasing, producing an increase in

IWC. This may suggest that in tropical clouds, nucleation of particles is not limited

to the upper levels of the cloud, but rather occurs through the depth of the cloud

and in the absence of aggregation. In addition, ice multiplication due to shattering of

freezing cloud drops may be another reason for the increase of Nt and IWC towards

the freezing level in tropical systems (Khain and Pinsky, 2018).
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In continuing analyses, this comparison of three MCSs from each environment will

need to be expanded to include more cases from both environments. This develop-

ment of a large climatology of cases will allow for more broad conclusions about their

respective microphysical structures, and the ability to corroborate the initial con-

clusions drawn herein. A larger sample size will ensure that these conclusions hold

up when considering the majority of MCSs in each environment, and that the three

chosen for each environment herein were not anomalies. Furthermore, this fundamen-

tal difference in microphysical processes in midlatitude versus tropical MCSs requires

further investigation beyond microphysical retrievals, including similar point-by-point

comparison as was done in section 4.6 for tropical MCSs, to ensure that the retrievals

are appropriately characterizing the structure of tropical MCSs and that what is seen

in Fig. 4.43 is mirrored in in situ data.
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Chapter 5

Future Work

The CVP methodology is still in its infancy, and as a result, there is a lot of

future work that can be done with CVPs, ice microphysical retrievals, and the various

applications shown herein. A number of those are outlined below, with the caveat

that this list is non-exhaustive, and will only grow as the CVP and ice microphysical

retrieval techniques are more widely used and embraced by the community.

1) The CVP technique was tested herein on only MCSs, and no published liter-

ature exists examining the technique when applied to different precipitation types

and structures. Some analyses using CVPs to examine hurricanes/tropical cyclones

and the precipitation substructures within them are ongoing with scientists at NSSL

and the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS), but as

the technique itself is not yet published, the opportunity hasn’t presented itself to

the broader community to examine other precipitaiton structures with CVPs. While

it can be expected that the CVP technique will appropriately resolve the vertical

structure of whatever precipitation it is used to analyze, further analyses of other

precipitation types are needed to confirm that, and will likely happen with time and

a broader awareness of this technique in the community.

2) As mentioned in sections 4.3 and 4.8, the QVP technique can sometimes strug-

gle when ingesting weather radar data not collected by S-band radars or radars within

the WSR-88D radar network. The main challenge seems to be appropriately calcu-

lating KDP , with additional challenges seen in the NOXP data in section 4.3 relating

to low SNR and low ZDR above the ML. While some of the issues in the X-band data

can likely be resolved with rigorous attenuation correction, since these issues only

presented themselves in QVPs of C- and X-band radar data, the processing codes
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must be examined and optimized to create high quality QVPs using data from radars

of various wavelengths, and not just S-band. Additionally, creating QVPs using radar

data not collected by the WSR-88D network is fairly labor intensive, since the algo-

rithm was optimized to ingest and examine data stored in the specific format of data

available through the National Centers for Environmental Information (NCEI), and

creating CVPs with data of other formats is not currently possible. Further mod-

ification of the codes to ingest a wide array of data types is needed, and like with

further exploration of the CVP technique’s efficacy in examining different precipita-

tion structures, will likely come as the community continues and begins to embrace

the QVP and CVP techniques, respectively.

3) Different specifications within the CVP code must be tested more rigorously

than they were here. Variations in the vertical data spacing and Cressman radius of

influence were discussed in section 4.1, but many more degrees of freedom exist when

creating the CVP, including the sector size. Although cursory examination of sector

size has been done for a few individual cases (not shown), a more rigorous test of

sector size must be done to determine whether or not 20 km by 20◦ is the optimum

sector size for CVPs. Also, investigations into the vertical data spacing and Cressman

radius of influence in section 4.1 were strictly qualitative, and discussed how the

CVP image differed when these specifications were changed. Quantitative analyses

must be performed, including performing ice microphysical retrievals on CVPs with

these varying specifications, to determine how changing these specifications affects

the actual values of the polarimetric variables and the microphysical data retrieved

from them.

4) Finally, in situ data for tropical MCSs must be examined to determine whether

or not the microphysical retrievals performed on these storms are accurate and the

retrieval codes applicable to these storms. Due to how different the microphysical

structures and processes appear to be between midlatitude and tropical MCSs from
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analyses of these retrievals, in situ data are imperative to determine whether or not

such stark differences are truly present. Such in situ validation of the algorithms’

effectiveness in tropical environments is a natural next step towards determining the

universal applicability of these ice microphysical retrieval equations.
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Chapter 6

Conclusions

This study examined how operational weather radar data could be better used to

understand the vertical structure of precipitation on an even finer scale than what is

possible using QVPs. It also capitalized on the belief that there exists a rich opportu-

nity to use in situ microphysical measurements to validate ice microphysical retrieval

algorithms optimized for S-band operational weather radar data. Together, these

pursuits offered an opportunity to gain a deeper understanding of the microphysi-

cal structure of MCSs. Therefore, the goal of this study was to utilize operational

polarimetric radar data and polarimetric ice microphysical retrieval algorithms in

conjunction with in situ aircraft data to gain a deeper understanding of the ice mi-

crophysical structure of MCSs, and determine the usefulness and effectiveness of such

new ice microphysical retrieval algorithms and radar data processing techniques. A

number of conclusions can be drawn from the work herein:

1) The CVP methodology has emerged as a novel way to visualize operational

polarimetric radar data collected by S-band WSR-88D weather radars. This technique

is most appropriate when the CVP sector is centered at a distance less than 110 km

from the radar, and can be altered such that the CVP center moves in time. Compared

to the GridRad technique, CVPs offer greater vertical resolution, which is important

for analyzing finescale polarimetric signatures in precipitation.

2) Newly developed ice microphysical retrieval techniques using polarimetric radar

data show promise in quantitatively estimating Dm, Nt, and IWC within midlatitude

MCSs. Such algorithms work best in regions of high ZDR and high KDP , such as

in the DGL. Thresholds can and have been applied to eliminate low values of these

variables, but may need to be adjusted in the future. It was shown that, of the
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values above the set thresholds, low values of ZDR may negatively affect Nt and IWC

estimates, whereas low KDP values had no strong correlation to errors in any of the

three microphysical variables. This may indicate a need to tune the ZDR thresholds

for the retrieval algorithms. CVP sector distance from the radar had no visible effect

on Dm estimates and only occasional negative impact on Nt and IWC, with no clear

correlation between distance and poor estimates. The factor that seemed to negatively

affect estimates the most was proximity to the ML. A distance of ≤ 1 km above the

ML was related to worse estimates of all 3 microphysical variables, confirming that

the algorithm works best in regions far above the ML, as stated in Ryzhkov et al.

(2018).

3) QVPs of archetypal MCSs from both midlatitude and tropical environments

were examined, and ice microphysical retrievals were performed on those QVPs. Two

distinct microphysical structures were observed, with potentially quite different mi-

crophysical processes. In midlatitude MCSs, an increase of Dm and decrease of Nt

with depth, with a nearly constant IWC, suggest aggregation through the depth of

the cloud. In tropical MCSs, nearly constant Dm paired with increasing Nt and IWC

with depth suggest nucleation of new hydrometeors and an overall absence of ag-

gregation. Further studies into the microphysical structure and processes of tropical

MCSs, including in situ measurements and an expanded climatology, are needed to

confirm these initial conclusions.
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