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CHAPTER I 

INTRODUCTION 

Historical Development and Survey of Literature 

The linear differential equation which is commonly associated with 

the electronic generation of frequency modulation is 

2 I 2 2 d x dt + w (t) x = 0 (1.1) 

where w(t) is the instaqtaneous frequency of the oscillator. The above 

e~uation was first studied with reference to FM by Carson [1] followed 

shortly thereafter by the works of Van der Pol [2] and Barrow [3]. In 
le 

the dQtnain of quantum mechanics, the approximate solution to (1.1) when 

w2(t) does not v~ry rapidly, is given by Wenzel-Kramers-Brillouin or 

the so-called W.K.B form [4]. The general mathematical analysis of the 

above differential equation probabiy dates from the work of Liouville 

[5] in 1837· The mathematical results discovered since then are many, 

including the important fact that the differential equation cannot be 

solved in terms of elementary functions or by a finite number of qua-

dratures. This result plus many others, along with an excellent set of 

references are found in the book by Bellman [6]. 

Carson and if.an der Pol correctly applied to the engineering pro

blem of modulation distortion, the classical results known for the ana-

lysis of (1.1), including the special results known for the equations 
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of Hill, Mathieu, and Riccati. The basic engineering problem lies in 

the fact that the generation of FM as described by the above differen

tial equation is not pure. That is, its solution contains an amplitude 

modulation (AM) and rate distortion components along with the desired 

FM solution. Recently Gardner [7] discussed the analysis of modulation 

rate distortion in frequency modulators by studying the differential 

equation (1.1). All of these authors studied the FM differential equa

tion using essentially perturbation or harmonic methods. In recent 

years, Lie algebras and Lie groups have become a powerful tool for stu

dying differential equations, special functions, classical and quantum 

mechanics, perturbation theory, nuclear physics and solid state physics. 

[8], [9], [10], [11], [12]. And of late, the Lie algebraic approach 

has been applied to the study of linear matrix differential equations. 

Wei,. and Nonnan: i:6.':1964 {13] gave certain theorems on global repre

sentations of the solutions of linear differential equations as a pro

duct of matrix exponentials with special reference to (2x2) real co~~ 

efficient matrices. Mariani and Magnus show in their paper [14] that 

even for the ca$e of (2x2) matrices, a general global representation 

cannot be obtained without severe restrictions on the coefficient 

matrix. As an application to engineering problems of interest, Mul

holland employed matrix decomposition using the Lie algebra to study 

the generation of FM [15], wave motion on a non-uniform transmission 

line [16] and the Riccati equation [17]. Outside of the publications 

of Mulholland, not much literature seems to be available on Lie alge

braic methods as applied to engineering problems. 

The Lie algebraic approach, as shown by Wei and Norman, is 
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strongly basis dependent and suffers from the disadvantage that the ex-

ponential state representation is local in nature. The investigation 

of additional global bases with special ~mphasis on engineering appli-

cations needs to be studied in greater detail. 

Scope of Thesis 

This thesis investigates several global bases for the exponential 

state representation with special reference to (2x2) continuous real 

matrix and the generation of rate distortionless orthogonal FM with and 

without the use of gyrators. The analysis of modulation rate distortion 

as a degradation of pure FM signals and the rate distortive effects of 

loading upon the RC modulators are studied by Lie algebraic methods 

using the state variable approach. Use is made of the Wei-No:rman basis 

development for the·representation of modulation and distortion in te:rms_ 

of finite matrix product. The .outstanding result obtained is that the 

rate distortion is expressed as an implicit function of the instantiane-

ous phase, from which bounds on the maximum rate distortion are derived. 
i 

Using the Wei-No:rman global representation for the (2x2)continuous real 

coefficient matrix, the stability properties of the general linear 

differential equation are obtained from the fundamental solution matrix. 

Approach to the Problem 

An outline of the approach to the four problems considered in the 

thesis is given below: 

1. Global bases are those Lie algebraic bases which give rise to 

the global validity of exponential state representations of solutions of 

linear matrix differential equations. They need to satisfy the require-
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ment that the expo~nts in the matrix product of exponentials can be 

expressed as analytic functions of the entries of the fundamental solu

tion matrix. Several new global bases are presented for the first time 

in this thesis. 

2. The generation of rate distortionless FM is obtained by the de

composition of the coefficient matrix, resulting for example from the 

state equations of a Wein-bridge RC,network, into the sum of a scalar 

matrix and a skew-symmetric matrix. The decomposition is effected by 

means of a two parameter design technique given in terms of the ampli

ficationµ and a network parameter m depending upon the modulator ele

ment values of the oscillator. The skew-symmetric matrix gives rise to 

orthogonal FM while the scalar matrix generates amplitude distortion. 

3. With regard to modulation rate distortion, an analysis is per

formed on the state equations of the linear differential equation that 

describes rate distortion. An algebraic basis development is presented 

for the exponential representation of the pure FM signal and the ampli

tude and rate distortion as a finite matrix product. This results in 

the rate distortion being expressed as an implicit function of the 

instantaneous phase from which bounds on the maximum rate distortion 

are derived. 

4. With the Wei-Norman global representation of (2x2) continuous 

real matrices, the fundamental solution matrix is observed to yield the 

conditions for stability and asymptotic stability of linear second 

order matrix differential equations. 



, .. 

CHAPTER II 

INTRODUCTION TO LlE ALGEBRA 

Lie Algebraic Theory 

An algebra is a triple [s, +, o} consisting of a sets of elements, 

a binary operation(+) and a binary operation (o) both maping sxs into 

s. A ~ .algebra. is an algebra in which s is a vectJor~··space and in 

which the product relation defined by the commutator P.roduct [. , .J is 

b~linear. That is, for_!, z and! ins,· 

[ <! + zh !J = [!, !J + [z, !J 

[.e, <.z + !) J = [!, zJ +_ I~, !J 

and 

m [2!;, z] =. [m _!, z] = [!:, mz] 

In addition, the commutator product[. , .J is required to satisfy the 

conditions [,!, ,!] = 0 and 

The latter condition is known as the Jacobi identity. 

The Lie algebras conside~d in this thesis have ford the set of 

rum matrices whose entries are real numbers. 'I'he Lie product is the 

usual matrix commutator [2!;, z] = !.l - .l! which satisfies the above 

,. 
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conditions. A subset of a Lie algebra 1 is called a subalgebra if it is 

closed under the operations of addition, scalar multiplication and com

mutation. Let [H.} be a set of rum. matrices. The enveloping Lie alge-
1 

bra, or the Lie algebra generated by [H.}consists of [H.}, all the ele-
1 1 

ments obtained from H by repeated commutations and all the linear 

combinations of these. A subalgebra s1 of a given algebra is called an 

ideal if [s1 , L]c;s1,that is, for all x e s1 and Jl e 1 the product 

[~, z] belongs to s1. 

The set of all elements of 1 which are the result of commutation 
I 

of some two elements form the derived algebra. This is denoted by 1. 
I I 

Clearly, 1 is an ideal of 1. The derived algebra of 1 is denoted by 
II 

L··. Thus, 

I II 

1 :)1 :)1 

A Lie algebra is said to be solvable if L(h) = [o} for some h. 

The union of two solvable ideals is again a solvable ideal. The 

radical of 1 is the union of all of its solvable ideals. 

The Lie algebra is said to be semi-simple if its radical is £0}· 

It is called simple if it has no other ideal than 1 and [o} and if 1 
I 

is not equal to [o}. 

The lower central series is constructed by relabelling 12 = 1 1 

and defining 

one has 1::, 12 :) 13 A Lie algebra is said to be nilpotent if 



k 
.L = {O} for some k. 

For each x e L, the operator adx is defined by 

adx z = [~, .z], all ..l e L .• 

Powers of operator adx are defined by 

ad~ (z)' = [_!, [_!, • • • [_!, z] .•• J 
n times 

The relationships between these Lie .algebraic properties are des-

cribed by the following theorems. 

THEOREM 2-1 (Baker-Hausdorff); If 2S, ..le L, then~ ..l e-2S = (ead 2S) ..l 

where the exponential is defined by the usual power series 

Let 11, ••• L be a basis for L. Then [L., L.] can be expressed 
- -n -1. -J 

in this basis and is given by 

The numbers y~; are called structural constants of L with respect to 1.J 
chosen basis. 

THEOREM 2-21 (Wei-Norman)~ Let fi, ... fn be a basis for L. Then 

~ exp (g.L.) L. i exp (-g..J! .. J.) .J-' J . -l. ,J j=l j=r 

Let !(t) the linear operator be expressed in the form 

7 
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m 
!(t) = r: a:. ( t) 1. i,;:1 1 -1 

I . 

m finite, where a.(t) s are scalar functions of time and 11, ••• 1 are 
1 - ~ 

time independent bases. 
I 

If mis chosen as small as possible, the L .• s 
-1 

will be linearly independent. 

THEOREM 2-3~ Let A(t) be expressed as above and let the Lie algebra f 
;, -

generated by !(t) be of finite dim~ional 1. Then there exists a 

neighborhood of t=O in which the solution of the equation dx / dt = 

!(t) 2S, 2£(0) = l may be expressed in the form 

I 

where gi s are scalar functions of time. Moreover, the gi s satisfy a 

set of differential equations which depend only on the Lie algebra 1 
I 

and a. (t) s. 
1 

THEOREM 2-4: (Wei-Norman): If d2S / dt = !(t) 2S, where !(t) is any real 

continuous (2x2) matrix, then _!(t) has the form 

where 

( 0 1) ( 1 O) (0 1 )' . . (1 0) 11 = '12 = '13 = '14 = . -1 0 0 -1 0 0 0 1 
This representation is global. 

These theorems provide the mathematical framework for the analysis 

and applications which follow. An excellent introduction to Lie 
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algebras has been provided by Belin fante et al [18] in which these 

theorems and definitions are discussed in more detail. 

Lie Algebraic Aspects of Wei-Norman Basis 

The basis vector expansion for the (2x2) continuous real matrix 

!(t) is given as 

(2.1) 

I 

where the coefficients a.(t) sin terms of the entries of the coeffici
i 

ent matrix are given as 

(2.2) 

and the f-matrices are as given in theorem 2-4· 

The Wei-Norman basis vectors yield 

(2.3) 
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I 

The relationship for the functions g. scan be derived from the 
J. 

following calculation: 

(2.4) 

where the Ado operator is defined by 

ad M M -M 
e N = e Ne (2.5) 

for any two matrices~ and Bin 1:s· The Ado operator can be explicitly 

evaluated by the Baker-Hausdorff theorem given earlier. Note that 

since! is a fundamental solution matrix, !-l always exists [19]. 

Thus, a formal calculation produces 

(2.6) 

(2. 7) 

(2. 8) 

(2. 9) 
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and 

(2.10) 

Therefore, by expanding the Ado operators in terms of the basis for 1i3, 
substituting these results into (2.4), and equating like coefficients" 

for the unique basis vector expansion for A(t), equation (2.4) yields 

(2.11) 

Since ,,!(O) = l, a particular solution of (2.11).is desired so that 

I= # exp ~(o) fie. 
- k=l 

(2.12) 

An interesting solution is provided by the initial values ~(O) = 0 

(k = 1, 2, 3, 4) which clearly satisfy (2.12). 

2g 
The determinant associated with (2.11) is e 4; hence, the system 

is globally invertible to give the normal form of differential equation 

sf stem; 
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(2.13) 

The solution of (2.13) for the exponents~ as a time series 

.starting ;at intial values prescribed by (2e 12) provide the exponential 
', . 

solution representation as defined in theorem 2-4· In most cases, equa

tion (2.13) cannot be solved in closed form, however this does not imra~ 

lidate the result presented as analysis can now be performed on (2.13) 

which will yield useful information about the nature of the solution of 

the linear differential equation associated with A(t). 

Investigation of New Global Bases 

The following are some,of the global bases studied by the author 

for the (2x2) continuous real matrix. 

SYpffi~tric Basis: The Lie algebra 1:s is represented by the matrices ,!:1, 

b,2, .!::3' 14 as given by 

b1 = (. 0 1 ) ' .!:2 = (0 1 ) ' .!!3 = ( 1 0) ' b4 = ( 1 01)' 
· -1 0 · 1 0. 0 -1 0 

The fundamental solution matrix is given as 

that is, 



cos gl sin g1 cash g2 g4 
!(t) ... f- e 

-sin g1 cos gl sinh g2 

where 

x ) 12 

x22 

I I 

Solving for the g1. s· in teT!Ils 0f x .. s gives 
1J 

( ) 1 -1 g1 t = 2 ces 

() 1 -1 :·g2 t = 2 cosh 
.. 

sinh g2 e 
g3 

0 

cosh g2 0 e 
-g3 

Since !(t) is non-singular for all time, x22 and x21 cannot vanish 
I 

simultaneously. Hence g. s are analytic functions of x .. (x .. assumed 
1 1J 1J 

13 

real). Thus, symmetric basis gives rise to global representation. The 
I 

gi s satisfy the following non-linear differential equations given 

below (see Ap~ndix): 
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Wei~Norman 2 Basis: With the vector bases given by 

' . 

the fundamental solution matrix is, 

·cos g1 sin g1 1 0 l g3 e 
g4 

0 

_!(t) = g2 
-sin g1 cos gl 0 e 0 1 0 1 

'that is, 

g2 . 
g3 cos g1 + e sin g1 

. g2 
·. -g3 sin g1 + e cos g1 

' Solving for g. s yields 
i 
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....... With .the reasoning as given for the symmetric basis, it is easily 
I I 

:seenthat the g. s are analytic functions of the x .. s. Hence, the rep-
. 1 ... lJ 

. I 

_)resentation is global with the gi s given as ( see Appendix): 

Wei~Norman 3 Basis: The Lie algebra ··1:s which is ~panned by 

gives rise to the following fundamental solution matrix; 

X(t) = -
I 

'.ehe g. s are given by 
1 

g4 g2 
-~ (g3 cos gl + e sin gl) 

g4 g2 
e (-g3 sin g1 + e cos g1) 
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and 

I I 

Once again the g. s are analytic functions of the x .. sand the repre-
1 . 1J 

sentation is global with the exponents satisfying the following non-

linear differential equations (see Appendix): 

The application of these various basis developments to engineering 

problems is discussed in the following chapters of this thesis. 



CHAPTER III 

RATE DISTORTIONLESS ORTHOGONAL FREQUENCY MODULATORS 

Introduction 

A frequency modulator can be modelled as a two port with a modu-

lating signal v as the input, and a modulated signal vf as the output, m m 

as shown in Figure 1. Ideally, the output signal would be given by the 

following expression: 

vfm =M(t) cos [(Jkvm dt +e)J (3.1) 

where M(t) represents the amplitude modulation and kv the frequency m 

modulation with k as constant parameter. If the phase parameter 8 is 

constant, then the signal is called~ distortionless. For otherwise, 

the frequency of the modulated signal (3.1) 

w(t) = d/dt [( Jkvm dt + 8)] = kvm + d8/dt (3. 2) 

is distorted by the rate d8/dt. Unlike rate distortion, the amplitude 

distortion M(t) is in most cases easily removed in the generation or 

detection process by limiting and filtering [20]. Thus the analysis 

and construction of rate distortionless frequency modulators are of 

practical interest. 

In a paper recently published by Gardner [7] it is shown that rate 

distortion increases from zero as the ratio of the rate at which the 
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{3 

Figure 1. A Frequency Modulator 
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frequency of oscillation is deviated to the magnitude of the frequency 

of oscillation, increases from zero. But the rate at which the fre-

quency of oscillation is deviated is proportional to the rate at which 

the energy storage capacity of one element varies relative to the sto-

rage capacity of the other, and the magnitude of the frequency of osci

llation is proportional to the rate at which energy is exchanged\bet-

ween the two storage elements. Therefore, rate distortion in modulators 

operating under equilibrium conditions depends upon the ratio of the 

change/of energy storage capacity and that of stored energy. Thus, it 

is clear that a general method of analysis apparently requires a com-

plete energy description for the modulator. This is clearly provided 

by the state-variable approach which is used in this thesis. 

The generation of rate distortionless FM as discussed by Gardner 

is based upon the solutions of second-order linear differential equa-

• tions for the frequency modulators and upon the adjustment of the ampli-

fier gainµ to cancel the losses in the frequency selective network of 

the modulator. A new two-parameter design technique given in terms of 

the amplifier gain and a network parameter, will be develo1*d in this 

chapter to reduce the state coefficient matrix to a fundamental formu-

lation that yields an orthogonal pure FM solution matrix and a scalar 

AM distortion factor. 

Rate iOistortionless Modulation 

The two types of frequency modulators considered contain ampli-

fiers of voltage amplificationµ in conjunction with two fundamental 

forms of frequency selective networks: the Wein-bridge RC network shown 



(a) 

Figure 2a. Wein-bridge RC ( t) Modula tor 

+ 
V2, C 

- 2 

( b ) 

Figure 2b. Wein-~ridge R(t)C Modulator 
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R2 

C2(t) 

(a) 

Figure 3a- Bridged-T RC( t) Modulator 

R2(t) 

- v -2 

R1 ( t) 

( b) 

Figure 3b. Bridged-T R(t)C Modulator 

21 
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in Figure 2 and the bridged-T RC network in Figure 3. The state varia:;..: .. 

bles v1 and v2, which are the capacitor voltages for each modulator, 

determine the network energy function and satisfy a vector matrix linear 

differential equation of the form 

i = !(t) ! (3.3) 

where !(t) is a (2?c2) time varying matrix. The solution of (3.3) is 

determined by the initial state !(O) and the fundamental solution 

matrix V which satisfies 

v = !(t) y; y(o) = 1 (3.4) 

where I is the (2x2) identity matrix. Thus, 

The analysis of equation (3.4) proceeds by showing that amplitude 

modulated rate distortionless FM is obtained by decomposing the coeffi

cient matrix !(t) into the sum of a scalar matrix ! 1(t) and a skew

symmetric matrix ! 2(t). This decomposition is effected by the adjust

ment of the amplifier gainµ and another network parameter m which 

depends upon the modulator element values. Such a decomposition for 

!(t) appears to be basic to the understanding of the modulation process 

discussed, as the skew-symmetric matrix gives rise to the pure orthogo

nal frequency modulation, while the. scalar matrix generates amplitude 

distortion. Indeed, it is known that a skew-symmetric coefficient 

matrix is~ necessary and sufficient condition for an orthogonal fun

damental solution matrix [21]. 
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For specific parameter values(µ, m), the coefficient matrix of 

equation (3,4) takes the form 

(3.5) 

where 

( 0 1,) 
-1 0 

The parameter values involved in the decomposition (3.5) constrain the 

networks in question, and thereupon enable the design of rate distor-

tionless modulators. In particular, the valuesµ and mare to be cho

sen to give the symmetry conditions imposed upon the matrices ! 1(t) and 

! 2(t). The transfer function procedure is to choose the amplifier gain 

µ to cancel the losses in the frequency selective networlcs. Using 

state variable methods this is equivalent to requiring the characteris

tic roots of ! 2(t) ta lie on the imaginary a.Jds. The method presented 

herein further requires that parameter m be chosen so that ! 2(t) is 

skew-symmetric, thus avoiding a generally difficult characteristic root 

calculatioh, or for the transfer function approach an equivalent calcu-

lation of imaginary pole locations. 

The solution of equation (3.4) given in product form is 

(3.6) 



where 

and 

The solution of eq~ation (3.7) is 

which commutes with,!2(t). Thus equation (J.8) becomes 

with solution 

( 
cos cp( t) 

:Y:2( t) = 
-sin cp( t) 

sin. cp( t) ) 

cos cp( t) 

24 

(3. 7) 

(3. 8) 

(3. 9) 

(3.10) 

(3.11) 

where rn(t) = fkv dt + 8 and 8 is a constant chosen to give V(O) = I. 
T m I - -

, As indicated, the matrix y(t) is the product of a scalar amplitude 

distortion factor M(t) and an orthogonal solution matrix which repre-

sents the distortionless FM. Other pure FM solutions are congruent 

transformations of that presented in equation (3.11). Equation (3.6) 

with factors defined in (3.9) and (3.11) generalizes the scalar results 

of (3.1) in which the modulator output vfm may be considered as a linear 

combination of the state-variables v1 and v2• For example, the Wein-
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bridge oscillators of Figure 2 yield 

(3.12) 

and the bridged T oscillators of Figure 3 give 

(3.13) 

as output equations. 

Modulator Equations 

The voltage across the series branch of the Wein-bridge RC(t) 

modulator of Figure 2a is 

(3.14) 

and with i 1 = d/dt (c1 v1), equation (3.14) becomes 

. 
v1 = - (1/R1c1 + c1/c1) v1 + (µ-1) v/R1c1 (3.15) 

I 

The Kirchoff s currently law for the parallel branch yields 

(3.16) 

(3.17) 

With c1 = c2 = C and R1 = m R2 = R, equations (3.15) and (3.17) yield 

the following state equationsi 
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[
v l. = [-1/RC - c/c 

v2 -1/RC 

( 3.18) 

Simil~rly, the Wein-bridge R(t)C modulator of Figure 2b gives for 

the series branch 

(3.19) 

while the parallel brancp yields 

(3.20) 

Rearrangement of equation (3.20) becomes 

(3.21) 

Again with c1 = o2 = C, R1 = m R2 = R, equations (3.19) and (3.21) 

yield·; the following state equationsg 

. 
v 2 

= 

-.1/RC. 

-1/RC (µ-m-1)/RC v 
2 

Forµ,= 2 and m = 2 the coefficient matrices of (3.18) and (3.22) have . . 
the form of (3.5) with kvm = 1/Rc, and M/M = - 1/RC - c/c for Figure 2a . 
and M/M = - 1/RC for Figure 2b. Fundamental solution matrices in the 

product form of equation (3.6) follow by direct substitution. 

The voltage across R2 of the Bridged T RC(t) modulator is given as 
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(3. 23) 

With i 2 = d/dt (c2 v2), equation (3.23) yields 

. 
v2 = v1/Rf2 - (1/R2c2 + c,jc2) v2 • (3.24) 

The volt~e across R1 is given as 

and in terms of v1 and v2 is given as 

(3.25) 

But the current through R1 yields 

and with i 1 = d/dt (c1 v1), equation (3.26) yields 

.. 
v1 = [-c1/c1 + 1/(µ-1) Rfl - 1/Rf1] v1 

(3.27). 

With m c1 = c2 = C and R1 = R2 = R, equations (3.24) and (3.27) become 

. . 
m(2-!-L)/(µ-l)Rc ~ c/c -m/(µ-l)RC vl vl 

= (3.28) . . 1/RC -1/Rc - c/c v v2 2 

Similarly for th~ Bridged R(t)C modulator of Figure 3b 
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(3.29) 

which with i 2 = d/dt (c2 v2) yields the following state equation~ 

(3.30) 

Similarly the expression for the current in R1 yields the second state 

equation as follows~ 

(3.31) 

With m c1 = c2 = C and R1 = R2 = R, equations (3.30) and (3.31) yield 

. 
m(2-µ )/(µ-l)RC -m/(µ-l)RC vl ·:1 

= (3.32) . 
1/RC -1/RC v2 -V.;2 

Forµ= 3 and m = 2, the coefficient matrices of (3.28) and (3.32) have . . . 
the form of (3.5) with kv = 1/RC, and M/M = -1/RC - c/c for Figure 3a m . 
and M/M = -1/RC for Figure 3b. Again, fundamental solution matrices in 

the product form of (3.6) result. 

The parameter values for each modulator are calculated so that the 

respective coefficient matrices agree with the decomposition of (3.5). 

Thus, the diagonal elements of !(t) are set equal to one another, while , 

the off-diagonal elements are equated to the negative of one another. 

The simultaneous solution of these two constraints yields the desired 

parameter values. 
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Proportionate time variation of the modulator energy storage ele-

ments and adjustment of the gainµ to exactly cancel the losses in the 
... 

frequency selective network are sufficient conditions for the genera~· 

tion of rate distortionless FM. These conditions are met by the state 

space analysis presented, which in addition gives necessary and suffi-

cient conditions for the generation of rate distortionless orthogonal 

FM. 

Illustrative Example 

In order to contrast the two-parameter design technique presented 

with that of Gardner, consider in more detail the modulator of Figure 

2a. Gardner chooses c1 = c2 = C and R1 = R2 =Rand then ad{)~sts the 

parameterµ. to cancel the losses in the frequency selective network. 

A state interpretation of this technique gives, form= 1 in (3.18), 

. (01 o1) ' !i = - c/c 

( 
... 1 

-1 

fJ,-1 ) 

µ-2 
' . 

where ! = !i +_!,2• The paramete·r µ. is then adjusted to give pure ima

ginary eigen values for the constant mat~ix BC ·!2• It is found that 

µ. = 3 suffices and 

v:-(t) = c-1 -· 

(-1 2) . ' 
-1 1 

( 
cos cp(t) - sin cp(t) 

-sin l'F( t) 

2 sin cp(t) ) 

cos cp(t) + sin cp(t) • 



30 

By comparison, the two-parameter method withµ,= 2 and m = 2 yields 

<f{t) = c-1 e-cp(t) ( 
cos cp( t) 

-sin cp( t) 

sin cp( t) ) 

cos cp(t) 

as the corresponding fundamental solution matrix. Thus, the two para-

meter design technique leads to an elementary orthogonal pure FM matrix 

with an additional amplitude factor which in most cases is easily 

suppressed. 

Distortionless FM with Gyrators 

The generation of distortionless FM with gyrators under ideal 

conditions is investigated with the inductances modulated as in Figure 

• 4a and with the capacitances modulated as :i,n Figure 4b. The loop equa-

tions for Figure 4a are 

(3. 33) 

and 

(3.34). 

The gyrator-which has the property of inverting the secondary impedance 

has the terminal equations [22] under ideal conditions given by 

v 1 = - R i 2 , 

v 2 = R i 1 • 

So, equations (3.33) and (3.34) yield 



3J, 

L( t) L( t) 

• 

(a) 

Figure 4a. .Inductance Modulated Gyrator 

+ 
II ,, 

C(t) C( t) 
+ + 

v, ) 
-

( b) 

Figure 4b. Capacitance Modulated Gyrator 
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• . 
di1/dt -L/L R/L il 

= '~~ (3.35) . 
,; 

di/dt -R/L -1/L i2 

Similarly, the state equations for Figure 4b are 

. 
• -c/c -+/BC. vcl vcl 

= (3.36) . . 1/RC -e/c vc2 vc2 

The symmetry of the coefficient matrices of equations (3.35) and (3.36) 

clearly prescribes the rate distortionless nature of the modulators. 

The state space analysis of rate distortion as a degradation of:.:... 

pure FM could proceed along Lie algebraic lines. In the next chapter, 

the Wei-Norman basis development is made use of for the exponential 

representation of modulation and distortion in terms of a finite matrix 

product. 



.CHAPTER IV 

STATE VARIABLE APPROACH TO MODULATION 

RATE DISTORTION 

Introduction 

For many frequency modulation applications, the undesired concur

rent amplitude modulation component is of less concern than the inhe-

f rent frequency distortion, as under certain conditions the amplitude 

modulation can be more easily removed by limiting and filtering. Of 

prime importance is the frequency distortion, because in most cases, it 

cannot be separated from the desired frequency modulated signal [20]. 

This chapter deals with the state variable analysis of rate dis

tortion as a degradation of a frequency modulated signal. The Lie 

algebraic basis development of Wei-Norman discussed in the second 

chapter, is employed to represent the modulator state in terms of a 

finite matrix exponential product, the exponents of which are then 

identified as sources of distortion. The analysis begins with a decom

position of the state coefficient matrix into the sum of a primary 

skew-symmetric matrix and a residual matrix. Such a decomposition is 

believed ta be fundamental to the understanding of rate distortion in 

view of the fact that the residual matrix, when analyzed with the aid 

of the Wei-Norman basis, is shown to produce rate distortion superim

posed upon pure orthogonal frequency modulation as generated by the 
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skew-symmetric matrix component. 

I 

Gardner s method for the analysis of rate distortion [7] is based 

essentially upon a perturbation technique whereby the harmonic content 

of the distorted signal is disclosed. This diffe:ris greatly from the 
I 

method used in this chapter in which the rate distortion is derived as 

an implicit function of the instantaneous phase.· While closed-form 

solutions for the rate distortion are not available, uniform bounds are 

easily computed. 

With rega;rd to specific applications, the bounds for distortion 

frequency are computed for the parallel antiresonant and series resonant 

LC. netwo:rics when only one energy storage element is modulated, and the 

state equations for.a Wein-bridge BC modulator are analyzed under the 

influence of loading. 

s.t.ate _.Eq1!8,tions. _ 

The linear differential equation which is commonly associated 

with the electronic generation of frequency modulation is 

2 I 2 2 d x dt + w (t) x = 0 (4.1) 

where the variable x(t) represents the frequency modulated signal and 

(4.2) 

in which w(t) is the instantaneous frequency of the oscillator, w0 is 

the constant carrier frequency; ~w is the constant maximum carrier fre-

quency deviation, and wm(t) is the modulation function. It is assumed 

that the function ~(t) is at least continuously differentiable for 
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all t and for corwenience I wm(t) I~ 1. 

The differential equation (4.1) has the first order formulation 

[15] given by 

x 2 

= 

-w/w 

w(t) 

-w(t) 

(4.3) 

0 

where x2 = x(t) and x1 ~ x-;/w· The state equations for the Wein-bridge 

RC modulator of Figure 5 are 

. . 
-(c1/c1 + 1/Rf 1) - 1/Rc1 -1/R1c1 v2 v2 

= (4.4) . 
"1 1/R1c1 -(c1/c1 + 1/R1c1) vl 

where the amplifier gainµ= 2, the parameters c1 = c2 and R1 = 2R2 are 

chosen to give this symmetry. The resistor R represents the load 

placed upon this modulator. 

In general, the state equations (4.3) and (4.4) can be compactly 

expressed as the vector-matrix differential equation 

(4.5) 

where the time-dependent matrix !(t) defines the modulator element and 

the vector x the network variables. The solution of (4.5) is deter

mined by the initial state ~(O) and the fundamental solution matrix X 

which satisfies 



36 

C(t) v 

+ 

R 

Figure 5. Wein-bridge RC(t) Modulator with Resistance Loading 
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. 
! = !(t) ! ; _!(0) = I (4.6) 

where 1 is the identity matrix. Thus 

x(t) = ! ~(O) 

follows from (4.5) and (4.6). The method of analysis proceeds to the 

decomposition of !(t) into the sum of a skew-symmetric matrix A and -s 

a residual matrix A: 
-r 

A(t) = A (t) + A (t) - -s -r - (4. 7) 

where A (t) gives rise to the pure FM component and A (t) the amplitude -s -r -

and rate distortions. 

The class of problems considered in this chapter can be expressed 

by 

( 
o -w

0
(t)) 

A (t) -
-s - w(t) '!/t) 

= (-w
0
Vw 

0
o) (4. S) 

where w(t) represents the instantaneous modulation frequenci~ The mul-. 
tiplicative factor {c1/c1 + 1/Rf1) in the equation (4.4) is easily 

removed by scaling, and Wein-bridge RC modulator of (4.4) then yields 

w( t) = 1/Rf 1, -:fo/w = -1/RC1 • These points are pursued later in the 

chapter in more detail. 

With regard to equation (4.7), the solution of (4.6) in product 

form is 

(4.9) 



where 

and 

The solution of (4.10) is 

( 
cos o(t) 

!1(t) = 
· -sin O(t) 

sin o(t)) 

cos O(t) 
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(4.10) 

(4.11) 

(4.12) 

where O = w(t). Thus, the solution ! 1(t) represents the pure FM compo

nent of the general solution !(t). The amplitude and rate distortion 

are defined by the solution ! 2(t) of equation (4.11) with 

£!( t) = ( 

•,I 2 -w,w cos O 

-4/2JJ sin 2· O 

-w/2w sin 2 0 )· 
•,/ . 2 r. ' -w1w sin u 

as the state coefficient matrix. 

Exponential Representation 

In or<ier to obtain a representation for the component ! 2, it is 

necessary to consider the Lie algebraic aspects of (4.11). Using 

Wei-Norman basis representation for (4.11), B(t) is written as 

(4.14) 

where 11, f 2, 13, 14 are defined in the Wei-Norman theorem 2-4 given 
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I 

earlier. The scalar coefficients b.(t) s are determined by B(t) matrix 
l -

of equation (4.13). The basis expansion of equation (4.14) for the _!!(t) 

matrix is, of course, unique within the prescribed Lie algebra which is 

closed with respect to the usual commutator product [Q, Q] =CD - DC 

for all matrices Q and Qin 1i3· 

The Wei-Norman basis development has the very distinct advantage 

of yielding a global exponential representation for the solution of 

equation (4.11)~ 

4 
TT 

i=l 
exp g. ( t) 1. , 

l -1 
(4.15) 

I 

where the functions g.(t) s are to be determined. If equation (4.15) 
l 

is substituted into (4.11), then by equating coefficients the following 

system results~ 

(4.16) 

where 
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b2(t) = -(w/2w) cos 2 o 

b3(t) = -(w/w) sin 2 O 

(4.17) 

Upon simplification, equation (4.16) yields 

(4.18) 

The analysis of di~tortion has now led to the solution of equation 

(4.18). Thus the general solution Rf the linear system (4.11) has been 

replaced by a particular solution of a non-linear one. However, the 

advantage of this approach lies not in.detennining solutions of (4.18), 
i 

which in any event are not i;adily available, but rather in the analy-

sis that can be.· performed upon (4.18). Before proceeding further in 

the analysis, it is noted that 

sin g1 
g2 

0 ,1 cos gl e g3 g 
!it) = e·4 -g2 

(4.19) 

-sin g:J, cos gl 0 e ,Q 1 

and 
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cos(O+g1) sin(o+g1) 
g2 

0 1 e g3 g 
_!(t) = e 4 

-sin(o+g1) cos(O+g1). 0 e-g2 0 1 

(4. 20) 

are the general solutions of the problem in question. From equations 

(3.1) and (4.20) it follows that g1 can be associated with the physical 

source of rate distortion which is superimposed upon the pure orthogo-

nal FM signal (4.12). Actually, g1 represents what may be called the 

principal rate distortion, since the exponents' g2, g3 also contribute 

to the total rate distortion. 

Three comments appear to be appropriate at this point. First, the 

principal rate distortion g1 is given by the first equation of (4.18) 

as an implicit function of the phase distortion. Second, given the 

solution of (4.21) for the phase distortion, the other distortion terms 

present in (4.20) are determined by simple quadratures from (4.18). 

Finally, it should be noted that the Wei-Norman basis development could 

be applied directly to the coefficient matrix !(t) of (4.5), thus by

passing the initial product decomposition (4.9) as given above. How

ever the decomposition of (4.7) is believed to be the more intuitive 

approach in that it initially places in evidence the pure FM component. 

The relationship between the exponent g1 and the modulation rate 

distortion is of interest. From equation (4.20), the solution of (4.5) 

with initial conditions is given by 
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(4.22) 

~(t) sin (o+g1 -Kp) 

(4.23) 

where 

(4.24). 

Thus, from equations (3.1) and (4.23) the total rate distortion is 

given by 

• e . • = gl + cp • (4.25) 

The angle cp .is clearly determined by g2 and g3 which in turn are deter

mined by g1• Therefore, given the solution for g1(t), the amplitude 

distortion and total modulation rate distortion are computed by simple 

quadratures from equation (4.18) 

Bounds for H,3.te Distortion 

The analysis of rate distortion has now led to the representation 

of the solution of the nonlinear differential equation (4.21). While 
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closed-form solutions are not available, uniform bounds can be easily 

computed by observing that the principal rate distortion is bounded by 

(4.26) 

and that the total rate distortion is bounded by 

(4.27) 

Differentiation of equation (4.24) yields for~ 

(4.28) 

g2 
Noticing thats= (x10+x20 g3) e = 0 when cos~= 1, ~ has its 

largest value given by 

and is therefore bounded by 

(4.29) 

Thus, the total rate distortion from equation (4.27) has the uniform 

bound given by 

I s I s 3/ 2 1 w/ w I . (4.30) 

For the special case of single tone modulation, it follows that wm(t) 

=sin pt, for which case w (max)= pis the audio signal frequency. 
m 
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Thus, equation (4.30) becomes 

(4.31) 

where mis the modulation index. The above bound for wd is useful for 

narrowband FM. 

From equation (4.23), it follows that amplitude distortion is 

given as 

M(t) 

(4.32) 

From equation (4.32) it follows that the amplitude distortion is maxi

mum whens=~' that is, when cM/0g2 = o. Hence, the maximum amplitude 

distortion is given by 

(4.33) 

Equation (4.18) gives 

which, upon integration, becomes 

(4.34) 
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Again equation (4.18) gives 

(4.35) 

-g2 
The largest value of e 0ccurs when g2 = g4, so that 

(4.36) 

Thus·, the Wei...;Nonnan representation identifies -w/w in equation 

(4.3) as the primary source -of distortion giving rise to undesired 

amplitude modulation in (4.32) and rate distortion in frequency modu-

lation in (4.30). 

With regard to specific applications, the parallel LC(t) and the 

series LC(t) modulators of Figures 6 and 7, satisfy the FM differential 

equation (4.1) with x = q, the charge of capacitor and i/(t) = 1/LG(t), 

and the rate distortion bounds lwdl = 3/2 lc/c I. Similarly, the 

parallel L{.t)C and the e)eries L( t)G modulators of Figures 8 and 9, 

satisfy the FM differential equation with x = A, the flux linkages of 

the inductor, w2( t) = 1/L(t)C, and the rate distortion bounds I wd I = 

3/2 f L/1 I . Thus, rate distortion is sensitive to the type of energy 

storage element being deviated in a particular configuration. 

Rate D1istortive Effects of Loading 

For the RG modulator of Figure 5, the instantaneous principal rate 

distortion is from (4.21) 

(4.37) 



L Ro 
C(t) 

r------ , -- --, _______ __. 

Figure 6. Parallel LC(t) Modulator 
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·· · ( Ro•Rin, · 
. F(VFM) = Rln J VFM 

Figure 7. Series W(t) Modulator 
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Figure 8. Parallel L(t)C Modulator 
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Figure 9. Series L(t)C Modulator 
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where the load R = Rz'e = R1/2e. Note that e = 0 corresponds to the no 

load condition, which in t~rn corresponds to the rate distortionless 

case previously discussed. In terms of the applied modulation, 

and thus 

By carrying out the indicated integration 

Furthermore, 

Taking the absolute value of (4.37) yields 

e 

[w0+6w wm(t)J3 

[w0+6w wm(0)] 2 
e -20( t) 

(4.38) 

(4. 39) 

(4.40) 

For the special case of single tone modulation with w (t) = sin pt and m 

w (0) = o. Hence, 
m 

Thus, equation (4.40) gives 

for all t > 0 • 
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(4.41) 

and the bound for the total rate distortion from equation (4.30) is 

given as 

(4.42) 

It should be noted from equation (4.37) that the rate distortive 

effect of loading diminishes exponentially as t becomes large. Also, 

wd =.0 when e = O, which corresponds to the distortionless case. 

It should be, .observed that the Wei-Norman global representation . ~ 

has been used to study the matrix differential equation (4.5) from the 

points of view of amplitude and phase distortion. In the next chapter, 

the fundamental solution matrix of equation (4.5) with the Wei-Norman 

representation, is employed to study the stability and asymptotic sta

bility of the solutions of second-order linear time varying matrix 

differential equations. 



CHAPTER V 

STABILITY OF LINEAR TIME VARYING SYSTEMS 

Stability Aspects 

In the preceding chapter, the Wei-Norman representation was employ-

ed to study the solutions of second order matrix linear differential 

equations as a product of finite matrix exponentials. This particular 

representation makes it possible for the solutions to be characterized 

as sinusoids, with the exponents giving rise to amplitude and phase 

modulation terms, which are contipuous functions of time. In this 

chapter, the fundamental solution: matrix -nr the equivalent scalar ampli-

tude term generated by the Wei7 Norman basis, is studied closely in order 

to yield information about the stability of the system characterized by 

the matrix linear differential equation. A qualitative measure of the 

behaviour of the system can be obtained without actually solving the 
' 

nonlinear differential equations which the scalar exponents in the Wei-
I 

Norman basis satisfy. Stability studies can be made by using Lyapunov s 

indirect method which dispenses with the necessity of solving the sys-

tern of differential equations and·which yields sufficient conditions 

for the stability or asymptotic stability of the equilibrium state. 

In fact, a necessary and sufficient conditions for the asymptotic sta-

bility of the equilibrium solution of 

,! = !(t) ~' ,!(O) = I (5.1) 
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is given by a theorem due to Gorbunov [2'.3] which necessitates the exis-
T ' T 

tence of two quadratic forms V = .! f 3, .!f = 3 9, 3, related by 

• T . 
f + ! f + f. ! = ;.a . ~ (5 .2) 

which are positive definite for every finite fixed t, and of such a 

nature that the integral 

increases beyond any bound as t-+ ~- Even if the actually solutions 

of (5.1) are not needed, the above theorem requires the solving of the 

matrix Riccati e~tion (5.2) which is in general difficult. In the 

special case of second order coefficient matrices, the Wei-Norman re-

presentation provides the sufficient conditions for the stability and 
I 

asymptotic stability of the equilibrium state relatively easily, as the 

boundedness of the f'Ul].damental solution matrix is reduced to the study 

of a single scalar amplitude term. Indeed, boundedness of the funda-

mental solution matrix is necessary and sufficient for the equilibrium 
! 

state 'st~ljility [24]· 

Before proceeding further in the stability analysis of (5.1), the 

fundamental solution matrix_!(t) of equation (5.1) using the Wei-Norman 

representation is given by 

j(t) = ,!( t) = ~ exp g. ( t) L. 
. 1 1 -1 
1= 

(5 .3) 

I 

wit~ the exponents gi s satisfying the following nonlinear differential 
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equations: 

-2g 
g3 = e 2 [(a11-a22) sin 2g1 + (a12+a21) cos 2g1] , 

(5 .4) 

where the entries a 11 , a12, a21 , a22 of !(t) are continuous functions 

of time, so that the continuity of !(t) assures the existence of the 
.I 

solutions of equation (5 .4) ~· 
' 

Upon carrying out the matrix multiplication in equation (5.3), the 

fundamental solution matrix becomes 

j(t) = 

(5.5) 

The solutions of the vector-matrix differential equations associated 

with (5.1) with the initial conditions x10 and x20 is given by 

[
xl (t)J lXio] = !(t) 

-~t) x20 

(5.6) 
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which after some manipulation becomes 

x1(t) 1 sin (gl+e) 
2 2 2 g4 

= ( ~ +, ) , e (5 .7) 

:it (t) 2 · .. cos (g1+e) 

g2 -g2 
where~= (x10+x20 g3) e , = x20 e and tan e = ~,. The ampli-

tude of the sinusoids is 

(5. 8) 

Since the nature of the amplitude of oscillation determines the stabi-

lity of the system, the following two theorems, relating to stability 

and asymptotic stability are developed from the properties of M(t).M(t) 

being bounded is equivalent to the boundedness of the fundamental solu

tion matrix_! that in turn guarantees the stability of (5.1)~ 

t 
THEOREM 1 ~ If (i) (a11+a22) < 0 and (ii) 

0
J I a11+a22 I dr is 

bounded for all t > O, then a sufficient condition for the equilibrium 

state of (5 .1) to be stable is that j a11-a22 I + I a12+a21 I :;;; 
I all+a22 I · 

Proof~ Equation (5.4),gives 

t 

' g2 I ~ of t [ I all-a22 I + I a12+a21 I ]. dr (5.9) 

and 



I g2 I :,;; I g4 I = -g4, for all t .:;: 0 

as g4 <,O from the hypothesis of the theorem. 

Equation (5.i1) yields 

that is, 

g - g - > O, for all t > o. 
2 4 - -

Al so I g3 I from equation ( 5. 4) is bounded by 

-2g 
:,;; e 4 

-2g -2g 
:,;; e 4 I 2g4 I = - 2g4 e 4 • 

(5.10) 

(5.11) 

(5 .12) 



57 

Upon integration, 

-2g 
s; e 4 < (X)' for all t > 0 (5.13) 

. as g4 < oo from assumption (ii) of the hypothesis. So, equations 

(5.12) and (5.13) result inM(t) being bounded for all t..;ao. This 

completes the proof. . 

THEOREM 2 .: If a11 < 0 and a22 < O, for all t ~ O, then a sufficient 

condition for the equilibrium state of (5.1):to be asymptotically 

stable is that I a1f··a22 I + I a12+a21 j < I a11+a22 I · 

Proof: Equation (5.4):gives 

t 

I g2 I s; 0 f t [ I ali-a22 I + I a12+a21 I } dT (5 .14) 

and 

€s g4 < 0 from the hypothesis of the theorem. Hence, 
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and 

. · .\ 
g2 - g4 > O, for all t .2:,; Q • 

Also, 

t 
g2+g4 ~ o~ [~ (all-a22)cos 2gl-t (a12+a21)sin 2gl-ti (a11+a22)J d~ 

(5.18) 

and 

(5.19) 

Again. if I a11-a22 I + j a12+a21 I < I a11 +a22 j , for all t > O, then 

(5.20) 

and 

(5.21) 

Also, 

and 
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-2g 
' 4 e •, (5 .22) 

Upon integration, equation (5.22) yields 

-2g 
e · 4, for all t > 0 • (5 .23) 

Equation (5.23) implies that g3 is bounded on every finite interval 

oft. 

In order to prove that M(t).~ 0 as t -~ oo, it is required that 

From equation (5.20), this is true for g3 bounded for all t > O, or for 

g3 -~ 0 as t-,. oo• However, for g3 unbounded, the above limit is 
I I 

indeterminate. By 1 Hospitals Rule, 

lim 
t -i, 00 

lim 
t -t,. 00 

Substitution from e~uation (5.4) reduces equation (5.24) to 

lim 
t ~ 00 

(5.24) 



as 

lim 
t ... co 

* 
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(5 .25) 

If' I a11-a22 I + I a12+a21 I < j a11 +a22 j , i'or all t 2::. O, the deno.

mp..nator is always positive, while the expression in the numerator with-

in the brackets is always bounded. Also, 

i'rom (5.21). Hence, from equation (5.25), 

•• 

So, equations (5G20), (5.21), (5.23)_ and (5.25) result in M(t) being 

bounded for all finite t and in addition M(t)-+ 0 as t -~ co. Hence, 

M(t) is bounded, that is, stable for all t > 0 and M(t)-+ 0 as t-+ co• 

This completes the proof. 

It should be noted that equations (5.20), (5.21) and (5.25) re

quire that m(t) ~ 0 as t-+ co. Since M(t)......., 0 as t -~ co indepen-- ' 

dently of the initial conditions, the system is asymptotically stable 

in the large (ASL). 
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Illustrative Examples 

The following examples are presented to indicate the range of 

applications of the stability results proven. 

Example 1 : 

Consider 21 2 d x dt + p(t) x = o. 

With dx/dt = y, the given differential equatio~ is transformed to the 

following 

d2y/dt2 - (p/p) dy/dt + p(t) y = o. 

With y2 = y and y1 = y + y, the following state equation result: 

p/p + 1 -(p/p + p + 1) 

= 
1 - 1 

For ASL, 

(i) p/p < - l 

(ii) I p/ p + 2 I + I p/ p + p I < I p/ p I · 

Condition (:L) giv~s either p < 0, p(t) > 0 or p > O, p(t) < o. The 

case of p > O, p(t) < 0 violates condition (ii) as I p/p +. p I > I p/p I 
Hence, the conditions. for ASL are from (i) and (ii): 



p(t) > 0 and p(t) < O, for all t::;: Q. 

With x1 = x and·~= y, the original differential equation yields 

the following state equations: 

. 
x = y 

y = - .P( t) x, p( t) > 0 for all t ~ Q. 

The Lyapunov function V = (p x2 + y2) eP yields 

• 2 2 2 
V = p [(p x + y) ep + eP x ]. 
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So, V < 0 if p <.O. So, the sufficient condit~ons p(t) > 0, p(t) < 0 

for ASL are also provided by the theorem. 

Example 2 : 

Consider the Sturm-Liouville equation 

d2y/dt2 + p(t) dy/dt + q(t) y = o. 

1 

With y2 = y and y1 = y + y/q2 , the following state equations result to 

satisfy the requirements of the second theorem as to the main diagonal 

entries of !,( t): 



1 1 

-(p+q/2q - q2) (p+q/2q - 2q2 ) 

= 
1 

q2 

For ASL, the theorem requites 

1 

(ii) P + 4 / 2q> q2 

.!. 
- q2 

(iii) I p-tq/2q -, 2qt I + I p+q/2q - q~ I < I p+q/2q I ' 

for all t ~ o. Calling ,pt4/2q = m and observing that m> 0 from (ii) 
1 

and (i) and (m~q2 ) > 0 from (ii), condition (iii) yields either 

1 

giving m < 3q2 , or 

1 

giving m> q2 • Hence, the conditions for ASL are 

q( t) > 0 

1 1 

q2 < p+q/2q < 3q2 , for all t 2. 0 • 

Withy= x1, y = x2, the Lyapunov function 



V =xi+ x~ / q(t), q(t) > 0 yields 

.v = - (2p q + ci) x~ / q2 • 

I 

In comparison, Lyapunov s method gives q > 0, 2p q + q> O, for all 

t > 0 as sufficient conditions for ASL, which a;re also provided by the 

theorem. 

Example 3 

Consider the coefficient matrix given by 

[
-1 

!(t) = ! = 0 100] • 
-2 

The characteristic equation yields Al= -1 and A2 = -2 as the eigen

values which assure ASL. In contrast, !(t) matrix does not satisfy 

the conditions given by the theorem as 

I -1 + 2 I + -I 100 I > I -3 I . 

So, this counter example proves that the conditions given by the theo-

rem are not necessary, but only sufficient. 

Example 4 

Consider the coefficient matrix which apparently has poles fixed 

in the left half plan'9: ·. · 
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!(t) [
-l+a cos2 t 

= . -1-a sin t cost 

1-a sin t cos t J 
2 • 

-l+a sin t 

For ASL, the second theorem requires 

(i) 2 
-l+a cos t < 0 

(ii) -l+a sin2 t < 0 

(iii) I a cos 2t j + I -a sin 2t I < l-2+a I , for all t .2. 0 • 

Conditions (i) and (ii) give a< 1 for ASL. The left hand side (LHS) 

of the inequality (iii) .is the greatest when sin 2t = cos 2t = 1/~. 

Hence, 

That is, 

JT I a I < _ I -2+a I . 
Squaring, 

2 2 
2a <a -4a.+4 

or, on rearranging 

2 
a +4a-4<0 
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giving either a< Q.$28 or a <-4-828. For a< Q.828, the LHS of the 

quadratic is negative while for a< -4-828, the quadratic is positive. 

So, a< Q.$28 yields a sufficient condition for ASL. 

In comparison,, t)'le fundamental solution matrix computed bt Marcus 

and Yams.be [25] yields 

j(t) = [ 
e (a:-l)t cos t 

. (a-1)t -e sin t 

-t . t] e. sin 

-t e · cost 

Clarly, a< l is the necessary and sufficient condition for ASL. 

Example 5: 

Copsider 

where! is time-invariant or the constant coefficient matrix. 

For ASL, the second theorem requires 

(i) a< o 

(ii) d < 0 

(iii') I a-d I +· I b+e I < I a+d I , for all t 2:, 0 • 

The first two imply (a+d) < Q. 
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Upon squaring the third inequality, 

, 2 2 I 2 (a-d) + (b+c) + 21 a-d I b+c j < (a+d) 

or 

(b+c) 2 + 2 j a-d j J b+c j < 4ad results. As 4bc :;:; (b+c)2, 

, 2 
4bc+2 j a-d I I b+c I :;:; (b+c) + 2 I a-d I I b+c I < 4ad 

giving 21 a-d I I b+c I < 4(ad-bc) or 

(ad-be) > f I a-d I I b+c I • 

The condit:Lens·for ASL are 

a< O, d < 0 and 

(ad-be) > t I a-d I I b+c I • 

In contrast, the characteristic equation 

2 
A - (a+d) A+ (ad-be)= 0 

yields (a+d) <·0 and (ad-be)> 0 as necessary and sufficieht conditions 

for ASL. Again the second theorem gives only the sufficient conditions 

for the stability of the equilibrium state. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Based upon the mathematical methods of Lie algebras, this thesis 

has considered the theory and applications of exponential representa-

tions for the solutions of linear state equations. This research has 

led to the following results and investigations: 

1. With special reference to (2x2) continuous real matrices, 

three new algebraic bases were discovered for the global exponential 

representation of the solutions of linear state equations as a finite 

product of matrix exponentials. A prelimtnary investigation into the 

applicability of these new bases has been conducted. 

2. The state-variable analysis of a class of rate distortionless 

frequency modulators was discussed. A two-parameter design technique 

was develoJd' to·.reduce the state coefficient matrix to a fundamental 

formulation which yields an orthogonal pure FM solution matrix and a 

scalar _Alf"-d.is'tortion factor. This technique gives only sufficient con-

ditions for the generation of rate distortionless FM, and necessary and 

sufficient conditions if the pure FM component is further constrained 

to be represented by an orthogonal solution matrix. An application to 

the generation of FM with gyrators under ideal conditions was discussed 

t. 
•· 
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along with two classes of RC network modulators. 

3. The state variable analysis of the FM differential equation in 

relation to modulation rate distortion as a degradation of pure FM 

signals was discussed by Lie algebraic methods. Use was made of the 

Wei-Nonnan basis development for the exponential representation of the 

modulation and distortion in tenns of a finite matrix product with the. 

associated exponents identified as the so'U,I'ces of distortion. The dis

tinguishing feat'UI'e of this analysis is that the exponent g1, associa

ted with the principal phase distortion, satisfies a nonlinear diffe

rential equation which is decoupled from the other nonlinear equations 

satisfied by the other exponents of the Wei-Norman basis. Furthennore, 

the principal rate distortion g1 was shown to be represented as an 

implicit function of the relative phase distortion. Given the solution 

of g1, the other distortion terms were determined by simple quadratures. 

The bounds for the total rate distortion and the amplitude distortion 

terms were found. 

4. Several applications of the theory of modulation rate distor

tion were considered. The rate distortive effects of loading with re

sistance on the Wein-bridge RC(t) modulator were investigated and it 

was shown that the distortion has an exponential decay rate. The 

series resonant LC modulator was discussed with respect to single tone 

modulation and a useful approximation for the rate distortion frequency 

was derived for narrowband FM. 

5. The Wei-Norman representation was extended to study the stabi

lity aspects of the second order linear time varying matrix state equa-



tions. Two theorems, one for stability and the other for asymptotic 

stability of the system, were given, both results provide sufficient 

conditions for the stability of the equilibrium state. The results 
I 

were ~pplied to several classical e)@mples of second order linear di-

ffereritial equations. 

Recommendations 

As with all research, the inquiries made in this thesis have led 

to new and unanswered questions. Whiie these questions are of.prime 

interest and importance, they lie for the most part outside the scope 

of this thesis. The following areas are suggested by the author as 

fruitful topics far future investigation: 

'Linear Second Order Equations 
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The analytical study made in this thesis reveals certain relation-. 

ships existing between the physical structure of a linear system and 

the mathematical structure of its underlying Lie algebraic basis. A 

number of physical systems obeying the classical second order linear 
I I I ·1 

differential equations like Bessel s, Legendre s, Hermite s, Mathieu s, 
I 

Laguerre sand the hypergeometric equations can be studied using the 

Lie algebraic methods developed in this thesis. The physical structure 

represented by these classical differential equations .may be then ana-

lyzed in a new light. 

. . 
· Re.rlodic L;i.near Systems 

Few explicitly defined representations are known for the general 

finear f:lystem dese:riibeid l;>y 

l; 
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.! = !( t) ~ . 

One important special case, first determined by Floquet [26] is for 

periodic systems. The matrix !(t) is called T-periodic if there exists 

a scalar T > 0 such that 

!( t+T) '= !( t)' 

for all t. Linear systems described by such periodic matrices can be 

represented by 

- Rt 
_!(t) = 9(t) e -

where 9(t) is T-periodic and Bis a constant matrix. In general 9 and 

Bare not explicitly determined. The relationship between this Floquet 

representation and the product exponentia,l representationtof this the-

sis is presently unknown. It is believed that a tie between the two 

representation theories would be of use in the determination of perio-

die solutions and the investigation of the stability of linear periodic 

systems. It is well known that such systems have many important engi-

neering applications. 

Higher Order Global Bases 

In general, the exponential representations studied in this thesis 

are local, existing only in some open neighborhood oft= o. Few glo

bal results are presently known and it is strongly suspected that the 

representation theory is basis dependent. The only global result known 

for a reasonably large class of problems is the Wei-Norman basis for 
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(2x2) real systems. An investigation of higher order basis developments 

t.s badly need/ed. Several interesting engineering applications await 

global representations. For example, nonuniform transmission linear 

theory is defined over (2x2) complex coefficient matrices. A global 

representation theory would permit an analysis of the line no:q;uniformity 

as a distortion similar to the modulation techniques employed in this 

thesis. 

The vector space of all (3x3) skew-symmetric matrices defines a 4-

dimensional Lie algebra under the usual commutator product. This sys-

tern describes a body rotating in free space. A global representation 

theory would enable the control of such systems. Consider the very 

natural selection of a basis consisting of the four matrices 

At= -3 (
0 0 
0 0 
0 -1 

which describe the rotations abput the three standard Cartesian axes. 

Wei, ,and Norman [13] have shown that this basis is not global. This 

example points out very well the difficulties encountered by the global 

theory of exponential representations. 

1Stability 

In general, the fundamental solution matrix represented by the 

finite product of matrix exponentials is valid locally, existing only 
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tn some open neighborhood oft= Q. With global exponential represen

tations for higher order systems stability properties can be inferred 

from the fundamental solution matrix without actually solving the diffe

rential equations which the scalar exponents in the representations 

satisfy. 
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APPENDIX 

This appendix deals with the calculations necessary to establish 

the global bases discussed in chapter rr. 

S;y;mmetric Basis~ The symmetric basis generates the coefficients given 

in terms of the entries of the coefficient matrix as follows: 

and the basis vectors yield the following product relations: 

By the Baker-Hausdorff formula, the equations following result: 

76 



and 

Upon susbstituting the above results into equation (2.4) of the 

second chapter and equating like coefficients for the unique basis 

vector expansion for !(t), the following equations result; 

77 

Thus, from the above, the nonlinear differential equations satisfied by 

the g. exponents are 
1 



78 

Wei-Norman3 Basis: The coefficient matrix generates 

and the basis vectors yield 

The Baker-Hausdorff formula gives 
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I I 

Again the a. sin terms of g. s are given below: 
1 1 
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-g 
1 • [ . 2 2 (1 2 )] + 2 g4 sin g1 - g3 e -cos g1 , 

-g 
a3(t) = g2 sin 2g1 + g3 e 2 cos 2g1 

-g 
- g4 (sin 2g1 + g3 e 2 cos 2g1) , 

-g 
+ t g4 [(l+cos 2g1) -g3 e 2 sin 2g1] • 

The nonlinear differential equations satisfied by the g. exponents are 
]. 

given below: 
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Wei-Norman] Basis: The coefficients generated by the coefficient 

matrix are given as 

and the basis vectors yield 

By the Baker-Hausdorff formula the following result: 
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Substituting the above results in equation (2.4) and equating like co

efficients for the unique basis vector expansion for A(t), the follow-

ing result: 



I 

On solving the above, the nonlinear equations satisfied by the g. s re
l 

siD.t as follows: 
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